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ABSTRACT 

The aim of this thesis was to develop novel indirect laser micro-textured polymer 

substrates to accelerate and enhance bovine aorta endothelium (BAE-1) cell adhesion and 

proliferation. The response of BAE-1 and human coronary smooth muscle cells 

(HCASMCs) were studied, including cell adhesion, proliferation, ɓ-actin expression, 

migration velocity, and migration directionality.  The laser used in these experiments was 

a SPI infrared solid state fibre laser. By using beam overlapping scanning strategies 

surfaces having two types of distinct surface features were produced: (i) microfringes and 

(ii) microripples. Through a series of laser parameter optimisation experiments control of 

the melt expulsion mechanism and the formation of an intact recast ring could be 

generated. Overlapping of the focused beam resulted in an overlapping of the recast rings, 

thus resulting in surfaces having microripple and microfringe features. 

Experimental results found that polyurethane 1A, which has a projecting topography of 

~4µm width microfringes, significantly increased BAE-1 cell adhesion, proliferation, and 

ɓ-actin expression, compared to the non-textured surface. However, strong adhesion to 

this surface decreased mean cell migration velocity. Furthermore, focal adhesions were 

confined to the microfringe structure leading to the formation of parallel actin stress fibres 

and as a result changed the cell migration directionality. On the other hand, Polyurethane 

3D, which has a projecting topography of ~6µm width microripples, was also found to 

significantly enhance BAE-1 cell proliferation (only at 72 hours post cell seeding), ɓ-actin 

expression and migration velocity, when compared to the non-textured polyurethane.  

Differences were also found between BAE-1 and HCASMCs cells. HCASMCs were less 

sensitive to the polymer substrates and were not found to be influenced by the microfringe 

and microripple structures. However, the microridges with >700nm height on 

polyurethane 1A, 3A and 3D were found to promote HCASMC alignment parallel to the 

microridges. In addition, the Z1A1 polyurethane used for pattern transfer through polymer 

casting has shown delayed HCASMCs adhesion. Further investigation is required to study 

the effect of Z1A1 polyurethaneôs chemical properties on HCASMACs behaviour. 

Overall, the data obtained from this work, suggests that the width dimension of the 

microfringes and microripples between ~4-6µm are important regulators for BAE-1 

behaviour and microridge heights >700nm are important regulators for HCASMCs 

alignment. The preliminary data provided from this work can be used for stent technology 

development in the future.   
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***P<0.001 and Ὥ=30. 
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Figure 8.11 The forward migration index (FMI) of BAE-1 cells 
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Only 1 cell is highlighted here however this 

behaviour was a common occurrence. 

Figure 8.13 Time-lapse images showing a migrating BAE-1 cell 

(yellow dot). Red circle highlights microripple 

structures. The blue arrow shows the BAE-1 cell 

migration direction. (a) Cell migrates along the 

channel. (b-d) cell elongates parallel to the 

microripples and changes its migration direction 

parallel to the microripple structure. Only 1 cell is 

highlighted here however this behaviour was a 

common occurrence. 
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Figure 8.18 No significant different were found in HCASMC 

proliferation by comparing micro-textured 
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48, 72 hours. Data are presented as mean (± SE) 

*P<0.05; **P<0.01, ***P<0.001 (Ὥ=6) 

Figure 8.19 Fluorescence images of BAE-1 cells actin filament 
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Chapter 1 
 

1.0 Introduction 

 

In animal tissues, the extracellular matrix (ECM) consists of surface topographies 

ranging from the nano to the micron scale and acts to provide a scaffold for cell 

support and development. Cells interact with native ECM through integrins and 

transduce the physical cues taken from the ECM into intracellular signals so as to 

produce a coordinated cellular response such as cell adhesion, maintenance of 

correct morphology, cell migration, proliferation, and gene expression 

(Huttenlocher and Horwitz, 2011).  

The recognition the importance of the cell-surface interaction started when Ross 

Granville Harrison observed that embryonic frog spinal neurons were extended 

along on the meshwork of spider web filaments (Harrison, 1911). The 

phenomenon was later described as contact guidance by Paul Weiss (Weiss, 1945). 

Later, micro and nano fabrication technology was adopted from the semiconductor 

industry that was used to manufacture microelectromechanical systems (MEMS).   

However, MEMS manufacturing equipment requires a high capital cost, but 

research and development has led to advances in lower cost technology which has 

been developed in other fields and includes such techniques as soft lithography, 

polymer electrospinning, indirect and direct laser patterning techniques etc. The 

rapidly development of advanced micro and nano fabrication technology has 

revolutionised tissue engineering and the regenerative medicine field. 

With the advances in micro and nano fabrication technologies, a number of diverse 

surface topographies have been designed and produced to study and manipulate 

cell response. A number of investigations have demonstrated that substrates that 

consist of features with dimensions in the range of micrometres and nanometres 

could either suppress or enhance cell performance, influencing the cells response 

to the surface. As well as the scale of the structure, feature design also plays a 
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crucial role for cell-surface interactions. The most extensive feature that has been 

studied is the micro and nanogroove topography, this structure has been shown to 

have potentially beneficial effects on a wide range of medical implants in a number 

of biomedical applications, such as stent implantations (Dibra et al., 2005) 

(Sprague et al., 2012), dental implants (Fillies et al., 2005), bone (Lenhert et al., 

2005) and nerve regeneration (Hsu et al., 2005) etc. 

In this thesis, the focus is on surface topographies relevant to stent applications 

and the aim is to generate novel micro scale topographies that could potentially 

physically accelerate vascular endothelial cell behaviours without using 

pharmaceutical drugs. Currently, the drug eluting stent (DES) has been widely 

used for treating coronary heart disease (CHD) and has proved to be superior to 

bare metal stents (BMS) due to a lower restenosis rate after stent placement. 

Although, the pharmaceutical anti-proliferative drug carried by a DES can inhibit 

smooth muscle cell (SMCs) proliferation, the major concern with DES is that it 

also suppressing re-endotheliazation leading to late (1month - 1year) and very late 

stent thrombosis (ST) (>1 year) after DES implantation. Many researches have 

demonstrated that nano and micro-topography could improve a wide range of 

biomedical application. Hence, BMS consisting of physical topography could be 

an alternative treatment for CHD. 

The objective of this thesis are as follows: 

(a)  To use a cost effective (<10,000 pounds), user friendly and portable 

solid state SPI laser system to develop polyurethane substrates having 

novel micro-topography  

(b) To understand how micro-textured and non-textured polyurethane 

affects BAE-1 cell adhesion, level of spread (as measured by cell height) 

and BAE-1 cell proliferation. 

(c)  To understand how micro-textured and non-textured polyurethane 

affects focal adhesion formation and actin organisation in BAE-1 cells. 

Such knowledge will complement the adhesion and proliferation studies. 
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(d) To understand how micro-textured and non-textured polyurethane 

affects ɓ-actin expression levels in BAE-1 cells and to link this to 

parameters of cell migration, e.g. velocity.   

(e) To understand how micro-textured and non-textured polyurethane 

affects focal adhesion formation and actin organisation in BAE-1 cells 

under flow conditions. 

 

1.1 Structure of the Thesis 

 

This thesis is concerned with modifying surface topography to enhance the 

adhesion and growth of cells, namely endothelial cells which play an important 

role in maintaining vascular haemostasis. Such work has potential to improve 

medical implant technology and tissue engineering processes, in this case stent 

technology. 

Chapter two in this thesis will be used to óset the sceneô,  so as to highlight  the 

potential  impact that  surface topography could have on controlling cell growth, 

particularly of endothelial cells in clinical, coronary stent applications.  

In a broader context the chapter will begin by introducing the history, development 

and disadvantages of tissue and organ transplantation, followed by the emergence 

of tissue engineering, and how tissue engineering may be used to improve and 

replace tissue and organ transplant. Next, the chapter will discuss implant 

prosthetic device failure and the importance of surface topography on cell bio-

functionality. Furthermore, it will discuss the naturally occurring extracellular 

matrix topography, which is inspiring scientists to either reproduce or generate 

new user designed surface topography to maintain or improve cell bio-

functionality.  

In chapters three and four, the thesis discusses the current technologies available 

used to fabricate surfaces having micro and nano-sized topographical features. 

This will be followed by a discussion of how cells respond to such surface 
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topography and the impact surface topography can have on coronary stent 

applications.   

In chapters five and six, the thesis will discuss the details of laser micro-texturing 

of surfaces, the model cells types used during this research and the experiments 

that were carried out.  

In Chapter seven, the results of the engineered surfaces are presented through 

optimization of the of the microfabrication process.  Surface characterization is 

also described. 

In chapter eight, the results of the biological experiments are presented. These 

results are based on experiments that were carried out in order to investigate the 

effects of surface topography on cell behaviours including cell adhesion, height, 

proliferation, migration and ɓ-actin expression. 

Chapter nine is a discussion of the results. This chapter will draw upon the relevant 

literature to discuss the results and put them into context with the aim of 

understanding how the cells interact and move of the textured surfaces. 

Chapter ten contains the conclusions drawn from this research work. 

Chapter eleven will provide some suggestions for future work. 
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Chapter 2 
 

 

2.1 The History of Organ and Tissue Transplantation 

  

This chapter will begin with the history of tissue and organ transplantation, drugs 

development and their disadvantages and how tissue engineering may be used to 

improve and replace tissue and organ transplants. The emergence of tissue 

engineering is important to aid humans to be able to regenerate lost body parts or 

organs. Some small animals such as lizards, frogs and salamanders possess the 

ability to regenerate lost limbs or organs. Understanding this unique ability would 

open opportunities of undreamt in human health (Straube and Tanaka, 2006). The 

degeneration of organs through processes such as ageing or disease and trauma has 

been investigated by scientists over the last century.  For people who develop such 

health problems the only clinical solution is organ and tissue transplantation. Here 

healthy organs such as kidneys, liver, lungs, heart, pancreas, bowel, cornea, bone, 

skin, heart valves, tendons and cartilage are obtained from a suitable donor  for 

transplantation into the patient (Kemp, 2006).  

The first human to human kidney transplantation was performed by Dr. Yu Yu 

Voronoy in Russia in 1933, but unfortunately the transplanted kidneys were found 

to be thrombotic and thus failed to function.  This failure was due to an immune 

response caused by a mismatch of class I and II of major histocompatibility 

complex (MHC) and which induces T-lymphocyte interaction, ultimately  

resulting in organ rejection (García et al., 2012). It was not until 1954 that the first 

successful kidney transplant was carried out by an American plastic surgeon Dr. 

Joseph Murray. He was transplanting a kidney from a genetically identical twin 

brother to his twin, who was suffering from chronic renal failure. The operation 

was successful with no observed rejection of the organ (Klintmalm, 2004). Hence, 

they realized that the immunological response is a formidable obstacle in organ 

transplantation. In 1959 and 1960, a British surgeon Dr. Roy Calne studied a new 

compound called azathioprine, which is an imidazole derivative of 6-
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mercaptopurine supplied by Burroughs and the Wellcome Trust. This drug is a 

purine analogue, which can be incorporated into replicating deoxyribonucleic acid 

(DNA) and also blocks purine synthesis in the lymphocyte salvage pathway 

(Maltzman and Koretzky, 2003). Dr. Calne showed in dogs that azathioparine 

could help prevent organ rejection. Later, this drug was registered under the name 

of Imuran. However, further work on humans found that very few patients could 

tolerate the required doses of Imuran that would be needed to prevent organ 

rejection.  

The discovery of a new immunosuppressive drug ócyclosporineô by Sandoz in 

1971 revolutionised immunopharmacology. This drug is isolated from fungal 

species Tolypocladium inflatum Gams, which is a calcineurin (protein phosphatase 

2B involved in activating T cells) inhibitor that mainly suppresses T cells 

activation by inhibiting the transcription of cytokine genes including IL-2 and IL-

4 (Matsuda and Koyasu, 2000).  

The discovery of cyclosporine has showed an increase in the survival rate for 

kidney transplantation of up to 70% and a decrease in mortality rate to 

approximately 10%. Moreover, the use of cyclosporine has also increased the 

survival rate for liver and heart transplantation, which is now up to 80% (Watson 

and Dark, 2011). Despite the rapid evolution of immunosuppressive drugs such as 

cyclosporine, tacrolimus and mycophenolic acid, further development of immune-

repressive drug treatment for transplantation has been advanced by combination 

therapy, particularly the combination of sirolimus and everolimus, which has been 

found to further reduce the risk of transplantation rejection However, the number 

of organs available from donors are limited compared to demand and many 

patients die before an organ donor becomes available. In the UK alone, the 

National Health Service Blood and Transplant (NHSBT) special health authority 

reported that since April to September 2014 only 1,459 patients have received 

transplants and there are still 6,925 patients waiting for an organ transplant.    

Tissue transplantation such as skin transplant are now routinely performed. For 

example, a procedure known as split skin grafting (SSG) is typically used for 

patients with skin disease and skin trauma. The autografting method is most 

commonly used for SSG. The procedure involves removing a thin slice of 
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epidermis or dermis from the patient while leaving sufficient reticular dermis in 

the wound bed (from where the skin is removed) to regenerate itself. The skin graft 

is then meshed up by passing through the meshing device to increase surface area 

and transferring it to larger secondary wound. Although the skin can be obtained 

from the patientôs own body, the patient donor site may suffer severe pain due to 

exposure of nerve endings and scarring after recovery. Therefore, the best donor 

site areas must be invisible to the public and are therefore typically obtained from 

the thigh, buttock, back, upper arm, forearm and abdominal wall. In  more serious 

cases, for example where a patient has suffered from severe burn (i.e. higher than 

60%), autologous grafting cannot be used, therefore allogeneic transplantation 

becomes the only clinical solution. This however, carries the associated risk of 

graft rejection (Beldon, 2007).  

Hence, tissue engineering has emerged in attempt to overcome by developing an 

alternative clinical strategies to fulfil the high demand of the organ and tissue 

replacement each year. To date most of the tissue engineered constructs have been 

successfully produced, but are largely limited to non-modular organs such as 

cartilage, corneal epithelium, and skin epidermis. The main barrier to success for 

tissue engineering is the complexity of the architecture and most of the tissues and 

organs are composed of multiple cell types such as epithelial, fibroblast, and 

smooth muscles cells (Zorlutuna et al., 2012). To mimic and replicate the 

complexity and functions of the tissues and organs, tissue engineering must rely 

on more than one type of technology, such as high throughput scaffold printing, 

automated cell sorters, cell and organ bioreactors to turn research into reality for 

clinical applications (Lott et al., 2013). 
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With the drawbacks associated with organ and tissue transplantation, the field of 

tissue engineering emerged in the mid-1980s with the aim of addressing significant 

medical needs in tissue replacement and regeneration therapies, by providing 

complementary solutions to the former discussed therapies (Vacanti, 2006). Tissue 

engineering has shown great potential in the development of medical implant and 

transplantation technology. The main clinical success to date are tissue engineered 

bladders, small arteries, skin grafts, cartilage, and a full trachea which have been 

successfully implanted in patients (Atala et al., 2006)(Wystrychowski et al., 2011) 

(Matsumura et al., 2003) (Fulco et al., 2014)(Gonfiotti et al., 2014). However, 

some organs such as the bladder and trachea are costly to build, requiring 

customization for each individual patient and involving complex approaches (Lott 

et al., 2013).  

Tissue engineering is a multidisciplinary field which combines the principles of 

biological, materials and engineering sciences in order to develop functional 

substitutes which can be used to replace, restore and enhance cell function on 

damaged tissue or organs. The distinctive feature of tissue engineering is to offer 

ñoff the shelfò tissues and organ substitutes generated from a patientôs own cells 

and tissues and which can improve biocompatibility, biofunctionality and 

immunogenic rejection (Burg et al., 2010).  

Tissue engineering utilises techniques which include: (i) injection of functional 

stem cells into damaged or non-functional tissues, to stimulate tissue regeneration. 

For example, a Belgian medical doctor used stem cells to treat penile erectile 

dysfunction caused by nerve damage. The authors showed that injection of adipose 

tissue-derived stem cells (ADSC) into a rat penis could improve the recovery of 

erectile dysfunction (Albersen et al., 2010) and (ii) the use of biocompatible 

scaffolding to construct new tissues or organs 

However, the first technique mention above cannot be used for large tissue 

regeneration. It can only be used to stimulate tissues regeneration, because most 

of the cell types in the human body are ñanchorageò dependent and will not survive 

if an appropriate adhesive site is absent. In addition, large tissue reconstruction 

requires appropriate scaffolding for proper tissue formation such as scaffold with 
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specific surface topography design (for example porous scaffold), stiffness, and 

chemical properties (Yamato and Okano, 2004).  

The second technique has been widely used for tissues regeneration because the 

three dimensional scaffolds are capable of supporting large tissues and can easily 

be transferred to the damaged site with high precision. This process comprises the 

isolation of cells from the patient via biopsy and expanding them on a three 

dimensional, bio-engineered scaffold in a bioreactor under controlled 

physiological conditions, so that they develop into functional tissues. The 

functional tissue-biomaterial complex is then implanted onto the defective site 

(Tan et al., 2006). The development of tissue engineering technologies has been 

used to cure heart disease, renal failure and spinal cord injury and has the potential 

to treat other diseases that could result in tissue damage and malfunctions, this will 

be discussed further in the next section. 

 

2.3 Tissue Engineering Development 

  

Over the past 20 years, scientists have worked diligently to develop organ 

substitutes and functional tissues for clinical applications. For example, 

constructed synthetic heart valves have been used to replace the heart valves in 

sheep (Shinoka et al., 1995). In this particular work the researchers used synthetic 

biodegradable scaffolds that were composed of a polyglactin woven mesh 

surrounded by non-woven polyglycolic acid (PGA). This construct was seeded 

with fibroblast cells to form a tissue-like sheet that was further seeded with 

endothelial cells. After cultivation, the researchers replaced the right posterior 

leaflet of the pulmonary valve with the tissue-engineered heart valve and studied 

the response. The results showed no sign of stenosis and trivial pulmonary 

regurgitation  

Similarly, a study carried out at the University of Basel investigated using tissue-

engineered articular cartilage to repair large osteochondral defects in adult rabbits. 

The authors constructed the tissue-engineered articular cartilage by using 

biodegradable PGA scaffolds. These scaffolds were then seeded with primary 
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chondrocytes, harvested from the femora and tibiae of the rabbit. The scaffold was 

composed of 13µm diameter fibres which formed a nonwoven mesh with a void 

volume of 97%. After 4 to 6 weeks of in vitro cultivation, the engineered cartilage 

was implanted into the defective rabbit knee. The results demonstrated that after 6 

months the engineered cartilage had remodelled into osteochondral tissue with 

characteristic architectural features able to withstand physiological loading with 

Youngôs moduli of 0.8MPa (Schaefer et al., 2002). Some engineered organs have 

been fully developed, however some are still under development including a 

bioengineered urinary bladder (Oberpenning et al., 1999)(Drewa et al., 2012), 

kidney (Song et al., 2013)(Friedrich MJ, 2004), trachea (Gonfiotti et al., 2014), 

and gastrointestinal tract (Bitar and Raghavan, 2012). 

Although great progress has been made in tissue and organ regeneration there are 

still many hurdles that need to be overcome and many aspects that have to be taken 

into consideration. For example, tissues having different functional roles such as 

protective tissues, mechano-sensitive tissues, electro-active tissues and shear 

stress-sensitive tissues have specifically constructed extracellular matrices (ECM) 

that help organise cellular architecture and provide mechanical support (Figure 

2.1). Therefore it is important that when tissue-constructs are developed for 

transplantation, the morphology of the scaffolding is suitable for promoting cell 

attachment and growth.     

For instance, tendons transmit ómovement forceô from skeletal muscle to the bone, 

while also helping in holding bones together at the joint. To facilitate these roles 

tendons are composed of parallel collagen fibers with a highly ordered multi-

hierarchical organization. In order for tendons to transmit forces to bone, the 

collagen molecules must be arranged into parallel fibrils and then assembled into 

fibril bundles with a diameter of 50-500nm. These fibrils are embedded in 

proteoglycan-rich matrix forming a fascicles (diameter of 50ï300ɛm). Eventually, 

the fascicles form into tendon fibres with diameters within the region of 100ï

500ɛm and having an  elastic moduli of 10 MPaï2GPa (Franchi et al., 2007). 

Another example, is that of ventricular cavities which are surrounded by elongated 

cardiac myocytes which are arranged into layered anisotropic bands. This 

organisation has evolved to generate contraction for cardiac pumping (Agarwal et 
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al., 2013). Additionally, nerve cellsô alignment is also very important during nerve 

regeneration.  Therefore biocompatibility, scaffold surface architecture and bio-

functionality all need to be carefully considered when designing and implanting 

materials intended to help tissue regeneration.  

 

 

Figure 2.1  Organisation of human tissues showing how they are categorised 

into protective, mechano-sensitive, electro-active, and shear stress-sensitive 

tissues, with respect to the tissue specific environment, structure and function  

(reproduced with permission of Kim et al., 2013).  

 

Hence, simply culturing or repopulating cells on a substrate to form a tissue-

biomaterial construct, does not guarantee that it would restore tissue and organ 

bio-functionality. For example, patients that receive prosthetic vascular grafts tend 

to have a comparatively high failure rate, due to the onset of thrombosis and 

neointimal hyperplasia. This usually occurs within a short period following bypass 

surgery. It is thought that this is due to a lack of endothelial coverage and a 

mismatch in the mechanical  properties of the construct (Tiwari et al., 2001). High 
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risks of prosthetic trachea failure is also frequently observed due to lack of 

mechanical strength and flexibility, leakage of intestinal fluid, and slow ciliated 

epithelium regeneration (Chua et al., 2013). Hence, the ideal material should 

provide support for cells and promote cell organisation before/after transplantation 

and mimic the extracellular matrix in mammalian tissues, which serves as a 

scaffold to promote cell adhesion, migration, alignment, proliferation, etc.  

It is important to know what surface topography the native cells have and how it 

affect cell behaviours interacting in vivo. The responses of cells to naturally 

occurring surface topography in vivo can be studied by either directly extracting 

the (ECM) from animal tissues, or replicating natural extracellular matrix (ECM) 

architecture through advanced nano-microfabrication technology. The next section 

will discuss a variety of natural ECM surface topography.   

 

2.4 Organisation and Scale of the Extracellular Matrix  

 

In order to design an appropriate surface or scaffold for cells, it is critical to 

understand the composition, organisation and scale of the ECM. In vivo, the ECM 

provides structural support and physical cues for cell attachment, migration, 

proliferation, and gene expression. When grown on 2D substrates many cell types 

change their phenotypes, for example smooth muscle cells and chondrocytes. This 

is because the 2D environment is alien to cells and lacks the complex three-

dimensional physiochemical cues that are present in vivo and which are required 

for normal cellular function. Such cues are generated, in part, by surface features 

ranging from the nanometer to millimeter scale. The ECM is a highly organized 

structure that consists of a mixture of extracellular macromolecules (fibrous 

proteins and proteoglycans) such as collagen, elastin, fibronectin, laminin, etc. 

which are embedded in a polysaccharide gel-like substance. Interestingly, some of 

these extracellular macromolecular structures possess complex nanoscale features. 

For instance, collagen is the most abundant structural protein in mammalian 

connective tissue contributing 25% of the total protein mass. The collagen fibril 

has a notable banding pattern that is formed by periodical spacing, organization 
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and cross-linking between tropocollagen molecules arranged along a helical axis. 

A schematic diagram of collagen assembly and organization is shown in Figure 

2.2.  

 

 

 

Figure 2.2 The synthesis process of a collagen fiber. (1) It is secreted in the 

form of a polypeptide chain 1.5nm in diameter and 300nm long. (2) Three 

polypeptide chains wind together into a tropocollagens fiber. (3) Many helical 

tropocollagen align side by side along a helical axis and cross-link to form a 

50-200nm collagen fibril. (4) The collagen fibrils assemble into collagen fibers 

(5) AFM image of a collagen fibril showing a distinctive banding pattern 

(reproduced with permission of Hassenkam et al., 2004).  

 

This organisation of extracellular macromolecules is able to generate highly 

complex three dimensional ECM sheets. These sheets contain a range of primary 

structures both on the micro and nanoscale such as grooves, pits, pores, pitched 

ripples and fibres. These ECM sheets can then fold into a secondary organisation, 

having features on the microscale, or tertiary organisations with features on the 

mesoscale, structures to form a hierarchical organisation which is specific for  the 

immobilisation of different cell types and which ultimately characterises the 
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organisation of the tissue/organ scaffold and function of the tissues, such as muscle 

contraction, signal transmission through neuron and etc. (Wang and Carrier, 2011).  

Given the complexity of the ECM and its importance in controlling cell behaviour 

it is important to understand its basic architecture and characteristics in animal 

tissues and how ECM structure relates to processes within the cell. Generally, 

ECM in animal tissues exists in two forms: basement membrane and the stromal 

matrix (Davies, 2001). Different types of ECM in the basement membrane and the 

stromal matrix, taken from different locations from mammalian tissue, have been 

extensively studied and characterized using techniques such as scanning electron 

microscopy (SEM), transmission electron microscopy (TEM) and atomic force 

microscopy (AFM). These studies have showed that ECM samples taken from 

different tissues have specific organisations, architecture and feature dimensions 

and which are important to support local tissue bio-functionality.  

 

2.4.1 Basement Membrane Topography 

 

The ECM is folded into three dimensional hierarchical basement membranes 

which  provides adhesion sites that support the overlying epithelial cells and 

compartmentalises the epithelial cells from other cell types (Yurchenco, 2011). 

The basement membrane structure is formed by cross-linking of laminin, type IV 

collagen, entactin and perlecan (Martin and Timpl, 1987). The basement 

membrane organisation, architecture and feature dimensions varies, depending on 

the specific location of the ECM within the animal tissues. For example, Kawabe 

et al. examined the basement membrane of human plantar skin using SEM and 

found that the structure is comprised of millimetre scale primary and secondary 

grooves and dermal papillae. The primary grooves were wider than the secondary 

grooves and the bottom of the primary grooves exhibits a microscale reticulated 

appearance with a net-like arrangement of collagen fibrils which contain holes (the 

ducts of eccrine sweat glands) running along the grooves (Figure 2.3a and e). In 

contrast the secondary grooves contained a series of rough parallel microridges 

along the grooves. The millimeter scale microridges in between the primary and 
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secondary grooves were comprised of microscale finger-like projections known as 

dermal papillae (Figure 2.3b). In comparison to the microridge arrangement 

pattern on secondary grooves, the dermal papillae were found to consist of 

invaginated microridges having a spiral arrangement and which are terminated as 

broad sinuous folds on the papillary tips (Figure 2.3c and d). The complexly folded 

microridge features that cover the secondary grooves and dermal papillae are 

supported and assisted by a complex honeycomb like structure under the basal 

lamina, formed by aggregation of 60-70nm dermal collagen fibrils (Kawabe et al., 

1985).   

 

 

Figure 2.3 (a) SEM image of plantar dermis after epidermis removal. (b) The 

image revealed that the dermis consists of primary (P) and secondary grooves 

(S). (c) The primary groove and dermal papillae contain microstructures, 

known as dermal papillae, on their surface. (d-e) High magnification SEM 

image showing that the dermal papillae consist of invaginated microridges 

with a spiral arrangement and the primary groove has a reticulated 

appearance (reproduced with permission of Kawabe et al., 1985).  

In contrast, the human bronchial basement membrane was also studied under SEM 

which revealed a porous topography. The pores were found to be oval shaped with 

a mean pore diameter of 1.75µm (range, 0.6 to 3.85; SD=0.67µm). The mean pore 

density was found to be 863±404 pores/mm2 (range, 208-2337; SD=404 

pores/mm2) (Howat et al., 2001)(Howat et al., 2002).  

c d 

e 

a 

b 



 

 

16 

 

16 Chapter 2 

A study on porcine oesophagus basement membrane morphology showed that the 

porcine oesophagus basement membrane was constructed from interwoven fibres 

and pores which  were unevenly distributed. The resulting measurements showed 

that the fibre diameter was 66nm (range, 28 to 165; SD=24nm), the mean pore 

diameter was 177nm (range, 29 to 638; SD=116nm) and  the interpore distance 

was approximately  198nm (range, 49 to 354; SD=61nm) (Li et al., 2012).  

 

2.4.2 Stromal Matrix Topography 

 

Bone surface topograpghy is important for bone regeneration. Many researchers 

have showed that high nanometer levels of surface roughness enchances osteoblast 

adhesion and longer term functions such as collagen, alkaline phosphate activity 

and calcium-containing mineral deposition (Webster and Ejiofor, 2004)(Price et 

al., 2004)(Liu et al., 2006).  

Bone is mostly composed of corticol and cancellous bones (spongy bone), with an 

estimated elastic moduli of 0.76-20 GPa. Its main function is for structurual 

support and to endure external mechanical forces (Rho et al., 1993). Hassenkam 

et al. examined intact and fractured trabecular bone using AFM. The high 

resolution AFM images revealed that the corticol trabecular bone was densely 

interwoven with collagen fibrils with each fibril possessing a 67nm banding 

pattern (Figure 2.4). The average fibril diameter was found to be ~100nm (range, 

50-200nm). In some areas, the collagen fibres on the trabecular surface were found 

to be mineralised into plate-like mineral cystals known as carbonated apatite 

(Figure 2.4a and b). The thickness of the plates-like mineral crytal were found to 

be ~3-10nm with width of ~30-120nm. Compared to the corticol area, the 

cancellous bone is less dense, less stiff and flexible with a porous or spongy 

apprearance (Hassenkam et al., 2004). Other stromal matrices within the body 

have different ECM organisation, architecture, and feature demensions to act as 

load-bearing structures, including tendon, cartilage and ligament.  
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Figure 2.4 (a) AFM image showing mineral plates packed into fish scale 

arrangement on the collagen fibrils, (b) The white arrow shows the naked 

collagen fibrils (reproduced with permission of Hassenkam et al., 2004). 

 

The studies discussed in Sections 2.4.1 and 2.4.2 have showed that ECM from 

different locations of animal tissues consists of topography of pores, grooves, 

ridges, and ripples. Howat et al. suggested that the pores on the basement 

membrane (human bronchial airway) may serve as a route for immune cells to 

migrate between the epithelial and mesenchymal compartments (Howat et al., 

2001). However, the functions of other surface features for cells still remains 

unknown.  

 

 

 

 

2.5 Extracellular Matrix in Biomedical application 

 

Recognition of the importance of the structure and role of the ECM in major 

cellular processes has led to the development of acellular matrix products that aim 

to stimulate wound healing. Currently, there are a variety of natural ECM-based 

materials that are commercially available for dermal regeneration, such as 
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INTERGA®, OASIS® and Unite®.  INTEGRA®, for example, is a bilayer wound 

healing dressing composed of cross-linked bovine tendon collagen and 

glycosaminoglycan (chrondroitin-6-sulfate) and a semi-permeable polysiloxane 

silicone layer.  

Wound healing is a complex physiological process which involve in tissue repairs 

and restores function to damaged organ. The process is divided into four stages: 

inflammation, proliferation, granulation, and matrix remodelling (Demidova-Rice 

et al., 2012). During the wound healing progress, an endogenous collagen matrix 

is deposited by the infiltrating fibroblast cells. This is followed by scaffold 

degradation and remodelling, as the patientôs cells regenerate at the damaged site. 

This product has been shown to be useful for deep partial-thickness and full-

thickness burn wounds, full-thickness skin defects with different aetiologies, 

chronic wounds and soft tissue defects. The collagen-glycosaminoglycan complex 

serves as a porous scaffold for infiltration of fibroblast cells, macrophages, 

lymphocytes and capillaries derived from the wound bed, thus accelerating the 

wound healing process. OASIS® is another class of ECM-based material which is 

derived from porcine acellular small intestinal submucosa. Unlike other collagen 

based scaffolds, OASIS® complex scaffold provides an optimal environment 

which allow cellular and vascular infiltration for tissue bio-functionality and 

structural restoration. OASIS® is typically used in all partial and full thickness 

wounds, superficial skin burns and second-degree skin burns.  

The main component of the above product is type I collagen, which is normally 

harvested from a cadaver, or from animal tissues such as the dermis, small intestine 

submucosa and pericardium. This tissue is subsequently treated to remove all 

cellular material and hence obtain only the collagen matrix. Although the use of 

acellular matrices has shown promise there are potential drawbacks including the 

risk of infectious agent transfer and immunological rejection. The current clinical 

use of acellular matrices also remain limited, due to the high cost in manufacturing, 

transport, preservation and storage of these devices (International consensus, 

2001). 

The alternative clinical solution for acellular matrix replacement is the creation of 

an artificial ECM. This can be achieved by bio-mimicking the ECM architecture 
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through advanced micro and nanofabrication technology, or to generate a user 

design topography which gives more predictable and consistent performance due 

to the production of a reproducible well-defined topography (the detail of the 

technology and cell responses will be discussed in the following chapter).  
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Chapter 3 
 

3.0 Advanced Micro- Nanofabrication Technology for 

Tissue Engineering  

 

3.1 Microelectromechanical Systems for Tissue Engineering 

 

As previously mentioned in Chapter 2, studies have been carried out in order to 

better   understand the ECM organisation, its arrangement, topography 

characteristics and its functions, so as to improve artificial ECM construction for 

specific applications. The most challenging feature of the ECM architecture to 

reproduce is its very small dimensional sizes, which can be on the nanoscale. 

Numerous technologies have been developed to bio-mimic natural ECM 

topography and also to fabricate human designed patterns to control cellular 

function. The most widely used micro and nanofabrication methods for tissue 

engineering have been adopted from the well-established semiconductor industry 

and in particular in the manufacture of devices such as microelectromechanical 

systems (MEMS). Amongst these techniques are included photolithography, 

electron beam lithography, focused ion beam lithography, ion projection 

lithography and X-ray lithography. All of these techniques are followed by some 

form of wet or dry etching process, with the final surface geometry profile being 

determined by an etching process. The main methods for engineering surfaces that 

control cell growth will be discussed below. 
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3.1.1 Photolithography 

 

Conventional optical lithography is the most popular and widely used technique 

for biomedical applications, because it is able to produce a well-defined and 

precise microscale features. (McMurray et al., 2011). The lateral dimensions that 

can be produced by photolithography is of the order of 100 to 500nm, with 

resolution being dependent on the illuminating source. The resolution of 

photolithography is expressed using Rayleighôs criterion below: 

ὙὩίέὰόὸὭέὲὯ
‗

ὔὃ
 

 (3.1) 

 

Where k1 is a constant dependent on the photoresist being processed, with this 

value typically ranging from 0.5-0.8. the parameter ‗ is the illumination source 

wavelength and NA is the numerical aperture of the lithography objective lens, 

which ranges from 0.5-0.8 (Harriott, 2001). As a result, the shorter the illuminating 

wavelength, then the smaller are the features that can be generated (Table 1)(Xia 

and Whitesides, 1998). 

Table 3.1 Lithography methods 

Illumination Source Wavelength (nm) Smallest lateral 

dimension that can be 

produced (nm) 

UV, g line of Hg lamp 436 500 

UV, i line of Hg lamp 365 350 

DUV, Krypton fluoride 

(KrF) excimer laser 

248 250 

DUV, Argon fluoride 

(ArF) excimer laser 

193 180 

DUV, fluorine (F2) 

excimer laser 

157 120 

DUV, dimer discharge 

from an argon laser 

126 100 
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Many researchers have employed photolithography to generate features such as 

grooves, ridges, pores and pits to mimic the natural ECM architecture for cell 

studies. A simplified diagram of the photolithography process is shown in Figure 

3.1. 

In general, lithography is a process that transfers a computer-aided design (CAD) 

layout onto a substrate by means of light. The process begins with the transfer of 

a computer designed pattern to a photomask, made from either borosilicate glass, 

soda lime, or quartz.  A chromium coating is applied to the photomask using either 

electron beam lithography, or optical direct write lithography. The patterned 

chromium layer then serves as an opaque region to prevent the UV light exposing 

the photoresist. 

 

Photoresist

Substrate

Photomask

Ultraviolet

Source
Transparent 

Region

Opaque 

Region

Negative PhotoresistPositive Photoresist

Developing

Irradiating

 

Figure 3.1 Schematic diagram of the photolithographic process. The substrate 

is spin-coated with either a positive or negative photoresist and exposed to UV 

radiation to alter the chemical structure. Positive photoresists dissolve in the 

developer solution after being exposed to UV, whereas negative photoresists 

become difficult to dissolve. 

 

Once the photomask has been obtained, the substrate is spin coated with a layer of 

photoresist. Two different types of photoresist are commercially available: 

positive and negative. For a positive photoresist, the UV exposed region changes 

the resistôs chemical structure, by breaking the polymer into shorter chains which 
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become soluble in a developing fluid. Negative photoresists behave in the opposite 

manner, where the UV exposed region polymerizes the polymer to longer 

molecular chains, which become difficult to dissolve. The photoresist is then 

aligned to the photomask and exposed to the UV light source. Finally, the 

transferred pattern from the mask is developed in the developer solution, and the 

pattern is either used as a mask in a further etching process, or is directly used in 

a biomedical application (Betancourt and Brannon-Peppas, 2006).    

SU-8 is an EPON SU-8 epoxy resin negative photoresists is widely used by the 

biochemical industry in Bio-MEMS applications including, bioreactors, 

biosensors and biomolecule immobilisation related assays. This is due to its 

excellent mechanical properties, thermal stability, etch-resistance, chemically 

stability, and biocompatibility (Nemani et al., 2013). It therefore, can be applied 

directly to medical devices without any sign of cytotoxicity (Lu et al., 2006). Also, 

SU-8 allows the generation of relatively tall structures approximately >200µm in 

height and which can generate high relief micro-patterns (Guerin et al., 1997).  

 

3.1.2  Electron Beam Lithography and Focused Ion Beam 

Lithography  

 

Electron Beam Lithography (EBL) was first developed in 1960 and was based on 

the principles of the already existing electron microscope (Hahmann and Fortagne, 

2009). Electron Beam Lithography consists of a heated filament inside the 

microscope that emits electrons which are focused using electrostatic lenses into a 

narrow beam, creating a spot diameter size in the region of 2-5 nm. EBL can create 

features that are below 10 nm (Wanzenboeck and Waid, 2011). The focused beam 

is controlled by defection coils, which enable the user to fabricate an arbitrary 

geometry, by precisely exposing the focused electron beam onto the e-beam resist. 

This technique is known as maskless lithography (Alttissimo, 2010). 

The e-beam resist used for EBL must be compatible to high energy forward 

scattered, back scattered, and secondary electrons (Broers et al., 1996). The most 

common e-beam resist used to produce features below 50 nm is 
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polymethylmetacrylate (PMMA), which requires an exposure dose above 

0.2ɛC/ɛmĮ. However, greater resolution (i.e. fabrication below 20nm) requires the 

use of inorganic resists, such as hydrogen silsesquioxane (HSQ) or aluminium 

fluoride (AlF3) and a higher exposure dose (Grigorescu and Hagen, 2009). The 

drawbacks of this method are that a longer exposure time is required for a single 

scanning electron beam, in order to fabricate using an e-beam resist, thus resulting 

in slower processing time. Therefore, EBL is only used to write photomasks for 

optical lithography and other high value applications (Wanzenboeck and Waid, 

2011).          

Focused ion beam (FIB) lithography is similar to EBL, the only difference being 

that the FIB system uses a focused ion beam from a gallium ion source. 

Furthermore, FIB provides a greater capability than EBL including, (i) the 

generation of nanopatterns on e-beam resists, (ii) milling away atoms by physical 

sputtering, (iii) material deposition and (iv) direct material modification by ion 

induced mixing (Fu and Ngoi, 2004).  

 

3.1.3  Etching Process     

   

Once the pattern has been lithographically established by photolithography or EBL, 

it can then be transferred to the substrate underneath the protective mask. However, 

the final topographical profile will depend on which type of etching process is 

employed. The etching process can either be isotropic or anisotropic. For isotropic 

etching, the etching rate is the same in the vertical and horizontal directions. In 

contrast, to anisotropic etching, the etching rate is different, in both the vertical 

and horizontal directions. Both etching processes utilize a liquid chemical and 

gaseous physico-chemical mechanism, known as a wet and dry etching process 

(Ziaie et al., 2010).   

The isotropic wet etching rate is even in all directions and often generates a 

hemispherical or curved profile. In contrast, anisotropic wet etching generates a 

pyramidal profile, because the etching rate is different for various crystalline 

materials and depends on the crystal face being exposed to the etchant. For 
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example, the effect on silicon can be highly anisotropic, resulting in a pyramidal 

shaped profile after etching by anisotropic wet etching agents such as potassium 

hydroxide (KOH), ethylenediamine pyrocatechol (EDP), and 

tetramethylammonium hydroxide (TMAH)(Yi et al., 2000).  

 

 

Figure 3.2 The effects of isotropic and anisotropic processes on final surface 

profile. (a) The desired pattern has been transferred onto the silicon substrate. 

(b) Isotropic wet etching generates a hemisphere shaped profile. (c) 

Anisotropic wet etching generates a pyramidal shaped profile. (d) Anisotropic 

dry etching generates a straight flat bottom planar profile.  

 

Dry etching technology achieves a higher anisotropic etching rate and prevents 

undercutting. Reactive ion etching (RIE) is the most popular anisotropic dry 

etching process, using a chemical process to increase the etching rate and 

resolution. RIE, combined with RF (radio frequency) electromagnetic field 

generated plasma, ionises a gaseous mixture into reactive species and accelerates 

them towards the surface of the material. The chemical reaction occurs on the 

material surface forming a volatile by-product. After the reaction, the by-product 

diffuses away, to start another new cycle (Jansen et al., 1996). The schematic 

diagram shown in Figure 3.2 shows the effect of isotropic and anisotropic etching 

on the final surface profile 
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3.1.4 The Disadvantages of Microelectromechanical Systems 

for Tissue Engineering 

 

The main disadvantage of the MEMS technologies discussed above is that they 

must operate in a quality class clean room, where the air is constantly filtered, to 

achieve a particle density of 1-10 particles per cubic foot. Furthermore, the photo 

and e-beam resist polymers are very sensitive to temperature and humidity 

variations during the fabrication process and must be precisely controlled. 

Variation in temperature and humidity leads to changes in resist chemical 

properties and chemical reaction rate. It is also important that the illumination 

within the clean room is carefully controlled so as to eliminate the risk of 

inadvertently exposing the light sensitive resist. Therefore, the lighting within the 

clean room should operate in the yellow part of the spectrum and out of the photo-

activation resist wavelength.  

State of the art MEMS technology has revolutionized and empowered biologists 

to generate feature dimensions from the micro scale down to the nanoscale, the 

facilities are very dependent on the expertise of operators, and such facilities carry 

high operating costs and typically have limited accessibility. Other limitations of 

photolithography include being confined to flat surfaces and restricted to a limited 

set of photoresists that will integrate well with biomaterials. Although electron 

beam lithography, focused ion beam lithography and ion projection lithography 

are maskless techniques it is nevertheless true that the fabrication process are 

relatively slow and expensive.  

To address these issues many advanced technologies have been developed. These 

allow the processing of a variety of materials to generate features at the micro and 

nanoscale and include soft lithography, electrospinning and direct laser 

microfabrication techniques. Such techniques are generally more accessible than 

other approaches and require lower operating costs. 

 

3.2 Soft lithography 
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Soft lithography refers to a collection of inexpensive methods to transfer or 

replicate micro/nano features on a substrate. Soft Lithography consists of three 

types of techniques; micro-contact printing, replica moulding, and stencil 

patterning. The first phase of soft lithography is the micro/nanofabrication of a 

ómasterô template using ready-available technologies such as photolithography, e-

beam, and direct laser writing. In the second phase, a replica of the master template 

is made by producing a mould using polydimethylsiloxane (PDMS). This mould 

is an inverse to the master template. PDMS is used because of its biocompatibility, 

and good thermal (from ī100 oC up to +100 oC), mechanical (shear modulus G 

between 100 kPa and 3 MPa) and optical properties (Lötters et al., 1997). The 

main advantages of soft lithography is that once the reusable mould has been 

produced, none of the following procedures require clean room manipulation 

(Betancourt and Brannon-Peppas, 2006). 

Micro-contact printing (µCP), also known as micro-stamping,  produces a PDMS 

mould from the original master template to serve as a stamp. The óinkô used in the 

stamping process can be polysaccharides, peptide, proteins, or other molecules. 

These molecules are transferred in the shape of the machined pattern on a receiving 

substrate. Moreover, a photoresist can be micro-stamped on to the substrate to 

form a protective layer for etching or film deposition processes (Whitesides et al., 

2001).  

The second type of soft lithography technique is replica moulding. The replicated 

PDMS mould serves as a master template. Liquid pre-polymer fills the recessed 

regions of the mould. This is followed by pressing the mould against the substrate, 

then thermally or UV curing, depending on the type of pre-polymer.  

The third type of soft lithography technique is stencil patterning. In this method 

the master template is sandwiched between two substrates to prevent the PDMS 

covering the master template. The end result of this process generates holes that 

resemble the pattern on the master template (Zhao et al., 1997).  

The advantages of this soft lithography technique is that a wide range of 

biomaterials can be used to repeatedly replicate features, from the reusable PDMS 
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mould, to different types of substrates, or same the substrate (Xia and Whitesides, 

1998). It also allows the transfer of nano and micro features to non-planar surfaces 

using flexible PDMS moulds. However, the main disadvantage of the soft 

lithography method is that it generate artifacts due to deformation of the 

elastomeric stamp or mould (Zhao et al., 1997). 

 

3.3 Polymer Electrospinning Technique 

 

Electrospinning has recently attracted much interest in biomedical applications, 

due to its simplicity and capability of producing micro and nanometer scaled fibres, 

which can form fibrous scaffolds that resemble the natural ECM.  In contrast, the 

conventional mechanical fibre spinning approaches can only produce fibres with 

diameters that are larger than that of the natural ECM. Electrospinning is a 

technique used to produce fibres, having relatively small diameters (from<3nm to 

over1µm), from a polymer solution through electrostatic forces. In order to 

generate electrospun fibres, a DC voltage of several tens of kilovolts (kVs), must 

be applied to produce a strong mutual electrical repulsive force to overcome the 

weaker surface tension in the charged polymer liquid. The basic electrospinning 

system consists of three major components: (i) high voltage power supply, (ii) 

spinneret, and (iii) grounded collecting plate. Currently, there are two basic setups 

of electrospinning systems, vertical and horizontal as shown in Figure 3.3. The 

electrospinning process begins by applying an electric field or polarity to the liquid 

polymer. The polymer liquid becomes charged and the electrical repulsive forces 

overcome the weaker surface tension, causing the polymer droplet at the front of 

the spinneret to become stretched. Eventually, at a critical point, a stream of 

polymer liquid is ejected from the tip of a Taylor cone (Figure 3.3) forming an 

unstable liquid jet, which draws towards the opposite polarity of collecting plate. 

At the same time, the solvent is evaporated, leaving the polymer behind on the 

collector plate, while ejecting the polymer into the space between the spinneret 

and collecting plate (figure 3.3a) (Taylor, 1969).  
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Figure 3.3 Schematic diagram of two basic electrospinning system setups: (a) 

vertical setup and (b) horizontal setup.  

 

The electrospinning process relies on three sets of parameters: solution parameters 

(concentration, conductivity, molecular weight, and surface tension), process 

parameters (electric field, tip to collector distance and feeding rate), and 

environmental parameters (humidity and temperature). Polymers with a low 

concentration produce micron sized particles after solidification, which is similar 

to low molecular weight polymers (Figure 3.4a). Intermediate molecular weight 

polymers and polymer concentrations result in beaded nanofibres (Figure 3.4b). 

High polymer concentration increases fibre diameter and the beaded appearance is 

seen to disappear on the fibre surface (Figure 3.4c and d) (Jiang et al., 2004). The 

polymer molecular weight is interrelated to polymer threshold concentration, i.e. 

lower molecular weight polymers require higher polymer concentration (Koski et 

al., 2004).  
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Figure 3.4 SEM images of electrospun dextran membranes with different 

dextran concentrations: (a) 0.5g/mL, (b) 0.65g/mL, (c) 0.75g/mL, and (d) 

1.0g/mL (reproduced with permission of Jiang et al., 2004).  

 

Fong et al showed that the bead and beaded fibre formation was driven by surface 

tension. They found that the beaded fibre appearance decreased when increasingly 

mixing more ethanol into the water to lower the surface tension of poly(ethylene 

oxide) (PEO). Disappearance of the beaded fibre was observed at mass ratio of 

ethanol/water of 0.448 which is 67g of water and 30g of ethanol (Fong et al., 1999). 

As mentioned previously, sufficient electric field/voltage must be applied in order 

to introduce to the liquid polymer to overcome the surface tension. Jeun et al 

studied the effects of voltage on electrospinning by varying the voltage range from 

5kV to 25kV. The results showed that the weak electric field generated by using a 

voltage of 5kV was unable to overcome surface tension and viscoelasticity. Further 

increases in the electric field, by increasing the voltage to 20kV, were found to 

lead to an increase in the fibre diameter, which was due to the liquid being removed 

more quickly at the tip of the capillary as the jet was ejected from the Taylor cone. 

a b 

c d 












































































































































































































































































