¢ LIVERPOOL

JOHN MOORES
UNIVERSITY

A MODEL-DRIVEN FRAMEWORK
TO SUPPORT GAMES DEVELOPMENT:
AN APPLICATION TO SERIOUS GAMES

STEPHEN TANG OON THEAN

A thesis submitted in partial fulfilment of the requirements of Liverpool John Moores

University for the degree of Doctor of Philosophy.

July 2013

Page I

ABSTRACT

Model Driven Engineering (MDE) is a software development approach which focuses on the creation
of models to represent a domain with the aim of automatically generating software artefact using a set
of software tools. This approach enables practitioners to produce a variation of software in by reusing
the concepts in the domain model without worrying about the technical intricacies of software
development. Therefore, this approach can help to increases productivity and it makes software design
easier for the practitioners. The application of this approach into games development domain presents
an interesting proposition and could help to simplify production of computer games.

Computer games are interactive entertainment software designed and developed to engage users to
participate in goal-directed play. Many find computer gaming to be persuasive and engaging, and they
believe that through the application of game design and game technology in non-entertainment
domains can create a positive impact. Computer games designed primarily for non-entertainment
purpose are generally known as serious games. The development of games software, in no relation to
the intended purpose of it, is technically complex and it requires specialist skills and knowledge. This
is the major barrier that hinders domain experts who intend to apply computer gaming into their
respective domains. Much research is already underway to address this challenge, whereby many of
which have chosen to use readily available commercial-off-the-shelf games while others have
attempted to develop serious games in-house or collaboratively with industry expertise. However,
these approaches present issues including appropriateness of the serious game content and its
activities, reliability of serious games developed and the financial cost involved. The MDE approach
promises new hopes to the domain experts, especially to those with little or no technical knowledge
who intend produce their own computer games. Using this approach, the technical aspects of games
development can be hidden from the domain experts through the automated generation of software
artefact. This simplifies the production of computer games and could provide the necessary support to

help non-technical domain experts to realise their vision on serious gaming.

Page I1

This thesis investigates the development of a model-driven approach and technologies to aid non-
technical domain experts in computer games production. It presents a novel model-driven games
development framework designed to aid non-technical domain experts in producing computer games.
A prototype based on the model-driven games development framework has been implemented to
demonstrate the applicability of this solution. The framework has been validated through the
prototypical implementations and these have been evaluated. A case study has been conducted to
present a use-case scenario and to examine if this approach can help non-technical domain experts in
producing computer games and also to find out if it would lower the barrier towards adoption of
game-based learning as an alternative teaching and learning approach.

The work in this thesis contributes to the area of software engineering in games. The contributions
made in this research includes (1) a blueprint for model-driven engineering for games development,
(2) a reusable formalised approach to document computer game design and (3) a model of game

software that is independent of implementation platform.

Page III

ACKNOWLEDGMENT

This doctoral study has been a journey and a life changing experience for me. I would like to take this
opportunity to express my gratefulness to those who have helped and supported me throughout my
doctoral study.

This thesis would not been possible if it is without the advice, guidance, support and patience from
my director of study, Dr. Martin Hanneghan. His extensive knowledge in this multi-disciplinary topic
of research has been a great source of expertise in driving the research forward. I am also truly
indebted and very thankful to his kind help on getting me on and mentored me throughout this
programme of study. I am thankful to the kind advice, guidance and motivation from my second
supervisor, Professor Abdennour El Rhalibi, which I very much appreciate. I also would like to extend
my sincere appreciation to my School Director, Professor Madjid Merabti for his kind advice and
support. I am sincerely grateful to Dr. Christopher Carter for his kindness to share his expert
knowledge in game engine and game development, and I value the advice and motivation given.

I am thankful to my faculty research administrator, Mrs. Tricia Waterson, for her patience and
help on the recurring issues of the registration of my programme of study.

Above all, T would like to thank my wife, Anjoe Chou, for her personal support, patience and
motivation all the times. My parents, Samuel Tang and Esther Lim for their undying love and support,
without them I am would not have achieved what I have achieved today. Finally, to my beloved
brother, Caleb Tang, who has given me the motivation and support me throughout this journey of
mine.

Last but not least I would like to dedicate this work to my beloved son, Nathan Tang, for the

strength and motivation he has given me to complete this work.

Page IV

DECLARATION

I hereby declare that the work presented in this thesis is carried out by my own at Liverpool John
Moores University, except for those that were acknowledged, and has not been submitted for any
other degree. A list of research publications (see List of Publications) were produced during the period
of this research study and some of these are presented in the context of this thesis where it deems

necessary.

Stephen Tang Oon Thean (Candidate)

Page V

TABLE OF CONTENTS

ADSITACE c..vreiiecte ettt ettt s II
ACKNOWIEAGMENT ...ttt ettt es I\Y
DIECIATALION .ottt ettt ettt bttt bbbttt bbbttt \%
Table Of CONTENTS.....c.oviuieiiiciicecirice ettt ettt ettt tes VI
LiSt Of PUDLICAtIONS ..ottt XII
JOUTTIALS «.ve ettt ettt ettt ettt et e v ese et s e s esees et essessssessesensessesensessesenseseessnsessesensessesensensanen XII
BOOK CRAPLETS. ...ttt ettt bbbttt ettt ettt esenes XII
CONTETENCE PAPETS....nuiiiieiiiceeiee ettt ettt sttt et ettt ettt st aeaeaas XII
KEY TOIMIS ..ttt st XIV
LISt O FIGUTES ..ttt ettt ettt nnacs XVI
LISt Of TADLES ...ttt XXII
Chapter 1 - INTrOAUCHON co.cuuiiiiieiei ettt ettt ettt ettt bbbt ttaene 1
1.1 Problem STatemMENTSccceueueiririririccecicirirerc ettt ettt ettt aes 1
1.2 Motivation and ODJECHIVE.c.cvueueirieuriicieicictriceeieeis ettt ettt ettt senneaes 2
1.3 Research CONtriDULIONSc.ceuriririiceeieieirire ettt ettt be et be e seaes 3
1.4 Process and MethOdOLOZYcoueueuriiurinicininiieinicieireeieieicteteiesetete bttt senseaes 4
1.5 THESIS STIUCTUTE ...ttt ettt ettt ettt ettt 5
Chapter 2 - BaCKGIOUNGc.cuiiiiiiicieicieirce ettt ees 7
2.1 COMPULET GAITIES ...ttt ssasasas 7
2.1.1 Game Design and Development Pipelines...........cccoueueuieieinieincinicrneinicnieciniencneeennes 8
2.1.2 Application of Games Design and Technology to Non-Entertainment Domains........... 9
2.1.3 Technologies Supporting Game Creation...........cceeeueeeeeurecueinecreineereneeesesesesssesesseesens 15
2.14 Challenge for the Non-Technical Domain EXPertscccccvuecurunecrerreerrercennecrennecrenenes 16

2.2 Model-Driven ENGINeering.......cococeuriiueiriiueiniueiniieenieieiniesesstesesesesesesessesesessssesessesesesssscsesscses 17
2.2.1 MDE PIOCESS ...ttt 18
222 IMOEL ..ttt 19
223 Domain-Specific Modelling Language (DSML).....c.cccceurieeimcnincrnineciseenecieenecsenenes 19
224 MOdE] VIEWPOINT....cuuiieiiiecieiiicieieieistceeisecietesere ettt se st st sseacsens 20
225 Model Transformation ... 21

Page VI

2.2.6 ROLES TN MIDE ...ttt et a e eat et et e ssesaesnesatensensensensesssssesasensensan 23

227 Advantages and Disadvantagesccceceecureuercuniuercunieincrneeereeesseseesesesese e secsesaces 23
2238 Challenges.......cuuiuiiiiiciicic ettt 24

2.3 Chapter SUMIMATYc.coiiuiiiciiieieicieitieiei ettt s et sac e ssesenasaes 25
Chapter 3 - State of the Art in Model-Driven Development for Computer Gamescccoceceeureuceeee 26
3.1 Design Languages fOr GAIMES.........ccurueueuriceeinimceeieeieieecteteseisesesessesesessesesesesesessesessssesessescseseses 26
3.2 Software Modelling Languages for Games...........coceurucueuricurunecreineeeunineeeiereeeeseesesseesesseeesseeses 31
3.3 Meta-Models fOr GAMES. ..ottt et sttt seseaes 36
3.4 Software Models fOr GAMES.......c.cucueuriiueiriuciriricieieieieecictsteee ettt seaseaes 39
3.5 Game SOftware FIameWOTKS........covcuiiiuiiriieeinicieecieicetcietetcie st ssese s senecses 41
3.6 Model-Driven Development Frameworks for Games...........cocceureeeueineeeineceneniceeinecrennecenenenes 48
3.7 Model-Driven Development Environment for GaAmes..........ccccceureueueineeeerinceeenierenrecrsenecennnenes 50
3.8 Model-Driven Engineering Technologies............cocccoieiriiiiniccinnicniniciniceieieeecneeeeneneees 53
3.8.1 Integrated ENVITONMENTS........cccueiiuiiiiiiciicieiicieiccieecieee ettt eaesesasaes 53
3.8.2 Code FIrameWOTKS........ccuiiuiiiiicicceiccci ettt 57

3.9 ASSIStIVE USET INTEITACES.......cuieieieieiciriecieietc ettt 58
3.10 CRAPLEr SUIMIMATY ..ottt esseae sttt s s e s ssese s sssacsenasaes 60
Chapter 4 - Requirements for a Model-Driven Game Development Frameworkc..cceecueueuucece. 62
4.1 Functional REQUITEMENTS........c.oueiiiurueieieiriricceieieie ettt ettt ettt eees 62
4.1.1 Support for Existing Game Software Frameworks..........ccccccvvcueinecuninecrnincernecninecenenes 62
4.1.2 Generation of SOftware artefactocecinieircinieiircece e eaesaens 63

4.2 Operational REQUITEMENTS..........ccuiuiuiiiuiiiiiiiciicci et 63
4.2.1 Support for Externally Produced Art Assets and Game-Specific Functionalities 63
422 User Interfaces in the Modelling ENvironment...........coceeeueueueuniercunieinenneenneneeennenennns 64

4.3 Chapter SUMMATYc.cociiiiiiiiii bbb 64
Chapter 5 - A New Model-Driven Game Development Framework............cccccceueciinicnnininiccninncnnes 66
5.1 Architectural Strategies for building a Model-Driven Games Development Framework66
5.2 The Model-Driven Games Development Frameworkccccccevrirncnccninnninenenccneienineenne 69
53 Game Content Model (GCM) ..ottt tessesesessesesessssessensssenseneans 72
5.3.1 GAIME SEIUCLUTE ...ttt et seas 74
5.3.1.1 GAME CONEXL...ouiviiiiiiiiiiiiieieieieieceec ittt st s s e e seas 75

Page VII

5.3.1.2

5.3.1.3

532

53.2.1

5.3.2.2

5.3.3

5.3.3.1

5.3.3.2

5.3.3.3

5.3.34

5.3.4

5.3.4.1

5342

5.3.4.3

53.4.4

535

5.3.5.1

5.3.5.2

5.3.5.3

5.3.6

5.3.7

5.3.8

5.3.8.1

5.3.8.2

5.3.9

5.3.9.1

5.3.9.2

5393

5394

5.3.9.5

5.3.10

Pedagogic Event DesCriptor ...t saesens 75
Event TTIGEET ..o 76
Game Presentation ... 77
Media COMPONENTouiiririieieieiriririeeieieteietetsteeiese ettt be ettt se ettt seses 79
GUI COMPONENL ...ttt 80
Game SIMUIALIONuuiuieiiiieicie ettt eaeees 81
Game DIMeNSION ...t 81
GAME TEMPO ..ttt 81
GAME PRYSICS ..ttt ettt ees 82
Front End DISPIayccuvieciriieeiniciecciniccnteietstcie et tsesese s ssesesessessss s sssscsens 83
GAIME ODJECLS ...ttt ettt ettt b bttt se sttt aesenes 85
ODbJECt ALLTTDULES ...ttt ettt tes 88
ODJECt APPEATANICE.eeveeeireiiiecieieieie ettt sacaens 89
ODJECt ACHON ...ttt caesens 90
ODbject INtEllIGENCEcuuieiiiiciciiciecicc et saeaes 91
GAIME SCENATIO ...t 92
Game ENVITONIMENT ..ottt seas 92
VITtUAl CamMETa ...ttt 94
Difficulty INAICALOT «....ecvieiciiciciiciecec ettt eaeaees 95
GAME EVENt ..ottt s 95
GAME ODJECHIVE. ... 96
GAME RUIE ...ttt ettt ettt 97
Game Interaction RULEc.coivcvciiininirrcccccrc ettt seees 97
Game Scoring Rule..........cccciiiiiiiiiiii s 98
GAME PIAYET ... 99
AVATAT ittt 99
INVENTOTY ittt 100
Game AITIDULE ... 101
GAME CONTIOL ...ttt seae 102
GAME RECOTAS....oneiiieiiciiice ettt 103
GAME TREME ...ttt ettt 104

Page VIII

5.4 Game Technology Model (GTM) ...ttt sssaesesesans 104
5.4.1 Game SPECIfiC SYSTEIMS.....uuruiuiuruciiiiicieieicieie ettt se e saes 107
54.1.1 Game Context SYSTEMccovuiiiiiiiiiiiiiiiiiccc s 108
54.1.2 Game Simulation SYStemc.ccccccuiiiiiiiiiiniciriicicerceetceee e 110
5.1.1.11 Game SCENATIO c..uviuiniiiiiiicictctcnn st 111
5.1.1.12 GAME ODJECT. . ruiviieieicicieicieireceetcictsecie ettt sttt seeaes 111
5.4.2 Core COMPONENLS ..ottt n s 113
54.2.1 RENAETET ...t 114
5422 ANIMATION oottt 114
5.4.2.3 AU curiiiieceeee ettt ettt ettt ettt et s et s 116
5424 INPUL.ciiiiiiiiiiiccc et 116
5.4.2.5 GAME PRYSICS .uiuiiiiriririiicciciritcccee ettt ettt es 117
5.4.2.6 User Interfaces (UI): Graphical User Interface (GUI), Media and Heads-Up Display
(HUD) 117
5.4.2.7 VIAEO PlaYer ..ottt ettt ettt es 118
5.4.2.8 Game Resources Management ...t sesesesens 119
5.4.2.9 Artificial Intelligence (AI) ..ot 119
5.4.2.10 NEIWOTKING ...ttt 120
5.4.3 Helper COMPONENLS.......c.c.ouriririiueieieieietieeeieieteieteeeeie ettt ee et ettt e s s s ssaseneasaenas 121
5.4.3.1 Math LIDIary ...ttt 121
5.4.3.2 Random NUMDbeEr GeNeTatOr........ccoviueuiiuriniueueieierieieieeresseseseseesesessesesseseseseaesessssesene 121
5.4.3.3 Unique Object Identifier Managementcocceeueueurecuemnecunrceeusmerensecuessesesenesenene 122
5.5 Game SOFtWATe MOAEL (GSM) ...ttt e teteetessessessesasessessessessessessesseensensen 122
5.5.1 Mapping Game Technology Model to a Specified Game Software Framework........... 123
5.5.2 Additional Platform Specific Details to Game Technology Model for a Software
Technology PLAtfOrIc.uucuiuiiiiiciiiiciic it 124
5.52.1 Windows Managementcccoceueuniuemeuiueiemniuenessseneseesesesessesesessesssessessssessessesessens 125
5.5.2.2 FAlE SYSTEML.uuiuiuiiiiiiiiicceieirr ettt ettt ettt 125
5.5.2.3 THINIET ettt ettt bttt ettt ettt aes 126
5.5.2.4 GraphiC WIAPPET ...coviuiuiueieiiiririiccieieteete ettt ettt ettt eees 126
5.5.2.5 PRySICS WIAPPEToiuiiiiiiiciiciciiciieceicicet ittt 127
5.6 Chapter SUMMATYc.coiiiiiiiiiiiiicieicc ettt bbbt 127

Chapter 6 - Case Study & Evaluation.........cccuviiuiiiiiiiciiiiiciciccicceiee e 130

6.1 Case Study: An application to Serious Games for Game-based Learning............ccccceeecueuuccs 130
6.1.1 Serious Game Design Process..........civiiniiiiiiiiiiiiiiiicccci s 131
6.1.2 Modelling Serious Game in SEGMENL.........cccceuviuiuviiiniicieiiciicececcece e 136
6.1.3 Automated Transformation and Code Generationceceeeeeeueeeeeceerereiensereeenenenennns 144
6.14 Findings and Analysis of ObServation..........ccccevecueurecurinecininceeeriereneeeieesseesesseesenenes 145

6.2 EVAlUATION. ...ttt ettt sttt s st n s 148
6.2.1 Evaluation of the new FrameworKccocoerririnirinienieieieieeeeeiee st 148
6.2.2 Evaluation of SeGMEnt (Serious Games Modelling Environment)........c.ccocceuvecurunceee 149
6.2.3 Evaluation of Model Representationc.ccceeecueurecurineeuniceeuneeseneessieesseesessesesencens 150
6.2.4 Evaluation of Model Translation and Artefact Generation............eceeeeeeveceeuruereeresnennns 151

6.3 Chapter SUMMATYc.ouoivceceueieieieiieeceietetetsts ettt b ettt tese bbbttt se bt aeeaens 151

Chapter 7 - Conclusions and FUuture Work ..ot 153

7.1 CONCIUSIONS ...ttt ettt ettt sttt ettt ettt sttt e beb et teeaens 153

7.2 CONETIDULIONS ettt ettt bttt ettt etaens 155

7.3 LIMITAtIONS «.viviiiiiiiieiiieteirtcrct ettt sa sttt st a e s ne 156

7.4 FULUIE WOTK .ttt ettt ettt ettt 157

7.5 Concluding REMATKScccceiiuiiiiiiiiiiiccicec ettt s senasae 159

APPEIIAICES ..ttt ettt ettt ettt ettt b bbbttt et ettt aenes 161

APPENDIX A: Ontology for Game Content Modelccccoieuiieinincniniceiiceeceieceeereneeenens 161

APPENDIX B: Game Technology Model ..ottt esesesens 166

APPENDIX C: Implementation of our Model Driven Game Development Framework to support

the development Of SErIOUS GAIMES.......c.c.cueuririririiieieieieieirieeeeiete sttt ettt se ettt seees 177

C.1 Overview of the Model-Driven Pipelineccoveueunieirinieeinieininicinneciniciereteesseesseseseeseeees 177

C.2 Serious Games Modelling Environment (SEGMENL)cccccccueueurninncncceenninnineneeceeresieeenene 178
C.2.1 Architecture for SeGMEnt in Adobe Flash.........cccovvirieiiiirenniceeeeeie e 179
C2.2 User Interface (UI) Components for SEGMENLcccvuiueuriceeurieeeineereicieineeieeseeeenenes 180

C.2.2.1 FIOW ViISUAIISAtION ...cciuiuiieiiiiririiccicieietrte ettt ettt ettt eses 180
C.2.2.2 Dynamic Option INterface.......ccovviiiiiiiiiiiiiiiiiiccccasees 181
C.2.23 WYSIWYG (What-you-see-is-what-you-get) Visualisation..........cccccececueueecuruniucnnce. 182
C.2.2.4 Statement Construction INterface........ooceveueurinecuriieinierrinerceeee e seeeseeene 183
C.2.2.5 Guided Data Entry INterface.......ccooeeuecurineciniecinieeiicieineceenceceseeseseesesseseseneeenene 186

C23 Design Viewpoints in SEGMERNt ... 187
C.2.3.1 Game Structure DeSIGNer........cccuiuiiiiiininiiiiiiiciiii s 187

C.2.3.2 Game Scenario DeSIGNer ..o 188

C.2.3.3 Game ODbject DeSIGNeT ..ottt snae 190

C.2.3.4 Game Simulation DeSIGNeTccoeueuiuiiurinicuriiieieicieieecieeseiceeseseieeese e sesesene 191

C.2.3.5 Game Presentation DeSIGNer ... 192

C.2.3.6 Game Environment DesSigner ..o 193

C.2.3.7 Game Player DESIGNETccceuiuiuriiuiiriiiriiecieieeeieeseaesseseseeseseseasesesstsese e sesesesenns 193

C24 Generation of Game Content Model.........c.cocericriniininiiniceiceeeeecsece e 194

C.3 MoOdel REPIreSENTAtiON.cucuuieceiiicirieiciricieitscie ittt tetese e ssese e bttt asesesseaeseseaesessene 197
C.4 Model Transformations.......ccocceeurecueuneucirieeeinieeeieeretseeeestesesesesessesesessesesetesesessesesseseseseaesesscses 197
C.5 COdE GONETATION ...ttt ettt sttt s ettt st st st senscaes 202
CiO SUIMMATY ot ssas 202
Game BiDLIOGraphY......coiiiiiiiiiccc ettt e 204
RETETEIICES ...ttt 205

Page XI

LIST OF PUBLICATIONS

Journals

1.

S. Tang and M. Hanneghan, (2011), “State-of-the-Art Model Driven Game Development: A Survey
of Technological Solutions for Game-Based Learning”, Journal of Interactive Learning
Research, 22(4), pp. 551-605. Chesapeake, VA: AACE.

2. 8. Tang, M. Hanneghan and C. Carter, (2013), “A Platform Independent Game Technology Model
for Model Driven Serious Games Development”, The Electronic Journal of E-Learning, Volume 11
Issue 1, pp. 61-79.

Book Chapters

3. S. Tang and M. Hanneghan, (2010), "Designing Educational Games: A Pedagogical
Approach,”in Design and Implementation of Educational Games: Theoretical and Practical
Perspectives, P. Zemliansky and D. Wilcox, Eds., Hershey, PA: IGI Global, ISBN13:
9781615207824, pp. 108-125.

4. S. Tang, M. Hanneghan and A. El Rhalibi, (2009), "Introduction to Game-Based

Learning,"in Games-Based Learning Advancements for Multisensory Human Computer
Interfaces: Techniques and Effective Practices, T. M. Connolly, M. H. Stansfield, and L. Boyle,
Eds., Information Science Reference, ISBN13: 9781605663609, pp. 1-17.

Conference Papers

5.

S. Tang and M. Hanneghan, (2013), "A Model Driven Serious Games Development Approach for
Game-based Learning”, SERP’13 — The 2013 International Conference on Software Engineering
Research and Practice, Las Vegas, USA, 22 - 25 July 2013, pp. 10-16.

S. Tang, M. Hanneghan and C. Carter, (2012), “A Platform Independent Model for Model Driven
Serious Games Development”, in Proceedings of 6" European Conference on Games Based
Learning (ECGBL2012), Cork, Ireland, 4-5 October, pp. 495 - 504.

S. Tang and M. Hanneghan, (2011), "Game Content Model: An Ontology for Documenting Serious
Game Design”, in Proceedings of 4th International Conference on Developments in e-Systems
Engineering (DESE2011), Dubai, UAE, 6-8 December, pp. 431-436.

S. Tang and M. Hanneghan, (2011), "Fusing Games Technology and Pedagogy for Games-Based
Learning Through a Model Driven Approach”, in Proceedings of IEEE Colloquium on Humanities,
Science & Engineering Research (CHUSER 2011), Penang, Malaysia, 5-6 December, pp. 380 -
385.

Page XII

http://www.editlib.org/p/35296
http://www.editlib.org/p/35296

9.

10.

11.

12.

13.

14.

15.

16.

S. Tang and M. Hanneghan, (2010), "A Model-Driven Framework to Support Development of
Serious Games for Game-based Learning”, in Proceedings of the 3rd International Conference on
Developments in e-Systems Engineering (DESE2010), London, UK, 6-8 September, pp. 95-100.

S. Tang and M. Hanneghan, (2008), "Towards a Domain Specific Modelling Language for Serious
Game Design," in Proceedings of the 6th International Game Design and Technology Workshop
(GDTW'08), Liverpool, UK, November 12-13, pp. 43-52.

S. Tang and M. Hanneghan, (2008), "Game-based Learning: A Virtually-Situated Experiential
Learning Approach for the 21st Century,”in Proceedings of TARC International Conference on
Learning and Teaching (TIC 2008), Kuala Lumpur, Malaysia, August 4-5.

S. Tang, M. Hanneghan, and A. El Rhalibi, (2007), "Pedagogy Elements, Components and
Structures for Serious Games Authoring Environments,”in Proceedings of the 5th International
Game Design and Technology Workshop (GDTW 2007), Liverpool, UK, pp. 26-34.

S. Tang, M. Hanneghan, and A. El Rhalibi, (2007), "Describing Games for Learning: Terms, Scope
and Learning Approaches,” in Proceedings of the 5th International Game Design and Technology
Workshop (GDTW 2007), Liverpool, UK, pp. 98-102.

S. Tang, M. Hanneghan, and A. El Rhalibi, (2006), "Modelling Dynamic Virtual Communities
within Computer Games: A Viable System Modelling (VSM) Approach,” in Proceedings of the 4th
International Game Design and Technology Workshop (GDTW'06), Liverpool, UK, November
15-16, pp. 121-125.

S. Tang and M. Hanneghan, (2005). "Educational Games Design: Model and Guidelines", in
Proceedings of the 3rd International Game Design and Technology Workshop (GDTW'05),
Liverpool, UK, November 8-9, pp. 84-91.

S. Tang, M. Hanneghan, and A. El Rhalibi, “Designing Challenges and Conflicts: A Tool for
Structured Idea Formulation in Computer Games.” Proceedings of the 5th International
Conference on Intelligent Games and Simulation (GAME-ON 2004), Het Pand, Ghent, Belgium,
November 25-27, pp. 111-118.

Page XIII

KEY TERMS

Active Learning: A learning approach that demands active participation from students through
teaching approaches that incorporate interesting learning activities to promote understanding of the
concepts presented.

Computation Independent Model (CIM): A model that represents logic of system under study
abstracted from the system structure.

Computer Games: Software applications that are created merely for entertainment purposes. Game
software takes advantage of multimedia and other related computing technologies such as networking
to enable the user (or game player) to experience goal-directed play in a rich virtual environment.

Domain Specific Modelling Language (DSML): A modelling language that is specific to a domain.
Example BPMN is mainly used for modelling business process.

Educational Games: Also known as instructional games are a subset of edutainment which refers to
software applications that exploit gaming technologies in creating educational content though game
playing and storytelling.

Edutainment: Educational content that is presented through the integrative use of various media such
as television programmes, video games, films, music, multimedia, websites and computer software to
promote learning in a fun and engaging manner.

Experiential Learning: Experiential learning invites learners through direct participation in the
scenario being studied rather than just studying the subject area theoretically.

Games-based learning: A learning approach derived from the use of computer games which possess
educational value or other kinds of software application that use games for learning and education
purposes such as learning support, teaching enhancement, assessment and evaluation of learners.

Game Content Model: The logical design specification of serious game as a model.

Game Software Model: The transformed model of the serious game specific to a technology platform.

Game Technology Model: A computation-dependent model of serious games independent of
technology or language platform.

Machinima: A technique to produce pre-rendered animation using real-time game engine.

Model-Driven Engineering (MDE): A software development technique which relies on the use of
models to represent aspects of software and automates the transformation of models.

Page XIV

Model Driven Architecture (MDA): A Model-Driven Engineering framework by Object
Management Group (OMG).

Platform Independent Model (PIM): A computation dependent model of a system under study.

Platform Specific Model (PSM): A model of system under study that is specific to a technology
platform.

Problem-based learning: A learning approach that invites learners to learn through solving
unstructured problems.

Serious Games: A serious game is a software application designed and developed using gaming
technology and principles for a primary purpose other than pure entertainment.

Situated Learning: A learning approach that require learners to be placed in a real social and physical
environment that enables them to actively and experientially learn the skills and knowledge of a
profession. Laboratory and workshop leaning are examples where situated learning can be used to
provide “real experience” of the undertaken role and task.

Software Factory: A software development methodology that applies the principles and techniques in
manufacturing to produce software with aims to reduce cost and time of development.

Training Simulators: Software systems that involve simulation of real-world experience which are
intended for development of skills where challenges presented are accurately replicating a real-world
scenario and require the user to overcome problems using procedural acts constrained by hardware
interfaces.

Page XV

LIST OF FIGURES

Figure 2.1: Model-to-Model Transformationsc.cccceciinininininiiiicc e 21
Figure 2.2: Model-to-Code Transformations...........ccccciueiiiiiniiininicc s 22
Figure 3.1: Pacman Game represented in Rich Pictures (Tang, et al., 2004)ccocccvurieremnicrrincucunencnnee 28
Figure 3.2: Example of Story Beat Diagram (Onder, 2002).......c.ccoeueueureuereureuernemneererneeneeneenesesessesessens 28
Figure 3.3: Example of Flowboard (Adams, 2004)cccevieuimieinicunineciniieiieieisienesesesenseessesesenseenns 29
Figure 3.4: “On track” level of ‘Medal of Honour: Frontline’ represented with UML Use-case Diagram
(Taylor, €t Al., 2006)ccecvieecirieeeirieieirteieiseecie ettt seae ettt ettt st stae st aseacsens 30
Figure 3.5: Partial Map of Silent Hill 2 represented in Hypergraph (Natkin, et al., 2004)ccccceuucee. 31
Figure 3.6: Tokenization Interaction Diagram of Pong Game (Rollings & Morris, 2004)ccvuueee.. 32
Figure 3.7: Statechart Diagram for Pacman game (Rollings & Morris, 2004)ccoceeuvureererneeerinceeunecens 33
Figure 3.8: Rhapsody Statecharts of EnemyTracker AI component (Kienzle, et al., 2007) 34
Figure 3.9: Use Case Diagram of Pacman Game (Ang & Rao, 2004)cccceuvuuviriirvinincininincnsiciicnninns 35
Figure 3.10: The character transaction use cases of Diablo (Bethke, 2003)ccccocccvuniirenicrninccunecnees 35
Figure 3.11: Example of Class Diagram (Bethke, 2003).........cccceeeuririininiciniieiiceiniceieeeeeseeeneneeeenns 35
Figure 3.12: Structure Diagram of Bubble Bobble (Reyno & Cubel, 2008)...........ccccccvuvuvrrivivininirinnnanes 35
Figure 3.13: Game Software Frameworks ranked according to Popularity and Sophistication of
FRATUTES ..o 47
Figure 3.14: SLGML Modelling Experience (Furtado, 2006).........cccocueureeururierrircreuneeeneneserenneeessisesesseenees 51
Figure 3.15: Event Editor Wizard in SharpLudus Game Factory (Furtado, 2006)ccccevevurencuernencenee 52
Figure 3.16: Screenshot of MetaEdit+ Workbench Diagram Editor
(http://www.metacase.com/mep/diagram_editor.html)c.cocceiviiiniiiiniiicc e 54
Figure 3.17: Screenshot of Microsoft DSL Tools
(http://blogs.msdn.com/garethj/archive/2009/02/06/tellme-voice-studio-betal.aspx)........cccceeuruucunee. 55
Figure 3.18: Meta-modelling in GME (Ledeczi, et al., 2001)cccccoueiuviiiniinininiiiciciicicceceieciiaes 56
Figure 3.19: Screenshot of Alice 2.2 User INterface.........ccoccuviviiinininciiiniciiiiciicciccssecesecsies 59
Figure 3.20: Screenshot of Scratch User INterface.........oeueeueiriieciniciriniciniieseeeseeieseieeeeieeseeseesesenees 60
Figure 5.1: Three-level Architecture (S. Kelly & Tolvanen, 2008)ccccccvueiviurinincininineinicicsicncneinns 67
Figure 5.2: OMG’S MDA ...ttt ettt et et s sans 68
Figure 5.3: Model-driven Games Development Framework to support development of computer
GAITIC. ..ovtieteteteteteie ettt a ettt bbb bbb bbb AR h b bbb bR bbb bbb bbbt b et a bt ns 70
Figure 5.4: Transformation PIPeline.c.cccuvcuereuiueiciiieicinieieieieciseierese et sessese s ssessesesesans 72
Figure 5.5: Concepts in Game Content Model.ccccoiiiiiiiiiiiicceeccceseseeens 73
Figure 5.6: Overview of Game Content Model.ccvcueiciriniciniceinicnciceiseieeieeeieseeesesseaeans 74
Figure 5.7: Ontology Diagram for Game StrUCHUTe..........c.cceuviuiiriiiiniciniiiciiicice s sesesasssesens 75

Page XVI

Figure 5.8: Ontology Diagram for EVent TTigEeT.ccoveiiiuririuernicieiricinieeinicrenseesetseseseeesessescsessesesens 77

Figure 5.9: Ontology Diagram for Game Presentation.ceceeueecueunecueineecuniceeuneesesneesessesesseesessecsens 77
Figure 5.10: Menu in WarCraft III. (Screenshot:
http://us.blizzard.com/support/image.html?locale=en_US&id=226).......ccocceueerrererreurierrerererrcrreerrcrneaenne 78
Figure 5.11: Need for Speed Shift visual menu. (Screenshot: http://need-for-speed-
shift.blogs.gamerzines.com/files/2009/08/paintmoOnStroSity.jPg). ...c.ceeeeeveureuercrrerererermereueesenesensessesensens 78
Figure 5.12: Game notification in Darfur is Dying. (Screenshot: http://www.darfurisdying.com)........ 79
Figure 5.13: Ontology Diagram for Media COMPONENL.c.cceuueureuercuniuererieeieieaerereeseseasesesesensessesensens 80
Figure 5.14: Ontology Diagram for GUI COMPONENL.c.c.ccueuriiueuniceeiricirieeeirieseeseeseesesesessesessesesessescsens 80
Figure 5.15: Ontology Diagram for Game Simulation..........ccccvuceeuriceirecinicciniceniceneesesseeeseeesessesenens 81
Figure 5.16: Ontology Diagram for Game TempPoO.coccueureueurieecunineieirecinieeeiniesessesesessesesesesessesesesseaesens 82
Figure 5.17: Pro Evolution Soccer (PES) 2011 allows game player to adjust the game tempo to suit
their desired game-play duration (Screenshot: http://game4us.net/wp-content/uploads/pes2011_3-
TAOXTA0JPE). crrrseeveeeeeeessesecmeeeeesesssssssseesees s s smeeeseesees s eseses e seeseses e mseeeeseeesesemmseees oo 82
Figure 5.18: Ontology Diagram for Game PhYSIC.c.couceuiiiiiiiiiiiniciciiciiiceceseceeeeneeessecieneaenens 83
Figure 5.19: Worms Forts Under Siege uses the wind as one of the environmental force to affect
trajectory of ammo. (Screenshot: http://www.wormsforts.com/images/mult/scre_22.jpg).......ccccccuun.e. 83
Figure 5.20: Ontology Diagram for Front End Display.cceeeeivininininiciniccniccnceeceeeieneeenes 84
Figure 5.21: Halo Reach uses both static and dynamic front end display to provide the necessary game
statistics to game player. (Screenshot:
http://img94.imageshack.us/img94/3760/avermediacenter20100906.jpg).ccoceeveuevererrirererrereuevennenne 85
Figure 5.22: VSM as MOdel fOr ODJECt. ..ottt sseaesens 86
Figure 5.23: Ontology Diagram for Game ODbJECt.couccuruiuiuriiueiniiieiicieiieeicieiseeseieeeeiessesesessaenens 88
Figure 5.24: Ontology Diagram for Object AttribUutes.ccccvuiueuricieiniciriiccccieece e 89
Figure 5.25: Ontology Diagram for Object APPeArance...........ccceueeeueuecuririeereeereusiesersesesenesesssesessscsens 90
Figure 5.26: Ontology Diagram for Object ACON.c.c.cuccuriieiriiucinicieiicieitcteieteeeeeeeene e seeseseaenens 91
Figure 5.27: Ontology Diagram for Object Intelligence.cooceureueuricininieiniceiniceieceeeneeeeneeenens 92
Figure 5.28: Ontology Diagram for Game SCENATIO.ccvueueurieeeunieeeirineirieeetsieseiseeeetsesesesesesseesesseaesees 92
Figure 5.29: Ontology Diagram for Game Environment.ccceeeueuriuerneunieineiniereinicreesenesesensesensens 93
Figure 5.30: Game environment in Killzone 3. (Image obtained from http://4.bp.blogspot.com/-
MgWqmqfqczE/Ta63EANhIOT/AAAAAAAAAQI/QpsLD-jI6Ts/s1600/Bilgarsk_Boulevard_W.png).
.. 94
Figure 5.31: Ontology Diagram for Virtual Camera.c.ccocccueueueuricuemnecuniierencieineeseseeseneeessesesesseaesns 94
Figure 5.32: Ontology Diagram for Game EVeNt........c.coccueuieuniieinicueinicieiieieicieisecsessesesenesesessesessesenns 96
Figure 5.33: Ontology Diagram for Game ODbJECtIVe.couviueuriiuerricieiniciritciricreiseciereereeeesseeseseaenns 97
Figure 5.34: Ontology Diagram for Game RUle..........cccoueuriiiiniicininiciiciniiceiceneceeieceseieseeeeesseaenens 97
Figure 5.35: Ontology Diagram for Game Interaction Rule.ccoccceuriviuiinicininceinicnnceecneeeneecaens 98
Figure 5.36: Ontology Diagram for Game Scoring Rule.ccccvuuemiinieiniinicinciniciencceeceencneeenaens 98
Figure 5.37: Halo Reach’s Stockpile mode demands game player to bring flag into the team territory
and defend it until timer reaches zero (Screenshot:
http://www.bungie.net/projects/reach/images.aspx?c=59&i=25754).ccccecvuvirrririerrirerrrecrrreerrecrennns 99

Page XVII

Figure 5.38: Ontology Diagram for Game Player.........ccocceuveeuriiecrnincueinicinieeicieeseeseiseseseeesessesesesseacsns 929

Figure 5.39: Ontology Diagram for AVALAr.ccevceiecunineeiniceineceeecreseietseesessesesesseseseseeeseeseseseens 100
Figure 5.40: Game player commanding 6 of the Reapers from Terran unit in StarCraft II. (Screenshot:
http://www.sc2win.com/wp-content/uploads/2010/02/gameplay.jpg)........cccoeueeueururerererreremreereuneerenenes 100
Figure 5.41: Inventory menu in Resident Evil 5. (Screenshot:
http://www.ps3home.co.uk/userfiles/residenevil5-inventory-menu.jpg).........cooceeeeereeevreeererserercuneeennes 101
Figure 5.42: Ontology Diagram for Game Attribute.........cccoucuiuricinciriciniieicireeicieeeecsee e 102

Figure 5.43: Classic Pacman game requires game player to collect all pellet and power-pellet in each
game scenario. (Screenshot: Midway GamEes)ccceuveucurieecurinieinieieiieeeiescseseeeesesesessssesessesesesseaesesseses 102

Figure 5.44: StarCraft II records resources gathered, units raised and structures built. (Screenshot:

http://farm3.static.flickr.com/2709/4366787241_2e59df7ded_z.jpg)......cccceveureurueirimricurirrierirricrennnnes 102
Figure 5.45: Ontology Diagram for Game CONTIOL.c.coeeuriiueiriiurinicieiecieiecieeeeeeseesessesesesseeeeseesesene 103
Figure 5.46: Ontology Diagram for Game ReCOTd.coeeuriiuiiriiiiinicirincciniceineeeeteeeieseie et sene 103
Figure 5.47: Aspects of game software illustrated in shaded rectangles are elements of a game engine
while game logic and level data are regarded as content that defines a game (Bishop, et al., 1998).....105
Figure 5.48: Architecture of the Delta3D Game Engine (Darken, et al., 2005).ccocoeeureeururecrrencrennene 106
Figure 5.49: Overview of Commercial Grade Game Engine Architecture (Gregory, 2009).................. 106
Figure 5.50: Overview of Game Technology Model...........c.ccccouiiiinicniciccneeee e 107
Figure 5.51: Game Context SYStEIMcoiuiiiiiriiiiiiiiic e 108
Figure 5.52: Fixed time Step game LOOPcovcueuiiurinicuniieiiciciiceiecteseetesee et seae 110
Figure 5.53: Game Simulation SYStemMccccuuiiiimiiniiiiniciiiiicici s 110
Figure 5.54: Example of Action definition in a Game ODbjJeCt........cccovueurunecirireucenineeeeniceeneeereceeeeeeneene 112
Figure 5.55: Pseudo-code for Render method in a Game Object.........coveeuriecirincecinicernecrrcceneeeene 113
Figure 5.56: Animation Component (AnimationManager) in UML Diagram.........cccceeevevecucueurunencnce. 115
Figure 5.57: Input Component (Input Manager) in UML Diagram.........c.cceeeeeevceueeeurennenenccrereunnnenenene 116
Figure 5.58: Game Physics Component (PhysicsManager) in UML Diagram........cc.cccceveecuevnecurineeennce. 117
Figure 5.59: Game Resource Management Component (Game Resource Manager) in UML Diagram.
.. 119
Figure 5.60: AI Component (AIManager) in Class Diagram.ccoccceveeueecrnrceeenicreenecrenneerneeneneen. 120
Figure 5.61: Overview of Game Software Model that bridge Game Technology Model to a game
SOFtWATE frAMEWOTK. c....cveiiiiiiiiicii et 123
Figure 5.62: Overview of Game Software Model that includes platform specific components for a
software technology PlatfOr.ccvieuriiciriicr ettt 124
Figure 6.1: Case StUdY iN PrOGIESS......ccceuiueuiiuiriiiiiiiciriiieieieie ittt sassesanas 131
Figure 6.2: Serious Game Design Methodology (Tang & Hanneghan, 2010a).cccccccevceueunicurincucnnne. 132
Figure 6.3: Flow of story and play spaces within the story for the Fire Safety and Evacuation Procedure
serious game reproduced based on sketches from the case study conducted............cccocvveuncurierniunnnce. 135
Figure 6.4: Stages of modelling in SEGMERL.........ccccccouciiviiiiiiiiiniiiiiiccicce e 137

Page XVIII

Figure 6.5: Screenshot of the subject defining game object action named “burning” in game object
ESIZNET VIEWPOIN. c..ecviiieiiiicieiticirieicte ettt ettt ettt sttt ettt eaeseseae 138
Figure 6.6: Screenshot of the completed game environment modelled by the subject.ccccvueueeee. 138

Figure 6.7: Screenshot the completed game event modelled by the subject in the game scenario

AESIZNET VIEWPOINT....euveieieieiieicttiiea ettt ettt ettt nae 139
Figure 6.8: Screenshot the ActingScript composed by the subject in the game scenario designer
VIEWPOIIE ..ottt ettt b et b et e b bt a e b et ea et et a et et ae b aeenens 140
Figure 6.9: Screenshot of game objectives defined by the subject in the game scenario designer
VIEWPOIIE .ttt ettt a et a et en 140
Figure 6.10: Screenshot of game rules defined by the subject in the game scenario designer viewpoint.
.. 141
Figure 6.11: Screenshot of game presentation modelled by the subject using the game presentation
ESIZNET VIEWPOIN. c..eueiiieiiiiici ittt ettt ettt ettt bbbttt et seae 141
Figure 6.12: Screenshot of game simulation modelled by the subject using the game simulation
dESIZNET VIEWPOINL. c..eiiiieiiiciititict ettt ettt ettt st snae 142

Figure 6.13: Screenshot of game structure modelled by the subject using the game structure designer
VIEWPOIIE ..ttt a ettt b et s b et a bt eae s et e a et e st s s e n et ere s entenens 143
Figure 6.14: Screenshot of game control defined by the subject using the game player designer
VIEWPOIIIE ettt a b a s a e 143
Figure 6.15: Screenshot of game prototype generated from our model driven software development
framework tested on Adobe Flash platform........ccocccueiciriiiininiinicriceccse e 145
Figure 6.16: Comparison of estimated hours required to produce code for the fire safety and
evacuation procedure SEriOUS GAMEc.cucueuieueuicuriiieieieeeieteaesetesea s sesese s esesessssesessesesesaesessacsesssaes 146
Figure 6.17: Comparison of estimated cost required to produce code for the fire safety and evacuation

PIOCEAUIE SETIOUS GAIMEcucveieererecetiseieteaetestaeae st ae s seesesesseae sttt s st s s bbb ae s saesessacaessacsesasaen 147

Figure B.1: UML Diagram for Game Context System (Game Context Manager) and Game Simulation

System (Game Simulation ManageT)ccceueueuieurinicuriieerieieisiesessesesesesesessesesersesesessesessseseseaesessesesnas 166
Figure B.2: UML Diagram for EVent TTiggerccccevuiuriiiuriieirieieiicieieeieiecssiesesseeseseseseseaesensesesnne 167
Figure B.3: UML Diagram for Game Player..........cc.coucueiieuriicinieieinicieiecieieecisieeesseeseseseseseaesesesesenne 167
Figure B.4: UML diagram for scene graph - MediaComponent, GUIComponent, FrontEndDisplay,
GameObject and Light inherit from the GraphNoOde.c.ccoceuviuriiiniinicinieciecece e 168
Figure B.5: Example for updating and rendering scene graphs in the correct precedence in the
SIMUIAtION CONTEXL. ..uiiiiiiiiiii bbbt 168
Figure B.6: Example for recursively updating nodes in scene graphcccceeeuvcuneeincnicrncenecrncnnenenn. 168
Figure B.7: UML Diagram for Game SCENATIO.c.cvuueuriiucuriiueirieieieicteiesesenesessiesesssseseseseseseaesssscseseens 169
Figure B.8: Example of Update Method implementation for Game Scenario.........ccoccceueecururecureceenn. 170
Figure B.9: UML Class Diagram for Game ODBJect.......c.ccoweuruieirieueininceeiecrnieeinieeesseesesneseseseaeseesesessene 170
Figure B.10: Example of Update method implementation in a Game Object........ccoceuvuvecrernecrrrncecnnne. 171
Figure B.11: Renderer represented in Class Diagramcocccceureeueinecerinecunieeenieeerneeeeineesenesesseesenene 172

Figure B.12: Audio Component (SoundManager) in UML Diagram.c.ccocccvereeevrereueunecrnencecerenceennene 172

Figure B.13: Video Player Component (VideoPlayer) in UML Diagram.ccoccceuveeueuneerennecerenceennene 172
Figure B.14: GUI Component (GUIComponent) in UML Diagram.cccceccceeeeeererererneeremneecereseeennene 173
Figure B.15: Media Component (MediaComponent) in UML Diagram.c.ccccceuvueeueunecuemnicurunenennne 174
Figure B.16: Front End Display Component (FEDComponent) in UML Diagram.........ccccecccuvuvcunnee. 175
Figure B.17: Base classes for math library in UML Diagram.cccccceueieuriicunineeinicnerneeeiecseneeenene 175
Figure B.18: Random number generator in UML Diagram.........cccccceeccueuiciniieinineeinicieiceneecsenesennne 176
Figure B.19: Unique Object Identifier Management Component (UniqueObjectIdentifierManager) in

UML DIa@IaM. .ttt bbbt a et n s sa s 176
Figure C.1: Model-driven pipeline for the Prototypecccecuvurieenereicenienicireieicineeeneeseesesseeescaseeenne 177
Figure C.2: Architecture of SeGMEnt in Adobe Flashc.cccccviiniiinnicnccrccncceceseceeeeeeeene 179
Figure C.3: Elements of Flow Visualisation Ul.........cccceveeuriieinicirinicieiecisieceeieseeseesessesesesseseseseseseene 180

Figure C.4: ActionScript 2.0 snippet that represents data structure for the Start Symbol and the
onPress event handler which triggers the fixed-time interval redrawing operation when symbol is in
not in editing additional information MOde.cocccurivicuriiiiriniericce e 181

Figure C.5: ActionScript 2.0 snippet that shows how transitional information arrows

(gSRelationship_mc) collections are traversed and redraw (draw_fn()) operation is invoked. 181
Figure C.6: Floating Dynamic Option Interface and Fixed Dynamic Option Interface.c........ 182
Figure C.7: WYSIWYG Visualisation in Presentation Designer VieWpOint.ccoeeeeueurecreureecrenscuennne 183
Figure C.8: Code snippet showing how words are chained one after another according to the grammar
of acting sCript in ACHONSCIIPE 2.0 . .ucueuiiueiriceeiicieireiceetreiet ettt ettt sttt seeae 185
Figure C.9: Statement Construction INterface.oceeeurieinicrinicirececceeeieseeeesee e 185
Figure C.10: Statement Construction Interface in Scenario Designer Viewpoint.ccecuvveurcurunce. 186
Figure C.11: Guided Data Entry Interface in Player Designer VIieWpPOint.ccceveeeeureeurereecererceennene 187
Figure C.12: Editing context in Game Structure Designer with the aid of Dynamic Option Interface.

.. 188
Figure C.13: Modelling Game Structure in Game Structure Designer............cceeeeureecueuneerennecrrencuennne 188
Figure C.14: Editing game act using ActingScript UI in Game Scenario Designer.c.ccccccoeuvuunne. 189
Figure C.15: Each game act created is added to the existing game act library where user can reuse in

Other GAME EVENTS.ccouiiiiiiiicc s 189
Figure C.16: Defining game rules in SCenario DeSIGNeT.ccvueururecurinereuninereinieeeiseeseeseseseesesesseeseseene 190
Figure C.17: Defining game objective in Game Scenario Designer.cecveerereeevnereerencerneneueeneceennene 190
Figure C.18: Defining game object in Game Object DeSigner..........ccccocuviueueuniunicineeeinerreeierseeeneneneenne 191
Figure C.19: Designing game interface in Game Simulation Designer.ccccccceuveuviuninincncncninnnnns 191
Figure C.20: Defining game physics in Game Simulation Designer.cccocccuvceunicenecrennecenenceennne 192
Figure C.21: Modelling game presentation in Game Presentation Designer.ccocccceveeeueunecurencecnnn. 192
Figure C.22: Modelling game environment in Game Environment Designer.cccccooeecueunecurenceenn. 193
Figure C.23: Modelling game player in Game Player Designer...........ccooecceueueurincernecueeneerenneceeneeenene 194
Figure C.24: XML Structure for Game Content Model...........cccoueiicnicinicrnneeiniceeceeeseeesenene 195

Figure C.25: ActionScript 2.0 snippet that shows the data structure for each viewpoint.cce...... 195

Figure C.26: ActionScript 2.0 snippet that export Game Content Model to XML format. 196
Figure C.27: Snippet of code from the Game Technology Model translator to locate a marked data and
iterating through the tree StrUCTUTe. ..o 199
Figure C.28: XML describing the Fireman game object generated from SeGMEnt...........ccccccevuvvucnncs 200

Figure C.29: XML definition of the Game Object in Game Technology Model. Elements in bold are
translated token of information from Game Content Model which has been reorganised into

Programmable fOrMAL.c.cccuiiiiiieici ettt 201

Page XXI

LIST OF TABLES

Table 2. 1: Taxonomy of serious games by Sawyer and Smith (2008).......cc.cceuceureuercurierrenerrncereennerneeenn. 10
Table 2. 2: Differences between computer games and educational games in purpose, play, rules and

CUITUT ...ttt ettt ans 13
Table 3.1: Details on Commercial and Open source Game Software Framework...........ccocceeuveererncennnce. 43

Table 3.2: Evaluation of Features for Open Source and Royalty-free 3D Game Software Frameworks 45

Table 3.3: Evaluation of Open Source and Royalty-free 3D Game Software Frameworks............cc....... 46
Table 3.4: List of Techniques for Graphic FEatures..........coccvveeurireeininceninicininecinieeeisceessecsesseeesseesessens 48
Table 3.5: List of Techniques for Other Game Feature.........c.cocceeeuriceriricrninccinieeeceneeeseeseeseseneene 48
Table 6. 1: Learning Outcomes for Fire Safety and Evacuation Procedurecocevevceenencrrenecennnenee 132

Table 6.2: Personas for Students from Year 1 (7 years old) to Year 3 (9 years old) in Christian

FellOWSHIP SCROOL ...ttt 133
Table 6.3: Learning Activities for Fire Safety and Evacuation Procedure serious game.........ccccccovuueee. 133
Table 6.4: Learning Activities ordered according to increasing difficulty levelcccccceveincniics 134
Table 6.5: Game mechanics and game components for different learning activities.cccceevccuenucece 136
Table A.1: Ontology for Serious Game & Game Structure in BNF Representation..........cc.ccceevecurunnee 161
Table A.2: Ontology for Game Presentation in BNF Representation...........cceceecuvevceueevceeinecrnenecunnnenes 161
Table A.3: Ontology for Game Simulation in BNF Representationc.cceeeevneernecceenecrnnnecunnnenes 162
Table A.4: Ontology for Game Objects in BNF Representationccceveecueerecuriceeunicuennecreenecnenenes 162
Table A.5: Ontology for Game Scenario in BNF Representation..........ccceeecueuecuneeernicuernecueinecuennenes 163
Table A.6: Ontology for Game Event in BNF Representation.........cccoecurieueinieineunecrneeeeenseeencneneennes 164
Table A.7: Ontology for Game Objective in BNF Representation.........cocececceeereeereneeerreeeeeneceseneerennenes 164
Table A.8: Ontology for Game Rule in BNF Representation..........cccoecuriecuneinieeincuniernienicnseeeneneneennes 164
Table A.9: Ontology for Game Player in BNF Representation.........ccoocceerecerireeeerineeeeneceeeneeseereesennenes 165
Table A.10: Ontology for Game Theme in BNF Representationcoceceeeeeereucurieeeureeeennecuserecrennenes 165
Table C.1: Grammar fOr ACt STAtEMENT.ccueveueuriireiricieicieirieeiieieiteseteese et ssese s saesenaeaes 184

Page XXII

CHAPTER1 -INTRODUCTION

Game-based learning harnesses the advantages of computer games technology to create a fun,
motivating and interactive virtual learning environment that promotes problem-based experiential
learning. It refers to the innovative learning approach derived from the use of computer games that
possess educational value or different kinds of software applications that use games for learning and
education purposes such as learning support, teaching enhancement, assessment and evaluation of
learners (Tang, Hanneghan, & Rhalibi, 2009). Computer games specifically designed for such
purposes are generally termed as educational games or serious games which is a term used to describe
computer games with embedded pedagogy (Zyda, 2005). It also encompasses games for health,
advertisement, training, education, science, research, production and work, in which games
technologies are used specifically for improving accessibility of simulations, modelling environments,
visualisation, interfaces, delivery of messages, learning and training, and productive activities such as
authoring, development or production (Sawyer & Smith, 2008). In this thesis, we use the term serious
games and educational games interchangeably to refer to computer games developed for training and

educational purposes.

1.1 Problem Statements
Game-based learning has been advocated by many commentators that it can provide an enhanced
learning experience compared to traditional didactic methods. In recent years, great efforts have been
put into realising game-based learning as demand for technology assisted learning approaches
becomes popular among domain experts and academics and offer greater relevance for the so called
‘PlayStation’ generation of learners.
However, the adoption of such a seductive learning method engenders a range of technical,
educational and pedagogical challenges, including:
e how to enable non-technical domain experts (teachers or trainers) - with little computer
game development skills — to plan, develop and update their teaching material without
going through endless and laborious iterative cycles of software and content development

and/or adaptation;

Page 1

e how to choose the right mix of entertainment and game playing to deliver the required
educational and pedagogical lesson/teaching material, and;
e how to develop flexible and yet easy to use serious games development environments

tailored for domain experts.

1.2 Motivation and Objective

Much research is already underway to address these stated challenges, of which some have adopted
commercial off-the-shelf (COTS) games as a potential solution. However, most COTS games available
are designed specifically to entertain and some even elicit violence and sexual content, thus rendering
them inappropriate (but this does not imply useless) for use in an education context (Tang &
Hanneghan, 2005, 2010a). Another alternative is to spearhead in-house development of serious games
using open source or royalty-free game engines in collaboration with a team of developers, or
‘modding’ (modifying) COTS games by utilising a game editor application to create customised game
objects and levels to suit the use of game-based learning. However, these approaches do not address
the key challenge of facilitating the planning and development of serious games with the right mix of
pedagogical, educational and fun elements.

This thesis tackles the issue on the production of computer games. It discusses the development of
a model-driven development environment that can facilitate non-technical domain experts to design,
develop and maintain computer games regardless of the intricacies of the game engine/environment
(platform) used. By infusing games design and development with Model-Driven Engineering (MDE)
practices can address the production of computer games. The model-driven game development
environment captures the aspects of computer game design from users and represents it using models.
Models are then analysed and transformed into working software code automatically using a built-in
code generator to produce a variety of computer games. The technical aspects of games development
are encapsulated from users via a user interface. Thereby allowing non-technical users to design and
produce a variation of computer games quickly, easily and at less cost (in a long run).

The prototype is implemented in this research study on the Adobe Flash platform as a rich internet
application (RIA) for deployment onto the web. Adobe Flash applications are supported by most
browsers and, therefore, can reach out further to teachers who intend to consider game-based
learning. Serious games produced using the prototype is also targeted for Adobe Flash platform to

reach out to the audiences easily.

Page 2

The main objective of this research study is to develop a model-driven framework that supports

the development of computer games. Such a framework should provide a clear separation between

artwork and technical components from the design of computer games while maintaining links to

enable code generation to take place. This thesis presents the most relevant knowledge from game

engineering, game design, MDE and assistive user interfaces that are essential for the development of

the model-driven games development framework.

1.3 Research Contributions

The work in this thesis is unique as it draws knowledge and expertise from multiple disciplines such as

game design, games development, theories of learning and model-driven engineering to address the

issues stated in Section 1.1. It also makes a number of contributions to the state-of-the-art game-based

learning and game development.

A novel model-driven games development framework to support the development of
games: This framework enables users to express design requirements of computer games
through modelling and, therefore, encapsulates the technical aspects of game development.
The result of this framework is a high-level tool which allows non-developer users such as
teachers to produce a computer game affordably, quickly and reliably for use in game-
based learning. This novel model-driven games development framework is published in
(Tang & Hanneghan, 2010b) and (Tang & Hanneghan, 2011a).

A reusable model for representing games design: This model improves on existing game
design models and provides a formal structure for users to specify the progression of
interaction and contents, properties and behaviours of in-game objects, and progression of
events in scenarios. This model is a crucial part of the model-driven framework and it
represents the domain-specific contents to be modelled in the game design. The work is
published in (Tang & Hanneghan, 2011b) and (Tang & Hanneghan, 2011a).

A reusable software model for representing games independent of implementation
platform: This model represents computer games from the game software framework
perspective is another part of equation of the model-driven framework. Specifications
gathered through model of computer games design is mapped to this model which is then
used for generation of software code. This work is published in (Tang, Hanneghan, &

Carter, 2012) and (Tang, Hanneghan, & Carter, 2013).

Page 3

1.4 Process and Methodology

The goal of this research study is to develop a framework which aids the development of a
technological solution for non-developers user such as teachers to produce quality computer games
affordably, reliably and quickly. To address this issue, the MDE approach was adopted. Aspects related
to computer games design and developments are investigated. It is noted that computer games are
complex applications and the quality of computer games are affected not only by the game-play, but
also by artwork and technical aspects supporting the computer game such as responsiveness, quality
of rendering, realism of animation and intelligence of non-player characters (NPC). A framework that
separates design from assets and game functionalities, and is able to consolidate existing game
technologies into a single computer games production pipeline is required.

MDE and its process are studied in detail. With the requirements in-hand, an initial draft of the
model-driven framework is architected based on Object Management Group’s (OMG) Model Driven
Architecture (MDA) (OMG, 2001). A collection of software modelling techniques are analysed against
suitability for modelling computer games. Findings from the analysis, and abstraction and
relationships identified from studies related to computer games are used as guidelines for the
development of a model specifically tailored for designing computer games. Both framework design
and models design went through iterations of refinement and redesign to ensure the models and the
framework meet all the requirements. The design of the models is continuously refined during the
research study to include most aspects of computer game until it is finalised.

The front-end of the prototype, a web-based model-driven development environment, is
implemented on the Adobe Flash platform with a rapid prototyping approach. The primary reason for
deploying this model-driven development environment on the web is to lower the barrier of entry to
this development environment so to allow practitioners of game-based learning to produce computer
games using any connected desktop with a browser. The Adobe Flash platform has been chosen due to
its support for the creation of rich internet applications. Various user interfaces are studied to design a
suitable user interface to guide teachers in specifying design of computer games. The development
began with the construction of user interfaces that capture all the required variables based on the
computer game model and output the model in the form of XML. Development continued on with
the implementation of a model translator in PHP that converts the design specifications to the game
engine model adding in technical details that are generic to most game software frameworks and this

processing is done on the server-side (back-end). PHP was chosen amongst the other server-side

Page 4

scripting language for its ease of use and the support for XML parsing (Simple XML library in PHP
5.0). In addition, a code generator was implemented in PHP to generate software code for a targeted
platform (and in this case the Adobe Flash Platform).

Once the prototype is implemented, a case study is carried out to evaluate the models and the

framework. Details of this research study are documented in this report.

1.5 Thesis Structure

This thesis is organised into seven chapters and three appendices. Chapter 1 provides an overview of
this research study. It describes the problem area and justifies the intention of this research study by
clearly specifying the goals. It also highlights the contribution made from this research and the
approaches taken to complete the research study.

Chapter 2 provides an overview and the essential concepts on digital games and MDE required in
this thesis. It defines digital games, the game design and development process, the diversification of
games design and use of game technology on non-entertainment domain and application of digital
games in education. It then discusses the pros and cons of games-based learning, as well as challenges
of such an approach. The chapter also introduces MDE approach and describes the MDE process. It
covers key concepts such as model, domain specific modelling language, model transformation and
model viewpoints, and discusses the benefits and outlines the challenges using such approach for
games development.

After the fundamental concepts related to this research study are introduced, Chapter 3 surveys the
literature related to model-driven game development. It investigates existing game model, game
software modelling technique, game model-driven framework, game software framework,
middleware, model-driven engineering tool and assistive user interface, and summarises key
developments in those areas. This provides an insight on the development in the respective areas
which are fundamental to this research study.

Chapter 4 proceeds to outline the requirements of a model-driven game development framework
that can encapsulate technical aspects of game development from non-technical domain expert and
support a myriad of game engine.

With the requirements identified, Chapter 5 presents the new model-driven game development
framework designed to address the drawbacks of existing model driven game development
approaches described in Chapter 3. It details the architectural strategy used in the development of the

new model-driven framework, the framework itself and describes the models that are core to the

Page 5

model-driven framework namely the Game Content Model (GCM), Game Technology Model (GTM)
and Game Software Model (GSM) in detail. This framework is an architectural blueprint for those
who intend to use this model driven approach to support development of computer games.

Once the framework is established, Chapter 6 presents a case study on application model-driven
driven approach described in Chapter 5 in the domain of game-based learning. The case study shows
the improvement this approach brought to the game-based learning communities in relation to
production of computer games. It also critically evaluates this research work in terms of the
framework proposed in Chapter 5 and the prototype presented in Appendix C.

Chapter 7 draws a conclusion to this work. It reemphasises the contributions made from this
research, outlines future directions to further this research and presents some concluding remarks to
this work.

Additional details that support the work presented in this thesis are made available in the
appendices. Appendix A presents the Backus-Naur Form representation of Game Content Model
which is useful to software engineers who intend to parse this into other form of formalised language.
Appendix B shows the UML representation of the Game Technology Model which was presented in
Chapter 5. Finally, Appendix C describes the prototype implementation developed specifically for
practitioners of games-based learning based on the model driven game development framework
presented in Chapter 5.

As a final remark, it is important to acknowledge that much of the work from this research is
motivated by the vision on the future of game-based learning. It the end, it is the same vision that
guides the development of the model-driven game development framework in this work. However, it
is important to emphasise that the model-driven game development framework is not specific to the

application on games-based learning and it can be used equally for game development in general.

Page 6

CHAPTER 2 - BACKGROUND

This chapter presents an overview on computer games and its application on non-entertainment
domains (Section 2.1) and provides an introduction to model-driven engineering (Section 2.2).The
two main sections survey the related work and outline the fundamental concepts that are crucial in the
development of a model-driven approach to assist development of computer games with an

application to serious games for game-based learning.

2.1 Computer Games

Computer (video) games are interactive software applications created primarily for participatory
entertainment purposes (Rollings & Adams, 2003). The terms ‘computer games’ and ‘video games’
were formerly referred to as PC-based games and console-based games but are now used
interchangeably due to the blurring state of technology. Computer games as software artefacts
combine multimedia and other computing technologies such as networking to enable the game player
to experience goal-directed play in a virtual environment. A computer game can be represented by the
three primary design schemas defined by Salen and Zimmerman (2003) in their conceptual
framework as:

e Rules, which formally represent the 'mechanics’ or operational constraints within the game
construct, which in turn governs the level of interactivity within the game.

o Play, which represents the experiential aspect of the game and is communicated to the game
player through a collection of tasks or activities that challenges the game player. The act of
game-playing itself is an activity of overcoming the defined challenges and conflicts within the
game using a set of permissible actions.

e Culture, refers to the beliefs and norms represented in the game world, which is often
portrayed to game-players through artificial characters, objects and settings via aural and
visual representation of the game world, and through storytelling.

In summary, rules and culture define the technical and intrinsic representation of some virtual
“playground” to support the activity of play. This conceptual framework will serve as the basis to

distinguish between educational games and computer games in the next section.

Page 7

The focus of computer games in entertainment has always been the activity of play, which is
governed by the set of formal rules defined within some cultural context. Koster (2004) defines play as
a brain exercising activity that attempts to master the ability to recognize patterns in various contexts.
From a pedagogical standpoint the activity of play that game-players experience is technically a loop
of doing and reflecting in a motivating context that enables them to learn and hopefully master their
art. Indirectly, game-players learn by doing and such an approach helps in retaining information
effectively as opposed to just receiving information in a passive manner (Roussou, 2004). Such belief is
centred on ‘activity theory’, which assumes that consciousness and activities are inseparable (Leont'ev,

1977).

2.1.1 Game Design and Development Pipelines
The design schemas described above are defined in detail by a game designer during the game design
process. Game design is the creative expression of a game designer’s vision of some virtual goal-
directed play where the game designer engages him or herself in an activity to innovate and create a
concept of play within a set of business, psychological, sociological and technological constraints. It is
a process that requires one to:
i. imagine a game idea;

ii. define how the game works;

iii. document aspects of the game; and

iv. communicate such a vision and the design decisions for use as a blueprint by the development

team.

This is followed by the development phase which involves a team of software engineers and artists
working collaboratively to produce the interactive content as per design. The process in game
development involves two different pipelines namely (1) software development pipeline and (2) digital
content creation pipeline.

In the software development pipeline, software engineers will translate the game design
requirements into a technical design which allows them to design software solution to support the
game. Software engineers are responsible for the development of software technology that supports
the game software. On a commercial scale, game software runs on a game engine - a software
framework tailored to aid the production of games of the same genre. Software engineers will have to
programme the mechanics game using the facilities of the game engine to ensure the game software

delivers the experience defined by the game designer. To ease the process of fine-tuning the game-play

Page 8

experience, software tools are usually developed by the software engineers to allow game designers to
alter game variables in the game that affect the game-play. These tools are similar to the game level
editor that ship with games such as the Unreal Editor. In addition to level editing tools, there are more
tools which are developed in-house for use by the development team for very specific purpose such as
model viewer which allows artist to check how asset would look like in the game environment.

In the digital content creation pipeline, artists will produce all the required 3d assets, 2d assets,
sounds, animations and cut-scenes animation which based on the game design document. They will
have to produce the assets strictly to a standard to ensure the assets can be loaded in to the game
engine and rendered correctly. It is a fact that there is a wealth of knowledge and experience required
in the production of computer games. This is the reason why games design and development demands

expert skills and knowledge.

2.1.2 Application of Games Design and Technology to Non-Entertainment Domains

In recent years, there have been influences to apply the techniques used in game design and the game
technology into other domains through serious games. Serious games is used to describe computer
games with embedded pedagogy (Zyda, 2005). The taxonomy of serious games proposed by Sawyer
and Smith (2008) (see Table 2.1) expands the scope and purpose of serious games to include games for
health, advertisement, training, education, science, research, production and work, in which games
technologies are used specifically for improving accessibility of simulations, modelling environments,
visualisation, interfaces, delivery of messages, learning and training, and productive activities such as
authoring, development or production. Some serious games featured at the Serious Games Initiative
website! demonstrate the diverse and creative application of games technology in training and
creating awareness. Stone City (Bogost, 2007), Second life (secondlife.com), America’s Army
(www.americasarmy.com), VR Therapy for Spider Phobia (Hoffman, Garcia-Palacios, Carlin, Furness,
& Botella-Arbona, 2003) and the aforementioned Food force (WFPFoodForce, 2008) are some notable
examples of serious games. Some serious games may not necessarily have game-play elements but can
still present educational potential. Storytelling Alice, a programming environment designed to
motivate middle school learners (especially girls) to learn computer programming through a
storytelling approach, is a good example of a serious game tool for educational purposes. Although

there is very little elements of game-play, it is indeed an example of game-based learning in practice.

! The Serious Games Initiative website can be found at http://www.seriousgames.org/

Page 9

In Storytelling Alice learners program the animated characters to act in a story they create thereby
creating the game play element themselves. Kelleher (2006) reported that learners are willing to spend
42% more time in programming using Storytelling Alice than the predecessor Alice (better known as

Generic Alice) and devote more extra-curricular time to work on their storytelling program.

Table 2. 1: Taxonomy of serious games by Sawyer and Smith (2008).

Games for Advergames Games for Games for Games for Production Games as
Health Training Education Science & Work
Research
Government & Public Health Political Employee Inform Public | Data Collection/ | Strategic & Policy Public
NGO Education & Games Training Planning Planning Diplomacy,
Mass Casualty Opinion
Response Research
Defense Rehab & Recruitment & | Soldier Support School House War Games & War planning & Command &
Wellness Propaganda Training Education Planning weapons research Control
Healthcare Cybertherapy/ Public Health Training Games for Visualization/ Biotech Public Health
Exergaming Policy & Social Games for Patient Epidemiology manufacturing & Response
Awareness Health design Planning &
Campaigns Professionals Logistics
Marketing & Advertising Advertising, Product Use Product Opinion Machinima Opinion
Communications Treatment Marketing Information Research Research
with games,
product
placement
Education Inform about Social issue Train teachers/ Learning Corporate Documentary Teaching
disease/ risks games Train Science & Distance
workforce skills Recruitment Learning
Corporate Employee Health Customer Employee Continuing Advertising/ Strategic Command &
Information & Education & Training Education & Visualization Planning Control
Wellness Awareness Certification
Industry Occupational Sales & Employee Workforce Process, Nano/Bio-Tech Command &
Safety Recruitment Training Education Optimization, Design Control
Simulation

The application of gaming technologies in education has also gained tremendous interest from
different sectors including government, academia and industry (BECTa, 2001, 2006; FAS, 2006a).
Many agree that it is now appropriate to take advantage of gaming technologies to create a new
generation of educational technology tools to equip learners of all ages with necessary skills through
experiential learning (FAS, 2006a). As positive impressions on digital games continue to spread,
various programmes of research have been conducted to realise the use of game content at various
levels of learning.

In general, game-based learning refers to the innovative learning approach derived from the use of
computer games that possess educational value or different kinds of software applications that use
games for learning and education purposes such as learning support, teaching enhancement,

assessment and evaluation of learners. The term ‘game-based learning’ can also refer to the use of

Page 10

non-digital games such as card games (Baker, Navarro, & Hoek, 2005) and casino chips (E. Cook &
Hazelwood, 2002). It is an activity to engage and hold learners in focus by encouraging them to
participate during the lesson through game-play. More specific terms that refer to the use of computer
games in learning and education include ‘digital game-based learning’, which was coined by Prensky
(2001), and ‘games-based eLearning’ by Connolly and Stansfield (2007).

In game-based learning environments learners are presented with learning material in the form of
narrative and storytelling and they learn through game-playing and studying the properties and
behaviour of in-game components, the relationship between these in-game components and the
solving of problems in the defined scenario (Tang, et al., 2009). From a learning theory perspective,

game-based learning possesses characteristics such as:

e motivating and engaging;

e requires participation from learners;

e has clear learning objectives defined in the game-play and scenarios presented while
knowledge can be imparted through storytelling and narrative;

e scenarios defined are reflective and transferable to the real-world experience;

e provides freedom to interact in the game world through a set of defined actions;

e provides clearly defined feedback for every action taken;

e both assessment and lesson can take place during game-play;

e matches learner’s pace and intellectual ability;

o highly scalable so can be used for educating large numbers of learners concurrently.

Many researchers believe that such innovation in learning technology can better motivate present
day entertainment-driven learners to experience learning through meaningful activities defined in the
game context as opposed to traditional pedagogic approaches. Findings from initial research studies
also show that computer games can be used to acquire certain cognitive abilities and improve their
understanding in topics presented (Aguilera & Mendiz, 2003; BECTa, 2006; Jenkins, Klopfer, Squire,
& Tan, 2003). These preliminary results are convincing and have gained tremendous interest from
different sectors including government, academia and industry to further explore the benefits of such
opportunity (BECTa, 2006; FAS, 2006b). Many also agree that it is now appropriate to take advantage
of gaming technologies to create a new generation of educational technology tools to equip learners of

all ages with necessary skills through experiential learning (FAS, 2006b).

Page 11

Computer games for use in game-based learning are generally termed ‘educational games’.
Computer games and educational games share many common technical features but differ in their
intended use and design of content. Computer games are primarily designed for entertainment
purposes while educational games are intended to impart knowledge or skills development (although
some educational aspects and entertainment aspects exist in both fields). Therefore the real distinction
between computer games and educational games can only be further explained through the definition
of the design schemas play, rules and culture based on the purpose defined.

Play in the context of computer games has always been perceived as an activity of enjoyment or
recreation instead of serious or practical purpose. Contrary to computer games, play in the context of
educational games should be defined as meaningful learning activities that promote the formation of
new concepts and development of cognitive skills. These meaningful learning activities are
interactions designed with an aim to educate learners through the principle of cause and effect. Rules
and culture have to accommodate the direction of play defined for either purpose; entertainment or
learning, or both. In fact, many well-designed computer games are indeed educational although they
are lacking in the integration of knowledge and training in skills that are considered educational.

Rules that govern game-play in educational games are coupled with measureable learning
objectives that are assessable via interactivity. Although computer games have similar measurable
objectives, game objectives are designed to steer game-play towards entertaining play and may not be
applicable in reality. Grand Theft Auto IV (Rockstar North, 2008), a controversial but a very
successful’ computer game where the game-player takes on the role of criminal in a big city and
participates in occasional criminal activities such as occasional taxi driving, fire-fighting, pimping,
street racing and other regular crime features such as bank robbery and assassination, is an example of
rules of game-play that contradicts with society norms. These rules can also be in the form of distinct
challenges that place demands on the learner to solve a variety of problems cognitively and possibly
requiring hand-eye coordination or manual dexterity. These challenges also exist in computer games
but may be presented in a fictitious context that is irrelevant to any real-world analogy and may lack
accuracy in representation. Mechanistic rules underlying game-play for educational games can range
from simplistic to extremely complex representation (for example on a par with a true simulator)

depending on the subject matter.

Based on total sales.

Page 12

The details of culture in educational games depend largely on the subject matter and the designed
learning objectives. Ideally educational games should exhibit belief and norms from some real-world
scenario to facilitate knowledge transfer from the game world to reality. However most educational
games have the world set in a fantasy environment as this may increase the intrinsic motivation of
learners according to Malone & Lepper (1987). In such a context, belief and norms should be defined
according to the learning objectives and reflect some degree of truthfulness and relation to the real-
world to sustain the educational values that distinguish educational games from computer games.
Story and narrative are often used to set the scene and immerse game-players into the game world
both in computer games and educational games from various perspectives. The difference, however,
lies in the defined events (game-play sessions) driven by the story whether the events introduced in
the game-play are some form of meaningful activities that would help game-players to understand the
subject or a playground merely for eliciting fun. In fact it is more natural to use dialogue as a method
of storytelling and information dissemination to the game-player via artificial characters instead of
narration. Other forms of content beside narration, such as the visual element, need not be ultra-
realistic although it is desirable (but costly) to include such a requirement in educational games.
Visual elements in the form of avatars and objects are sufficient for the purpose of learning. Table 2.2
below summarises the main differences between computer games and educational games in relation to

play, rules and culture.

Table 2. 2: Differences between computer games and educational games in purpose, play, rules and culture.

Computer games as Computer games as

Entertainment software Edutainment software

. . For learning and skills development purposes.
For entertainment purposes. Context presented is

Purpose . May be a form of entertainment based on the
mostly fictitious or fantasy based. . .
interpretation of the learner.
Interactions designed primarily for entertainment Interaction designed for learning purposes with
purposes with directed objectives that can be meaningful responses and measurable outcomes.
Rules driven by storytelling. Interactions resemble the Knowledge is disseminated through events
real-world interaction in a simplified or abstract triggered by specially designed interactions and
approach. dialogue.
Rules are designed for specific learning outcomes
Rules are designed to accommodate the activity of & P .g .
. . that can be used to measure the interactions
Play play, which are often tuned for playability rather e . N .
. during “serious play”. Rules can be simplified or
than reflecting the real-world. .
made complex to support the activity of play.
Beliefs, norms and world setting presented
Beliefs, norms and world setting presented : . i & P
. . .) X visually and via narrative that are related to
Aesthetic visually and via narrative often set in an .
. knowledge domain, reflect truthfulness and have
representation imaginary world that is represented artistically

and often exaggerated.

direct and explicit relation to real-world events.
Game world maybe set in an imaginary world.

Page 13

Some examples of educational games are Food Force and Hot Shot Business. Food Force is an
educational game published by the United Nations World Food Programme (WEFP) to educate
children between the ages of 8 — 13 about the fight against world hunger. Set in a fictitious island
called Sheylan in the Indian Ocean players are taken through six different missions with specific
learning objectives: (1) Air Surveillance - The causes of hunger and malnutrition; (2) Energy Pacs -
Nutrition and the cost of feeding the hungry; (3) Airdrop - WEP’s emergency response; (4) Locate and
Dispatch - Global food procurement; (5) The Food Run - Land-based logistics; and (6) Future Farming
- Long-term food aid projects. Simple game-play is introduced in each mission, for example, in the
Energy Pacs mission game-players are required to purchase food items such as rice, beans, vegetable
oil, sugar and iodised salt with the budget of USD0.30 per person per meal within 2 minutes.

Disney’s Hot Shot Business® is a business simulation game designed for children between the ages
of 9-12 to help them learn the required skills to become a successful business owner (Everett, 2003).
The educational game is designed collaboratively with the Ewing Marion Kauffman Foundation,
which funds education and entrepreneurship, to support its corporate curriculum. In Hot Shot
Business game-players can choose to own various types of business such as a candy factory, pet spa,
landscaping service, comic shop, skateboard factory, magic shop and travel agent. As the game
progresses game-players are required to set-up the business, sell services or products, respond to
market needs, price the services and products accordingly, market the services or products and
compete with other competitors. Business strategies are then evaluated to reflect the game-players’
performance.

Other examples of educational games designed for learners in middle school, institutions of higher

learning and adults include:

e UNIGAME - a web-based game that encourages learners in higher education institutions to
search for information, discuss topics and arrive at a consensus using a problem solving
approach (Pivec & Dziabenko, 2004).

e CyberCIEGE - a computer game that teaches information assurance concepts through the
simulation of an IT firm where learners take on the role of decision maker to satisfy the needs
of virtual users while also protecting valuable information assets from cyber-criminals (Irvine,

Thompson, & Allen, 2005).

® Hot Shot Business can be played online at www.hotshotbusiness.com

Page 14

http://www.hotshotbusiness.com/

e Supercharged! - a computer game in which learners in middle school can learn about
electrostatic properties by navigating through an electrostatic maze controlling the charge of
the spaceship through careful placement of charged particles (Squire, Barnett, Grant, &
Higginbotham, 2004).

There is currently a larger focus on educational games for children than any other age group. This
is mainly due to the early stage of edutainment research that focuses mainly on child education. In
addition, many educational games are developed quicker and more cost effectively for young children
since they have a lower expectation of the sophistication of the interactive content compared to
teenagers and adults. Training simulators are more popular among adults especially in the field of

aviation (Telfer, 1993) and medicine (Colt, Crawford, & Galbraith, 2001).

2.1.3 Technologies Supporting Game Creation

In recent years, games technologies are becoming more mainstream and accessible by the public.
Technically-able domain experts can now choose to develop their own game software using either
royalty free game engines or open source game engines. These are industry standard framework that
allows one to develop complex game software and will require experience, knowledge and skill on
software development. Many would find it technically challenging and they would want to acquire
experts help or even outsource the game creation to game developers at a cost.

There has also been advancement in the tools that support game developments. In the past, tools
are propriety technologies developed for in-house usage to aid game developers in games
development with the aim to increase productivity. Most of these tools are developed to for a specific
purpose and often it has poor user interfaces which are not suitable for non-developers users.
However, this has changed. There are now readily accessible tools for the domain experts. Tools such
as the Unreal Development Kit* and the Unity Game Engine’® provide users with a collection of tools
with improved user interfaces to help make game development easier. These tools are now used
widely by the game hobbyist community and indie game developers to develop games either as a
hobby or for commercial purpose. Although tools can help to simplify some aspects of game
development such as providing better visualisation of the game and loading of asset into game engine,
users will need to have the knowledge and skills to be able to develop a game. For the less-technical

domain experts, they can explore into the use of game creation tools that does not requires any form

* www.unrealengine.com/udk/
® www.unity3d.com

Page 15

of programming such as Scratch (Maloney et al., 2004) and more recently released Game Salad®. These
tools provide the user interfaces that replace the manual programming of codes and the facility to
reuse the built-in features. Although these tools are made more user-friendly for the less technical
users, it will still require users to have some knowledge of game creation to be able create a game.
Another option to create a game with the use of tool is through the process of “modding” or
modifying an existing game. Some games such as Unreal Tournament IIT (2007) ships with a game
editor tool which allows users to create their own game level by reusing the game functionality and
assets. Computer-savvy domain experts would be able to take advantage of this facility to repurpose a
commercial off-the-shelf game for their intended purpose. Although the game editor tool has an
improved user interface compared to in-house development tools, it will still require domain experts
to be familiar with the game before they can begin to modify the game. “Modding” a game does not
provide much flexibility to domain experts who plan to develop their own custom game because it
only allows permit customisation of content within the scope of the game mechanics and technology

supported.

2.1.4 Challenge for the Non-Technical Domain Experts

The idea of applying games design and games technology to non-entertainment domains is interesting
and it attracts attention of many. There are now a growing number of domain experts who which to
develop their own games to communicate their ideas, to educate a group of learner, to promote a
product and to promote health and well-being through the serious game. However, as we have
identified in Section 1.1 and Section 2.1.3, there is not a single tool that is simple enough made
available for the non-technical domain experts to produce serious games for use in their respective
domains. Most of the tools available out there are designed specifically for in-house development
purpose and will require substantial experience and knowledge to use. This means that the non-
technical domain experts would have to rely on the experts in the production of serious games and
this may hinder many from using the serious games as a medium to engage with their audiences.
Thus, we believe there is a need to investigate the use of model-driven software engineering
approaches to facilitate non-technical domain experts to plan, develop and maintain computer games
regardless of the intricacies of the game engine/environment (platform) used. In the next section, we
introduce model-driven engineering and highlight important concepts that are used throughout this

thesis.

¢ http://gamesalad.com/

Page 16

2.2 Model-Driven Engineering

Model-Driven Engineering (MDE) refers to a software development approach that relies extensively
on the use of graphical or logical models to represent aspects of software and automates the
transformation of models into more refined software artefacts. Models are primary artefacts in the
development process expressed using a Domain Specific Modelling Language (DSML) to formally
represent the structure, behaviour and requirements of a particular domain. Aspects of models are
analysed and translated through transformation engines and generators to synthesize software
artefacts consistent with these models. This approach can help in alleviating the platform complexity
and expressing domain concepts effectively (Schmidt, 2006). Another term synonymous to MDE is
Model Driven Development (MDD). In this thesis, MDE and MDD are used interchangeably.

MDE is generally domain specific and only suitable for developing software specific to a targeted
platform with the aim of automating manual coding. Expertise of programmers is embedded into the
underlying framework and code generators allowing domain experts to provide complete
specifications of the problem domain without worrying about the technical aspects of software
development (S. Kelly & Tolvanen, 2008).

Over the years researchers have striven to improve MDE technologies applying lessons learnt from
earlier efforts in developing platforms and languages with high-levels of abstraction. In recent years,
researchers have opted to adapt the MDE approach deviating away from traditional software
development approaches with the intent to separate the model from any platform dependent
implementation. MDE approaches have been applied in areas such as web application modelling
(Schauerhuber, Wimmer, & Kapsammer, 2006), web services modelling (Grenmo, Skogan, Solheim,
& Oldevik, 2004), security modelling for distributed systems (Lodderstedt, Basin, & Doser, 2002), QoS
validation of component-based software systems (Hill, Tambe, & Gokhale, 2007), control and
automation systems modelling (Thramboulidis, 2004), user interface modelling (Sottet et al., 2006),
business software modelling (Hildenbrand & Korthaus, 2004), content repurposing (Obrenovic,
Starcevic, & Selic, 2004) and context-awareness web application modelling (Ceri, Daniel, Facca, &
Matera, 2007). Current research in MDE focuses mostly on systematic reuse of the development
experience through the concept of the software factory, systematic software testing and compilation

technologies (France & Rumpe, 2007).

Page 17

2.2.1 MDE Process
The MDE process can be represented with two distinct approaches; top-down and bottom-up. Both
approaches are driven by a set of different motivations. Justified by the need to generate software code
to a variety of targeted platforms, the top-down approach examines variations from the conceptual
level. This approach can result in the creation of better designed, robust and consistent models.
Defining a complex model may seem a straight forward task but implementing such a model can be
daunting (S. Cook, Jones, Kent, & Wills, 2007). The top-down approach can be defined by the
following succession of activities (Fondement & Silaghi, 2004):
I. Identifying the level of abstraction and platforms to be integrated;
I1. Specifying modelling notation and abstract syntax to be used at each level of abstraction;
III. Specifying refinement processes, and platform and related information to be integrated in
lower level of abstraction;
IV. Defining generators for modelling language used at the lowest level of abstractions (and even
deployment of such code);
V. Specifying verifier and validator to check against the upper level model, and generation of test

cases for system under development.

In contrast, the bottom-up approach addresses software variability through observing variation in
existing codes. It is a client-oriented approach that requires more upfront effort, is time consuming,
and may limit the extension of models in the future, but is simpler to implement. The bottom-up
MDE process is defined as follows (S. Cook, et al., 2007):
L. Identify variability from business concepts;
II. Conduct variability analysis on the existing code;
III. Define a domain model;
IV. Specify modelling notation for the DSML;
V. Refine the DSML;

VI. Define generator based on existing code;

Cook et. al. also (2007) advices that it is best to alternate between the two approaches and work

incrementally to ensure models and transformations are consistent.

Page 18

222 Model

At the core of MDE is the model. A model is defined as “a simplification of a system built with an
intended goal in mind [that] should be able to answer questions in place of the actual system” (Bézivin
& Gerbé, 2001). Technically a model is described as a set of statements that effectively describes a
system-under-study (SUS) (Seidewitz, 2003). Effectively, a model is a graphical or logical
representation of a SUS (Favre & Nguyen, 2005). In a software context, models are used as a form of
conceptual representation of a software system to facilitate the production of concrete software
(Bézivin, 2004). Alternatively, it can also be used as a specification for beginners to study a system. In
a model-driven approach, the model is used to assist the system modeller to more accurately describe
the SUS. The model is expressed by the system modeller through statements, which are expressions
that hold truths about the SUS. The validity of the model of the SUS is dependent on the correctness
and completeness of statements describing it. Statements can be expressed informally through natural
language, but are best constructed using formal notations which adhere to the grammar of the formal
language. Such formal languages are generally termed as modelling languages or Domain-Specific

Modelling Language (DSML).

2.2.3 Domain-Specific Modelling Language (DSML)
There are many modelling languages available for use in modelling software including Unified
Modelling Language (UML), Integration Definition for Function Modelling (IDEF), Z-notation,
flowcharts, Data-Flow Diagrams (DFD), Petri-nets and State Diagrams for example. Experienced
modellers can model any type of SUS using any of the aforementioned generic software modelling
language as a Platform Independent Model (PIM) or concretely as Platform Specific Model (PSM)
(Kent, 2002). Generic software modelling languages provide a high degree of flexibility and have no
domain-specific rules integrated. However, this may hinder non-technical domain experts when
expressing a SUS within the constraint of the modelling language which are not tailored for their
domain (Tolvanen, 2006). Even all-purpose modelling languages such as UML are reported to be
complex and practically limit their application of into MDD environments (France, Ghosh, Dinh-
Trong, & Solberg, 2006).

A DSML is designed strictly to embed concepts, language and associated rules of a specific domain
to better handle complexity of that domain, easing the modelling task for domain experts, and
facilitate automatic generation of full software code independent of platform and/or representation of

the SUS (S. Kelly & Tolvanen, 2008). A DSML can be developed to suit any domain, for example, in

Page 19

education - modelling lessons (Koper & Manderveld, 2004); in ecology - simulating landscape
dynamics (Fall & Fall, 2001); in electronic engineering - analysing energy estimation (Choi, Jang,
Mohanty, & Prasanna, 2003); in software engineering — integrating large-scale systems(Shetty et al.,
2005) and developing test plans (Katara, Kervinen, Maunumaa, Paakkonen, & Satama, 2006). In the
above examples, some are intended for capturing only the specification of a domain, while others are
for automating creation of software and/or other artefacts.
The process of defining a DSML shares many similarities with the MDE process described in

Section 2.2.1 and is summarised in four steps as follows (Hammond, 2007):

I. Identifying abstractions and relationships;

I1. Specifying the language concepts and associated rules (meta-model);

III. Creating the visual representation of the language (notation);

IV. Defining the generators for model checking, code, documentation, etc.

2.2.4 Model Viewpoint

The aim of MDE is to raise abstraction to a higher level while suppressing irrelevant details. Through
abstraction, a model is created to reflect certain criteria which determine what should be included.
Different abstraction criteria can provide different viewpoints of the SUS. The basis of MDE is the
domain viewpoint which represents the problem domain ontologically. This model can then be
replaced with code directly using a code generator tailored specifically for the model. Intermediary
models can also be introduced to increase the interoperability of the SUS. The software model is a
typical example of intermediary model that represents the SUS programmatically.

Although the goal of MDE is to enable a SUS to be translated from software model to a complete
system, more intermediary models may be introduced to refine the software model to a targeted
platform to maximise interoperability of systems. The Object Management Group’s (OMG) Model
Driven Architecture (MDA) is one such example. MDA is a framework for MDE standards that
advocates modelling systems using UML to separating business or application logic from platform
implementation in order to achieve maximum interoperability of systems (Kleppe, Warmer, & Bast,
2003; Poole, 2001). MDA consists of three viewpoints (Gasevic, Djuric, & Devedzic, 2006; OMG,
2003) namely:

e Computation Independent Model (CIM) - A model that represents the logic of the SUS
abstracted from the system structure. It only provides an ontological description of the

system from a domain perspective.

Page 20

e Platform Independent Model (PIM) - A computation-dependent model that is not tied to
any technology or language platform. It serves as the core development artefacts of the
systems.

e Platform Specific Model (PSM) - A model of software specific to a technology platform
but yet to be represented in a real implementation (software code).

There are no limits on the maximum number of viewpoints that should be included in a model-
driven framework. A higher number of viewpoints representing different levels of abstraction will
increase reusability of models and interoperability of systems. However, this also implies that more

refinement needs to be done to each subsequent model before it can be translated into software codes.

2.2.5 Model Transformation

Models can be translated into a new target model throughout the pipeline of MDE and finally to a
complete implementation of a software system (or documentation of a complete software system).
The relationship between the source model and the target model is termed as model transformation
(France & Rumpe, 2007). The transformation process is a unidirectional process (S. Kelly & Tolvanen,

2008) which can be done either manually or automated using MDE tools.

Source Model Source Model Source Model
,"""llrransformatia;{“‘-‘ Additional
i Engine 4* Information Transfor_matlon Transforlmatlon
________ . Engine . Engine /
/ \ e .
T t Model | Unrelated |
arget Mode Garget Model Viewa < Targgt Model > Target Model ! information |
View B L —
(i) Model Refinement (ii) Model Refactoring (iii) Model Abstraction

Model 1 Model 2
Source Model A Source Model B Source Model Source Model

:."""Transformatioh"“-.,: :,"""lllransformatio\rf‘-.,. _,"""T‘ransformatioﬁ""-.,.
Engine / . Engine / ., Engine ¢
Target Model Target Target Target Model
Model 1 Model 2
(iv) Model Integration (v) Model Decomposition (vi) Model Translation

Figure 2.1: Model-to-Model Transformations

Page 21

Transformation can either be a model-to-model transformation or model-to-artefact
transformation. In a model-to-model transformation, the form of transformation includes: (i) model
refinement where a source model is added with additional information to form a target model; (ii)
model refactoring where a source model produces multiple target models with different viewpoints;
(iii) model abstraction where a source model has certain information discarded to produce a target
model with higher abstraction; (iv) model integration where source models with different viewpoints
are integrated to create a target model with a combined viewpoint; (v) model decomposition where a
single model is decomposed into multiple target models; and (vi) model translation where the source
model is expressed in different languages (France & Rumpe, 2007). Such processes can be automated
using MDE tools generically known as transformation engines. As for the model-to-artefact
transformation, transformation can be in form of code generation where the model is translated
directly into a software artefact such as scripts, configurations, codes or middleware languages
accepted by the targeted platform, or documentation generation where specifications are represented
in the form of textual or graphical output such as UML diagrams. Generators are MDE tools that are

suitable for such transformations.

Model Model
. Generator \ Generator
Software Code Diagrams/Text
Code Generation Document Generation

Figure 2.2: Model-to-Code Transformations
The number of model-to-model transformations required for an end-to-end transformation
depends on the level of abstraction in the model driven framework. One-tier architectures can directly
transform a model into code, but multiple-tier architectures such as the Object Management Group’s
Model Driven Architecture (MDA) would have to undergo two cycles of model-to-model

transformations before it can perform model-to-artefact transformation.

Page 22

2.2.6 Rolesin MDE

Typically, software engineers are responsible in gathering the requirement specification of a SUS from
domain users. In MDE, such roles have changed. There are three main roles in MDE (S. Kelly &
Tolvanen, 2008):

e Domain experts— These are people who know the terms, concepts and rules of the domain.
Their knowledge in the area helps developer to formalise it into the MDE framework.

e Domain users— These are people who model the SUS using a modelling language to
generate applications. They can be anyone in the domain who wants to take advantage of
software generation technology to improve productivity.

e Developers— This is the team that contribute the most to the realisation of MDE. They are
involved in developing the modelling languages, the domain framework and the tools to
encapsulate the technical aspects of modelling through User Interfaces (UI) and to
automate the transformation of models. Usability engineers may also be part of the
development team to ensure usability of the modelling language.

Although there is a change in roles, personnel involved in a software development project remain
unchanged. In MDE, human resource is optimised. Once an MDD environment is in place, domain
users can generate applications through modelling without much assistance from domain experts or
developers. The tasks for domain experts and developers are then to maintain the framework and

proprietary tools whenever there are changes to the framework.

2.2.7 Advantages and Disadvantages
Some of the notable benefits of MDE from a software development context include an increase in
productivity, promotion of interoperability and portability among different technology platforms and
support for generation of documents to support software maintenance (Kleppe, et al., 2003). In
addition, MDE can also lead to better quality applications due to the integration of domain rules into
the modelling language which minimises modelling error and promotes reliable mapping from model
to code (S. Kelly & Tolvanen, 2008). For an obvious advantage, MDE encapsulates the technical
aspects of development and, therefore, provides the necessary aid to domain users to develop
applications with minimal low-level technical knowledge.

The downside to MDE is the high cost of development which may or may not be justifiable with

the amount of turnover a project can generate. Overall, MDE can offer great benefits for businesses

Page 23

and for non-technical domain users as it opens the door to create quality, reliable applications easily

and affordably.

2.2.8 Challenges

The benefits of MDE are certainly attractive to many, but realisation of an MDE solution is still

challenging for developers. France & Rumpe (2007) classified the challenges of MDE into three

categories as follows:

Modelling Language Challenges: When defining a modelling language, language
developers are challenged to create the problem-level abstractions and formalise the
semantics of the language. Creating the problem-level abstractions requires the language
developer to fully understand the concepts, terminologies and relationships that represent
the problem domain. This task can be made easier with the help of domain experts. While
creating a notation for the language, iteration of user testing will help to ensure the
notation is acceptable and usable.

Separation of Concerns Challenges: In complex software, problems may arise when
modelling involves multiple and overlapping views using heterogeneous languages. Some
features of the system may have conflicts due to the design and it is a real challenge for
developers to make sure that features modelled can interact with each other. Separation of
these design concerns is necessary to avoid costly system failure and can be achieved
through a well-defined viewpoint. Undertaking such a task will require experience and
involve several cycles of design-test-evaluate before coherent model design can be
achieved.

Model Manipulation and Management Concerns: More challenges await developers in
matters pertaining to transformation of models. These include maintaining the
consistency of models transformed, testing of transformation and integration of generated
code with foreign code. The transformation process also adds complexity to management
of models when revisions are made to models in terms of versioning, repository storage of

previous models and maintaining integrity of relationships of models.

These challenges are greater for complex software such as educational games. In addition to

functional aspects of educational games, the MDE developers will have to address the incorporation of

media such as 2D graphics, 3D models, sound and animation data, and the extensibility of game

functionalities such as game physics and game artificial intelligence (AI) while assuring educational

Page 24

games produced are of acceptable quality. The MDE approach may also limit innovation of
educational games due to the constraints of customisation. Although this is a trade-off for the MDE

approach, the benefits listed in Section 2.2.7 far outweigh it.

2.3 Chapter Summary

In this chapter we have introduced computer games and the process involves in designing and
development of game. We have also described its potential in the non-entertainment domains
particularly in the area of education or game-based learning. Our analysis and review of the literature
indicates that game-based learning has a learning model embedded within a software environment
and it shares many of characteristics from learning approaches such as active learning, experiential
learning and situated learning. Furthermore game-based learning is able to address the various learner
styles through the experiential learning approach in game playing and can fill the spare time of young
adults with productive play rather than entertaining play to better prepare the workforce. As we have
highlighted earlier in Chapter 1, there is a need to provide a technological aid to the non-technical
domain experts who wish to develop their own serious games for their respective domains. Our review
of the literature on MDE highlights great benefits of such practice in software engineering. MDE
techniques can help to formally gather the necessary requirements of a serious game through
formalised language in the form of textual or visual notations, and later be translated into working
source code specific to a game technology platform. Such an approach encapsulates the technical
aspects of serious games development and therefore provides the necessary aid to non-technical
domain experts to produce their serious games with minimal low-level technical knowledge in game
development. But adoption of such an approach in development of serious games will require one to
overcome challenges in defining the modelling language, separating modelling into multiple
viewpoints, and manipulation and management of models to artefacts. These challenges will be

addressed in the remainder of this thesis.

Page 25

CHAPTER 3 -STATE OF THE ART IN
MODEL-DRIVEN DEVELOPMENT FOR
COMPUTER GAMES

Games design and development is a creative and innovative field which demands specialist knowledge
in the production of entertaining interactive content. In recent years, the application of games design
and technologies has been expanded to other areas such as communication, marketing, training and
education under the serious games initiatives. There are a growing number of users keen to ‘gamify’
their digital content and introduce gaming experience to their industry. The public are ready for such
an approach as they are increasingly familiar with gaming culture (Pearce, 2006) and the technology
to support game-based learning is more affordable and widely available. The only puzzle to realise this
vision is the availability of high-level tools made specifically for non-technical domain experts to assist
them in creating computer games in an affordable and timely manner. As highlighted earlier in this
thesis, MDE offers the basis for development of high-level tools. Development of a model-driven
games development environment will require a game modelling language, a framework that can
integrate media and game functionalities, transformation engines and code generators. In this chapter,
we survey the literature in the domain of game design, game software engineering and MDE, and
summarise the key developments that are propelling games development towards the model driven

approach.

3.1 Design Languages for Games

Design is generally defined as “the human capacity to shape and make our environment in ways
without precedent in nature, to serve our needs and give meaning to our lives” (Heskett, 2005). From
a game design perspective, it is regarded as the creative expression of a game designer’s vision of some
virtual goal-directed play where the game designer engages him or herself in an activity to innovate
and create a concept of play within a set of business, psychological, sociological and technological
constraints. This activity demands documentation to record the decisions of choices which serve as a

blueprint to communicate the underlying vision to the development team.

Page 26

Conventionally, game design is documented as a collection of game design documents in the form
of high-concept document, treatment document and detailed design document. This approach is still
taught through texts (see for example Rouse (2001), Rollings and Adams (2006; 2003), Bates (2004)
and Fullerton (2008)). Documenting the aspects of game design is a somewhat informal process
driven by creativity (Crawford, 1982; Fullerton, 2008). Design within a specific game genre is also
bound by rules and certain expectations. For example, when designing a role-playing game (RPG)
such as the Final Fantasy’ series, emphasis should be given to the design of a customisable player-
character that can be improved throughout game-play and a story built around a quest that can
engage game players in an explorative world to satisfy the appetite for adventure. In contrast to this,
construction and management games such as the SimCity® series have their design focused on the
economy system and the construction process. At present, samples of game design documents and
templates for game design from game design references (Fullerton, 2008; Rollings & Adams, 2003;
Rouse, 2001) are the only available guide for documenting game design.

In recent years, various studies (Adams, 2004; El-Rhalibi, Hanneghan, Tang, & England, 2005;
Onder, 2002; Tang, Hanneghan, & El-Rhalibi, 2004; Taylor, Baskett, Hughes, & Wade, 2007; Taylor,
Gresty, & Baskett, 2006) have proposed the use of modelling languages to help game designers
systemically and systematically design computer games. Our definition of an ideal game design
language would consist of game-related vocabularies and game-concept related grammars that allow
game designers to formally express their game idea.

The Soft Systems Methodology (SSM) (Checkland & Scholes, 1990) is an approach based on the
theory of systemic thinking to study the components of a system and their relationships with one
another in order to develop an understanding about that system. This could be used as a formalised
method for designing games. In the context of games design, SSM can assist game designers in
designing game flow and identifying appropriate challenges and conflicts (El-Rhalibi, et al., 2005;
Tang, et al., 2004; Taylor, et al., 2007). A game idea is elaborated in the form of a Rich Picture™ where
purposeful activity systems are identified and a relevant Root Definition (RD) is defined based on
Customers, Actors, Transformation process, Weltanschauung (or world view), Owners and
Environmental constraint (CATWOE) analysis. An example of this is illustrated in Figure 3.1. SSM

offers a methodological and systemic approach to game design through an iterative process of logical

7 Read more about Final Fantasy from http://www.playonline.com/ff11us/index.shtml.
8 More details about SimCity can be found at http://simcitysocieties.ea.com/index.php.

Page 27

reasoning, but it lacks aspects that describe the story, user interfaces, input control, objectives and

game-play which are essential for creating compelling educational games.

eaten

host by
pacman ghost g pacman Ghost

hunt
— —_— %egd
return
Navigate pacman Ghost
through hunt/eat spawn l
fruit home
maze
i i | X

O
- 1
ﬁ collect or
E 3 \ pellet
o

Figure 3.1: Pacman Game represented in Rich Pictures (Tang, et al., 2004)

The story beat diagram proposed by Onder (2002) is composed of ovals and arrows that represent
the progression of a story (see Figure 3.2). It illustrates the possible routes for the game player to
explore within the defined interactive story. In addition to the story beat diagram, further details
about objects and cast members, locations of scenes, setup of scenes, player interactions and
associated responses, and distribution of game-play within the storyline are required in writing to
complete the specification of a game design. Essentially, the story beat diagram can only capture the

flow of game-play ordered within a story while the rest of the requirements are recorded separately.

Detailed View

2

Locate map

2a
Search Old
House

2b
Search Museum

2c
Discover
aggregate clue

1
Learn about
treasure map

Search
Graveyard

29
Defeat Ghoul
2h
Lose to Ghoul

4

Figure 3.2: Example of Story Beat Diagram (Onder, 2002)

The flowboard is an adaptation of the storyboard and flowchart to document game structure

(Adams, 2004). It uses rectangles to denote segments of a game such as splash screen, menu screen,

Page 28

result screen, game screen, high-score tables and other, while arrows with conditions denote the
constraints or condition that allow progression from one segment to another (see example in Figure
3.3). The flowboard is a simple and useful tool to model the various modes offered in a game, but it
lacks the ability to record essential game design details required to complete the design of a game such
as objects and character’s behaviour, challenges, conflicts, objectives, environment, user interfaces,

storytelling and narration.

DEMO iiplayer completes Ievelj
START PRIMARY
ENTER
15 seconds loop iﬂ:gﬁ; NEXT 3 seconds GAME- player loses, INITIALS
coins LEVEL | delay PLAY | high score SCREEN
SCREEN MODE
HIGH
SCORE
TABLE [¢——player loses, no high score

f

Figure 3.3: Example of Flowboard (Adams, 2004)

There have also been efforts to use software modelling languages such as the Unified Modelling
Language (UML) for game design. The Computer Game Flow Design Diagram proposed by Taylor,
Gresty, & Baskett (2006) adapts the language from the UML use-case diagram to form a new
diagramming language to document game flow. The computer game flow diagram uses arrows to
denote the direction of game-flow, rectangles for fixed game objects, ovals for mobile game objects
(game objects that move around) and pseudo code to describe interactions and responses (see
example in Figure 3.4). In addition to modelling linear game flow, it can also be used to model non-
linear flow where games can be designed to provide game players greater freedom to navigate within
the game world achieving game objectives in a non-ordered fashion. The use of symbols and labelling
of objects, characters and environments are clear, but the method is insufficient for describing details
of objects, characters, objectives, environments, narration, storyline and user interface. Although the

use of pseudo code can help to describe many more details programmatically, this approach is too

technically demanding for non-technical domain experts to document design details adequately.

Page 29

SCENE 1 Uniform &

ID card
Guest Guest

bedroom bedroom

Silenced Bedroom Wehrmacht Entrance
—_— pistol & “«—> “« » > Hall door «—> N “«—>
Hotel bullets Hotel door Landing Bathing Stairs Dining Officer 1 Dining door
room room Soundtrack room room

Key: ——» =direction of game flow

:] = fixed game object
Q = mobile game object

Figure 3.4: “On track” level of ‘Medal of Honour: Frontline’ represented with UML Use-case Diagram (Taylor, et
al., 2006)

Natkin, Vega, & Griinvogel’s (2004) approach to modelling game design addresses the need to
model spatial-temporal relationships through the adaptation of Petri-nets and the use of generalised
graphs called hypergraphs. They use special Petri-nets composed of three relations (transaction a and
transaction b are not related, transaction a is before transaction b, and if transaction a is executed then
transaction b cannot be executed) between two different transactions (actions of the player) to
represent the temporal relationships (order of game sequence) in a game and game levels. Sets of
transactions are then translated into a hypergraph to define the spatial relationship (events in relation
to the map in the game world). In this approach, a circle is used to denote a place, a square or
rectangle for transactions and arrows denote an input arc (which connects a place with a transaction)
and output arc (connect transaction with place) (see Figure 3.5). Using this approach, game designers
can model flow and events for game and game level. However, it cannot be used to document details

about objects, characters and their behaviour, environment, user interface, narration or storytelling.

Page 30

Partial Map of Silent Hill 2

c
Apartment
Gate Key

Swamp
Monument
Backyard
Apartment C
B A
y Parking
- @ @

Building/Area in white

@ Roadblock <+——— Street
— T
| I

Figure 3.5: Partial Map of Silent Hill 2 represented in Hypergraph (Natkin, et al., 2004)

The formalised approaches of documenting game design reviewed only focus on documenting
game flow formally using various graphical modelling languages, while other aspects of the game
design remain informal and subjective for others to interpret using text description. Although these
approaches help games designers in one or more ways, there are still many aspects of game design
which can be documented formally which have yet to be studied while others such as visual, audio,
narration, storytelling and user interface cannot be easily formalised and will continue to be
documented using current approaches i.e. textual descriptions or sketches. It is highly desirable to
formalise documentation of game design as it can enhance the effectiveness of translation of the

design to software code.

3.2 Software Modelling Languages for Games

Modelling is a formalised process of documenting a design using syntactically composed reserved
words or graphical notations. Similarly, the term modelling can be used for the approaches described
in Section 3.1, but it refers to documenting aspects of game design. Through modelling, a software
engineer captures the necessary requirements to produce a concrete model that best represents the
software specifications of the game software. In addition, modelling allows the engineer to study
problems and look for flaws in the design prior to development of the software system. Flowcharts,
Data Flow Diagrams (DFD), Statecharts, Z-Notation, Petri-nets, Business Process Modelling Notation

(BPMN), Integrated Computer-Aided Manufacturing Definition Language (IDEF) and UML are

Page 31

some examples of software modelling languages that engineers can use to express the design of the
game software.

Modelling was historically mathematically demanding and modelling languages were developed to
suit programming languages during the early computing era such as FORTRAN, ALGOL, LISP and
COBOL. As later generation programming languages such as C, Pascal and Ada which were designed
to structure programs logically began to surface, software modelling took on a function-oriented
paradigm. At present, Object-Oriented (OO) modelling is the de facto approach in the software
industry as it promotes abstraction, encapsulation and reusability of software code.

Although most software modelling languages mentioned can be used to model aspects of game
software, only a few are actually used in practice. Tokenization (Rollings & Morris, 2004) represents
each game object (both interactive and non-interactive) as tokens. Interactions between tokens are
represented in a triangular matrix as shown in Figure 3.6. Tokenization invites game developers to
think in tokens and the associated interaction, but lacks many aspects necessary to represent the game
software in its entirety. Simple casual games can be modelled using this approach without much
complication. However, for modern computer games that offer more elaborate interactions and a
greater number of tokens, this approach is not suitable as complexity of modelling increases. Another
major setback for tokenization is evident during translation of model to software code. Although
examples are available, there are information such as the game object’s behaviour, setup of scenarios,

flow of events and progressions that are still missing from the software model.

BAT

BAT ><
BALL

COLLISION
BALL | EVENT ><

(Detection)

COLLISION | COLLISION

EVENT EVENT
WALL ><
(Stop)

(Detection)

WALL

GOAL

COLLISION

EVENT
GOAL ><)
(Triggers

goal event) SCORE

GOAL EVENT,

&,
SCORE >< >< >< 55, ><
Oo‘;ooé/;<

Figure 3.6: Tokenization Interaction Diagram of Pong Game (Rollings & Morris, 2004)

As many aspects of games deal with a collection of states that change based on interaction and

rules, Statecharts or Finite State Machine (FSM) diagrams are ideal candidates for modelling games.

Page 32

The FSM has been mostly used in modelling game AI (Kienzle, Denault, & Vangheluwe, 2007),
although other game aspects such as character behaviour, game flow and game scenario can also be
modelled with this approach. Rollings & Morris’s (2004) approach is a pictorial version of FSM with
slight modifications in notation for modelling a game object’s behaviour (see Figure 3.7). A square is
used to represent an individual state of a game object, while a circle denotes an event. Lines with a
coloured dot at the end show the transition between states and the incoming event that triggers a
transition. Coloured dots are used to pair the event to the transition between states in cases where
there are more than one event referring to the same state. A circular arrow is introduced in the FSM
diagram to include events that can cause entry to a state. Kienzle, Denault & Vangheluwe’s (2007)
approach uses a variant of Rhapsody Statecharts (Harel & Kugler, 2001) which combines statecharts
and class diagrams to represent properties and behaviour of game objects (see Figure 3.8). In addition
to class diagrams, statecharts are accompanied to switch or alter the state of a game object when
certain conditions are met. Rounded rectangles represent the state while transition of state is shown
using an arrow with conditions. Statecharts can be nested to create a multi-level statechart, but every
statechart can only have a single begin state which is denoted by a filled black circle. Rhapsody
Statecharts are a better approach than the pictorial FSM or classical statecharts as they represent both
properties and methods of a software component and can easily use for representing other aspects of

game software.

Power

Power
Pill pill
Collision Hunted Hunter

Figure 3.7: Statechart Diagram for Pacman game (Rollings & Morris, 2004)

Page 33

Ene ylracke ackEne| y /
K / = \
e yPOSK ow

enemyPosition P ===
<<behaviour>> Sighted
boolean enemyMoved() enemysighte /"~ enemySighted
Tracked Tracked
2 BylRadar By2Radars
Radar A /
\ enemyLost @
position getEnemyPos() enemySighted U

EnemyPos [enemyMoved] /
Unsure enemyPosChanged

Figure 3.8: Rhapsody Statecharts of EnemyTracker AI component (Kienzle, et al., 2007)

As highlighted earlier, OO is the preferred approach and most computer games software is
modelled using OO with the industry standard software diagramming language UML (Gal, Prado,
Natkin, & Vega., 2002). This approach makes it simple for game developers to translate game software
requirements to OO programming languages. UML consists of thirteen types of diagram to document
three aspects of software systems: functional, structural and behavioural. There have been several
proposals for modelling games software using UML. Ang & Rao (2004) represent player interaction
with tokens using UML use case diagrams (see Figure 3.9) in an attempt to identify all possible
interactions in the game before representing it in a class diagram. The identified interactions are
behaviours of relevant classes in the game and it helps to discover other necessary classes to complete
the software representation of the game. Bethke (2003) illustrates how a range of UML diagrams can
effectively document design of a game software. For example, the UML use case diagram in Figure
3.10 is used to represent a player’s interaction, while the UML class diagram featured in Figure 3.11 is
used to represent game objects and static structure. Reyno & Cubel (2008) use UML class diagrams
and state transition diagrams to represent structure and behaviour of game (see Figure 3.12). UML
class diagrams can be used to represent the association between game objects represented as classes
which can also be represented using object diagrams to examine the run-time static relationship
behaviour. A collection of classes can be ordered into a high-level view using a component diagram,
while a deployment diagram can be used for representing the physical arrangement of the game
possibly utilising an external game engine. Activity diagrams can be an alternative to statecharts for
modelling behaviour of game objects. In addition, sequence diagrams can be used to extend modelling
of behaviour between game objects. UML certainly offers a range of useful diagramming approaches
to document games software. The choice of UML diagram to use depends on how such diagramming
tools help game developers to visualise the game software under construction and translate the

specification to software code.

Page 34

Player Player input

Move Pacman

Eaten by Hunter
Ghost

Collide with wall

Eat Pellet

Eat Power Pellet Eat Hunted Ghost

Token interactions

Figure 3.9: Use Case Diagram of Pacman Game (Ang & Rao, 2004)

A Base Character Class <<hasa>
View Character
Stats
All Experien
Name Character ocater) -Xperience
oints <<isa>>
Ogre Base Weapon Class
Display Inventor Move and Drop
play Y Inventory Item
T <<isa>> <<isa>>
:Bob Sword

Diablo Player

Figure 3.10: The character transaction use cases of Figure 3.11: Example of Class Diagram (Bethke, 2003)
Diablo (Bethke, 2003)

<<Enemy>> Benzo

- name

players gy K>— platforms
- friction
bubbles enemies rewards
1.* 0..* 0.*
<<PlayerCharacter>> Bub <<Enemy>> Benzo <<Entity>> Platform
- lives - points
- score
0.1
0..* 0.*
<<Entity>> Bubble <<Entity>> Reward
- points
traps

Figure 3.12: Structure Diagram of Bubble Bobble (Reyno & Cubel, 2008)

The reviewed game software modelling languages do not represent the entire collection of
techniques for modelling game software. Many other techniques exist to model games software such
as Flowcharts, BPMN, DFD and IDEF. In practice, a combination of software modelling techniques
can be used to model the different aspects of game software as it is not always possible to represent all

aspects of games software to be modelled using a single modelling language or notation.

Page 35

3.3 Meta-Models for Games

Game meta-models are templates which game designers can use to complete the design of a game by
providing the missing details required. They encase game technologies with purpose, rules, play and
aesthetic representations (and pedagogy as well in the context of educational games) as creative and
instructional expression of a knowledge domain. Game meta-models can be used with the
aforementioned game design languages in Section 3.1 to guide amateurs and novices in producing
game models that conform to the game meta-model. However, the completeness of a design
specification is still very dependent on the attention to detail of the individual game designer. A game
model provides the platform for game designers to complete the design of a game by simply providing
the necessary details required by the game model.

In recent years, there are a growing number of formalised approaches developed to aid game
designers to analyse, describe and study computer games. Hunicke, LeBlanc, & Zubek’s (2004)
Mechanics, Dynamics and Aesthetics (MDA) framework provides a guide for game designers to
specify a game design systematically by focusing on a definition of aesthetic using a taxonomy for fun,
the underlying system which supports the aesthetic requirements and finally the actions, behaviour
and control mechanisms made available to game players. The taxonomy of fun consists of
vocabularies such as sensation, fantasy, narrative, challenge, fellowship, discovery, expression and
submission which, when used to describe play experiences, can help game designers think about the
underlying dynamics and mechanics of a game. It is an interesting approach to design games in a
structured manner while still fostering creativity. However, it only focuses on the aspects relating to
game-play and has no solid structure to formally represent the components that make up a game such
as game objects, characters, environment, user interfaces, storytelling, narration and game
progression.

Bjork, Lundgren & Holopainen (2003) approach game design from a research-driven perspective
by cataloguing descriptions of recurring interactions that relate to game-play which they term as game
design patterns for analysing and studying games. Each game design pattern has a name, core
definition of the pattern, a general description, usage description of the pattern, a description on the
consequences of this game design pattern, a description of the relationships between other game
design patterns and references that describe the origin of the pattern. To date there are more than 200
patterns identified and these are organised into collections of game elements; resource and resource

management; information, management and presentation; action and events; narrative structures,

Page 36

predictability and immersion; social interaction; goals; goal structure; game session; game mastery and
balancing; and meta game, replayability and learning curves (Bjork & Holopainen, 2004). The use of
patterns and templates to document aspects of game design is a formalised attempt and it promotes
better organisation and structure in terms of documenting details on game play compared to MDA for
example. Although the original intention of this approach is for analysing and studying existing
games, the collection of game design patterns can now be used as a reference and model for defining
components of future games.

The Game Ontology Project (GOP) (Zagal, Mateas, Fernandez-Vara, Hochhalter, & Lichti, 2005)
addresses the need for formalised game design through the identification of both common and
distinct elements of game design abstractly, and orders these hierarchically to form a game ontology.
The game ontology is regarded as a language for game design and also a framework for game
designers to improve their understanding on what to design in computer games. At the highest-level,
the ontology focuses on the definition of interfaces that map user inputs to a set of allowable actions of
an avatar; rules that govern the interactions and economies in the game world; goals that determine a
player’s success or failure in the game; entities that populate the game world; and entity manipulations
which define how entities behave physically in the game world. Each ontology entry is labelled with a
name, listed with relationships with other elements in the hierarchy and given a description about the
element as well as examples of both concrete and partial reification of the elements. Game designers
can make references to the ontology and design games by filling the descriptions of the game design.
Formalising the descriptions of the ontology entries are still necessary to ensure such a game model
can be translated to software code.

Rapid Analysis Method (RAM) (Jarvinen, 2007) is a set of methods for analysis and design of
computer games from a system viewpoint and players’ viewpoint focusing on the emotional and the
socio-physiological aspects of game-play. It consists of seven tools to aid amateur game designers to
systematically identify and analyse game elements, game mechanics and the goal they are related to,
permissible interactions, eliciting conditions for emotions during game-play, game rhetoric and to
study the anatomy of a game. RAM is a comprehensive approach for studying games and is suitable
for use as a game meta-model. Nevertheless, there are still missing details required for describing
computer games in terms of attributes of game elements instead of building a taxonomy for

cataloguing common game elements.

Page 37

Fullerton’s (2008) model represents a computer game from a system context by studying the
formalised elements and dramatic elements that compose a game. Objectives, procedures, rules,
resources, conflict, boundary and outcome are the formalised elements that define the structure of a
game, whereas play, challenge, premise, character and story are the dramatic elements used to encase
the formalised elements in order to engage the game players. This is a rather comprehensive
representation of computer games that encompasses both technical and artistic aspects of game
design, but yet is still incomplete. There is one dramatic element missing: game objects that fill the
game world. It may have most of the elements to represent a game but it lacks the formalised language
necessary to describe these elements accurately.

Nelson & Mateas’ (2007) model focuses on four domains: abstract game mechanics which regulate
the operational aspects of a computer game, concrete game representation which presents the abstract
game mechanics through audio-visual means, thematic content which are graphics and sounds created
to represent the game world, and control mapping which relates the player’s input to methods that
modify abstract game state. The simplicity of the model helps one to understand the computer game
as a system easily, but it is a rather brief model to represent complete games as many aspects of game
design remain widely undefined making it a less favourable candidate for a game meta-model.

The Narrative, Entertainment, Simulation and Interaction (NESI) model proposed by Sarinho &
Apolindrio (2008) is a game feature model. It organises four main features of game design into a
hierarchical order: narrative which consists of flow that progresses the game with different goals
governed by rules that determines the success or failure of player; entertainment which is made up of a
theme for the game and the player’s immersive experience during the game play; simulation which is
composed of game elements such as characters, items and buildings that populate the game world and
the relationships among them; and finally, interaction that maps the game player’s control to the
game-play features and the presentation of the game through audio, visual or haptic devices. The
NESI model is another possible candidate for a game meta-model.

The game meta-models reviewed provide interesting ways to document and analyse game design.
Each of these has a different focus on aspects of game design and approach to documenting the details
of game design. Among all the approaches reviewed, the MDA is probably the least qualified
candidate as a game meta-model due to the lack of structure and identification of elements that
represent games in their entirety. Nevertheless, it is a useful tool that can aid the game designer to

think creatively when designing fun and engaging game-play. Contrary to that, the game design

Page 38

patterns approach is a good candidate for a game meta-model. Game design patterns provide a
template for documenting the multiple aspects of game design and organises these into collections
which can be used as references for novices and amateur game designers to create their own games. It,
however, lacks formalised descriptions of game design patterns required in MDE. The GOP has a
more logical organisation of the elements of games compared to game design patterns and demands
relational information which is crucial for writing software code. Similarly, it lacks formalisation in
describing each ontology entry. The RAM has a good method to identify, analyse and study game
elements, but it lacks a method to formally describe these elements. Nelson & Mateas’ (2007) model
promotes simplicity in describing a game but lacks refined structure, categories in design details and a
formalised method of describing the game. The NESI model is a useful approach to describe games
through description of features, but it falls short on how one can formally describe these features. By
‘formalised’ we mean the use of a single unified language that may be human or machine-readable.
Fullerton’s (2008) model is by far the most comprehensive model reviewed, but it still lacks one
element (i.e. game objects) and uses creative writing to document these elements. It is clear that the
one common shortcoming these approaches share is the lack of formality and details to accurately
represent a computer game. Such an issue must be addressed to ensure a game model produced using
a game meta-model can be mapped to a game software model during the process of model

transformation in a model driven game development framework.

3.4 Software Models for Games

A game software model, as opposed to a game meta-model, represents computer games from a
computational perspective independent of any technology platform. From an MDE perspective, it is
translated from the game model to specify the data, methods, processes and technologies that
comprises the game software. Depending on the game genre, a computer game may require different
types of visual renderer, Al, game physics and other software components to realise the game design.
These technologies are usually packaged into a game software framework which is used to produce a
variety of different computer games. It is rather challenging to have one game software framework to
represent all computer games across different genres due to technical constraints that game software
frameworks inherit. Although there are differences in technologies used, the basic structure of
computer games software remains similar across different genres. It is, therefore, crucial that a game

software model has a high degree of abstraction to allow it to cater for a range of game genres.

Page 39

A game software model is dependent on the choice of programming paradigm. Early computer
games were programmed with languages such as BASIC and C which support both unstructured and
structured programming paradigms. Today most game developers would opt to engineer games
software using an OO model as it offers versatility and reusability of code which can increase
productivity and ease maintenance of code. Most OO-influenced models represent game software
based on its processes or game components. The SharpLudus Ontology (Furtado & Santos, 2006a) is a
game software model built onto six key concepts that represent computer games, namely
configuration, graphics, entities, event, flow and audio. Each of these concepts is elaborated in detail to
represent the properties and methods that construct a 2D adventure game. Although SharpLudus
Ontology is designed specifically for the 2D adventure game genre, the software model can also be
used for other 2D games that are built using tile-based worlds.

The GameSystem, DecisionSupport and SceneView (GDS) model (Sarinho & Apolinario, 2009)
represents game software with a combination of software features organised based on its functionality
in computer game. Each feature describes generic configurations and behavioural aspects for a specific
part of the game software. Features in GameSystem monitor both game events and inputs from the
game-player, and trigger the associated actions that can affect all defined data including those defined
in DecisionSupport and SceneView. DecisionSupport groups a selection of game AI features that
provides the intelligence for non-player characters (NPC), while SceneView describes the features that
observe events within a defined spatial environment and those affecting the presentation of the game
such as audio, graphics and physics. This shares many characteristics of the MVC (Model-View-
Controller) design pattern (Veit & Herrmann, 2003).

Altunbay, Cetinkaya, & Metin’s (2009) board game model is a representation of game software
specific to board games. The board game model is based on the concepts of: Game Engine, Game
Element, Player, Event, Action, Game State, Goal, Sub-Goal, Non-Movable Element, Movable Element
and Rules. Most of these concepts are very specific towards the board game genre except for Player,
Goal and Rules which are generic for all games genres.

The SharpLudus Ontology, board game model and GDS each have their own merits and focus in
representing games software. The key concepts introduced in SharpLudus Ontology are a useful guide
for representing other forms of game software. It represents the essential components in game
software but it will need to be extended to support the requirements for other game software before it

is deemed useful. The board game model is comprehensive but rather specific to a single game genre

Page 40

thereby limiting its usefulness. The GDS model is a credible candidate as it generically and
comprehensively represents game software based on features which can be mapped across to a game
software framework and, therefore, can represent a broader range of computer games software.
Moreover, it clearly separates games software into MVC components (GameSystem as the model,
SceneView as the view and DecisionSupport as the controller) model permitting independent
development, testing and maintenance of each component. It is apparent that designing a game
software model requires good understanding of game processes and the game software framework. As
current game development trends set such a high-dependency on game software frameworks to
increase productivity, it is important that a game software model structures game design requirements

logically and maps to common functionalities of a game software framework.

3.5 Game Software Frameworks

A game software framework (also known in the game industry as a game engine) is a set of
Application Programming Interfaces (APIs). It consists of software components that perform graphic
rendering (2D or 3D), game physics computation such as collision detection, collision reaction and
locomotion, programmed intelligence, user input, game data management and other supporting
technologies to operate the game software. These software components are built to manage, accept,
compute and communicate data with other software components. An appropriate API can increase
the productivity of game developers allowing them to reuse proven and tested software code to
produce a variety of computer games within the scope of the software framework. Game software
frameworks vary depending on technology features that are often constrained by particular game
genres, technology platforms (hardware) and visual dimension of the game world (2D or 3D), but
technology components such as graphics, sound, user input, basic game physics and user interfaces
remain essential across all game software frameworks. For instance, the Unreal engine’ is suitable for
development of action or adventure games in first or third person view but it will require modification
to include necessary physics code if it is to be used to support sports game genres. Not all game
software frameworks support all features since integrating these technological components under a
single framework is a highly complex and expensive task. Furthermore, not all computer games
software will require the entire collection of software components to operate. Budget, support,

features offered, ease of use, suitability, royalties and targeted hardware platform are some examples of

? Read more about Unreal Engine from http://www.unrealtechnology.com/.

Page 41

key criteria which can help to decide the most suitable game software framework for a project.
Identifying features supported and techniques used in game software frameworks can help to provide
valuable information for MDE developers to design a framework that is robust and interoperable.

There are many game software frameworks developed to date (at the time of writing, there are 297
3D game engines registered at the DevMaster.net'” website). In general, these game software
frameworks can be categorised from a purely financial point of view as being one of commercial, open
source and proprietary, or using the visual dimension they cater for i.e. 2D or 3D.

Commercial game software frameworks are much more stable and offer a reliable (supported)
option over open source game software frameworks. The Torque Game Engine (TGE) is an example of
royalty-free game engine which is offered to developers at a very affordable price compared to other
commercial game software frameworks, in which TGE developers only pay for the technology once
and are allowed to develop as many games software applications as they wish. Unreal engine, Source
engine, CryEngine and Id Tech (formerly known as Quake Engine) are some notable examples of
highly sophisticated game technologies that can help developers to produce high-quality games. These
premium game technologies are available for licensing and require a one-off royalty payment (per-
title fee) or royalty for every copy of the game sold, or both. However, some of these are made
available for free for educational purposes such as the 3DSTATE 3D Engine, XNA, CryEngine 3,
Unreal Development Kit (UDK) and Unity 3D.

Open source game software frameworks are developed for very specific purposes and often made
available to the public when they reach the end of their useful lifecycle. Examples of well-known open
source game software frameworks include Apocalyx Engine, Baja Engine, Blender Game Engine,
Irrlicht Engine, jME, jPCT, Lilith3D, Object Oriented Graphic Rendering Engine (OGRE),
OpenSceneGraph, Panda3D and The Nebula Device 3. Most of these game software frameworks are
distributed under an open source license which allows game developers to produce games software for
both commercial and non-commercial purposes at no cost. Some open source game software
frameworks only implement a limited range of techniques and some fail to address certain features,
for example Panda 3D does not provide solution shadows, scene management and curves. Game
developers can still achieve the shadows effect using Panda 3D either by adding this feature to the
framework themselves (this, however, requires a specialist skill) or by creatively using textures and

shaders to achieve the desired shadow effects. However, there is little or sometimes no support at all

19 See known 3D game engine listing at http://www.devmaster.net/engines/list.php.

Page 42

for customising some technologies to fit the use of a project with a different specification. For more

details of these game software frameworks mentioned refer to Table 3.1.

Table 3.1: Details on Commercial and Open source Game Software Framework

Game Engine License URL
3DSTATE 3D Open source http://www.3dstate.com/
Unreal Engine Commercial & the Unreal http://www.unrealtechnology.com/

Development Kits (UDK) available http://www.udk.com/
free for educational purpose

Source Engine Commercial http://source.valvesoftware.com/index.php.
CryEngine Commercial & available free for http://www.crytek.com/
educational purpose.
Id Tech (formally known as Commercial http://www.idsoftware.com/business/idtech3/
Quake Engine)
XNA Commercial & available free for http://www.xna.com/
educational purpose
Unity 3D Commercial & available free for http://unity3d.com/unity
educational purpose
Apocalyx Engine Open source http://apocalyx.sourceforge.net/
Baja Engine Open source http://www.bajaengine.com/
Irrlicht Engine Open source http://irrlicht.sourceforge.net/
Java Monkey Engine (jJME) Open source http://www.jmonkeyengine.com/
jPCT Open source http://www.jpct.net/
Lilith3D Open source http://www.grinninglizard.com/lilith/
Oriented Graphic Rendering Open source http://www.ogre3d.org/
Engine (ORGE),
OpenSceneGraph Open source http://www.openscenegraph.org/projects/osg
Panda3D Open source http://www.panda3d.org/
The Nebula Device 3 Open source http://nebuladevice.cubik.org/

Proprietary game software frameworks are created in-house (by game development companies)
solely for internal usage. These are usually on a par with commercial game software frameworks and
often of more superior quality. RenderWare, technology produced by Criterion Games and acquired
by Electronic Arts (EA) is used in many games published by EA such as the Need For Speed and
Burnout series; EGO developed in-house at Codemasters in the UK is used in the production of a
range of game titles including Colin McRae: Dirt, Race Driver: Grid and Operation Flashpoint:
Dragon Rising; Jade Engine Ubisoft’s in-house game technology is used in games such as Rayman
Raving Rabbids I and II, and Teenage Mutant Ninja Turtles. These technologies are mainly used for
in-house game titles.

Based on the ratings gathered from the devmaster.net forum and our analysis on features offered
by each game software framework, we rank these game software frameworks based on popularity and

sophistication of features as shown in Figure 3.13 to give a general idea of the current technology

Page 43

landscape. Each game software framework is evaluated in terms of sophistication of features, support
for developers and quality impact and feature-richness, and rank based on scores obtained for each
aspects evaluated. The features and techniques used in each game software framework are identified
from the devmaster.net forum and scores are awarded on the basis of availability and the importance
of a feature or technique. The score for sophistication of feature is evaluated based on uniqueness of
the technique (out of 5 for each technique supported), extensibility of technique (out of 5 for each
technique supported) and game-significance of the feature (out of 5). Aspect of support is scored based
on sophistication of toolset (out of 20), knowledge-based support (out of 20) and cross-platform
deployment (out of 10), while quality impact is scored out of 20. These scores are given based on
ratings given on devmasters.com. It is important to note that this survey is done independently to
show the criteria that affect the selection of game software framework in general. The raw results of
this survey are tabulated in Table 3.2 and Table 3.3. It is apparent that popular game software
frameworks such as Panda3D, XNA, Unity 3D, CryEngine 3 do not necessarily offer more features
compared to the less popular game software frameworks like the 3DSTATE 3D Engine and the Nebula
Device 3. Some of the reasons these less-sophisticated game software frameworks gain popularity
amongst the developers includes the range of technical support, availability of high-level toolsets, large

community base for exchange of knowledge and stability of the game software framework.

Page 44

Table 3.2: Evaluation of Features for Open Source and Royalty-free 3D Game Software Frameworks

Game Software Features
Framework .
) =y b
- Bh w =] 172] —

£ 5 3 5 2 g E £ 28 Egz ¢ 25 zz 4 £=

5 X 3P £ 3 35 : I F5 44 5 3: : E £

3 1%5) o 195) =4 B = < > »n O /[= Z »n 192 ~ < 5 SCORES
3DSTATE 3D Engine 25 13 29 19 22 4 15 8 - 17 6 6 12 7 - 183

144

—
w
—
(o)}
—
—
1
o)}
o)}
1
w
—
o)}
O
—
[\
~
Ul

Baja Engine 22 -

137

p—
N
p—
(o)}
—
o
—
o
[ee]
\©
—
W
—
ul
\©
1
[ee]
—_
o
1

Crystal Space 12 12

155

(S,
p—
N
p—
(o)}
—
—
—
o
—
o
(o)}
1
—_
(o)}
@)}
[ee]
—
S
~N
—
~N

Cube 2: Sauerbraten 14

oo}
—
=
—
)}
—
o
S
)}
)}
1
~N
o)}
1
1
o)}
1
\O
w

G3D 10

N
3
[N
—
\O
3]
(=)
oo
oo
oo
oo
[\)
NN
\O
1
N
N
1
—
ul
o

jME 11

N
—
o
—
(o)}
(o)}
(o)}
(o)}
—
—
1
—
~N
(@)}
1
1
1
1
Nel
ul

Lilith3D 10

149

—
[\
38
o
—
\©
—
Ul
N
—_
o
o]
1
—
[\S)
O
1
—
w
—_
o
1

OpenSceneGraph 14

186

1
N
(9]
—
\©
—
[\S)
—
w
—
=
oo
—
w
—
w
—_
=
(@)}
—
w
—_
o
ul

The Nebula Device2 21

284

{S%)
w
—_
O
—_
w
—_
[\S)
N
(=}
[\S)
—
—
W
S
—_
—_
S
(o)}
—_
W
—_
w
—_
[e)

UDK 30 12

Page 45

Table 3.3: Evaluation of Open Source and Royalty-free 3D Game Software Frameworks

Game Software Criteria
Framework -

£ g 25 < g

£E2 22 383 2 =

£%5 28 g £8 =

&2 &= 2% 5 & § TOTAL

Q = O W < =]

$ 3 #38 X2 25 O SCORES RANK
3DSTATE 3D Engine 183 - 12 6 8 209 5

Baja Engine 144 - 14 6 171 15

N

Crystal Space 137 - 16 10 14 177 14

Cube 2: Sauerbraten 155 - 11 10 14 190 10

G3D 93 . 16 10 12 131 16

jME 158 4 18 10 15 205 6

Lilith3D 95 - 11 6 6 118 19

OpenSceneGraph 149 3 14 12 12 190 10

The Nebula Device 2 186 - 13 3 12 214 3

UDK 284 20 17 16 20 357 1

Page 46

HOIH

+ Unreal
+1d Tech Development

Engine Kit
+ Unity 3D +Torque 9
Game Engine

+XNA +RenderWare + CryEngine 3
+ Panda3D + OGRE + Source

+ Crystal Space + Java Monkey Engine Engine

+ OpenSceneGraph + Cube 2:
+ Irrlicht Sauerbraten
Engine

+EGO
+ Jade Engine

ALIdVINdOd

+ Delta3D + The Nebula
+G3D Device 3
+ Blender Game + 3DSTATE
Engine 3D Engine
+ Apocalyx
+jPCT Engine
+ Lilith3D

MO

\

Low SOPHISTICATION OF FEATURES HIGH

Figure 3.13: Game Software Frameworks ranked according to Popularity and Sophistication of Features

One of the most crucial components for game software is the graphics which provide the
visualisation of the game world to game players. Clever usage of graphic technologies can captivate a
game player’s interest and provide an immersive game play experience. In general, aspects related to
graphic technologies can be categorised into lighting, shadows, texturing, shaders, scene management,
meshes, terrain, special effects (particle systems) and rendering. Each of these aforementioned
categories has its own collection of specialised techniques to achieve the desired visual results without
compromising the frame rate (see Table 3.2). In fact most of the game software frameworks are
essentially real-time 3D graphics engines that have been extended to form a game software
framework. For example, game physics engines such as the Newton Game Dynamics', Open
Dynamic Engine' or Havok Physics", game Al engines such as Havok AI'* and network components
for games such as Game Networking Engine” (GNE) or RakNet'® can be added to extend any 3D
graphics engine. The remaining features which are not available can be developed in-house by
specialist game software engineers to complete the game software framework. Physics, Al, animation,
networking and sound have a variety of techniques available to support game development (see Table
3.3). In addition, some game software frameworks provide a collection of tools such as a level-editor,
visual sound tools and animation tools to allow non-technical members of the team to fine-tune

games visually instead of directly editing the source code. This review of game software framework

' Read more about Newton Game Dynamics from http://newtondynamics.com/forum/newton.php.
12 Read more about Open Dynamic Engine from http://www.ode.org/.

13 Read more about Havok Physics from http://www.havok.com/index.php?page=havok-physics.

" Read more about Havok AI from http://www.havok.com/index.php?page=havok-ai.

!5 Read more about GNE from http://www.gillius.org/gne/.

'6 Read more about RakNet from http://www.jenkinssoftware.com/raknet/index.html.

Page 47

features and their associated techniques provides an overview of the level of support a game software
model should offer to support a range of game platforms. Therefore, it is crucial that any game
software model can be extended easily over time to remain heterogeneous among the game software
frameworks. To achieve this design requirement, it is necessary that the game software model be
highly abstracted else it can only support a limited number of game software frameworks thereby

constraining the variety of computer games which can be built with future game software frameworks.

Table 3.4: List of Techniques for Graphic Features.

Graphic Features Techniques

Lighting Light mapping, gloss mapping, per-pixel lighting, per-vertex lighting, anisotropic filtering and
radiosity.

Shadows Shadowmap, projected planar and shadow volume.

Texturing Basic, multi-texturing, bump mapping, mip mapping, volumetric texturing, projective texture
mapping and procedural texturing.

Shaders Vertex shader, pixel shader and high-level shader.

General, Binary Space Partition (BSP), Potentially Visible Set (PVS), portals, occlusion culling,
octrees and Level of Details (LOD).

Scene Management

Meshes Mesh loading, mesh skinning, progressive mesh, tessellation, deformation
Terrain Rendering, Continuous Level of Details (CLOD) and splatting.
Special Effects Environment mapping, billboard, sky, water, fog, mirror, lens flares, particle systems, fire,

explosion, decals, weather, motion blur and depth of field.

Surfaces & Curves Spline and Patches.

Rendering Fixed-function, stereo rendering, render-to-texture, fonts and Graphical User Interface (GUI).
Table 3.5: List of Techniques for Other Game Feature.

Other Features Techniques

Physics Basic physics, collision detection, rigid body and vehicle physics.

Al Scripted, path-finding, finite state machines, decision making, neural network, fuzzy logic and etc.

Animation Keyframe Animation, inverse kinematics, forward kinematics, skeletal animation, facial animation,
animation blending and morphing.

Network Peer-to-peer, master-server, client-server, communication (text, voice and video)

Sound 2D sound, 3D sound, streaming sound, mixing, digital signal processing effects and filtering.

3.6 Model-Driven Development Frameworks for Games

Supporting any MDE practice is a framework that unifies models and manages the transformation
between these models using appropriate MDE tools to produce the desired software artefact. The
OMG’s Model Driven Architecture (MDA)(OMG, 2001), the Domain-Driven Software Development
Framework (Agrawal, Karsai, & Ledeczi, 2003) and Modelling Turnpike (mTurnpike) (Wada &
Suzuki, 2006) are examples of model-driven frameworks that aid software architects to develop their
own MDE solution to suit a particular domain. These model-driven frameworks have been adapted to

suit domains such as security (Basin, Doser, & Lodderstedt, 2006), content repurposing (Obrenovic,

Page 48

et al., 2004), software testing (Javed, Strooper, & Watson, 2007) and pervasive computing (Hemme-
Unger, Flor, & Vogler, 2003).

In the game development domain, the use of software frameworks and tools are usual practice
amongst commercial game developers. Although current practice does improve productivity of the
development team while providing maximum control and flexibility to artistically craft the game
software, the production pipeline is still very reliant on specialist artists and programmers. This is
rarely an issue in the commercial sector where budgets are supported by a business case. The use of
MDE in games development is still in its infancy. The growing interest amongst the game enthusiast
and practioners of serious game that wants to make their own games, MDE can provide the
technological solution to aid them to produce games with minimal reliance on professional game
developers.

The SharpLudus Game Software Factory (Furtado & Santos, 2006b) is an early attempt of a model-
driven approach to increase productivity of game development teams in developing 2D adventure
games. The framework consists of (Furtado, 2006);

e A domain-specific modelling language - SharpLudus Game Modelling Language (SLGML)
that allows the game designer to model the flow of the game using a room designer and
info display designer;

e A semantic validator that checks the model to ensure the design conforms to the semantics
of SLGML, and finally;

e A code generator built on top of Microsoft’s Visual Studio Integrated Development
Environment (IDE) targeted towards generation of C# code for the XNA game engine.

Reyno & Cubel’s (2008) Model-Driven Game Development (MDGD) approach introduces the use
of a selection of UML diagrams to gather required information to automate generation of code for 2D
platform games. The framework comprises:

e Two Platform Independent Models (PIM); A UML Class Diagram extended with
stereotypes is used to model the relationship between different game entities'” within the
game world while a UML State Transition Diagram is use to model behaviour of the game
entity;

e A Platform Specific Model (PSM) to map game actions to hardware controls, and;

17 Game entity refers to objects within the game world. This term is synonymous with game object in this paper.

Page 49

e A transformation tool to translate the models into C++ source code compliant to the Haaf
Game Engine'®.

Altunbay, Cetinkaya, & Metin’s (2009) model-driven approach for developing board games shares
some similarity with the MDGD approach. It uses the UML class diagram as the modelling language
to represent the game model. The framework is comprised of:

e A Board Game Meta-model represented using a UML Class Diagram;

e A Game Domain Specific Language' (GameDSL) - a meta-model developed specifically to
aid the definition of game logic;

e A model-to-model transformation tool to transform the Board Game Model onto
GameDSL and model-to-text transformation tool which subsequently transforms the
Board Game Model in GameDSL format to Java source code.

The SharpLudus Game Software Factory, MDGD and Board Game Framework are research-driven
attempts to adopt a model-driven approach towards developing 2D games. These frameworks may
seem to share similar architectures but they differ in terms of models, tools and targeted platform.
These frameworks are also developed for a specific game genre and therefore adapting these
frameworks to suit other genres would require redefinition of models and new generators to facilitate
transformation of model to code. It indicates that a model-driven game framework that can support
multiple game software frameworks and is easily extensible is highly desirable to drive the production
of a range of computer games which can be played on a range platform. Architecting such a
framework to bind both the game model and game software model is a challenge and will require
extensive research on game design, game development and a strong understanding of game software

frameworks.

3.7 Model-Driven Development Environment for Games

Model-driven game development environments are a realisation of model-driven game development
frameworks and associated toolset that allow game developers to take advantage of these technologies
to accelerate game development. These tools may resemble some of the tools used by the industry (for
example, a game editor or level editor) both in functionality and interface but are presented as
simplified interfaces for the game designer to describe the game models in a structured and orderly

manner.

'8 Read more about Haaf Game Engine from http://hge.relishgames.com/.
19 Read more about GameDSL from http://gamedsl.tuxfamily.org/.

Page 50

As described in Section 3.6, the SharpLudus Game Software Factory offers a range of tools to assist
game designers in modelling different aspects of 2D adventure games. The development environment
is a customised version of the Microsoft Visual Studio IDE that allows game designers to
systematically define the game through a collection of wizard-based user interfaces. The SLMGL
Visual Editor (see Figure 3.14) provides a visual drag-and-drop environment for modelling game flow
and a range of form-based user interfaces to create the representation of game entities, design the
screen, design the layout of the room (a game level), group collections of images as sprites, link audio
files, and define conditions for game states, events and event feedback in the game (see Figure 3.15).
These interfaces are viewports into the game model which allows game designers to effectively
concentrate on a specific aspect of the game to avoid information overload. To ensure game models
conform to the semantics of SLGML, a semantic validator is incorporated into the development
environment to alert designers about errors in modelling before code is generated. The SharpLudus
Game Software Factory uses the Microsoft Domain Specific Language (DSL) Tools* to implement its
code generator by scripting the transformation rules to map the model to generate the code compliant

to the game software framework used in the project (Furtado, 2006).

Toolbox > B2 X E MyGame.slgml*| NG SLGIL Explorer
= 4 4| | MyGame (SharpLudusGame)
R Pointer EntityInstances
B infobisplay o Raom:1 GameAudioCompanents
- GameEntities
/" Transition o . ; GameEvents
E_] Room 7 < H GameSprites
e © sTannew e S ool & GameStates
o HICH SCORE BOARD : [#- Triggers
A2 AmY 2INE
DESolutlon Explorer ‘ SLGML Explorer J—
MyGame SharplLudusGame
|
E Misc
AudioComponents (none)
Entities (none)
: l l Events (none)
Fullscreen False
Name MyGame
& 2Errors [| 1\ 0 Warnings ||| i) 0 Messages Namespace MyNamespace
& i R
| [escription | File | Line | Column [Project £l zefslutlon 540; 480
@ 1 This game contains no main character MyGame, slgml 1} 1 SLGMLDebugaing PRRES (nare)
@ 2 Agame over info display must be specified MyGame.slgml 1] 1 SLGMLDebugging
Name

Figure 3.14: SLGML Modelling Experience (Furtado, 2006)

2 Microsoft DSL Tools is a visualisation and modelling software development kit made available only for the Microsoft
Visual Studio IDE to enable software engineers to build custom visual modelling environment to be hosted within the
Microsoft Visual Studio IDE. Read more about Microsoft DSL Tools from http://code.msdn.microsoft.com/DSLToolsLab.

Page 51

(— Triggers i~ Reactions
John has Weapon Create Fireball instarce
Spacc Pressed Sctdohn sprite to Joan Shooting
Ed Remove | Edi Remove |

—Add rigger —Add reaction

Source] UltimateBerzerk ﬂ Source IJohn _'_I

Typz lKey pressed z' Type ISet sprite 3

Add Add
I™ Fite o1l once
oK I Cancel |

Figure 3.15: Event Editor Wizard in SharpLudus Game Factory (Furtado, 2006)

The game development environment used by Reyno & Cubel (2008) is implemented using the
Eclipse Modelling Framework® (EMF) which allows the user to model 2D platform games using UML
diagrams. The modelling tool provides the standard UML notations to model structure in the form of
a class diagram, behaviour of a game entity using a state diagram and control mapping using an
activity-like diagram. Transformation from these diagrams to code is implemented using MOFScript*
to generate C++ code compatible with the Haaf Game Engine. MOFScript is a tool for text
transformation that generates text or code from any MOF-based model such as UML.

Altunbay, Cetinkaya, & Metin (2009) use a similar approach as Reyno & Cubel in using a
modelling environment built on EMF. A board game model is then translated to GameDSL using the
Atlas Transformation Language” (ATL) model transformation tool and finally transformed into Java
source code using MOFScript.

Amongst the reviewed model-driven game development environments, the SLGML modelling
environment is a promising example of a game modelling environment. This is mainly due to the
choice of DSML and interfaces used. The use of domain specific notations instead of the industry
standard UML notations is a better choice as it makes games modelling more relevant to the users.
Although UML provides more flexibility in modelling games software, it is rather technical and
unguided. Only experienced users who have a good understanding of game software would be able to

model a game correctly. It is also important to balance the use of visual notations and other forms of

I Read more about EMF from http://www.eclipse.org/modeling/emf/.
22 Read more about MOFScript from http://www.eclipse.org/gmt/mofscript/.
3 Read more about ATL from http://www.eclipse.org/atl/.

Page 52

user interface for users to model a game. An appropriate interface can increase productivity and
reduce the learning curve of using the development environment. Therefore it is crucial that model-
driven educational games development environments use DSML notations suited for the domain and
a collection of interfaces that encapsulate the technical aspects of game development from domain

experts.

3.8 Model-Driven Engineering Technologies

Research in MDE is advancing rapidly and now there is a range of integrated environments and code
frameworks available to support MDE practitioners in adoption of model-driven development
approach. Integrated environments can provide a complete solution where the practitioner can define
a DSL and its transformation rules to generate the desired software artefacts and host the modelling
component within the same environment, while a code framework provides the basis for development

of MDE tools to support the MDD.

3.8.1 Integrated Environments

MetaCase MetaEdit+** is a commercial integrated environment for MDE. It provides a collection of
tools to design a DSML by defining the concepts, constraints associated to the concepts, symbols
representing the concepts and a generator to produce the desired software artefacts with MetaEdit+
Workbench. Modelling using the defined DSML is hosted within the MetaEdit+ environment (see
Figure 3.16). The MetaEdit+ Model extends the generic modelling environment to provide a range of
different views allowing the development team to view and edit or manipulate the model as a diagram,
matrix or table. In addition, it provides the necessary tools for management of the model and its

contents and provides support for a multi-user environment.

Read more about MetaEdit+ from http://www.metacase.com/.

Page 53

Elifal(:h.&pplicanon: Stopwatch, April 4, 2008, 13:20

Greph Edt Wew Types Format Help
& ¥hB oD 0| x
Aop—-00®=|+|,-8&c 22
ction -
L-diction
=] Button
Do sysTime
Lup nnmineg t_
5 Dsplayen startTime
Lorunning
Teon
L srapwateh
= . Start [Watch] sysTime sysTime
- Start [Watch]
State [Watch]
E-Rmnng
8- pped] - statTime = | l stopTime
Property | Vale - b
Chiect type State [watch] stopTime Hpaoh stanTimea

State nama | Stoppad
DispiayFn
Blrking

Running
Documerizall In this staks the

|1 Made l' Y
=

v
4 ¥ £

3
Subgraph(s): hone [¥] snap [[] show | & | 100% » @

Active: Stopped: State [Watch] Grid: 10@10

Figure 3.16: Screenshot of MetaEdit+ Workbench Diagram Editor
(http://www.metacase.com/mep/diagram_editor.html)

Microsoft DSL Tools is another integrated environment for MDE made available as an extension to
the Microsoft Visual Studio IDE (S. Cook, et al., 2007). It provides the necessary tools for defining a
DSML, modeller and generator to generate textual artefacts from the model within the Visual Studio
environment (see Figure 3.17). In DSL Tools, a domain model is created using a UML-like modelling
language and a DSML is then represented with graphical notations consisting of shapes and
connectors. Relevant generators can be defined in Extensible StyleSheet Language Transformation

(XSLT) and text artefacts are generated through the Microsoft XSLT engine or by through a

parameterised text template generation approach.

Page 54

Figure 3.17: Screenshot of Microsoft DSL Tools
(http://blogs.msdn.com/garethj/archive/2009/02/06/tellme-voice-studio-betal.aspx)

Visual Paradigm’s Smart Development Environment” (SDE) is another commercially developed
plug-in to support MDE practices which offers capabilities to model in UML, entity relationship
diagram, data flow diagram and others, generate code for 15 different programming languages, team
collaboration capabilities, round-trip engineering and can be integrated with well-known IDEs such as
Visual Studio, NetBeans, Eclispe and intelli] IDEA. The modelling environment is hosted within the
supported IDE and code is instantly generated in the code editor view allowing both forward and
reverse engineering.

Apart from commercially driven integrated environments for MDE, there are also non-
commercial products available. GME, developed at the Institute for Software Integrated Systems (ISIS)
at Vanderbilt University, provides a similar facility for defining a DSML and hosting modelling within
the same environment (Ledeczi et al., 2001) (see Figure 3.18). In GME, a domain model is modelled in
UML and assigned with graphical representation while modelling rules are defined using Object
Constraint Language (OCL). Models are then saved directly in XML format or translated using an
external interpreter (generator) into other textual artefacts using Microsoft Common Object Model

(COM) technology through extensions to the GME.

> Read more about SBE from http://www.visual-paradigm.com/product/sde/.

Page 55

CinssDiagrar [Visualiaiion]| Cansirorts | Avibuies

Ready EDIT 100% Me1aGMEZ000 01:48 PM

Figure 3.18: Meta-modelling in GME (Ledeczi, et al., 2001)

GEMS* is a meta-modelling tool developed by ISIS at Vanderbilt University that provides GME-
like meta-modelling to create modelling tools that can be hosted within the Eclipse environment. It
uses Eclipse modelling technologies such as EMF and Graphical Modelling Framework (GMF). Like
GME, a DSML is created in GEMS using UML-like notations and later ported automatically to Eclipse
as plug-in. Generators and transformation engines can be created for the modelling environment
created using Open Architecture Ware” (OAW), Java Emitter Templates’® (JET), and Atlas
Transformation Language® (ATL) to transform the model into desired textual artefacts.

The NetBeans IDE* also provides similar facilities for modelling using a UML plug-in’' and code
generation using a template engine such as FreeMarker”. The UML plug-in enables the modelling
environment to model the SUS using a range of supported UML diagrams such as activity diagram,
class diagram, sequence diagram, state diagram, and use case diagram as a Java platform model or
PIM. The FreeMarker code templates associated with the diagrams can then be customised to generate
the desired Java source code.

Among the reviewed integrated environments for MDE, MetaCase MetaEdit+ offers
comprehensive and customisable modelling features, which can be integrated into many IDEs, and it

offers a facility to create generators for any text artefacts. GME is also a standalone tool with a similar

% Read more about GEMS from http://www.eclipse.org/gmt/gems/.

7 Read more about OAW from http://www.eclipse.org/workinggroups/oaw/.

8 Read more about JET from http://www.eclipse.org/modeling/m2t/?project=jet.

» Read more about ATL from http://www.eclipse.org/m2m/atl/.

3 Read more about NetBeans IDE from http://netbeans.org/.

3 Read more about UML Plugin for NetBeans IDE from http://netbeans.org/features/uml/.
32 Read more about FreeMarker from http://freemarker.sourceforge.net/.

Page 56

aim, but suffers from the lack of a built in generator. For Visual Studio users, Microsoft DSL Tools is
an alternative to MetaEdit+ where a DSML can be created, hosted and generate code entirely within
the Visual Studio environment. Similarly, GEMS provides a facility to create the modelling
environment as an add-on to the Eclipse IDE with support to create generators for any text artefacts.
Each of the reviewed integrated environments provides the facility to support the MDE process in one
way or the other. The SDE allows users to model using UML diagrams, entity relationships diagram,
BPMN, process map and others. It also provides great support for code generation and integration
with well-known IDEs. The NetBeans IDE with the UML plug-in is an open source alternative to SDE.
Selection of the integrated environment will ultimately depend on the available budget to invest and
choice of development tools. These MDE integrated environments can be used for development of a
model-driven game development environment similar to those proposed in Section 3.7 and realisation
of a model-driven game development environment tailored for non-technical domain experts will
require a model-driven framework that supports development of computer games similar to those

described in Section 3.6.

3.8.2 Code Frameworks

Code frameworks for MDE can generally be divided into two categories; diagramming and
transformation. IBM’s ILOG Visualisation® and the Eclipse Graph Editing Framework® (GEF) are
examples of diagramming code frameworks that provide the software components such as 2D
graphics, notation palette, environment layout support, viewer, connection anchoring, connection
routing, connection decoration and cursor support which are necessary for creation of a diagramming
environment. ILOG Visualisation is licensable as GUI components for the .NET, Java, C++ and
Adobe Flex platforms, whereas GEF is only available as a plug-in on the Java platform specifically for
the Eclipse IDE.

The Eclipse Modelling Framework (EMF), CodeWorker”> and ATL are examples of transformation
code frameworks. The EMF provides the facility to build a code generator in the Eclipse IDE. It
accepts a model expressed in annotated Java, XML or XML Metadata Interchange (XMI) and
transforms it into Java implementation classes or a formatted XML document. An alternative to EMF

is CodeWorker which is freely available as a Java interface, NET assembly and an Eclipse plug-in. For

33 Read more about IBM ILOG Visualisation from http://www-01.ibm.com/software/websphere/products/visualization/.
3 Read more about GEF from http://www.eclipse.org/gef/.
3% Read more about CodeWorker from http://codeworker.free.fr/.

Page 57

model-to-model transformation, the ATL can be used to transform a set of source models to a set of
target models. The ATL is offered as plug-in to the Eclipse IDE.

The Eclipse Graphical Modelling Framework® (GMF) provides a full-featured modelling
environment by integrating the diagramming features from GEF and the transformation features from
EMF. This reduces the complication for developers who want to create a full-featured modelling
environment in the Eclipse IDE. For non-Eclipse users, modelling environments can be built on the
integration of ILOG Visualisation and CodeWorker. Building MDE tools based on these code
frameworks described can be time consuming compared to the use of an integrated environment
described in Section 3.8.1. However, it provides great flexibility for developers to create custom

interfaces and target code generation to required platforms more accurately.

3.9 Assistive User Interfaces

The game modelling environments reviewed in Section 3.7 use a range of user interfaces to capture
game requirements from users. Diagramming interfaces that use shapes (or images) and connectors,
wizards, visual editors and text editors are standard approaches found in game modelling
environments. Each of these approaches provides a different form of support to users in defining the
game world as some require a visualisation environment and some do not. Selection of the right
interface is crucial especially in the view of this research study as the primary users are domain experts
who may not have much technical knowledge in games development.

Assistive user interfaces provide guidance to users in preparing a model. Software based ‘wizard’
interfaces are a simple way to guide users through systematic information entry. However, they
require a number of custom ‘wizard’ interfaces to enable users to enter details of a model during
modelling and do not provide a high-level view of the model. Diagramming interfaces and visual
editors provide some form of guidance through visual cues and feedback from interactions. They do,
however, require users to undergo some form of training or tutorial before they become proficient in
using the tool. Among all user interfaces, the text editor provides the least guidance in entering
formalised information as it requires statements to be entered that conform to the syntax of some
formal language. Although modern text editors include syntax colouring, code tooltips, error
highlighting and many other advanced facilities built-in, users are still prone to committing errors

syntactically.

3 Read more about GMF from http://www.eclipse.org/modeling/gmf/.

Page 58

Alice (Kelleher et al., 2002) and Scratch (Maloney et al., 2004) are examples of applications that use
assistive user interfaces developed to address the needs of non-technical users. Alice is an educational
software development tool that motivates and aids students in learning computer programming
within a 3D environment. Understanding the frustration of students learning programming, Alice 2.2
and Alice Storytelling are based on a drag and drop interface that addresses the major problem of
many learners i.e. syntax errors (Kelleher, et al., 2002). Commands, programming constructs, 3D
objects, object properties, and behaviour are represented as tiles with different colours which users can
drag into the animation and behaviour areas with a menu that displays the available options for

selection of parameters to complete a statement that represents the animation or behaviour of an

object in a 3D world (see Figure 3.19).

&) Alice (2.2 8/1/2009) C:\Alice2.2\Alice 2.2\Required\exampleWorlds\amusementPark.a2w

File Edit Tools Help

% Play Undo Redo

Em = Events |create new event

Q HauntedHouse 3

@ Grouna Let a move Camera © <None>
&2} Q Octopus ﬂ L] j the entire World
@ stride When the world starts, do | World imati
F 3 —_—
@ reacups When the world starts, do - World.teacupBaseAnimationLo| Sround

@ RingTossLeft Octopus »
chaster ‘When the world starts, do = World.ferrisAnimation Skyride)
H Q FerrisWheel ‘When the world starts, do = World.carouselAnimationLoop | Teacups >

il i RingTossLeft
@ RingTossRight - Whenthe world starts, do - WorldoctoAnimationLoop — || “SI ;
@ RingToss & ‘%* i T oaster
0BJECTS ‘When the Id starts, do ~World.swingsAnimation i »

& Q ot " i - en the worl arts , do i FerrisWheel

RingTossRight
&3] Carousel imati
T) : = @ World.skycarAnimation RingToss
TS World.skycarAnimation [*|a Fountain »
Carousel »
properties [methods [functions No variables Swings 5
skycarAnimation a = [=IDo in order Bumper >
skyrideAnimation [=IDo together Camera
teacupsAnimation cup cup2 cup: a~ move forward — 25meters — duration=4 seconds — style =begin gentty — more... Ll
i funHouse
»
imati a move up 10 meters duration =4 seconds styie =begin gently more,
platterAnimation platter N orosions 5
teacupBaseAnimation a move right — 1.5 meters duration =4 seconds style =begin gently — mi

teacupBaseAnimationLoop
ferrisAnimation
horsednimation horseStartUp ho

carouselAnimation

a move down — 10 meters duration =4 seconds style =begin gentl more...
carouselAnimationLoop ty! gin gently

a move forward 95 meters duration =10 seconds styje =abruptly more...
[=IDo together
= a~ move forward — 22meters — duration=4 seconds — style =begin gently — more...

swingsRock a move left — 1.5 meters duration =4 seconds Style =begin gently -~ more...
swingsRaise swingOut swingin
SRSl [=IDo together

sSwingsStart a~ move backward
swingsAnimation
octoPodsAnimation pods

a move left — 1.5 meters more...

22 meters — duration =4 seconds — style =begin gently — more...
a move up 10 meters duration =4 seconds style =begin gently more...

a move left 1.5 meters duration =4 seconds style =begin gently more...
octoArmsAnimation armStartup

«|

octoSpinAnimation - a move backward — 95 meters duration =10 seconds styfe =abruptly — more...

< 1l ,g Doinorder Dotogether IfiElse Loop While For allinorder For all together ‘Wait print i

Figure 3.19: Screenshot of Alice 2.2 User Interface

Scratch is another initiative similar to Alice developed by the MIT Media Lab to assist children
learning programming concepts (Maloney, et al., 2004) (see Figure 3.20). It provides a rich media
authoring environment with much simpler interfaces and uses a graphical programming language to
enable learners to script multimedia objects and interactivity. Programming constructs are grouped

into motions, controls, looks, sensing, sound, operators, pen and variables using puzzle-style coloured

Page 59

block as notations. Within each construct, values can be inserted via the textboxes or list boxes
available as shown in Figure 3.20. Blocks are fitted together based on the compatibility of the
command and data shapes to eliminate syntax error, thus lowering the barrier of learning

programming for beginners.

& Scratch 1.4 of 30-Jun-09 9 (=153
55,1071 @ B D Fie Eat shars bl

Motion Control ; / @ Spritel

Looks Sensing
Scripts | Co
ReEaEE
move steps
turn & degrees

Sound

(e T

play sound meow
e e (G
[when space [key pres : =

~ Do —
[‘when Sprite1 clicked

];’;t B secs

%1227 yi124

New sprite: {’\4/ !-",3 ?k

I—I;r_oadcast __[and wait } &

= wiw
/" B —— ™
[wben 1receive | Spritel

A————

I::,-—oadcast =

Figure 3.20: Screenshot of Scratch User Interface

Both the reviewed user interfaces are examples of block-styled drag-and-drop interfaces with clever
use of input type to simplify interactions. The constraints introduced in these user interfaces eliminate
unnecessary errors and also guide users in completing formalised text-entry. In general, such user
interfaces can lower the learning curve when using technical tools and should be adapted into model-
driven educational game development environments to aid non-technical domain experts in

production of educational games.

3.10 Chapter Summary

This survey provides insights on developments in the area which plays an important role collectively
on the creation of a model driven game development environment. We identified these approaches
and solutions, and reviewed them from MDE perspectives. Although most of the current approaches

and solutions are related to model driven game development, using these approaches and solutions

Page 60

will require knowledge of the model at certain level and substantial modification before they can be
deemed suitable to be integrated in a model driven game development framework. Nevertheless, it
provides a reference for framework developers to begin with, extend or adapt. Although current
efforts in model-driven game development mainly focus on mainstream audiences (i.e. industry and
hobbyist), there is a growing awareness of the adoption of MDE specifically to support production of

serious games particularly for education and training purposes.

Page 61

CHAPTER 4 - REQUIREMENTS FOR A
MODEL-DRIVEN GAME
DEVELOPMENT FRAMEWORK

This chapter describes both the functional and operational requirements for the development of a
model-driven framework to support computer games development. Since serious games is still a
relatively new concept, most non-technical domain experts have very little knowledge of how games
are designed and developed, and have to rely heavily on collaborative efforts with commercial game
developers to produce appropriate serious games. As part of this research, the requirements for our
model-driven framework are formulated based on our analysis on studies of games development and
MDE to provide a comprehensive and collective view (Tang & Hanneghan, 2008, 2010a; Tang,

Hanneghan, & El-Rhalibi, 2006, 2007; Tang, et al., 2009).

4.1 Functional Requirements

The functional requirements of the model-driven games development framework define how the
framework should be designed to marry games design and games development into a cohesive
contemporary domain to support the model-driven approach of games development. These
requirements include embedding best practices for games design, supporting existing game software

frameworks and generating artefact are discussed in the following subsections.

4.1.1 Support for Existing Game Software Frameworks

There are many game software frameworks available for use as described in Section 3.5. Each game
software framework supports an individual list of features and offers a different combination of
techniques to facilitate the development of computer games. It is a real challenge to support all games
software frameworks in any model-driven framework as new games software frameworks are
developed while existing ones get updated over time. Contrary, the framework should not be limited
to support only on a selection of games software frameworks. Instead, the game software model in the
model-driven framework should be abstractly designed to include the fundamental features and

techniques that are required to produce serious games.

Page 62

Extending the framework to support any game software framework would require an interface that
can bridge between the model and the software artefacts. It is not feasible to ‘plug’ an unknown game
software framework into the model-driven framework and expect it to automatically define
relationships to the semantics of the game model and game software model. Such a matter must be
resolved to allow extensibility of the model-driven framework to support as many game software
frameworks as possible. This will be resolved in our model driven games development framework

which will be presented in Chapter 5.

4.1.2 Generation of software artefact

Formal requirements in the form of a system model can be generated into a range of artefacts such as
UML diagrams, XML documents, software code or even executable files. In a complex model-driven
framework suitable for games development, generated artefacts must be linked with external media
assets and game specific functionalities. In addition, artefact generation should be loosely coupled
with the model-driven framework to provide flexibility for framework developers to develop custom

generators.

4.2 Operational Requirements

Operational requirements define how the model-driven framework and the associated tools, assets
and game functionalities should designed to fit in to the practices of domain experts. It is equally
important as the aforementioned functional requirements to ensure the model-driven framework can
assist domain experts to produce quality computer games easily and affordably. These requirements
are discussed in the following subsections and include the game assets and functionalities, and user

interfaces for a model-driven development environment.

4.2.1 Support for Externally Produced Art Assets and Game-Specific Functionalities

Computer games are more than just simulation software. They are also regarded as a form of digital
art. It integrate game rules to dictate the interactions, game physics to simulate motion and physical
behaviours, game Al to mimic decision making with audio and visual elements to enliven the game
objects in the virtual world. Game rules can be specified by domain experts through declarative
statements, but audio and visual elements will require specific skills to produce compatible technical
assets with the game software framework using advanced media production tools. Similarly, defining

physics equations and modelling artificial intelligence are technically demanding tasks. These

Page 63

specialist art assets and game functionalities should ideally be outsourced to 2D artists, modellers,
animators, sound designers and game programmers to ensure quality is not compromised.

To adhere to such a requirement, the game model and game software model must be designed to
provide a reference point which can link to the externally produced elements for artefact generation.
In addition, media will have to be available in the format acceptable by most game software
frameworks. Game functionalities on the other hand will have to comply with certain guidelines to
assure compatibility with the game software model. In order to have the game functionalities
interoperate with other game software frameworks, specification of the game functionalities must be
documented formally using the same format as the game software model to enable development of a

suitable code generator.

4.2.2 User Interfaces in the Modelling Environment
User interfaces (UI) are crucial elements that encapsulate the technical aspects of modelling in the
model-driven computer game development environment. It is the primary aspect that domain experts
will encounter and which usability of the modelling environment will be judged on. While most MDE
tools and MDD environments are developed for technical users, the model-driven computer games
environment in this research study is meant for non-technical domain experts who may be unfamiliar
with technical user interfaces. Based on the review of model-driven game development environments
in Section 3.7, user interfaces must be simple, directed and non-technical. Therefore, user interfaces
for modelling computer games should be designed based on a user-centred approach to address the
needs of domain experts instead of game developers in order to:

e minimize unnecessary error,

e guide users in completing computer games design requirements formally, and

e encapsulate the technical aspects of games development.

4.3 Chapter Summary

In this chapter, we have identified three functional and three operational requirements for the
development of a model-driven framework for computer games development. The functional
requirements influence the design of the framework that guides domain experts and computer game
designers in designing computer games using the model-driven approach, while the operational
requirements define how the framework, tools, assets and game functionalities should work. We

identified that the model-driven framework should be designed to support a variation of game

Page 64

software frameworks in effort to provide domain experts with the options to pick and choose game
functionalities and operating platforms that suit the requirement of computer game. Functionally, the
model-driven framework should also be able to generate artefacts such as UML diagrams, XML
documents, software code or even executable files. The framework should accept external art assets
and game functionalities that are produced by professionals and these should be integrated into or
linked with the generated artefact. Finally, we acknowledged the importance of simple, directed and
non-technical UI-based modelling environments that encapsulate the technicality of computer games
development from domain experts. These requirements will be the basis of our design decisions when

designing our model-driven games development framework that is featured in Chapter 5.

Page 65

CHAPTER5 - ANEW MODEL-DRIVEN
GAME DEVELOPMENT FRAMEWORK

Game-based learning can offer the aid much desired by domain experts by taking advantage of
gaming technologies to create a new generation of educational technology tools that can better equip
learners of all ages with necessary skills through such an innovative learning approach (FAS, 2006b).
To address the need of high-level tools that can assist domain experts in creating games for game-
based learning, findings from this research study reveal that Model Driven Engineering (MDE) can
offer a basis for development of such high-level tools. This chapter unveils our model-driven game
framework developed to this end. Our model-driven game framework defines the models and the
relationships with other components such as user interfaces and MDE tools that form the basis for the
building of model-driven games development environments.

The requirements outlined in Chapter 4 are guides for designing the ideal model-driven
framework for supporting development of computer games. Such a framework will need interrelated
but loosely coupled and well-defined components to ease translations of models, binding of externally
developed assets and functionalities, and generation of software artefacts. These characteristics are
also well exemplified in SharpLudus Game Software Factory (Furtado, 2006), MDGD framework
(Reyno & Cubel, 2008) and Board Game Model (Altunbay, et al., 2009) reviewed in Chapter 3. The
basis of a model-driven approach is to logically map the requirements to corresponding and
technically elaborated semantics for composition of artefacts using models as the centrepiece of such a
transformation. In addition to the requirements presented in Chapter 4, variability of games to be
generated and interoperability of the games across different game software framework are factors

affecting on the design of the model driven games framework.

5.1 Architectural Strategies for building a Model-Driven Games Development

Framework

The three-level architecture approach to map requirements directly to corresponding codes described
by Kelly & Tolvanen (2008) consists of a domain modelling language, a generator and a supporting

domain framework. Requirements gathered during game design are represented as a game software

Page 66

model and artefacts are generated for a specific game software framework using a code generator. This
architecture is also seen in the MDGD framework and Board Game Model which are designed mainly
for technical users. Similarly, it is used in the SharpLudus Game Software Factory which utilises a
wizard-based user interface. The simplicity of this architecture tightly couples the game software
model to the game software framework thereby limiting the type of computer game that can be
produced. This solution still retains all the benefits of MDE described in Chapter 2.2 but is less
appropriate for the context of this research due to the increased technical level of modelling required

and lack of interoperability.

LEVEL 1 Language

S

LEVEL 2 Generator

S

Domain
LEVEL 3 Framework

Target

Figure 5.1: Three-level Architecture (S. Kelly & Tolvanen, 2008)

Tackling such issues would require a model that can encapsulate the technical aspects of computer
games, relates well to domain experts, and supports a higher level of abstraction. The MDA (Miller &
Mukerji, 2003) presents a potential solution for architecting an interoperable model-driven games
framework of the aforementioned requirements. Unlike the three-level architecture which consists of
only a single view of the software, MDA is more elaborate in the context of model representation. The
model-level consists of three layers of models, namely a Computation Independent Model (CIM), a
Platform Independent Model (PIM) and a Platform Specific Model (PSM) each of which offers
progressively refined views with a different level of abstraction. CIM represents the logic of the SUS
abstracted from the system structure, while the PIM refers to a computation-dependent model of the
SUS but not tied to any hardware or software platform, whereas the PSM is computation-dependent
and specific to a technology or language platform. These models are transformed from one view to
another using special transformation tools before finally being generated into the software code for a

targeted platform. It is obvious that MDA offers a framework setup with higher level of abstractions

Page 67

which allows these models (CIM and PIM) to be reused and different resultant models (PSM) to be

generated via alteration of transformation rules.

Model
LEVEL 1 CIM

Layer 1 Transformation

Engine
T
Layer 2 PIM .
Transformation

Engine

Layer 3 PSM ’

LEVEL 2 Generator [
Domain
LEVEL 3 Framework

Target

Figure 5.2: OMG’s MDA

From a computer games engineering perspective, the CIM represents the logical structure and
building blocks of a computer game, while the PIM depicts the computer game as a software system
independent of specific game technology representation. The PSM incorporates the required specific
game technology details of a selected deployment platform to finalise representation of computer
games. Game technology can exist in the form of game software frameworks or derived directly from
multimedia APIs.

Computer games can be scripted via a scripting facility such as Lua (Manuel, 2002), coded using
programming languages such as C and C++ or made with proprietary level data for a specific game
software framework. It may seem that to achieve game software variability, the transitive relationship
from PIM to PSM and generation of artefacts from PSM to target can be merged giving greater
flexibility for game developers to have better control over the artefacts generated by directly mapping
the game software model to artefacts in whichever way seems valid. The additional PSM provides a
mechanism to support more target platforms without changing the underlying implementation.
Framework specific computer game software can be modelled with more detailed care and attention
by the framework developer resulting in a direct one-to-one specification to code mapping thereby

simplifying the generation of software code.

Page 68

5.2 The Model-Driven Games Development Framework
Our new model-driven game framework is featured in Figure 5.3 and consists of nine parts namely:
(1) User Interface (UI), (2) Models, (3) MDE Tools, (4) Components Library, (5) Code Templates, (6)
Artefacts, (7) Technology Platform, (8) Operating Platform and (9) Software. This configuration
loosely couples the modules allowing the framework developer to flexibly substitute modules while
maintaining the integrity of relationships among the modules via well-defined interfaces. It also
clearly divides the views of entities while promoting structured and systematic workflow.
Encapsulating the models is the UI (1) module which can support input mechanisms such as
natural language, script or even visual language, for example UML or flowchart, to specify the visual
aspects of games. Separating the UI from the models enables the framework to be more accessible by
different user groups, for example a wizard-based interface would suit non-technical users, natural
language and visual notation might be more appropriate for intermediate users while script can be an
option for advanced users. In this model-driven framework the UI represents the modelling
environment while hiding the technical details of games development from domain experts. We
believe that separating the UI elements from the model allows the framework developer to develop the
right mix of assistive user-interfaces and relevant domain related vocabulary to guide non-technical

domain experts to describe their computer games effectively.

Page 69

's N -~
User .
1 User | Natural Language ‘ | Script) L GuI J

[Game | Game V[Game
Models Structure Presentation Simulation
\ J\ AN _
Game [Game \‘ Game Game Game
Content Rules Scenario Object Event
Model - - — — / reference Components
(Game | Game Game | 00— === > Library
Objectives] Player Theme €) .
AN 5 P (
T N 2 Transformation ‘ AAH[
Game [Game Context System) Game Simulation System J £ Engine ESES
Technology h ——
Model I Core Components (e o o) Avrtificial
L E Transformation Intelligence
< Engine 9
N) r E - v
Game Game Game other Game - I (i
Software Model 1 Model2 | Gamopoders | Model N MDE Tools Physics
Mode! Eg. XNA | | Eg. Flash snam P—
J . — 2 — 'a N
g Generator E-learning suites
) \ v \
6 Artefacts Source Codes Settings | Documentation | bind with
[! uses « ,
s\ S + —————
o [- ~ N ~
Technology XNA Java Unreal Flash | —» Code Templates
Platform
E N
Code Template 1
) E.g. XNA
Operating Console Sat PC Web
Platform Phone Code Template
. ’ . E.g. Flash
Other "

O =t COMPUTER GAMES | curones

L J

Figure 5.3: Model-driven Games Development Framework to support development of computer game.

At the core of this modelling framework is the models (2) module which represents a computer
game in three different viewpoints namely:

e Game Content Model (GCM) - This represents the logical design specification of
computer game as a model. The Game Content Model will be modelled by domain experts
via a modelling facility defined in the UI module. It will be linked during modelling to
indicate assets and other components used in the computer game and supported by the
framework. A complete Game Content Model consists of models that represent the core
aspects of computer games including definition of objects, their attributes, behaviours and
linkages with art assets and game functionalities, events and progression, construction of a
situation which consists of characters, objects, objectives, scripted events and problems to
be solved through game-playing, tracking of interactions and various user interfaces for

selection of game modes and display of information such as game objectives and results.

Page 70

e Game Technology Model (GTM) is a computation-dependent model of computer games
independent of technology or language platform. The Game Technology Model, mapped
from the Game Content Model, models computer games from a software perspective
representing the computer game in programmatic order and structure marked with
additional and specific game-related functionality required by the computer game design.
The aforementioned GameDSL is an example of Game Technology Model which can be
adopted in this framework.

o Game Software Model (GSM) refers to the transformed model of the computer game
specific to a technology platform.

By utilising this approach, it can be seen that a single game (Game Content Model) can be used to
support a wide variety of platform and technology without change. Models are transformed from one
viewpoint to another automatically. The Game Content Model is transformed to Game Technology
Model and subsequently to Game Software Model and finally to artefacts using appropriate MDE
tools. Models described can be represented in textual form such as eXtensible Markup Language
(XML), or using graphical notations such as UML. Additional information is added to the Game
Content Model during transformation to Game Technology Model and more game software
framework specific information is automatically added to Game Software Model during the
transformation. Transformation can be performed using specific MDE tools (3); a transformation
engine can be used to mark models with additional information and generators can be used to export
models into human-readable format (such as UML diagrams) or software code. The Game
Technology Model transformation engine reads the Game Content Model and represents the game as
a software model. The Game Technology Model is read by the Game Software Model transformation
engine which reorganises the games as a software model compatible with a specific game software
framework by replacing game logical software constructs with the corresponding physical game
software constructs. Finally, the Game Software Model is interpreted by a generator to compose
software code from predefined code templates (5) through mapping techniques. Game software
framework constructs are defined by the framework developer collaboratively with developers of game
software frameworks, while code templates are defined externally by framework developers by
referencing the specification of Game Software Model.

Additional information is added to Game Content Model during transformation to Game

Technology Model and more games software framework specific information is added to Game

Page 71

Software Model during the transformation. Transformation can be performed using specific MDE
tools; transformation engine can be used to mark models with additional information and generators
can be used to export models into documents format (such as UML) which are reader-friendly or
software code. The Game Technology Model transformation engine reads the Game Technology
Model and represents computer games as a software model. The Game Technology Model is read by
Game Software Model transformation engine which reorganises computer games as a software model
compatible to a specific game software framework by replacing game software constructs with the
corresponding game software constructs. Finally, the Game Software Model is interpreted by the
generator to compose software code from predefined code templates through mapping techniques.
Game software framework constructs are defined by framework developer collaboratively with the
developer of game software framework, while code templates are defined externally by framework

developer by referencing the specification of Game Software Model (see Figure 5.3 and Figure 5.4).

Transformation Transformation Generation

GCM . GeM GTM . GTM o—»[GSM]—» GSM o—»[SOﬁware}
| /1 ‘K /1 ‘K /1 codes
Code
Template

Game Software
Framework
Constructs

Game Software

Constructs

Game Software | _ _ _ _ _ _ _ ______ _
Framework

Figure 5.4: Transformation pipeline.

The technology platform (7) and operating platform (8) modules are developed externally by their
respective parties. The configuration of this model-driven framework enables the support for a wide
range of game software frameworks available in the market from open source to commercial

promoting interoperability and variability of computer games.

5.3 Game Content Model (GCM)

Our Game Content Model is developed based on our studies and understanding of game design and
development. It represents a game ontology from an interactive content viewpoint. It will be used to
document the design specification of a computer game and will be the model for building other game

models in our model-driven games development framework. The current scope of our game ontology

Page 72

covers the game concepts used in the documentation of role-playing and simulation game genres
which consist of concepts sufficient for modelling most casual computer games and serious games.

The development of our Game Content Model follows a bottom-up approach which requires us to
identify the aspects of game design by first investigating game representation from a programmatic
perspective before identifying the necessary elements that made up our model. This approach allows
us to ensure that each concepts introduced in our model can be programmatically represented and it
also helps us to identify those common game design that are not explicitly represented in the software.
This also allows us to encapsulate the technical aspects of game development from game designers.
This sets our ontology apart from GOP which was only useful for the purpose of game studies whereas
the ontology we proposed in this article is ready for used in MDE projects.

The Game Content Model improves on the work of GOP (Zagal, et al., 2005), RAM (Jarvinen,
2007) and NESI (Sarinho & Apolinario, 2008). We selectively combined these with our studies on
game design, game development and serious game and organise the concepts in a meaningful object
oriented structure which helps us to translate using MDE tools later. The top-level of our Game
Content Model consists of four key concepts that best represent the rules, play and aesthetic
information of a computer game and they are Structure, Object, Scenario and Mechanics. These key
concepts are further decomposed into ten specific concepts that define a computer game and they are
Game Structure, Game Presentation, Game Simulation, Game Object, Game Theme, Game Scenario,

Game Event, Game Objective, Game Rules and Game Player.

STRUCTURE OBJECT SCENARIO MECHANICS
Game Structur_e Game Object Game Scenario Game Rules

Game Presentation Game Theme Game Event Game Plaver
Game Simulation Game Objective Y

Figure 5.5: Concepts in Game Content Model.

In brief, the game structure provides the form and organises game into segments of linked game
presentations and game simulations. The interactions between game object and the results of an
interaction in a game simulation are defined using game rules. A game simulation can be used to host
multiple game scenarios aligned with the storyline. Each game scenario is set up using a selection of
game object to create an environment, a sequence of game event and a set of game objective that
challenges game player skills and knowledge about the game. The Game player can control game

object(s) and interact with other game object(s) via hardware or graphical user interfaces. And finally,

Page 73

the game theme describes the “look and feel” of the game. At the highest level, the definition of a
computer game is composed of a title, author’s name, a game structure and one or more game players.
This Game Content Model is also made available in Backus-Naur Form (BNF) in APPENDIX A:
Ontology for Game Content Model. The relationships between these key concepts are illustrated in
Figure 5.6.

The remainder of this section elaborates these ten specific concepts using relevant examples. These
will be described in order of Game Structure (Section 5.3.1), Game Presentation (Section 5.3.2), Game
Simulation (Section 5.3.3), Game Object (see Section 5.3.4), Game Scenario (Section 5.3.5), Game

Event (Section 5.3.6), Game Objective (Section 5.3.7), Game Rules (Section 5.3.8) and Game Player

. . Game Presentation
Game Simulation
simulate
Game Structure

(Section 5.3.9), Game Theme (Section 5.3.10).
<D

operateUnder
isOrganisedin_—

Game Sce

takePlaceln SERIOUS GAME ‘\

Game Environment

isPopulatedWith

/ \
Game Object 4

Figure 5.6: Overview of Game Content Model.

hasOccuranceOf

hasPurposeOf.

Game Object

isRepresentedBy

Game Theme

has.

5.3.1 Game Structure

The game structure, as explained in the previous section, describes the architecture and the flow of a
game. In our review of game design languages, we found that both Rich Pictures (Tang, et al., 2004)
and Flowboard (Adams, 2004) can be used to model a game structure. However, they are less suitable
for MDE purposes due to lack of formalism in describing states and transitional condition. Instead, we
are adapting the Finite-State Machine (FSM) to accommodate our requirements in modelling game
structure. In our ontology, we denote state as a game context (see Section 5.3.1.1). A game structure
consists of a collection of game contexts which are linked through the definition of event triggers or
GUI triggers (see Figure 5.7). A computer game can take the structure of complete game structure,

scenario-based structure, training-based structure and presentation-based structure as described in

Page 74

Section 4.1.1.2 depending on the type of instructional purpose. A full BNF representation of Game

Structure is available in Table A.1.

Game Simulation Game Presentation

. . Pedagogic Event
- ISLabe"edWIth

isComposedOf

Game Structure

has Game Structure Type

Figure 5.7: Ontology Diagram for Game Structure.

5.3.1.1 Game Context

A game context describes the type of game content to be presented to game players. In our game
ontology, the game context can be either in the form of game presentation or game simulation. A game
presentation is used to present information about the game using media and GUI components,
whereas the game simulation is the actual game that consists of interactive contents that demands
participation of the game players to achieve a set of defined goals in order to win the game or proceed
to the next level of the game. Further descriptions of game presentation and game simulation are
detailed in Section 5.3.2 and Section 5.3.3 respectively. Each game context also consists of a set of
event triggers (see Section 5.3.1.3) which specifies the next game context to be presented when a
transitional condition of a trigger is met. Additionally, the pedagogic event description (see Section

5.3.1.2) labels each context to indicate type of learning events associated to the game context.

5.3.1.2 Pedagogic Event Descriptor

Computer games designed for use in education and training or computer games must include some
form of pedagogy. In this model, each game context is associated with one or more pedagogic events
from the Gagne’s (1970) nine events of instructions. These events ordered in sequence are (1) gaining
attention, (2) informing learning objectives, (3) recalling prior learning, (4) presenting learning
content, (5) providing learning guidance, (6) eliciting performance, (7) provide feedback, (8) assess
performance and, (9) enhance retention and transfer. Labelling each game section with these

pedagogic events invite game designers to think critically about and reflect on the learning contents

Page 75

and activities that they should embed within the game match the type of instructional events. The
requirement to include all nine pedagogic events within a computer game depends on usage of it in
the context of game-based learning. A computer game can be designed for individual learning would
need to meet all nine instructional events. Whereas a teacher who want to use a game as part of an
exercise in a lesson may only include the pedagogic events “providing learning guidance”, “eliciting
performance” and “providing feedback”, while the rest of the pedagogic events are delivered

traditionally via lecture and coursework component. This will be used as a mechanism to check if a

game has been designed for a full or a partial learning experience.

5.3.1.3 Event Trigger
Event triggers are used to invoke the transition between game sections and activate the game events or
mark game objective within a game scenario. They can be classified into four distinct classes, namely:

o Input trigger which detects user input via hardware interface or graphical user interface (GUI);

e Time trigger which is essentially a countdown timer with an interval value with frequency of
occurrence;

e Proximity trigger which behaves like input trigger but has a hotspot that detects the collision
of a specified game object, a class of game object or a group of game objects from different
classes; finally,

e Game mechanics trigger which is associated with a range of game application-related events
such the media event (example is “onMediaEnd”) and the simulation events (examples of
simulation event “onSimulationEnd”, “onSimulationPause” and “onObjectiveUpdate”).

Each event trigger is associated with a command that specifies the transition between game

contexts or an activation of a game event (see Figure 5.8).

Page 76

Hardware Interface track @
has i
_ A
Hardware Type ISA \/ °

isA

Keyboard Input
Event has

has
i Keyboard
» Mouse Input Event Event
registerinputVia Identifier Trigger Target
has has

has

has
GUI

Trigger

iSA ' X v
i i s isA
Proximity Trigger Game Mechanic
has Trigger

Repeat . .
isPositionedAt has has.
Game Application
Event
isA

o S D
IOV v
Figure 5.8: Ontology Diagram for Event Trigger.

isA
D Positi

5.3.2 Game Presentation

A game presentation is a virtual canvas that holds media components and GUI components to form a
game menu, a game notification or a cut-scene to present information about the game and allow game
player to navigate through the game structure. As a virtual canvas, a game presentation has properties
such as depth, dimension (height and width) and even coordinate (x and y) on the device screen (see

Figure 5.9).

2D Position
2D Dimension

isPositionedAt

hasMeasurement

Game Presentation

Depth Index has
isPresentedWith
has

Media Component
isInteractedUsing
S
GUI Component ’

Figure 5.9: Ontology Diagram for Game Presentation.

A typical game menu presentation is composed of a virtual canvas that holds a background image
or animation, GUI component that link to other game sections and possibly a sound loop. An
example of game menu presentation for WarCraft III (Blizzard Entertainment, 2002) is shown in

Figure 5.10. In games such as Need for Speed: Shift (Slightly Mad Studios, 2009), the game menu

Page 77

presentation is slightly more sophisticated where the visual of the car and its custom upgrades are
immediately reflected on the screen (see Figure 5.11). No matter how fancy the user interface is,
fundamentally a user’s input is mapped to a functional aspect of the game via a custom GUI

component.

Single Player

Battle.net

Local Area Network

Options

-

Credits

Figure 5.10: Menu in WarCraft III. (Screenshot:
http://us.blizzard.com/support/image.html?locale=en_US&id=226).

PAINT

ALL E
(] COLOR WHEEL
>

FINISHES CHROME ©

Figure 5.11: Need for Speed Shift visual menu. (Screenshot: http://need-for-speed-
shift.blogs.gamerzines.com/files/2009/08/paintmonstrosity.jpg).

A game notification presentation can have a background image with texts, more graphics, and
button overlaid on the background image. It is used mainly to brief the game player about the game

objective before the game simulation, to prompt player about in-game happenings during the game

Page 78

simulation and to present to the game player the results after a game simulation (See definition of
Game Simulation in Section 5.3.2). The virtual canvas for a game notification can be varied in
dimension and can be displayed as an overlay on another virtual canvas. An example of game
notification overlaid on the game simulation is seen in the Darfur is Dying (Susanna & Take Action

games, 2009) serious game (see Figure 5.12).

Darfur is Dying

The threat meter will indicate an imminent attack by the Janjaweed. An attack will destroy
structures as well as reduce and contaminate food and water, thereby damaging the overall
health of your camp.

Click on the red Take Action button to find real world ways to to take action embedded
throughout the game and help stop the crisis.

Try to maintain a functioning camp for 7 days and you have succeeded in this Darfur digital
universe. But this will not end the real conflict. The men, women and- children of Darfur have
been living under harrowing conditions since 2003

Figure 5.12: Game notification in Darfur is Dying. (Screenshot: http://www.darfurisdying.com).

A cut-scene presentation usually consists of only a pre-rendered video that fills the entire screen. It
has no GUI components and often the method use to skip the video is by pressing any key on the
hardware interface. Cut-scene presentation is used widely as a platform for game storytelling.
Alternatively, game story can be told using graphic with animated texts and sound. Modern computer
games such as Red Dead Redemption (Rockstar San Diego, 2010) and KillZone 3 (Guerrilla Games,
2011) uses scripted real-time animation to convey information taking advantage of the game engine
and to present a seamless transition between storytelling and game-play. A full BNF representation of

Game Presentation is available in Table A.2.

5.3.2.1 Media Component

The types of media component supported in a game include text, graphic/image, sound and video.
Each media component loads its content from a defined media source. For visual media such as text,
graphic and video, additional properties such as coordinate (x and y) and dimension (height and

width) are required (see Figure 5.13).

Page 79

Text Formating 2D Position
2D Position . ; . L
isColouredUsing isPositionedAt

hasMeasurement hasMeasurement
isPositionedAt 2D Positi
osition
has
» isPositionedAt

Identifier ‘ hasMeasureme
Game Presentation iSA
L

Media 3
Component)

2D Dimension

isMediaFor

Figure 5.13: Ontology Diagram for Media Component.

5.3.2.2 GUI Component

Button, list box, check box, radio button and text box are examples of GUI components used in most
software applications. Each GUI component has properties such as position (x and y), value and visual
representation which can be styled accordingly to suit the game theme (see Figure 5.14). In the Game
Content Model, designers will only have to provide necessary information to describe the components
whereas technical issues of UI such as text-overflowing and data-capture should be resolved by
developers where solutions can be programmed in the generator or may have already been built into
the game software framework. Response to an input event is specified separately using the event

trigger (refer to Section 5.3.1.3) which is associated to a GUI component.

Group D
; . Value
(v
has
Caption h
hasMeasurement as

hasMeasurement
2D Dimension has
has
hasMeasurement

Background v
Image ha
2D Position

isPositionedAt

GUI Style ID
has

has
Figure 5.14: Ontology Diagram for GUI Component.

hasListValue

isInterfaceFor

Page 80

5.3.3 Game Simulation

Game simulation, by definition, is a mechanism that recreates scenarios virtually for game-play to take
place. The simulation of a game scenario is governed by a set of rules that define the interactivity, and
physical and temporal properties of the virtual world. A game simulation has game rules (read more
about game rules from Section 5.3.8) game dimension, game tempo and game physics which give it a
form (see Figure 5.15). Game Scenario (read more about Game Scenario from Section 5.3.5) is the
content of the game simulation whereas front end display is used to display information about the
simulation of a scenario to game players. In this section, we will be describing the concepts of game
dimension, game tempo, game physics and front end display. A full BNF representation of Game

Simulation is available in Table A.3.

Front End Display w
hasinGamelnfoDisplayedVia

isPacedUsing
Game Scenario
simulate.
Game Simulation

Figure 5.15: Ontology Diagram for Game Simulation.

has

5.3.3.1 Game Dimension

The game dimension refers to the virtual space of which the game simulation takes place. It can either
be 2D or 3D. 2D limits the viewing of a game world to a side view (platformer or side scroller), top
view or an angled view (isometric), whereas 3D provides the freedom to view the game world from all
angles. Traditionally, the decision about the type of game dimension for a game has direct influence
on the choice of game technologies and the production of graphic assets for use in the game. However,
this is not the case anymore because a 2D game can be produced using 3D technology by fixing the
camera to a plane or at a specific location. For example, Pacman is represented using 2D game

dimension, whereas Halo Reach is rendered in 3D.

5.3.3.2 Game Tempo

Game tempo is the measure of pace of time in the game world. A minute in the game world may not
refer to a minute in reality. For example, in soccer games such as Pro Evolution Soccer 2011 (Konami
Computer Entertainment Tokyo, 2010) (see Figure 5.17), one half of the match which represents 45

minutes of the game world time can be set to represent 20 minutes of game-play in reality. In our

Page 81

Game Content Model, it consists of a real-time which refers to the duration in reality and virtual time

which refers to the duration in the virtual world (see Figure 5.16 for ontology on Game Tempo).

Game Simulation

controlTimingOf

Figure 5.16: Ontology Diagram for Game Tempo.

Virtual Time

Real Time
has

has.

Figure 5.17: Pro Evolution Soccer (PES) 2011 allows game player to adjust the game tempo to suit their desired
game-play duration (Screenshot: http://game4us.net/wp-content/uploads/pes2011_3-140x140.jpg).

5.3.3.3 Game Physics

Game physics is used to define the physical state of the game world. It encompasses the collision world
and environment forces (see Figure 5.18). The collision world, by default, is turned on to provide the
illusion that game objects in the game world are solid. Turning off the collision world will cause the
game objects to have a ‘ghost’ effect where solid object appearing to be going through another game
object. There is no need for game designers to specify the low-level algorithms for collision detection
as the focus in this model is to capture the specification of a game from a design perspective. The
collision world will notify the respective game object and simulation if a collision has been detected
and reaction to such an event could be an action from game object or to award a score based on the
defined game interaction rule. What remains to specify in the game physics is the type of
environmental forces that act on all game objects. Force is generally represented as a vector which has
a value and a direction and can either be a constant or a dynamic value depending on how it is used to
affect the game-play. An example of an environmental force in the Worms Forts: Under Siege (Team

17, 2004) (see Figure 5.19) is the wind speed of 3 meters and blowing in the north-west direction.

Page 82

isConstrainedBy

Max Angle
has has Value

Max Force
Static Force Value has Value
4 has

Dynamic Force
Static Force Angle Angle
\/ A Dynamic Force
isType ' Value
isType
Force Value
Force Angle

hasAngle hasForce

’
Enwronmental Force

isDrivenBy
Game Simulation
govern Colllsmn World

Figure 5.18: Ontology Diagram for Game Physic.

has Identifier

7~

(a

Hard Man Al ="~
.5-./. =
A A ———
169

Figure 5.19: Worms Forts Under Siege uses the wind as one of the environmental force to affect trajectory of
ammo. (Screenshot: http://www.wormsforts.com/images/mult/scre_22.jpg).

5.3.3.4 Front End Display

Front end display has no significant meaning to game design. It is just a mechanism to notify game
players about the parameters in the game world that would affect their game-play. Front end displays
are usually themed to provide a unified look and feel’. Some examples of front end display include:

e alabel which uses characters to display textual information,

Page 83

e acounter which uses digits or icons to display the value or number of an attribute,

e agauge which is a recreation of an analogue display. It can be used to represent game time,
speed of a game object or even used as a compass to represent direction,
e a mini map which provides the location of specific game objects within a certain
proximity, and

e a bar which is another visualisation method to indicate the remaining value of an attribute.
Each front end display would also require information about the data source and the position of it
on the screen. The position of the front end display can be fixed on the screen or be relative to the
position of the game object (see Figure 5.20). In computer games such as PES 2011 (Konami
Computer Entertainment Tokyo, 2010), static front end displays are used to present information such
as a score for each team, remaining time and a mini map of the players in the field as seen in Figure
5.17. Another example is Halo: Reach (Bungie, 2010) which uses a mix of static and dynamic front end
displays to present not only information about the game scenario, but also the ammunition level of the
selected weapon and other non-handheld weapon such as grenade (see Figure 5.21). These front end
displays have fixed position and are displayed when game objects are selected. An example of
relatively positioned front end display is seen in the computer game Worms Forts: Under Siege (Team
17, 2004) in which it is used to display the name of each “worm” and their health level (see Figure
5.19). In the game simulation concept, we only need to specify the description of all static front end
displays and the position of any dynamic front end display so to maintain consistency of layout
throughout the game. The details of relatively positioned dynamic front end displays will be described

through the game object itself as an internal representation (see Section 5.3.2.4).

has
2D Position
Static Front End
isType A has
has
|sType

Dynamic Front End
' Display

isPositionedAt
has X
Front End Display Type

as

Front End Display Style

Figure 5.20: Ontology Diagram for Front End Display.

displaylnGamelnformationOf /
Front End

Display

Game Simulation

=3

Page 84

WARNING

Figure 5.21: Halo Reach uses both static and dynamic front end display to provide the necessary game statistics
to game player. (Screenshot: http://img94.imageshack.us/img94/3760/avermediacenter20100906.jpg).

5.3.4 Game Objects

Game objects are virtual things that populate the game world which can be designed to combine
abilities such as decision-making, moving, acting and responding to surroundings and the game
player’s input simulating their existence in the game world. From a software design perspective,
Object Orientation (OO) is the best approach to model objects. It invites practitioners to think about
their characteristics and behaviours. However, OO is only a conceptual guiding definition of relevant
characteristics and behaviours for representing the complexity of game object. It does not provide any
structure which can aid a non-technical domain expert to define any game objects. Similarly, GOP
(Zagal, et al., 2005) is also inappropriate for modelling objects as it generally describe object as an
ontology entry rather than specifying what it represents.

In our Game Content Model, we adapted the Viable System Model (VSM) (Espejo, 1990), a
conceptual tool to understand organizational structure, as a model to define game objects. The VSM
is modelled after the human nervous system and classical cybernetics theory to represent an
organization and we happen to find it is suitable for use in modelling game object because what it was
modelled after. The only drawback of using VSM to model game object is its bureaucratic nature.
However, this is not the case for game object definition. Our application of VSM is merely a model for

defining game objects as opposed to modelling a software object itself. Our application of VSM as a

Page 85

http://img94.imageshack.us/img94/3760/avermediacenter20100906.jpg

game object model is illustrated in Figure 5.22. The VSM representation of game object is described as

System 5 (Personality Manager) represents the method that initialises the in-game component
based on some defined personality.

System 4 (Sensor Manager) represents methods related to collision detection which are
triggered at appropriate intervals.

System 3 (Action Generator) can be considered as a set of pre-defined methods for updating
vital data, action states and Al-related components such as path finding and agent related
behaviour that are enabled (or included) in the definition of personality traits of in-game
components.

System 2 (Acting Manager) represents a method that receives messages from System III and
distributes these messages to System I (Speech Generator, Motion Generator and Appearance
Generator) for action to be taken.

System 1 are the components represent the main action entities. These entities carry out the
basic mechanics of the game. The Speech Generator provides the facility to play an appropriate
sound file. Motion Generator processes the physics and animation data related to the in-game
component modelled. Appearance Generator is responsible for rendering the graphics to the

screen.

Sensitivity of sensor
PERSONALITY .
MANAGER S5: POLICY
h .
Game Behavioral Vital
Environment Data v Data
SENSOR Emotional cues ACTION
MANAGER GENERATOR S3: CONTROL
S4: INTELLIGENCE Action to be
taken
A S2: COORDINATE
ACTING
MANAGER
Vital Data Action Speech
y |
APPEARANCE MOTION SPEECH
GENERATOR GENERATOR GENERATOR

S1: OPERATION |

Figure 5.22: VSM as model for Object.

Page 86

Our VSM description featured in Figure 5.22 is used as a high-level abstract model to represent
game objects. Instead of specifying the software component, we will only use this model to identify the
necessary data required to represent a game object and leave the implementation to the MDE
developer. Based on the VSM model, we define a game object to consist of a set of object attributes; an
object appearance; object intelligence; and it can perform a set of object’s actions. These data are
processed by the core game technology components defined in Section 5.4.2. The core game
technology components are abstract form of Appearance Generator, Motion Generator, Speech
Generator, Acting Manager, Action Manager, Sensor Manager and Personality Manager architected
from a game technology perspective and not the game object’s perspective. The game object data we
defined earlier provide all the necessary information for the systems to operate. The operational and
functional aspect of game object is dependent on facilities provided by the game software framework.
Details of these data will be described further in the following sub-sections.

In computer games, game objects can be categorised into interactive game objects and non-
interactive game objects based on their behaviours. Examples of interactive game objects include
virtual things such as actors, items, consumables, enhancements and mechanical which the game
player can interact with; while the non-interactive game objects include decorative, surface and
structural which are virtual things use to define the boundary of the play space (see Table 5.1 for
category description of Game Object). Each of these game objects has different configuration of the
VSM model featured in Figure 5.22. For example game objects of surface, decorative and structural
category would not require any data that would help describe game object’s intelligence. Therefore
game objects of those categories simply do not require data that describe intelligence. These classes of
game objects are some examples of stock components defined to aid game designers to describe a
game object and this list is expandable (see Figure 5.23). A full BNF representation of Game Object is

available in Table A.4.

Page 87

Object Attributes hasintelligenceSpecificationOf

hasAttributeSpecificationOf

Object Appearance
show.
__————__ perform
Object Action

Object Intelligence

Object Appearance

Object Attributes

Object Appearance
Object Appearance

hasAttributeSpecificationOf gpqy _
show Object Action
Consumable Object perform
Decorative Object . .
Object Attributes

- hasAttributeSpecificationOf

Object Attributes
show-
Object Appearance

hasAttributeSpecificationOf

Object Attributes

perform

hasAttributeSpecificationOf

Object Action ’

perform

Enhancement Object

Actor Object

hasAttributeSpecificationOf

Object Appearance

Object Attributes

Object Action

perform

hasAttributeSpecificationOf
show

hasAttributeSpecificationOf show Object Appearance
Object Appearance
Object Attributes Object Appearance Object Attributes

Figure 5.23: Ontology Diagram for Game Object.

P

Table 5.1: Types of Game Object

Category

Description

Actor
Enhancement

Consumable

Item
Mechanical

Projectile

Structural
Decorative

Surface

Actors are non-player characters (NPC) that populates the game-world. They can take any form of visual
representation.

Enhancements are actor-dependent objects used to enhance the actor in terms of performance, vital or even
visual appearance. Example of enhancements include knife, gun, torch light, clothing and shield.
Consumables are also actor-dependent and some are meant to be used with enhancements such as first aid
kit to increase the health of the actor. Examples of consumables include ammo, first aid kit, manna and
grass as food for animals or harvested for hay production.

Items are physically responsive objects which game-players can interact with. Some examples of item are
glass window, chair and light bulb. Static items are regarded as decorative.

Mechanicals are game objects that consist of moving parts or switch controls which user can interact with
such as doors, vehicle and switches.

Projectiles are objects that propel with force on space. Example of projectile include bullet and soccer ball.

Structurals are any man-made structures that are used to fill up spaces in game-world. These structural
objects can be buildings, bridges or a space within a building which are used as the set for defining scenario.
Decoratives are static objects used to complete the sets. Examples of decorative include table, lights, photo
frame and even in organic form such as trees and plants.

Plane is the surface for which all objects is attached to regardless of natural or man-made. Plane is regarded
as roads or pavement on a city set, as floor in a Victorian house set, pond in the park or as grassland in
traditional English farmland.

5.3.4.1 Object Attributes

Object attributes are data properties that represent a game object’s attribute such as the vital statistics

associated, physical state, cognitive state and ownership (see Figure 5.24). The object attributes

Page 88

associated to a game object include a set of vital signs, a position, a solidity state, a mass and inventory
(optional). Game designers can choose to represent the game object using a single vital sign definition
such as life or further elaborate the vitality of a game object into interrelated attributes such as health,
energy, strength, social and etc. The position of a game object is specified when setting up a game
scenario and it changes depending on how game object reacts to the events in the game scenario and
the dynamics in the game simulation. The solidity state defines if a game object is solid, whereas the
mass affects the motion of the game object. The inventory is defined to hold a limited supply of
consumable for a game object. For example, a rifle as an enhancement to an actor might be able holds
30 bullets at any one time. Similar concept can be applied to the actor whereby it can possess a

number of weapons and cartridges of ammo.

e
Inventory Size has_ hasExistanceSpecificationOf 3D Position
ha

isType V

2 isPositionedAt
Solidity State has Attributes isType
isAttributesSpecificationFor .) I ‘ "
isAttributesSpecificationFor 2D Position

Actor Object Enhancement Object

Figure 5.24: Ontology Diagram for Object Attributes.

5.3.4.2 Object Appearance

All game objects are represented visually with their own appearances. The appearance of a game
object is composed of an object image and one or more internal state projections (optional). The object
image is represented using one or more image components (see Figure 5.25). The image component
represents one part of the object image and a collection of related image components complete the
object image. Each part may have similar image components which the game player can use to
personalise the game object and for game designer to create a variety of game objects to populate the
game world. An image style is the combination image components that made up the object image and
a game object can only be represented with one image style at any one time. The object image style can
be represented using a 2D sprite or a 3D model with mesh and textures. Each object image style
consists of a complete set of assets that project an appearance of the game object organised in an
ordered path. The internal state projection displays specific object attributes using a front end display.

In most computer games, display of internal state projection is limited to the use of simple

Page 89

visualisation component such as text and bar which appears above the game object using a billboard.

More complex forms of front end display can be used but should be used cautiously to ensure it does

not add unnecessary processing load to the game software which in turn would affect the game-play

and also the usability aspect of such a complex display have on the game.

5.34.3

Reference Front End } { Reference To

Display Object Attribute
-
Object Internal

has
Projection / Object Image \ Image Style
—m Component
haslInternalProjectionVia has has
has
Actor Object . -
|sPr01ect|onOf hasTheLookOf
i Object Image
isProjectionOf Ap(p):gre;:\ce -
Consumable Object isProjectionOf ProjectionOf
) o isProjectionO: Surface Object
isProjectionOf ~/ isProjectionOf
Decorative Object isProjectionOf
Structural Object
Enhancement Object Mechanical Object

Figure 5.25: Ontology Diagram for Object Appearance.

has

isProjectionOf

Item Object

Object Action

The action of a game object can consist of motion, animation and sound. In our Game Content Model,

we regard motion and animation as two different concepts. We define motion as the actual translation

of a game object’s position in the game world, whereas animation is regarded as movement of objects

moving parts in a position. Motion, animation, sound and vital update can be used on its own or can

be combined to represent an action (see Figure 5.26). These components are described as follows:

A motion is governed a force which moves a game object along a vector. It can be affected
by the external forces which can increase or decrease the existing force the game object is
subject to depending on the setting of the external forces. A force is diminished by the
opposing force(s) or expires when the associated animation cycle completes.

An animation defines the virtual performance of a game object without reference to the
position of the game object as a whole. Definition of an animation sequence depends on
the underlying technology supporting animation. For 2D sprite animation, an animation
sequence can be defined by as the collection of 2D images. Whereas for 3D there are a set
of techniques which developers can opt for frame-based and procedural. Other specific
techniques for character animation are rag-doll physics, inverse and forward kinematics.

The animation data for 3D are either supplied or generated programmatically.

Page 90

e A sound is an aural form of action. It can be in the form of speech or non-speech. Each
sound has an audio source and may be supplied with a text as the narration.

e A vital update revises the value of vital signs for a game object as a measure that takes
account of the virtual effort of an action inflicted on the object or the virtual effort of
performing an action. Virtual effort in this context refers to the decrement of values

associated to vital signs defined by designers of the game.

Max Angle

has has

Min Force

Max Force
Value
has

has’

isConstrainedBy

Dynamic Force
Value

h s/[Identifier] [\dentifier] Start Frame
a
Animation
isAffectedBy Tl
has has

has Asset Source
=)
hasMotionSpecificationOf hasAnimationSpecificationOf has

haS
hasSoundSpecificationOf has Source
Actor Object R .

i isPerformedBy . - Reference to Game
Consumable Object hasVitalSignUpdateSpecificationOf Attribute
i isPerformedB has
isPerformedBy Y Object Vital Sign . ha: = ;
Update Arithmetic Operator
Enhancement Object has
Item Object

Mechanical Object

Figure 5.26: Ontology Diagram for Object Action.

hasForce

ha isDrivenBy

isPerformedBy

Object Action

isPerformedBy.

5.3.4.4 Object Intelligence

The intelligence component provides a game object the ability to decide, navigate and even learn. One
of the primary forms of intelligence required to be modelled by most game designer is decision
making. A decision is composed of a deciding condition which is associated with an action. The
deciding condition is closely linked to collision detection, direct input from the game player or events
in the game scenario. These conditions are clearly labelled and are paired with an action of a game

object to give the game object the ability to respond to events in a game scenario (see Figure 5.27).

Page 91

- : Reference to Object Conditional Operator
Ability Learning Attribute
has
has

has
has

. Deciding Condition

isType

< Object Ability

‘ isType =
hasAbilitySpecificationOf Object De
hasDecisionSpecificationOf

has
has— Idenfier
has
has a
Object
Ability Navigation

g has
Intelligence

- . _— Reference to
isIntelligenceSpecificationOf Obiject Action

Actor Object

Figure 5.27: Ontology Diagram for Object Intelligence.

5.3.5 Game Scenario

The game scenario, as previously described in the game simulation (see Section 5.3.3), is a description
of a situation which require game player to overcome a number of challenges in order to achieve the
defined game objectives. It is also commonly termed as game level in gaming jargon. A game scenario,
in our Game Content Model, is represented by a game environment, a set of game events (read more
about game event from Section 5.3.6), a set of virtual cameras, a difficulty indicator and a set of game
objectives (read more about game objective from Section 5.3.7) (see Figure 5.28). All interactions
within the game scenario are regulated by the game rules (see Section 5.3.8) and the intelligence
component of the game object (see Section 5.3.4). A full BNF representation of Game Scenario is

available in Table A.5.

)

Game Rule ’ -
hasOccuranceOf operateUnder

— has hasPurposeOf X
Difficulty Game Environment
Indicator ha takePlaceln

Game Scenario

Figure 5.28: Ontology Diagram for Game Scenario.

isDisplayedThroughPerspectiveOf

Game Simulation isSimulatedBy Virtual Camera

5.3.5.1 Game Environment
The game environment represents the composition of the virtual world by populating the virtual space

with game objects, checkpoints, proximity triggers and lights. (see Figure 5.29). Game objects are virtual

Page 92

things that are carefully placed to create a spatial and social setting that form the game environment
(see Section 5.3.4 for more details on game objects). An example of a game environment for Killzone 3
(Guerrilla Games, 2011) is shown in Figure 5.30. Checkpoints are also placed strategically within the
game environment, but only used to mark positions in the virtual space which will be used in
definitions of NPCs act in a game event. Checkpoints are only positional information and will not be
shown visually. Proximity triggers, described in Section 5.3.1.3, are placed within the game
environment but are not shown visually on screen. These are used only to evoke game events or to
signify the achievement of a game objective. Lights are used to create “mood” to the game setting. The
most usual form of lights are point light which illuminates all objects within the range in all directions,
directional light which only illuminates objects within the range in a given direction, spot light which
illuminates objects within the cone defined by the spot angle, range and angle and area light which
illuminates objects within a specified area. In a basic lighting model, a light would consist of position,
colour and intensity. Shadow is cast on objects within the range of the light. However, it is a very
costly feature and developers often fake such an effect by “baking” the shadows on to texture to save

computing resources. In our ontology, we omit shadow in our definition of light.

|
f :
Game Objective
host isTrackedBy h d
Game Object as
isPopulatedBy

mark

Game
Environment

isLocationMarkedWith

isllluminatedUsing

isColouredUsing

@ isDisplacedAt:
isType

i isType A
4
v @ cover
e

has

- has
Identifier
ha

Light Intensity

'

has

has

Figure 5.29: Ontology Diagram for Game Environment.

Page 93

Figure 5.30: Game environment in Killzone 3. (Image obtained from http://4.bp.blogspot.com/-
MgWqmqfqczE/Ta63EANhIOT/AAAAAAAAAQI/QpsLD-jI6Ts/s1600/Bilgarsk_Boulevard_W.png).

5.3.5.2 Virtual Camera

A virtual camera is the viewport onto the game world. In the context of game design, the only aspect
that matters is the position of the virtual camera in the game world. A virtual camera can be mounted
to an avatar to provide a first person view or hovering above the player’s avatar to show a third person
view. It can also be placed in a fixed location or animated along a path to provide a cinematic display.
A game scenario can have more than one virtual camera to provide different viewpoints to the game
environment, but only one virtual camera can be activated at once (unless is it part of the
technological feature of the game to render multiple viewports on one single display which is seen in

most multiplayer games on played on game console) (see Figure 5.31).

hasAngle Focus Object
Focus Angle isType v
3D Position ‘
isType Virtual Camera
' Focus
isType
isFocusedAs
isPositionedAt

isType isAttachedAt

i

/X

2D Position

h

as

Game Scenario

Figure 5.31: Ontology Diagram for Virtual Camera.

Page 94

5.3.5.3 Difficulty Indicator

The difficulty indicator is a value associated to the difficulty of the game scenario. This value is set by
the game designer and it is a mechanism to ensure that game scenarios within the game structure are
organised in an increasing difficulty fashion. In addition, it can be used as a determinant for tuning
the difficulty of a game scenario. In such a case, the difficulty indicator can be used as a multiplier that
affect parameters such as game object generation frequency, number of game objects in the game

scenario and the duration of game-play to adjust difficulty of game as it progresses.

5.3.6 Game Event

Game event is a happening associated with a game scenario. A game event is composed of a set of
game acts and an event trigger which initiates the game event. Time trigger, proximity trigger and
game mechanic trigger are the suitable types of event trigger for use when defining game events (read
more about event trigger in Section 5.3.1.3). This is a more accurate approach to represent flow of
events compared to Taylor, et al (2006) proposal. Our definition of game event permits designer the
flexibility to define the number of times a game event happens once when game player repeatedly visit
the same location. Each event is regarded as a state and the event are transitional conditions that
govern the progression of the ‘story’ in the scenario. In order to monitor the game player’s progress,
we introduce the concept of checkpoint which checks against the conditions that governs the state of a
game objective. There can be more than one game objectives associated with a game scenario.

Game act, which we adapted the concept from the performing arts domain, refers to the “acting” of
a game object in a game event. A game act consists of a game object and a game acting script that
describe how the game object should move, animate, sound and interact with other game objects in a
game scenario.

A game acting script is composed of one or more acting coordinations that instruct how a specific
game object acts in a defined sequence. For example, a game object can perform coordination-1,
followed by coordination-2 and ends with coordination-3. The same script can also be assigned to
other game objects that perform the same act.

The actual detail of an act is defined as acting coordination. The coordination of a game object can
involve appearing (for generation and re-spawning of game object), animating an action, playing a
sound, moving towards a checkpoint, interacting with another game object or a composition of these.

Each of the coordinations in a script is executed one after another in the prescribed order. The

Page 95

collection of game events defined in a game scenario will provide the flow to the game-play (see Figure

5.32). A full BNF representation of Game Event is available in Table A.6.

Animate with Object Translate To
Checkpoint

Play Sound performActOnObject performActOnObject Play Sound
performMoveToCheckpoint
performSound
performAct
performSound Act on Object and
performSound Ay St

performAct Move To
performMoveToCheckpoint

Animate with Object

Translate To

isType

A isType A \
isType
Translate to > Time Trigger
Checkpoint has v
Identifier isType.
Animate with Object isTriggeredBy
—
e
Event Trigger \
isType

Checkpoint
erformActOnObject
performMoveToCheckpoint D y
Animate with Object
isType.
Animate and Translate
to Checkpoint performSound
performMoveToCheckpoint

Play Sound
Translate To
performAct Glizs e

Game Object ID
has
e
has.
Play Sound has hasActSpecificationOf Identifier
isType

occurin

‘ Game Mechanic
Trigger
Game Scenaro

Figure 5.32: Ontology Diagram for Game Event.

5.3.7 Game Objective

A game objective is the goal associated with a game scenario. It is one of the components that define
the game-play. The other components that define game-play are game-rules, game player and the
game scenario itself. A game objective is represented using a goal condition. The goal condition checks
a track-able value against a constant value defined by the game designer to determine if the game
objective has been met or not. The game objective is marked as achieved once the goal condition has
been satisfied. The game player wins the challenges presented in the game scenario if he/she manages
to achieve all the game objectives (see Figure 5.33). A full BNF representation of Game Objective is

available in Table A.7.

Page 96

Keyboard Input
has: Key
has
isA Keyboard
\> Event
Trackable Scenario
Completion Time
Trackable Game
Attribute ‘ track” '
i Mouse Event
Trackable Action 2 ISA -
Counter isType Trackable Input Type has
VY, Counter
: v Mouse Input Event

isType.
ha

S
Game Scenaro

has reference
has.

isDeterminedBy
Goal Condition

Figure 5.33: Ontology Diagram for Game Objective.

Conditional
Operator

isPurposeFor

Game Objective

5.3.8 Game Rule
A game rule states the relationship between game objects and game world, and the effect of an
interaction. In our model, a game rule can either be a Game Scoring Rule or a Game Interaction Rule

(see Figure 5.34). A full BNF representation of Game Rule is available in Table A.8.

Game Interaction
Game Scoring Rule Rule

Game Scenario control

Figure 5.34: Ontology Diagram for Game Rule.

has

Game Rule

5.3.8.1 Game Interaction Rule
A game interaction rule differs slightly from a scoring rule. It dictates the outcome of the interaction
from two game objects. Each game interaction rule has an actor which can be a game object, a class of
game object or a group of game objects from different classes, a subject which represents a game
object, a class of game object, a group of game objects from different classes or the game world and an
interaction condition which refer to the state of actor or the state of the game world.

Each game interaction rule is paired with an interaction outcome which has a matter and an

operation to add or subtract a value from the matter (see Figure 5.35). Matter in the context of game

Page 97

refers to an item (e.g. key to dungeon door), an attribute (e.g. money) or permission (e.g. competition
mode unlocked). Rewarding the player or any game object can mean giving (adding) or taking away
(subtracting) an item or increasing (adding) or decreasing (subtracting) the value of an attribute.
Conversely, punishment would mean consequences that would add more challenges to player or a
game object.

An example for game interaction rule is ammo (actor) inflicts 10 points damage (interaction

outcome) to Spartans and Elites (subject) whenever it comes in contact.

Game Object
Class
Reference To l has
Game Object Query Game
has Attribute

Interaction Actor By ' Query Subject
Class f Ownershil
Game Object isType - P
Class Interaction Actor By /\
ID
has

isType %
\V

Update Game Object
Attribute
Reference To | isType V%
Game Object Interaction Actor
Interaction Outcome i
> Update Game
Attribute

Query Subject
Attribute

has

isDeterminedBy

restrict

allowlInteractionWith

Interaction Subject
Game

Interaction Rule

Figure 5.35: Ontology Diagram for Game Interaction Rule.
5.3.8.2 Game Scoring Rule
A game scoring rule only applies to game players and it defines what to be awarded to the game player
when a scoring condition is met. Every game scoring rule has a scoring condition which has no direct
relation with an interaction. It can be derived from the state of a game object (e.g. enemy is dead or fire
is extinguished), the input statistics (e.g. accuracy is above 80%), the time (e.g. response is less than 5
seconds or level completed in less than 5 minutes), or the game objective (e.g. objectives 1, 2 and 5 are

met) (see Figure 5.36).

isType
Scoring Condition
Scoring Outcome
conclude

isType

Query Other Game
Objectives

isDeterminedBy

Game Scoring Rule

Figure 5.36: Ontology Diagram for Game Scoring Rule.

Page 98

Figure 5.37: Halo Reach’s Stockpile mode demands game player to bring flag into the team territory and defend
it until timer reaches zero (Screenshot: http://www.bungie.net/projects/reach/images.aspx?c=59&i=25754).

An example of a game scoring rule in the Stockpile game mode for Halo: Reach (Bungie, 2010) (see
Figure 5.37) is when a flag is brought into team territory and protected until the timer reaches zero

(scoring condition) and the team is awarded with one flag point (scoring outcome).

5.3.9 Game Player

Game player is the user of the game application who provides inputs to the game system as part of the
gaming activity. A game player is represented as an entity with an avatar, game attributes, an
inventory, game control and game records (see Figure 5.38). A full BNF representation of Game Player

is available in Table A.9.

Game Control) Game Attribute)
\-J
¢ operate hasperformanceRecordedin

isL dl

has

has Game Player ID

isRepresentedBy.

SERIOUS GAME @— Game Player

Figure 5.38: Ontology Diagram for Game Player.

5.3.9.1 Avatar
An avatar is a game object that represents the game player in the game world. It has direct relationship
to the game control as input events of the game control interface are mapped onto the actions of the

avatar. A game player can be assigned a fixed avatar or can choose to control a game object whenever

Page 99

it is selected in the game world (dynamic). A game player is often assigned one fixed avatar
throughout the game-play session in action, adventure, artificial life and vehicle simulation games
(game player may have the option to select other character in game settings), whereas a game player
can freely choose an avatar or multiple avatars to control in construction and management, strategy
and sports games (see Figure 5.39). In most strategy games such as StarCraft II: Wings of Liberty
(Blizzard Entertainment, 2010) (see Figure 5.40), the game player can group game objects into a single

unit which he/she can command.
Reference To Reference To
Game Object Game Object
has has

atar
isType
Game Player isType

Figure 5.39: Ontology Diagram for Avatar.

Figure 5.40: Game player commanding 6 of the Reapers from Terran unit in StarCraft II. (Screenshot:
http://www.sc2win.com/wp-content/uploads/2010/02/gameplay.jpg).

5.3.9.2 Inventory
The inventory presents the idea where the game player can have virtual ownership a number of game

objects in the game as part of the game-play. An inventory can be a collection of weapons in a shooter

Page 100

game or a collection of magic spells and potions in a role-playing game. In Resident Evil 5 (Capcom,

2009) (see Figure 5.41), the game player can hold 9 items in the inventory at any one time.

Upgrade

Money N'71

’zsol‘

_ 1.36 Sec.|

Partner isn't ready yet...
Increase your weapon's

firepower.
® Select -ROK (O Back

Figure 5.41: Inventory menu in Resident Evil 5. (Screenshot: http://www.ps3home.co.uk/userfiles/residenevil5-
inventory-menu.jpg).

5.3.9.3 Game Attribute

Game attributes are data representing the existence and achievement of a player. These data can be
either a vital sign or a score. A vital statistic is the value associated to the chance that a player before
he/she loses the game, whereas a score is a record of performance which can be derived from time
spent or remaining or the number of game objects interacted with either indirectly or directly via an
input event. For example in Pacman game (Namco, 1980), the game player has three lives or chances
(vital signs) to play the game and his/her achievement is recorded as score (refer to Figure 5.43). For
most modern games, the game player’s vital signs are often linked to the avatar. Take StarCraft II:
Wings of Liberty (Blizzard Entertainment, 2010) (see Figure 5.44) as an example. Here the game
player’s vital sign is represented by the entire military unit which includes resources available, whereas
the score gained can be calculated from resources, units and structures. Game attributes can be simple
or modelled in a complex way to demonstrate dependability on one another depending on the needs

of the game designer (see Figure 5.42).

Idenfitifier

recordPerformanceOf

Game Attribute
Score
Referenced Vital Unreferenced Vital
Sign Attribute Sign
' isType
isType.

. isType i i
Game Attribute) Game Attribute Vital

Sign

Game Player

Page 101

Figure 5.42: Ontology Diagram for Game Attribute.

HIGH SCORE 2Up
1000 2

Figure 5.43: Classic Pacman game requires game player to collect all pellet and power-pellet in each game
scenario. (Screenshot: Midway Games)

Figure 5.44: StarCraft II records resources gathered, units raised and structures built. (Screenshot:
http://farm3.static.flickr.com/2709/4366787241_2e59df7ded_z.jpg).

5.3.9.4 Game Control

The game control provides the game player the medium for controlling game objects. Game player’s
input is captured via game control interface which can be either a hardware interface or a GUI (read
more about GUI from Section 5.3.2.2). Examples of hardware interfaces include keyboard, mouse,
gamepad, joystick, motion sensor, camera and microphone. There are also specialised game hardware
interfaces available in the market such as the dance mat from the Dance Dance Revolution game
(Konami, 1998) and the guitar controller from Guitar Hero (Harmonix, 2005), but underlying such

innovative product designs is an altered form of a gamepad that provide players alternative way to

Page 102

input and better game immersion. Hardware interfaces and GUIs have their respective input events.
For example, a mouse has input events such as move, roll over, roll out, left button up, left button
down, right button up and right button down. Each input event can link to one or more actions
depending on the state of the game object. For example, the button X’ triggers ‘action 1’ when game
object is in ‘state 1’, it triggers ‘action 2’ when game object is in ‘state 2’. Such complex input
configurations are often seen in console games due to the limited input available on a gamepad (see

Figure 5.45).

Active Object Reference To
State Object Action

has has

Action Map

isMappedUsing
.

Input Interface

registerinputVia

Game Control

Figure 5.45: Ontology Diagram for Game Control.

Game Player

isOperatedBy

5.3.9.5 Game Records

Game records are a log of the game player’s achievements in the game. Although it is an understated
aspect of game design, most modern games do record game player’s achievement and progress in the
game. Each game record is associated with the game results of a game scenario. A game result can
either be in the form of raw results or computed result. The raw results are obtained directly by
summing up traceable data such as input event, game attributes from game player and time whereas
computed result whereas traceable data is subjected to computation. An example of raw result in
StarCraft II game is the resources gathered by the game player during the game session, whereas the

computed result can be average unused resources (see Figure 5.46).

Sepiedicany Raw Game Result
- Result
Idenfifier

Game Player — BN
Game Record)

Figure 5.46: Ontology Diagram for Game Record.

Page 103

5.3.10 Game Theme

Game theme describes most of the art requirements related the game through expressive written text.
It is specified as part of the definition of a game object. The art requirements include visual, sound and
even style of the narration that defines the “look and feel” of the game object. These are media content
on its own which are produced externally by professionals and conform to the format of the game

technology. A BNF representation of Game Theme is available in Table A.10.

5.4 Game Technology Model (GTM)

In the past, games were written as singular entities in assembly languages that were tightly coupled
with the underlying hardware platform to utilise hardware resources efficiently and hence provide a
seamless gaming experience (Bishop, Eberly, Whitted, Finch, & Shantz, 1998). However, this approach
permits little code reuse and low code scalability which results in complex games being both costly
and timely to develop. Coding these games is also a highly specialised skill.

A game engine or game software framework is the technical and economic solution for writing
modern, complex games. It consists of subsystems or software components that perform a number of
distinct tasks (such as graphic rendering (2D or 3D); game physics computation such as collision
detection; collision reaction and locomotion; programmed intelligence; user input; game data
management and other supporting technologies) to operate the game software. These software
components are built to manage, accept, compute and communicate data with other software
components without fail. Not all game engines support the entire feature set required for all game
genres, since integrating these technological components under a single framework would be a
prohibitive task. Furthermore, not all computer games software will require the entire collection of
software components to function.

The early streamlined approach to game engine architecture (illustrated in Figure 5.47) was
composed of the software components that handle input, audio, graphic representation and the

dynamics (game mechanics) (Bishop, et al., 1998).

Page 104

Schematics of Game

Event Handler —®| Game Logic Level Data
"____T____'| "____l____'| r ________ al
| Input 1 : Audio : | Graphics <——
L___}____I I____l____l l____l____l
Platform

Figure 5.47: Aspects of game software illustrated in shaded rectangles are elements of a game engine while game
logic and level data are regarded as content that defines a game (Bishop, et al., 1998).

Modern day game engines are capable of computing complex 3D scenes with dynamic objects,
rendering realistic graphic, planning and deciding actions for non-player characters (NPC), and
supporting multiple players concurrently over a network. The architecture of the Delta3D engine
documented by Draken, McDowell & Johnson (2005) in Figure 5.48 exhibits the addition of software
components such as character animation, scene graph and networking to assist the development of
modern 3D games with multi-player support.

Current generation commercial game engines such as Unreal Engine, CryEngine and EgoEngine
are packed with more advanced features and sophisticated tools that enable creation of high quality
game software. The game engine architecture explained by Gregory (2009) (see Figure 5.49) illustrates
the typical logical architecture of a modern 3D game engine. It is designed for maximum reusability
(software components are shown shaded) and interoperability across different platforms (through the
Platform Independence Layer).

The Game-Specific Subsystems and Gameplay Foundations are components that can be re-written
to adapt other components for other game genres with minimal changes to the remaining software
components (some changes are still necessary as these components may be written specifically for the

chosen game genre for optimal performance and reliability).

Page 105

Game Application

Delta3D Game Engine

Scripting

i i i i T | i
| 1 11 | | I)1 | 11 |
I Audio !'i GuUI % Gy | | Physics | I Ve 1} Scene t L | Networking 1 | Input
| Iy " Animation , I Management ! Graph ;! b 1 | devices !
[Y B I s Lo T S N T S R S e __/
Platform
Figure 5.48: Architecture of the Delta3D Game Engine (Darken, et al., 2005).
Game-Specific Subsystems
Front End In-Game Cinematics
! Gameplay Foundations
Visual Effects (Particle
systems, Lighting, Shadow, Hierarchical Object
Environment Map) Attachement
. . . N Online .
Scene Graph/ Culling Animation (Skeletal Animation) ; Audio
PV Multiplayer
Optimizations
L| Skeletal Mesh Ragdoll
Rendering Physics
Low-level Renderer Profiling & Debugging ’V Collision & Physics Humggvlir::t:srface

Resource Manager & Game Assets

| Core Systems (Assertions, Memory Allocation, Math Library, Custom Data Structures and Algorithm, Movie Player, Parsers, Analytics, 1/0) |

Platform Independence Layer (Ensuring consistent engine behaviour across all hardware platforms)

3" party SDKs (Graphics SDKs {DirectX, OpenGL}, Physics SDK {Havok, PhysX}, Al SDK, etc...)

oS

Device Drivers

Target Hardware (PC, Xbox 360, PS3, etc)

Figure 5.49: Overview of Commercial Grade Game Engine Architecture (Gregory, 2009).

The responsibility of the Platform Independence Layer is to ensure that all components in the

game engine behave consistently across different hardware platforms. This is similar to the

functionality of a Platform Independent Model from a model viewpoint.

Page 106

GAME GAME SIMULATION SYSTEM
SPECIFIC

SYSTEMS |: GAME OBJECT :| |: GAME SCENARIO :| SERVICE
777 COMPONENT

USER VIDEO GAME ARTIFICIAL
CORE [INTERFACE][PLAYER][PHYSICS][AN'MAT'ON][GRAPHIC][AUDIO][INTELLIGENCE] M

COMPONENTS [

GAME
CONTEXT
SYSTEM

HELPER
INPUT] [GAME RESOURCE MANAGEMENT] [COMPONENTS

GAME PHYSICS ANIMATION Al
RESOURCES |:VIDEOSJ |:PARAMETERSJ |: DATA J [FONTSJ |:MESHJ |:TEXTUREJ |:SOUNDSJ [SCRIPTJ

Figure 5.50: Overview of Game Technology Model.

The Game Technology Model in our model-driven framework represents games in a manner that
is computationally independent of any operating platform. This is responsible for ensuring all
components in the game engine behave consistently across different hardware platforms. Our
proposed Game Technology Model in Figure 5.50 features two primary layers: the Game Specific
Systems layer and the Core Components layer. In the following subsections, we will describe the
systems and components in each layer and represent the computer game software in high-level formal
notation to ensure the Game Technology Model is not tied to any specific technique or platform.
Platform specific details will be added to the model in when Game Technology Model is translated
into Game Software Model. Details implementation of software will be generated by generator from

predefined code templates through mapping techniques.

54.1 Game Specific Systems

The Game Specific Systems layer consists primarily of the Game Context System, which sets up the
game and manages dynamic switching between the presentation context and simulation context, and
the Game Simulation System, which populates the world with game objects (both static and dynamic)
and triggers the game events that form part of the game-play within a particular game scenario. It uses
facilities provided by the core components layer (see Section 5.4.2 for more details) to enable smooth

running of both the Game Context System and Game Simulation System.

Page 107

5.4.1.1 Game Context System

Game Resources

Presentation Context (Y Initialises
Splash Screen Game Context System

| Meshes | | Textures |

Presentation Context Context is pushed into
Game Menu — Active Contexts Stack
as per Game Flow

| Sounds | | Al Scripts |

Presentation Context

Resource
Management

Intro to Level 1 —

'
H
H
H Physics Parameters | efC...
Simulation Context g
H
) .) H
First Person Simulation g E Uses Ul
- H components
Presentation Context *L\ Initialise
Contexts Pool H Pause Menu : \
H
Presentation Context Simulation Context | ¢ Update
H
Pause Menu First Person Simulation | &
: Render
H
H

GAME [Creates Active Contexts Cleanup
A\ J

Figure 5.51: Game Context System

Looking deeper into our Game Technology Model (see Figure 5.50), the responsibilities of the Game
Context System are to set up the application by initialising the input hardware, graphic hardware and
audio hardware, specifying access paths for resources, switching between different contexts and
freeing up hardware resources prior to shutting down the game application. In our Game Content
Model, we break down a game into sections known as game context. A game context describes the type
of game content to be presented to game players which can be either in the form of a game
presentation or a game simulation (see Section 5.3.1.1). As described in Section 5.3.5, game scenarios
are contents to a game simulation. Separating game scenario from game simulation enables us to use
the same game scenario in a different yet compatible game simulation setup. These contexts are
loaded into the Game Context System’s Active Contexts Stack based on the flow of the game defined.
This stack-based approach allows multiple contexts to be rendered in the correct order, producing a
layered effect as described in Carter, Rhalibi , Merabti & Price (2009).

Each context has its own methods for: initialising the data or components required; an update
method which updates state of the context; and a render method which presents the visuals on the
screen. Update and render routines are invoked at 30-60 time steps per second. The updates can also
be multithreaded using fork-join parallelism (Kim & Agrawala, 1989). The clean-up method is
invoked when a context is popped out from the active contexts stack to free off resources. Game
contexts which are frequently used can be placed in a resource pool to avoid constant loading and

unloading which could result to performance slowdown. UML diagram Game Context System (Game

Page 108

Context Manager) and Game Simulation System (Game Simulation Manager) is available in Figure
B.1 (Appendix B).

The transition from one context to another is triggered by the event trigger (refer to Figure B.2 in
Appendix B). Event trigger monitors a defined event which can be an application event
(GameMechanicsTrigger), an input event (InputTrigger) or a time-based event (TimeTrigger). When
the condition of the event is met, it notifies the Context Manager to push out the expired context and
pop in the next context into the Active Context stack. Each event trigger is synchronised with the
main update method which can be monitored by a manager such as the Game Mechanic Trigger and
the Input Trigger whereas Time Trigger and proximity trigger are monitored in the respective update
methods (which are also synced with the main update method) of the class it composed of.

At the top-most level of the game software is the computer game application itself which uses the
game context system and provides the necessary interfaces for the game player to interact with the
game. The game player component, as described in the Game Content Model, is composed of a
reference to a game object which acts as an avatar, a set of attributes that determines the game player’s
vitality or performance, a set of control maps which wires input events to the associated action of the
avatar, a structure to store virtual items that player can own in the game and a statistical log of the
player’s performance which are integrated into the game (refer to UML diagram for Game Player in
Figure B.3, Appendix B).

A game can be dependent on a fixed time step or variable time step. In our Game Technology
Model, we favour for simplicity over complexity and hence have opted for fixed time step
implementation. Within the game update method it checks for any input and application events and

synchronises with the update method for each context.

Page 109

Main ()

gameRunning true
fps = 30

delay 1000/ fps
gameTime 0
sleepDuration 0

nextTick = GetTickCount ()

While (GameRunning) {
Game.Update ()

Game .Render ()

nextTick =+ delay
sleepDuration nextTick - GetTickCount ()

If
{

(SleepDuration >= 0)

Sleep (sleepDuration)

}

Figure 5.52: Fixed time step game loop

5.4.1.2 Game Simulation System

Resource
Management

Load

Game Scenario

(Scenario 1><Scenario 2) (Scenario 3)

(Game Simulation
System

Uses

Game Resources

| Initialise |/ L Update Transform PS@ gztri:g)géé)cflfor
Update |<£:'| Update Bounding Box |4 e Data :or game
P Q'ﬂ Update Animation Pk—"(Animation) object 1
etc... | — \\| Update Object States |4 Data for game
}\ \1 Update Object/Logic F\> object 2
/ | Cleanup | [Update Sound H _
~ 4 4 Draw Model H— .(Graphic)

Figure 5.53: Game Simulation System
When an instance of a simulation context is made active, the Game Simulation System (see Figure
5.53) loads in the associated description of game scenario as part of the initialisation routine and plug-
in the relevant components and its settings to operate the simulation which include environmental
forces which affects the game physics. A game scenario, in our model, is represented by a game
environment (that is composed of a collection of game objects), a set of game events, a set of virtual
cameras, a difficulty indicator and a set of game rules (which dictates the outcome of the interaction
from two game objects) (Tang & Hanneghan, 2011b). Game objects required for construction of the
game environment are created and organised in a scene graph (see Figure B.4 for SceneGraph UML

Diagram in Appendix B) allowing the rendering of graphic components in the correct order. Data

Page 110

associated with game objects are stored in a collection which can be fetched and updated directly
rather than having to traverse through the scene graph.

The Game Simulation System maintains two scene graphs: a scene graph for media, GUI and FED
(2DGraph scene graph); and a scene graph for proximity triggers and game objects which made up the
game environment (GameEnvironment scene graph is defined within the GameScenario class). The
scene graph that stores game environment will be rendered to the image buffer before the 2D scene
graph to allow final construction of render frame which has the media, GUI and FED overlaid on top
of the game environment (see Figure B.5 in Appendix B for pseudo-code illustrating update and
render method implementation in simulation context; and Figure B.6 shows the pseudo-code for
recursively updating the nodes in scene graph. Similar algorithm can be used for rendering all nodes
in a scene graph.).

At each update routine of the Game Simulation System, all game objects have their transform and
animation updated. Object state, game data and other computationally demanding process such as
collision check of the game objects are updated at different time intervals to avoid performance
slowdown. Dynamic objects which no longer exist are removed from scene graph and data associated
are destroyed during runtime. The events defined in the game scenario are also triggered in the update
routine of the Game Simulation System. All update and render routines are in synchronization with

the main game loop.

5.1.1.1.1 Game Scenario

A game scenario holds all the relevant data and data structures that represent a level in a game. Most
of the description of a game scenario can be represented as data but descriptions such as game
interaction rule and game scoring rule are automatically embedded in the respective game object
Update() method whereas events are encoded in the game scenario Update() method for optimal
performance using our MDE tool (see Figure B.7 in Appendix B for UML representation of Game
Scenario). In addition to triggering game events, the Update() method in a game scenario checks if all
game objectives are met and updates the game objects within the game environment scene graph. An

example of Update() method for game scenario is available in Figure B.8, Appendix B.

5.1.1.1.2 Game Object
A game object is the primary data structure which will be processed in the Game Simulation System

using the facilities provided by the game component. Game objects consist of attributes that hold

Page 111

values of existence (vital signs) such as objects attributes, position, mass, solidity state and size of
inventory (which defines the amount of objects associated with it), and behavioural characteristics
which are represented in the form of motion, action, attribute updates, sound and intelligence. These
can be represented by three distinct classes namely, Actor, DynamicObject and StaticObjects. In the
software context, we can abstractly represent the nine categories of game objects described in Section
5.3.4 into Actor, Pickup and Static. Actor and Mechanical categories fit into the Actor Class.
Consumable, Enhancement, Projectile, Item, Structural and Surface categories of game object are best
represented using the DynamicObject class, while Decorative category of game object is represented
using the StaticObject Class as illustrated in the UML Diagram for Game Object in Figure B.9,
Appendix B.

In terms of mapping the game object from Game Content Model to Game Technology Model, the
object attributes and animation sequences are easily mapped from the definition in Game Content
Model into the structure. Action definitions of the game object such as animation, sound and motion
can be invoked from the Update() method. These are grouped into the relevant action state of the
game object as defined in the Game Content Model. This approach allows easy pairing with input
event or decision making in AL The input or AI components will only need to change the activeState
of the object to trigger the paired action. Each action is marked in a conditional statement using a
unique identifier as illustrated in Figure 5.54. At each game object update call, it checks the activeState
which is changed when certain input event is triggered or Al decisions are called. Input events are
updated at the main game loop whereas Al routine is done right before the invocation of the actions.

For a more detail example, see Figure B.10.

If (this.actionState == 2)//Pick

{
collisionObject = PhysicManager.checkCollision(this, GameEnvironment)
If(collisionObject.type == “HealthPack”)

{
AnimationManager.SetSequence (this, “Pick”)
this.health.add(25.0f)//health is a vital
}
ElselIf (collisionObject.type == “Key”)
{
AnimationManager.SetSequence (this, “Pick”)
this.inventory.add (object) ;

Figure 5.54: Example of Action definition in a Game Object

Page 112

Within each action, a further query can be invoked to determine the actual state of an object. This
could be in the form of collision checking to determine if a game object is within the boundary of
another game object (which is defined by a game interaction rule in Game Content Model) or
checking an attribute’s value or inventory of the game object as illustrated in the pseudo-code in
Figure B.10. An action, as described in the Game Content Model, consists of method calls to the
relevant components such as physics and animation to update and transform the game object which is
automatically transformed from specification of game design in our framework. It also consists of
commands to invoke playback of audio files and relevant data updates to vital and inventory. The
main update call will traverse the game environment scene graph and update all the states, data and
transforms before executing the render routine.

The Render() method of a game object processes and displays the object appearance on the screen
using facilities in the renderer component. In conventional approaches, all transforms are computed
prior to the actual rendering process. In our data-driven approach, all the transform and rendering is
computed by the renderer through an overloaded Render() method. This approach separates game

logic from component computation simplifying transformation and generation of code.

Function Render (Component RenderManager, VirtualCamera camera) {
If (camera.WithinFrustum(this))
{
RenderManager.Render (this, camera)

}

Figure 5.55: Pseudo-code for Render method in a Game Object

5.4.2 Core Components

Components of game engines vary depending on technology features and are often constrained by
particular game genres, technology platforms (hardware) and visual dimension of the game world (2D
or 3D), but there are some common technology components across all game engines. These are the
core technologies that enable the creation of a variety of game software solutions, each featuring
creative and compelling content. The core technologies we identified are graphics (renderer),
animation, audio, input, game physics, user interfaces, networking and game resources management. In
the following subsections we describe these core technologies in brief. For the purpose of our Game
Technology Model, we treat each of the components as a “black-box” for processing respective game

data. In the following subsections, we describe the features and functionality of each core components

Page 113

and define the necessary interfaces which encapsulate the detail implementation for processing the

game data defined in Section 5.4.1.

5.4.2.1 Renderer
The renderer is key component to any 2D or 3D graphic engine that is responsible for graphics-related
computations and rasterised screen output. The 2D renderer provides the interface for graphic
hardware and draws 2D graphics, whilst the 3D renderer provides additional functionalities such as
loading 3D models, rendering and managing textures, applying different type of materials and blends
to the texture, rendering static and dynamic lighting in the scene, displaying viewports and virtual
screens, and providing control to the virtual camera. Other features which are found in a renderer also
include particle systems and post-processing used for visual effects. In recent years, 3D graphic
engines have gained significant popularity over 2D graphic engines due to the consumer demand for
3D games, whilst most 3D engines also support creation of 2D games through some clever
exploitation of the technology, such as orthographic projection (Gregory, 2009). However, 2D graphic
engines are still relevant, particularly on lightweight platforms such as the mobile and web platforms.
In our Game Technology Model, the renderer is initialised, set-up and shut-down by the Game
Context Manager. This configuration allows us to plug-in different types of renderers such as DirectX,
OpenGL and ORGE in the software system. During initialisation renderer is paired with the graphic
device and necessary setup information such as draw mode is defined. In our data-driven approach,
the renderer takes in various data structures and renders it to the image buffer before displaying to
screen instead of embedding the rendering instructions in each object’s Render() method as illustrated
in the UML diagram in Figure B.11. Each of the render-able objects defined in the Game Content
Model share a common interface named iRenderable which consist of a render method as shown in
Figure B.4. Within each of the render method data structure of the object is passed in as parameter to
the renderer for processing. Platform specific details required by the renderer will be filled in when
Game Technology Model is translated into Game Software Model. Details implementation of each
render-able object will be generated by generator from predefined code templates through mapping

techniques.

5.4.2.2 Animation
The animation component is responsible for determining the next pose of a 3D model or the next

frame of a sprite, independent of its spatial position within the world. A 2D animation component

Page 114

would extend the functionality of a 2D graphic engine to include management of animation state
which is why many would regard the animation subsystem to be part of the renderer. However, the
animation data is different from graphic data and therefore it should be processed separately by the
animation component. The 3D animation component for 3D is conceptually similar to the 2D setup,
retrieving animation data from a file in order to modify the skeleton or vertex mesh of a 3D model
(i.e. Skeletal vs. Morph Target animation (Gregory, 2009)). Advanced facilities such as blending
(transitioning from one animation state to another), inverse kinematics (IK), decompression of
animation data, animation playback and procedurally animating free-form body movement are also
packaged within this component.

The animation component in our Game Technology Model caters for three variation of animation
techniques namely; sprite animation, frame-based skeletal animation and frame-based skeletal
procedurally-driven animation. This can be easily extended to include other techniques mentioned
earlier. Each of these animation techniques provides a set of methods to manipulate the data defined
in the game object (refer to Figure B.9). The core methods include the setSequence() method which
jumps the animation playhead to the correct sequence and updateAnimation() which updates the
transform of a mesh or clipping in a sprite sheet. The RecordAnimation() method records transform of
all objects in the scene graphs into a playbackBuffer, whereas the PlaybackAnimation() sync with the
core update and render method when playback mode is triggered. This declaration act as a wrapper on
any form of animation implementation and it is the role of the model translator (MDE tool) to map
the choice of game dimension to the compatible animation technique. The detail implementation of
this is filled in upon generation of artefacts using the appropriate MDE tool. The construct of the

animation component is illustrated in Figure 5.56.

AnimationManager

PlaybackFrame

+ playbackindex {get; set;} : integer playbackBuffer:Array
+ maxFrame {get; set;} : integer 7 "

+ setSequence(GameObject object,string sequencelD) : void
+ UpdateAnimation(GameObject object) : void
+ RecordAnimation(SceneGraph gameEnvironment) : void
+ PlaybackAnimation() : void

TTT

SpriteAnimation SkeletalAnimation ProceduralAnimation

Figure 5.56: Animation Component (AnimationManager) in UML Diagram.

Page 115

5.4.2.3 Audio
The audio component offers facilities to interface with the audio hardware and manage the playback
of audio. In a 3D game engine, the audio subsystem is extended to include 3D audio model which
allow game players to perceive sound originating from a positional source.

The audio component in our Game Technology Model consists of a collection of methods that
handle the audio task smartly. The assignment of audio channel is managed internally by the
component itself. All the complexities of audio playback are encapsulated within the high-level

methods such as Play(), Pause(), Resume() and Stop() featured in Figure B.12.

5.4.2.4 Input

The input component handles all the input events triggered by game players either via traditional
human interface devices (HID) such as keyboard, mouse, joystick or newer gestural devices such as
the PlayStation® Move and Microsoft® Kinect. Each input event is managed by the input subsystem to
trigger specific instructions including GUI events and in-game commands.

The input component in our Game Technology Model listen to all event streams from the
hardware interface device. All input interfaces are registered via the AddListener() method during
initialisation of context (see Figure 5.57). All input event are tracked in the Update() method of the
individual hardware. Whenever an event occurs, it checks through the monitoredInputs list which is

maintained by individual hardware and trigger the necessary notification via Nofity() method.

InputManager

+ Initialise() : void
+ Update() : void
+ Cleanup() : void

1

*

Hardware

InputTrigger

monitoredinput : Array

+ Initialise() : void
+ AddListener(InputTrigger inputTrigger) : void 1 *
+ Removelistener(InputTrigger inputTrigger): void
+ Update() : void
+ Cleanup() : void

Mouse Keyboard

Figure 5.57: Input Component (Input Manager) in UML Diagram.

Page 116

5.4.2.5 Game Physics

Game physics is the component that applies the law of physics making the game world to behave
realistically. Motion, collision detection and collision reaction are the generic forms of computation
performed by the game physics component. The complexity and scope of game physics are dependent
on game genre and type of game. For example, games such as Gran Turismo (http://www.gran-
turismo.com/) would expect the physics computation to be very realistic whereas the game physics in
Need for Speed (http://www.needforspeed.com) is more forgiving and tuned to accommodate the
game-play.

The game physics component in our Game Technology Model consist a collection of methods
which wraps any game physics implementation into reusable components in our framework (see
Figure 5.58). ApplyForce() and GetContsraint() methods simplify the definition of motion where all
the complex computation will be done background through the invocation of ApplyForce() method.
The constraints in this context refer to the environmental forces which are defined during the
initialisation of the scenario through the RegisterConstraint() method. Detection of collision is
performed via the call of CheckCollision() method to check if any two bounding volumes are
intersected. When a collision occurs, reaction can be applied. Reaction can be in the form of motion,

animation or sound. Reaction in form of motion can be invoked through the ApplyRecoil() method.

PhysicsManager constraints:Array

7 . Force

+ ApplyForce(GameObject object, float forceValue, Vector3 forceAngle,
Force constraint) : void

+ ApplyRecoil(GameObject object, float forceValue) : void

+ CheckCollision(GameObject object1l, GameObject object2) : boolean

+id {get;} : string
+ forceValue {get;} : float
+ forceAngle {get} : Vector3

+ CheckCollision(GameObject object, SceneGraph environment) : boolean
+ RegisterConstraint() : void
+ GetConstraint(string forcelD) : Force

Figure 5.58: Game Physics Component (PhysicsManager) in UML Diagram.

5.4.2.6 User Interfaces (Ul): Graphical User Interface (GUI), Media and Heads-Up Display
(HUD)

Game software uses GUIs both in-game and out-of-game as a graphical means for accessing functions
or commands within the system. Buttons, list-boxes, checkboxs, radio-buttons, textboxs, tabs and
scrollbars are each examples of commonly used GUI components. For critical game information that

affects game-play, HUD elements such as a digital counters, analogue gauges, mini maps and

Page 117

horizontal graphical bars are also often used to notify game players about the changes of game state
and so aid in the game-playing process.

The GUI components are widely used in both in-game and out-of-game user interfaces. In our
Game Technology Model, we listed five different types of commonly GUI components namely button,
checkbox, listbox, radiobutton and textbox (see Figure B.14 in Appendix B). In games, GUI can be
themed and in-game UI tends to be heavily themed and customised (especially in Real-Time Strategy
genre). This can be extended from the five core GUI components defined in our Game Technology
Model. Each component has its own data to be updated and specific method to render its
representation visually. These implementations are weaved into the Game Technology Model using
MDE tools during generation. For optimisation purpose, the GUI components will only be updated at

every n'

frame which is controlled at the main update loop.

The media components are mostly used during out-of-game setting. Commonly used asset font
and sound are pooled in the game resource management component (see Section 5.4.2.8). For less
common asset such as image, audio and background sound (which is commonly used in presentation
context) (see Figure B.15 for UML representation of media components), these are loaded during
initialisation of the context and the states of these components are updated in the Update() method
which is synced with the parent’s update loop. Video and sound components only stores settings and
points to the asset location. The playbacks are handled by the Video Player component (see Section
5.4.2.8) and Audio component (see Section 5.4.2.3).

The FED components are in-game GUI designed specifically to provide visual information to
game-player in real-time. These highly customised component has the standard Render() method and
Update() method which will have most of the implementation are written. These components will

need to be initialised at the beginning of the simulation through the Initialise() method where

reference variables are established (see Figure B.16 for UML representation of FED components).

5.4.2.7 Video Player

Media such as text, graphics, sound and video are also widely used in games for presenting game
related information. The intricate process of video playback is carried out by the video player
component. Video playback is often used in game to show cinematic cut-scenes and perform the
majority of the storytelling (some games may opt to use scripted animation using the animation

component to provide seamless continuity from cinematic to game-play).

Page 118

The video player component in our Game Technology Model includes the Play() method which set
up the screen and begins the playback of a compatible video file, Pause() method which pauses the
video playback, Resume() method which resumes the playback, and Stop() method which stops the
video playback and notify the ApplicationEventManager that the video playback has ended (see Figure
B.13). The notification of end of video playback will trigger the transition to next defined context

which is defined as part of the flow of the game application.

5.4.2.8 Game Resources Management

Game resources or game assets are usually produced using Digital Content Creation (DCC) tools.
These can include 3D models, textures, materials, fonts, 2D sprite sheets, collision data, animation
data, sound files, level data and others. The game resource management is the component that
provides the facilities for loading and unloading these resources into the game system.

In our Game Technology Model, the Game Resource Management component provides the
essential helper methods to load resources and convert the content to the format compatible with the
data structures in the Game Technology Model (see Figure 5.59). Shared assets such as fonts and
sounds are stored in the respective resource pools for quick retrieval. Each font and sound is tagged
when loading into the resource pool for ease of retrieval. Unused font and sound can also be unloaded

when it is not used to free up memory.

GameResourceManager
sounds:Array

<1>—* SoundComponent
+ Load(string source, Mesh mesh) : void
+ Load(string source, Sprite sprite) : void
+ Load(string source, AnimationData animationData) : void
+ Load(string source, string fontName) : void fonts:Array
+ Load(string source, string soundName) : void O S Font
+ Load(string source, Video video) : void 1 *
+ RetrieveFont(string fontName) : Font
+ RetrieveSound(string soundName) : Sound

+ UnloadSound(string soundName) : void
+ Unloadfont(string fontName) : void

Figure 5.59: Game Resource Management Component (Game Resource Manager) in UML Diagram.
5.4.2.9 Artificial Intelligence (Al)
AT provides Non-Player Character (NPC) abilities to decide, plan and act in a game scenario.
Commonly used AI techniques in games include goal-driven decision making, path finding and

perception traces which are adjusted to provide a challenging and yet balanced form of game-play.

Page 119

Again, these techniques can vary depending on games genre. Real-time strategy games such as
Command and Conquer (http://www.commandandconquer.com/) use a wide range of Al techniques
such as chasing and evading, flocking, path-finding and case-based reasoning, whereas games such as
Need for Speed would rely heavily on waypoint navigation.

In our Game Technology Model, the AI component is designed to be integrated with the game
logic but also extensible. Each technique is treated as an instance to process specific data of a game
object through referencing. Whenever a specific AI technique is required, it is accessed directly via the
instance of the technique. The AI component’s Update() method is synchronised with main update
method to ensure game objects are updated at each frame. This is invokes the update method of the AI

techniques such as path finding and flocking shown in Figure 5.60.

AlManager DecisionMaking

reasoner

1 1| + Decide(GameObject object, Decision[] decisions,

bool learn) : string

+ Update() : void
+ Clear() : void

pathfinder T 1 1 <> flocking

1 1

PathFinding Flocking

objectsOnPath : Array

ObjectOnPath

+ maxVel {get; set;} : float

Position

GameObject

+ FindPath(GameObject object,
GameObiject[] obstacles, target) : void
+ Update() : void

+ Clear(string objectID) : void

+ Clear() : void

+ maxAcc {get; set;} : float

+ avoidDist {get; set;} : float

+ neighborDist {get; set;} : float

+ avoidWeight {get; set;} : float

+ headingWeight {get; set;} : float

boids* : Array
targets* : Array
obstacles*: Array

GameObject

o————————
1

*

+ centroidWeight {get; set;} : float
+ targetWeight {get; set;} : float

+ Flock() : void

+ Update() : void

+ Clear() : void

Figure 5.60: AI Component (AIManager) in Class Diagram.

5.4.2.10 Networking

The networking component is used in games software to facilitate multi-players. It handles all the
aspects of communication between client and server. Elements of networking component include
authorisation, authentication, structuring and filtration of game messages, low-level communications,
task interface, protocols, network introspection, and data interpolation and extrapolation (Carter,
Rhalibi, Merabti, & Bendiab, 2010). This component is excluded from use when game software is

developed solely for single player on local machine.

Page 120

54.3 Helper Components
Other components which are commonly used and deem useful in game software includes the math

library, random number generator and unique object identifier management.

5.4.3.1 Math Library

The math library provides the base classes for representing game objects transforms for virtual
positioning and bounding volume for a range of application including collision detection, Al etc. In
our Game Technology Model, we identified the four most used math-based classes as Vector2,
Vector3, Vector4 and Matrix. These are featured in Figure B.17.

In addition, it also provides the necessary arithmetic methods for computing these data structures.
The arithmetic methods for vectors will include computing the length of the vector; computing the
square length of the vector; dot product between two vectors; cross product between two vectors; sum
of two vectors; difference of two vectors, scaling of a vector; interpolate between two vectors;
normalisation of a vector; transforming a vector or an array of vectors, it’s coordinate and it’s normal
using given a matrix; and, projects and unprojects a given vector3 or an array of vector3s from object
space to screen space.

The math library should also include a range of methods for computing matrix such as the identity
matrix; finding the determinant of a given matrix; decomposing a matrix into scale, rotation and
translation vectors; computes the transpose of a given matrix; computes the product of two given
matrices; computes the inverse of a matrix; building matrix for scaling, translation, rotation,
transformation (both 3D and on 2D (xy-plane)), affine transformation (both 3D and on 2D(xy-
plane)), look-at (camera focusing on a focal point), perspective and orthographic.

The math library should also include commonly used math constants such as PI () and
trigonometry functions sine, cosine, tangent, cosecant, secant and cotangent for calculating angles.
Other functions that may be of great help also include methods for converting between radian and
degree, value rounding and truncation, and physics-related methods such as building bounding

volumes (box and sphere) and checking of intersection between a ray and a volume.

5.4.3.2 Random Number Generator
Random number generator is a “must-have” facility in game software. It is used in dynamic
generation of game objects, varying factors that create dynamic conditions in scenario, decision

making in AI etc. Most random number generators are in fact pseudo random number generator

Page 121

which produces a sequence of numbers which appears to be random in a repeated cycle. A seed
(usually system time) is passed in to initialise the starting point of the sequence by means of disrupting
the predictability. However, modern software platform may have seeding integrated in the generator
which makes implementation cleaner. In terms of outputs of the random number generator, some
produce floating point number and others generate integer. In our Game Technology Model, we
choose to have a random number generator with integrated seed that outputs both floating point and
integer value with some helper methods such as generating random number between a given ranges of

value (see Figure B.18).

5.4.3.3 Unique Object Identifier Management

A large quantity of game objects are created during runtime in any game scenario to enliven the
scenario and make game-playing more dynamic. Each of the game objects created need to have a
unique identifier for identification and referencing purposes. The unique object identifier
management is the helper component that generates a unique identifier. In our Game Technology
Model, this helper component returns an identifier that begins with a prefix and followed by integer.
The prefix allows classification of game objects and it is registered during initialisation of a game

scenario. This component is illustrated in Figure B.19.

5.5 Game Software Model (GSM)

The Game Software Model is the final layer of model in our model-driven framework, which
promotes interoperability of game software. It completes the representation of computer game
software by translating and transforming the Game Technology Model to specific technology
platform. The Game Software Model for each technology platform varies from one another and this is
defined by someone who knows the targeted technology platform inside-out and understands the
model-driven approach proposed in this thesis.

The Game Software Model is designed by a technical person who possesses great understanding of
the model driven framework and the technology platform. Developers of the Game Software Model
may choose one of the two different perspectives; (1) to bridge the Game Technology Model to an
existing game software framework (e.g. Microsoft’s DirectX) or (2) to implement game software from
scratch for an intended technology platform. Both these exercises may require platform specific details
or components to be added which has been omitted in the Game Technology Model. It is worthy to

note that Game Software Model is incrementally built-up from Game Technology Model with the

Page 122

inclusion of the aforementioned platform specific components (see Figure 5.61 and Figure 5.62 for an
overview of Game Software Model). In this section, we can only provide necessary guidelines for
defining the Game Software Model for the two approaches identified as it is not feasible in the current

scope of this project.

5.5.1 Mapping Game Technology Model to a Specified Game Software Framework

¢ ™
GAM E SOFTWARE MODEL The bridge between a Game Technology Model
and a game software framework.
GAME LOGIC
AND GAME CONTENT
INTERACTIVITY
GAME e GAME SIMULATION SYSTEM
SPECIFIC [- M J SERVICE
__ COMPONENT
USER VIDEO GAME

CORE [wtimnee [R [oty [monnon | [oene | awoo | amirERe,] | erwomons
COMPONENTS

[INPUT } [GAME RESOURCE MANAGEMENT }
HELPER RANDOM NUMBER UNIQUE OBJECT IDENTIFIER
COMPONENTS [MATH LIBRARY J { GENERATOR MANAGEMENT

USER VIDE ME ARTIFICIAL
e | (e, [mes | (nonet) [i]t | i
COMPONENT
WRAPPERS [INPUT WRAPPER } [GAME RESOURCE MANAGEMENT WRAPPER }
RANDOM NUMBER UNIQUE OBJECT IDENTIFIER

[A] [GENERATOR WRAPPER] [MANAGEMENT WRAPPER]

A CES [vaos] [Jpuvsics J [Mgmo"J [Fom} esH [TEXTUREJ [sounos] [scﬁ'm]
N

Figure 5.61: Overview of Game Software Model that bridge Game Technology Model to a game software
framework.

Implementing the Game Software Model for an existing game software platform will require
framework developers to map the components presented in the Game Technology Model to the
chosen game software framework. Often it is likely to achieve a one-to-one mapping of Game
Technology Model components with game software framework components with possible inclusion
of information that is required by the game software framework. In some cases, it may require Game
Software Model designer to provide additional constructs to work around the game software
framework in order to components from Game Technology Model mapped across. Details of the
additional information and constructs would depend on the choice of game software framework and
how the Game Software Model designer maps Game Technology Model to the chosen game software

framework. Figure 5.61 illustrates the overview of Game Software Model with component wrappers

Page 123

(shaded in grey colour) which map components of Game Technology Model to the appropriate

component in a game software framework.

5.5.2 Additional Platform Specific Details to Game Technology Model for a Software
Technology Platform

e D

GAM E SO FTWARE MODEL for a software technology platform

GAME LOGIC AND
INTERACTIVITY

GAME CONTENT ’

GAME SIMULATION SYSTEM

GAME SPECIFIC GAME CONTEXT |

SYSTEM
SYSTEMS GAME OBJECT ’ | GAME SCENARIO | SERVICE

COMPONENT

NETWORKING

USER INTERFACE VIDEO PLAYER GAME ANIMATION GRAPHIC AuDIO ARTIFICIAL
PHYSICS INTELLIGENCE

CORE
COMPONENTS

] [GAME RESOURCE MANAGEMENT]

H
5
c
S

HELPER
COMPONENTS
PLATFORM
SPECIFIC
COMPONENTS

gEAS“(,I)fJRCES [VIDEOS] PA::X/ISIIE(;TERS] [ANI:JVK_\rHON] [FONTS] [MESH] [TEXTURE [SOUNDS] [AI SCRIPT

)

WINDOW MANAGEMENT] [FILE SYSTEM] [TIMER] [GRAPHIC WRAPPER

—

[PHYSICS WRAPPER]

)
—
—

Figure 5.62: Overview of Game Software Model that includes platform specific components for a software
technology platform.

Unlike the former approach described in Section 5.5.1, designing a Game Software Model for a
specific software technology platform will require the addition of certain platform specific
components which are used by the core components. These are identified by Gregory (2009) as
window management, file system, timer, graphics wrapper and physics wrapper. Most game software
frameworks would have these platform specific components implemented in low-level code that is
coupled to a specific operating platform to ensure it delivers the performance required of the game
software. In our approach, these platform specific components have been omitted from the Game
Technology Model and are only added in the final stage of the model transformation to achieve true
operating platform independence. Implementers of our Game Software Model will have to define
these platform specific components so they can be mapped to the right implementation during the
generation of program code. This makes the Game Software Model structure differ from the earlier
version described in Section 5.5.1 as the component wrapper is replaced with platform specific

components (shaded grey in Figure 5.62). In the following subsections, we describe the functional

Page 124

requirements of these platform specific components as guidelines for Game Software Model designers

to design the Game Software Model for the platform of their choice.

5.5.2.1 Windows Management

The window management component handles the creation of windows (canvas areas) for displaying
game content visually on screen in a game application. Windows are layered on top of each other with
the active window being on top. In our Game Technology Model, the ordering of windows is achieved
using an active context stacks as explained in Section 5.4.1.1. This window management component
serves as a foundation to the game context system and provides the facilities to ease the creation of
windows to display game content in different context. Functional requirement on this component is
shown in Table 5.2. This component should work side-by-side with the Game Context Manager

described in Section 5.4.1.1.

Table 5.2: Functional Requirement for Window Management Component

Functional requirement(s)

Create a window for displaying context based on given
dimension, position and other parameters such as title of the
window, setting focus to this window, allowing or disallowing
window to be minimised and framing of the window.
Minimise a window.

Restoring a window to its original dimension.

Removing a window from the application.

Retrieving context from a window.

5.5.2.2 File System

File system is very dependent on the operating platform. Each operating platform has its own
meticulous approach of storing and retrieving a file. In the context of game software, file system is the
basic facility for loading game resources by the Game Resource Manager, game settings and game
player’s progress from file into the game application. The saving facility allows the application to
create files to store game player’s progress and amended application setting on the operating platform

for later retrieval. Functional requirements for this component are described in Table 5.3.

Page 125

Table 5.3: Functional Requirement for File System Component

Functional requirement(s)

Read binary file from a given file path
Read text file from a given file path
Write binary file to a specified file path
Write text file to a specified file path

5.5.2.3 Timer

The timer component is crucial for any real-time software such as game as it provides the notion of
time which is used in computing time-step and other aspects in game software such as motion,
animation and recording player’s performance. In our Game Technology Model, we have opted for
fixed time-step game loop which rules out the use of timer in motion and animation. Nevertheless,
timer component still plays a major part in computing fixed time-step and recording performance of
game-player. The timer component only has one and only one important facility; to query the
processor’s timer. For finer time calculation, some timer provides facilities to access processor’s cycle
and frequency to compose a high-resolution timer (nanoseconds). In our Game Technology Model,

we will only require milliseconds timer. This is described in the functional requirement in Table 5.4.

Table 5.4: Functional Requirement for Timer Component

Functional requirement(s)

Read CPU time in miliseconds

5.5.2.4 Graphic Wrapper

The graphic wrapper encapsulates functionalities of graphic library into reusable methods for use in
game development. DirectX, Java 3D, OpenGL and OpenGL ES (for embedded systems such as
smartphone, tablet and portable game consoles) are examples of graphic library available for selection.
Selection of the graphic library is dependent on the choice of software technology platform. For
example, the DirectX graphic library is only compatible with software technology platform just as the
native C/C++ and the NET framework. So for someone who wishes to develop on Java, they will have
to choose Java 3D or OpenGL graphic library. In our Game Technology Model, the graphic wrapper
should provide the necessary functionalities as described in the functional requirement in Table 5.5

which are used by renderer component described in Section 5.4.2.1.

Page 126

Table 5.5: Functional Requirement for Graphic Wrapper

Functional requirement(s)

Interface with the hardware device

Access the buffers

Perform transformation to the vertices
Rasterize vertex into pixel

Render to screen

Render to buffer

Merge render output to form a final output

5.5.2.5 Physics Wrapper

The physics wrapper, like the graphic wrapper, encapsulates functionality of a 3™ party physics library
for use in the game software. There is a range of physics library available for use such as Box2D, Open
Dynamics Engine and Havoc Physics are few to name. Primarily, these physics engine provides all the
functionalities to compute motion, trajectory and detect collisions. The aim of the physics wrapper is
to provide the interface to these functionalities so it can be used by the game physic component
described in Section 5.4.2.5. The functional requirements of the physics wrapper are described in

Table 5.6.

Table 5.6: Functional Requirement for Physics Wrapper

Functional requirement(s)

Computing motion using force and constraints
Computing recoil based on given force and transform

5.6 Chapter Summary
In this chapter, we have described our novel model-driven computer game framework detailing our
architectural strategy, the framework itself and the models namely Game Content Model, Game
Technology Model and Game Software Model

Our novel model-driven game framework is designed to support the production of a variant of
computer game software that covers a wide range of technology platform as well as operating
platform. The loose-coupling of modules (as described in Section 5.2) provides developers the
flexibility to substitute modules and yet maintain the integrity of relationships between the modules.
At the core of the framework are the models namely the Game Content Model, Game Technology

Model and Game Software Model.

Page 127

Our novel Game Content Model improves on the existing work GOP, RAM and NESI by
providing a formalised approach and a complete set of concepts for representing game design. It
combines our study on game design, game development and computer game with a selection of
concepts from the aforementioned existing works to form a formal model. We have shown how VSM
can be exploited for use in designing the game object concept as described in Section 5.3.4. The VSM
has been used as a tool to enable us to identify the key attributes to representing a game object in our
Game Content Model. Our Game Content Model is unique and complete formalised model for
representing game design amongst with the game models described in Chapter 3.

Our Game Technology Model is designed based on the data-driven architecture and include the
essential game specific systems and core components of software which facilitates the operation of the
computer games. The Game Context System handles the transitions between contexts and work
cooperatively with the Game Simulation System to simulate a scenario. For ease of processing, scene
graph is used to organise render-able and updatable objects such as media components, GUI
components, FED components, game objects and lights. These objects are processed using the
platform independent core components such as renderer, animation, audio, input, game physics, user
interfaces, video player, game resource manager, networking and artificial intelligence. Supporting
these core components are the helper components namely the math library, random number
generator and unique object identifier management. The architecture of our Game Technology Model
is designed to allow mappings between the components of the Game Technology Model and the
components of any other game software framework possible. This common setup of our Game
Technology Model can be used by developers to create their own proprietary game software
framework. Alternatively, it can be regarded as a generic virtual wrapper for existing game software
frameworks. The functionality of each component defined in the Game Technology Model act as
interfaces that wrap a different implementation of a game technology. This allows computer games
software to be produced on different technology platforms through code generation which reads the
Game Technology Model and translates it into software artefacts.

The Game Software Model is the platform specific software representation of the game software. It
is a Game Technology Model with the inclusion of platform specific information or components
which has been excluded from the Game Technology Model. Game Software Model is designed by a
technical person who possesses great understanding of the model driven framework and the

technology platform. Due to the wide range of technology platform available, we chose to describe the

Page 128

platform specific details to be added to the Game Technology Model based on the approach chosen.
These platform specific components can be replaced without affecting much of the other aspects of
the software defined in the Game Technology Model when a new operating platform is chosen.
Finally, the Game Software Model can then be interpreted using MDE tools to generate the necessary
software artefacts including software codes and software build.

In summary, our novel model-driven game framework could be a blueprint for framework
developers who wish to develop high-level tool using model-driven approach for non-technical
domain experts to produce a range of computer games for use in game-based learning. The Game
Content Model provides the building blocks for designing a variation of computer games while the
Game Technology Model and Game Software Model provide the software constructs that make the
computer game functional as game software on the targeted operating platform. Although we have
gone through a lot of detail describing the technical aspects of our model driven framework, it should
be borne in mind that the model driven engineering approach hides all of these from the actual
domain experts and we include these only for completeness. In next chapter, we present a case study
to demonstrate the production of serious games using our model-driven approach and evaluate the

works carried out in this thesis.

Page 129

CHAPTER 6 - CASESTUDY &
EVALUATION

This chapter presents a case study on the use of the modelling environment and MDE tools developed
using our Model Driven Games Development Framework described in Chapter 5 and a critical
evaluation of the work carried out in this research. Our case study describes how a domain expert
would model a serious game and use our Serious Games Modelling Environment (SeGMEnt) and our
MDE tools to produce a serious game. A comparison with conventional production approach is then
made. The critical evaluation covers an evaluation of the framework proposed in Chapter 5, the

prototype implemented in Appendix C and the case study conducted in this chapter.

6.1 Case Study: An application to Serious Games for Game-based Learning

This research project was set out to design a model driven framework that supports the development
of serious games for use in game-based learning. One of the challenges this research study aimed to
address was to provide domain experts with few game development skills a tool which they can use to
develop or prototype serious games. The SeGMEnt and the MDE tools are designed specifically for
this purpose. In this case study, we demonstrate a use case scenario of our model driven approach and
show how it can help non-technical domain experts in the production of serious games in comparison
to the conventional approach of serious game production.

For our case study, we approached a volunteer teacher at Christian Fellowship School in Liverpool
and explained to her about game-based learning and the benefits of this approach. Prior to becoming
a volunteer teacher, she was a lecturer teaching general computing subjects in a college. We asked if
she would consider using a game-based learning approach to teach her students a specific topic. After
discussion, we reached an agreement to produce a serious game for educating students from age seven
to nine about fire safety and evacuation procedures in a classroom setting. In the following sections,
we describe the process of designing the serious game followed by a walkthrough of modelling using

our SeGMEnt and MDE tools before we present the findings and our analysis in Section 6.1.2.

Page 130

Making notes during Modelling serious game
serious game design using SeGMEnt tool

Figure 6.1: Case Study in progress

6.1.1 Serious Game Design Process
Designing serious games differs greatly from conventional game design process because it principally
involves pedagogy. This requires a hybrid game design methodology that infuses activities from
instructional design beginning with the definition of learning objectives. The methodology should
allow a close collaboration between domain experts and the game design team during the process of
serious game design and often requires a number of iterations (involving various stages of design,
rapid prototyping, play-testing and revision) before it is released for use (H. Kelly et al., 2007). These
measures are taken to ensure that actual learning takes place within serious games. The serious game
design methodology shown in Figure 6.2, from our previous work in (Tang & Hanneghan, 2010a), is
used in this case study as a method to design the serious game. This case study only covers the
planning phase and the prototyping phase (one-iteration). The finalising phase of the methodology is
omitted because it is not within the scope of this case study.

For the benefit of the subject, we explained and walked through the serious game design process
with the subject since she is not familiar and has no experience with serious games design and this is
common amongst new practitioners of game based learning. Throughout this process, all the designs

are documented on paper and there are no software tools being used at this stage.

Page 131

1 Define learning objectives and design goals

2 Understand learners

Z Instructional planning
5 activities for serious 3 Identify learning activities for learning objectives defined in 1
game
4 Sequence learning activities in increasing complexity order
5 Design story to set scene and link learning activities defined in 3
Repeat |~ ~ T T -»> 6 Design game mechanics for learning activities defined in 3

L for each | Iteration
(al game level | 7 Design game components and its associated behaviours
> Rapid :
= prototyping and | 8 Design scenario and game-play for learning activities defined in 3 using 4 and 5
O play-testing for |
= Fadl] game I 9 Prototype game level
O evels |
E : lO Evaluate prototype against learning objective

l

- 11 Refine the game level
L .
") Integrate all the 12 QA Test on serious game
—, developed
:EI levels into a 13 Finalise serious game
single serious

Z game
L SERIOUS GAME ready for release

Figure 6.2: Serious Game Design Methodology (Tang & Hanneghan, 2010a).

We begin the serious game design process by defining the learning objective and design goal. This
task is not new to teachers as it is a crucial task in lesson design. The learning objectives defined for

the fire safety and evacuation procedure are shown in Table 6.1.

Table 6. 1: Learning Outcomes for Fire Safety and Evacuation Procedure

Upon completing the serious game, game players will learn

To recognise fire hazards,
To recognise obstacles in a classroom,
To recognise exit points,

To be clear of the evacuation procedure in a classroom.

The next task is to understand the learners’ (game players’) needs in the serious game so we can
choose the right choice of interaction model and theme for the audio-visual material. The only details
we are certain about the learners at the moment is that they are studying in Year 1 (7 years old) to

Year 3 (9 years old). The approach we chose to use was persona analysis (Nielsen, 2013). With our

Page 132

help and experience from the subject, the subject has identified three behavioural personas to
represent the learners (see Table 6.2). These personas indicate that students are exposed to interactive
digital content on smartphones and tablets. Analysing these personas, we concluded that the
interactions have to be simple, content has to be engaging and short in length, and finally learners

should be able to use the applications without much instruction.

Table 6.2: Personas for Students from Year 1 (7 years old) to Year 3 (9 years old) in Christian Fellowship School

Name Matthew Jimmy Sandy

Gender Male Male Female

Year Year 1 Year 2 Year 3

Age 7 8 9

Activity “I do use my dad’s iPhone to “I play Fruit Ninja game on iPad | “My mom lets me read my
play Temple Runs!” and they are nice!” storybooks on her Kindle”.

Devices used iPhone iPad Kindle Fire

The next task involved the identification of learning activities that should be included in the
serious game. These learning activities should be meaningful activities and should allow game-players
to relate directly to real-life objects, scenario or matters. A brainstorming session took place and was
followed by a discussion to decide on the most appropriate learning activities that meet the learning

outcomes. The learning activities which were identified to be most suitable are presented in Table 6.3.

Table 6.3: Learning Activities for Fire Safety and Evacuation Procedure serious game

Learning Outcomes Learning Activities

Different types of fire hazard are set around a classroom and the

T ise fire hazard,
© recoguise fire hazar game player has to identify them before a fire incident.

A classroom setup with different obstacles obstructing the path
To recognise obstacles and exit points in a classroom, to the exit points. The game player has to identify the obstacles
and clear the path to exit the classroom.

A fire incident has occurred somewhere in the school and the

Tobe d fth " dure) game player has to take the role of the teacher to direct all the
0 be clear of the evacuation procedure in a classroom.
P children to the exit point in a given duration of time without

risking the safety of the children.

These learning activities are then ordered in an increasing order of difficulty. This is to ensure that
pre-requite learning is achieved before higher level challenges are presented. The ordered activities are

presented in Table 6.4.

Page 133

Table 6.4: Learning Activities ordered according to increasing difficulty level

Order of Difficulty Learning Activities

Different types of fire hazard are set around a classroom and
game player has to identify them before a fire incident.

A classroom setup with different obstacles obstructing the path
1 to the exit points. Game player has to identify the obstacles and
clear the path to exit the classroom.

A fire incident has occurred somewhere in the school and game
player has to take the role of the teacher to direct all the
children to the exit point in a given duration of time without
risking safety of the children.

Once the learning activities have been ordered, a story is created to motivate the learners to
participate in the goal-directed learning activities. After some brief discussions and advice on game
design from us, the subject decided to have a story that feature the fire incident at a fictitious school
and the ending of the story would depend on the game player’s achievement. The learning activities
around identification of obstacles, exit points and fire hazards are a series of drills that the fictitious
school conducts at the beginning of the academic year. The game player is required to complete all the
drills and achieve a satisfactory score (this is subject to game tuning in later state of the prototyping)
before the game progress with different fire incidents throughout the term. Upon completion of all
challenges, the story ends with the school being awarded as “fire safety award of the year”. If game-
players failed in any of the scenarios involving a fire incident, the story would end with the school on
the news with the headline of “Fire Tragedy at School Killed 30 School Children” and followed by
messages about the importance of the fire drills and prevention. The flow of the story and play spaces

are illustrated in the Figure 6.3.

Page 134

Introduction Screen

START

[] A video or
[animation clip
that
introduces to

People’s
L] School to all
|| newcomers.

A video or
animation clip
that explains

the

the People’s
School

A video or
animation clip
that explains
different types

of fire
hazards in
classroom.

Level 1

v

Game player need to
spot all the TEN fire
hazards within 60
seconds before a fire
incident happens.

r

A video or
animation clip
that explain
exit path in a
classroom in
case of
emergency.

If level complete—l

Level 2

A messy classroom
setup with obstacles
blocking exit path.
Game player needs to
clear the path to get to
the exit point before a
fire incident happens.

If level complete—l

A video or u Level 3
animation clip
that - A messy classroom
introduces a |- setup with obstagles
usual day in - surrounded by fire
the classroom hazards. Game player
and the needs to find an

occurrence of
a fire incident.

escape route and avoid
getting hurt during fire
incident.

r If level complete—l

A video or
animation clip
that
introduces a
usual day in
the classroom
and the
occurrence of
a fire incident.

Level 4

A classroom with
different setup,
obstacles and fire
hazard. Game player
needs to find an
escape route and avoid
getting hurt during fire
incident.

If Level NOT
complete

A video or

animation clip
on the news
with the
headline of
“Fire Tragedy
at School
Killed 30
School Kids”

A video or
animation clip
on school
being

awarded as
fire safety
award of the

year

If level compl

A video or
animation clip
with message

on the
importance
of the fire
drills and
prevention

END

Figure 6.3: Flow of story and play spaces within the story for the Fire Safety and Evacuation Procedure serious
game reproduced based on sketches from the case study conducted

This is then followed by the design of game mechanics and game components for the learning

activities defined. The design of game mechanics and identification of game components are done

with our consultation due the unfamiliarity of subject on game design and these are shown in Table

6.5.

Page 135

Table 6.5: Game mechanics and game components for different learning activities.

Learning Activities Game Mechanics Game Components
Interaction Model: Mouse Click Static components:
Game Objective: Spot 10 fire hazards within 60 seconds. Background image
Game Events: Fire will start after 60 seconds game has started. FED Components: Timer,
Score & Remaining item
Scoring: Each fire hazard identified will be awarded with 100 points. counter 8
Level 1 Player will be awarded with 10 bonus points for each second
remaining in the countdown clock. In-game object: 10 fire
. . hazards, combustible items
Game Stopper: All fire hazards have been identified or 60 seconds .
such as tables, chairs etc.
countdown has lapsed.
Progression: Progress to Level 1 if level objective is achieved.
Interaction Model: Mouse Click Static components:
Game Objective: Spot 10 obstacles within 60 seconds. Background image
Game Events: Fire will start after 60 seconds game has started. FED Components: Timer,
Score & Remaining item
Scoring: Each obstacle identified will be awarded with 100 points. —— &
Level 2 Player will be awarded with 10 bonus points for each second
remaining in the countdown clock. In-game object: 10
obstacles such as tables,
Game Stopper: All obstacles have been identified or 60 seconds .
chairs, bins etc.
countdown has lapsed.
Progression: Progress to Level 3 if level objective is achieved.
Interaction Model: Mouse Click to move obstacle and control Static components:
navigation of avatar. Background image
Game Events: Fire incident will start 10-15 seconds after game has FED Components: Timer,
started. Fire will spread to cover the whole area in 40 seconds time. Score & Health bar
Scoring: Each fire hazard identified will be awarded with 100 points. ~ In-game object: 3
Level 3 Player will be awarded with 10 bonus points for each second obstacles such as tables,
remaining in the countdown clock. Each encounter with fire will cost chairs, bins etc.
50 units of health.
Game Stopper: Player’s health unit reaches zero or player reached
exit point
Progression: Progress to Level 4 if level objective is achieved.
Interaction Model: Mouse Click to move obstacle and control Static components:
navigation of avatar. Background image
Game Events: Fire incident will start 10-15 seconds after game has FED Components: Timer,
started. Fire will spread to cover the whole area in 30 seconds time. Score & Health bar
Scoring: Each fire hazard identified will be awarded with 100 points. In-game object: 5
Level 4 Player will be awarded with 10 bonus points for each second obstacles such as tables,

remaining in the countdown clock. Each encounter with fire will cost
50 units of health.

Game Stopper: Player’s health unit reaches zero or player reached
exit point

Progression: End of game.

chairs, bins etc.

6.1.2 Modelling Serious Game in SeGMEnt
Once the game mechanics and game components have been decided, we can then model the serious

game in the SeGMEnt tool. Modelling in SeGMEnt follows a bottom-up approach which requires

Page 136

modeller to model basic elements in order to model more complex elements which are composed of
the basic elements. For example, in order to model a game scenario, the modeller will first have to
model the game object. In this section, we describe the serious game modelling process in SeGMent
which the subject has gone through (see Figure 6.1). For the brevity of this thesis, we will only present
the modelling of “Level 17 which requires game player to spot all the ten fire hazard game objects
within 60 seconds before a fire incident happens in detail and the introduction screen for the serious
game.

There are seven successive stages to follow when modelling a serious game in SeGMEnt (see Figure
6.4). The first stage in modelling serious game in SeGMEnt involves modelling of game object. This is
done using the game object viewpoint as described in Section 0. According to Burnside (2008), objects
which could be a potential source a of fire outbreak such as halogen bulb, candles, light decoration
and easily combustible such as papers, books and thin paper-based decorations are considered
hazardous in a classroom setting. The subject has decided to place halogen bulb, candles, stack of
papers, workbooks and paper decorations strategically in different location of the classroom. The
combustible objects are placed closely to halogen bulbs and candles. Other game objects included in
the classroom setting includes students, chairs, tables, shelves, whiteboard and blinds. Subject then
defines these game objects in the game object viewpoint and used placeholder images (which were
created by us during the case study using Adobe Photoshop as external files) as visuals for each of the

game objects (see Figure 6.6).

Stages of Modelling in SeGMEnNt

Stage 1 Modelling game object

Stage 2 Modelling game environment

Stage 3 Modelling game scenario, game rules and game objectives

Stage 5 Modelling game simulation

Stage 6 Modelling game structure

—)\)

[
[
[
ETre————
[
[
[

Stage 7 Modelling game player

Figure 6.4: Stages of modelling in SeGMEnt

Page 137

DEFINING GAME OBJECTS
prm—

INCLUDE ANIMATION
START FRAME: END FRAME:

INCLUDE SOUND
souno:

INCLUDE VITAL UPDATE
VITALID OPERATION

fine Action

rorcevace: [N

PREVIOUS

Action Loaded.

Figure 6.5: Screenshot of the subject defining game object action named “burning” in game object designer
viewpoint.

Once all the game objects were defined, the subject composed the classroom setting for “Level 17
with the game objects defined earlier using the game environment designer viewpoint. This involved
positioning of the game objects in the game environment. Screenshot in Figure 6.6 shows the

completed environment named “Classroom1” composed by the subject.

GAME ENVIRONMENT DESIGNER

(=Wl GAME ENVIRONMENT

Fla ol GAME OBJECT
FSa]a]l PROXIMITY TRIGGER
Nslo]l CHECKPOINT

EDIT | REMOVE | ORDER

WAL
BLACKBOARD

ENVIRONMENT ID: ETme]

EDIT REMOVE

BRING FORWARD ‘SEND BACKWARD

EXISTING GAME ENVIRONMENT

INIWNOHIANT

wironment Loaded

Figure 6.6: Screenshot of the completed game environment modelled by the subject.

Page 138

The next stage involved the modelling of game scenario where the subject defined the game events,
game objectives and game rules for each scenario in the serious game using the game scenario design
viewpoint. The “Level 1” scenario consists of events where students (game objects) are animated. After
60 seconds an event of fire will be triggered where the paper decoration nearby the bookshelf catches
fire from the candles placed near. This event is followed by game objects such as chairs, tables, shelves,
stack of papers, decoration, catching fire. 10 seconds after the fire event, students (game objects) will
animate and move towards the exit point. The fire will spread around the classroom and exit point
before the remaining three students (game objects) can escape. See Figure 6.7 and Figure 6.8 for the

modelling of these serious games aspects in game scenario designer viewpoint in our SeGMEnt tool.

D=-cment
START
EDIT
begii senaria
ChassActing x
5] EDIT
m
: nextevent
w
a) FireBegin x
< EDIT
=
=
=]
nextavent
E
. ClssPanic x
3 EDIT
= nexteEvent
2
i
= StudentMoveToExitPoin %
3
= EDIT
nextevent
FireSpread x
EDIT
nextevent
Game Structure Loaded. testsgm

Figure 6.7: Screenshot the completed game event modelled by the subject in the game scenario designer
viewpoint.

Page 139

START

begin seenan

swveacTin

EDIT ACTING SCRIPT:

OKYNIDS

exren

DONE

StudentMoveToExitPoin %
EDIT

nextévent

¥
FireSpread x

EDIT

extevent

Game Structure Loaded.

Figure 6.8: Screenshot the ActingScript composed by the subject in the game scenario designer viewpoint.

In terms of game objectives for the scenario “Level 17, game players will have to identify all the
stacks of paper (game objects), paper decorations (game objects) and waste paper basket (game
object). Each object will consist of a state named “removed” with initial value of 1 and when interact

with will have the value changed to 0 (zero).

START
EoT
 beginsenan
Castcing X
EoT

nexteent

EDITG, OBJECTIVES

GAME ORIECTIVED: SR = CTves
(e 8 Hentify paper | as fire hazarcl GO7_clickPaperDiecnd
GO6_clickPaperliernd
GO5_clickPaperDecn]

GOM_clickiWasteFaper
GO3 clickPaperd
GOD_clickPaper
(2alyll GO _clickPaperl

OMVNIOS

GOAL CONDITION

(Trackable Type} [Action Name) (Conditional Operator) (Value)
- [NS

THEN
OBIECTVE S MET! NEW' } RAERINE

next gvent
FireSpresd x

EDIT

nemtevent

& Structure Loaded. testsgm

Figure 6.9: Screenshot of game objectives defined by the subject in the game scenario designer viewpoint.

Page 140

The rules of this serious game dictates that the game player (via an avatar) can only interact with
the other interactable game objects such as paper, waste paper basket and paper decoration. This is

defined in the same viewpoint (game scenario designer) as shown in Figure 6.10.

START

@
=
[
=
=
2
o

(Operator) (Value)

s]

DONE

noxt fuent
Fiesprad X

EDIT

nextevent

Game Structure Loaded, testsgm

Figure 6.10: Screenshot of game rules defined by the subject in the game scenario designer viewpoint.

Progressing from the previous stage, the subject modelled each game presentation in the serious
game using game presentation designer viewpoint. The simple “Introduction Screen” was composed
using text and button components available in the game presentation designer viewpoint (see Figure

6.11).

GAME PRESENTATION DESIGNER

BV e resenTaTION IntroScreen

MEDIA

ADD

ADD

A SerousGameon Fite Safety and Evacuation
GRAPHICAL USER INTERFACE Proceduie

PLAY

aur

NOLLY.IN3S3td

REMOVE BRING FORWARD SEND BACKWARD

Button Edited,

Figure 6.11: Screenshot of game presentation modelled by the subject using the game presentation designer
viewpoint.

Page 141

The next stage involved modelling the game simulation and this required the subject to model a
user interface using the pre-set components in SeGMEnt and define the external forces (game physics)

that may affect the game world. In the case of game scenario “Level 17, there is no external force

required to be defined. The game simulation modelled by the subject is shown in Figure 6.12.

GAME SIMULATION DESIGNER

(WISTTR GAME SIMULATION
FRONT END DISPLAY

J.\nlal COUNTER

ADD

Level1l

Remaining Fire 10
5

GAME SIMULATION PROPERTIES EDIICUIRTE

L 1= FireHazard Counter
EDIT

(o0 B Pernaining Fire Hazard s:
EDIT

EXISTING GAME SIMULATION : : oeraurvawe: [EE

LINK OBJECT:

LINK ATTRIBUTE: GEIETNT s[RI ERAT T Y

NOLLYTNWIS

EDIT | REMOV! ONT END DISPLAY

REMOVE ERING FORWARD SEND BACKWARD

SMULATION NANE

Counter

Figure 6.12: Screenshot of game simulation modelled by the subject using the game simulation designer
viewpoint.

Up to this stage most of the required elements of the serious game have been modelled and this will
allow designers to progress and model the flow and the structure of the game. The flow and game
structure defined by the subject based on the design of the serious game as illustrated in Figure 6.3 and

the result is shown in Figure 6.13.

Page 142

g
2
A

Videnchaalintra

EDIT

VideoSafetylmportance X
EDIT

| countdénm to0

‘ h 4
countdonm

v

VideolntoHazad X - Leven x

ountdewi 190
ot = EDIT_

bigin gamepress bution phyelwm P
{ VideoExitPath g Level x B
/ _ countdowh 00 -
/ EDIT = EDT

VieoFiieT mgedy

x

ptayalw\r\
Vd-u;ua\nay x - LeveR x

/ countdenn a0
[BT | [__eor |
f P playerwin
_— HrT |
VideoUsualDay X : NewSimubton /% R |
 countefonn o0 . \ \
EDT |- fOT 7
I VideoPrevention mporia X
i —— EDIT

Presentation Context Properties Edited testsgm

Figure 6.13: Screenshot of game structure modelled by the subject using the game structure designer viewpoint.

The final stage of the modelling serious game in SeGMEnt involves the definition of game player.
This requires the subject to specify the avatar for the game player, the inventory size, the game
attributes associated to the game player, game record that logs the game player’s performance and the

control mechanism for the game player. A screenshot of the progress is shown in Figure 6.14.

SETTING UP GAME PLAYER

o [EET nrei:
s |
oK

oweEast

maeltiest

intermct

STEP 5 Define Game Control

Assign hardware control to each actions of game
object.

PREVIOUS

testsgm

Figure 6.14: Screenshot of game control defined by the subject using the game player designer viewpoint.

Page 143

6.1.3 Automated Transformation and Code Generation

The transformations of models and generation of code in our model driven framework is automatic
and can be initiated with through the “Export” command in SeGMEnt. All the subject has to do was
press the “Export” button in SeGMEnt. The “Export” command will first generate an XML file
compliance (gameContentModel.xml) with the Game Content Model by passing the data from
SeGMEnt to Game Content Model Creator (gameContentModelCreator.php). After the file has been
created, the Game Content Model Creator passes the control to Game Technology Model Translator
(gameTechnologyModelTranslator.php) which will read the Game Content Model
(gameContentModel.xml) and transform it into a programmable format which is also in XML file
format. A new XML file named gameTechnologyModel.xml is then created. Once the Game Content
Model has been transformed to the Game Technology Model, control is then passed to Game Software
Model translator which will read the Game Technology Model (gameTechnologyModel.xml) and add
in platform specific information to the Game Technology Model to form the Game Software Model
(gameSoftwareModel.xml). Once transformation is complete, the control is then passed to the
ActionScript Generator which generates ActionScript 2.0 code in the form of text output presented in
a web interface. In our prototype, it requires the code to be copied into the Adobe Flash CS3
Integrated Development Environment (IDE). However, this can be further developed to allow game
artefacts to be automatically generated using framework such as MING PHP
(http://php.net/manual/en/book.ming.php), an open source library for creation of SWF files (Flash
files). In our case study, the generated code was copied into the Adobe Flash CS3 IDE by us to

demonstrate the serious game application generated from our tools as shown in Figure 6.15.

Page 144

http://php.net/manual/en/book.ming.php

| Test Serious Game E@u

File View Control Debug

Remaining Fire 8

WALL1
BLACKBOARD

:

£COlJ

I.I_m.i-:

-3

PAFER_DECO4 PAPER_DECOS PAPER_DECO4

Figure 6.15: Screenshot of game prototype generated from our model driven software development framework
tested on Adobe Flash platform.

6.1.4 Findings and Analysis of Observation

One of the findings from our observation throughout the case study is the learning curve required
when designing serious games. We found that without our guidance, designing serious games can be a
challenging task on its own for a non-technical domain expert. This is due lack of knowledge,
understanding and experience in game design. It became clearer for the subject once we have showed
her how to design the serious game from a lesson design point of view. In comparison to traditional
game design, we found that lesson design does not differ much except that game design is a
meticulous process.

We also found that although SeGMEnt was designed with assistive user interfaces and to
encapsulate the technicality of serious games development, it still requires non-technical domain
experts to familiarise themselves with such a tool. There are moments during the case study where
subject needs to seek advice and clarification on the use of the modelling tool. This is inevitable and
common with any application or software package. However, the learning curve can be made less
steep with the availability of learning resources and we expect user to become more familiar with the
modelling environment over time with more practice.

Another aspect which was highlighted in the case study is the methodical approach of modelling
that users have to adhere to. Modelling is bounded by rules that govern the structure and relationship

of the data defined by the concepts in a serious game. The systematic approach can be perceived as a

Page 145

restriction by users but it is necessary to ensure that the Game Content Model produced by users
using our SeGMEnt tool is valid.

One of the measurable factors in our case study is the amount of time spent in producing the
serious game. In our case study, the subject spent approximately five hours with our guidance to
model the serious game (all the levels) using SeGMEnt and the transformation of models and
generation of code takes almost no time. This excludes the time spent designing the serious game
which was described in Section 6.1.1. We expect the time spent in modelling may increase for
someone who does not have computing background or above moderate IT literacy skill. In
comparison, this would take approximately 20 man-days of someone with at least 4 year of formal
training in computer games development to produce such codes based our professional estimate. This

is a significant improvement of productivity.

Hours

160 -
140 -
120 -
100 A
80 -
60 - [

40
0 Ay
Using Model-Driven Software Conventional software Approach

Development Approach development approach (hand-
coded)

evelopment

Figure 6.16: Comparison of estimated hours required to produce code for the fire safety and evacuation
procedure serious game

In terms of costing, it would cost approximately £7,000.00 based on the rate of £350 per-man-day
(rates vary with experience, location and project) for an experienced freelance Adobe Flash Developer
to produce the code (the cost is higher if project is outsourced to a studio). In fact this would cost
more as serious games tend to follow an iterative cycle of design revision to ensure the game produced
is intended primarily for learning. Using our model-driven approach, non-technical domain experts

are freed from such financial commitment and it lowers the barrier to adopt game-based learning.

Page 146

It is a known fact that tools can simplify a mundane or complex task. In our case, we know that the
collection of tools we produced based on our model-driven software development framework can help
to reduce complexity of serious games development for non-technical domain experts. During the
case study, we did ask the subject if she could produce such software code based on the serious game
design she drafted. The immediate reply was “I have no idea how to begin produce this in software
code because I have no experience with programming games. It would take me maybe a long time to
produce something like this”. This is evident that the collection of tools in our model-driven
framework is serving its purpose - to reduce complexity and hide the technicality of game

development from non-technical domain experts.

Cost (£)
7000 -

6000 -

5000 -~

4000 - Training cost

3000 - H Cost

2000 -

1000 -

0 ' " Resource type
Non-technical domain Freelance Adobe Flash

expert (£100 per day) Developer (£350 per day)

Figure 6.17: Comparison of estimated cost required to produce code for the fire safety and evacuation procedure
serious game

Finally, we did ask if the subject would consider using the game-based learning approach as an
alternative learning approach with the aid of tool such as SeGMEnt, model translator and model
generator. The reply was moderate to highly probable instead of a convincing “yes”. We believe this is
because serious games design and development is a specialised area which demands specialised
skillsets. Nevertheless this is still a very positive feedback and it proves that availability of tool such as
SeGMEnt, model translators and code generator can lower the barrier towards the adoption of game-

based learning.

Page 147

6.2 Evaluation

In the following sections, we present evaluations of our model-driven framework, modelling

environment, MDE tools and case study conducted.

6.2.1 Evaluation of the new Framework

Our model-driven serious games development framework presented in Chapter 5 uses a three-tier
model to model a variation of serious games derived from concepts used in designing simulation
games and role-playing games.

As described in Chapter 5, the Game Content Model is designed to represent serious game design
formally whereas the Game Technology Model represents the game programmatically. This separates
the game content and logic from the technology. The benefit of such separation is the flexibility to
represent the same game model in different implementation and game technology. The Game
Software Model as described represents the game as software specific to a technology platform. It
builds on the Game Technology Model to include platform specific components which are omitted in
the Game Technology Model. The advantage of such a separation is the ability to reuse the majority of
the implementation of game software on various targeted platforms.

However, the three-tier model does have its limitations. A change of model will affect the tool
chains. However, this is normal in the MDE process. This also happens in the real world when there is
a change in software model, the implementation will need to be revised to accommodate for the
changes. Likewise, in MDE the change in the model will require updating in the modelling tool to
include new notation and translators and generators will need to be updated to accommodate such
change. Sometimes this may involve a revision of the MDE tools due to the complexity introduced
through the change. Therefore, it is crucial that model is well-defined to cover the range of software
variation required to generate to the targeted platforms.

The Game Content Model proposed in Section 5.3 was designed specifically to aid the modelling of
simulation and role-playing game genre of serious game for game-based learning. As we have
explained earlier, the simulation and role-playing genres have many commonalities with other game
genres and by disassembling the concepts from both genres into individual building blocks it gives
domain experts the tools to formally specify the design of their serious game. Although this has
sufficient concepts to cover a variety of serious games which domain experts could produce serious,

we fell that creative and innovative use concepts from other game genres may also yield positive

Page 148

learning experience when it is designed with pedagogy in mind. Therefore it would be interesting to
extend our Game Content Model to support concepts from other game genres in the future.

Another aspect of Game Content Model which needs to be evaluated is the support for design of
virtual learning activities. As we have described in Section 2.1, learners can learn through game-
playing and studying the properties and behaviour of in-game components, the relationship between
these in-game components and the solving of problems in the defined scenario. In the Game Content
Model, domain experts can specify the properties and behaviour of in-game components using the
Game Object concept presented in Section 5.3.4. The relationships between the in-game components
can be defined using Game Interaction Rule presented in Section 5.3.8.1 whereas relationship with the
environment can be governed through the definition of Game Physics in Section 5.3.3.3. For problem
solving activities, domain experts can design a virtual situation using the Game Scenario as described
in Section 5.3.5 to test learners’ understanding and application of knowledge in the designed situation.
From the context of lesson design, the Game Structure presented in Section 5.3.1 provides domain
experts the building blocks to plan the flow of the lesson in accordance with Gagne’s Nine
Instructional Events (Gagne, 1970). The difficulty indicator described in Section 5.3.5 also provides a
means for domain experts to organise lessons (or game scenarios) in an increasing difficulty fashion.
Overall, the Game Content Model does offer the necessary support for domain experts to design
meaningful play. However, there are certain aspects of teaching and learning that are not within the
scope of the present Game Content Model such as monitoring and reporting of learner’s performance,
support for teaching of kinaesthetic and motion, and the inclusion of game design patterns to aid
domain experts to meaningful-play-activity. These will be proposed as further work for this research.

The game specific system in Game Technology Model proposed in Section 5.4 only supports
simulation and role-playing genre. The generation of artefacts in the case study showed that Game
Technology Model is a valid implementation of game software. However it does not indicate if the
implementation is optimal. The measurement of effectiveness and performance of artefacts generated

is not within the scope of this research study.

6.2.2 Evaluation of SeGMEnt (Serious Games Modelling Environment)

The prototype we implemented to demonstrate the applicability of our proposed framework in
Appendix C is a basic modelling environment that embeds the concepts of the Game Content Model
in the user interfaces and hides the technical aspects of serious game development from non-technical

domain experts. In terms of user interface, different interaction models are used in different

Page 149

viewpoints that best aid domain experts to model specific aspects of serious game. The state-diagram-
like notations are used in designing the game structure and game scenario. The diagrams provide the
necessary visualisation of the flow of the game and game-play. Additional information of the context
and event are presented in dialogue window. For aspects of serious games which require positional
information, we have implemented a 2D modelling environment which allow domain expert to model
the game environment, presentation and scenario. An experimental step-by-step wizard was
implemented for the definition of game objects and the game player. The variation of interaction
models used in the SeGMEnt is unavoidable as each of the viewpoints required a different form of
visualisation to present the information to the users. This may requires domain experts to take time to
familiarise themselves with the modelling environment and we expect they will become familiar with
the SeGMEnt tool after repeated use. Each of the viewpoints is designed to help domain experts focus
in modelling specific key concepts in the Game Content Model. However, there is shared information
in the individual viewpoints which requires domain experts to remember and use later during the
modelling of a serious game. All the Uls components developed in our prototype (See Appendix C)
are designed to aid domain experts and simplify the modelling process. Whenever possible, data are
fetched from other viewpoints to populate the appropriate list box for selection. The use of graphical
notation in modelling the game environment is an interesting approach. However, it does not mimic
the setup of a game environment at runtime. Nevertheless, it is still a useful interface and visualisation
medium for domain experts to position objects or components.

An improved modelling environment is certainly in our proposal of future works for this research
study.

The current language used to describe serious games in SeGMEnt is still very game design
oriented. This will help a domain expert to relate to common game design concepts. A pedagogy-
oriented vocabulary is avoided to prevent any confusion between concepts. However, such an idea
could help teachers to relate better to the concepts in lesson design and making smoother transition

from game design. This will be included in the list of future works in Chapter 7.

6.2.3 Evaluation of Model Representation

In terms of model representation, XML is chosen to make marking of information and locating of
marked information easier, and therefore simplifying the task of model transformation. In addition,
implementation of MDE tools is less complicated as well due to the support for XML given by most

development platforms. In addition, XML is also supported by MDE technologies such as EMF and

Page 150

Generic Modelling Environment (GME) for framework developers who wish to make use of existing
MDE technologies. At present, both the Game Content Model and the Game Technology Model use
two different schemas to represent the serious game. This is valid considering both models represent
serious games in different views. It would be better if the schema representing the Game Content
Model be improved to allow the Game Technology Model to be built onto. This could provide an
alternative for framework developers who intend to weave additional information into the existing
model to create a new model without having to completely reformat the structure of the model. This

can be factored into the future work for this research.

6.2.4 Evaluation of Model Translation and Artefact Generation

One of the benefits of MDE is the translation of models and generation of software artefacts.
Framework developers will need to have a deep understanding of the Game Content Model and Game
Technology Model before they can transform the Game Content Model to the Game Technology
Model and from Game Technology Model to Game Software Model. In our framework, we chose not
to be constrained by the structure of the Game Content Model and have opted to implement our
MDE tool that locates the marked information in the Game Content Model and rebuilds the Game
Technology Model and Game Software Model from scratch. Development of the MDE transformation
tool is proven to be much simpler and straight forward especially with modern XML programming
interfaces such as Simple XML in PHP 5.0.

The evaluation of the performance of our model translation and artefacts is not within the scope of
this research study. However, it is a known fact that generated code can lose out on code optimisation.
This would limit the complexity level of the serious game and the number of dynamic objects the
software can process at runtime. Unlike generated code, manual hand-coding permits game
developers with advanced knowledge to apply clever solutions to unblock performance bottle-neck
manually. This is a trade-off between conventional approach of games development and the model-

driven approach. From the domain expert’s point of view it is the least of their worries.

6.3 Chapter Summary

In this chapter, we have presented a case study to demonstrate the applicability of our tools
implemented based on our model-driven serious game development framework presented in Chapter

5 and evaluated this research study from various perspectives.

Page 151

In our case study (see Section 6.1.4), we presented the planning phase and the prototyping phase of
serious game design lifecycle to uncover the issues related to serious games production particularly on
the use of our tools. Our finding from the case study affirms that this approach can help non-technical
domain experts in production of serious games and it also increases the likelihood of adopting game-
based learning as an alternative teaching and learning approach. However, we found that serious
games design is still a creative process and demands specialised skill despite the tools being a guide
and aid for non-technical domain experts. This result is expected as we cannot expect our tools to
instantly turn a novice serious game designer to a serious game designer who is capable of designing
interesting and creative problems for the game players.

In our evaluations of this research project, we have critically evaluated the framework, the
SeGMEnt tool, the choice of our model representation, the model translation tools and code
generation tool, and finally the case study we conducted. We also acknowledged that the tools we
developed for this research project and the case study conducted are not without limitations.
However, this does not distract from the intended aims of this research study. We have developed a
model-driven framework to support the development of serious games and proven its application
through the tools we developed. We expect that with the right expertise and resources, better and
more powerful tools can be developed using our model-driven serious games development

framework. We will discuss this in greater depth in Chapter 7.

Page 152

CHAPTER 7 - CONCLUSIONS AND
FUTURE WORK

This chapter concludes the work in this thesis. In the following sections, we present a summary of the
work done in this research study and the outcome of this study. Contributions made from this

research study are highlighted before we present our thoughts and views to further our works.

7.1 Conclusions

Game-based learning is a highly desired technology-assisted learning approach for the “PlayStation-
driven” generation of learners. However, it lacks technological solutions that can help non-technical
domain experts to author custom interactive learning content. This is the initial motivation that
influences our research study.

In this research study we proposed a novel model-driven framework that supports the
development of games (Chapter 5) and applying it to the domain of serious games for game-based
learning (Appendix C). By infusing game development with practices of MDE, we have implemented
SeGMEnt, a high-level serious game authoring environment that helps non-technical domain experts
to produce serious games quickly, easily and affordably (in the long term). The complexity of serious
game development is now hidden behind the SeGMEnt and driven by the models and the MDE tools
that interpret and refine the models for the generation of software artefacts.

Using our model-driven approach non-technical domain experts can model a game by providing
the necessary details that are required to compose a Game Content Model using our SeGMEnt tool
(Appendix C.2). The Game Content Model acts as a game design template with a collection of
customisable design blocks which aid domain experts to formally design a game. The serious game
design in Game Content Model format gets translated into the Game Technology Model where data
are formatted into a programmable structure using model the Game Technology Model translator
presenting a computational independent view of the serious game. Additional platform specific
information is added to the Game Technology Model by the Game Software Model translator during
the translation from the Game Technology Model to the Game Software Model to produce functional

serious game software targeted at a specific technology platform.

Page 153

This model-driven approach changes how computer games are developed. Instead of developing
software based on a set of given design requirements, this model-driven approach demands software
developers to produce assets and tools which non-technical domain experts can use to produce
computer games with ease.

Our prototypical implementation (Appendix C) has demonstrated the application of the proposed
model-driven game development framework to the field of game-based learning. Our SeGMEnt tool
provides teachers with building blocks to design a range of serious games through a graphical Ul The
MDE tools in our prototype showed that the serious game model produced using the SeGMEnt can be
transformed into a platform independent model (Game Technology Model) and subsequently to a
platform specific model (Game Software Model) before a software artefact is generated.

Our finding from the case study has shown that our proposed model-driven serious game
development approach can help lower the barriers, both technically and financially, for non-technical
domain experts to produce serious games. Using our approach non-technical domain experts can
focus on the serious game design and production process without worrying about the technical
aspects of development which have been encapsulated by the SeGMEnt tool. This is a positive step
towards for the game-based learning communities.

In mainstream game production, the growing number of amateur and hobbyist game developers
wanting to produce “indie games” for both commercial and non-commercial purposes has fuelled the
advancement of high-level game authoring tools such as Game Salad*, Unity 3D* and Unreal
Development Kit (UDK)*. These tools provide facilities for game modelling using a GUI and support
for the generation of software artefacts for a range of popular operating platform (especially for the
mobile platforms Apple i0S, Google Android and Microsoft Windows Phone 8). These technologies
are examples of the trends in high-level user specific tools and some of these tools (such as Game
Salad) are suitable for non-technical domain experts. We envision that such trends will continue and
our model-driven game development framework will serve as a basis for more implementation of
high-level game authoring tools designed specifically for non-technical domain experts who wish to
produce computer games.

In conclusion, this research was initially set out to address the two key challenges that inhibit the

adoption of game-based learning described in Section 1.1 specifically (1) facilitation of serious game

%7 http://gamesalad.com/
3 http://unity3d.com/
3 http://www.unrealengine.com/udk/

Page 154

production, and, (2) development of high-level serious development environment for practitioner of
game-based learning. These two key challenges have been addressed in this research study. To address
key challenge 1, we have developed a prototype of SeGMEnt (Serious Game Modelling Environment)
which we described in Appendix C to aid non-technical domain expert to create serious game and the
result from the findings case study validated it. For key challenge 2, we have developed a model-driven
game development framework that supports the development of game development environment

which we described in Chapter 5.

7.2 Contributions

This multi-disciplinary research work has made a number of novel contributions worthy of noting
and many of these works have been shared with the research community in the form of publications
(see List of Publications for a full list of publications from this thesis). One of the key contributions to
this research is our novel model-driven serious games development framework in Chapter 5. This
approach combines the knowledge from the areas of game design, game development, pedagogy and
MDE to form an innovative solution which as a key reference developing a high-level games authoring
environment that can encapsulate complexity of game development and automate the generation of
software artefacts for the game design across a range of technology platform and operating platform.
Our novel Game Content Model is another key contribution made in this research. It is the formal
and most comprehensive game design model to date. We have combined the best of GOP (Zagal, et
al., 2005), RAM (Jarvinen, 2007) and NESI (Sarinho & Apolinario, 2008) with our study of game
design, game development and serious games to form a comprehensive, reusable, and formalised
model to represent games design. Our novel Game Content Model can also be used to help novice
game designers or non-technical domain experts who wish to design the computer games document
design specification of a game formally. In addition, it can also be used as a tool to study the anatomy
of a game both from the design and software perspectives. Our novel Game Content Model can also
be extended to include specific concepts that describe components of other games genres such as
action, strategy, and even puzzle. This provides the flexibility for model developers to extend our work
to suit a particular purpose. In addition to the Game Content Model defined in this thesis in Section
5.3, an OWL (Web Ontology Language) ontology of the Game Content Model was produced

(available to download at http://www.staff.limu.ac.uk/cmpotang/gamecontentmodel.html) and this is

a secondary contribution to this research work.

Page 155

http://www.staff.ljmu.ac.uk/cmpotang/gamecontentmodel.html

Finally, our last contribution made from this research study is the Game Technology Model, a
computational representation of serious games software independent of implementation platform and
hardware, is another contribution made from this research study. It serves as a higher-level
computational representation of game technology and permits functionalities of an existing game
software framework to be mapped to the Game Technology Model and used in our model-driven
framework. Besides its intended purpose, it can also be used as a framework for novice developers to

model their own game software framework for use in game development.

7.3 Limitations

The research work presented in this thesis has some limitations due to time and resource constraints.
The scope of our modelling tool (SeGMEnt) has been limited to only the modelling of 2D-based
serious games of simulation and role playing genres due to the amount of development work required
to demonstrate the model-driven approach. This will present some constraints to the way serious
game can be designed and in some way can result to a less complex game. However, this can be scaled
up to incorporate the expanded concepts described in Game Content Model in order to accommodate
more complex serious game.

At present, model translators are hand-coded and are only able to translate the tokens supported in
the model. Additional tokens generated from the modelling environment will require further
development and this is part of practice in model-driven approach. It is unlikely to have new tokens
added to existing model as the interdependencies of the token may result in the re-engineering of the
platform independent model. This is also the case for the generation of codes which is also hand-
coded and is only able to generate codes of a specific platform.

The supported target technology platform is limited in this study. This is due to the large amount
of work needed in order to understand the targeted technology platform and to develop the necessary
code generator for a targeted technology platform making the support of more technology infeasible
in this research study. Nevertheless, the prototypical implementation has proven that it is possible and
given more resource it is feasible to support more technology platforms.

Finally, the current modelling environment lacks visualisations to enable domain experts to model
a game environment as it would appear in run-time. This will require further development but the
present approach does not distract domain experts from providing approximate positional data of a

component using the visual notations provided.

Page 156

7.4 Future work

There are many areas which can be improved to further this relatively new and exciting area of
research. One of the areas of improvement we propose is the modelling environment. At present,
SeGMEnt only facilitates the design of presentation, simulation and game environment using visual
notation to provide approximate representation of the “look and feel” of the visual designs. This can
be further developed to provide a more accurate “What You See Is What You Get” design or
modelling environment similar to the interface designer provided by IDEs such as Visual Studio and
level editor developed by Unity3D and Unreal. This would require an advanced visualisation
implementation using 3D graphic libraries.

In addition, the modelling environment should provide support for modelling of both 2D and 3D
games. In order to support production of 3D, the MDE tools need to be adjusted to include tokens of
information representing 3D implementations. It would be interesting to have the MDE tools be able
to pair the tokens with new code templates without many changes to the implementation. This is
possible and will require abstract transformation implementation which can be a whole new research
area on its own.

It would be interesting to also include a pedagogic specific workspace in the modelling
environment. A pedagogic specific workspace would have the same UI environment but UI
components will be labelled with pedagogic-oriented vocabulary. This could potentially help to reduce
the learning curve and make game design similar to the task of lesson design in some way to teachers.
Such a feature should only be implemented at the UI level rather than making changes to the Game
Content Model to prevent any confusion to framework developers who are implementing the MDE
tools.

Furthering the research on the modelling environment, a thorough usability evaluation can be
conducted on the modelling environment to gain more insights on user’s behaviour and preferences
which was not in the scope of this research study. More user testing can be conducted with larger
sample group. Findings from this study can then be used as input to further improve the interface and
interaction design of the modelling environment. As part of the user experience design process, this
will require a few test-design-prototype cycles before we can achieve a design that is ideal for non-
technical expert.

The next proposal to further this research is to extend the Game Content Model to include

concepts for monitoring and reporting learners’ performance. At present this can be achieved through

Page 157

the definition of a game record and analytics is achieved by specification of traceable data. It would be
interesting to include other behavioural information such as learning patterns, learning preferences,
usage behaviours and others which are useful for teachers. This can provide useful pointers to areas of
the serious game which requires refinements. In addition, this information could also help teachers to
plan individual student learning for those students who are experiencing difficulty in learning specific
material in the serious game.

Furthering research on Game Content Model is a multi-genre support Game Content Model
which can be supported by different Game Technology Models. This would allow domain experts to
model serious games of different genres. At present, the Game Content Model covers most of the
concepts for designing simulation and role playing games and is supported by the Game Technology
Model. Development of a multi-genre support Game Content Model will require addition of genre-
specific concept and more importantly the relevant Game Technology Model that can support the
operation of the specific genre. An algorithm could be developed to check which type of genre the
domain expert is modelling and subsequently pair it with the compatible Game Technology Model.

Another possible area to further this research includes the addition of game design patterns as
described in the work of Bjork, Lundgren, & Holopainen (2003) into Game Content Model to aid
domain expert in creating gameplay. It defines the characteristic of a play and allows domain expert to
customise the game design pattern to suit their needs. Identified game design patterns suitable for use
in serious games can be defined using concepts in Game Content Model and be made available for
domain expert in the modelling environment as pre-defined scenario. This will simplify the game
design process and domain experts will only need to provide the necessary content to complete the
scenario.

A potential area to further this research is the support of new generations of gesture based inputs
to extend computer games into training of motion and kinesthetic. The game control described in
Section 5.3.9.4 can be expanded to support input devices such as Microsoft Kinect, Sony PlayStation
Move and Nintendo WiiMote. This can pave way for the creation of more innovative games relating
to the sports, physiotherapy, and health and safety domain which require detection of physical
movements or replicating a specific posture.

Another area which we can further into from this research is the mobile segment. The thought of
using mobile games in learning is not new. This can be linked to the advancement of mobile devices,

mobile gaming trend and the introduction of games-based learning. Designing and developing serious

Page 158

mobile games introduces a set different set of challenges due to the limitations of hardware interface
(or perhaps the advantage the gesture-based interaction it can offer) and the short-burst usage pattern.
This will require further elaboration of the input interface in Game Content Model and perhaps a
leaner version of Game Technology Model that caters for the mobile platform.

The Game Technology Model described in Section 5.4 focuses mainly on single user (player)
mode. This can be extended to include online multiplayer support for collaborative game-based
learning where multiple users can role-play and solve problem in the same scenario either as
collaboratively as a unit or taking the other designated role in the serious game. This will require an
online multiplayer component which uses the networking service component to manage aspects such
as authentication of players, setting up of multiplayer game session and transmission of data packets.
In order to achieve this, it will require reengineering of the Game Technology Model to account for
such feature.

It would also be interesting to further this research by studying the versatility of the Game Content
Model and Game Technology Model proposed in Chapter 5. This will require more case studies to be
conducted. In addition, the performance of the generated artefacts could also be measured to provide
insights into how well such a model copes at runtime on different technology platform.

Finally, the scope of high-level serious games authoring environment can be further expanded to
support existing learning management systems such as Blackboard. The integration between the high-
level serious games authoring environment and learning management system could further simplify

the process for teachers to publish, manage and distribute their active learning content.

7.5 Concluding Remarks
This thesis provides a novel model-driven games development framework to aid non-technical
domain expert in the development of computer games. The models are the core of this approach. This
approach enables domain experts to design a computer game formally using the building blocks
defined in the model in a UI-based modelling environment which hides all the technology intricacies
related to game development. The formalised design of the computer game is translated into a more
refined representation of game software and subsequently be transformed into a game software using
MDE tools developed by framework developers.

Collectively, the model-driven framework offers a renewed software engineering approach towards
game development where domain experts take the role of designers and game developers

(programmers and digital content creators) provide the necessary tools and assets, and the entire

Page 159

process is centred on the model. This work has made a significant impact on game-based learning
research and has addressed two key challenges pertaining to game-based learning identified in Section
1.1. The evidences of this are in the list of research publications produced throughout this research
study. It has also opened up a number of new research areas to further the work in this research study
as described in Section 8.4.

We hope that this work will simplify the development of games and would aid non-technical
domain experts to produce games for use in their respective domains. We also hope that this would
take us step nearer towards the mass adoption of games-based learning and will bring forth a
revolution in education technology from the passive ‘electronic’ learning to an active and ‘effective’
electronic learning experience that addresses the learning styles of the 21* century learners. And we
believe that the proposed future works can bring about greater impact on the research community and

society.

Page 160

APPENDICES

APPENDIX A: Ontology for Game Content Model

Table A.1: Ontology for Serious Game & Game Structure in BNF Representation

Concept BNF Representation

Serious Game <SeriousGame> ::= <Title> <Author> <GameStructure>
<GamePlayer>

Game Structure <GameStructure> ::= <GameStructureType>
<GameContext> {<GameContext>}

Game Context <GameContext> ::= [<GamePresentation> | <GameStructure>]
<EventTrigger> {<EventTrigger>} <PedagogicEvents>

Pedagogic Event <PedagogicEvents> ::= <EventOfInstruction>
{<EventOfInstruction>}

Event Trigger <EventTrigger> ::= <Identifier> (<InputTrigger> |

<TimeTrigger> | <ProximityTrigger> |
<GameMechanicsTrigger>) <TriggerTarget>

Input Trigger <InputTrigger> ::= <InputInterface>

Time Trigger <TimeTrigger> ::= <Timelnterval> <Repeat>

Proximity Trigger <ProximityTrigger> ::= <Position> <Area>

Game Mechanics Trigger <GameMechanicsTrigger> ::= <GameApplicationEvent>

Input Interface <InputlInterface> ::= (<HardwarelInterface> | <GUIInterface>)
Hardware Interface <HardwareInterface> ::= <HardwareType> <InputEvent>

GUI Interface <GUIInterface> ::= <ReferenceToGUI>

Position <Position> ::= <2DPosition> | <3DPosition>

Area <Area> ::= <2DArea> | <3DArea>

Table A.2: Ontology for Game Presentation in BNF Representation

Concept BNF Representation

Game Presentation <GamePresentation> ::= <Identifier> <MediaComponent>
{<MediaComponent>} [<GUIComponent> { <GUIComponent>}]
<DepthIndex> <Dimension> <2DPosition>

Media Component <MediaComponent> ::= <MediaText> | <MedialImage> |
<MediaVideo> | <MediaSound>

Media Text <MediaText> ::= <Identifier> <Caption> <2DPosition>
<2DDimension> [<TextFormatting>]

Media Image <MediaImage> ::= <Identifier> <Source> <2DPosition>
<2DDimension>

Media Sound <MediaSound> = <Identifier> <Repeat> <Source>

Media Video <MediaVideo> ::= <Identifier> <Source> <2DPosition>
<2DDimension>

Dimension <Dimension> ::= <2DDimension> | <3DDimension>

GUI Component <GUIComponent> ::= <GUIButton> | <GUIListbox> |
<GUIRadiobutton> | <GUITextbox>

Button <GUIButton> ::= ID> <2DPosition> <2DDimension> <GUIStyleID>
<backgroundImage> <Caption>

Check Box <GUICheckbox> :: <Identifier> <2DPosition> <Caption>
<Value> <GUIStyleID>

List Box <GUIListbox> ::= <Identifier> <2DPosition> <Width>
<Caption> <listValue> { <ListValue>} <GUIStyleID>

Radio Button <GUIRadiobutton> ::= <Identifier> <GroupID> <Caption>
<Value> <2DPosition> <GUIStyleID>

Text Box <GUITextbox> ::= <Identifier> <2DPosition> <2DDimension>

<Caption> <GUIStyleID>

Page 161

Table A.3: Ontology for Game Simulation in BNF Representation

Concept BNF Representation

Game Simulation <GameSimulation> ::= <Identifier> <GameDimension>
<GameTempo> <GamePhysics>
<FrontEndDisplay> {<FrontEndDisplay>} <GameScenario>

Game Tempo <GameTempo> ::= <RealTime> <VirtualTime>

GanuzPhyﬁcs <GamePhysics> ::= <CollisionWorld> <EnvironmentalForce> {
<EnvironmentalForce> }

Environmental Force <EnvironmentalForce> ::= <force>

Force <Force> ::= <Identifier> <ForceValue> <ForceAngle>

Force Angle <ForceAngle> ::= <StaticForceAngle> | <DynamicForgeAngle>

Static Force Angle <StaticForceAngle> ::= <Angle>

Dynamic Force Angle <DynamicForceAngle> ::= <MinAngle> <MaxAngle>

Min Angle <MinAngle> ::= <Angle>

MaxAngle <MaxAngle> ::= <Angle>

Force Value <ForceValue> ::= <StaticForceValue> | <DynamicForceValue>

Static Force Value <StaticForceValue> ::= <ForceValue>

Dynamic Force Value <dynamicForceValue> ::= <MinForceValue> <MaxForceValue>

Min Force Value <MinForceValue> ::= <ForceValue>

Max Force Value <MaxForceValue> ::= <ForceValue>

Front End Display <FrontEndDisplay> ::= <Position> <FrontEndDisplayType>

<FrontEndDisplayStyle> (<StaticFrontEndDisplay> |
<DynamicFrontEndDisplay>)

Static Front End Display <StaticFrontEndDisplay> ::= <DataSource>

Dynamic Front End Display <DynamicFrontEndDisplay> ::= <Owner> <DataSource>
<RelativePositioning>

Table A.4: Ontology for Game Objects in BNF Representation

Concept BNF Representation

Game Object <GameObject> ::= <Identifier> <Position> <GameObjectType>
<GameTheme>

Game Object Type <GameObjectType> ::= <ActorObject> | <EnhancementObject> |
<ConsumableObject> | <ItemObject> | <MechanicalObject> |
<ProjectileObject> | <StructuralObject> |

<DecorativeObject> | <SurfaceObject>

Actor Object <ActorObject> ::= <ObjectAttributes> <ObjectAppearance>
<ObjectAction> {<objectAction>} <objectIntelligence>
Enhancement Object <EnhancementObject> ::= <ObjectAttributes>

<ObjectAppearance>
<ObjectAction> {<objectAction>}
Consumable Object <ConsumableObject> ::= <ObjectAttributes>
<ObjectAppearance>
<ObjectAction> {<objectAction>}

Item Object <ItemObject> ::= <ObjectAttributes> <ObjectAppearance>
<ObjectActions>
Mechanical Object <MechanicalObject> ::= <ObjectAttributes>

<ObjectAppearance>
<ObjectAction> {<ObjectAction>}
Projectile Object <ProjectileObject> ::= <ObjectAttributes>
<ObjectAppearance>
<ObjectAction> {<ObjectAction>}

Structural Object <StructuralObject> ::= <ObjectAttributes>
<ObjectAppearance>

Decorative Object <DecorativeObject> ::= <ObjectAttributes>
<ObjectAppearance>

Surface Object <SurfaceObject> ::= <ObjectAttributes> <ObjectAppearance>

Object Attributes <ObjectAttributes> ::= <VitalAttribute> {<VitalAttribute>}
<PositionAttribute> <SolidityStateAttribute>
[<MassAttribute>]

[<InventoryAttribute>]

Page 162

Object Image <ObjectImage> ::= <objectImageComponent>
{<ObjectImageComponent>} <ObjectImageStyle>

Object Internal Projection <ObjectInternalProjection> ::= <ReferenceToFrontEndDisplay>
<ReferenceToObjectAttribute>

<ObjectAction> ::= <Identifier> <ObjectAnimation>
[<ObjectMotion>]
[<ObjectSpeech>] [<ObjectVitalUpdate>]

Object Action

Object Motion <ObjectMotion> ::= <Identifier> <Force>
<EnvironmentalForce> <SyncWithAnimation>

<ObjectVitalUpdate> ::= <ReferenceToObjectAttribute>
<ArithmeticOperator> <Constant>

Object Vital Update

Object Decision <ObjectDecision> ::= <Identifier> <DecisionCondition>
<ReferenceToObjectAction>

Object Ability <objectAbility> ::= [<AbilityLearning>]
[<AbilityNavigation>]

Table A.5: Ontology for Game Scenario in BNF Representation

Concept BNF Representation

Game Environment <GameEnvironment> ::= <Identifier> (<GameObjectID>
{<GameObjectID>})
(<Checkpoints> {<Checkpoints>}) (<ProximityTrigger> {
<ProximityTrigger>}) (<Light> {<Light>})

Light <Light> ::= <Identifier> <Position> <LightColour>
<LightIntensity> (<DirectionallLight> | <SpotLight> |
<PointLight> | <AreaLight>)

Spot Light <SpotLight> ::= <Angle> <Range> <SpotAngle>

Area Light <ArealLight> ::= <2DArea>

Static Virtual Camera <StaticVirtualCamera> <Identifier> <Position>

<VirtualCameraFocus>

Virtual Camera Focus <VirtualCameraFocus> ::= (<FocusAngle> | <FocusObject>)

Page 163

Table A.6: Ontology for Game Event in BNF Representation

Concept BNF Representation

Game Event <GameEvent> ::= <Identifier> <GameAct> {<GameAct>}
[(<GameMechanicTrigger> | <TimeTrigger>)]

Game Act <GameAct> ::= <Identifier> <GameObject> <GameActingScript>

Game Acting Script <GameActingScript> ::= <Identifier>
<GameActingCoordination> { <GameActingCoordination>}

Game Acting Coordination <GameActingCoordination> ::= (<SimpleActingCoordination>
<ComplexActingCoodination>)

Simple Acting Coordination <SimpleActingCoordination> ::= <Animate> |

<AnimateWithGameObject> | <PlaySound> |
<TranslateToCheckpoint>
Complex Acting Coordination ~<complexActingCoordination> ::= (<Animate> |
<AnimateWithGameObject>) [<PlaySound>]
[<TranslateToCheckpoint>]

Table A.7: Ontology for Game Objective in BNF Representation

Concept BNF Representation

Game Objective <GameObjective> ::= <Identifier> <Description>
<GoalCondition>

Goal Condition <GoalCondition> ::= <TrackableData> <ConditionalOperator>
<Constant>

Trackable Data <TrackableData> ::= <TrackableActionCounter> |

<TrackableGameAttribute> | <TrackableInputTypeCounter> |
<GameScenarioCompletionTime>

Table A.8: Ontology for Game Rule in BNF Representation

Concept BNF Representation

Game Rule <GameRule> ::= <Identifier> (<GameScoringRule> |
<GameInteractionRule>) <Description>

Game Interaction Rule <GameInteractionRule> ::= <InterationActor>

<InteractionSubject> <InteractionCondition>
<InteractionOutcome>

Interaction Actor <InteractionActor> ::= <ReferenceToGameObject>
{<ReferenceToGameObject>}) | <GameObjectClass>

Interaction Subject <InteractionSubject> ::= <ReferenceToGameObject>
{<referenceToGameObject>}) | <GameObjectClass>

Interaction Condition <InteractionCondition> ::= (<QuerySubjectOwnership> |
<QuerySubjectAttribute> | <QueryGameAttribute>)

Interaction Outcome <InteractionOutcome> ::= (<updateGameAttribute> |
<updateGameObjectAttribute>)

Game Scoring Rule <GameScoringRule> ::= <ScoringCondition> <ScoringOutcome>

Scoring Condition <ScoringCondition> ::= <QueryGameObjectState> |

<QueryInput> | <QueryDuration> | <QueryOtherGameObjectives>

Page 164

Table A.9: Ontology for Game Player in BNF Representation

Concept BNF Representation

Game Player <GamePlayer> ::= <GamePlayerID> <Avatar> <GameAttribute>
{<GameAttribute>} <Inventory> <GameControl> {<GameControl>}
<GameRecord> {<GameRecord>}

Avatar <Avatar> ::= <StaticAvatar> | <DynamicAvatar>

Static Avatar <StaticAvatar> ::= <ReferenceToGameObject>

Dynamic Avatar <DynamicAvatar> := <ReferenceToGameObject>
{<ReferenceToGameObject>}

Inventory <Inventory> ::= <InventoryAttribute>

Game Attribute <GameAttribute> ::= <Identifier> (<GameAttributevital> |
<GameAttributeScore>)

Game Attribute Vital <gameAttributeVital> ::= (<ReferencedVitalAttribute> |
<UnreferencedVitalAttribute>)

Game Control <GameControl> ::= <Identifier> <InputInterface> <ActionMap>

Action Map <ActionMap> ::= <ActiveObjectState>
<ReferenceToObjectAction>

Game Record <GameRecord> ::= <Identifier> <GameResult>

Game Result <GameResult> ::= <RawGameResult> | <ComputedGameResult>

Table A.10: Ontology for Game Theme in BNF Representation

Concept BNF Representation

Game Theme <GameTheme> ::= <Description>

Page 165

APPENDIX B: Game Technology Model

GamePlayer players SeriousGame
<
* 1
+ Main() : void
+ Update () : void

+ Render () : void
+ Cleanup () : void

contextManager 1
1
GameContextManager
- i i GameSimulationManager
ApplicationEventManager | applicationEvent initialise() - vord simulationManager
Manager + Initialise() : voi kK> +enabled {get; set;} : bool
1 10 + GameContextManager(GameContext startContext) : void | 1 1
+ PushContext(GameContext activeContext) : void + Initialise() : void
+ PopContext() : void renderManager + Update():void
+ Update() : void soundManager + Render(Component RenderManager): void
+ Render() : void inputManager + Cleanup() : void
+ CleanUp() : void K>— . 1
- - 1 physicsManager
activeContext : Stack 1 1 animationManager RenderManager
contextPool contextManager aiManager —
* 1 simulationManager
EventTrigger transitionTriggers:Array
" 5 GameContext SoundManager
+ allowRender {get; set;} : bool 1
+ aIIowUpt?iate {get; set;} : bool) Component
+ pedagogicEvent {get; set;} : string
+ contextTransitionTrigger {get;} : EventTrigger b InputManager
SceneGraph 2DGraph |* Initialise() : void 1
<> + Update() : void
1 1 |+ Render(Component RenderManager*) : void -
+CleanUp () : void PhysicsManager
Presentation Simulation AnimationManager
+ timeRatio {get;} : float
+ Simulation(GameScenario scenario) : void
imulation(cenario nario) : voi GUIComponent
environmentForce 1 1 { scenario —
MediaComponent
1 1
Force GameScenario

GameResourceManager

Figure B.1: UML Diagram for Game Context System (Game Context Manager) and Game Simulation System
(Game Simulation Manager)

Page 166

ApplicationEventManager

+ Update() : void
+ ReportEvent(string event) : void

+ AddListener(GameMechanicTrigger gmt) : void
+ Removelistener(GameMechanicTrigger gmt) : void

1 | eventlList

* EventTrigger
ApplicationEvent +id {get; set;} : string contextManager GameContextManager
- + triggerTarget {get;} : string <
+eventType {get; set;} : string +enabled {get; set;} : bool 1 1
+ Notify() : void + Execute() : void
11 gameMechanicTrigger T T
gameApplicationEvent 1 1 [l
GameMechanicTrigger InputTrigger TimeTrigger ProximityTrigger

+{get;}:

+ GameMechanicTrigger(string id, string
triggerTarget, string eventType) : void

+ InputTrigger(string id, string
triggerTarget, string eventType) : void

+ Interface {get;} : Inputinterface
+ Timelnterval {get;} : integer

+ Repeat {get;} : integer

+ BeginTime {get; set;} : integer

MouselnputEvent

InputEvent

+id {get; set;} : string

+ eventType {get; set;} : string

+ TimeTrigger(string id, string
triggerTarget, integer timelnterval,
integer repeat) : void

+ Begin() : void

+ CheckExpiry() : void

+ Notify() : void

interfaceY 1
inputEvent 1
Hf Inputinterface

+input {get;} : InputEvent

+ enabled {get; set;} : bool

+ InputTrigger(string id, string
triggerTarget, Position pos,

Area area) : void

+ isCollided(GameObject obj) : bool
+ Notify() : void

position 1 1Y area

KeylnputEvent |4 + Notify() : void 1 1 1
+keycode : integer inputinterface Position Area
GUlInterface Hardwarelnterface T T T T
+ hardwareType : string Vector2 Vector3 Vector2 Vector3
+ GUlInterface(GUIComponent + Hardwarelnterface(string
*gui, string eventType) : void HardwareType,) : void
interfaceY 1
1
GUIComponent
Figure B.2: UML Diagram for Event Trigger
Actor . " Vital
+id {get; } : string
+ value {set; get;} : string
1 1 +minValue {get; } : float
GamePlayer + maxValue {get; } : float
Inventory inventory + add(integer value) : void
1 1 + reduce(integer value) : void

+ capacity {get; } : integer
+ bag : List <GameObject>
+ selected {get; set;} :integer

+ Initialise() : void
+ Cleanup() : void

+ notify() : void

+ Add(GameObject item) : void

+ Remove(GameObject item) : GameObject

GameStatistic

+id {get; } : string

+ attempt {get; set;} : integer
+onTarget {get; set;} : integer

Figure B.3: UML Diagram for Game Player

Page

167

SceneGraph

+ Update() : void

+ UpdateNodes(GraphNode node) : void

+ Render(Component RenderManager) : void

+ RenderNodes(GraphNode node, Component RenderManager) : void
+ Render(Component RenderManager, VirtualCamera camera) : void
+ RenderNodes(GraphNode node, Component RenderManager, <<interface>> <<interface>>
VirtualCamera camera) : void iUpdatable iRenderable
+ Locate(string id) : GraphNode

1Y rootNode : List

+ Render(Component RenderManager) : void
child : List + Update() : void + Render(Component RenderManager,

VirtualCamera camera) : void
* *
GraphNode —T

+id {get;} : void
+ allowUpdate{get; set;} : boolean

+ Update () : void
+ Render (Component RenderManager) : void

TT—\

MediaComponent GUIComponent FrontEndDisplay GameObject Light

Figure B.4: UML diagram for scene graph - MediaComponent, GUIComponent, FrontEndDisplay, GameObject
and Light inherit from the GraphNode.

Function Update ()

{
scenario.gameEnvironment.Update ()
2DGraph.Update ()

}

Function Render (Component RenderManager)

{
RenderManager.BeginRender ()
scenario.gameEnvironment.Render ()
2DGraph.Render ()
RenderManager.EndRender ()
RenderManager.RenderToDisplay ()

}

Figure B.5: Example for updating and rendering scene graphs in the correct precedence in the simulation
context.

Function Update ()

{
UpdateNodes (this.rootNode)
}
Function UpdateNodes (GraphNode node)
{
node.Update
For each GraphNode childNode in node.Child
{
UpdateNodes (childNode)
}
}

Figure B.6: Example for recursively updating nodes in scene graph

Page 168

Simulation

1
1 simulationManager
GameScenario
et . GameObjective
+id {get; set;} : string objectives : Array
+ difficultyindicator {get;} : integer 1 * |+ description {get;} : string
+ activeCamera {get; set;} : integer virtual + objectiveFlag {get; set;} : bool
tArra
+ Initialise() : void Cameras Y
+ Update() : void 7 + GameObjective(string description) : void

+ IsObjectiveMet(Collection TrackableData) : bool

+ Render(Component RenderManager) : void

1§ gameEnvironment

VirtualCamera

*

+ aspectRatio{get; set;} : string

SceneGraph
+ FocusAt(Vector3 target) : void
+ Update(SceneGraph scene) : void
+ Update() : void
+ UpdateNodes(GraphNode node) : void view ¥ 1 1 position
+ Render(Component RenderManager) : void projection rotation
+ RenderNodes(GraphNode node, Component RenderManager) : void displacedPosition
+ Render(Component RenderManager, VirtualCamera camera) : void
+ RenderNodes(GraphNode node, Component RenderManager, 1 1
VirtualCamera camera) : void Matrix Position
+ Locate(string id) : GraphNode
1§ rootNode : List
child : List
* *
GraphNode
1 |4+id {get;} : void

+ allowUpdate {get; set;} : boolean

+ Update () : void

+ Render(Component RenderManager) : void

+ Render(Component RenderManager, VirtualCamera camera) : void

MediaComponent GUIComponent FrontEndDisplay GameObject Light

Figure B.7: UML Diagram for Game Scenario.

Page 169

Function Update ()

{
//Check All Time Trigger
ObjectivelTimer.CheckExpiry ()
//Trigger Game Event in the Scenario
If (ActiveEvent == 1)
{
If (gameEnvironment.locate (actorl) .activeState){ gameEnvironment.locate (actorl).activeState = 1}
If (gameEnvironment.locate (actor2) .activeState){ gameEnvironment.locate (actorl).activeState = 1}
If (gameEnvironment.locate (actor3) .activeState){ gameEnvironment.locate (actorl).activeState = 1}
}
Elself (ActiveEvent == 2)
{
If (gameEnvironment.locate (actorl) .activeState){ gameEnvironment.locate (actorl).activeState = 2}
If (gameEnvironment.locate (actor3) .activeState){ gameEnvironment.locate (actorl).activeState = 3}
}
//Update Scene Graph
gameEnvironment.Update ()
objectivesMet = true
//Check to see if all objective are met
For each objective in GameObjectives
{
objectivesMet = objectivesMet && objective.objectiveFlag
}
If (objectivesMet)
{
applicationEventManager.ReportEvent (“ScenarioEnd”)
}
}
Figure B.8: Example of Update Method implementation for Game Scenario.
GameObject
+id {get; set;} : string
+ boundingVolume {get;} : Vector3
-] SceneGraph +type: string rotation 1 Rotation
ObjectAppearence +frameNo : integer o
appearance| , yndate() : void 1
+ Render(Component RenderManager, | position
> VirtualCamera camera) : void 1 Vector2 Vector3
Model Sprite
Actor DynamicObject StaticObject Position
+ actionState {get; set;} : integer 1
+ collidable {get; set;} : bool
items | 1 + mass {get; set;} : float
inventory Vector2 Vector3
Inventory A
{ } 1 1 * +x {get; set; } : float ||+ x {get; set; } : float
+capacity {get; } : integer PN decisions : Arra +y {get; set; } : float || +y {get; set; } : float
+ bag : List <GameObject> animations : Array 1 1 . v

+ selected {get; set;} :integer

+ Add(GameObject item) : void
+ Remove(GameObject item) : GameObject

Frame

+ top {get; set;} : integer

+ bottom {get; set;} : integer frames
+ left {get; set;} : integer <
* 1

+ right {get; set;} : integer

*

AnimationData

Decision

+id{get;} : string

+ probability {get;} : float

+ actionID {get;} : string

vitalReference

I

I

SpriteSequence

AnimationSequence

+ sequence{get;} : Array <Bones>

+ SpriteSequence(string id, Array
<Frame> newSequence) : void

<Bones> newSequence) : void

+ AnimationSequence(string id, Array

+2z {get; set; } : float

Vital

1
+id {get; } : string

+value {set; get;} : string
+ minValue {get; } : float
+ maxValue {get; } : float

+ add(integer value) : void
+ reduce(integer value) : void
+ notify() : void

Figure B.9: UML Class Diagram for Game Object.

Page 170

Function Update ()
{

//Pair action to the appropriate motion and animation

If(this.actionState == 1)//Walk

{
collisionObject = PhysicManager.checkCollision (this, GameEnvironment)
If(collisionObject.type == “Movable”)

{
PhysicManager.ApplyForce (this, 0.5f, this.rotation, PhysicManager.GetConstraint (“Friction”))

PhysicManager.ApplyForce (collisionObject, collisionObject.mass/this.mass*0.5f,
this.rotation, PhysicManager.GetConstraint (“Friction”))
AnimationManager.SetSequence (this, “Push”)
SoundManager.Play (SoundManager.RetrieveSound (“ActorPushSFX”), 1,
SoundManager.Event, this.position)
this.energy.reduce (0.5f)

Else
{
PhysicManager.ApplyForce (this, 2.0f,this.rotation, PhysicManager.GetConstraint (“Friction”))
AnimationManager.SetSequence (this, “Walk”)
SoundManager.Play (SoundManager.RetrieveSound (“ActorWalkSFX”), 1,
SoundManager.Event, this.position)
this.energy.reduce (0.1f)
}
}
ElseIf(this.actionState == 2)//Pick
{
collisionObject = PhysicManager.checkCollision (this, GameEnvironment)
If(collisionObject.type == “HealthPack”)
{
AnimationManager.SetSequence (this, “Pick”)
this.health.add (25.0f) //health is a vital
}
ElseIf(collisionObject.type == “Key”)
{
AnimationManager.SetSequence (this, “Pick”)
this.inventory.add (object);
}
}
ElseIf (this.actionState == 3)//Use
{
If(this.inventory.selected.type == “Key”)

{

collisionObject = PhysicManager.checkCollision (this, GameEnvironment)
If(collisionObject.type == “HealthPack”)
{
AnimationManager.SetSequence (this, “OpenDoor”)
this.inventory.remove (this.inventory.selected)
SoundManager.Play (SoundManager.RetrieveSound (“KeyUnlockSFX”), 1,
SoundManager.Event, this.position)
collisionObject.actionState = 1//Door Unlock

}
Else{//Idle
AnimationManager.SetState (this, “Idle”)

//Check for collision
collisionObject = PhysicManager.checkCollision (this, GameEnvironment)
If(collisionObject.type == “Building” && collisionObject.type == “Furniture”)
{
PhysicManager.ApplyRecoil (this, 0.1f)
AnimationManager.SetSequence (this, “Stop”)

//Update transform of animation
AnimationManager.Update (this) ;

//Reset actionState
this.actionState = 0//idle

Figure B.10: Example of Update method implementation in a Game Object

Page 171

RenderManager imageBuffer

O
1 1

ImageBuffer

+ Initialise() : void

+ EndRender() : void

+ Render() : void
+ RenderToDisplay()
+ CleanUp() : void

+ BeginRender() : void

+ Render(MediaComponent media) : void

+ Render(GameObject gameObject, VirtualCamera camera) : void
+ Render(GUIComponent gui) : void

+ Render(FrontEndDisplay fed) : void

+ Render(Light light, VirtualCamera camera) : void

: void

Figure B.11: Renderer represented in Class Diagram

SoundManager

+ EVENT {get;} : integer

+ BACKGROUND {get;} : integer 1

activeTracks:Array
<>

+ Initialise() : void

+ Play(Sound sound, integer repeat, integer mode, position pos) : void
+ Play(string sound, integer repeat, integer mode, position pos) : void

+ Pause(integer mode) : void

+ Resume(integer mode) : void

+ Stop(integer mode) : void
+ CleanUp() : void

audioTrack

+ soundFile {get; } : Sound

+ repeat {get; set; } : integer
+ channel {get; } : integer

+ pos {get;} : Position

Figure B.12: Audio Component (SoundManager) in UML Diagram.

VideoPlayer

+ Play(string videoFile) : void
+ Pause() : void

+ Resume() : void

+ Stop() : void

Figure B.13: Video Player Component (VideoPlayer) in UML Diagram.

Page 172

1e0)): {195 198} z +

1e0|}: { 195 1198} A +
1e0)) : { 195 198} x +

10y : { 19s 188} A +
1e0]: { 195 198} x +

£10103/\

741019\

| |

T A Uoisuawip

Buins : {19s 198} anjeA +
Suiis : {395 398} uonded +

uoisuawiq

anjepIs!]

T

ploA : ()a1epdn +

ploA : (Ja8eue|\Japuay Juauodwo))iapuay +
pioa : (a121A1SIND Sulis ‘wip uoisuswia
‘uonded Sulis ‘sod uonISod ‘pi SuliIs)xoqiIxa] +

ploA: ()o1epdn +

ploA : (Ja8eue\Japuay Jusuodwo))apuay +
A (@11AisIND Buis
‘gldnoud sa8a3ul ‘uonnded

Buus ‘sod uonisod ‘pi Sunis)uoiingoipey +

—

T A uoisuawip

j0oq : {!33s 338} anjen +

J9891ul : {1198} q|dnous +
Joog: {195 198} anjen +

ploA : ()o1epdn +
pIOA : (498eueIapURY JUBUOdWO))Japudy +

PIOA : (151] <@N|_AISIT> ARy
‘a1dIAisINg Bulis ‘uonded Suls ‘wip
uolsuawiq ‘sod uonIsod ‘p1 BuliIs)xoqisi +

ploA : ()o1epdn +

ploA : (4a8eueiapuay Jusauodwo))sapuay +
pioA: (allA1siND Sulis ‘uonded

Buiis ‘sod uonisod ‘pi Sulis)xogyIayYd +

<an|eAlsT> Aey : {119s 198} 1

jooq: {195 198} anjen +

T \uoisuawip

ploA : ()eiepdn +

PIOA : (423eueIapUSY JUBUOdWO))IapuUay +
10A 2 (‘@13IMSIND Bulias
‘98ew)3q Suus ‘uonded Suls

‘wip uolsuswiq ‘sod uonisod ‘p! Suuisjuonng +

Buiis : {138s} aBew|punoidyoeq +

X0qIXa L

uonnqolpey

x0q3si]

xogaY)

uonng

ueajooq : {1as 198}e1epdnNMo]jE +
apoNydeuo : {1198113s} ,opou +

2llils

12821

aponydesn

100q : {195 1198} aANOVYS! +
Bulns : {919s} uonded +
: {195 138} qI9|AISIng +
|00q : {195 198} pa|qeus +

Buuis : {195 308} p1 +

jusuodwo)|nNo

€10309A

FALSIETN

iagram.

GUI Component (GUIComponent) in UML Di

Figure B.14

Page 173

1e0):{19s 198} z +

1e0)): {19s 198} A +
180y : {195 198} x +

1e0l4: {195 198} A +
1e0(4: {195 198} x +

€40199A 40199/ €10109/ FAlLEYY
T
uoisuswiq uoIsod
T T[Tl 1]t
uoisuawip (T T {) uoiyisod

uojsuawip | T TA uoysod

PIOA : (924n0s 3ulis
‘yeadad 4a8a3ul ‘pI Bulls)usuodwo)puNoOS+

PIOA : (924n0s SuUl3S ‘WIp uolsuawIg
‘sod uonsod ‘p! Suiiis)iuauodwo)oapIA +

pIOA : ()o1epdn +

pIOA : (J98eue|AISpUSY JUBUOdWOD)IBpUY +
PIOA : (924n0s 8ulls ‘wip uoisuawig

‘sod uoisod ‘pi Suis)iusauodwo)adew| +

Suins : {195} 924nos +

Buas : {19s} 22unos +

uolsuawip Mvﬁ T {yuonisod

ploA: ()o1epdn +

pIOA : (Jo3eueJapuay usauodwo))ispuay +
pIoA : (uonded BuLis

‘IJN0J0D1X3} 4N0|0) ‘Sulls ‘JusWusl|yIXa) Sulils
‘97IS1U0} [eas ‘DweNIuo) Sulls ‘wip uolsuawiq
‘sod uollsod ‘p! Sulis)iusuodwodIxa] +

8uls : {19s} uswWUBI|YIXa) +
1nojo) : {195} 1N0j0DIX3) +
Suins : {195} Juoy +

Suins : {195 198} uonded +

juauodwo)punos

juauodwo)03PIA

jusauodwo)aew|

jJuauodwo)Ixa]

ues|ooq : {195 198}e1epdnmojje +
apoNydeun : {128:13s} ,opou +

110

apoNydesn

100q : {‘19s ‘398}pa|qeus +

jusuodwo)elpalAl

iagram.

UML D

m

Media Component (MediaComponent) i

Figure B.15

Page 174

GraphNode

+ node* {set;get;} : GraphNode

Vector2
di . Dimension [
FEDComponent Imension
+id {get; set;} : string 1 1 Vector3
+ enabled {get; set;} : bool
+ fedStylelD {get; set;} : integer
+ caption {set;} : string
+isActive {get; set;} : bool Vector2
+ Initialisation() : void position Position |
+ Render(Component RenderManager, <>—1
VirtualCamera camera) : void 1 Vector3
+ Update() : void
Label Gauge Minimap Bar Counter
object 1 object{)1 objects)1 object {1 object {1
Collection
1 |1
GameObject

Figure B.16: Front End Display Component (FEDComponent) in UML Diagram.

Vector2 Vector3

Vectord

Matrix

+x {get; set;} : float
+vy {get; set;} : float

+x {get; set;} : float
+vy {get; set;} : float

+vy {get; set;} : float

+x {get; set;} : float
+v {get; set;} : float
+vy {get; set;} : float
+w {get; set;} : float

+r[4] : Vector3

Figure B.17: Base classes for math library in UML Diagram.

Page 175

Random

+ GenerateFloat() : float

+ Generatelnteger() : integer

+ GenerateFloat(float min, float max) : float

+ Generatelnteger(integer min, float max) : integer

Figure B.18: Random number generator in UML Diagram.

UniqueObjectidentifierManager ObjectCounter
ObjectCounters + prefix {get; set;} :string
+ Initialise() : void <>—* + counter {get; set;} : integer
+ RegisterPrefix(string prefix) : void 1

+ NextID(string prefix) : string
+ CleanUp() : void

Figure B.19: Unique Object Identifier Management Component (UniqueObjectIdentifierManager) in UML

Diagram.

Page 176

APPENDIX C: Implementation of our Model Driven Game Development
Framework to support the development of Serious Games

This appendix demonstrates the development of our novel model-driven serious game framework

proposed in this thesis. In the following section, we present our prototype detailing the software

architecture, the modelling environment, representation of model, and the translation and generation

of model for the purpose of concept-proofing.

C.1 Overview of the Model-Driven Pipeline

The model-driven pipeline in our prototype is made-up of a modelling environment, model
translators and an artefacts generator. We choose to implement our own set of tools instead of using
the MDE tools described in Section 3.7 mainly due to the reason choice of platform we wish to deploy
the modelling environment and to generate the artefacts. In addition, it also provides us the flexibility
to develop a less technical modelling environment for the non-technical domain expert. An overview

of this is shown in Figure C.1.

I

I

| GSM Translator GSM for
| for Platform B —| platform B
I

|

I

!

Generator
‘ Source Code
T for Platform B

[

Code \
Template for |
[

!

Platform B

I I I
Domain expert | Specification is | GCM is translated into | GTM is then translated to | GSM can then be | Software
models serious game | represented in | GTM, a computational | the GSM of the targeted | transformed to desired | artefacts as
| GCM ‘ model independent of ‘ platform. Individual GSM | software artefacts using | outcome of the
| | platform | Translator is required. | code generator. | model-driven
| | | | | process
Code
‘ ‘ ‘ ‘ Template for ‘
| | | [Platform A ‘
| | l,.| GSM Translator || GsMfor || ‘
| | || for Platform A Platform A | | i | . | Source Code
| | | | |~ for Platform A
Serious Games | | | | |
Modelling » GCM —» GTM Translator — GTM Code
Environment } ! !
I
I
I
|
I
)

B

Figure C.1: Model-driven pipeline for the prototype
The modelling environment is a GUI-based environment which allows non-technical domain
expert to model serious game using both graphical notations and step-by-step wizard to produce a
serious game model that is compliant to our Game Content Model. We have chosen to develop a web-
based modelling environment due to the wide-access the web can offer to the game-based learning
community. This approach can also lower the barrier of entry for adoption of game-based learning as
practitioners no longer require a high performance multimedia computer to produce serious game.

The Adobe Flash platform is chosen as the development platform of the modelling environment

Page 177

because it offers the facilities to support the development this modelling environment with rich
interactive features and it can allow most users with connected desktop to use this tool without
requiring any local installation. Our rich experience of using Adobe Flash platform is also one of the
main reasons behind this choice as it allows us to rapidly prototype and demonstrates the user
interface aspect of our model-driven serious game development framework. Non-technical domain
experts will be using this modelling tool to author the serious game content collating the art assets and
defining the necessary game mechanics that made up the serious game.

The serious game design (Game Content Model) produced using the modelling environment is
then represented using a middleware which is later translated into other models using the model
transformation tool. In this prototype, we have chosen to use eXtensible Markup Language (XML) as
the middleware for model representation. This eases the transformation process and allows additional
information to be weaved into the later models.

The Game Content Model will then be translated to a Game Technology Model using a MDE tool.
In this prototype, we have implemented a simple model translation tool in PHP to allow
transformation to be processed at the server-end instead of using the MDE tools as described in
Section 3.7. PHP is chosen amongst the available server-side technology because it is an open platform
and it provides the facilities we required to process the Game Content Model generated from the
SeGMEnt tool. The Game Content Model is read by the model translation and the model is
transformed into Game Technology Model.

The next stage in our model driven pipeline, the Game Technology Model is processed by the next
model translator which weaved in the necessary platform specific information to create a platform
specific model referred to in our framework as Game Software Model. This Game Software Model
translator is also implemented in PHP. Since our case studies will be targeting the serious game design
to the Adobe Flash platform, the Game Software Model will be designed to include necessary platform
specific information to the Game Technology Model. This means a separate Game Software Model is
needed if a different technology platform is targeted.

Finally, we will be generating software artefacts using the code generator and appropriate code

template.

C.2 Serious Games Modelling Environment (SeGMEnt)
Our modelling environment, referred to as Serious Games Modelling Environment (SeGMEnt), is

designed to allow non-technical domain expert to document serious game design formally. In general

Page 178

the task of modelling serious games components can be categorised into data modelling and visual
modelling. Data modelling mostly involves definition of objects, flows and processes whereas visual
modelling involves positioning the in-game components in the virtual world, constructing the virtual
environment and arranging the GUI components on-screen. In some aspects of the serious games
modelling, visual modelling is crucial to enable domain expert to visualise the information to be used
in data processing. Although a portion of serious games design will involve organisation of visual
elements, this framework will focus mainly on visual modelling that provides positional data of in-
game components that is useful in serious games design. Our SeGMEnt tool encapsulates all the
concepts of Game Content Model into the different design viewpoints namely structure, object,

simulation, presentation, environment and player using the appropriate UI model.

C.2.1 Architecture for SeGMEnt in Adobe Flash

Our SeGMEnt tool is implemented in Adobe Flash using ActionScript 2.0 platform. This is mainly
due to our extensive knowledge in the ActionScript 2.0 API and deep understanding of the working of
ActionScript 2.0. The modelling environment itself consist of three parts namely (1) the shell which
stores all the data structures holding the data representing the serious game model-being-model, (2)
the collapsible panel which consist of controls that allow users to switch between viewpoints and
additional controls for each viewpoints, and finally (3) the individual viewpoints which allow users to
model specific aspect of a serious game. Each of this part has been manually programmed to reside on
a different level of the Adobe Flash Player movie stack. The shell takes the base-level of the stack
namely _level0 and controls the loading and unloading of viewpoints and panel. All viewpoints are
dynamically loaded onto _levell and collapsible panel is placed at _level2 to allow the controls to float

above the active viewpoint as shown in Figure C.2.

Flash Player
movie stack

&— _level2

_levell

_level0

Figure C.2: Architecture of SeGMEnt in Adobe Flash

Page 179

C.2.2 User Interface (UI) Components for SeGMEnt

In the design of our SeGMEnt, we have identified five unique UI components that can assist non-
technical domain experts when modelling the aspects of serious games design in the SeGMEnt
modelling environment. These UI components are flow visualisation, dynamic option interface, What-
you-see-is-what-you-get (WYSIWYG) visualisation, statement construction interface and guided data

entry interface.

C.2.2.1 Flow Visualisation

The flow visualisation is the UI component responsible for providing user with the visualisation that
represents the flow of the serious game. In this visualisation component, we have chosen specifically
to implement a state diagram notation that has been extended to include additional information. Each
of the diagram would consist of a begin state, an end state and the in-between states. Each state
(referred to as context in our Game Content Model) would consist of one or more transitional
conditions to the next state depending on specification of each state. As a UI component, each state
can be repositioned while maintaining the link(s) with other states that it is related to. To ensure that
users are not overloaded with information in a single screen, the additional information associated to
each state is encapsulated within the state and can be viewed on a separate view. Whenever is possible
a Dynamic Option Interface (refer to Section C.2.2.2) is used to allow domain expert to select the
options available instead of a textbox. These options are data which have been retrieved from other

views to prevent error in data entry. The breakdown of flow visualisation elements are is illustrated in

Figure C.3.
Begin State
Dynamic Option Interface
EDIT CONTEXT: State Select the PRESENTATION to use
New Pres=ntation3
Inbetween State begingame i
- (=520 T e Presentationd New Presentation2
New Pres=ntation 1
\ TIME TRIGGER

Timereountdown o _ seconds, THEN
TSN

DONE

Additional
Information

Transitional e
Condition /'
b4

End State

Figure C.3: Elements of Flow Visualisation Ul

Page 180

One of the biggest challenges when implementing this UI in Adobe Flash ActionScript 2.0 is the
drawing of line that represents the transitional condition between source-state and target-state. This
visual representation of transitional condition needs to be maintained regardless of the position of the
source-state or target-state. Our solution to this problem is to maintain two collections of data
structures; (1) a collection for storing the data for each individual state and (2) a separate collection
for storing all the transitional condition as shown in Figure C.3. This allows us to easily distinguish
data from visual aids (transitional condition arrows). The transitional condition arrows are updated
based on user’s interaction through a fixed-time interval (onEnterFrame event handler) redrawing

operation (See Figure C.4 for code snippets).

canvas mc.g3tructure mc.attachMovie ("startSyvmbol mc", context, -1, { x: ox, Vi ov}):

canvas mc.gStructure mc[_ context]. contextID = "Start Game";
canvas mc.gStructure mc[context]. type = "start';

Canvas mc.gStructure mc[context]. nextContext = nextContext;
canvas mc.gStructure mc[context]. nextContextID = nextContextlD;
canvas mc.gdtructure mc|[context].header btn.onFress = function(){

if{'editFlag) {
this. parent.startDrag();
this. parent._ alpha = 50;
canvas mc.gSRelationship me.onEnterFrame = function(){
drawRelationships fn{();

Figure C.4: ActionScript 2.0 snippet that represents data structure for the Start Symbol and the onPress event
handler which triggers the fixed-time interval redrawing operation when symbol is in not in editing additional
information mode.

function drawRelationships fn(){

for(var 1 = 1; i « canvas_mc.g5Relationship mc. index; i++){
if (canvas_mc.gSRelationship me["relationship” + 1 + " _mc"] != undefined)
canvas mc.gSRelationship me["relationship + 1 + " mc"].draw fn();

Figure C.5: ActionScript 2.0 snippet that shows how transitional information arrows (gSRelationship mc)
collections are traversed and redraw (draw_fn ()) operation is invoked.

In SeGMEnt, flow visualisation component used in Structure Designer for modelling structure and

flow of serious game and in Scenario Designer for modelling sequences of events in a game scenario.

C.2.2.2 Dynamic Option Interface
We recognised that users are required to enter data that refers to an aspect of the serious game design

in different viewpoints throughout the modelling process. The dynamic option interface, as previously

Page 181

mentioned, is a list of option generated from data fetched from within SeGMEnt during runtime to
simplify the data entry process and to prevent error in data entry. We have implemented two versions
of the dynamic option interface; (1) a fixed dynamic option interface which can be part of a data entry
interface and (2) a floating dynamic option interface which acts as a substitute to the traditional list

GUI (see Figure C.6).

Fixed Dynamic Option Interface Floating Dynamic Option Interface

Select the PRESENTATION to use:

EXISTING GAME PRESENTATIONS

MNews Presentation 3

SN I e Presentation S Newr Prese ntation 2

Meww Presentationd New Presentation 1

Hew Presentation

Hew Presentationl

lew Presantation|

Figure C.6: Floating Dynamic Option Interface and Fixed Dynamic Option Interface.

The fixed dynamic option interface provides customisable options to add and remove option from
the list whereas the floating dynamic option interface only shows options related to the specific entry.
The options for each dynamic option interface are maintained as an array of data structure. Adding
and removing option from the fixed dynamic option interface are achieved by updating the array
either by pushing in new option or removing the data structure from a specific index of the array.
While the fixed dynamic option interface allows users to add and remove options via GUI controls
such as button, the options for floating dynamic option interface are constructed from existing
collection of data structure within the same viewpoint or from other viewpoint. Both the fixed and the

floating dynamic option interfaces are used widely in different viewpoints of SsGMEnt.

C.2.2.3 WYSIWYG (What-you-see-is-what-you-get) Visualisation

The WYSIWYG visualisation is a basic UI component that aids users to visually position media, GUI,
FED and game objects strategically on a 2D space. In WYSIWYG visualisation, the media, GUIL, FED
and game objects are represented as symbols which can be drag and drop to the desired position on
the screen and the visual properties of these can be edited via data entry interface (see Figure C.7).
Each 2D space maintains an array that stores data structure representing visual properties of the
relevant visual symbols which is saved and loaded into the relevant viewpoint at any point of the

modelling process. The WYSIWYG visualisation is used in the presentation viewpoint to allow user to

Page 182

model presentation context, the scenario viewpoint for modelling game interfaces and the

environment viewpoint for modelling of game environment which will be used in a game scenario.

New Presentation0 GUI Controls to add Media Component

to the existing presentation

Imagejpg

IMAGE

Media
Components

mipsum dobor sitamet, consectetur
e adlipiscing et Hullameu pretium tellus,
Active ' ieamusat pusac est pubinar wtrm, D

Data Entry Interdface

N Teor 2

AN Lo ipsumclobor sitamet, consectetur adipiscing el Hullam
=u pretium tellus, ¥ivamus at purus ac est pubdinar rutrm.
Duis.

BRING FORWARD SEND BACKWARD

PRESENTATION NAME

Figure C.7: WYSIWYG Visualisation in Presentation Designer viewpoint.

C.2.2.4 Statement Construction Interface

The statement construction interface provides assistance for users to construct a statement by
selecting the verb, noun or conjunction from the options presented in floating dynamic option
interface. In our SeGMEnt tool, the statement construction interface is used primarily to guide users
in constructing acting statement which is an English-like sentence that define game act (see Section
5.3.6 on use of game act in game event) that is executed in the arranged order. This allows user to
provide the necessary information for executing specific actions to represent the scenario similar to
the role of a director giving instructions to the actor. Constructions of act statements are constrained
by grammar of act statement as shown in Table C.1.

Object (in-game object), action (behaviour of in-game object), speech (text or sound of a speech)
and location (a marked position in the virtual space) are nouns, and act, speak and moveTo are the
available verbs use to construct simple act statement which begins with subject then follow with
predicate based on a declarative sentence structure in English. Compound act statement supports the
use of AND conjunction to create a more complex act. Act could be interrupted in the game-play
when game-player interacts with in-game object during execution of an act sequence as part of

reaction of in-game component and resume after that.

Page 183

Descriptor
Noun
Verb

Conjunction

Simple Act Statement

Compound Act Statement

Table C.1: Grammar for Act Statement.

Syntax
<object> | <action> | <speech> | <location>
act | speak | moveTo

AND

<simple act statement> = <subject> <predicate>
<subject> = <object>

<predicate> = act <action> | act <action> <object> | speak <speech> | moveTo
<location>

<compound act statement> = <subject> <predicate> AND <predicate> [AND
<predicate>]

<subject> = <object>

<predicate> = act <action> | act <action> <object> | speak <speech> | moveTo
<location>

Constraints:

<object> act <action> AND speak <speech> |

<object> act <action> <object> AND speak <speech>

<object> act <action> AND speak <speech> AND moveTo <location> |

<object> act <action> AND moveTo <location>

In our implementation, a word is chained to another set of options depending on the type of word

selected whether it is a noun, verb or conjunction. Chaining of words is depending on the grammar

described in Table C.1. This is programmed in the nextWord_fn() function which is invoked after an

option has been selected (see Figure C.8). This will add the next word to the statement and have it

positioned visually in the correct position as shown in Figure C.9.

Page 184

function addActor fn(mc:MovieClip, caption:String):String{

var mcName = "Actor mc";

mc.attachMovie ("word mc", mcName , 1)/

mc [mcHame] . x = 10;

mc [mcHame] . caption txt.text = _caption;

mc [mcHame] . caption txt.autoSize = true;

mc [mcHame] .bg mc. width = mc[mcHName] .caption txt. width:

mc [mcName] .bg mc.onRelease = function(){
restartSentenceFrom fn(this. parent):
dizableCoordinations fn(edithActingScript mc, this. parent. parent. namej;
this. parent. parent.swaplepths(this. parent. parent. parent.getNextHighestDepthi)):
this. parent.attachMovie("list mc", "list mc", 1, { x:-40, _w:-50});
this. parent.list mc. buttonSelected = this. parent.caption txt.text;
this. parent.list mc. maxltem = &;
this. parent.list mc. index = 0;
this. parent.list mc. caller = "";

var options:Array = actorlList;

buildList fn(this. parent,this. parent.list mc, options):

initlList fn(this. parent,this. parent.list mc, options, "Select a SUBJECT");
}:

mc [mcName] .nextWord fn = function(){

this._ parent.swapDepths (this. parent. oDepth): Chc:l'n'lng of word
this.captinn_txt.autnSize = true; ‘— using nextWord f£n()
thi=s. bg_mc. . _width = this=s. capt:i.cm_t:-:t . _width; function -

addCommand fn (mc, mcName, "Select a COMMRND™)
}:
return mcHame;

Figure C.8: Code snippet showing how words are chained one after another according to the grammar of acting
script in ActionScript 2.0

STEP 1: Select a SUBJECT STEP 2: Select a COMAND

Actor2 MOVETO
Actor 3 SPEAK

CANCEL

SENTENCE

e [B M BN

STEP 3: Select an ACTION STEP 4: Select a CONJUNCTION to form a STEP 5: Select a second COMMAND. The steps
compound acting statement goes OnN....

Figure C.9: Statement Construction Interface.

Page 185

The statement construction interface is used in the scenario designer viewpoint to allow users to

specify acting statement for an event as shown in Figure C.10.

START
oI
Z
S

DIT
p—

EDIT ACTING SCRIPT:

0
=
&
z
>
=2
o

One

et CONMRID

ot

Figure C.10: Statement Construction Interface in Scenario Designer Viewpoint.

C.2.2.5 Guided Data Entry Interface

The guided data entry interface provides a step-by-step guide for users to document aspects of serious
games in our SeGMEnt tool systematically and to avoid overloading request of information from
users. Each step in the guided data entry interface can be regarded as a tab control that groups a subset
of data entry task into a single unit. GUT such as textbox, radio button, dynamic option interface and
button are used to form the data entry UI for each step. Each of the steps has had the UI manually
coded and data which are linked with other viewpoints are fetched automatically during runtime to be
presented as options in the dynamic option interface (see Figure C.11). In SeGMEnt, the guided data
entry interface is used in the object designer viewpoint to guide users in defining game objects and the

player designer viewpoint for defining aspects of game player.

Page 186

SETTING UP GAME PLAYER AVATAR

AVATAR ASSIGNMENT: FIXED AVATAR

caveonecr: [

Description
about this
step

Game Object 1
Game Object 2
Game Object 3
Game Object 4
Game Object 5
Game Object &

Figure C.11: Guided Data Entry Interface in Player Designer Viewpoint.

C.2.3 Design Viewpoints in SeGMEnt

The viewpoints in our SeGMEnt tool are designed to separate aspects of serious games design into
smaller and manageable clusters of data set. Each of the viewpoints uses a combination of UI
components described in Section C.2.2 to aid users in visualising aspects of serious game design. In
the following subsections, we will describe the viewpoints and explain how our Game Content Model

is encapsulated within the Uls and viewpoints.

C.2.3.1 Game Structure Designer

The game structure designer is the viewpoint where users model the flow and the structure of a
serious game which is described in Section 5.3.1. In the game structure designer users specify the type
of context, complete the details of transitional condition and the next context in the flow. Some of
these data entry task are made easier through the dynamic option interface where users are only
required to select from a list of available options (see Figure C.12). As described before, these options
are automatically generated from data gathered from different viewpoint with the aim to prevent data
inconsistency and simplify the interaction. The systemic view of the game structure is presented using

the flow visualization UI component as shown in Figure C.13.

Page 187

Specifying details of a context Floating Dynamic Option Interface provides
easy selection of opfion gathered from
EDIT CONTEXT: Level 1 different viewpoints in SeGMent

CONTEXTID: [EEEh] Select SIMULATION to use:

swuLmono: I

SCENARIOID: E==hElial]

GAME MECHAMICS TRIGGER

IF (WIN), then

TRANSTIONTO

ELSE (LOSE], then

TRANSTIONT

DONE

Figure C.12: Editing context in Game Structure Designer with the aid of Dynamic Option Interface.

START

FHNLONYLS

begin garne
4
Menu x

EDIT

counteewn o0

v
Levell x

playerwin

¥ S
evel x N
pliyer ke
EDIT

phyerbse

Resutt Screan x

EDIT

phyerwin —

countdown ot

Simulation Context Properties Edited. testsgm
Figure C.13: Modelling Game Structure in Game Structure Designer.

C.2.3.2 Game Scenario Designer

The game scenario designer is the viewpoint where users specify the flow of events in a scenario. This
viewpoint allows user to describe the game scenario (refer to Section 5.3.5), game event (refer to
Section 5.3.6) and game objective (refer to Section 5.3.7) in our Game Content Model. Within each
event, domain expert can specify the game acts that compose the event similar. Each game act is
composed using ActingScript. In our modelling environment we have the grammar of the

ActingScript built into the UI where domain expert can select the verb and noun to construct a valid

Page 188

game act which we have described in Section C6.2.2.4 (see Figure C.14). Each of the game act created
is added to the list of existing game act library which users can reuse in other game events (see Figure
C.15). In addition to game act, domain experts are required to define the game rules in which a
scenario operates under. Domain experts can define this through a UI with the use of dynamic option

interface as shown in Figure C.16.

EDITG ACT
A

EDIT ACTING SCRIPT:

One

O™VYNIDS

Sekecta COMVAND

rext e

Event3 x

EDIT

i

Game Scenario Loaded

Figure C.14: Editing game act using ActingScript Ul in Game Scenario Designer.

OMVYNIDS

Game Scenario Loaded.

Figure C.15: Each game act created is added to the existing game act library where user can reuse in other game
events.

Page 189

Game Rule | GAME RULES

EDIT EELEhiEnl
GAME INTERACTION RULE

Game Rule 2

INTERACTION CONDITION:

(Actor) [t t)
1

OUTCOME:

(Matter) (Operator) (Value)

el e W

Figure C.16: Defining game rules in Scenario Designer.

In this game scenario designer viewpoint, users can also define game objectives through the UI

shown in Figure C.17 with assistive support of dynamic option interface.

GAME ORIECTIVEID: (SIS S) G

(57w g 80 | Plaver has tocomplete this scenarioin 300 second s SIn]) Ga e Ohjective |

GOAL CONDITION

(Trackable Type) (Action Name) (Conditional Operator) (Value)

3 [Total Completion [BBILESS THAN Nl

THEN

OBJECTIVE I5 MET!

Figure C.17: Defining game objective in Game Scenario Designer.

C.2.3.3 Game Object Designer

The game object designer is the viewpoint for users to define a game object’s identity, specify the
associated attributes, assign an appearance, define actions and define associated intelligence which is
describe in game object concept in our Game Content Model (see Section 5.3.4). In this design
viewpoint, we have chosen to use the guided data entry Ul component to aid users the process
entering data. Likewise what have been implemented throughout the SeGMEnt modelling experience,
we retrieve data from other viewpoints to ease the entry of data by the domain expert using the

dynamic option user interface.

Page 190

DEFINING GAME OBJECTS

PREVIOUS

Figure C.18: Defining game object in Game Object Designer.

C.2.3.4 Game Simulation Designer

The game simulation designer is designed based on the game simulation concept described in Section
5.3.3. It is the viewpoint for users to add FEDs to the screen, drag it to the right position and edit the
associated properties through the WYSIWYG Visualisation (see Figure C.19). In addition to the game
user interface design, user can define the game tempo and physics through a dialogue box simply by

providing the necessary information (see Figure C.20).

GAME SIMULATION DESIGNER

V2" GAME SIMULATION

FRONT END DISPLAY

GAME SIMULATION PROPERTIES

EOIT

EOIT
EXISTING GAME SIMULATION

S0l e Simulaton]

NOLLYTNWIS

Edit Barl

Figure C.19: Designing game interface in Game Simulation Designer.

Page 191

EDIT GAME PH

COLLISION WORLD: COLLISION ON

ENVIROMENTAL FORCE EMVIROMENTAL FORCES

Force 1
ENVIRONNENTAL FORCE 2l

Force 2

CONSTANT FORCE
rorcevae: [N

Figure C.20: Defining game physics in Game Simulation Designer.

C.2.3.5 Game Presentation Designer

The game presentation designer offers the viewpoint for users to model off-game user interfaces such
as a menu screen, a screen that presents game player with the game objectives and a screen that
present the result to game player. This viewpoint is designed based on the game presentation concept
in our Game Content Model (see Section 5.3.2). It uses the WYSIWYG visualisation which allows
users to drag each media or GUI components into position and edit their properties through the
dialogue box (see Figure C.21). The presentation context created will then be referenced in the

structure designer viewpoint for modelling of game flow.

GAME PRESENTATION DESIGNER

NTSNTR GAME PRESENTATION Main Menu

MEDIA

sl TEXT
ADD QLK

ADD

ADD
m EDIT BUTTON P TIES X
GRAPHICAL USER INTERFACE BEREE suTToNID: [
— \ carmion: [
Credits

ADD

ADD DONE

ADD

EXISTING GAME PRESENTATIONS

NOLLY.INISIdd

BRING FORWARD SEND BACKWARD

EDIT PRESENT

PRESENTATION NAME

Button Edited.

Figure C.21: Modelling game presentation in Game Presentation Designer.

Page 192

C.2.3.6 Game Environment Designer

The game environment designer is the viewpoint where users model a game environment in which a
scenario takes place in. This viewpoint is designed based on the game environment concept described
in Section 5.3.5.1. It uses WYSIWYG visualisation which allows users to position game objects,
proximity trigger and checkpoints to construct the environment in which the game-play will set in
and virtual camera visually on a 2D space (see Figure C.22). It also uses dynamic option interface to

aid users to reference to game objects which has been defined in the game object designer viewpoint.

GAME ENVIRONMENT DESIGNER
[WISTN GAME ENVIROMMENT

Y-\nlu il GAME OBIECT

F-\nlu il FROXIMITY TRIGGER

f\nlnl CHECKPOINT
VIRTUAL CAMERA

VirtualCamer1

EDIT | REMOVE | ORDER New Game , - imity Trigg

Object
E—T oone L

EDIT REMOVE

BRING FORWARD SEND BACKWARD

EXISTING GAME ENVIRONMENT
MNew Game

. i Checkpaint]
e

b . .

Hew Game:
Ohject

LNIWNOHIANT

Virtual Camera Added.

Figure C.22: Modelling game environment in Game Environment Designer.
C.2.3.7 Game Player Designer
In the game player designer, domain expert can specify the player’s avatar, the inventory size which
limits the storage of virtual items, the game attribute associated, the data to be tracked and the
mapping of game controls to game object’s action. This viewpoint is designed based on the game
player concept described in Section 5.3.9. It uses the guided data entry interface and dynamic option
interface to aid users in specifying all the details required to define attributes associated to game player

(see Figure C.23).

Page 193

SETTING UP GAME PLAYER

ACTIONS FORGAME QBIECT 1 DEVICE STl
EDIT s INPUTEVENT: [}
AC2 INPUT:

AC3

ACA B

Select a KEY

ST E P 5 Define Game Control

ign hardware control to each actions of game
object.

PREVIOUS

testsgm
Figure C.23: Modelling game player in Game Player Designer.

C.2.4 Generation of Game Content Model

Our SeGMEnt tool provides the interface aid for domain expert to document the design of a serious
game that is compliant to the Game Content Model. Underlying the UI is the data which needs to be
saved, processed and exported into eXtensible Markup Language (XML) format (see Section C.3 for
more details) which can be transformed by our MDE tools which we have chosen. In our
implementation, we traverse through all the data structures stored in the shell module at _level0 of the
Adobe Flash movie stack (refer to Section C.6.2.1) that represent all the concepts of Game Content
Model and mark it with XML tags in the XML structure illustrated in Figure C.24. On the highest
level, the serious game element consist of basic description of the game such as author and title, the
game player concept, the game structure concept and collections of reusable concepts such as game
presentation, game simulation, game object and game scenario. These reusable concepts are referred
to using a unique reference identifier in the game structure such as gamePresentationID,

gameSimulationID and gameScenariolD.

Page 194

<!--Definition for Serious Game-->
<!--Game Player-->
<!--Game Presentations-->
<!--Game Simulations-->
<!--Game Scenarios-->
<!--Game Objects-->

<!--Game Structure-->
<!--Definition for Game Structure-->
<!--Definition for Game Context-->
<!--PedagogicEvent-->

<!--EventTrigger-->

<!--Reference to Game Presentation-->
<!--Definition for Game Context-->

<!--PedagogicEvent-->

<!--EventTrigger-->

<!--Reference to Game Simulation-->

<!--Reference to Game Scenario-->

Figure C.24: XML Structure for Game Content Model

In our implementation, each of the viewpoints store data in an array of objects as shown in Figure

C.25.

a Structures for Game Scenarios

wvar stockGameScenarios:Array = new &Arrayl():
war gameScenario = undefined;
war currentGameScenario: Number = 0;

mi1l a2t ana

CETII~CENTE FAT ulat

var stockGameSimulations:Array = new Array():
wvar gameSimnlation = undefined;

var currentGameSimulation: Number = 0;
ame Present

wvar stockGamePresentations:Array = new &Arrayl):;
wvar gamePresentation = undefined;

var currentGamePresentation: Number = 0;

/Data Structurse for

war stockGameScenarios:Array = new Arrav():
war stockGamelcts:Array = new Rrray():

var currentGameScenario:Number = 0;

wvar stockGameEnvironments:Array = new Arrav();
wvar gameEnvironment = undefined;
wvar currentGameEnvironment: Number = 0;

K a Srructure For

wvar stockGameOhjects:Array = new Arrav():
wvar gamelbject = undefined;

wvar currentGamelChject:Nunber = 0;

S /Da ame Player

wvar gamePlayer:Ckject = new Chbject():
wvar gamelbhjects:Array = new Arrav():

Figure C.25: ActionScript 2.0 snippet that shows the data structure for each viewpoint.

Page 195

Each of the arrays is traversed in the order of the XML structure presented in Figure C.24 and
every data in each object are accessed. XML tags are added to mark each of these data and a string of
text in XML format is constructed as shown in Figure C.26. Once all the data have been tagged, the
Game Content Model is sent to the GCMCreator.php to generate an XML file which will be processed
by our MDE tool to transform into the subsequent model (Game Technology Model) in our model

driven approach.

function exportToXML fn () {
| var zml:String = ""; I‘_ String to store the XML output

xml += "<seriousgame>";

J{<!'——Game Player—->
xml 4= "<gameplayer>";

/{fBvatar
zml += "<avatar>";
xml += "<assignmenttype>" + gamePlayer. avatar. assignment + "e/fassignmenttype>";
if (gameFlayer. avatar. assignment == "fixed"){
xml += "<id>" + gamePlayer. avatar. referencelD + mefids";
#ml += "<name>" + gamePlayer. avatar. referenceName + "¢/ mame>";
H
xml += "<Savatar>";

[/ Inventary
if (gamePlayer. inventory !'= undefined){
zml += "<inventorysize>" + gamePlayer. inventory + "¢finventorysize>";

//Game Attributes

xml += "<gameattributes>";

for(var i=0; i « gamePlayer. gamelAttributes.length; i++}{

ar xmlGameAttribute = gamePlayer. gameAttributes([i]:
"sgameattribute>";

Toids" + xmlGameRttribute. id + "o Sids";

"<name>" + xmlGameAttribute. name + "</name>";

"¢atartvalue>" + zmlGamelttribute. startValue + "¢fstartvalue>";
"<endvalue>" + xmlGameAttribute. endValue + "</endvalus>";
"e/gameattribute>";

-

REEEEE
RAARR

}
delete xmlGamedttribute;
xml += "</gameattributes>";

//Game ...

xml += "</gamestructure>"; XML tags are added to mark data
xml += "</sericusgams>";

war lv:LoadVars = new LoadVars():

1v.GCH = xml: String of XML iz sent to

GCMCreator.php
lv.send("GCMCreator.php”, ™ blank", "POST"): w”/ to create an XML file.

Figure C.26: ActionScript 2.0 snippet that export Game Content Model to XML format.

Page 196

C.3 Model Representation

In our model-driven approach, the data that describe the serious game model documented via the
modelling environment should be represented a format which can hold the aspects of serious game
defined in the Game Content Model as tokens of information. This information token must be able to
represent a set of attributes with its values as a whole.

In our framework, we favour the use of open data format such as eXtensible Markup Language
(XML). XML is a specification for defining how information is stored (Bray, Paoli, Sperberg-
McQueen, Maler, & Yergeau, 2008) like any other earlier form of initiatives such as the CASE Data
Interchange Format (CDIF) (Flatscher, 2002) and Portable Common Tool Environment (PCTE)
(ECMA, 1997) introduced for use to store software engineering data. It offers great flexibility for
defining the data format for representing models. In addition, XML can easily accept additional
information from the automated transformation process between the models for MDE. Furthermore
it is also well supported by MDE technologies such as Eclipse Modelling Framework (EMF) and
Generic Modelling Environment (GME) (Ledeczi, et al,, 2001) making it the ideal choice for
representing data-model. This makes XML is a viable option for defining data-model in our model

driven framework.

C.4 Model Transformations

In our model driven serious game development framework, the Game Content Model is generated by
our software tool, SeGMEnt (Serious Games Modelling Environment) and represented in XML
format. The Game Content Model then undergoes a transformation to be translated into the Game
Technology Model, a computational model independent of platform, using a MDE tool. The MDE
tool can be developed using existing MDE technologies such as EMF and GME as described in Section
3.7 or implemented using any programming languages with XML parser facility. In our model-driven
serious games development framework, we have developed a custom transformation tool in PHP so to
allow data to be processed on the server-side. The transformation of Game Content Model to Game
Technology is mainly a process of refining data and reformatting it into a computation independent
model by reorganisation of data into programmatic structures. This also involves the addition of
programmatic statement calls to the relevant Game Technology Model component’s function to

process the relevant data. Whereas the transformation from Game Technology Model to Game

Page 197

Software Model further refines the data by adding in platform specific data to the source model (Game
Technology Model).

There are two approaches to have a Game Content Model translated to a Game Technology Model.
The first approach is to interpret the source model (Game Content Model) and then weave the
additional information into the source model in order to produce the target model (Game Content
Model). This approach would require the source model to be well structured and the translation
process is just merely locating the token of information and weaving in the additional information
into the source model to create the target model. The second approach is to traverse through the
entire source model to locate the required token of information and a new target model is composed
by structurally reformatting data in the source model and adding in the additional information. In our
case, we opted for second approach because it does not constraint us to the structure of the source
model.

The process of model translation, as described earlier, requires (1) traversing the XML document
structure in search for the marked elements which will be (2) reformatted and may include more
information to construct the new model or artefacts. In PHP, there are various approaches for
traversing XML document structure and this includes the Simple XML (core library in PHP 5.0), XML
Expat parser and XML DOM (Document Object Model). In our prototype, we decided to use the
Simple XML approach mainly because it is a simpler approach to traverse a document structure. This
validates the notion that creation of a proprietary model translator and a code generator can be
simple. In our approach, we specify the path of the XML structure to locate the marked data. Once
marked data has been located, data can be accessed and re-marked with additional information.
Whenever there is more than one child node in the structure, the foreach() construct is used to iterate

over the tree structure as shown in Figure C.27.

Page 198

<%php
//Loading XML doc
$xmlDoc = simplexml load file("seriousgame.xml");

////More implementations.. (omitted in this example)

//Game Player

$GTM XML = $GTM XML . "<gamePlayer>";

$GTM XML = $GTM XML . "<attributes>";

$gameAttribute = $xmlDoc->gameplayer->gameattributes->gameattribute;
foreach ($gameAttribute as $ga)

{

$GTM XML = $GTM XML . "<" . $ga->name ."StartValue.setValue>";
$GTM XML = $GTM XML . "<constant wvalue=\"" . $ga->startvalue . "\"/>";
SGTM XML = $GTM XML . "<" . $ga->name ."StartValue.setValue/>";
SGTM XML = $GTM XML . "<" . $ga->name ."EndvValue.setValue>";
$GTM XML = $GTM XML . "<constant wvalue=\"" . $ga->endvalue . "\"/>";
$GTM XML = $GTM XML . "<" . $ga->name ."Endvalue.setValue/>";

}

$GTM XML = $GTM XML . "</attributes>";

$GTM XML = $GTM XML . "</gamePlayer>";

////More implementations.. (omitted in this example)

5>

Figure C.27: Snippet of code from the Game Technology Model translator to locate a marked data and iterating
through the tree structure.

The new model or artefact is created by transforming data into a refined new format of data
through the process of string concatenation. By using the string object, we can easily add in additional
information and format data to the desired format. An example of Game Content Model generated
from SeGMEnt is shown in Figure C.28 and the Game Technology Model which is transformed using
our proprietary tool is shown in Figure C.29. The Game Technology Model will later be transformed
into Game Software Model before it is used for generation of artefacts which can either be software
code or a compiled software artefact.

The transformation of Game Technology Model to Game Software Model in our prototype will
require inclusion of platform specific components such as windows management, file system, timer,
graphics wrapper and physics wrapper to the Game Technology Model. This is less complicated
compared to the transformation of Game Content Model to Game Technology Model because this
transformation will only require the additional data to be appended to the existing Game Technology
Model. This additional data will only include XML tags that mark the interfaces of the components to

be included to enable code pairing during artefact generation process.

Page 199

<gameQObject>
<id>fireman</id>
<objectAttributes>
<mass>75.0</mass>
<solid>true</solid>
<vitalAttribute>
<id>health</id> <startValue>100.0</startValue>
<endvalue>0.0</endvValue>
</vitalAttribute>
<vitalAttribute>
<id>»energy</id> <startValue>100.0</startValue>
<endValue>0.0</endValue>
</vitalAttribute>
</objectAttributes>
<objectAppearance>
<spriteSource>asset/fireman/sprite.png</spriteSource>
<spriteDimension>
<height>20</height>
<width>20</width>
</spriteDimension>
</objectAppearance>
<objectAction>
<id>idle</id>
<animation>
<startFrame>1</startFrame> <endFrame>3</endFrame>
</animation>
</objectAction>
<objectAction>
<id>walkLeft</id>
<motion>

<forceValue>5.0</forceValue> <forceAngle>-180</forceAngle>

</motion>

<animation>
<startFrame>4</startFrame> <endFrame>8</endFrame>

</animation>

<vitalUpdate>
<attributeID»energy</attributelID>
<arithmeticOperator>-</arithmeticOperator>
<constant>0.1</constant>

</vitalUpdate>

</objectAction>

</gameObject>

Figure C.28: XML describing the Fireman game object generated from SeGMEnt

Page 200

<!--Element for Game Object-->
<gameObject id="fireman" type="actor">
<attributes>
<collidable value="true'"/>
<mass value="75.0"/>
<inventory capacity="0.0"/>
<appearance.value>
<assetManager.load id="assetManager">
<constant value="asset/fireman/sprite.png"/>
</assetManager.load>
</appearance.value>
<animations>
<spriteSequence id="idle">
<frame top="0" bottom="20" left="0" right="20"/>
<frame top="0" bottom="20" left="20" right="40"/>
<frame top="0" bottom="20" left="40" right="60"/>
</spriteSequence>
<spriteSequence id="walkLeft'">
<frame top="0" bottom="20" left="60" right="80"/>
<frame top="0" bottom="20" left="80" right="100"/>
<frame top="0" bottom="20" left="100" right="120"/>
<frame top="0" bottom="20" left="120" right="140"/>
<frame top="0" bottom="20" left="140" right="160"/>
</spriteSequence>
</animations>
</attributes>
<operations>
<gameObject.update>
<if>
<condition>
<gameObject.actionState/>
<operator value="=='"/>
<constant value="idle"/>
</condition>
<animationManager.setSequence>
<gameObject id="fireman'"/>
<constant value="idle"/>
</animationManager.setSequence>

</if>
<elseif>
<condition>
<gameObject.actionState/>
<operator value="=="/>
<constant value="walk"/>
</condition>

<physicManager.applyForce id="physicManager">
<gameObject id="fireman"/>
<constant value="0.5"/>
<constant value="180"/>
</physicManager.applyForce>
<animationManager.setSequence>
<gameObject id="fireman"/>
<constant value="walkLeft'"/>
</animationManager.setSequence>
</elseif>
<animationManager.update id="animationManager'">
<gameObject id="fireman'"/>
</animationManager.update>
</gameObject.update>
<gameObject.render>
<renderManager.render id="renderManager">
<gameObject.appearance id="fireman"/>
</renderManager.render>
</gameObject.render>
<gameObject.cleanup></gameObject.cleanup>
</operations>

</gameObject>

Figure C.29: XML definition of the Game Object in Game Technology Model. Elements in bold are translated
token of information from Game Content Model which has been reorganised into programmable format.

Page 201

C.5 Code Generation

Our basic code generation tool is also implemented using PHP 5.0. It uses a similar approach to the
approach described in our Game Content Model to Game Technology Model transformation tool (see
Section C.4). Each of the marked tokens is located and then translated into ActionScript 2.0 syntax.
Each of the token of information either map to a single line of code or a segment of codes defined in
the code template. The final code is built up based on the structure of Game Software Model and
generated as textual artefacts ready to be copied to clipboard and used in Adobe Flash authoring

environment.

C.6 Summary

In this appendix section, we have implemented our custom-built modelling environment and MDE
tools to show the applicability of our model-driven game development framework. Our serious game
modelling environment (SeGMEnt) in Adobe Flash is the Ul module to our model driven game
development framework (refer to Part (1) in Figure 5.3). The SeGMEnt encapsulates all the concepts
in our Game Content Model described in Section 5.3 using the Uls components we described in
Section C.2.2. In our SeGMEnt, we have chosen a mix of Uls specifically designed to aid non-technical
domain experts in modelling aspects of serious game. We have developed our own algorithm to create
an extended state-like notation (flow visualisation), assistive user interfaces (dynamic option
interface) and statement construction interface. In addition, we have also designed and implemented
other helpful interfaces such as guided data entry interface and the WYSIWYG visualisation. These
user interfaces are used wisely to encapsulate all the concepts of Game Content Model within the
seven design viewpoints. Implementing these highly customised user interfaces components in Adobe
Flash is not without its technical challenges. Despite being the most popular platform for developing
rich experience application for the web, it has its own constraints in representing and managing
graphical object (movie clip), architecture of project, support for 2D drawing and object referencing
are some to name. Many of our solutions have to be designed around the limitation of the platform
and these are described in Section C.2.2.

In our model driven framework, the models are represented in XML to make marking and locating
of marked information easier, and therefore simplifying the task of model transformation. Framework
developers will need to have a good understanding of each of the model (Game Content Model, Game

Technology Model and Game Software Model) before they can implement refinement to each model.

Page 202

In our framework, we choose not to be constrained by the structure of models and have opted to
implement our MDE tool that locates the marked information in the source model and rebuilds the
target model from scratch. Development of the MDE transformation tool is proven to be much
simpler and straight forward especially with modern XML programming interfaces such as Simple
XML in PHP. We have also chosen to implement our own code generator tool and developed our own

code mapping technique to pair the XML tags (information token) with segment of codes.

Page 203

GAME BIBLIOGRAPHY

Dance Dance Revolution, 1998, Konami, Konami

Darfur is Dying, 2006, Susana Ruiz & Take Action games, mtvU

Grand Theft Auto IV, Rockstar North, Take-two Interactive

Guitar Hero, 2005, Harmonix, RedOctane

Halo: Reach, 2010, Bungie, Microsoft Game Studios

Killzone 3, 2011, Guerrilla Games, Sony Computer Entertainment

Need for Speed: Shift, 2009, Slightly Mad Studios, Electronic Arts

Pacman, 1980, Namco, Midway Games

Pro Evolution Soccer 2011, 2010, Konami Computer Entertainment Tokyo, Konami
Red Dead Redemption, 2010, Rockstar San Diego, Rockstar

Resident Evil 5, 2009, Capcom, Capcom

Starcraft II: Wings of Liberty, 2010, Blizzard Entertainment, Blizzard Entertainment
Unreal Tournament III, 2007, Epic Games, Midway Games

Warcraft I1I: Reign of Chaos, 2002, Blizzard Entertainment, Blizzard Entertainment

Worm Fort: Under Siege, 2004, Team 17, Sega

Page 204

REFERENCES

Adams, E. (2004). Designer's Notebook: Designing with Gameplay Modes and Flowboards Retrieved
31 October, 2009, from
http://www.gamasutra.com/view/feature/2101/designers notebook designing .php

Adams, E., & Rollings, A. (2006). Fundamental of Game Design. US: Prentice Hall.

Agrawal, A., Karsai, G., & Ledeczi, A. (2003). An end-to-end domain-driven software development
framework. Paper presented at the Companion of the 18th annual ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications, Anaheim, CA, USA.

Aguilera, M. d., & Mendiz, A. (2003). Video games and education: (education in the face of a "parallel
school"). Computers in Entertainment (CIE), 1, 10-10.

Altunbay, D., Cetinkaya, E., & Metin, M. G. (2009, 20th May). Model Driven Development of Board
Games Paper presented at the First Turkish Symposium on Model-Driven Software
Development (TMODELS), Bilkent University, Ankara Turkey.

Ang, C.S., & Rao, G. S. V. R. K. (2004). Designing Interactivity in Computer Games a UML Approach.
International Journal of Intelligent Games and Simulation, 3(2), 62-69.

Baker, A., Navarro, E. O., & Hoek, A. v. d. (2005). An experimental card game for teaching software
engineering processes. Journal of Systems and Software, 75(1-2), 3-16.

Basin, D., Doser, J., & Lodderstedt, T. (2006). Model driven security: From UML models to access
control infrastructures. ACM Trans. Softw. Eng. Methodol., 15(1), 39-91. doi:
http://doi.acm.org/10.1145/1125808.1125810

Bates, B. (2004). Game Design (2 ed.). Boston, MA: Thomson Course Technology PTR.

BECTa. (2001). Computer Games in Education: Aspects Retrieved 19 February, 2008, from
http://partners.becta.org.uk/index.php?section=rh&rid=13588

BECTa. (2006). Computer Games in Education: Findings Report Retrieved 19 February, 2008, from
http://partners.becta.org.uk/index.php?section=rh&rid=13595

Bethke, E. (2003). Game Development and Production. Plano, Texas: Wordware Publishing.

Bézivin, J. (2004). In Search of a Basic Principle for Model Driven Engineering. UPGRADE, V/(2), 21-24.

Bézivin, J., & Gerbé, O. (2001). Towards a Precise Definition of the OMG/MDA Framework. Paper
presented at the 16th IEEE international conference on Automated software engineering,
Coronado Island, San Diego, CA, USA.

Bishop, L., Eberly, D., Whitted, T., Finch, M., & Shantz, M. (1998). Designing a PC Game Engine. IEEE
Computer Graphics and Applications, 18(1), 46-53. doi: 10.1109/38.637270

Bjork, S., & Holopainen, J. (2004). Patterns in Game Design: Charles River Media.

Bjork, S., Lundgren, S., & Holopainen, J. (2003). Game Design Patterns. Paper presented at the Level
Up, University of Utrecht, The Nethelands.

Bogost, |. (2007). Persuasive Games: How | Stopped Worrying About Gamers And Started Loving
People Who Play Games Retrieved 20 February, 2008, from
http://www.gamasutra.com/view/feature/1543/persuasive_games how i stopped .php

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., & Yergeau, F. (2008, 5th December 2009).
Extensible Markup Language (XML) 1.0 (Fifth Edition), from
http://www.w3.0org/TR/2008/REC-xm|-20081126/

Burnside, J. B. (2008). Determining fire hazards when educators decorate their classroom in Clinton,
Missisippi.: National Fire Academy.

Carter, C., Rhalibi, A. E., Merabti, M., & Bendiab, A. T. (2010). Hybrid Client-Server, Peer-to-Peer
Framework for MMOG. Paper presented at the IEEE International Conference on Multimedia
and Expo (ICME), Suntec City.

Carter, C., Rhalibi, A. E., Merabti, M., & Price, M. (2009). Homura and Net-Homura: The Creation and
Web-based Deployment of Cross-Platform 3D Games. Paper presented at the International

Page 205

http://www.gamasutra.com/view/feature/2101/designers_notebook_designing_.php
http://doi.acm.org/10.1145/1125808.1125810
http://partners.becta.org.uk/index.php?section=rh&rid=13588
http://partners.becta.org.uk/index.php?section=rh&rid=13595
http://www.gamasutra.com/view/feature/1543/persuasive_games_how_i_stopped_.php
http://www.w3.org/TR/2008/REC-xml-20081126/

Workshop on Ubiquitous Multimedia Systems and Applications (UMSA'09), St. Petersburg,
Russia.

Ceri, S., Daniel, F., Facca, F. M., & Matera, M. (2007). Model-driven Engineering of Active Context-
awareness. World Wide Web, 10(4), 387-413.

Checkland, P., & Scholes, J. (1990). Soft Systems Methodology in Action. West Sussex, England: John
Wiley & Son.

Choi, S., Jang, J.-w., Mohanty, S., & Prasanna, V. K. (2003). Domain-Specific Modeling for Rapid
Energy Estimation of Reconfigurable Architectures. The Journal of Supercomputing, 26(3),
259-281.

Colt, H., Crawford, S., & Galbraith, O. (2001). Virtual Reality Bronchoscopy Simulation*: A Revolution
in Procedural Training. CHEST, 120(4), 1333-1339.

Connolly, T. M., & Stansfield, M. (2007). From eLearning to Games-Based eLearning. International
Journal of Information Technology and Management, 26(2/3/4), 188-208.

Cook, E., & Hazelwood, A. (2002). An active learning strategy for the classroom-“who wants to win ...
some mini chips ahoy? Journal of Accounting Education, 20(4), 297-306.

Cook, S., Jones, G., Kent, S., & Wills, A. C. (2007). Domain-Specific Development with Visual Studio
DSL Tools. Crawfordsville, Indiana: Addison Wesley.

Crawford, C. (1982). The Art of Computer Game Game Design.

Darken, R., McDowell, P., & Johnson, E. (2005). Projects in VR: the Delta3D open source game
engine. Computer Graphics and Applications, IEEE, 25(3), 10-12.

ECMA. (1997). Portable Common Tool Environment (PCTE) - C Programming Language Binding.

El-Rhalibi, A., Hanneghan, M., Tang, S., & England, D. (2005). Extending Soft Models to Game Design:
Flow, Challenges and Conflicts. Paper presented at the DiGRA 2005 - the Digital Games
Research Association’s 2nd International Conference, Simon Fraser University, Burnaby, BC,
Canada.

Espejo, R. (1990). The Viable System Model. Systemic Practice and Action Research, 3(3), 219-221.

Everett, J. (2003). Building a business simulation for kids: the making of Disney's hot shot business
Computers in Entertainment (CIE), 1, 18-18.

Fall, A., & Fall, J. (2001). A domain-specific language for models of landscape dynamics. Ecological
Modelling, 141(1-3), 1-18.

FAS. (2006a). Harnessing the power of video games for learning, Summit on Educational Games
2006, from
http://fas.org/gamesummit/Resources/Summit%200n%20Educational%20Games.pdf

FAS. (2006b). Harnessing the power of video games for learning, Summit on Educational Games
2006.

Favre, J.-M., & Nguyen, T. (2005). Towards a Megamodel to Model Software Evolution Through
Transformations. Electronic Notes in Theoretical Computer Science, 127(3), 59-74.

Flatscher, R. G. (2002). Metamodeling in EIA/CDIF---meta-metamodel and metamodels. ACM Trans.
Model. Comput. Simul., 12(4), 322-342. doi: http://doi.acm.org/10.1145/643120.643124

Fondement, F., & Silaghi, R. (2004). Defining Model Driven Engineering Processes. Paper presented at
the 3rd Workshop in Software Model Engineering (WiSME2004), Lisbon, Portugal.

France, R., Ghosh, S., Dinh-Trong, T., & Solberg, A. (2006). Model-Driven Development Using UML
2.0: Promises and Pitfalls. Computer, 39(2), 59-66.

France, R., & Rumpe, B. (2007). Model-driven Development of Complex Software: A Research
Roadmap. Paper presented at the 29th International Conference of Software Engineering:
Future of Software Engineering, Minneapolis, MN.

Fullerton, T. (2008). Game Design Workshop, Second Edition: A Playcentric Approach to Creating
Innovative Games (2 ed.). Burlington, MA: Morgan Kaufmann.

Furtado, A. W. B. (2006). SharpLudus: Improving Game Development Experience Through Software
Factories And Domain-Specific Languages. Masters, Federal University of Pernambuco,
Pernambuco, Brazil.

Page 206

http://fas.org/gamesummit/Resources/Summit%20on%20Educational%20Games.pdf
http://doi.acm.org/10.1145/643120.643124

Furtado, A. W. B., & Santos, A. L. M. (2006a). Defining and Using Ontologies as Input for Game
Software Factories. Paper presented at the 5th Brazilian Symposium on Computer Games
and Digital Entertainment, Recife Antigo, Brazil.

Furtado, A. W. B., & Santos, A. L. M. (2006b). Using Domain-Specific Modeling towards Computer
Games Development Industrialization. Paper presented at the 6th OOPSLA Workshop on
Domain-Specific Modeling (DSM’06), Portland, Oregon USA.

Gagne, R. M. (1970). The Conditions of Learning and Theory of Instruction (2nd ed.). New York: Holt,
Rinehart & Winston.

Gal, V., Prado, C. L., Natkin, S., & Vega., L. (2002). Writing for video games. Paper presented at the
VRIC 2002, Laval France.

Gasevic, D., Djuric, D., & Devedzic, V. (2006). Model Driven Architecture and Ontology Development.
Berling, Germany: Springer-Verlag.

Gregory, J. (2009). Game Engine Architecture. Natick, Massachusetts: A K Peters, Ltd.

Grgnmo, R., Skogan, D., Solheim, I., & Oldevik, J. (2004). Model-driven Web Services Development.
Paper presented at the 2004 |IEEE International Conference on e-Technology, e-Commerce
and e-Service (EEE'04), Taipei, Taiwan.

Hammond, J. L. (2007). Extending Frameworks with Domain-Specific Modelling Language. Embedded
System Engineering, 15, 16-18.

Harel, D., & Kugler, H. (2001). The Rhapsody Semantics of Statecharts (or, On the Executable Core of
the UML). Lecture Notes in Computer Science, Integration of Software Specification
Techniques for Application in Engineering(3147), 325 - 354.

Hemme-Unger, K., Flor, T., & Vogler, G. (2003). Model driven architecture development approach for
pervasive computing. Paper presented at the Companion of the 18th annual ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and applications,
Anaheim, CA, USA.

Heskett, J. (2005). Design: A Very Short Introduction. New York: Oxford University Press.

Hildenbrand, T., & Korthaus, A. (2004). A Model-Driven Approach to Business Software Engineering.
Paper presented at the 8th World Multi-Conference on Systemics, Cybernetics and
Informatics (SCI 2004), Orlando, Florida.

Hill, J., Tambe, S., & Gokhale, A. (2007). Model-driven Engineering for Development-time QoS
Validation of Component-based Software Systems. Paper presented at the 14th Annual IEEE
International Conference and Workshops on the Engineering of Computer-Based Systems
(ECBS'07), Tucson, Arizona.

Hoffman, H. G., Garcia-Palacios, A., Carlin, C., Furness, T. A. |., & Botella-Arbona, C. (2003). Interfaces
that heal: Coupling real and virtual objects to cure spider phobia. International Journal of
Human-Computer Interaction, 15, 469-486.

Hunicke, R., LeBlanc, M., & Zubek, R. (2004). MDA: A Formal Approach to Game Design and Game
Research. Paper presented at the Challenges in Game Al Workshop, AAAIO4.

Irvine, C. E., Thompson, M. F., & Allen, K. (2005). CyberCIEGE: Gaming for Information Assurance.
IEEE Security and Privacy, 3(3), 61-64.

Jarvinen, A. (2007). Introducing Applied Ludology: Hands-on Methods for Game Studies. Paper
presented at the Digra 2007 Situated Play: International Conference of the Digital Games
Research Association, Tokyo, Japan.

Javed, A. Z., Strooper, P. A., & Watson, G. N. (2007). Automated Generation of Test Cases Using
Model-Driven Architecture. Paper presented at the Proceedings of the Second International
Workshop on Automation of Software Test.

Jenkins, H., Klopfer, E., Squire, K., & Tan, P. (2003, October 2003). Entering The Education Arcade.
Computers in Entertainment (CIE), 1, 17-17.

Katara, M., Kervinen, A., Maunumaa, M., Paakkonen, T., & Satama, M. (2006). Towards Deploying
Model-Based Testing with a Domain-Specific Modeling Approach. Paper presented at the

Page 207

Testing: Academic and Industrial Conference - Practice And Research Techniques, 2006. TAIC
PART 2006. Proceedings.

Kelleher, C. (2006). Motivating Programming: Using storytelling to make computer programming
attractive to middle school girls. PhD Technical Report, Carnegie Mellon University.

Kelleher, C., Cosgrove, D., Culyba, D., Forlines, C., Pratt, J., & Pausch, R. (2002). Alice2: Programming
without Syntax Errors Paper presented at the User Interface Software and Technology, Paris,
France.

Kelly, H., Howell, K., Glinert, E., Holding, L., Swain, C., Burrowbridge, A., & Roper, M. (2007). How to
build serious games. Communications of the ACM, 50(7), 44-49.

Kelly, S., & Tolvanen, J. P. (2008). Domain-Specific Modeling: Enabling Full Code Generation.
Hoboken, New Jersey: Wiley-IEEE Computer Society Press.

Kent, S. (2002). Model Driven Engineering. Paper presented at the 3rd International Conference of
Integrated Formal Methods (IFM2002), Turku, Finland.

Kienzle, J., Denault, A., & Vangheluwe, H. (2007). Model-Based Design of Computer-Controlled Game
Character Behavior In G. Engels, B. Opdyke, D. C. Schmidt & F. Weil (Eds.), Lecture Notes in
Computer Science (Vol. 4735/2007, pp. 650-665): Springer Berlin / Heidelberg.

Kim, C., & Agrawala, A. K. (1989). Analysis of the Fork-Join Queue. IEEE Trans. Comput., 38(2), 250-
255. doi: 10.1109/12.16501

Kleppe, A. G., Warmer, J. B., & Bast, W. (2003). MDA Explained: The Model Driven Architecture :
Practice and Promise: Addison-Wesley.

Koper, R., & Manderveld, J. (2004). Educational modelling language: modelling reusable,
interoperable, rich and personalised units of learning. British Journal of Educational
Technology, 35(4), 537-551.

Koster, R. (2004). A Theory of Fun for Game Design: Paraglyph.

Ledeczi, A., Maroti, M., Bakay, A., Karsa, G., Garrett, J., Thomason, C,, . .. Volgyesi, P. (2001). The
Generic Modeling Environment. Paper presented at the Workshop on Intelligent Signal
Processing, Budapest, Hungary.

Leont'ev, A. N. (1977). Activity and Consciousness (N. Schmolze & A. Blunden, Trans.): Progress
Publishers.

Lodderstedt, T., Basin, D., & Doser, J. (2002). SecureUML: A UML-Based Modeling Language for
Model-Driven Security. Paper presented at the Model Engineering, Concepts, and Tools 5th
International Conference, Dresden, Germany.

Malone, T. W., & Lepper, M. R. (1987). Making Learning Fun: A Taxonomy of Intrinsic Motivations for
Learning. In R. E. Snow & M. J. Farr (Eds.), Aptitude, Learning and Instruction (Vol. 3):
Lawrence Erlbaum Associates.

Maloney, J., Burd, L., Kafai, Y., Rusk, N., Silverman, B., & Resnick, M. (2004). Scratch: A Sneak
Preview. Paper presented at the Proceedings of the Second International Conference on
Creating, Connecting and Collaborating through Computing.

Manuel, R. (2002). A Middleware Infrastructure for Active Spaces. IEEE Pervasive Computing, 1, 74-
83.

Miller, J., & Mukeriji, J. (2003). MDA Guide Vesion 1.0.1 (Vol. 28th December): OMG.

Natkin, S., Vega, L., & Griinvogel, S. M. (2004). A New Methodology for Spatiotemporal Game Design.
Paper presented at the International Conference on Computer Games: Artificial Intelligence,
Design and Education (CGAIDE 2004), Reading, UK.

Nelson, M. J., & Mateas, M. (2007). Towards Automated Game Design. Paper presented at the 10th
Congress of the Italian Association for Artificial Intelligence on AlI*IA: Artificial Intelligence
and Human-Oriented Computing, Rome, Italy.

Nielsen, L. (2013). Personas - User Focused Design: Springer.

Obrenovic, Z., Starcevic, D., & Selic, B. (2004). A Model-Driven Approach to Content Repurposing.
IEEE Multimedia, 11(1), 62-71. doi: http://dx.doi.org/10.1109/MMUL.2004.1261109

Page 208

http://dx.doi.org/10.1109/MMUL.2004.1261109

OMG. (2001, 21 December 2008). Model Driven Architecture (MDA), from
http://www.omg.org/docs/ormsc/01-07-01.pdf

OMG. (2003). MDA Guide Vesion 1.0.1 Retrieved 2008, 28th December, from
www.omg.org/docs/omg/03-06-01.pdf

Onder, B. (2002). Writing Adventure Game. In F. o. D. Laramée (Ed.), Game Design Perspectives (pp.
28-43). Hingham, Massachusetts: Charles River Media.

Pearce, C. (2006). Productive Play: Game Culture From the Bottom Up. Games and Culture, 1(1), 17-
24,

Pivec, M., & Dziabenko, O. (2004). Game-Based Learning in Universities and Lifelong Learning:
"UniGame: Social Skills and Knowledge Training" Game Concept. Journal of Universal
Computer Science, 10(1), 14-26.

Poole, J. D. (2001, 18th - 22nd June). Model-Driven Architecture: Vision, Standards and Emerging
Technologies. Paper presented at the 15th European Conference on Object-Oriented
Programming (ECOOP2110), Workshop on Adaptive Object-Models and Budapest, Hungary.

Prensky, M. (2001). Digital Game-Based Learning: Paragon House.

Reyno, E. M., & Cubel, J. A. C. (2008). Model-Driven Game Development: 2D Platform Game
Prototyping. Paper presented at the GAMEON' 2008, Valencia, Spain.

Rollings, A., & Adames, E. (2003). Andrew Rollings and Ernest Adams on Game Design: New Riders
Publishing.

Rollings, A., & Morris, D. (2004). Game Architecture and Design: A New Edition. Indianapolis, Indiana:
New Riders.

Rouse, R. (2001). Game Design: Theory & Practice (2 ed.). Plano, Texas: Wordware Publishing.

Roussou, M. (2004). Learning by doing and learning through play: an exploration of interactivity in
virtual environments for children. Computers in Entertainment (CIE) 2, 10-10.

Salen, K., & Zimmerman, E. (2003). Rules of Play: Game Design Fundamentals The MIT Press.

Sarinho, V., & Apolindrio, A. (2008). A Feature Model Proposal for Computer Games Design. Paper
presented at the VII Brazilian Symposium on Computer Games and Digital Entertainment,
Belo Horizonte.

Sarinho, V., & Apolindrio, A. (2009). A Generative Programming Approach for Game Development.
Paper presented at the VIl Brazilian Symposium on COmputer Games and Digital
Entertainment, Rio de Janeiro, Brazil.

Sawyer, B., & Smith, P. (2008). Serious Games Taxonomy Retrieved 26 March, 2008, from
http://www.dmill.com/presentations/serious-games-taxonomy-2008.pdf

Schauerhuber, A., Wimmer, M., & Kapsammer, E. (2006). Bridging existing Web modeling languages
to model-driven engineering: a metamodel for WebML. Paper presented at the Second
international workshop on model driven web engineering (MDWE'06), Palo Alto, California.

Schmidt, D. C. (2006). Guest Editor's Introduction: Model-Driven Engineering. Computer, 39(2), 25-
21.

Seidewitz, E. (2003). What models mean? Software IEEE, 20(5), 26-32.

Shetty, S., Nordstrom, S., Ahuja, S., Di, Y., Bapty, T., & Neema, S. (2005). Systems integration of large
scale autonomic systems using multiple domain specific modeling languages. Paper
presented at the Engineering of Computer-Based Systems, 2005. ECBS '05. 12th IEEE
International Conference and Workshops on the.

Sottet, J.-S., Calvary, G., Favre, J.-M., Coutaz, J., Demeure, A., & Balme, L. (2006). Towards Model
Driven Engineering of Plastic User Interfaces Paper presented at the MoDELS 2005
International Workshops OCLWS, MoDeVA, MARTES, AOM, MTiP, WiSME, MODAUI, NfC,
MDD, WUsCAM, Montego Bay, Jamaica.

Squire, K., Barnett, M., Grant, J. M., & Higginbotham, T. (2004). Electromagnetism Supercharged!
Learning Physics with Digital Simulation Games. Paper presented at the 6th International
Conference on Learning Sciences, Santa Monica, California.

Page 209

http://www.omg.org/docs/ormsc/01-07-01.pdf
http://www.omg.org/docs/omg/03-06-01.pdf
http://www.dmill.com/presentations/serious-games-taxonomy-2008.pdf

Tang, S., & Hanneghan, M. (2005). Educational Games Design: Model and Guidelines. Paper
presented at the 3rd International Game Design and Technology Workshop (GDTW'05),
Liverpool, UK.

Tang, S., & Hanneghan, M. (2008). Towards a Domain Specific Modelling Language for Serious Game
Design. Paper presented at the 6th International Game Design and Technology Workshop
(GDTW'08), Liverpool, UK.

Tang, S., & Hanneghan, M. (2010a). Designing Educational Games: A Pedagogical Approach. In P.
Zemliansky & D. Wilcox (Eds.), Design and Implementation of Educational Games:
Theoretical and Practical Perspectives (pp. 108-125). Hershey, PA: IGI Global.

Tang, S., & Hanneghan, M. (2010b). A Model-Driven Framework to Support Development of Serious
Games for Game-based Learning. Paper presented at the 3rd International Conference on
Developments in e-Systems Engineering (DESE2010), London, UK.

Tang, S., & Hanneghan, M. (2011a, 5-6 December). Fusing Games Technology and Pedagogy for
Games-Based Learning Through a Model Driven Approach. Paper presented at the
Proceedings of IEEE Colloquium on Humanities, Science & Engineering Research (CHUSER
2011), Penang, Malaysia.

Tang, S., & Hanneghan, M. (2011b, 6-8 December). Game Content Model: An Ontology for
Documenting Serious Game Design. Paper presented at the Proceedings of 4th International
Conference on Developments in e-Systems Engineering (DESE2011), Dubai, UAE.

Tang, S., Hanneghan, M., & Carter, C. (2012, 4-5 October). A Platform Independent Model for Model
Driven Serious Games Development. Paper presented at the 6th European Conference on
Games Based Learning (ECGBL 2012), Cork, Ireland.

Tang, S., Hanneghan, M., & Carter, C. (2013). A Platform Independent Game Technology Model for
Model Driven Serious Games Development. The Electronic Journal of e-Learning, 11(1), 61-
79.

Tang, S., Hanneghan, M., & EI-Rhalibi, A. (2004, November 25-27). Designing Challenges and
Conflicts: A Tool for Structured Idea Formulation in Computer Games. Paper presented at the
5th International Conference on Intelligent Games and Simulation (GAME-ON 2004), Het
Pand, Ghent, Belgium.

Tang, S., Hanneghan, M., & EI-Rhalibi, A. (2006). Modelling Dynamic Virtual Communities within
Computer Games: A Viable System Modelling (VSM) Approach, . Paper presented at the 4th
International Game Design and Technology Workshop (GDTW'06), Liverpool, UK.

Tang, S., Hanneghan, M., & EI-Rhalibi, A. (2007). Pedagogy Elements, Components and Structures for
Serious Games Authoring Environment. Paper presented at the 5th International Game
Design and Technology Workshop (GDTW 2007), Liverpool, UK.

Tang, S., Hanneghan, M., & Rhalibi, A. E. (2009). Introduction to Games-Based Learning. In T. M.
Connolly, M. H. Stansfield & L. Boyle (Eds.), Games-Based Learning Advancements for Multi-
Sensory Human Computer Interfaces: Techniques and Effective Practices (pp. 1-17). Hershey:
Idea-Group Publishing.

Taylor, M. J., Baskett, M., Hughes, G. D., & Wade, S. J. (2007). Using Soft Systems Methodology for
Computer Game Design. Systems Research and Behavioral Science, 24, 359-368.

Taylor, M. J., Gresty, D., & Baskett, M. (2006). Computer game-flow design. Computers in
Entertainment (CIE), 4(1), Article No. 5.

Telfer, R. (1993). Aviation Instruction and Training. Aldershot: Ashgate.

Thramboulidis, K. C. (2004). Using UML in Control and Automation: A Model Driven Approach. Paper
presented at the 2nd IEEE International Conference on Industrial Informatics INDIN’04,
Berling, Germany.

Tolvanen, J.-P. (2006). Domain-Specific Modeling: How to Start Defining Your Own Language.
Retrieved from http://www.devx.com/enterprise/Article/30550

Page 210

http://www.devx.com/enterprise/Article/30550

Veit, M., & Herrmann, S. (2003). Model-view-controller and object teams: a perfect match of
paradigms. Paper presented at the Proceedings of the 2nd international conference on
Aspect-oriented software development, Boston, Massachusetts.

Wada, H., & Suzuki, J. (2006). Modeling Turnpike: A Model-Driven Framework for Domain-Specific
Software Development Satellite Events at the MoDELS 2005 Conference (pp. 357-358).

WFPFoodForce. (2008) Retrieved 20 February, 2008, from http://www.food-force.com

Zagal, J. P., Mateas, M., Fernandez-Vara, C., Hochhalter, B., & Lichti, N. (2005). Towards an
Ontological Language for Game Analysis. Paper presented at the DiGRA 2005 - the Digital
Games Research Association’s 2nd International Conference, Selected Papers, Simon Fraser
University, Burnaby, BC, Canada.

Zyda, M. (2005). From Visual Simulation to Virtual Reality to Games. Computer, 38, 25-32.

Page 211

http://www.food-force.com/

