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Abstract 

S. pneumoniae is one of the most significant human pathogens, causing high morbidity 

and mortality rates globally. Although there are vaccine available such as PPV 23, 

PCV7, PCV10, and PCV13, they are ineffective in some situations due to the differing 

epidemiology of various serotypes depending on the site of infection and the 

geographical location. Furthermore, they are expensive to produce and distribute. 

Universal research is presently concentrated on establishing other pneumococcal-

vaccine approaches such as using pneumococcal surface protein A (PspA) which relate 

to pathogenesis and are common to all serotypes. In this study polymeric nanoparticles 

(NPs) encapsulating PspA4Pro were incorporated into microcarriers using L-leucine 

and spray dried to produce nanocomposite microparticles (NCMPs) dry powder for 

inhalation. 

Parameters for the preparation of protein-loaded polyester poly (Glycerol Adipate-co-ω-

Pentadecalactone), (PGA-co-PDL) NCMPs were optimised using Taguchi design and 

BSA as a model protein, by the double emulsion solvent evaporation method followed 

by spray drying. Particle size was mainly affected by the polymer mass and small 

particle size ≤ 500nmwas achieved. The most important factor for obtaining a high 

BSA loading was BSA concentration. The spray drying process was optimised to 

produce NCMPs with a porous corrugated surface, 50% yield, MMAD of 1.71±0.10 µm 

and FPF% of 78.57±0.1%. 

Adsorption of chitosan hydrochloride (CHL) onto PGA-co-PDL NPs can be used as 

successful strategies to produce cationic NPs. Cationic NPs were prepared with similar 

particle size to anionic NPs ≤ 500nm. The In vitro aerosolisation performance of 

cationic NPs/NCMPs showed FPF% of 46.79±11.21% and MMAD of 1.49±0.29 µm. 

Further cell viability studies on A549 cell line showed a good profile with a cell 

viability of 79±4.7% for anionic NPs/NCMPs and 78.85±9.96% for cationic 
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NPs/NCMPs at 2.5 mg/ml concentration after 24 h exposure. The previous results 

introduced a successful method for preparing anionic and cationic NPs/NCMPs for 

delivering PspA4Pro as dry powder via inhalation. The particle size of PspAPro4 loaded 

anionic NPs and cationic NPs were 310±25.3 nm and 409.7±49.5 nm, respectively, to 

be effectively taken up by dendritic cells (DCs). The PspA4Pro loading in anionic NPs 

was 65.73±5.6 µg/mg and in cationic NPs was 9.84±1.4 µg/mg. The PspA4Pro released 

from anionic and cationic NPs/NCMPs preserved its primary and secondary structure as 

evaluated by SDS-PAGE and circular dichroism. In vitro release studies showed that the 

anionic NPs/NCMPs formulations achieved a cumulative release of 21.01±1.5% while 

the cationic NPs/NCMPs formulation released 83.13 ±0.84% after 48 h. DCs uptake 

studies provide evidence of particles uptake by DCs upon incubation for 1 h as 

visualized by confocal microscopy. These results indicate the use of optimised methods 

for developing polymeric based NCMPs for vaccine delivery via inhalation against 

pneumococcal diseases. 
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1. General Introduction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

2 
 

1. Introduction 

1.1 Streptococcus pneumoniae  

In the late 1880s George M. Sternberg (1838–1915), a US Army physician, and Louis J. 

Pasteur (1822–1895) independently isolated Streptococcus pneumoniae from rabbits. 

The rabbits injected with human saliva extracted from patients with pneumococcal 

disease developed fatal septicaemia (1). Both researchers described the same organism; 

named Microbe septicemique du salive by Pasteur and Micrococcus pasteuri by 

Sternberg. In 1886 this organism was referred to as Pneumococcus by Fraenkel because 

of its liability to cause pulmonary disease (2). It was renamed Diplococcus pneumoniae 

in 1920 a nomination clearly describing pairs of cocci inducing pneumonia. In 1974, the 

pneumococcus was given its current name, Streptococcus pneumoniae, mainly due to its 

distinguishing growth as chains of cocci in liquid media (2). 

S. pneumoniae is one of the most significant human pathogens, causing high morbidity 

and mortality rates globally (3). Asymptomatic human nasopharyngeal carriage is the 

main reservoir of S. pneumoniae and it colonizes the nasopharynx up to 60% in healthy 

children and 30% in healthy adults (3). This harmless organism becomes a major human 

pathogen when the immunity of the host is weakened as in young children, adult, 

elderly or immunocompromised patients. However, the relationship between the 

carriage and the development of natural immunity is not clear (3).  

1.2 S. pneumoniae virulence components 

S. pneumoniae is a gram-positive encapsulated bacterium (4). It has a wide range of 

virulence components that are presented as cell surface proteins, toxins or secreted 

proteins (Figure 1-1). The most important of these virulence components is the 

polysaccharide capsule. According to the structure of the capsules (serotypes), S. 
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pneumoniae are divided into 94 serotypes. Just 20-30 of the common serotypes account 

for 62% of invasive infections globally (5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

The epidemiology of various serotypes differs depends on site of infection, vaccine use 

and the geographical location (6). The function of each virulence factor in the 

pathophysiology of the disease is ongoing. These virulence components have been 

discussed in detail (6) and Figure 1-2 shows the important virulence components of S. 

pneumoniae and their function in disease development (6). 

 

 

Figure 1-1: Virulence components of S. pneumoniae. PspA: pneumococcal surface 

protein A; PspC: pneumococcal surface protein C; CbpA: choline-binding 

protein A (with permission from (6)). 
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Pneumococcal 
virulence 

components 

Capsule 

Avoids opsonophagocytosis. 

Avoids eradiction by mucus. 

Pneumolysin 
(Ply) 

Cytolytic toxin effect. 

Complement-activating effect. 

Neuraminidase 
(NanA, B, and C)  

Binds to N-acetyl neuraminic acid found on tissue cell 
surfaces and displays binding sites of the bacteria. 

Nan A have a significant function in biofilm formation.   

Hyaluronidase  Enhances transmission of infection. 

Pneumococcal 
surface protein 

A (PspA) 

Avoids stimulation of complements and 

 cleaves to lactoferrin. 

Pneumococcal 
surface protein 
C (PspC or CbpA 

or SpsA) 

 Cleaves to sIgA and factor H. 

 Inhibits formation of C3b. 

Pilus Promotes bacterial cleaves to host cells. 

Autolysin A 
(LytA) 

 Induces autolysis of bacteria. 

Releases Ply.  

Inhibits phagocytosis. 

Figure 1-2: Most significant virulence factors of S. pneumoniae and their function 

in disease development. 



 

5 
 

1.3 Pneumococcal disease 

S. pneumoniae are generally transmitted by air droplets or direct contact with 

contaminated respiratory secretions and they are implicated in both non-invasive and 

invasive diseases (7).  

Non-invasive pneumococcal diseases (e.g. otitis media, sinusitis, and bronchitis) are 

generally not life threating conditions, but lead to discomfort and loss of school or work 

days (4). The Health Protection Agency estimates that non-invasive pneumococcal 

diseases lead to approximately 60,000 general practitioner visits per year (4). 

Additionally, there is a possibility to develop invasive pneumococcal diseases (4).  

The most important manifestations of invasive pneumococcal diseases are pneumonia, 

bacterial meningitis, and septicaemia which are life threatening conditions (8; 9).  

Pneumonia can develop when bacteria invade the lower respiratory tract (Figure 1-3). 

The alveoli and intracellular spaces fill with macrophages, due to the inflammatory 

response of the immune system. This leads to the production of a fibrin-rich exudate 

which fills the infected and adjacent alveolar spaces, making them stick together and so 

airless. Furthermore, neutrophils proliferate causing pulmonary oedema which 

deteriorates lung expansion (8). The patient presents with a persistent dry or productive 

cough, fever, dyspnoea, rigors, and pleuritic pain (10). The first-line choice of the 

antibiotic amoxicillin or doxycycline is suggested for all cases (4). Due to an extensive 

increase in antimicrobial resistance it is difficult to implement effective antimicrobial 

therapy (3). When S. pneumoniae reach the blood stream they will cause bacteraemia 

(Figure 1-3) and induce an immune response that can be devastating. Macrophages 

stimulate the release of tumour necrosis factor-alpha (TNF-α), leading tovasodilation

which causes an increase in vascular permeability and drop in blood pressure. The aim 

of this reaction is to permit an influx of neutrophils and other lymphocytes to the site of 

infection to defend host cells (9). 
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The consequences can be a massive loss of plasma volume due to leakage into the 

tissues (oedema). Moreover, the TNF-α stimulates disseminated intravascular

coagulation (DIC), leading to clots in the capillaries, which withhold blood flow to vital 

organs and consume the clotting proteins in the general circulation, causing multiple 

organ failure (9). 

When S. pneumoniae cross the blood-brain barrier in large numbers (Figure 1-3), it is 

thought that the immune system tries to remove the pathogens and this can lead to tissue 

damage. Neutrophils are engaged at the site of infection to engulf the bacteria and 

release products e.g. nitric oxide, superoxide anion, and hydrogen peroxide that are 

toxic to the bacteria and host tissue. This is considered to have importance in the 

damage to neurons that can cause the sequalae commonly observed after pneumococcal 

Figure 1-3: General path of S. pneumoniae spread from the nasopharynx (1) is 

invading the lower respiratory tract and leading to pneumonia (2). The lung 

inflammation can then allow leak out of S. pneumonia into the blood stream 

leading to bacteraemia (3), but can also cause spread to the cerebrospinal fluid 

(CSF) via the capillary networks leading to meningitis (4a), also S. pneumonia 

can spread into the central nervous system (CNS) leading to encephalitis (4b); 

but this occurs rarely (with permission from 

http://www.immunopaedia.org.za/index.php?id=750 (11)). 

http://www.immunopaedia.org.za/index.php?id=750
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meningitis. Up to 30 % of surviving patients suffer from sensomotor deficit, hearing 

loss, and cognitive impairment (8; 11). 

The common clinical symptoms of meningitis are headache, fever, neck stiffness and 

altered mental status. In children less than 5 years old presenting symptoms may be 

nonspecific such as fever, vomiting, irritability, and drowsiness (12). The first line 

treatment is antibiotics such as cephalosporin e.g. cefoxamine which can cross the blood 

brain barrier and corticosteroids such as dexamethasone to prevent complications from 

excessive inflammation (12).  

In the UK, community-acquired pneumonia is an important cause of morbidity and 

mortality with rate of 5–11 per 1000 adults (4) with hospital admission indicated for 22-

42 % of the overall community-acquired pneumonia (13). Furthermore, the case fatality 

rate of 47.2 % for more than 85 years and 5.6 % for less than 65 years of age has been 

reported displaying the burden of community acquired pneumonia in aging population 

(14). InEurope,estimatesshowthatthecostduetopneumoniaisapproximately€ 10.1 

billion annuallywith indirect costs due to lostwork days amounting to € 3.6 billion

(14). It is a worldwide problem; but, in low middle income countries, morbidity and 

mortality are highest in children under age of 5 years (15). In 2010, the Health 

Protection Agency assessed that there were 40,000 admissions to hospital per year due 

to pneumococcal pneumonia, where 10 % needed intensive care and 10–12 % of cases 

will lead to death (16). Many studies show an incidence for community acquired 

pneumonia 1.6-9 cases per 1000 adult population with the financial burden globally 

estimated to be US $ 4.8 billion for adult aged more than 65 years and US $ 3.6 billion 

for adults aged less than 65 years (17; 18; 19; 20). 

A review of disease burden in children under the age of five reported that in 2007, of an 

estimated 9 million child deaths, around 1.8 million were due to pneumococcal diseases 

(15). The situation is worse in low middle income countries, where 90% of these deaths 
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occur. In addition, pneumonia is implicated in the death of the elderly and 

immunocompromised individuals (21). 

The death rate from pneumococcal meningitis is around 16 – 37 %, and up to 50 % 

adults who recover will have neurological abnormalities (12). It has been accepted that 

many of these invasive pneumococcal disease and accompanied deaths can be avoided 

by vaccination (21). 

1.4 Pneumococcal vaccine 

Vaccines are antigenic formulations utilized to initiate immunity to establish protection 

against infectious diseases (22). There are two different types of pneumococcal vaccine 

currently available: pneumococcal polysaccharide vaccine (PPV) and pneumococcal 

conjugate vaccine (PCV). 

1.4.1 Pneumococcal polysaccharide vaccine (PPV) 

Pneumococcal polysaccharide vaccine (PPV) consists of a plain polysaccharide capsule 

covering the outer surface of the pneumococcus. In 1977, a 14-serotype pneumococcal 

capsular polysaccharide vaccine was approved for use but was replaced in 1983 after 

the current 23-serotypes vaccine (Pneumovax, Merck & Co) was licensed (3). 

Pneumovax (PPV23) contains 23 capsular polysaccharides from the most common S. 

pneumoniae serotypes associated with pneumococcal infections and it is administered 

by intramuscular or subcutaneous injection (3).  

Polysaccharides mainly provoke a B-cell dependent immune response (23). This 

vaccine was highly effective in children above 2 years of age and young adults with re-

vaccination after 5–6 years (4; 24). Its main limitation was the inability to stimulate a 

significant immune response in children under 2 years of age probably due to their 

immature immune systems (4; 24). In the elderly (above 65 years old) research suggests 

that immunization was short-term as antibody titres decreased rapidly from the highest 

concentrations measured one month after immunization. The administration of 
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additional doses of PPV to maintain immunity in the elderly is restrained, as antibody 

titres after following doses of PPV are similar or lower than after primary 

immunization. This phenomenon, known as ‘‘hyporesponsiveness’’ has also been 

noticed after meningococcal polysaccharide immunization. Researchers have suggested 

that hyporesponsiveness is a result of the consumption of the peripheral B-cell pool by 

plain polysaccharide antigens that urge B cells into terminal differentiation, without 

replacing the B-cell pool (23). Additionally, PPV is not suitable for 

immunocompromised patients (4). Moreover, PPV does not induce mucosal immunity 

so has no influence on the nasopharyngeal carriage of the S. pneumoniae (4). In the UK, 

this vaccine was only indicated for children and young adults who were in high-risk 

groups, i.e. with underlying medical conditions such as non-functioning spleen, chronic 

heart diseases, and renal or liver dysfunction (4; 25). 

To enhance the immune response to the capsular polysaccharide in children less than 2 

years of age, elderly and immunocompromised patients, a new form vaccine where 

capsular polysaccharides are conjugated to one of various proteins were developed (4). 

1.4.2 Pneumococcal conjugate vaccine (PCV) 

Pneumococcal conjugate vaccines (PCV) have been prepared by coupling capsular 

polysaccharides to several carrier proteins including; tetanus toxoid, diphtheria toxoid, 

CRM197 (a nontoxic mutant of diphtheria toxin), pneumolysin, and meningococcal 

outer membrane proteins (7). The protein stimulates a T-cell dependent immune 

response leading to immune memory and, as a result, induces a booster response (4). 

This type of vaccine overcomes the issue with immune response seen with PPV in 

children under the age of 2 years. The first PCV 7 (Prevenar 7, Wyeth) included 

purified capsular polysaccharides of seven serotypes conjugated to CRM197 and 

administered by intramuscular injection (26).  
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In 2002, PCV was initially recommended for children in the higher risk clinical groups 

(such as heart, renal, and liver disease) in the UK (4) and in 2006, PCV was added in 

the national programme for all children under the age of 2 years (4; 25). In 2010, a PCV 

including 13 serotypes replaced the 7-valent vaccine in the national programme (4). 

Prevenar 13 (Pfizer Inc) was available in 2011 for active immunisation for the 

prevention of invasive pneumococcal disease in adults aged above 50 years. 

Researchers suggest that there is a decrease in cases of community-acquired pneumonia 

and invasive pneumococcal disease from the serotypes included in the PCV (4).  

Regardless of Prevnars protection against vaccine serotypes, it has been demonstrated to 

evoke serotype redistribution; the substitution of vaccine serotypes by strains not 

included by the vaccine (3). Thus, the appearance of less common serotypes is 

anticipated to be more frequent. Serotype substitution is a serious concern, especially in 

regions with an increased disease burden, due to its ability to change the landscape of 

disease rapidly (3). However, the vaccine is mainly produced for U.S. and European 

epidemiological settings, so for low middle income countries it has only a limited 

coverage of the serotypes provoking invasive pneumococcal diseases (3). In Asia and 

Africa there are considerable variations in serotype distribution (3). This vaccine is also 

more expensive than all the other vaccines in the national immunization programmes in 

many low middle income countries. The unit price of a vial of PPV23 (Pneumovax II, 

Sanofi Pasteur MSD) is £8.32 and for a vial of PCV13 (Prevenar 13, Pfizer) is £49.10 

(retrieved from the British National Formulary 63, 2012). The cost of administration is 

expected to be 10 min’ time of a band 7 advanced nurse, as seen in the Health 

Protection Agency (now Public Health England) research on seasonal influenza 

vaccination program. The average cost of administration was evaluated at £6.92 per 

vaccine (27). However, according to the Royal College of General Practitioners data 

54.5% of pneumococcal vaccinations will be co-administered with influenza 
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vaccination so there is no additional administration cost. In addition, the PCV requires a 

three-dose vaccination regimen (27). To broaden the protection, the development of a 

protein-based pneumococcal vaccine could be a feasible and preferable alternative (3).  

1.4.3 Pneumococcal protein-based vaccine 

Pneumococcal proteins relate to pathogenesis and are common to all serotypes. Over the 

last twenty years, many pneumococcal protein antigens have been examined for their 

virulence and vaccine ability. These involve pneumolysin (Ply) toxoid (PdB); choline 

binding proteins PspA and PspC (also called CbpA or SpsA); metal binding lipoprotein 

(PsaA); iron uptake ABC transporters PiuA and PiaA; heat shock protein (ClpP); 

neuraminidases A and B; LytA and hyaluronidase; and pneumococcal histidine triad 

(Pht) proteins PhtB and PhtE. All the proteins listed above have demonstrated a 

significant level of protection against systemic challenge with different S. pneumoniae 

serotypes in animal models but not all have been fully evaluated or directly compared, 

and the outcomes are highly reliant on the mouse strain and challenge strain examined 

(28).  

PspA has gained a special focus, and is a surface protein located on the cell wall in all 

strains of pneumococci (Figure 1-1). It has N-terminalα-helical domain displayed on 

the bacterial surface and a repeated region of C-terminal choline-binding that attaches 

the molecule to the bacterial cell wall (29). There are different PspA sequences, mainly 

in the N-terminal domain, and according to the similarity of the sequence, PspA is 

categorised into three families where there is a high serological cross-reactivity between 

the various families. Around 95% of S. pneumoniae strains have PspA categorized in 

family 1 or family 2 (29). PspA is a critical pneumococcal virulence factor, mainly 

interfering with host complement function (29). PspA avoids the accumulation of 

complement on the surface of the bacterium which leads to inhibition of clearance and 

phagocytosis of S. pneumoniae (30). PspA also prevents bactericidal activity by 
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lactoferrin (30). Lactoferrin is a human protein located on mucosal surfaces and its main 

function is to bind to elemental iron preventing its use by bacteria on mucosal surfaces. 

Ithasbeendemonstratedthattheα-helical domain of PspA binds lactoferrin and may be 

a means by which pneumococci can either utilize environmental iron or inhibit one 

mechanism of host defence (31). Some studies showed that PspA vaccine protects mice 

against a lethal challenge with S. pneumoniae through the generation of anti-PspA 

serum antibodies that are highly cross reactive to other strains (30). 

Consequently, it is essential to formulate novel adjuvants - substances that augment an 

immune response in order to evoke sufficient responses (30) and/or delivery system for 

the preparation of efficient vaccines that can defend against different strains of S. 

pneumoniae and improve patient compliance by using a tolerable dose regimen. PspA 

has been the object of many studies examining different vaccine delivery systems such 

as the delivery of PspA with live attenuated bacteria such as salmonella (32) and via co-

administration with a whole-cell pertussis vaccine (33). Furthermore, nano-preparations 

such as gold nanoparticles (34), nanogel-based vaccine formulations (35), and 

biodegradable polyanhydride nanoparticles containing PspA have been previously 

examined (30). 

1.5 Pulmonary drug delivery  

1.5.1 Lung anatomy and physiology 

The respiratory tract comprises the conducting and respiratory airways (Figure 1-4). The 

lung, weighing about one kilogram, is divided by pleural membranes into lobes; three 

on the right and two on the left (36). Inhaled air travels through the nose and mouth, 

passes from the larynx and trachea to 16 generations of conductive bronchi and 

bronchioles. Alveoli begin to appear from the 17th generation of bronchioles 

(respiratory airways) and by the 20th generation of airways, the alveoli result in alveolar 

ducts (36). Blind sacs lined with alveoli known as alveolar sacs become evident at the 
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23rd generation. Nearly 300 million alveoli are present in the lung and provide a surface 

area of exchange of 80–90 sq. m (36). On the bronchial surface the submucosal glands 

and the ‘goblet cells’ secrete mucus. The mucus lining the conducting airways is 

transported towards the mouth in accordance with the movement of cilia found on the 

ciliated columnar cells followed by swallowing of the mucus transported to the mouth. 

 

This movement is primarily responsible for removing any foreign materials that enter 

the bronchial area (36). The alveoli and the pulmonary capillaries are separated by a 

barrier consisting of endothelial cells, interstitial space and pneumocytes (pulmonary 

epithelial cells). The pneumocytes are divided into two types; type I and type II cells. 

Type I cells are very flat and cover the alveolar surface enhancing the gaseous exchange 

between the alveoli and blood whereas type II cells are irregularly shaped which 

produce and secrete surfactants (36; 37). 

Figure 1-4: Diagram of the human respiratory tract (with permission from 

(37)). 
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1.5.2 The lung as a delivery site for drugs 

The pulmonary region as a site of drug administration provides many advantages that 

can be divided into two different categories; one related to the lung and the other related 

to the drug delivery system. The advantages of the lung include the large surface area of 

approximately 80 m² available for drug absorption, thin epithelium in the alveolar lung 

tissue (around 0.1 - 0.5 μm thick), lower enzymatic activity than the gastrointestinal 

system, and large vascularisation that can enable the efficient systemic delivery of 

drugs. The advantages of the pulmonary delivery system include: the non-invasive 

method of delivery and the reduced risk of cross contamination due to the reuse of 

needles and syringes (38). The reuse of needles is a major obstacle in low middle 

income countries and global rates of 10.4 – 20.9 million infections per year caused by 

vulnerable injections were reported, with vaccines representing 5 to 15% of all 

injections administered (39). Nearly 80 % of infections transmitted by injections are 

hepatitis B, followed by hepatitis C, while less than 1 % of infections are HIV (39). In 

addition, such an approach diminishes a serious waste disposal problem and eliminates 

needle stick injuries, in both patients and healthcare workers. Following a needle stick 

injury the transmission risk from an infected patient to medical person is estimated as 

0.3% for HIV, and 3-10% for hepatitis B. Around 2 million of 35 million medical 

personal are infected by needle stick injuries (39). Additional benefit applies for patients 

who need a substitute for needle-based therapy due to fear of injections enhancing 

patient compliance and leading to improved treatment outcomes (38).  

Pulmonary delivery would be useful for mass immunization campaigns when there is an 

outbreak of a disease that is usually contained by vaccination. In these circumstances, 

important factors are; speed (the number of vaccinations per unit of time), easy and pain 

free delivery, no requirement for trained medical personnel and the elimination of cold-

chain requirements. Most available vaccine preparations are dependent on the effective 
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availability of continuous refrigerator storage conditions to maintain vaccine stability. 

This cold chain requirement presents significant difficulties in the effective performance 

of immunization campaigns in low middle income countries where a regular and stable 

supply of electricity and cold-chain storage is often unavailable (39).  

In a clinical research study where volunteers could choose between an intranasal 

virosomal influenza vaccine and an injection formulation, around 97 % choose the nasal 

vaccine. When they were asked for the reason, 14% answered that they were afraid of 

injections. This is in agreement with other investigations, where around 10% of the 

people reported injection phobia (39). 
 

Despite the many advantages, both the lung anatomy and properties of the delivery 

system present limitations for pulmonary drug administration. An important obstacle for 

the absorption of inhaled drugs is the thick lung epithelium (around 50 – 60 µm) in the 

trachea although this decreases in the alveoli to around 0.1 - 0.5μm(36). Additionally, 

mucociliary clearance, lung mucus and enzymes such as proteases which degrade 

macromolecules, act as barriers for the absorption of drugs through the pulmonary 

region (36). 

Moreover, there are some important factors that influence the delivery of drugs through 

the lung: the patient, the inhalation pattern, and the properties of the aerosol system e.g. 

the morphology, particle size etc. Deep lung delivery requires the production of 

particles with an aerodynamic diameter between 1 – 5μm. The aerodynamic diameter 

(dae) is defined as the diameter of a sphere with a density of 1 g/cm
3
 in air characterized 

by the same velocity in air as that of the particle being examined and represented by the 

following equation: 

𝒅𝒂𝒆 = 𝒅𝒈 √
𝝆

𝝆𝒂
             Equation 1-1 

whereρisthemassdensityoftheparticle,ρa is the unit density (1 g/cm
3
) and dg is the 

geometric diameter (36). 
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1.5.3 Pulmonary delivery of vaccines 

The mucosal surface of the respiratory system is the main entrance for airborne 

pathogens. Many researchers have shown that the induction of systemic immunity by 

parenteral immunization can clear systemic infections efficiently but is unable to protect 

the mucosal surface (40). The antibodies produced due to systemic immunity; do not 

provide mucosal immunity to the mucosal surface, which is the main entry site for 

airborne pathogens. Thus mucosal immunisation affords the first line defence, through 

stimulation of the production of the secretory IgA (sIgA) which does not allow the 

bacterial or viral binding to the mucosal surface so avoids colonisation (41; 42; 43). 

Several studies examined the development of mucosal vaccine without use of the 

adjuvant; however the results showed poor immunogenic response. Thus different 

methods have been used to enhance the mucosal vaccine immunogenic properties, by 

using adjuvants e.g. polymeric nano/microparticles such as PLGA (44; 45), and 

chitosan nano/microparticles (46; 47), liposomes (48; 49), and cholera toxin (50; 51). 

Also, due to the extensive mucosal surface area available to inhaled particles upon 

deposition, an efficient system for delivering vaccines in aerosol particle form might 

enable the delivery of vaccines at lower doses than via the parenteral route (43).  

The mucosal immune system in the respiratory tract produces a wide range of 

protection, as the respiratory tract involves a large network of bronchus-associated 

lymphoid tissue (BALT); the respiratory part of mucosal-associated lymphoid tissue 

(MALT), extensive dendritic cells (DCs) network that line the respiratory epithelium in 

the submucosa and on the alveoli and the macrophages network in the interstitium and 

on the alveolar surface (52). BALT readily shares antigenic information and are known 

to induce systemic immunity (42).  

MALT epithelial surfaces are occupied with nonciliated macro-fold cells (M cells) 

which function as antigen-sampling. M cells are responsible for transporting antigens 
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from mucosal surfaces to the underlying lymphoid tissues (Figure 1-5). Following the 

antigen getting into the lymphoid tissues, the antigens are up taken and processed by 

antigen presenting cells (APCs): DCs and macrophages, and presented to B cells and T 

cells found in the lymphoid tissues. This leads to activation of T-cells which provoke 

IgG and IgA-committed B-cell maturation in the germinal centre of the MALT. At the 

end, antigen-specific CD4+ T-cells and activated B-cells will travel through the 

draining lymph nodes and the thoracic duct to the systemic circulation and other 

mucosal effector sites, where IgA+ B cell in the presence of interleukin-5 (IL-5) and 

interleukin-6 (IL-6), secreted by CD-4+ T helper 2 (TH2) cells, differentiate in to IgA 

producing plasma cells, which develop IgA antibodies. Whereas IgG-committed B-

cells, after stimulation by TH2 cells differentiate in to IgG producing plasma cells, 

which develop IgG antibodies (40). 

1.5.4 Dendritic cells  

Antigen uptake by DCs induces antigen-specific adaptive immunity (53). The innate 

immunity (Table 1-1) is an immediate protective response with broad action upon entry 

of a pathogen. The innate immunity depends on natural defence mechanisms that are 

applied to rapidly attack the invading pathogen. The innate system consist of epithelial 

barriers; mucosal membranes; phagocytes (monocytes, macrophages, and neutrophils); 

complements, natural killer cells; cytokines produced by the phagocytes; and DCs. 

These constituents promote phagocytosis and lysis of pathogen. The bone-marrow 

derived DCs with multiple long membranous projections share common characteristic 

with macrophages, and thus shares an overlapping function of phagocytosis. DCs 

function as APCs to activate naïve T cells (53; 54).  
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Figure 1-5: Simple scheme illustrates the stimulation of humoral immunity in the 

bronchus-associated lymphoid tissue (BALT). On the mucosal surface, M-cells 

transport antigen through sub-mucosa. Followed by antigen processing by DCs 

and macrophages and presenting to naïve T-cells in the mucosal lymph nodes and 

induce naïve T-cells. Then, the activated cells stimulate B-cell maturation in the 

original centre of the BALT. At the end, CD4+ T-cells (specific to the antigen) and 

stimulated B-cells will travel through the draining lymph nodes and the thoracic 

duct to the systemic circulation. Then CD-4+ T helper 2 (TH2) cells secrete 

interleukin-5 (IL-5) and interleukin-6 (IL-6) leading to IgA+ B and IgG+ B cells 

differentiation in to IgA generating plasma cells which develop IgA antibody and 

IgG generating plasma cells which develop IgG antibody, respectively (with 

permission from (54)). 
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Table 1-1: Main components of immune system. 

Im
m

u
n
it

y
 

Innate Immunity • Complement   

 • Natural killer   

 • Autophagy   

 • Dendritic cells   

 • Phagocytosis • Macrophages 

• Neutrophils 

• Monocytes 

 

Adaptive 

Immunity 

• Humoral • B cells • Antibodies 

• Memory cells 

 • Cellular • T cells • CD4+ 

• CD8+ 

 

Antigens entering the body are taken up by immature DCs which develop into mature 

cells. The DCs uptake, process and present antigen through major histocompatibility 

complex (MHC) class I and II pathways for identification by the T-cell receptors found 

on T-cells to start an immune response. This process is known as antigen presentation 

and typically occurs in the lymph node region (55). It is considered that soon after 

antigen presentation, the DCs go through apoptosis in the lymph nodes (36). 

Once activated, the naïve T cells initiate the adaptive immune response (acquired 

immunity) (56). Adaptive immunity (Table 1-1) is delayed but highly specific to a 

pathogen. The adaptive response includes the humoral immunity mediated by B cells, 

antibodies and complements and cellular immunity mediated by T cells activation. This 

immune specific response develops an immune memory for that pathogen (57). 

Recently it was found that there are approximately five different subsets of DCs in the 

murine conducting airways; resident DCs, plasmacytoid DCs, alveolar DCs, 

inflammatory DCs and interferon-producing killer DCs (58). The information available 

on these subsets of DCs in the human lung is limited due to the problem of obtaining 

lung tissue, as they cannot be recovered from the bronchoalveolar lavage (BAL) fluid. 

On the other hand, human alveolar macrophages are extensively studied because they 

are available in BAL. Immature DCs have a higher antigen presenting cells function but 
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poor phagocytic function, while the alveolar macrophages are primarily phagocytes and 

have a lower antigen presenting cell function (36).  

The lung region is composed of two main areas: the conducting airways and the lung 

parenchyma (Figure 1-6). The conducting airways mucosal surface includes ciliated 

epithelial cells, interspersed goblet cells, macrophages and DCs. 

The DCs in this area are mainly made up of myeloid DCs (mDCs), with a small 

percentage of plasmacytoid DCs (pDCs) (Figure 1-7). These mDCs have a greater 

ability for antigen uptake but lower potential to provoke the T cells. Furthermore; 

human DCs are generated from haematopoietic stem cells, mDCs from bone marrow–

derived monocyte precursors and pDCs from lymphoid progenitors. The mDCs and 

pDCs are stimulated by various groups of antigenic stimuli so their activity will be 

reflected by the expression of various cell surface receptors such as Toll-like receptors 

(TLRs).  

The lung parenchyma includes the lung interstitium, respiratory and terminal 

bronchioles, and alveoli and is primarily composed of 80% macrophages and 20% DCs 

and T cells. The ‘immature’ resident DCs have a high ability to detect, capture and 

process the encountered antigen (36). Human DCs are recognized by the over 

expression of human leukocyte antigen (HLA) DR (main histocompatibility complex 

class II). Furthermore, the specific markers to identify the mDCs involve CD11c+, 

CD1a+, BDCA-1+, BDCA-3+, HLA-DR+ while for the pDCs they are CD11c−,

HLADR+, BDCA-2+ and CD123+ (59; 60). 
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Figure 1-7: Respiratory tract DCs described in the human. BDCA, blood dendritic 

cell antigen; HLA, human leukocyte antigen. 

DCs type 

Myeloid 

(mDCs) 

DC1: CD11c+, HLA-
DR+, BDCA-1+ 

DC2: CD11c+, HLA-
DR+, BDCA-3+ 

Plasmacytoid 

(pDCs) 

CD11c-, HLA-DR+, 
BDCA-2+, CD123+ 

Figure 1-6: Respiratory immune system. AMDC: airway mucosal DCs, LPDC: 

lung parenchymal DCs (with permission from (59)). 



 

22 
 

1.6 Polymers for the pulmonary administration of vaccines  

A vaccine delivery system can be defined as a formulation or device that helps with the 

administration of a vaccine to the patient, enhancing its potency and safety and 

initiating an immune response as mentioned above (61). A wide range of polymers, both 

natural and synthetic, have previously been explored for the preparation of 

biodegradable nano/micro-particles for pulmonary vaccine delivery. Natural polymers 

e.g. albumin, cyclodextrin, collagen, gelatin, chitosan, and alginate; and synthetic 

polymers e.g. polyacrylates, polyanhydrides, and polyesters such as poly (lactic acid-co-

glycolic acid) (PLGA) and poly (L-lactic acid) (PLA) have been utilized for the 

formulation of biodegradable delivery systems (Table 1-2).  

Table 1-2: Some examples of polymer for pulmonary vaccine delivery.  

Type of polymer Examples Advantages Disadvantages 

Natural  Albumin, 

cyclodextrin, 

collagen, gelatin, 

chitosan, and 

alginate 

Biocompatible, low 

cost, high aqueous 

solubility and 

comparatively short 

duration of drug 

release. 

Presence of extraneous 

contaminants, batch 

variability, low 

hydrophobicity (40). 

Synthetic  polyacrylates, 

polyanhydrides, 

and polyesters such 

as PLGA and PLA 

Reproducible, 

controlled molecular 

weight, copolymer 

composition, and 

degradation rate. 

Limited solubility 

(40). 

Natural polymers generally have a relatively rapid release of therapeutic agent while the 

main characteristic of synthetic polymers is the ability to render sustained release of the 

active ingredient for a long period e.g. days to several weeks and can also modify the 

degradation rate based on molecular weight and polymer composition. Much research 

has been carried out to assess the potential of antigen-encapsulated microparticles for 

the preparation of a single dose vaccine through sustained release of the antigen 

avoiding the requirement for a booster dose. This would be advantageous in low and 
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middle income countries, where access to healthcare facilities and infrastructure can be 

difficult (61).  

The polyester, PLGA is one of the most extensively explored polymers for drug 

delivery due to the  FDA approval of different products that are commercially available 

in different grades and ratios of lactic and glycolic acid. However, PLGA hydrolysis 

results in the accumulation of acidic monomers, lactic and glycolic acids, thereby 

leading to a significant decrease in the pH of the environment and denaturation of the 

encapsulated proteins and local inflammation (22). 

In recent years, advances in polymer chemistry have led to the development of various 

novel biodegradable polymers as alternatives to PLGA (62). Here at Liverpool John 

Moores University poly (glycerol adipate-co-ω-pentadecalactone, PGA-co-PDL) has 

been developed as a novel delivery system (62).  

PGA-co-PDL (Figure 1-8) can be synthesized via the lipase, Candida antarctica, 

catalyzed combined condensation and ring opening copolymerization of activated 

diacid, glycerol and lactone monomers (63). 

 

 

 

 

 

This enzyme catalysed polymerization reaction exploits the regioselectivity of this 

lipase for primary hydroxyl groups offering protection of the secondary glycerol 

hydroxyl group that would otherwise react during the polymerization reaction. Although 

it is possible to synthesise this polymer chemically useing protecting groups this would 

involve more synthetic steps and probably lead to hydrolysis of the polymer backbone 

Figure 1-8: Chemical structure of PGA-co-PDL. 
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(62). Also, the enzymatic method does not require the toxic chemical or metal catalysts 

used in conventional chemical synthesis.  

PGA-co-PDL is expected to degrade through hydrolysis of ester bonds which will 

release adipic acid which is less acidic than glycolic acid and lactic acid produced by 

hydrolysis of PGLA. PGA-co-PDL has a similar but more disordered structure than 

poly-ϵ-caprolactone (PCL, semi-crystalline polymer) due to the randomly nature of 

polymerisation. Thompson et al. revealed that PGA-co-PDL was made from a random 

mixture of diacid, glycerol and lactone monomers by using 
13

C NMR hence PGA-co-

PDL should degrade quicker than PCL (62). Moreover, the presence of the pendant 

hydroxyl group enables the covalent attachment of moieties to the polymer backbone to 

modify the polymer physical and chemical characteristics (64).  

This polymer has been investigated by our group for the delivery of small molecules 

e.g. dexamethasone phosphate (63), model drugs e.g. ibuprofen (65) and sodium 

fluorescein (66),andmacromoleculese.g.α-chymotrypsin (64), and DNase I (67).  

Another study proposed that PGA-co-PDL microparticles could be considered as 

carriers for pulmonary delivery. The results showed a good aerosol performance of 

PGA-co-PDL microparticles with fine particle fraction (%FPF) of 43.38±5.61% and 

mass median aerodynamic diameter (MMAD) 3.43±0.58 µm. Also, the toxicity studies 

at 5 mg/ml using human bronchial epithelial 16HBE14o- cell lines demonstrating the 

safety of PGA-co-PDL microparticles (85.57±5.44 % cell viability) compared to PLGA 

microparticles (60.66±6.75 % cell viability) after 72 h treatment (66). These results 

indicated that PGA-co-PDL could be a promising pulmonary drug delivery system 

affording a protective matrix and faster release of drug in a short period of time in 

comparison with PLGA (66). More recently we have developed PGA-co-PDL 

nanoparticles (NPs) for delivery of a model protein, bovine serum albumin (BSA) (68). 

The aerosolisation studies showed a good aerosolisation performance and deep lung 
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deposition with FPF% of 76.95±5.61% andMMAD of 1.21±0.67 μm. The structure 

stability and integrity studies using SDS-PAGE and CD confirmed the primary and 

secondary structure of the released BSA. These results indicate that PGA-co-PDL NPs 

may be a promising carrier for pulmonary protein delivery (68). 

1.6.1 Nanoparticles for pulmonary administration of vaccine 

Nanoparticles are particles with diameters size in range of 1 to 1000 nm (62; 69). 

Polymeric NPs can improve the immune response by an adjuvant-like effect (40). When 

the antigen is encapsulated in NPs it is modified to a particulate pattern and this form 

can be more antigenic than the soluble antigen form due to the fact that these particulate 

forms have similar dimensions to pathogen to which the immune system structured to 

fight (40; 61). This particulate delivery of antigen will enhance DCs uptake and 

consequently antigen transfer to lymph node and so induce immune response (61). Most 

likely, the particulate antigen delivered to the lower respiratory tract area prevents the 

rapid clearance by alveolar macrophages and thereby enhances uptake by the epithelial 

M cells on mucosal surface. These cells, as a component of BALT, sample the 

environment for antigens and share antigenic information with DCs found in lymphoid 

tissue and induces secretory local IgA production. The NPs may then be transported to 

secondary lymph-nodes where they enhance induction of the systemic immune response 

(43). 

Another approach to enhance immune response (adjuvant-like effect) is to use chitosan 

or chitosan derivatives to prepare or to modify the surface of the NPs encapsulating 

antigen. Vila et. al. studied the use of low molecular weight chitosan (23 and 38 kDa) in 

preparation of NPs as nasal delivery system for vaccine using tetanus toxoid as a model 

antigen. The NPs sizes were in the 350 nm with a positive charge (+40 mV). These NPs 

were administered via intranasal route and produced higher and long-term IgG titres 

(humoral immune response) in comparison with the antigen solution. Moreover, the IgA 
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titres (mucosal immune response) after 6 months following administration of NPs was 

significantly more than that resulted after the antigen solution administration (70).  

Sayın et. al. prepared tetanus toxoid loaded NPs using N-trimethyl chitosan and mono-

N-carboxymethyl chitosan for mucosal vaccination. The particle size range was 40–400 

nm, and a negative surface charge for mono-N-carboxymethyl chitosan and positive 

surface charge for N-trimethyl chitosan and high loading efficacy >90 %. Immunity 

studies showed an increased in immune responses in Balb/c mice after intranasal 

administration of NPs. N-trimethyl chitosan NPs with positive surface charge produced 

high level of serum IgG titres in comparison with mono-N-carboxymethyl chitosan NPs 

with negative surface charge (71). Pawar et. al. developed hepatitis B surface antigen 

loaded PLGA microparticles coated by chitosan or trimethyl chitosan. Following 

intranasal administration of coated PLGA microparticles to mice showed a higher anti-

HBsAg titer when compared to uncoated PLGA microparticles (72). 

Table 1-3 shows some recent research on polymeric based particles for pulmonary 

vaccine delivery. 

Table 1-3: Recent research (non-exhaustive list) on polymeric nanoparticles based 

pulmonary vaccine delivery. 

Polymer  Antigen Reference 

Poly(D,L-lactide) (PLA) Hepatitis B surface antigen  (73) 

Poly(D,L-lactide-co-glycolide) (PLGA) Hepatitis B surface antigen  (73) 

N-Trimethyl chitosan (TMC) Diphtheria toxoid  (52) 

poly(lactic-co-glycolic acid) 

(PLGA)/polyethylene glycol (PEG) 

Recombinant hepatitis B surface 

antigen 

(74) 

Chitosan DNA (tuberculosis) (75) 

Poly-L-lactide (PLA) Yersinia pestis F1 and V subunit (76) 
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1.6.2 Preparation of nanoparticles 

Protein and peptide encapsulation in NPs has been achieved by various methods such as 

emulsion solvent evaporation, salting out, and solvent displacement/solvent diffusion. 

Each method of protein encapsulation has its own advantages and disadvantages and 

each protein or peptide requires its own specific conditions depending on stability, 

solubilisation, controlled release, and elimination. The method of encapsulation is 

therefore entirely based on the physicochemical activity of the protein and its intended 

application (77).  

1.6.2.1 Emulsification/Solvent Evaporation/extraction  

Water-oil-water (w/o/w) double emulsion techniques (Figure 1-9.A) have been 

commonly applied as parameters such as particle size and drug loading can be 

controlled by varying the type, viscosity and amount of organic and aqueous phases, stir 

rate and temperature which can easily be adjusted (78). This method is best suited to 

encapsulate water soluble drugs such as peptides, proteins, and vaccines, unlike the o/w 

method which is better for water-insoluble drugs like steroids (79). In the double 

emulsion method an aqueous solution of the active ingredient is dispersed in an organic 

phase containing polymer (e.g. PLGA in dichloromethane) to form the first w/o 

emulsion. This emulsion is then dispersed in a large volume of water containing an 

emulsifier/stabiliser such as poly (vinyl alcohol), PVA, to form the w/o/w emulsion. 

The dispersion is performed using a homogenizer, high pressure homogenizer or 

ultrasound (22). The emulsion is then subjected to solvent removal by extraction or 

evaporation processes (80). With the solvent extraction method, the double emulsion is 

added to a large amount of water or an aqueous cosolvent, (e.g. acetone in an aqueous 

solution).  
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Figure 1-9: Methods of preparation of nano/microparticles: (A) 

emulsification/solvent evaporation method, (B) emulsification and solvent 

diffusion method and (C) salting out method. 

OP 

  

 

 

EAP 

 

 

W
1
/O/W

 

Solvent Evaporation 

IAP 
 
W

1
/O 

 

 
 

 

 

NPs 

Suspension 

Solvent Evaporation 

 

 

 
OP 

 

 

 

 

 

NPs 

Suspension 

Solvent 
Diffusion 

 
IAP 

 

 

 

Water 

 

 

 

Diffusion of organic 

solvent 

 
W

1
/O 

 

 
 

 

 

NPs 

Suspension 

 
IAP OP 

Salting out 
agent 

A 

C 

B 



 

29 
 

One disadvantage of the double emulsion method is the removal of the solvent from the 

emulsion during which the water/oil (w/o) emulsion droplets are exposed to a large 

amount of water and this may lead to lower antigen loading and encapsulation 

efficiency, and an initial burst release. During solvent removal from the emulsion, 

antigen molecules can diffuse out from the emulsion into the aqueous solution and can 

also accumulate on the surface of particles, as they become hardened, leading to a high 

initial burst release (78). Additionally, the antigen is exposed to a harsh environment at 

the interface between the aqueous and organic phases and the high shear force during 

nanoparticle formulation (61). To improve protein stability and integrity stabilizers such 

as carrier proteins (e.g., albumin), surfactants or molecules such as trehalose and 

mannitol can also be added to the aqueous phase (22). 

Singh et al. produced poly-(ε-caprolactone) (PCL) NPs loaded with diphtheria toxoid 

using a double emulsion solvent evaporation method to study their use as a mucosal 

vaccine delivery system. The internal aqueous phase containing diphtheria toxoid and 

0.25 ml 10%w/v polyvinyl alcohol (PVA) was emulsified with the organic phase (100 

mg of PCL in 5 mL of dichloromethane), by homogenization at 12,000 rpm for 2 min. 

This w/o emulsion was added to a 25ml of 1.25% w/v PVA solution, and then 

homogenised for 5min at 12,000 rpm. The preparations were then stirred magnetically 

at room temperature for 18 h to allow solvent evaporation and NPs formation. The NPs 

produced were approximately 267±3 nm in size and preserved diphtheria toxoid 

integrity as confirmed by sodium dodecyl sulfate poly (acrylamide) gel electrophoresis 

(SDS-PAGE) study (81). 

1.6.2.2 Emulsification/Solvent Diffusion 

In the solvent diffusion (solvent displacement) technique (Figure 1-9.B), the polymer 

and protein are dissolved in a partially water soluble solvent and then saturated with 

water with strong stirring. Then the polymer–water saturated solvent phase is emulsified 
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in an aqueous solution containing a stabilizer, leading to solvent diffusion to the 

external phase and elimination by evaporation leading to the production of NPs (77). 

This technique is simple, provides high encapsulation efficiency without 

homogenization, has high batch to batch reproducibility, is easy to scale up, and 

produces a narrow size distribution of protein NPs (77).  

The problem of protein hydration and the presence of hydrophobic interfaces resulted in 

protein irreversible aggregation inside the NPs. These problems can be solved by the 

addition of stabilizers such as PEO (77). BSA and immune-γ-globulin (IgG) 

encapsulated in polyethylene oxide- PLGA (PEO–PLGA) using this technique showed 

high encapsulation efficiency (58.9%) and a slow rate of in vitro release (77). 

1.6.2.3 Salting out 

In the salting out technique (Figure 1-9.C) the polymer is solubilised in a water miscible 

organic solvent (e.g. tetrahydrofuran) then this solution is added to an aqueous solution 

containing salting out agents (e.g. magnesium chloride and stabilizer) under continuous 

stirring leading to the formation of primary emulsion. Dilution of the primary emulsion 

through addition of a large quantity of water under mild stirring leads to a reduction in 

salt concentration and promotes the diffusion of the organic solvent into the aqueous 

phase leading to the formation of NPs. Finally the NPs formed are isolated from the 

salting out agents either by centrifugation or cross-flow filtration. The major benefit of 

the salting out method is that it reduces protein unfolding and inactivation (77). The 

main disadvantages of the salting out method are the removal of the salting out agent 

and possible interactions between the salting out agents and drugs (36). Konnan et al. 

fabricated NPs by a salting out technique. The organic phase containing PLGA and 

PLA in THF was emulsified with an aqueous solution of PVA and a salting out agent 

(magnesium chloride hexahydrate) by mechanical stirring. A large volume of water was 

added to the o/w emulsion leading to diffusion of the water-miscible organic solvent 
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into the aqueous solution forming NPs with particle size ranging from 102 to 200 nm 

(82).  

1.6.3 Factors affecting uptake of nanoparticles by dendritic cells 

To achieve an optimum immune response upon administration of particulate antigens 

through the pulmonary mucosal route, it is essential to optimize the particles for size, 

surface charge and hydrophobicity. These parameters can also influence differential 

uptake by DCs, which play an important role in developing the immune response (73). 

1.6.3.1 Hydrophobicity  

The hydrophobicity of NPs can make a difference in the cellular uptake because more 

hydrophobic NPs have a tendency to adsorb more to the cell surface compared to their 

hydrophilic counterparts, perhaps because of enhanced nonspecific interaction with the 

hydrophobic cell surface (83). 

Thomas et al prepared porous poly (L-lactic acid) (PLA) and PLGA NPs for pulmonary 

delivery of hepatitis B vaccine. They investigated the effects of particle size and 

hydrophobicity on mucosal and cell-mediated immune response. Hydrophobic NPs 

larger than 500 nm evoked a stronger increase in secretory IgA, interleukin-2 and 

interferon-γlevelsin comparison with hydrophilic NPs less than 500 nm (73).  

Researchers have demonstrated that particles formulated using hydrophobic polymers 

are more prone to phagocytosis than hydrophilic polymers (84; 85). For example, 

particles prepared from poly-(ε-caprolactone), which is more hydrophobic than PLGA, 

are removed by phagocytosis more efficiently and generate a stronger immune response 

to diptheria toxoid (81). However, there are many reports that shows the PLGA with a 

hydrophilic surface are promptly taken up by the dendritic cells (55; 86).  

1.6.3.2 Surface charge 

The surface charge of the particles plays an important role in generating an immune 

response. Cationic particles are effectively taken up by DCs. The ionic interaction 
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between the positive charge on the particles surface and the negative charge on the cell 

surface generates a successful bond and promotes particle uptake (87). Thomas et al 

have shown that cationic PLGA microspheres containing HBsAg significantly enhanced 

the mucosal and cell mediated immune response in comparison with PLGA 

microspheres (88). Modifying PLGA microspheres with chitosan resulted in an increase 

in mucosal residence time and enhanced immunogenicity (41).  

Chitosan nanoparticles with encapsulated DNA plasmid encoding eight T-cell epitopes 

from M. tuberculosis were administered intratracheally to the lungs of mice and induced 

the maturation of DCs, increased levels of IFN-γ secretion in comparisonwith DNA 

plasmid solution alone (75). The exact mechanism of action of chitosan is unclear and 

may be attributed to mucoadhesive characteristics, increased cell penetration, enhanced 

cell interaction and immune-modulating responses (39). 

1.6.3.3 Particle size  

There are contradictory studies on the effect of particle size on the initiation of immune 

responses. Some reports demonstrate that particles of about5μm can efficiently initiate 

an immune response after mucosal administration; on the other hand other reports 

revealed that particles of about 1 μm are taken up by antigen presenting cells more 

efficiently than 500 and 200 nm size particles resulting in a stronger immune response 

(73). In conflict to these studies, others showed that particles of about 500 nm or less 

were optimal for DCs uptake compared to particles of 1- 5μm in size (89).  

DCs and macrophages are able to take up any particles of a similar size to the pathogens 

(up to 10μm)soitis expected that both micro and nano particles can be easily taken up 

by both cells. However, to target vaccine antigens to DCs, NPs are preferred over 

microparticles. This restricted level of particle uptake by DCs in comparison with 

macrophages has been attributed to the different functions that these two cell types have 

for immune response. The macrophages remove foreign particles efficiently leading to 
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clearance while DCs are responsible for antigen take-up to an extent that is necessary to 

induce an immune response (89). Some research has demonstrated that DCs more 

efficiently take up small particles of a size similar to the viral size (around 20-200 nm), 

while macrophages phagocytose larger bacterial sized particles. There is an inverted 

relationship between particle size and the ability of uptake by DCs that could be 

attributed to the large surface area of the nanoparticles which promote rapid degradation 

and faster release of the encapsulated antigens within the cells. Moreover, the large 

surface area promotes higher protein loading through adsorption (87).  

Recently Foged et al. demonstrated that particle size, surface charge, shape, and 

composition of the substance to be delivered all have a major function in controlling 

particle uptake by human DCs. Moreover, it was resolved that for the highest uptake by 

DCs thedesiredparticle sizewas0.5μm (diameter). Large particles (> 1μm)uptake

was highly promoted when they showed a positive surface charge (89). Furthermore, 

Manolova et al. showed that upon intracutaneous injection of polystyrene beads of 

different sizes, the large particles (500–2000 nm) connected with DCs from the site of 

administration and relied extensively on them for cellular transport, while small 

particles (20–200 nm) and virus-like particles (30 nm) were transported freely to the 

lymph nodes and were present in lymph nodes resident DCs (90). 

1.6.4 Technical concerns of nanoparticle pulmonary delivery  

NPs do not deposit efficiently in the lungs leading to the exhalation of the majority of 

the inhaled dose (91). Particulate systems incorporating NPs into micron-scale 

structures have been developed to solve the problem of delivering NPs to the lungs; 

such as embeddingNPswithin an inert ‘microcarrier’, porous nanoparticle-aggregate 

particles (PNAPs), agglomerated NPs (91) and nanocomposite microparticles (NCMPs) 

(92) as a dry powder. These systems are designed to dissolute in the lung lining fluid, 
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releasing the NPs from the inert carrier (93). The methods of preparation and 

administration of dry powder formulations are described below in more details. 

1.7 Methods of preparation of dry powder for inhalation 

1.7.1 Freeze drying  

Freeze drying (or lyophilisation) involves first freezing the sample then removing the 

water via sublimation under vacuum. The drawbacks of this method are; slow 

processing, expense and the production of stresses on the antigen through the freezing 

and drying phases (36). The presence of a stabilizer is essential to protect the active 

ingredient, avoid agglomeration and to confirm suitable reconstitution ability. 

Carbohydrates such as sucrose, mannitol, dextran or lactose alone, or in presence of 

surfactants e.g. poloxamer 188 or polyvinyl alcohol are often added as stabilizers to 

protect the active ingredient and avoid coalescence. The ratio of nanoparticles to sugar 

acts as a determining factor in the stability and long term storage of the final form. 

Research on long term stability of these particles demonstrated that the use of 

cryoprotective agents during freeze drying decreased the particle growth in comparison 

with non cryoprotective preparations. For example, formulations freeze-dried in the 

presence of sucrose and trehalose at 2% and 3% w/v had more controlled particle size 

and performed better than when mannitol was used at the same concentrations (36). 

However, freeze drying is technically time consuming and expensive for 

macromolecules (94). 

1.7.2 Spray drying  

Spray drying is a one-step technique which transforms liquid formulations to a dried 

form. The liquid formulation can be a suspension or an emulsion that is atomized to a 

spray form and passed through hot air leading to the rapid evaporation of the solvent to 

produce dried particles. The dried particles are then separated from the gas by means of 

a cyclone (95). The characteristics of the particles produced rely on the type of feed 
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(e.g. suspension or emulsion) as well as the spray drying parameters such as solid 

concentration, solvent type and composition, solution feed rate, inlet temperature, gas 

type and flow rate, etc. (78).  

For pulmonary drug delivery the main advantages of using spray drying is the 

possibility to manage and alter the different parameters mentioned above. This results in 

optimization of dry powder properties such as size, morphology and density, as well as 

macroscopic powder characteristics such as bulk density, flowability and dispersibility. 

Furthermore, spray dryers can be easily scaled up for industrial production (95). 

However, high inlet temperature, separation of final powder and particles loss in lab-

scale spray -dryers are disadvantageous. The spray drying technique was previously 

applied to prepare microparticles loaded with insulin, tetanus toxoid (TT), recombinant 

human erythropoietin (rhEPO), and BSA (78). 

1.7.3 Spray freeze drying 

The spray-freezedrying method includes spraying an aqueous solution of drug into a 

spray chamber containing a cryogenic liquid (such as liquid nitrogen) leading to 

formation of frozen droplets which are then lyophilized to form porous dry powder 

particles suitable for inhalation. The main advantage of the spray-freeze-drying method 

is the ability to produce particles with controllable sizes and, as it is carried out at sub-

ambient temperature, heat sensitive polymers and highly potent macromolecules can be 

formulated into dry powder preparations. The main disadvantage of this method is the 

stresses due to freezing and drying, which may lead to irreversible damage to proteins. 

This is indicated as structural denaturation, aggregation and loss of biological activity 

upon reconstitution. Furthermore, loss of stability due to unfolding and aggregation still 

present a main challenge and also it is time consuming, and expensive (95).  

Amorij et al. demonstrated that an influenza subunit vaccine powder prepared by spray-

freeze-drying using oligosaccharide inulin as a stabilizer and administered through the 
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lung to BALB/c mice stimulated systemic humoral (IgG), cell-mediated (Il-4, IFN-γ)

and mucosal immune responses (IgA, IgG). While vaccination with a solution subunit 

vaccine through the pulmonary or intramuscular route only lead to systemic humoral 

(IgG) immune responses concluding that powder vaccine preparations could be 

advantageous for immunization (96).  

1.7.4 Supercritical fluid 

Supercritical fluids (SCF) are compressed gases or liquids above their critical 

temperatures (Tc) and pressures (Pc), and have many advantages of both gases and 

liquids. The solvating power and density can be managed by changing the pressure and 

temperature. Commonly used SCF include carbon dioxide (CO2), acetone, propane, 

nitrous oxide (N2O), chlorodifluoromethane, propane, water, diethyl ether, or mixture. 

In addition to its low cost and non-toxicity supercritical CO2 is the most widely used 

SCF because of  its accessible critical point at 31°C and 74 bar makes it suitable for 

processing thermolabile solutes as an alternative to conventional organic solvents. There 

are two main fundamental processes for particle drying with SCF. The first uses SCF as 

a solvent and the other as an antisolvent. In the first process, the drug is dissolved in the 

SCF, suddenly decompressed and then the solution is moved through an opening and 

rapidly expanded at low pressure. Rapid Expansion of a Supercritical Solution (RESS) 

applies with this concept. In the second type of process, the solute is insoluble in SCF 

so it utilizes SCF as an antisolvent. A solute is solubilised in an organic solvent 

followed by absorption of the SCF by the organic solvent. The liquid phase then 

expands and the solvation power decreased leading to particle formation. The following 

are processes that employ this second principle. Gas Anti-Solvent (GAS), Aerosol 

Solvent Extraction System (ASES), Supercritical Fluid Antisolvent (SAS), Precipitation 

with Compressed Antisolvent (PCA), Solution Enhanced Dispersion by Supercritical 

Fluids (SEDS), and supercritical fluid extraction of emulsion (SFEE). By applying these 
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methods the particles can be formulated with the desired shape and size and any 

drawbacks on the macromolecules can be decreased. A comprehensive discussion of 

these methods has recently been published (94).  

The dry particulate prepared by SCF techniques are often less charged than those 

prepared mechanically making them flow more easily and thus more freely dispensed 

from a DPI. Moreover, SCF techniques allow the preparation of inhalable powder that 

are more uniform in terms of particle-size, distribution, crystallinity and morphology 

than those prepared by jet milling. Regardless of its ability, SCF is still considered as a 

rising technology that is still to be fully explored for DPI preparations; with increased 

concerns about the possibility of the denaturing effects of the solvents/antisolvents used 

in this technique (36; 94).  

Amidi et al. prepared diphtheria toxoid containing microparticles by a SCF spraying 

process, resulting in dry powder microparticles with a median volume diameter between 

2and3μm.Immunization of guinea pigs with diphtheria toxoid -N-Trimethyl chitosan 

microparticles via the pulmonary route lead to a strong immune response as showed by 

the induction of IgM, IgG, IgG1 and IgG2 antibodies comparable to or significantly 

higher than those obtained with subcutaneous administration of alum-adsorbed 

diphtheria toxoid showing an effective pulmonary delivery system of diphtheria toxoid 

antigen (52). 

1.8 Aerosol as a delivery system for pulmonary vaccine  

Inhalation devices can be divided into three different categories: the nebulizer, the 

pressurized metered dose inhaler (MDIs), and the dry powder inhaler (DPIs).  

1.8.1 Nebulizer 

There are two major types of nebulizers: jet nebulizers and ultrasonic nebulizers. The jet 

nebulizer uses the movement of compressed air or oxygen through a narrow opening, 

leading to a low pressure area next to a liquid feed tube which results in pulling up the 
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drug solution from the fluid reservoir and splitting it into droplets in the gas stream. The 

ultrasonic nebulizer uses a piezoelectric crystal vibrating at a high frequency to generate 

a fountain of liquid in the nebulizer chamber (97). Nebulization provides a constant 

output with minimum patient skills, large dose can be delivered, and disposable 

nebulizers are cheap (98).  

Pulmonary vaccination research has been carried out using nebulization of live, 

attenuated organisms such as tularemia, measles, attenuated Mycobacterium bovis in 

Bacille Calmette-Guérin (BCG), and rubella. However there is a potency loss obstacle 

as demonstrated when complex molecules broke down due to the shear force of the jet 

nebulizer. For example, a measles vaccine experienced about a 71 % loss of potency 

after nebulization (98). Nebulization has many drawbacks; it is bulky, requires large 

volumes of clean water and an electricity supply, has a long-time of administration, is 

expensive, has poor efficiency, has low reproducibility, high risk of bacterial 

contamination, needs continuous cleaning, and sometimes requires the use of 

compressor or gas cylinder which are impractical in low and middle income countries 

and in vaccine campaigns (95).  

1.8.2 Pressurized-meter dose inhaler 

In pMDIs, the drug formulation is either suspended or dissolved under pressure in a 

liquefied propellant in a canister provided with a valve to measure accurate doses and a 

positioner (95). Few vaccines have been administered using pMDIs. The main reason 

being the use of a hydrophobic propellant is too harsh for most antigens. Brown et al. 

administered Streptococcus suis bacteria into the lung of swine using liquefied 

dimethylether as propellant and only approximately 30-50 % of antigenicity in the 

respirable bacteria was preserved (98). 
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1.8.3 Dry powder inhaler  

Dry powder inhalers (DPIs) are cheap, simple, efficient, compact and disposable 

devices for single dose delivery and hence are ideal devices for antigen delivery. Most 

antigens are macromolecules (e.g. proteins, peptides, and polysaccharides) and are 

highly susceptible to chemical and physical degradation in liquid preparations. 

Administration of macromolecules as dry powder aerosols through the pulmonary route 

has been widely studied as a promising non-parenteral route for drug delivery that 

affords enhanced stability in comparison with traditional liquid dosage form. Proteins 

stability can also be enhanced by preparing them in a dry, solid state with excipients 

such as lactose, inulin and L-leucine (99; 100). The excipient that is approved by FDA 

for dry powder inhalation is lactose (98; 101). Recently, D-mannitol is available in the 

form of pulmonary diagnostic DPIs as Aridol
TM

 which approved by US food and drug 

administration office and in the form of DPIs for the treatment of cystic fibrosis and 

chronic bronchitis as Bronchitol
TM

 which aapproved by approved European regulatory 

committee (102). Many studies demonstrated the stability of measles vaccine without 

refrigeration when prepared as dry powder formulations (103; 104). Furthermore, DPIs 

can reach larger deposition efficiency, do not require an external driving force, and can 

be utilized by patients more simply than liquid formulations. Also DPIs vaccines can 

overcome the need of the cold chain which is a necessity for liquid vaccine preparations 

making the shipping and handling of the vaccine cheap and easier (38). However, this 

type would not be suitable for infant and children less than 4 years old due to the 

difficulty in reliable control of breathing pattern in this group (105). 

The possibility of using dry powder aerosol vaccines has previously been investigated. 

Influenza subunit vaccines formulated as dry powder using spray-freeze-drying were 

revealed to induce superior systemic and mucosal humoral and cell-mediated immune 

responses in mice when administered via the pulmonary route in comparison with liquid 
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vaccines delivered by the pulmonary or the intramuscular route (96). The efficiency of 

spray-dried NPs administered by inhalation of Bacille Calmette-Gue´rin (BCG) in 

inducing immunity against Mycobacterium tuberculosis has been studied in guinea pigs, 

and specific immune responses have been shown in macaques after aerosol delivery of a 

measles vaccine (106).  

Lu et. al. prepared recombinant antigen 85B protein-PLGA microparticles as dry 

powder in respirable size to be administered to the guinea pig via inhalation in single or 

multiple doses of homologous and heterologous antigens to protect against tuberculosis. 

A single dose of Bacille Calmette–Guérin (BCG) administered subcutaneously was 

applied as the positive control and as part of immunisation plans. Immunized guinea 

pigs were challenged with a low-dose aerosol of Mycobacterium tuberculosis H37Rv to 

evaluate the amount of protection assessed as decrease in bacterial burden (CFU) in the 

lungs and spleens of animals. Histopathological evaluation and morphometric 

assessment of these tissues were also carried out. The heterologous strategy of BCG 

prime–Ag85B PLGA microparticles aerosol boosts showed enhanced protection against 

bacterial infection, as identified by a decrease in bacterial burden CFU in both the lungs 

and spleens of treated animals compared with untreated. However, there was no 

statistical difference in the bacterial burdens data between the BCG and BCG-BCG 

groups. The histopathological and morphometric evaluation of lung and spleen tissue 

showed the positive effect of BCG prime–Ag85B PLGA vaccination by evaluating a 

smaller area of tissue affected and number and size of granulomas noticed in the tissues 

of guinea pigs vaccinated via the lung. Hence, it was concluded that direct vaccination 

via the lung by these microparticles improved the protection provided by primary 

immunization with BCG against tuberculosis in guinea pigs. Due to the fact that a 

substantial percentage of the people around the world have been vaccinated with BCG 
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in early childhood, a boosting dose with aerosol may be a potential method to augment 

and extend the immunity due to BCG-immunisation (107). 

Recently, Agarkhedkar et al. carried out Phase I clinical study to examine the safety and 

immune responses of measles vaccine dry powder for inhalation. The study included 

three groups: the first group treated with measles vaccine dry powder using Puffhaler®, 

the second group treated with measles vaccine dry powder using Solovent
TM

, and the 

third group treated using the licensed subcutaneous measles vaccine. The results 

showed a good safety and immunogenicity profile of measles vaccine dry powder using 

Puffhaler® and Solovent
TM

 in comparison with subcutaneous measles vaccine (108). 

Moreover, it has been indicated that dry particulate antigens, in comparison with 

solubilized antigens, are taken up more efficiently by APCs, leading to a strong immune 

response (99).  

Saluja et al also demonstrated immunization through the pulmonary route using dry 

powder inhalation leading to a strong immune response in comparison with 

conventional liquid preparation administered intramuscularly or via the pulmonary route 

(38). 

The formulation of vaccines as dry powder for inhalation seems to be a promising new 

method to vaccination. 

1.9 Thesis hypothesis 

Dry powder inhaler aerosols of a pneumococcal protein PspA4Pro, encapsulated within 

nanocomposite microparticles, as a vaccine for deep lung delivery. 

1.10 Thesis Aim and objectives 

To design, formulate and characterise nanocomposite microparticles encapsulating 

pneumococcal protein PspA4Pro as a vaccine for the prevention of pneumococcal 

disease by dry powder pulmonary delivery. 
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To obtain the aim of the thesis a systematic study was designed considering the 

following objectives: 

1) Optimisation of PGA-co-PDL NPs prepared by double emulsion solvent 

evaporation technique. 

a. Optimisation of NPs in term of size and protein loading using factorial design. 

b. Investigate the effect of chitosan hydrochloride adsorption on NPs regarding 

particle size and charge. 

c. A study of NPs in vitro cell toxicity and DCs uptake. 

d. Application of the optimum NPs preparation parameters for PspA4pro 

encapsulation. 

2) Incorporation of optimum NPs into micron-scale structures NCMPs via spray 

drying with L-leucine as microcarrier. 

a. Optimisation of NCMPs formulations in term of morphology and yield%. 

b. A study of the in vitro aerosolisation behaviour, in vitro release and cell toxicity. 

c. Evaluation of the stability and integrity of protein released from optimum 

formulations and an investigation of relative antigenicity of released PspA4pro. 
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2. Materials and Methods  
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2. Materials and methods 

2.1. Materials 

Material and Properties Source 

Glycerol Sigma-Aldrich, UK 

ω-pentadecalactone (PDL) 

Myo-Inositol ≥99% 

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

(MTT) 

Dichloromethane (DCM) 

RPMI-1640 medium with L-glutamine and sodium hydrogen 

carbonate (NaHCO3) 

antibiotic/antimycotic solution (100x) 

Glycine 

Sodium dodecyl sulfate (SDS) 

Tris hydrochloride 

Sodium chloride 

Albumin tagged with fluorescein isothiocyanate (FITC-BSA) 

Alkaline phosphate yellow liquid substrate, number P7998  

Divinyl adipate (DVA) Fluorochem, UK 

Lactose (Lactohale, LH 230) Friesland food, 

Netherland.  

Methanol Fisher Scientific, UK 

Chloroform 

Tetrahydrofuran (THF) 

96-well flat bottom black plates 

25 and 75 cm
2
/tissue culture flask with vented cap (IWAKI 

brand) 

24-well tissue culture plates and 96-well flat bottom plates 

Paraformaldehyde 

Dimethyl sulfoxide (DMSO) 

Novozyme 435 (a lipase derived from Candida antarctica 

immobilized on a microporous acrylic resin) 

Biocatalytics, USA 

Polystyrene standards kit  Supelco, USA 
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PLGEL 5 µm MIXED-D 300 x 7.5 mm column  Varian, Polymer 

Laboratories, UK 

Bovine serum albumin (BSA, Mw 67 kDa)  Avenchem, UK 

Poly (vinyl alcohol) (PVA, Mw of 13- 23 kDa, 87-89% 

hydrolyzed) 

Clariant GmbH, 

Frankfurt amMain, 

Germany. 

QuantiPro bicinchoninic acid (BCA) protein assay kit  Sigma, UK. 

Disposable Plastic Cuvets, Catalog Number C5416 

Protogel (30% acrylamide, 0.8% Bis-acrylamide stock 

solution 37.5:1) 

Geneflow limited, UK 

Protogel resolving buffer (1.5 M Tris-HCl, 0.4% SDS, pH 

8.8) 

Protogel stacking buffer (0.5 M Tris-HCl, 0.4% SDS, pH 6.8) 

N, N, N`, N`,-tetramethyl ethylenediamine (TEMED) 

Vertical Gel Electrophoresis Units 

Protein loading buffer blue, BLUeye Prestained Protein 

Ladder  

Ammonium persulfate (APS) AGT, Bioproduct, 

Global life science 

supply, UK. 

Colloidal Coomassie Brilliant Blue Severn Biotech Ltd, 

UK 

Phosphate buffered saline tablets pH 7.3  Oxoid, UK 

Chitosan hydrochloride: molecular weight: 200,000–400,000; 

degree of deacetylation: 80% and 95%  

HEPPE MEDICAL 

CHITOSAN GmbH, 

Germany 

L-leucine ≥ 99.5%  Bioultra, Sigma, UK. 

Fluorescamine Acros Organics; 

Morris Plains, NJ 

Foetal calf serum (FCS) heat inactivated Biosera, UK. 

Adenocarcinomic human alveolar basal epithelial cell line, A 

549 (CCL-185
TM

) 

American Type 

Culture Collection 

(ATCC). Immature DCs; monocyte, mouse, JAWS II (CRL-11904
TM

). 

Fetal bovine serum Gibco by life 
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L-glutamine technologies, UK. 

Granulocyte macrophage colony-stimulating factor (GM-

CSF) 

Minimum Essential Medium (MEM) alpha-nucleosides 

8-well chambered #1 cover glass system Nunc Lab-Tek, 

Thermo Scientific, 

UK. 

4′,6-diamidino-2-phenylindole, dihydrochloride (DAPI) Invitrogen, Ltd.,UK. 

Wheat Germ Agglutinin Texas RedR-X conjugate (WGA TR) 

High binding chemistry 96-well plate Costar microplate Cole-Parmer, UK 

10x fish gelatin blocking solution number 22010 Biotium, Hayward, 

CA. 

20x TBS tween 20 buffer number 28360 was obtained from 

Thermo, UK. 

Anti-PspA monoclonal antibody clone number 22003 QED Biosciences, San 

Diego, CA. 

Aalkaline phosphatase conjugated goat anti-mouse IgG 

number 115-055 (heavy and light chain) 

Jackson 

ImmunoResearch, 

West Grove, PA. 

Recombinant PspA4Pro A kind gift from Dr 

Eliane Miyaji and Dr 

Viviane Gonçalves 

from the Insituto 

Butantan, Brazil. 

 

 

 

 

 

 



 

47 
 

2.2. General Methods 

2.2.1. Polymer synthesis  

The poly glycerol adipate-co-ω-pentadecalactone (PGA-co-PDL) was synthesized via 

an enzyme catalysed condensation and ring opening co-polymerization reactions 

(Figure 2-1) as described by Thompson et al. (62). Briefly, a 250mL two-necked round 

bottom flask equipped with a centre stirrer guide and an open top condenser (to act as an 

outlet for the acetaldehyde produced), was charged with the monomers, glycerol (125 

mmol), DVA (125 mmol), and PDL (125 mmol) and half the THF (15 ml). The flask 

was fitted with an overhead stirrer paddle and condenser, and immersed to the level of 

thesolution,inawaterbath(50˚C)andstirredfor20mintoallowthetemperatureto 

equilibrate. The Novozyme 435 (1.25 g) was added with the remaining THF (15 ml) 

and the reaction continued for 6 h. Upon completion, 300 ml of warm DCM was added 

to the flask and stirring continued to dissolve the viscous polymer. The enzyme was 

removed by Buchner filtration under vacuum. The solvent was removed by rotary 

evaporation (60 ˚C, Heidolph Laborota 4000). Methanol (100 ml) was added and the 

mixture agitated to precipitate the polymer and leave unreacted monomers and 

oligomers in solution. The solid polymer was obtained by filtration and air dried for 48 

h before storing in desiccator at room temperature.  

2.2.2. Polymer characterization  

2.2.2.1. Gel Permeation Chromatograph  

Polymer molecular weight was characterized by Gel Permeation Chromatography 

(GPC) using a Viscotek system employing OmniSEC 3 software, TDA Model 300. The 

system was fitted with two PLGEL 5 µm MIXED-D 300 x 7.5 mm columns stored in 

thedetectorovenat40˚C,and a flow rate of 1mL/min applied using chloroform as the 

mobile phase. The detector alignment and instrument sensitivity parameters had been 

previously calibrated using different molecular weight of polystyrene standard. 
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2.2.2.2. Proton nuclear magnetic resonance  

Proton nuclear magnetic resonance (
1
H-NMR) spectroscopy was used to confirm the 

chemical structure of the synthesised polymer. The 
1
H-NMR was performed using a 

Bruker AVANCE 300 MHz, inverse probe with B-ACS 60 and autosampler with 

gradient shimming. The spectra were analysed by MestReNova software. 

2.2.2.3. Differential scanning calorimeter  

The melting point (Tm) and glass transition temperature (Tg) were determined using 

differential scanning calorimetry (DSC, Perkin Elmer 800, Pyris software). The system 

was calibrated with an indium reference standard. The polymer sample (3–5mg) was 

placed into a hermetically sealed and crimped pan. The samples were scanned at heating 

and cooling rate of 10 °C/min purged with nitrogen. Tm and Tg were reported from the 

second heating scan after previously heating to 75 ˚C followed by cooling to – 90 ˚C. 

2.2.3. Nanoparticle preparation 

BSA loaded PGA-co-PDL NPs were prepared by (w/o/w) double emulsion/solvent 

evaporation method (Figure 2-2). A Taguchi L36 orthogonal array design of experiment 

was used to optimise the preparation parameters to achieve NPs of optimum particle 

Figure 2-1: Reaction scheme for the enzymatic synthesis of poly ( glycerol adipate-

co-ω-pentadecalactone), PGA-co-PDL. 
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size and protein loading. The optimised conditions used were: internal aqueous phase 

(IAP) 0.5 ml of protein solution (1 %) containing PVA (1 %) was emulsified in 1 ml 

DCM (organic phase, OP) containing 50 mg of PGA-co-PDL, using a probe sonicator 

(VC X 500 Vibra-Cell
TM

, Sonics & Materials, Inc., Newtown, CT, USA, 13mm probe) 

at 45 % amplitude for 15 sec over an ice bath. The resulting single emulsion was 

emulsified into 25 ml of a 1% PVA solution (external aqueous phase, EAP) using the 

same probe sonicator at 45 % amplitude for 30 sec to form a w/o/w double emulsion. 

The double emulsion was stirred magnetically for 2 h at room temperature to evaporate 

the DCM. The NPs were collected by centrifugation (Sigma 3-30k, SIGMA 

Laborzentrifugen GmbH, Germany) at 40,000 xg for 1 h at 4 ⁰C, washing twice with 

distilled water. Control NPs were prepared using the same method but without protein. 

For particle uptake studies, fluorescein isothiocyanate (FITC-BSA) was added in the 

IAP. 

 

 

 

 

 

 

 

 

 

 

 

 

The adsorption of CHL was achieved by two strategies as follows: 
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Figure 2-2: Simple scheme shows nanoparticles preparation by double emulsion 

solvent evaporation method. 
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2.2.4. Cationic nanoparticle preparation 

The adsorption of CHL was achieved by two strategies as follows: 

1. The first strategy involved the adsorption of CHL onto the surface of the 

preformed NPs prepared as described in section 2.2.3 (109; 110): 

1.1. To optimise the CHL concentration, NPs were suspended in an aqueous 

solution of CHL of varying PGA-co-PDL / CHL weight ratio from 1:0, 1:1, 1:3, 

1:6, 1:8 to 1:10 with and without 1% PVA and incubated for 2 h at room 

temperature with magnetic stirring. The suspension was then centrifuged at 40,000 

x g for 1 hour at 4 ⁰C, and washed twice with distilled water.  

1.2. To optimise the amount of PVA required, NPs were suspended in an 

aqueous solution of CHL containing PGA-co-PDL /CHL weight ratio 1:6 with 0, 

0.5 or 1% PVA and incubated for 2 h at room temperature with magnetic stirring. 

The suspension was then centrifuged at 40,000 x g for 1 hour at 4 ⁰C, and washed 

twice with distilled water.  

1.3. To optimise the adsorption time, NPs were suspended in an aqueous 

solution of CHL (PGA-co-PDL / CHL weight ratio 1:6) without PVA and incubated 

for 2h, 4 h, 6h, 24h at room temperature with magnetic stirring. The suspension was 

then centrifuged at 40,000 x g for 1 hour at 4 ⁰C, and washed twice with distilled 

water.  

2. The second strategy involved the addition of CHL to EAP during the NPs 

preparation process as described in section 2.2.3 (41; 72; 111). CHL was dissolved 

at various concentrations (2, 4, 6, 8, 10, 16, 20 mg/ml) in the EAP. The suspension 

was then centrifuged at 40,000 x g for 1 hour at 4 ⁰C, and washed with distilled 

water. The supernatants were further assessed for CHL adsorption to NPs. 
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2.2.5. Quantification of chitosan hydrochloride adsorption 

The amount of CHL adsorbed on the surface of cationic NPs was determined by 

fluorescamine due to its high sensitivity and specificity (111). Fluorescence was 

produced by the reaction of fluorescamine with the primary amino groups of CHL. 

Fluorescamine in DMSO solution (100 µL of 0.2%) was added to the supernatant 

(collected from section 2 of the section 2.2.4, 20 µL) in a black 96-well fluorescent 

detection microplate. This was incubated for 3 h protected from light, and the 

fluorescence measured at an excitation wavelength of 390 nm and emission wavelength 

of 515 nm using a microplate reader (Clariostar BMG LABTECH, Germany). A CHL 

calibration curve was prepared for each experiment. The mass CHL adsorbed onto the 

NPs was calculated by subtracting the free CHL in the supernatant from the initial 

amount of CHL added, equation 2-1: 

𝒒 =
(𝑪𝒊−𝑪𝒆 ) 

𝑾
𝑽            Equation 2-1 

where q is the amount (mg) of adsorbed CHL on NPs, V is the volume of suspension 

(ml), W is the mass (mg) of NPs, and Ci and Ce are the initial feed concentration of 

CHL and the free CHL concentration (mg/ml) at equilibrium, respectively (111). 

2.2.6. Adsorption isotherm models 

The adsorption mechanism of CHL on NPs could be explained by using isotherm 

models: the Langmuir, (equation 2-2); BET (Brunauer–Emmett–Teller), (equation 2-3); 

Freundlich, (equation 2-4); and Halsey, (equation 2-5). The isotherm models were 

plotted in a linear form using the measured adsorption values. Listed below are the 

equations of isotherm models where, q is the weight of adsorbed CHL per unit weight 

of NPs, Ce is the equilibrium concentration of unadsorbed CHL, qm, and k are constants 

referred to the adsorption capacity, and b and n are constant referred to the intensity of 

adsorption (111). 
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𝑪𝒆

𝒒
=  

𝟏

𝒃 𝒒𝒎
+

𝑪𝒆

𝒒𝒎
   Equation 2-2 

𝑪𝒆

𝒒−(𝟏−𝑪𝒆)
=  

𝟏

𝒃 𝒒𝒎
+

𝒃−𝟏

𝒃 𝒒𝒎
  Equation 2-3 

𝐥𝐨𝐠 𝒒 = 𝐥𝐨𝐠 𝒌 +  
𝟏

𝒏 
𝐥𝐨𝐠 𝑪𝒆  Equation 2-4 

𝒍𝒏 𝒒 =
𝟏

𝒏
𝒍𝒏 𝒌 −  

𝟏

𝒏 
𝒍𝒏 (−𝒍𝒏 𝑪𝒆)  Equation 2-5 

2.2.7. Characterization of nanoparticles 

2.2.7.1. Particle Size and zeta potential 

Particle size, polydispersity index (PDI) and zeta potential were measured by laser 

differaction using a Zetasizer Nano ZS (Malvern Instruments Ltd, UK). An aliquot of 

200 µl of the suspension was diluted with 3ml of deionized water. The diluted samples 

were placed into a cuvette and the measurements were conducted at ambient 

temperature (25 °C) (n=3). 

2.2.7.2. Encapsulation efficiency and protein loading of nanoparticles 

The amount of protein loaded in the NPs was determined by indirect and direct 

methods.  

Direct method: the amount of protein loaded in the NPs was determined after 

extraction from the NPs. Ten milligrams of protein-loaded NPs was dissolved in 4 mL 

of DCM followed by the addition of 2 mL of distilled water. The mixture was vortexed 

at 1000 rpm and then placed on the shaker for extraction overnight. After centrifugation 

(Sigma 3-30k, SIGMA Laborzentrifugen GmbH, Germany) at 40,000 xg for 1 h at 4 ⁰C 

the supernatant was removed for analysis.  

Indirect method: the amount of protein loaded in the NPs was determined by 

measuring the amount of protein remaining in the supernatant and wash after 

centrifugation.  

Both methods carried out using a QuantiPro bicinchoninic acid (BCA) protein assay kit 

(n=3). This assay is based on colorimetric detection. Protein concentration was 



 

53 
 

determined by UV spectroscopy at 562 nm (Genesys 5 spectrophotometer, Thermo 

Fisher Scientific Inc, Waltham, MA).  

In order to eliminate any source of interfering with BCA assay in the direct method an 

unloaded NPs was treated as the BSA loaded NPs and used as a blank while in the 

indirect method the supernatant of unloaded NPs was used as a blank. A calibration 

curve was obtained with BSA standard solutions (2.5-30 µg/ml). The encapsulation 

efficiency (EE %) and drug loading (DL) were calculated according to equations 2-6 

and 2-7:  

𝑬𝑬 % =  
𝒂𝒎𝒐𝒖𝒏𝒕 𝒐𝒇 𝑩𝑺𝑨 𝒂𝒅𝒅𝒆𝒅−𝒇𝒓𝒆𝒆 𝒂𝒎𝒐𝒖𝒏𝒕 𝒐𝒇 𝑩𝑺𝑨

𝒂𝒎𝒐𝒖𝒏𝒕 𝒐𝒇 𝑩𝑺𝑨 𝒂𝒅𝒅𝒆𝒅
× 𝟏𝟎𝟎                     Equation 2-6 

 

𝑫𝑳 =  
𝒂𝒄𝒕𝒖𝒂𝒍 𝒂𝒎𝒐𝒖𝒏𝒕 𝒐𝒇 𝒆𝒏𝒄𝒂𝒑𝒔𝒖𝒍𝒂𝒕𝒆𝒅 𝑩𝑺𝑨 (µ𝒈)

𝒂𝒄𝒕𝒖𝒂𝒍 𝒂𝒎𝒐𝒖𝒏𝒕 𝒐𝒇 𝒏𝒂𝒏𝒐𝒑𝒂𝒓𝒕𝒊𝒄𝒍𝒆𝒔  (𝒎𝒈)
                                          Equation 2-7 

2.2.8. Preparation of nanocomposite microparticles by spray drying  

Spray drying was used to incorporate the NP formulation into nanocomposite 

microparticles (NCMPs). NCMPs were prepared by spray drying NPs suspended in 

aqueous L-leucine solutions (at polymer-to-carrier ratio of 1:1.5 w/w) using a Büchi, B-

290 mini-spray dryer (Büchi Labortechnik, Flawil, Switzerland) with a standard two-

fluid nozzle (0.7 mm diameter). A Taguchi L27 orthogonal array design of experiment 

was used to optimise the parameters to achieve NCMPs of highest yield %. The 

optimised condition used were: feed rate 10%, aspirator capacity 100%, atomizing air 

flow rate 400 L/h, inlet drying temperature 100ºC (corresponding outlet temperature of 

approximately 42-46 ˚C), and the feed concentration 12.5 mg/ml.  The dried powder 

was collected from the particle collecting vessel and stored in a desiccator at room 

temperature prior to characterization.  
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2.2.9. Characterization of nanocomposite microparticles 

2.2.9.1. Particle size and zeta potential 

Five milligram of NCMPs were suspended in 7 ml deionized water and the 

measurements recorded at 25°C (n=3) to determine the geometric particle size and zeta 

potential by laser diffraction using a Zetasizer Nano ZS (Malvern Instruments, UK). 

2.2.9.2. Morphology of nanocomposite microparticles 

Spray dried NCMPs samples were mounted on aluminum stubs (pin stubs, 13mm) 

layered with a sticky conductive carbon tab and coated with palladium (10-15 nm) 

(EmiTech K 550X Gold Sputter Coater, 25mA for 3 min), and visualized by scanning 

electron microscopy (SEM) (FEI – Quanta
TM 

200 ESEM, Holland).  

2.2.9.3.  Yield of spray dried nanocomposite microparticles 

 The yield of spray dried NCMPs (dry powder) was quantified as a percentage mass of 

expected total powder yield according to equation 2-8: 

𝒀𝒆𝒊𝒍𝒅 % =  
𝑾𝒆𝒊𝒈𝒉𝒕 𝒐𝒇 𝒅𝒓𝒚 𝒑𝒐𝒘𝒅𝒆𝒓 𝒄𝒐𝒍𝒍𝒆𝒄𝒕𝒆𝒅 𝒂𝒇𝒕𝒆𝒓 𝒔𝒑𝒓𝒂𝒚 𝒅𝒓𝒚𝒊𝒏𝒈

𝑾𝒆𝒊𝒈𝒉𝒕 𝒐𝒇 𝒕𝒐𝒕𝒂𝒍 𝒅𝒓𝒚 𝒎𝒂𝒔𝒔 𝒖𝒔𝒆𝒅 𝒇𝒐𝒓 𝒕𝒉𝒆 𝒑𝒓𝒆𝒑𝒂𝒓𝒂𝒕𝒊𝒐𝒏
× 𝟏𝟎𝟎            Equation 2-8 

2.2.9.4. Moisture content 

A thermogravimetric analyser (TGA) was used to evaluate the moisture content of dry 

powder after spray drying. Moisture content was measured using TGA Q50, UK 

equipped with TA universal analysis 2000 software. Approximately 10–15 mg of 

sample was weighed in a platinum pan and heated over the temperature range 25– 

650°C using a scanning rate of 10 °C/min purged under nitrogen at 20 ml/min. The 

moisture content was analysed for data collected between 25 to 120 °C.  

2.2.9.5. Powder density and primary aerodynamic diameter 

The powder density of selected NCMPs powders was determined by adding 

approximately 0.2 g of powder to a 5 ml graduated cylinder and recording the volume. 

The tapped density was determined by tapped density measurements on the same 
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samples in a 5 ml graduated measuring cylinder until constant volume was obtained 

(n=3).  

Theoretical primary aerodynamic diameter (dae) was calculated using data acquired 

from geometric particle size (d) and tappeddensity(ρ)accordingtoequation 2-9. 

𝒅𝒂𝒆 = 𝒅 √
𝝆

𝝆𝟏
               Equation 2-9 

ρ1 = 1 g/cm
3 

2.2.10. In vitro aerosolisation studies 

The aerodynamic particle size of the NCMPs was assessed using a Next Generation 

Impactor (NGI) (NGI is specified in the USP Chapter <601> as Apparatus 5 and Ph. 

Eur. Chapter 2.9.18 as Apparatus E for their use in measuring the mass distribution of 

pharmaceutical aerosols by aerodynamic diameter) (112). The NGI have a range of cut-

off diameters at 60 L/min (Table 2-1), with particles captured on any specific stage 

having an aerodynamic diameter less than the preceding stage, assuming ideal collection 

behaviour on each stage. Optimum NCMPs samples were weighed (4- 6 capsules, each 

corresponding to 10-15 mg spray-dried powder) and manually loaded into 

hydroxypropyl methylcellulose capsules (size 3) and aerosolised via a Cyclohaler® 

(Teva pharma) into NGI. The capsule was punctured using the actuator of the 

Cyclohaler® prior to inhalation and a pump (Copley HCP5, Nottingham, UK) was used 

to simulate an inspiration (the flow rate was 60L/min for 4s). Prior to testing, the pre-

separator was filled with 15ml of 0.15 M NaCl as washing media. The NGI stages were 

coated with 1% tween 80: acetone solution to eliminate particle bounce (113). Four to 

six capsules were emptied in each run (3 runs). Following aerosolisation, the samples 

were collected from each stage of the NGI, pre-separator, throat, mouth piece, inhaler, 

and capsule by washing with a DCM/0.15 M NaCl mixture (2:1) to dissolve the 

polymer and the encapsulated BSA, which was determined by QuantiPro BCA protein 

assay as described in section 2.2.4.2. (n=3). The emitted dose (ED) was determined as 
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the sum of powder deposited in mouthpiece, throat, pre-separator, NGI stages and 

micro-orifice collector of the NGI (MOC), the fine particle dose (FPD) was determined 

as the sum of powder deposited in NGI stages and MOC with aerodynamic diameters 

less than 4.6 μm,thefineparticlefraction(FPF%) was determined as the fraction of ED 

deposited in the NGI and MOC with aerodynamic diameters less than 4.6 μm,andthe

mass median aerodynamic diameter (MMAD) was calculated from log-probability 

analysis. 

 

 

Table 2-1: Effective cut-off diameters for NGI impactor at 60 L/min (with 

permission from (113)). 

 

Stage Aerodynamic cut-off diameter (µm) 

1 8.1 

2 4.5 

3 2.9 

4 1.7 

5 1 

6 0.6 

7 0.3 

MOC < 0.3 

MOC: micro-orifice collector of the NGI. 

2.2.11. In vitro release study  

Spray dried NCMPs samples (10 - 15 mg) were placed in micro tubes and dispersed in 

1.2 ml of PBS (pH 7.4). The samples were incubated at 37 °C and left rotating at 20 

RPM in a sample mixer (HulaMixer, Invitrogen Dynal AS, Life Technologies).  At 

predetermined time intervals up to 48 h, the samples were centrifuged (13,000 rpm for 

30 min) and 0.5 ml of the supernatant removed and replaced with fresh buffer. The 

supernatant was analysed by the QuantiPro BCA protein assay as described above 
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(n=3). The percentage cumulative protein released was calculated according to equation 

2-10. 

% 𝑪𝒖𝒎𝒖𝒍𝒂𝒕𝒊𝒗𝒆 𝒑𝒓𝒐𝒕𝒆𝒊𝒏 𝒓𝒆𝒍𝒆𝒂𝒔𝒆𝒅 =
𝒄𝒖𝒎𝒖𝒍𝒂𝒕𝒊𝒗𝒆 𝒑𝒓𝒐𝒕𝒆𝒊𝒏  𝒓𝒆𝒍𝒆𝒂𝒔𝒆𝒅

𝒑𝒓𝒐𝒕𝒆𝒊𝒏 𝒍𝒐𝒂𝒅𝒆𝒅
× 𝟏𝟎𝟎        Equation 2-10

  

The % cumulative protein release data was assessed using different release models, 

namely zero order, first order and Higuchi’s square root plot, and a correlation

coefficient close to unity was used as the mechanism and order of release (114). The 

following plots were made: cumulative % drug release vs. time (zero order kinetic 

model); log cumulative of % drug remaining vs. time (first order kinetic model); 

cumulative % drug release vs. square root of time (Higuchi model). 

2.2.12. Investigation of protein structure  

2.2.12.1. SDS-PAGE analysis of protein integrity 

The primary structure of the proteins was characterized by sodium dodecyl sulfate poly 

(acrylamide) gel electrophoresis (SDS-PAGE). NPs and spray dried NCMPs (10-20 mg) 

were suspended in 0.5-1.5 ml of phosphate buffer saline (PBS, pH 7.4). The samples 

were incubated at 37 °C and left rotating at 20 RPM on a sample mixer (HulaMixer, 

Invitrogen Dynal AS, Life Technologies) for 24 h. This was followed by centrifugation 

(Sigma 3-30k, SIGMA Laborzentrifugen GmbH, Germany) at 40,000 xg for 1h, and 50 

µl of supernatant was withdrawn to perform SDS-PAGE. The standard was 75 µg/ml of 

protein in water. The SDS-PAGE was performed on a CVS10D omniPPAGE vertical 

gel electrophoresis system (Geneflow Limited, UK). 

Sodium dodecyl sulfate poly (acrylamide) gels (10 cm W × 8 cm L × 0.5 mm thick) 

were freshly cast for all experiments as described in appendix- 1. Protein samples and 

standard were treated with protein loading buffer in a ratio (1:1) for 3 min at 95°C. The 

protein molecular weight marker, standard, and samples were loaded into the wells (25 

µl per well). Electrophoresis was performed at a constant voltage of 100 V for 2.3 h. 
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Then the gel was stained with colloidal Coomassie Brilliant Blue stain (as described in 

appendix- 1). A Molecular Imager® Gel Doc™ XR+ System with Quantity One 

Software was used for the gel imaging and documentation.  

2.2.12.2. Circular dichroism spectroscopy 

The secondary structure of standard protein (as a control), and protein released after 48 

h was determined via circular dichroism (CD) spectra using a J-815 spectropolarimeter 

(Jasco, UK) at 20 °C  (115). Five scans were performed per sample using a 10 mm path-

length cells at far-UV wavelengths from 260-180 nm at a data pitch of 0.5 nm, band 

width of 1 nm and a scan speed 50 nm/min. Far-UV CD spectra were collated for 

standard protein and protein released in PBS after 48 h. For all spectra, the baseline 

acquired in the absence of sample was subtracted (116). The secondary structure of the 

samples was estimated using the CDSSTR method (117) protein reference set 3 from 

the DichroWeb server (118; 119). 

2.2.13. Production and purification of PspA4Pro 

Recombinant PspA4Pro was produced, purified, and provided by Dr. Eliane Miyaji and 

Dr. Viviane Gonçalves from Centro de Biotecnologia, Instituto Butantan, São Paulo, 

Brazil. 

The PspA4Pro was produced and purified using published methods with modifications 

(120; 121). PspA4Pro was produced in 5 L bioreactors by; fed-batch cultivation with 

defined medium including glycerol as carbon source and lactose as inducer (120) or 

batch cultivation with complex medium including glucose, glycerol and lactose for 

auto-induction (122). The purification procedure includes cell disruption in a continuous 

high pressure homogenizer at 500 bar for 8 min, precipitation of the homogenate with 

0.1% cationic detergent cetyltrimethylammonium bromide, pellet removal by 

centrifugation, anion exchange chromatography in Q-Sepharose, cryoprecipitation at pH 

4 and cation exchange chromatography in SP-Sepharose (121). The desired protein 
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purity of > 95% was reached with good yield (14-30 %). The established procedure also 

removed lipopolysaccharides (LPS), producing an acceptable concentration of 

endotoxin (0.3-0.6 EU/ml) in the final product (123). The purified protein was identified 

by antibodies, capable to bind lactoferrin and displayed the characteristics α-helical 

secondary structure. 

2.2.14. In vitro antigenicity study of protein 

The antigenicity of PspA4Pro was defined by the capability of anti-PspA antibody to 

bind to the released PspA4Pro. The antigenicity of PspA4Pro was measured using an 

enzyme-linked immunosorbent assay (ELISA) as described previously by Haughney et 

al. with modifications (30). The concentration of released PspA4Pro was adjusted to 

0.5µg/ml and used to coat a high binding chemistry 96-well plate then incubated 

overnight at 4°C. The PspA solution was removed and PBS with 1% fish gelatin 

blocking buffer was added and incubated for 2 h at room temperature. Then, the fish 

gelatin blocking buffer was removed and the plates were washed three times with PBS 

containing 0.5% Tween 20 (PBS-TN). Anti-PspA monoclonal antibody (1 µg/ml) was 

added and the plates were incubated overnight at 4°C. Plates were washed three times 

with PBS-TN then alkaline phosphatase conjugated goat anti-mouse IgG (0.1 µg/mL) 

was added, and incubated for 2 h at room temperature before developing. For the 

development of the ELISA, alkaline phosphatase substrate was added (1 mg/mL). After 

15 min incubation at room temperature, the colorimetric assay was carried out at an 

absorbance of 405 nm using a microplate reader (Epoch, BioTek Instruments Ltd, UK) 

and the data was described as relative antigenicity, which is presented as the ratio of 

absorbance between the released PspA4Pro and the native protein. 
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2.2.15. Cytotoxicity study 

2.2.15.1. Normal human bronchial epithelial (A 459) cells 

2.2.15.1.1. Cell culture 

Adenocarcinomic human alveolar basal epithelial cell line (A 549) cells were cultured 

in RPMI-1640 medium supplemented with 10% FCS/1% Antibiotic/Antimycotic 

solution (complete medium) incubated at 37°C into 5%CO2 incubator. The medium was 

changed every four days and cells were passed weekly using Trypsin. 

2.2.15.1.2. Cells viability study  

The toxicity profiles of NPs and NCMPs were evaluated over 24 h in adenocarcinomic 

human alveolar basal epithelial cell line (A549) cells (passage No. 44) using 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cells were 

cultured in 96-well plates with 100 µl (2.5X10
5 

cells /ml) RPMI-1640 medium 

supplemented with 10% FCS/1% Antibiotic/Antimycotic solution for 24 h at 37°C into 

5% CO2 incubator. The wells were replaced with fresh medium (100 µl) containing NPs 

or NCMPs (0–2.5 mg/ml) (n=3) and 10% dimethylsulfoxide (DMSO) as a positive 

control and incubated for a further 24 h as above, followed by the addition of 40 µl 

MTT solution (5 mg/ml in PBS, pH 7.4) to each well. After incubation for a further 2 h, 

the medium was gently removed, and any formazan crystals generated were solubilized 

with 100 μl ofDMSO.The absorbance of solubilised dye, which correlates with the 

number of living cells, was measured using a microplate reader (Epoch, BioTek 

Instruments Ltd, UK) at 570 nm. The cell viability (%) in each well was calculated as 

the absorbance ratio between NPs or NCMPs-treated and untreated control cells. 

2.2.15.2. Dendritic cells 

2.2.15.2.1. Cell culture 

DCs were cultured in MEM alpha medium containing ribonucleosides, 

deoxynucleosides, 4 mM L-glutamine,1 mM sodium pyruvate, supplemented with 20 % 
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fetal calf serum, 5 ng/ml murine growth GM-CSF, and 1% Antibiotic/Antimycotic 

solution (complete growth medium) and incubated at 37°C and 5%CO2 incubator in 25 

cm
2
 tissue culture flask. The medium was changed every four days and cells were 

passed weekly using Trypsine. 

2.2.15.2.2. Cells viability  

Cells were cultured in 96-well plates with 100 µl (2.5X10
5 

cells /ml) complete growth 

medium for 24 h at 37°C in a 5% CO2 in an incubator. Then, complete growth medium 

(100 µl) containing NPs (0–5 mg/ml) (n=3) and 10% DMSO as a positive control were 

added to the wells and incubated for a further 4 h as above, followed by the addition of 

40 µl MTT solution (5 mg/ml in PBS, pH 7.4) to each well. After a further 2 h 

incubation, the 96-wellplatewascentrifugedat1300gfor7minat4˚Ctopellet the

suspended cells then the medium was gently removed, and any formazan crystals 

generatedweresolubilizedwith100μlofDMSO.Theabsorbance of solubilised dye, 

which correlates with the number of living cells, was measured using a microplate 

reader (Epoch, BioTek Instruments Ltd, UK) at 570 nm. The cell viability (%) in each 

well was calculated as the absorbance ratio between treated and untreated control cells. 

2.2.16. NPs cellular uptake by DCs  

DCs uptake of FITC-BSA loaded anionic and cationic NPs was visualized using 

Confocal Laser Scanning Microscopy (CLSM) (Carl Zeiss lsm 710, UK). The DCs 

2x10
5
 cells/400 µl were plated into an 8-well chambered borosilicate cover glass 

system, and incubated at 37 °C and 5% CO2 for 48 h prior to treatment with NPs.  

Different concentrations of FITC-BSA loaded NPs (10-40 µg/40 µl) were added to each 

well and incubated at 37°C and 5% CO2 for 1 h. The suspension in each well was 

removed and washed using PBS. Cells were fixed for 15 min with 300 μL of 4% 

paraformaldehyde in PBS followed by washing with PBS. The cell membranes were 

counterstained with WGA TR: 100 µl WGA TR (5µg/ml) was added to each well and 
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incubated at 37°C and 5% CO2 for 10 min followed by washing with PBS. The nuclei 

were counterstained with DAPI: 100 µl of DAPI was added to each well and incubated 

at 37°C and 5% CO2 for 10 min. Followed by washing with PBS. The cells were 

examined using a Zeiss 510 Meta laser scanning microscope mounted on a Axiovert 

200 M BP computer-controlled inverted microscope. Cells were imaged by excitation at 

a wavelength of 595 nm (red channel for WGA TR), and 358 nm (blue channel for 

DAPI), and 488 nm (green channel for FITC-BSA), using a Plan Neofluar 63×/0.30 

numerical aperture (NA) objective lens. Image analysis was carried out using the Zeiss 

LSM software. 

2.2.17. Statistical analysis 

Minitab 16 Statistical Software
®

 (Minitab Inc., PA, USA) was employed for statistical 

analysis and graph plotting. The data obtained were analysed statistically by one-way 

analysis of variance (ANOVA) with the Tukey’s comparison using Minitab 16 

Statistical Software
®
 (Minitab Inc., PA, USA). Statistically significant differences were 

assumed when p < 0.05. All values are expressed as their mean ± standard deviation. 
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3.1. Introduction 

Pulmonary vaccination would stimulate both mucosal and systemic immune responses. 

The substantial networks of DCs lining the epithelium submucosa of the respiratory 

tract and on the alveolar surface play a significant role in inducing both systemic and 

local immune responses. Furthermore, s-IgA antibodies in the respiratory tract have 

important roles in the avoidance and control of infection at the respiratory mucosa by 

preventing the adherence of the pathogen and neutralizing antigen on the respiratory 

mucosal surfaces (52). 

Immune response can be improved by using polymeric NPs containing antigen because 

of NPs adjuvant-like effect where the particulate pattern can be more antigenic than the 

soluble antigen form (40). Also, it could enhance uptake by the epithelial M cells on 

mucosal surface by delivering the antigen to the lower respiratory tract area and 

prevents the rapid clearance by alveolar macrophages. M cells share antigenic 

information with DCs found in lymphoid tissue and induces secretory local IgA 

production. Then, the NPs may be transported to secondary lymph-nodes where they 

enhance induction of the systemic immune response (43). 

However, to gain a reliable and strong immune response upon application of particulate 

vaccines via the pulmonary route, it is essential to optimize the size of the delivery 

system (73). Studies reported that particles of ∼500 nm size are more suitable for 

uptake than particles of 1-5μmsize (124). However, an inverse relationship had been 

reported between particle size and the efficiency of uptake by DCs (87). 

In this study PGA-co-PDL, biodegradable polyester, was used to prepare NPs. The most 

common method for the encapsulation of proteins in polymer NPs is the water/oil/water 

(w/o/w) double-emulsion solvent evaporation method (79) and it is best suited to 

encapsulate water soluble drugs such as peptides, proteins, and vaccines (80).  
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NPs do not deposit efficiently in the lungs leading to the exhalation of the majority of 

the inhaled dose (91). NPs can be formulated into dry powder microparticle carriers to 

produce NCMPs as DPIs via spray-drying (92). This system is designed to disperse in 

the lung lining fluid, releasing the NPs from the inert carrier (93).  

Biocompatible excipients (carbohydrates, amino acids, and lipids) are typically added to 

the formulation feed to afford dry powders with bulk (i.e. from microparticle carrier) 

and to promote the production of a desirable aerodynamic particle size and allow a rapid 

release of the NPs in the lung fluid lining upon inhalation. In addition, the excipients are 

added to the formulation to afford some level of protection to both the NPs and 

encapsulated drug during spray drying, especially against shear forces and increased 

temperatures (38).  

L-leucine is one of the amino acid excipients that is commonly used in the 

pharmaceutical industry because of its potential to improve dispersibility and 

bioavailability of aerosols (125). Pure spray dried L-leucine shows hollow particles with 

low density, proving its ability to enhance aerosolisation (125).  

To design a new dosage form in the pharmaceutical field, it is very important to identify 

the formulation (e.g. concentration of drug, polymer, surfactant, etc.) and preparation 

(e.g. homogenisation speed, time, etc.) parameters because these variables will affect 

the properties of the final dosage form. The use of design of experiment (DOE) is the 

most common method of determining the influence of different parameters on the 

characteristics of the dosage form being studied and to optimise the parameters to 

achieve the desired properties (126). Due to parameter interactions and the large number 

of factors implicated, optimizing these parameters by conventional DOE (e.g. factorial 

designs) would be considered highly exhausting and uneconomical (127). The efficient 

analyses of complex formulations process using statistical experimental design have 

been proposed by “Taguchi Orthogonal Array Design” (127). This design is a 
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combination of mathematical and statistical approaches included into an empirical study 

developed by Dr. Genichi Taguchi (128). It aims to investigate how different factors 

affect the mean and variance of a process performance property that defines how well 

the process is functioning. A number of implemented trials are proposed to find out the 

optimum combination of parameters that have the highest effect on the product and with 

the least variation from the design target (129).  

The Taguchi design is a useful inexpensive method for the study of a large number of 

parameters and interactions within an acceptable number of trials. Also, it has the ability 

to optimise many extract qualitative parameters simultaneously and extraction much 

quantitative data with only a few experiments (129). Taguchi has conceptualised a new 

method to carry out the design of experiments using a special set of arrays called 

orthogonal arrays. The orthogonal array is a matrix of numbers arranged in columns and 

rows (128). These standard arrays specify a way to carry out the minimal number of 

experiments to give full information on all factors that affect the performance over a 

specific region of interest (levels). Rather than having to try all possible combination 

e.g. factorial design, Taguchi design test pairs of combinations (126). For example, a 

single replicate of 4 parameters and 3 level experiments would require 81 runs for a full 

factorial analysis. On the other hand, Taguchi method will require 9 runs only. Taguchi 

approach has previously been used in the improvement of dosage forms (126; 127). 

The Taguchi method employs a signal to noise (S/N) ratio to quantify variations. These 

ratios are meant to be used as measures of the effect of noise (uncontrollable) factors on 

performance characteristics. S/N ratios take into account both amount of variability in 

response data and closeness of average response to the target (130). In Taguchi design, 

𝑆/𝑁 ratio can be defined as the measure of the deviation of the response from the 

desiredvalue.So, “signal” presents themeanvalueand“noise”presents the standard 

deviation. It means that lower variability in the process is ensured through maximizing 
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the S/N ratio (131). The variability of a characteristic is due to the noise factor such as 

environmental factors.  Thus, optimizing process parameters by the Taguchi design 

leads to bringing the average quality near to the target value, and also to simultaneously 

decrease the variation in quality (132). The experimental condition having the 

maximum S/N ratio is considered the optimum condition, as the variability of 

characteristics is in inverse proportion to the S/N ratio (133).  

There are several S/N ratios available depending upon the type of characteristics: 

smaller the better (equation 3-1), e.g. particle size; larger the better (equation 3-2), e.g. 

drug loading. In some cases, a nominal S/N ratio is the best (equation 3-3) (130).  

Smaller is better: 

𝑺

𝑵
= −𝟏𝟎 𝐥𝐨𝐠 ∑

𝒚𝒊
𝟐

𝒏

𝒏
𝒌=𝟏                    Equation 3-1 

Larger is better: 

𝑺

𝑵
= −𝟏𝟎 𝐥𝐨𝐠 ∑

𝟏

𝒚𝒊
𝟐  𝒏

𝒏
𝒌=𝟏                 Equation 3-2 

Nominal S/N ratio is the best: 

𝑺

𝑵
= −𝟏𝟎 𝐥𝐨𝐠 ∑

𝝁

𝝈𝟐  

𝒏
𝒌=𝟏                  Equation 3-3 

Where 

 𝝁 =
𝟏

𝒏
 ∑ 𝒚𝒊

𝒏
𝒌=𝟏        Equation 3-4 and 𝝈𝟐 = (

𝟏

𝒏−𝟏
) ∑ (𝒚𝒊 − 𝝁)𝟐𝒏

𝒌=𝟏         Equation 3-5 

And 𝑦𝑖 donatesresponsevariablesand“𝑛”representsthenumberofexperiments (131). 

The Taguchi design method was applied in this study to examine the effects of different 

formulation and process parameters on the size and drug loading of NPs and yield % 

and morphology of NCMPs.  

Bovine serum albumin (BSA) has been widely used as a model antigen mainly because 

of its well-recognized secondary structure (Figure 3-1) (134; 135; 136; 137). It has a 

molecular weight in the range of 66-69 kDa and is composed of a single long chain of 

about 582 amino acid residues (138). It has been used in this study as a model antigen to 

optimize NPs formulation for DCs uptake. 
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3.2. Aim 

The aim of this study was to formulate PGA-co-PDL NPs encapsulating bovine serum 

albumin (BSA), a model protein, using Taguchi design to optimize formulation 

parameters: particle size and drug loading. The PGA-co-PDL NPs were then 

incorporated into microparticle carriers (L-leucine) via spray drying to produce NCMPs 

carriers suitable for pulmonary delivery via DPIs.  

To obtain the aim of the study a systematic study was designed considering the 

following aspects: 

1. Formulation of NPs using double emulsion solvent evaporation technique. 

2. Evaluation of the influence of formulation parameters on the particle size, 

encapsulation efficiency, and drug loading of BSA using Taguchi design. 

3. Formulation of NCMPs via spray drying technique.  

4. Evaluation of the influence of spray drying parameters on the morphology, and 

yield% of NCMPs using Taguchi design. 

5. Examination of BSA integrity, in vitro aerosolisation performance, in vitro 

release, cells toxicity of optimum NCMPs. 

Figure 3-1: Bovine serum albumin structure includes three α-helical domains 

(I, II, III). Each domain contains two subdomains (A and B) (with permission 

from (137)). 
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3.3. Methods 

3.3.1. Polymer synthesis and characterisation 

The PGA-co-PDL was synthesised and characterised as described in section 2.2.1 and 

section 2.2.2 respectively. 

3.3.2. Nanoparticle preparation 

BSA loaded PGA-co-PDL NPs were prepared by a (w/o/w) double emulsion/solvent 

evaporation method. Various concentrations of aqueous BSA solutions (0.2 – 1 %) 

containing PVA as surfactant (1 – 10 %) were prepared. The protein solution (IAP) was 

emulsified in DCM (OP) containing PGA-co-PDL (50 - 200 mg), by sonication using a 

probe sonicator (VC X 500 Vibra-Cell
TM

, Sonics & Materials, Inc., Newtown, CT, 

USA, using the 13 mm probe) for 5 - 20 seconds over an ice bath. The resulting single 

emulsion was emulsified into 25 ml of a 1 % PVA solution (EAP) using the same probe 

sonicator for 10 - 30 seconds to form a w/o/w double emulsion. The double emulsion 

was stirred magnetically for 2 h at room temperature to evaporate the DCM. The NPs 

were collected by centrifugation (Sigma 3-30k, SIGMA Laborzentrifugen GmbH, 

Germany) at 40,000 xg for 1 h at 4 ⁰C, and washed twice with distilled water.  

3.3.2.1. Experimental design by Taguchi method 

The Taguchi design was applied in this study to evaluate the influence of IAP volume, 

BSA concentration, polymer amount, OP volume,  PVA concentration, sonication time 

of IAP, sonication time of EAP, and sonication amplitude on the NPs particle size, BSA 

encapsulation efficiency %, and loading. The design was composed of 8 variables set at 

2 levels (IAP volume, and OP volume) or 3-levels each (BSA concentration, polymer 

mass, PVA concentration, sonication time of IAP, sonication time of EAP, and 

sonication amplitude), where the mean particle size, BSA encapsulation efficiency % 

and loading were the dependent variables (Table 3-1). The design was constructed using 

L36 orthogonal array as shown in Table 3-2. The optimum conditions were indicated by 
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high signal-to-noise (S/N) ratios. Where the signal factor (S) is the outcome, i.e. particle 

size, BSA encapsulation efficiency %, or loading and noise factors (N) include room 

temperature and humidity and researcher experience etc. 

OptimizationofthesizewascarriedoutusingtheTaguchi’s‘smaller-is-better’criterion 

while optimization of the BSA encapsulation efficiency % and loading was carried out 

using the Taguchi’s ‘higher-is-better’ criterion (128). The different values for the 

variables summarized in Table 3-1 were chosen on the basis of the tested lower and 

upper values for each variable following pre-formulations studies. The Taguchi design 

was constructed and analysed in Minitab 16 Statistical Software
®
 (Minitab Inc., PA, 

USA). 

 

Table 3-1: Double emulsion solvent evaporation processing variables, units, and 

levels for BSA-loaded PGA-co-PDL NPs. 

Code Variables Unit 
Levels 

1 2 3 

A IAP volume ml 0.25 0.5 - 

B OP volume ml 1 2 - 

C BSA concentration % (w/v) 0.2 0.5 1 

D Polymer mass  mg 50 100 200 

E PVA concentration % (w/v) 1 5 10 

F Sonication time IAP sec 5 10 15 

G Sonication time EAP sec 10 15 30 

H Sonication Amplitude % 30 45 65 
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Table 3-2: Double emulsion solvent evaporation processing variables for BSA-

loaded PGA-co-PDL NPs using Taguchi design method (L36 Orthogonal Array). 

Run A B C D E F G H 

1 1 1 1 1 1 1 1 1 

2 1 1 2 2 2 2 2 2 

3 1 1 3 3 3 3 3 3 

4 1 1 1 1 1 1 2 2 

5 1 1 2 2 2 2 3 3 

6 1 1 3 3 3 3 1 1 

7 1 1 1 1 2 3 1 2 

8 1 1 2 2 3 1 2 3 

9 1 1 3 3 1 2 3 1 

10 1 2 1 1 3 2 1 3 

11 1 2 2 2 1 3 2 1 

12 1 2 3 3 2 1 3 2 

13 1 2 1 2 3 1 3 2 

14 1 2 2 3 1 2 1 3 

15 1 2 3 1 2 3 2 1 

16 1 2 1 2 3 2 1 1 

17 1 2 2 3 1 3 2 2 

18 1 2 3 1 2 1 3 3 

19 2 1 1 2 1 3 3 3 

20 2 1 2 3 2 1 1 1 

21 2 1 3 1 3 2 2 2 

22 2 1 1 2 2 3 3 1 

23 2 1 2 3 3 1 1 2 

24 2 1 3 1 1 2 2 3 

25 2 1 1 3 2 1 2 3 

26 2 1 2 1 3 2 3 1 

27 2 1 3 2 1 3 1 2 

28 2 2 1 3 2 2 2 1 

29 2 2 2 1 3 3 3 2 

30 2 2 3 2 1 1 1 3 

31 2 2 1 3 3 3 2 3 

32 2 2 2 1 1 1 3 1 

33 2 2 3 2 2 2 1 2 

34 2 2 1 3 1 2 3 2 

35 2 2 2 1 2 3 1 3 

36 2 2 3 2 3 1 2 1 

Note: A: IAP volume, B: OP volume, C: BSA concentration, D: polymer mass, E: PVA 

concentration, F: sonication time IAP, G: sonication time EAP, H: sonication amplitude. 
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3.3.3. Nanoparticle characterization 

The NPs were characterised for particle size, PDI, encapsulation efficiency and protein 

loading as described in section 2.2.7.1 and 2.2.7.2 respectively. 

3.3.4. Nanocomposite microparticles preparation by spray drying  

NCMPs were prepared by spray drying selected NPs formulation as described in 

section 2.2.8 

3.3.4.1. Experimental design by Taguchi method 

The Taguchi method was applied to evaluate the influence of the air flow rate, inlet 

drying temperature, aspirator capacity, pump rate, and feed concentration (total amount 

of L-leucine and NPs in the feed suspension) on the NCMPs properties. The design was 

composed of 5 variables each set at 3-levels (Table 3-3), where the morphology and 

percentage yield were the dependent variables. The design was constructed using L27 

orthogonal array design (Table 3-4). The different values for the factors, summarized in 

Table 3-3  were chosen on the basis of the tested lower and upper values for each 

variable following pre-formulations studies. The Taguchi design was constructed in 

Minitab 16 Statistical Software
®
 (Minitab Inc., PA, USA).  

Furthermore, the optimum spray drying condition was carried out without L-leucine and 

with lactose or myo-inositol as alternative excipient to L-leucine. 

Table 3-3: Spray drying processing variables, units, and levels for BSA-loaded 

PGA-co-PDL NCMPs. 

Code Variable Unit 
Level 

1 2 3 

A Air flow L/h 400 535 670 

B Inlet Temperature C 50 75 100 

C Aspirator capacity % 50 75 100 

D Feed rate % 5 10 15 

E Feed concentration mg/ml 12.5 6.25 4.17 
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Table 3-4: Spray drying processing variables for NCMPs using Taguchi design 

method (L27 Orthogonal Array). 

Runs A B C D E 

1 1 1 1 1 1 

2 1 1 1 1 2 

3 1 1 1 1 3 

4 1 2 2 2 1 

5 1 2 2 2 2 

6 1 2 2 2 3 

7 1 3 3 3 1 

8 1 3 3 3 2 

9 1 3 3 3 3 

10 2 1 2 3 1 

11 2 1 2 3 2 

12 2 1 2 3 3 

13 2 2 3 1 1 

14 2 2 3 1 2 

15 2 2 3 1 3 

16 2 3 1 2 1 

17 2 3 1 2 2 

18 2 3 1 2 3 

19 3 1 3 2 1 

20 3 1 3 2 2 

21 3 1 3 2 3 

22 3 2 1 3 1 

23 3 2 1 3 2 

24 3 2 1 3 3 

25 3 3 2 1 1 

26 3 3 2 1 2 

27 3 3 2 1 3 

H 1 3 3 2 1 

Note: A: air flow, B: inlet temperature, C: aspirator %, D: pump rate, E: feed 

concentration. Numeric values 1-27 indicate experimental run number, H indicate 

optimum spray drying condition that produce highest yield %. 
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3.3.5. Characterization of nanocomposite microparticles 

NCMPs were characterised as described in section 2.2.9. 

3.3.6. In vitro Aerosolisation studies 

The in vitro aerosolisation studies were carried out as described in section 2.2.10. 

3.3.7. In vitro release study  

The in vitro release studies were carried out as described in section 2.2.11. 

3.3.8. Investigation of BSA structure  

The released BSA stability of primary and secondary structure were evaluated as 

described in section 2.2.12. 

3.3.9. Cytotoxicity study 

The cytotoxicity of NPs and NCMPs were determined as described in section 2.2.15.1. 

3.4. Results  

3.4.1. Polymer characterization 

PGA-co-PDL (monomer ratio, 1:1:1) was a white powder with an average molecular 

weight of 16.72±0.4 KDa (n=3) as determined by GPC. The GPC chromatographs 

(Figure 3-2) show symmetric molecular weight distribution with small or no low 

molecular weight impurities and, so, low polydispersity. This was expected as the 

polymers were re-precipitated from methanol and any low molecular weight material 

would have been washed. The structure of the polymer (Figure 3-3) was confirmed from 

the integration pattern of peaks obtained from 
1
H-NMR spectra (Figure 3-4) (δH

CDCl3, 300 MHz): 1.34 (s, 22 H, H-g), 1.65 (m, 8 H, H-e,e′,h),2.32(m,6H,H-d,d′,

i), 4.05 (q)-4.18 (m) (6 H, H-a, b, c, f), 5.2 (s, H, H-j). The Tm of the polymer was 

measured by DSC (Figure 3-5) and was detected to be 59.79 ˚Cwhich is similar to 

previous report (66). 
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Figure 3-3: Chemical structure of PGA-co-PDL. 

Figure 3-2:  Gel Permeation Chromatography (GPC) chromatograph of PGA-co-

PDL. 
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Figure 3-5: Differential scanning calorimetry (DSC) thermograms of PGA-co-

PDL. 

 

Figure 3-4: Nuclear magnetic resonance (
1
H-NMR) spectra of PGA-co-PDL. 
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3.4.2. Optimization of the BSA-loaded NPs prepared by the double 

emulsion solvent evaporation method using Taguchi design 

The Taguchi L36 orthogonal array design required 36 runs to be carried out to identify 

the important factors that could affect the particle size and DL of NPs and to produce 

the optimum conditions for each variable to achieve the smallest particle size NPs (SPS 

NPs), and highest drug loading NPs (HDL NPs). In Taguchi design, S/N ratio is the 

determination of the deviation of the response from the target value. In this study, 

“signal” represents the mean value while “noise” represents the standard deviation 

value. The highest the S/N ratio the lowest the variability in the process applied (131). 

Table 3-5 represents the measured values of particle size, DL, and EE % of NPs. The 

measured values were converted into S/N ratio (using Minitab 16 statistical software) 

which was utilized for the analysis of the results. The calculated S/N ratio at different 

levels for each parameter were plotted in Figure 3-6 which favoured a ‘smaller –is-

better’S/N ratio for particle size. Also, the calculated S/N ratio at different levels for 

each parameter were plotted in Figure 3-7 and Figure 3-8 whichfavoureda‘larger-is-

better’S/Nratio for DL and EE %. In order to determine which parameter had a critical 

impact on the particle size, DL, or EE% the range and rank were calculated. The range 

is the difference between the maximum and minimum S/N ratios for the parameter 

while the rank is the rank of each range, where rank 1 is the largest range. The factor 

with largest range and corresponding rank (indicating the relative importance compared 

to other factors) was considered as the critical factor affecting the particle size, DL, or 

EE % of NPs.  

Analysis of results following the Taguchi design indicated particle sizes ranging from 

216.17 to 2168.78 nm were obtained (Table 3-5). Based on the range, rank, and S/N 

response graph (Figure 3-6) for the production of SPS NPs using the Taguchi’s

“smaller-is-better”criterioninMinitab
®
 16 statistical software, the optimal conditions  
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Table 3-5: The experimentally measured values of particle size, polydispersity 

index, EE %, and DL of NPs. Data represent mean ± S.D., n=3. 

Runs 
Particle size 

(nm) 

Polydispersity 

Index 
EE (%) DL (µg/mg) 

1 574.4±120.6 0.395±0.15 36.6±1.6 3.6±0.2 

2 648.5±10.5 0.209±0.1 56.3±3.3 6.9±0.4 

3 1165.9±337.9 0.1805±0.2 57±0.8 7±0.1 

4 498.7±4.6 0.311±0.01 23.9±3.8 2.4±0.4 

5 1032.9±41.9 0.1845±0.3 45.9±4.5 5.7±0.5 

6 1534.7±1484 0.1715±0.2 39.8±28 4.9±3.4 

7 577.8±107.4 0.236±0.1 41.2±6.3 4.1±0.6 

8 550.4±93.9 0.1455±0.2 37.5±7 4.6±0.9 

9 1836.4±864 0.273±0.2 75.3±1.7 9.3±0.2 

10 357.5±102 0.1585±0.03 8.4±5.9 0.8±0.6 

11 349±68.9 0.124±0.1 52.1±7.2 6.4±0.9 

12 325±73.3 0.162±0.03 34.5±8 4.3±0.9 

13 270.8±81 0.1325±0.004 27.4±9.8 1.4±0.5 

14 416.4±100.8 0.083±0.1 62.9±4.6 3.9±0.3 

15 319.7±41.9 0.1415±0.002 11.4±11 5±4 

16 493.1±36.1 0.243±0.06 38.9±3.8 1.9±0.2 

17 443.6±47 0.1355±0.1 69.1±2.6 4.3±0.2 

18 230.7±46.7 0.1005±0.01 32.9±10 15.7±4.8 

19 420.8±75.9 0.081±0.1 50.7±1 5±0.1 

20 1375.8±392.2 0.005±0 57.3±1.2 7.1±0.1 

21 467.3±104.4 0.005±0 21.1±6.6 19.2±5.9 

22 1204.7±450.6 0.342±0.1 56.1±0.36 5.6±0.04 

23 2168.9±1553 0.0035±0.002 42.8±1.5 20.4±0.7 

24 267±10.2 0.0615±0.07 29.5±6.3 26.8±5.8 

25 554.1±88.7 0.111±0.09 56.8±2.9 2.8±0.1 

26 468.2±50 0.005±0 33.2±0.7 15.8±0.3 

27 493.1±104 0.046±0.05 51.4±6.6 24.5±3.1 

28 535.1±3.4 0.175±0.1 53.6±0.4 2.7±0.02 

29 216.2±39.9 0.1045±0.04 32.5±1.9 15.5±0.9 

30 343.4±54.3 0.194±0.03 37.3±2.6 17.7±1.2 

31 729.9±54.6 0.269±0.05 44.8±8.4 2.2±0.4 

32 246.5±32.2 0.103±0.02 39.5±2.6 18.8±1.2 

33 316.7±59.8 0.2125±0.02 38±0.3 18.1±0.1 

34 430.1±207.8 0.233±0.1 62.8±3.5 3.1±0.2 

35 301.5±19.6 0.095±0.12 45.2±4 21.5±1.9 

36 463.5±123.4 0.246±0.03 60.9±4.5 19.2±2.1 

Note: EE%: encapsulation efficiency %, DL: BSA loading. 
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Figure 3-6: Mean signal-to-noise (S/N) graph for particle size response. Letters (A-

H) indicate the experimental parameters and numeric value indicates the 

parameter levels,◊ indicate maximum S/N value, A: IAP volume, B: OP volume, 

C: BSA concentration, D: polymer mass, E: PVA concentration, F: IAP sonication 

time, G: EAP sonication time, H: sonication amplitude. 

 

Figure 3-7: Mean signal-to-noise (S/N) graph for BSA loading response. Letters 

(A-H) indicate the experimental parameters and numeric value indicates the 

parameter levels, ◊ indicatemaximumS/Nvalue,A: IAP volume, B: OP volume, 

C: BSA concentration, D: polymer mass, E: PVA concentration, F: IAP sonication 

time, G: EAP sonication time, H: sonication amplitude. 
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Figure 3-8: Mean signal-to-noise (S/N) graph for EE% response. Letters (A-H) 

indicate the experimental parameters and numeric value indicates the parameter 

levels, ◊ indicate maximum S/N value, A: IAP volume, B: OP volume, C: BSA

concentration, D: polymer mass, E: PVA concentration, F: IAP sonication time, G: 

EAP sonication time, H: sonication amplitude. 

were A2B2C3D1E1F1G2H2. When the suggested optimized run was carried out the 

measured particle size obtained was 203±5.4 nm, which is lower than the minimum 

particle size of 216.2±39.9 nm prepared using run 29. The measured particle size 

obtained for unloaded SPS NPs was 224.4±10 nm. It is also worth to mention that the 

measured BSA loading of SPS NPs was 35.9±2.4 µg/mg using the indirect method. 

Also, when the direct method used to calculate DL, it was 30.02±8.1 µg/mg. 

Regarding BSA loading and EE% the results (Table 3-5) of the present Taguchi design 

showed that DL ranged from 0.8±0.6 to 26.84± 5.8µg/mg and EE % ranged from 8.42 

to 75.31%.  

Based on the range, rank, and S/N response graph (Figure 3-7) for the production of 

HDL NPs using the Taguchi’s “Larger-is-better” criterion in Minitab
®
 16 statistical 

software, the optimal conditions were A2B1C3D1E1F3G3H2. When the suggested 

optimized run was carried out the measured DL obtained was 43.67±2.3 µg/mg, which 
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is higher than the maximum DL of 26.8±5.8 µg/mg prepared using run 24. It is also 

worth to mention that the particle size of HDL NPs was 287±24.4 nm and for unloaded 

HDL NPs was 291.86±8.8 nm. Also, the drug loading measured using the direct method 

was 39.30±11.2 µg/mg.  

The DL value calculated by the indirect method based on the assumption that there was 

no BSA loss during the preparation so this could explain the difference (non-significant, 

p > 0.05, ANOVA/Tukey’s comparison) between the DL calculated by direct and

indirect methods.  

3.4.3. Optimization of the spray drying process 

Spray drying was applied to incorporate the selected NPs formulation into NCMPs 

using L-leucine as a carrier and to enhance powder dispersion.  

The Taguchi L27 orthogonal array design required 27 runs to be carried out to produce 

the optimum condition for each factor to achieve the highest yield % of dry powder. 

Table 3-6 represents the structure of the Taguchi L27 orthogonal array design and the 

corresponding dry powder yield ranged from no yield to 49.78±0.17 %.  

Figure 3-9 presents the mean S/N graph of the yield for each factor level. The factor 

with the largest range and corresponding rank (indicating the relative importance 

compared to other factors) was considered the critical factor affecting that yield. 

Optimum conditions were suggested by high S/N ratios. Therefore, based on the range, 

rank, and S/N response graph for production of highest yield of dry powder using the 

Taguchi’s “larger-is-better” criterion in Minitab 16 statistical software suggested 

combinations A1B3C3D2E1 (run H - Table 3-6) which produced dry powder yield of 

50.96±2.26 %.  

When the optimum condition carried out without the use of L-leucine there was no 

yield. Furthermore, when lactose used the yield was 13 % and when myo-inositol used 

the yield was decreased dramatically to 1 %. 
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Table 3-6: The experimentally measured value of yield % of NCMPs after spray 

drying. Data represent mean ± S.D., n=3. 

Runs Yield (%) 

1 34.1±2.2 

2 30.5±4.5 

3 27.8±0.3 

4 26.5±3.9 

5 37.7±0.7 

6 29.4±7.9 

7 43.1±2.4 

8 41.9±2.1 

9 37±0.95 

10 0.01±0 

11 0.01±0 

12 0. 01±0 

13 49.8±0.2 

14 41.2±0.1 

15 40.8±3.5 

16 38.2±1.2 

17 33.3±0.8 

18 26.6±1.2 

19 48.6±2.5 

20 35.8±2.7 

21 35.7±3.1 

22 0.01±0 

23 0.01±0 

24 0.01±0 

25 38±1.1 

26 21.9±0.9 

27 24±1.5 

H 50.9±2.3 

Note: Numeric values 1-27 indicate experimental run number, H indicate optimum 

spray drying condition that produce highest yield %. 



 

83 
 

 

Figure 3-9: Mean signal-to-noise (S/N) graph for yield % response. Letters (A-E) 

indicate the experimental parameters and numeric value indicates the parameter 

levels, ◊ indicate maximum S/N value, A: airflow, B: inlet temperature, C:

aspirator %, D: feed rate %, E: feed concentration.  

 

The shape and surface texture of NCMPs were investigated using scanning electron 

microscopy (Figure 3-10). Photomicrographs of NCMPs showed irregular and porous 

microparticles. Figure 3-11 showed photomicrograph of run H. 

From 27 spray-drying conditions run 16 and run H were selected for primary 

aerodynamic diameter calculation and in vitro aerosolisation studies. Run H had the 

highest yield while run 16 produced particles more porous in nature. So the selected 

HDL NPs and SPS NPs spray dried using run 16 and run H parameters to produce 

NCMPs. The formulations were given the following codes HDL 16 NCMPs, SPS 16 

NCMPs, HDL H NCMPs, and SPS H NCMPs respectively. 
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Figure 3-10: SEM images of NCMPs prepared by different spray drying conditions 

(numeric values 1-27 indicates run experimental number). The scale bar represents 1 

µm. 
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3.4.4. Powder density and primary aerodynamic diameter 

NCMPs formulations had a geometric particle size between 1.23±0.07- 4.69±0.77 µm 

(Table 3-7) suitable for pulmonary delivery. The tapped densities of all formulations 

were similar (0.091±0.004–0.145±0.002 g cm
-3

; Table 3-7) and were used together with 

the geometric particle size to calculate the theoretical aerodynamic diameter (dae). As 

shown in Table 3-7, the dae for all formulations was between 0.399±0.08– 1.71±0.30 

µm.  

Table 3-7: The geometric particle size, tapped density and theoretical aerodynamic 

diameter (dae) of spray-dried NCMPs. Data represent mean ± S.D., n=3. 

NCMPs 

Formulation 

Geometric 

particle size 

(µm) 

Tapped density 

(g/cm
3
) 

dae 

(µm) 

SPS 16 NCMPs 1.23±0.07 0.091±0.004 0.399±0.08 

HDL 16 NCMPs 2.62±0.11 0.093±0.004 0.811±0.01 

SPS H NCMPs 4.69±0.77 0.132±0.007 1.71±0.30 

HDL H NCMPs 3.89±0.37 0.145±0.002 1.45±0.14 

SPS 16 NCMPs, HDL 16 NCMPs: SPS NPs and HDL NPs spray dried using run 16. 

SPS H NCMPs, HDL H NCMPs: SPS NPs and HDL NPs spray dried using run H. 

 

B A 

Figure 3-11: SEM images of NCMPs spray dried with run H (HDL H NCMPs) (A) 

and L-leucine alone spray dried with run H (B). 
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3.4.5. In vitro aerosolisation studies for SPS and HDL nanocomposite 

microparticles 

The percent mass of BSA recovered from the NGI was approximately 76 %, which is 

within pharmacopeia limit (75 – 125 %) of the average delivered dose (139). BSA 

deposition data obtained from NCMPs (Table 3-8) indicated there was no significant 

difference in FPD, FPF % and MMAD between SPS 16 NCMPs and SPS H NCMPs 

and between HDL 16 NCMPs and HDL H NCMPs (p˃0.05, ANOVA/Tukey’s 

comparison). But run H produced the highest yield% of powder (50%). So run H was 

applied as spray drying condition for the rest of this study. Formulations SPS H NCMPs 

and HDL H NCMPs were further investigated.  

Table 3-8: The Fine particle dose (FPD), fine particle fraction (FPF), and mass 

median aerodynamic diameter (MMAD) of NCMPs. Data represent mean ± S.D, 

n=3. 

Code FPD (µg) FPF (%) MMAD (µm) Yield % 

SPS 16 NCMPs 49.12±12.5 70.97±4.7 1.5±0.40 36.0±2.7 

HDL 16 NCMPs 59.26±6.00 79.60±7.0 1.6±0.20 38.2±1.2 

SPS H NCMPs 38.04±2.80 64.32±1.6 1.49±0.13 46.4±7.9 

HDL H NCMPs 45.00±7.40 78.57±0.1 1.71±0.10 50.9±2.3  

SPS 16 NCMPs, HDL 16 NCMPs: SPS NPs and HDL NPs spray dried using run 16. 

SPS H NCMPs, HDL H NCMPs: SPS NPs and HDL NPs spray dried using run H. 

3.4.6. In Vitro Release Studies 

In vitro release studies comparing SPS H NCMPs and HDL H NCMPs formulations 

were performed (Figure 3-12). Both formulations showed biphasic release profiles with 

a first initial burst release followed by a second continuous sustained release phase over 

48h. A significant difference (p<0.05, ANOVA/Tukey’s) was noted in the release 

profile (24 – 48 h) of HDL H NCMPs and SPS H NCMPs, with HDL H NCMPs 

achieving 38.77±3% release after 48 h compared to SPS H NCMPs with (20.84±4.2%).  
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In this study, BSA was released from SPS H NCMPs and HDL H NCMPs formulations 

according to the Higuchi diffusion model (r
2
 value of 0.981 and 0.955, respectively), 

and the release rate constant were k1 (h
-½

) 2.7021 and 5.3653, respectively (Table 3-9). 

Therefore, the sustained release of BSA from spray-dried NCMPs appears to be a 

diffusion-limited process. Accordingly HDL H NCMPs was selected for further 

investigation in this study. 

 

 

Table 3-9: Release parameters of BSA from NCMPs. 

Formulation Zero Order First order Higuchi 

r
2
 ko (h

-1
) r

2
 k1 (h

-1
) r

2
 k1 (h

-½
) 

HDL H NCMPs 0.842 0.72 0.886 -0.004 0.955 5.3653 

SPS H NCMPs 0.881 0.366 0.899 -0.0018 0.981 2.7021 

SPS H NCMPs, HDL H NCMPs: SPS NPs and HDL NPs spray dried using run H. 
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Figure 3-12: Cumulative in-vitro release of BSA from NCMPs in PBS buffer at 

37°C. Data represent mean ± S.D., n=3. 
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3.4.7. Moisture content 

The moisture content in HDL NCMPs was reported using TGA and the thermogram 

(Figure 3-13) demonstrates that the dry powder formulation had a residual moisture 

content of 0.2±0.03 % w/w. 

 

3.4.8. Investigation of BSA structure 

The primary structure of BSA released from NPs or NCMPs was analysed by SDS-

PAGE followed by Coomassie brilliant blue staining. According to Figure 3-14, BSA 

standard and the molecular weight marker shown in Lanes 1 and 5, respectively, 

revealed a clear band at about 66 KDa. The BSA released from HDL NPs lanes 2 and 

from HDL H NCMPs lanes 3, and 4, respectively, also showed similar clear banding 

patterns to the BSA standard (Figure 3-14). The single lines in the gels provided 

Figure 3-13: Thermogram of NCMPs reported using thermal gravimetric 

analysis. 
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evidence that the BSA released did not suffer a significant covalent aggregation or 

fragmentation during the preparation methods used. 

 

 

 

 

 

 

 

 

 

 

 

 

The secondary structure of BSA was analysed using CD spectroscopy. Figure 3-15 

shows CD spectra of the secondary structure of standard BSA and BSA released. The 

CD spectra present minima at 221 - 222 and 209 – 210 nm and a maximum at 195 nm 

for both samples, which is characteristic of an α-helical structure. In support of this data, 

structural analysis showed that BSA was predominantly helical displaying 51.5% 

helicity (Table 3-10), which is in good agreement with previous reports (140). 

Structural analysis of BSA released displayed double minima at 210 and 222 nm and a 

further spectra analysis showedareducedlevelofα-helical conformation (circa 48.5% 

helical) (Table 3-10). Furthermore, a comparison of BSA released with standard BSA, 

showed that the α-helical content decreased by 3%, the β-sheet content increased by 

3.5%,theturnscontentdecreasedby2.5%,andtherandomcoils’contentincreasedby

2%, respectively. 

 

 

   Lane    1       2      3       4                                      5 MW 

KDa 

205 

129 

116 
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20 
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7.1 

 Figure 3-14: SDS-PAGE behaviour of BSA released for the assessment of BSA stability. 

Lanes represent, BSA standard (1), BSA released from HDL NPs (2), BSA released 

from HDL H NCMPs (3, 4), and molecular weight (MW) standard markers, BSA (MW 

66,000), (5). Difference in band intensity was due to different loading. 
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Table 3-10: The percentage of secondary structure conformation for BSA released 

from the selected formulation and BSA standard (means±SD, n=3). 

 

 

 

Sample Helix Strands Turns Unordered 

BSA standard 51.5 ± 0.007 21.50 ± 0.007 9.0 ± 0 17.50 ± 0.007 

BSA released 48.50 ± 0.007 25.0 ± 0 6.50 ± 0.007 19.5 ± 0.007 

Figure 3-15: The CD spectra of BSA released from HDL NPs (grey) and BSA 

standard (black). 
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3.4.9. Cytotoxicity study 

The NPs and NCMPs appear to be well tolerated by the A549 cell line, with a cell 

viability of 77.7±19.6% for NPs and 79±4.7% for NCMPs (Figure 3-16) at 2.5 mg/ml 

concentration after 24 h exposure. There was no significant difference between cell 

viability of cells treated with NPs and cells treated with NCMPs (p > 0.05, ANOVA, 

Tukey’scomparison).Thecellviabilitystudyindicatesa good toxicity profile.  

 

 

 

 

 

 

 

 

 

 

 

3.5. Discussion 

3.5.1. Preparation and characterization of NPs 

The BSA loaded PGA-co-PDL NPs were prepared by a modified (w/o/w) double 

emulsion/solvent evaporation method (141). The aim of the Taguchi design was to 

determine the formulation parameters that have the greatest impact on the particles size, 

BSA encapsulation and loading within NPs and to optimise NPs formulation in term of 

particle size and BSA loading.  

Also, Taguchi design uses orthogonal array saved time and decreased cost of 

experiments while reproducibility and consistency were maintained (142). 
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Figure 3-16: A549 cell viability measured by MTT assay after 24 h exposure to NPs 

and NCMPs. Data represent mean ± S.D., n=3. 
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3.5.1.1. Effects of the double emulsion solvent evaporation method parameters 

on the size of the nanoparticles 

Analysis of results following the Taguchi design indicated that the particle size of NPs 

was influenced by different parameters in the following order: polymer mass > OP 

volume > sonication amplitude>surfactant concentration> EAP sonication time and IAP 

sonication time > IAP volume > BSA concentration (Figure 3-6). 

It can be seen that the polymer mass followed by the OP volume had the greatest 

influence on the particle size of NPs (i.e. rank 1 and 2, Figure 3-6). It could be noticed 

from Table 3-5, that four out of the thirty-six experimental runs (i.e. runs 3, 6, 9, and 

23) had a particle size range of 1165.9 to 2168.9 nm These four runs shared a common 

parameters, which was 200mg polymer mass and 1 ml OP in the preparations. On the 

other hand, it could be seen from Table 3-5 that runs 10, 15, 18, 29, 32, and 35 had 

much smaller particle size ranging from 216.2 to 357.5 nm. These runs shared a 

common parameters, which was 50mg polymer mass and 2 ml OP in the preparations. 

In general, an increase in the mass of substances used will increase the particle size, and 

this was illustrated by the observation that the mass of PGA-co-PDL is the primary 

parameter responsible for the changes in particle size. This size increase was also 

observed with PLGA protein-loaded NPs or/and microparticles, when using a double 

emulsion solvent evaporation method (143). This effect of the polymer mass on the 

particle size can be attributed to the increased viscosity of the OP leading to a less 

efficient stirring of the medium and to increased NPs coalescence (144).  

The third factor affecting particle size was sonication amplitude (i.e. rank=3, 

Figure 3-6) while EAP sonication time and IAP sonication time occupied the fifth and 

sixth rank, respectively (Figure 3-6). The rate of size reduction decreased considerably 

when sonication was carried out beyond the duration of 5 s for IAP or 15 s for EAP or 

above an amplitude of 45 %. For example, it could be noticed from Table 3-2 that runs 
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10 and 29 shared the important parameters: the polymer mass 50 mg, OP 2 ml and PVA 

concentration 10 % but differ in amplitude (65 % and 45 %, respectively) and duration 

of sonication for IAP (10 sec and 15 sec, respectively) and EAP (10 sec and 30 sec, 

respectively). These difference led to change in particle size measured (run 10: 

375.5±102 nm and run 29: 216.2±39.9). Increasing amplitude lead to more fluid 

cavitation, this inhibited the efficiency of energy transmission and decreased the 

ultrasonic effect (145). 

PVA concentration was directly proportional to size with 1< 5< 10% PVA (rank=4, 

Figure 3-6). For example, it could be noticed from Table 3-2 that runs 4 and 7 shared 

the important parameters  (i.e. polymer mass 50 mg , OP 1 ml and sonication amplitude 

45 %) but differ in PVA concentration (run 4: 1 % and run 7: 5% ). This increase in 

PVA concentration led to increase in particle size (run 4:498.7±4.6 nm and run 7: 

577.8±107.4 nm). This was associated with an increase in viscosity with an increase in 

PVA concentration from 1 to 5 or 10% of the IAP. This resulted in a reduced net shear 

stress, decreasing the diffusion speed and consequently increasing particle size. 

Moreover, further addition of PVA lead to an increase in NPs size because of the 

accumulation of excess molecules at the particle surface leading to bridging between the 

primary particles (146).  

IAP volume and BSA concentration had minimum effect on the particle size of NPs 

(rank=7 and 8, respectively Figure 3-6) which have also been previously reported in 

literature (143). For example, it could be noticed from Table 3-2 that runs 16 and 36 

shared the first 4 important parameters (i.e. polymer mass 100 mg, OP 2 ml, sonication 

amplitude 30 % and PA concentration 10%) but differ in BSA concentration and IAP 

volume (run 16: 0.2 % and 0.25 ml and run 36: 1 % and 0.5 ml, respectively). This 

change in BSA concentration and IAP volume led minimal change in particle size (run 

16: 493.7±36.1 nm and run 36: 463.8±123.4 nm). 
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3.5.1.2. Effects of the double emulsion solvent evaporation method parameters 

on the loading of BSA 

The loading capacity of NPs is a critical aspect as the higher the loading, the higher the 

bioavailability of drug per particle absorbed (143). A successful drug delivery system 

should have a high loading capacity in order to decrease the amount of drug and 

excipients used for manufacturing the delivery system. However, with proteins it is 

generally not necessary to achieve very high drug loading, because most therapeutic 

proteins are active at low doses (143). BSA loading expresses the ratio of the weight of 

BSA encapsulated to the weight of NPs. 

The influence of different parameters on the DL of NPs had the following order: BSA 

concentration>IAP volume > polymer mass > PVA concentration > OP volume > EAP 

sonication time and IAP sonication time > sonication amplitude (Figure 3-7).  

BSA concentration had the greatest influence on the DL (rank=1, Figure 3-7). The DL 

increased profoundly as the BSA concentration increased from 0.2 to 1%. This was 

expected from predictions based on equation 2-7 in which DL was positively 

proportional to the amount of BSA and also as reported in literature (143). For example, 

run 7 and run 18 shared three dominant factors affecting DL (i.e. rank 2, 3, and 4, 

Figure 3-7) which were IAP volume, polymer mass, and PVA concentration and differ 

in the BSA concentration (i.e. rank 1, Figure 3-7). The DL obtained when run 7 carried 

out was 4.1±0.6 µg/mg while run 18 produced NPs with DL 15.7±4.8 µg/mg. The 

difference in DL could be attributed mainly to the increased BSA concentration from 

0.2 (run 7) to 1% (run 18). 

IAP volume was the second factor affecting DL (i.e. rank 2, Figure 3-7), such that, the 

larger volume of the IAP the higher the BSA loading. This effect has been reported 

(141; 143; 147) and is thought to be due to a decrease in the concentration gradient 

between IAP and EAP. For example, run 13 and run 19 although they have an equal 
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BSA concentration (0.2 %) and polymer mass (100 mg) but differ in IAP volume (0.25 

ml and 0.5 ml, respectively). The DL obtained with run 13 was 1.4±0.5 µg/mg and with 

run 19 was 5±0.1 µg/mg. 

The third factor affecting DL was the polymer mass (rank=3, Figure 3-7). DL decreased 

substantially with increasing polymer mass from 50 to 100 to 200 mg, as predicted 

based on equation 2-7, in which DL is inversely proportional to the polymer mass (147). 

For example, run 22 and run 25 shared the predominant factors affecting DL (i.e. rank 

1, and 2, Figure 3-7) which were BSA concentration and IAP volume and also have the 

equal PVA concentration and OP volume and differ in the polymer mass (rank= 3, 

Figure 3-7). The DL obtained with run 22 (polymer mass 100 mg) was 5.6±0.04 µg/mg 

and with run 25 (polymer mass 200 mg) was 2.8±0.1 µg/mg. 

The factors that had the least effect on DL were PVA concentration, OP volume, 

sonication time of the EAP, sonication amplitude and sonication time of the IAP (i.e. 

rank= 4, 5, 6, 7, and 8, Figure 3-7). 

Among the PVA concentrations used, 1% PVA was found to result in a considerably 

high BSA loading with no added benefit of any further increase in PVA concentration 

(5, and 10 %). For example, run 19 and run 22 shared the predominant factors affecting 

DL (i.e. rank 1, 2, and 3, Figure 3-7) which were BSA concentration, IAP volume and 

polymer mass and differ in the PVA concentration (1 and 5 %, respectively). The DL 

obtained were similar with run 19 was 5±0.1 µg/mg and with run 22 was 5.6±0.04 

µg/mg. Similar observation was reported previously (148). 

OP volume has an enhancing effect on DL of BSA (rank=5, Figure 3-7). The results 

showed that decreasing the OP volume increased DL. This could be explained by that 

increasing the viscosity of the OP lead to a further stabilization of the primary emulsion 

and lowering the diffusion of BSA through the OP (141). 
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Moreover, increasing the sonication time of IAP and EAP or increasing the sonication 

amplitude from 30 to 45 to 65% had almost no beneficial effect on the BSA loading. 

This has been reported previously and has been associated with BSA precipitation 

within the sonication probe due to high pressure and increased fluid cavitations during 

sonication (136; 149). For example, run 1 and run 4 shared the predominant factors 

affecting DL (i.e. rank 1, 2, 3, 4, and 5, Figure 3-7) which were BSA concentration, IAP 

volume, polymer mass, PVA concentration, and OP volume. The DL obtained with run 

1 was 3.6±0.2 µg/mg and with run 4 was 2.4±0.4 µg/mg. 

3.5.1.3. Effects of the double emulsion solvent evaporation method parameters 

on the encapsulation efficiency % of BSA 

The EE % was studied because BSA is a hydrophilic compound which can easily 

diffuse into an EAP during the double emulsion solvent evaporation method (150). 

The effect of different parameters on the EE% had the following order: polymer mass > 

PVA concentration > BSA concentration > IAP volume > OP volume > EAP sonication 

time and IAP sonication time > sonication amplitude (Figure 3-8). It is obvious from the 

ranking that the first four important factors affecting EE% and DL of BSA are the same 

but with a different order. 

The polymer mass had the greatest influence on EE % of BSA. For example, run 11 and 

run 17 shared the predominant factors affecting EE % (i.e. rank 2, 3, 4 and 5, 

Figure 3-8) which were PVA concentration, BSA concentration, IAP volume, and OP 

volume and differ in the polymer mass (100 and 200 mg, respectively). The EE% 

obtained with run 11 was 52.1±7.2% and with run 17 was 69.1±2.6%. This could be 

correlated with the increased mass of the polymer resulting in a further stabilization of 

the primary emulsion and limiting the diffusion of BSA through and out of the OP due 

to higher viscosity of the OP (141; 151).  
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The second important factor affecting EE % of BSA was PVA concentration (i.e. 

rank=2, Figure 3-8). Among the PVA concentrations used, 1% PVA was found to result 

in a considerably high EE% of BSA. For example, runs 28, 31, and 34 shared the 

predominant factors affecting EE % (i.e. rank 1, 3, 4 and 5, Figure 3-8) which were 

polymer mass, BSA concentration, IAP volume, and OP volume and differ in the PVA 

concentration (5, 10 and 1 %, respectively). The EE% obtained were 53.6±0.4, 44.8±8.4 

and 62.8±3.5 %, respectively. One possible explanation is that 1 % PVA concentration 

provides sufficient covering of the organic/aqueous interface so as to reduce possible 

leaching of the BSA. Consequently, any further increase in PVA concentration (5 and 

10 %) resulted in more BSA molecules portioning into the aqueous phase during the 

emulsification procedure (129; 152). 

BSA concentration was the third factor that affected EE % (i.e. rank= 3, Figure 3-8). 

The EE % of BSA increased when BSA concentration increased from 0.2 to 0.5% but 

interestingly it decreased as the BSA concentration increased further to 1%. For 

example, runs 19 and 27 shared the predominant factors affecting EE % (i.e. rank 1, 2, 4 

and 5, Figure 3-8) which were polymer mass, PVA concentration, IAP volume, and OP 

volume and differ in the BSA concentration (0.2 and 1 %, respectively). The EE% 

obtained were 50.7±1 and 51.4±6.6 %, respectively. In fact, an increase in BSA 

concentration to high levels (1 %) is not always beneficial; this trend has been explained 

by the mass of polymer used being insufficient to completely encapsulate the BSA 

(143). Furthermore, higher concentration of BSA provide a higher BSA concentration in 

IAP droplets and thus increase the concentration gradient between the IAP droplets and 

the EAP and so increases the amount of BSA transported into the EAP (153; 154).  

IAP volume was the fourth factor affecting EE % (i.e. rank=4, Figure 3-8), such that, 

the larger volume of the IAP the higher the BSA EE %. This effect has been reported 

previously (141; 143; 147) and is similar to those observed for DL. For example, run 13 
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and run 19 although they have an equal BSA concentration (0.2 %) and polymer mass 

(100 mg) but differ in IAP volume (0.25 ml and 0.5 ml, respectively). The EE% 

obtained with run 13 was 27.4±9.8 % and with run 19 was 50.7±1 %. 

In contrast reducing OP volume has positive effect on EE % of BSA (rank=5, 

Figure 3-8). The results showed that reducing the OP volume increased EE %. This 

could be due to the higher viscosity of the OP leading to a further stabilization of the 

primary emulsion and minimizing the diffusion of BSA through the OP (141). For 

example, run 25 and run 28 shared the predominant factors affecting EE % (i.e. rank 1, 

2, 3 and 4, Figure 3-8) which were polymer mass, PVA concentration, BSA 

concentration, and IAP volume and differ in the OP volume (1 and 2 ml, respectively). 

The EE% obtained were 56.8±2.9 and 53.6±0.4 %, respectively. 

The sonication time of the IAP and EAP exerted similar effects on EE % (i.e. rank= 7 

and 6, respectively, Figure 3-8). The results indicated that increasing the sonication time 

of IAP and EAP resulted in higher EE % (155). Walter et al. reported that when 

preparing PLGA microparticles the reduction in the sonication time of IAP from 20 to 

10 s lead to decrease in EE% of DNA which may be due to the decrease in dispersion 

efficiency of the W/O emulsion (155). 

Moreover, increasing the sonication amplitude from 30 to 45 to 65% had almost no 

beneficial effect on the BSA EE % (rank= 8, Figure 3-8). This has been reported 

previously and has been associated with BSA precipitation within the sonication probe 

due to high pressure and increased fluid cavitations during sonication (136; 149). 

For example, run 14 and run 17 shared the predominant factors affecting EE % (i.e. rank 

1, 2, 3, 4 and 5, Figure 3-8) which were polymer mass, PVA concentration, BSA 

concentration, IAP volume and OP volume with different sonication amplitude and 

time. The EE% obtained were 62.9±4.6 and 69.1±2.6 %, respectively. 
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3.5.1.4. Optimized Conditions for BSA-loaded PGA-co-PDL nanoparticles 

prepared by double emulsion solvent evaporation method 

A precise adjustment of the various formulation and processing parameters is important 

to obtain NPs of a desired size and BSA loading. Inthisstudy,aparticlesizeof≤500

nm was desired to facilitate uptake of NPs by DCs (43; 98; 156) and at least 30 µg/mg 

proteins loading to be suitable for dosage purpose when the protein of interest, PspA, is 

used (30; 35; 157). 

Optimum conditions were suggested by high S/N ratios. The greater the S/N ratio, the 

smaller is the variance of target (particle size and BSA loading) around the desired 

value. When the suggested optimized run was carried out the measured particle size 

obtained 203±5.4 nm was considered suitable for DCs uptake (158; 124; 159). 

Concerning the DL, the suggested optimized run produced NPs (HDL NPs) with DL 

43.67±2.3 µg/mg which is considered suitable for vaccination (7; 26; 160).  

When the DL was determined using the direct method for both SPS and HDL NP there 

was no significant difference although the DL value decreased in comparison with 

indirect method. 

3.5.2. Optimization of the spray drying process 

Spray-drying was applied to incorporate the selected HDL NPs into NCMPs using L-

leucine as a carrier and to enhance powder dispersion.  

Most of the runs produced low yields (Table 3-6) due to the difficulties in dry powder 

collection associated with condensation inside the drying chamber and collecting vessel 

and the sticking tendency of dry powder to the walls of the drying chamber and 

collecting vessel so cannot be collected efficiently (161). Utilizing the Taguchi design 

revealed that the feed rate, aspirator capacity, air flow, and inlet temperature had the 

greatest effects on the yield of dry powder while the change in the concentration of total 
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solid in the spray dried suspension showed no improvement in the yield of dry powder 

(Figure 3-9).  

The most important factor was feed rate with a negative effect on powder yield % (rank 

= 1, Figure 3-9). At higher feed rates of 15%, the atomizing air may not be able to break 

the liquid flow. Consequently, insufficient atomization and drying may cause deposition 

of a large amount of NCMPs on the walls of the drying chamber and the cyclone 

separator (161). Similar observation was reported by Motlekar et. al. (161). They found 

that the high feed rate (25 %) of the spray suspension lead to almost no yield of dry 

powder (161). 

The second important factor was aspirator capacity (i.e. rank=2, Figure 3-9). A high 

aspirator flow rate created greater centrifugal force leading to an increase in the 

collection efficiency (162). Airflow was the third factor affecting dry powder yield (i.e. 

rank=3, Figure 3-9). Higher spray flow produced smaller droplet so collected less 

efficiently by the centrifugal force (162). 

Shi and Hickey optimised spray drying condition to prepare PLGA microparticles 

suitable for inhalation. They found that the airflow and aspirator capacity had 

significant effect on the yield of dry powder. Where the airflow had negative effect, 

showing that powder yield decreased with the increase of the airflow while the aspirator 

capacity had positive effect, showing that powder yield increased with the increase of 

the aspirator capacity (162).  

The inlet temperature of drying air ranged from 50 to 100 ºC typically resulting in the 

spray dryer outlet temperature of approximately 22 to 46 ºC, respectively. The inlet 

temperature of drying air had considerable effects on the yield of dry powder (rank=4, 

Figure 3-9). It was noticed that as inlet temperature increased from 50 to 100 ºC this 

resulted in an increased powder yield. It has been reported that high inlet temperature 

can reduce the drying time and inhibit particle aggregation (163). Furthermore, a higher 
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inlet temperature promotes a decrease of residual moisture by enhancing water 

evaporation resulting in less particles stick in the drying chamber (164).  

Also, it was observed that the change in the concentration of total solid in the spray 

dried suspension showed no improvement in the yield of dry powder. This observation 

was in contrast to the results reported by Jensen et al. were they found that as the 

concentration of solid in the suspension increased the yield of dry powder increased 

(92). 

It could be noticed from Table 3-6 that runs 10, 11, 12, 22, 23, and 24 had no yield. 

They shared the predominant factor (i.e. rank=1, Figure 3-9) affecting yield which is 

feed rate although they differ in other factors which are aspirator capacity, air flow and 

inlet temperature (Table 3-4). The feed rate was 15 % at this high rate the atomizing air 

may not be able to break the flow of the suspension also this high feed rate accompanied 

by lower level of aspirator capacity (50 and 75%), higher level airflow (535 and  670 

L/h) and lower level of inlet temperature (50and75˚C).Attheselevels these factors 

had negative effect on yield as explained above. When these parameters adjusted to 

their positive level in run 7, 8, and 9 (i.e. level that produced higher yield, Table 3-4 and 

Table 3-6) the yield increased up to 43 %.  

Optimum conditions used for the production of highest yield% (Table 3-4) of dry 

powder resulted in 50.96±2.26 % of NCMPs which was considered reasonable (92).  

Photomicrographs of NCMPs (Figure 3-10) showed irregular and porous microparticles. 

This occurred due to an excessive build-up of vapour pressure during water evaporation 

in the spray drying process and typically occurs with hydrophobic amino acids, such as 

L-leucine, for improved aerosolisation performance (66; 134; 165; 166; 167; 168; 169; 

170).  

From 27 spray-dried formulations run 16 and run H were selected for in vitro 

aerosolisation studies. Run H had the highest yield % while run 16 produced particles 
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more porous in nature as presented by SEM photograph and the tapped density 

suggesting highly porous particles (66). 

SPS H NCMPs and HDL H NCMPs formulations had a geometric particle size double 

of that obtained with SPS 16 NCMPs and HDL 16 NCMPs (Table 3-7). This could be 

due to the difference in the airflow between the run H and run 16 (400 and 535 L/h, 

respectively). The higher airflow produces smaller droplet size and enhancing 

evaporation rate and thus produces smaller particle size. This observation was reported 

previously with PLGA microparticles prepared by spray drying as the airflow increased 

the particle size decreased (162). 

The theoretical aerodynamic diameters (Table 3-7) of tested formulation HDL H 

NCMPs, SPS H NCMPs, HDL 16 NCMPs, and SPS 16 NCMPs indicate that the spray 

dried NCMPs generated are suitable for pulmonary delivery. 

3.5.3. In vitro aerosolisation and moisture content studies 

BSA deposition data obtained from spray-dried formulations indicated similarity in 

aerosolisation performance between run 16 and run H for FPD, FPF % and MMAD 

(Table 3-8). SPS 16 NCMPs and HDL 16 NCMPs produced higher FPD and FPF % and 

this was attributed to the more porous structure of the NCMPs prepared by run 16 (134; 

165). In run 16, the aspirator capacity was adjusted to 50 % which is lower than the 

aspirator capacity of run H (100 %). Consequently this resulted in a slower movement 

of the particles through the system and a longer action of the drying air upon them 

(171). Moreover, in run 16 the air flow was adjusted to a higher value (535 l/h) than for 

run H (400 l/h) which resulted in a smaller droplet size to which amphiphillic small 

leucine molecules can easily diffuse (163). However, the conditions associated with run 

H produced significantly greater yield hence run H conditions were applied for spray 

drying for the rest of this study.  
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Therefor high residual moisture content can promote particle aggregation leading a 

variation in particle size distribution (157). The low moisture content reported from the 

TGA thermogram presents a good drying efficiency therefor the dry powder 

formulations (HDL H NCMPs) are likely to show high storage stability.  

3.5.4. In Vitro Release, structure stability of BSA, and cytotoxicity 

studies 

In vitro release studies comparing SPS H NCMPs and HDL H NCMPs formulations 

were performed in PBS (pH=7.4). Both formulation showed biphasic release profile 

with a first initial burst release followed by a second continuous sustained release phase 

over 48h (Figure 3-12). The noticeable change in release profile at 24h after the initial 

burst release could be due to the distribution of BSA inside NPs or a change in 

degradation rate due to changed surface porosity.  

In this study, BSA was released from SPS H NCMPs and HDL H NCMPs formulations 

according to the Higuchi diffusion model (Table 3-9). Therefore, the sustained release 

of BSA from spray-dried NCMPs appeared to be a diffusion-limited process. 

Accordingly from in vitro aerosolisation and release studies HDL H NCMPs was 

selected for further investigation in this study. 

The primary structure of BSA released from HDL NPs and HDL H NCMPs was 

analysed by SDS-PAGE followed by Coomassie brilliant blue staining. The BSA 

released showed similar clear banding patterns to the BSA standard providing evidence 

that the released BSA did not suffer a significant covalent aggregation or fragmentation 

during the preparation methods used (Figure 3-14). 

The secondary structure of BSA in the formulation was analysed using CD 

spectroscopy, a valuable technique for analysing protein structure (115). CD of the BSA 

released samples (Figure 3-15) confirmed thepresenceofα-helixandβ-sheets although 

these were slightly decreased in comparison with standard BSA (140; 172). But, in 
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protein secondary structure, this decrease (3%) considered minor and it is believed that 

theβ-sheetstructureissometimesnoticedasaspecialα-helix only with two amino acid 

residues through stretching resulting from the breakage of hydrogen bond (140; 172). 

The aerosolisation data suggests a deposition mainly in the deep lung region thus 

cytotoxicity studies were performed on A549 cell line (adenocarcinomic human alveolar 

basal epithelial cells). The NPs and NCMPs appear to be well tolerated by the cells. 

3.6. Conclusion 

PGA-co-PDL NPs with appropriate size (203±5.4 nm) to target DCs and therapeutic 

BSA loading (43.67±2.3 µg/mg) were successfully prepared using the Taguchi L36 

orthogonal array design of experiment. The selected NPs formulations were 

incorporated into NCMPs using L-leucine as a carrier and to enhance powder 

dispersion. The highest yield % of dry powder (50%) was obtained using the Taguchi 

L27 orthogonal array design of experiment. The NCMPs had irregular and porous 

surface. The in vitro release studies showed BSA maintains its primary and secondary 

structure. Furthermore, aerosolisation deposition data (FPF 78.57±0.1 % and MMAD 

1.71±0.1 µm) indicates deep lung deposition. Cell viability studies on A549 cells and 

DCs showed a low toxicity profile. This study suggests that PGA-co-PDL NCMPs 

should be further investigated for modification of particle surface to improve uptake by 

DCs and to encapsulate PspA as a therapeutic antigen to be delivered through the lung.  
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4.1. Introduction 

Pulmonary vaccine delivery has recently been explored as an alternative for parenteral 

immunization. The extensive network DCs lining the respiratory submucosa and on the 

alveolar surface plays important roles in generating both mucosal and systemic immune 

responses (52). 

The surface charge of NPs plays an important role in determining uptake of NPs by DCs 

and cationic particles have been shown to be more effectively taken up by DCs (75; 87; 

88; 41). The ionic interaction between the positive charge on the particles surface and 

the negative charge on cell surface generates a successful bond and promotes particle 

uptake (87). Furthermore, cationic NPs have greater ability to interact with the 

proteoglycans on the surface of macrophages and DCs (173). 

Incorporation of cationic polymers such as chitosan or chitosan derivatives have been 

shown to enhance the uptake of antigens by DCs and subsequently induce strong 

immune responses (174). Recently published researches on the use of chitosan and its 

derivatives as mucosal vaccine delivery systems are summarised in Table 4-1. 

Thomann-Harwood et al. have reported that chitosan nanogels carrying a model 

antigen, ovalbumin, have a higher association of the positively charged nanogel 

compared with the more neutral (mannosylated alginate coated) or negatively charged 

(alginate coated) nanogels (175). Also, Slütter et al. have demonstrated that N-trimethyl 

chitosan (TMC) NPs were superior over PLGA NP and PLGA/TMC NP in stimulating 

the maturation of DCs after nasal administration (156). 

Many research groups have documented techniques of modifying NPs charge by using 

didodecyldimethylammoniumbromide (DMAB) as a surfactant (173; 176; 177). Jensen 

et al. have demonstrated that addition of cationic lipid 

dioleoyltrimethylammoniumpropane (DOTAP) into PLGA matrix during preparation of 

NPs resulted in cationic NPs and they further showed the use of these NPs loaded with 
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small interfering RNA prepared as a dry powder of RNA NPs for pulmonary delivery 

(178). 

Table 4-1: Recently published studies on Chitosan and chitosan derivatives as 

mucosal vaccine deliver systems. 

Polymer Antigen Delivery 

system 

Model Route Ref. 

Chitosan  Bacillus anthracis 

protective antigen 

Nanoparticles In vivo Nasal  (179) 

Chitosan  measles antigen Nanoparticles In vivo Oral (180) 

Chitosan PsaA protein Nanoparticles In vivo Intranasal (181) 

Chitosan Human 

papillomavirus 

Nanoparticles In vivo Intranasal (182) 

Mannose/ chitosan Pseudomonas 

aeruginosa protein 

Microspheres In vivo Intranasal (183) 

Chitosan/gold  Tetanus toxoid Nanoparticles In vivo Oral (184) 

Chitosan Influenza whole 

virus 

Nanospheres In vivo Nasal (185) 

Chitosan Yeast-derived 

PCV2 virus-like 

particles 

Microparticles In vivo Oral (186) 

Chitosan Recombinant 

enterovirus 71 

Mixture In vivo Oral (187) 

Glucomannosylated 

chitosan 

Tetanus toxoid Nanoparticles In vitro Oral (188) 

Chitosan DNA Complex In vivo Intranasal (189) 

Chitosan CPE30 peptide, C 

terminal 30 amino 

acids of clostridium 

perfringens 

enterotoxin 

Nanoparticles In vivo Oral  (190) 

Glycol chitosan  Hepatitis B surface 

antigen 

Nanoparticles In vivo Intranasal (191) 

N-trimethylamino-

ethylmethacrylate 

chitosan 

Thiolated 

ovalbumin 

Soluble 

conjugate 

In vivo Intranasal (192) 

Chitosan Recombinant HIV- Solution In vivo Intranasal (193) 
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1 envelope 

glycoprotein and 

tetanus toxoid  

and 

sublingual 

Mannosylated 

chitosan 

DNA Nanoparticles In vivo Intranasal  (194) 

Chitosan DNA Solution In vivo Intranasal (195) 

Glucomannosylated 

chitosan  

Model antigen Nanoparticles In vivo Oral (196) 

Chitosan Diphtheria toxoid In situ forming 

gel  

In vivo Intranasal (197) 

Chitosan hemagglutinin 

(HA)-split 

influenza virus 

product 

Nanoparticles In vivo Intranasal (198) 

PLGA/Chitosan membrane protein 

B of Brachyspira 

hyodysenteriae 

Microparticles In vivo Oral (199) 

Chitosan high-mobility 

group box 1 

Microparticles In vivo Intranasal (200) 

Chitosan/liposome DNA Nanoparticles In vivo Intranasal (201) 

Chitosan  P1-P30 chimeric 

recombinant 

protein 

Solution In vivo Intranasal (202) 

PLGA/Chitosan Model antigen Nanoparticles In vivo Intranasal (203) 

PLGA/Chitosan or 

glycol chitosan  

Hepatitis B surface 

Antigen 

Nanoparticles In vivo Intranasal (204) 

Chitosan Hepatitis B. Nanoparticles In vivo Oral (205) 

Methylated N-(4-N,N-

dimethylaminocinnam

yl) chitosan- 

Ovalbumin Microparticles In vivo Oral (206) 

Chitosan Ovalbumin Microparticles In vivo Intranasal (207) 

Chitosan and trimethyl 

chitosan 

Hepatitis B surface 

antigen 

Nanoparticles In vivo Intranasal (208) 

N-[(2-hydroxy-3-

trimethylammonium) 

propyl] chitosan 

chloride and α, β-

glycerophosphate 

adenovirus based 

Zaire Ebola virus 

glycoprotein 

antigen 

hydrogel In vivo Intranasal (209) 
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Here, we focused on the use of natural polymer chitosan and its derivatives. Chitosan is 

a biodegradable, biocompatible, cationic polysaccharide, with low toxicity and can be 

formulated in a number of different ways, as a solution, gel, powder, microparticles and 

nanoparticles. The potential application of chitosan is restricted by its low aqueous 

solubility but it can be chemically modified to enhance polymer processing, solubility, 

antimicrobial activity, and the ability to interact with other substances (71). 

Recently, water-soluble chitosan hydrochloride (CHL) has been reported as a model 

positively charged polyelectrolyte, which may overcome the low water solubility of 

chitosan at neutral pH (210). However, like other cationic polymers, the strong positive 

charge contributes to the toxicity of the polymer. The amount of CHL can be 

substantially decreased by adsorbing CHL to anionic NPs. This is particularly true due 

to the large surface-to-volume ratio of the NPs (111). These cationic NPs could be 

incorporated into microparticles to produce cationic NPs/NCMPs with an aerodynamic 

size between 1 and 5 µm which upon inhalation can deposit deep in the lung and have 

access to the alveoli and the broncho associated lymphoid tissue (BALT) and are, 

therefore, attractive antigen carriers (52).  

PGA-co-PDL has previously been used to produce NPs with negative surface charge (as 

described in section 2.2.3 and chapter 3) utilising PVA as a surfactant. 

4.2. Aim 

The aim of this study was to adsorb CHL onto PGA-co-PDL NPs with encapsulated 

BSA as a model protein, and optimize the preparation method and formulation 

parameters: particle size and zeta potential. The cationic NPs were incorporated into 

microcarriers (L-leucine) via spray drying to produce cationic NPs/NCMPs suitable for 

pulmonary delivery via DPIs.  

To obtain the aim of the study a systematic study was designed considering the 

following aspects: 
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1. Formulation of cationic NPs using double emulsion solvent evaporation 

technique. 

2. Evaluation of the influence of formulation parameters on the particle size and 

charge. 

3. Formulation of cationic NPs/NCMPs via spray drying technique.  

4. Examination of BSA integrity, in vitro aerosolisation performance, in vitro 

release, in vitro cells toxicity of optimum cationic NPs/NCMPs. 

4.3. Methods 

4.3.1. Cationic nanoparticle preparation 

The adsorption of CHL was achieved as described in section 2.2.4. 

4.3.2. Cationic nanoparticle characterization 

The cationic NPs were characterised for particle size, PDI, zeta potential, encapsulation 

efficiency and protein loading as described in sections 2.2.7.1 and 2.2.7.2 respectively. 

4.3.3. Quantification of chitosan hydrochloride adsorption 

The amount of CHL adsorbed on the surface of cationic NPs was evaluated as described 

in section 2.2.5. 

4.3.4. Adsorption isotherm models 

The adsorption mechanism of CHL on NPs was determined as described in 

section 2.2.6. 

4.3.5. Chitosan Hydrochloride nanocomposite microparticles 

preparation by spray drying  

Cationic NPs/NCMPs were prepared by spray drying cationic NPs using the spray 

drying conditions for run H as described in section 2.2.8.  
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4.3.6. Characterization of Chitosan Hydrochloride nanocomposite 

microparticles 

Cationic NPs/NCMPs morphology, yield %, moisture content and powder density and 

primary aerodynamic diameter were characterised as described in section 2.2.9.  

4.3.7. In vitro aerosolisation studies 

The in vitro aerosolisation studies were carried out as described in section 2.2.10. 

4.3.8. In vitro release study  

The in vitro release studies were carried out as described in section 2.2.11. 

4.3.9. Investigation of BSA structure  

The stability of the primary and secondary structure of released BSA was evaluated as 

described in section 2.2.12. 

4.3.10. Cytotoxicity study 

The cytotoxicity of cationic NPs and cationic NPs/NCMPs was determined as described 

in section 2.2.15.1. 

4.4. Results 

4.4.1. Cationic nanoparticles characterisation  

4.4.1.1. Effect of different concentrations of CHL and PVA on particle size 

and zeta potential  

The adsorption of CHL on NPs was carried out using two strategies: the first after the 

formation of NPs and resuspending in CHL solution the second during the preparation 

of NPs with CHL added to EAP. 

In the first strategy, different concentrations of CHL were used with and without 1% 

PVA. When 1% PVA was used the zeta potential significantly changed from negative (- 

17.44±1.3 mV) to around neutral (0.06±0.34 to -0.71±0.63 mV) (Figure 4-1.A) 
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regardless of CHL concentration (p < 0.05,ANOVA/Tukey’scomparison). The particle 

size (445±46.87 nm) increased significantly (p<0.05,ANOVA/Tukey’s comparison)

when the CHL concentration increased to 4, 8 and 30 mg/ml (Figure 4-1.B). However, 

at a CHL concentration of 20 and 34 mg/ml there was no significant (p > 0.05, 

ANOVA/Tukey’scomparison)change in particle size (Figure 4-1.B).  

When PVA was not included during the NPs preparation, the zeta potential was neutral 

at lower CHL concentrations of 4 and 8 mg/ml (p < 0.05, ANOVA/Tukey’s

comparison) while at higher CHL concentrations of 20 and 30 mg/ml the zeta potential 

was positive 11.79±2.5 and 16.73±0.98 mV respectively (p< 0.05,ANOVA/Tukey’s

comparison) (Figure 4-1.A). At the highest concentration of CHL 34 mg/ml the NPs 

surface charge once again became neutral.  

The particle size increased significantly when the concentration of CHL increased to 4, 

and 8 mg/ml (Figure 4-1.B). However, at higher concentrations of CHL (20, 30 and 34 

mg/ml) there was no significant (p>0.05,ANOVA/Tukey’s comparison) difference in 

particle size at different concentration of CHL but it was significantly (p<0.05, 

ANOVA/Tukey’scomparison) larger than the anionic NPs (Figure 4-1.B).  

In order to use lower amount of CHL concentration of 20 mg/ml was selected to 

investigate the effect of PVA% on zeta potential and particle size.  

Figure 4-2.A and B shows the effect of % PVA added to the CHL solution (20 mg/ml) 

on particle size and zeta potential of NPs. Three concentrations of PVA were compared 

0, 0.5, and 1%. 

Anionic NPs had a negative surface charge (-17.44±1.2 mV) but following the addition 

of CHL (20 mg/ml) with various amount of PVA the zeta potential changed 

significantly(p<0.05,ANOVA/Tukey’scomparison)fromnegative(-17.44±1.3 mV) 

to positive (11.8±2.5 mV) then neutral (-0.41±0.89 M). When the PVA concentration 
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was 0 and 0.5%, the particle size showed significant difference (p < 0.05, 

ANOVA/Tukey’scomparison)from anionic NPs (Figure 4-2 B). 
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Figure 4-1: Effect of CHL (mg/ml) concentration on: A) zeta potential and B) 

particle size of NPs. Data represent means ±SD, n=3,* is p < 0.05,ANOVA/Tukey’s

comparison. 
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4.4.1.2. Effect of adsorption time 

Figure 4-3.A and B shows the effect of adsorption time on zeta potential and particle 

size. The zeta potential changed significantly (p<0.05, ANOVA/Tukey,s comparison) 

from negative (- 17.44±1.3 mV) to positive 2 and 6 h and became neutral after 4 and 24 

h. The particle size (455± 46.87 nm) increasedsignificantly(p<0.05,ANOVA/Tukey’s

Figure 4-2: Effect of PVA % concentration on: A) zeta potential and B) particle 

size of NPs. Data represent means ±SD, n=3, * is p < 0.05, ANOVA/Tukey’s

comparison. 

* 

* 

-25

-20

-15

-10

-5

0

5

10

15

20

anionic NPs 0 0.5 1

Ze
ta

 P
o

te
n

ti
al

 (
m

V
) 

Concentration of PVA (%) 

* 

* 

0

200

400

600

800

1000

1200

1400

1600

1800

anionic NPs 0 0.5 1

P
ar

ti
cl

e
 s

iz
e

 (
n

m
) 

Concentration of PVA (%) 

A) 

B) 



 

115 
 

comparison) after CHL adsorption in comparison with anionic NPs regardless of 

adsorption time.  
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Figure 4-3: Effect of adsorption time on: A) zeta potential and B) particle size of 

NPs. Data represent means ±SD, n=3, * is p < 0.05,ANOVA/Tukey’scomparison. 
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4.4.1.3. Effect of method of addition CHL  

In the second strategy CHL was added to the EAP in different concentrations (0 to 20 

mg/ml) during the preparation of cationic NPs. The NPs had an electronegative (-

17.44±1.2 mV) zeta potential, while all CHL - NPs were electropositive (p < 0.05, 

ANOVA/Tukey’scomparison). The zeta-potential of cationic NPs increased with CHL 

feed concentrations up to +24 mV when produced from a CHL concentration of 

approximately 16–20 mg/ml (Figure 4-4.A).  

The particle size (Figure 4-4.B) of anionic NPs was 445± 46.8 nm and it increased 

(3934±1533.7 and 2148±352.6 nm) significantly (p < 0.05, ANOVA/Tukey’s

comparison) with low concentrations of CHL ranging from 2 to 4 mg/ml (Figure 4-4.B). 

Whilst at higher concentrations of CHL the particle size did not significantly change (p 

> 0.05,ANOVA/Tukey’scomparison).  

The CHL concentration of 10 mg/ml in EAP was selected for further investigations in 

this study because it had similar size to anionic NPs with positive charge (Table 4-2). 

Furthermore, there was no significant difference (p > 0.05, ANOVA/Tukey’s

comparison) between particle size and surface charge of unloaded and BSA loaded 

cationic NPs at the selected concentration of CHL (10 mg/ml in EAP) Table 4-2. 

4.4.2. Chitosan adsorption 

The amount of CHL per mg of NPs increased significantly with the concentrations of 

CHL in the EAP over the entire range (0–20 mg/ml) of CHL concentrations examined 

(Figure 4-5). The mass of adsorbed CHL was 0.69±0.01, 1.45±0.02, 2.32±0.01, 

3.44±0.38, 3.99±0.02, and 8.97±0.03 mg CHL/ mg of NPs obtained with initial CHL 

concentrations of 2, 4, 6, 8, 10 and 20 mg/ml, respectively. The largest mass of 

adsorbed CHL was obtained at 20 mg/ml CHL initial concentration with 8.97 mg CHL 

per mg of NPs (p < 0.05, ANOVA/Tukey’s comparison; all values are significantly

different to each other). 
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Figure 4-4: Effect of CHL concentration in EAP on: A) zeta potential and B) 

particle size of NPs, Data represent means ±SD, n=3, * is p < 0.05, 

ANOVA/Tukey’scomparison. 
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Table 4-2: Particle size and zeta potential of selected anionic and cationic NPs with 

and without BSA loading. Data represent mean ± SD, n=3. 

 
Unloaded NPs BSA loaded NPs 

Anionic NPs* 
  

Particle size (nm) 

Zeta Potential (mV) 

PDI 

403±7.80 

-20.33±2.1 

0.244±0.03 

445±46.8
 
 

-17.44±1.20 

0.209±0.05 

Cationic NPs*   

Particle size (nm) 

Zeta Potential (mV) 

PDI 

470.22±45.77 

+16.88±3.10 

0.328±0.09 

480.23±32.2 

+14.20±0.72 

0.380±0.03 

*NPs characterised after centrifugation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* 
* 

* 

* 

* 
* 

* 

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12 14 16 18 20 22

A
d

so
rb

e
d

 C
h

it
o

sa
n

 H
C

l (
m

g/
m

g 
N

P
s)

 

Chitosan HCl initial concentration (mg/ml) 

Figure 4-5: Effect of CHL concentration on the amount of CHL absorbed onto 

NPs. Data represent mean±SD, n=3, where * significantly different (p < 0.05, 

ANOVA/Tukey’scomparison). 
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4.4.3. Adsorption isotherm model  

The adsorption of CHL onto NPs did not fit with the Langmuir model over the range of 

CHL concentration examined (Figure 4-6.A). Even though, it had a good fit at low 

initial chitosan concentrations. The adsorption of CHL had a poor fit with the BET 

model (Figure 4-6.B). The multiplayer adsorption models including the Freundlich 

(Figure 4-6.C), and Halsey (Figure 4-6.D), models both had a good fit with good 

agreement (r
2 

> 0.9), and the corresponding adsorption parameters were calculated 

(Table 4-3). 

 

 

 

Table 4-3: Parameters derived from adsorption isotherm models by linear 

regression. 

Isotherm 

equations 

Adsorption 

capacity 

Adsorption 

intensity 

Regression 

coefficient 

Langmuir* qm=1.2366 b=-0.2149 0.9167 

Langmuir qm=2.28 b=0.146 0.8415 

BET qm=0.4288 b=0.8561 0.0015 

Freundlich k=0.2893 n=0.5434 0.9988 

Halsey k=1.9422 n=0.5406 0.9974 

*PGA-co-PDL NPs made at 0-8 mg/ml CHL initial concentration. 
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Figure 4-6: Linear representation of the four isotherm models of CHL adsorption 

onto NPs. Ce is the residual CHL concentrations in the suspension at equilibrium 

(mg/ml) and q is the amount of adsorbed CHL per unit weight of NPs. The (A) 

Langmuir model was fit with two regression lines plotted for low (0–8 mg/ml) (—) and 

the entire range of concentrations (….), respectively. The (B)BET, (C) Freundlich,

and (D) Halsey models were fit using whole range of concentrations. Data represent 

mean±SD, n= 3. 
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4.4.4. BSA loading and EE% 

The BSA loading of anionic NPs (43.67±2.3 µg/mg) decreased significantly (p<0.05, 

ANOVA/Tukey’s comparison) in comparison with cationic NPs (7.28±1.3 µg/mg) and 

the BSA EE% (48±2.6 %) decreased significantly (p<0.05, ANOVA/Tukey’s 

comparison) in comparison with cationic NPs (4.9±2.1 %), Table 4-4.  

 

Table 4-4: BSA loading (µg/mg) and EE % of anionic NPs, anionic NPs/NCMPs, 

cationic NPs and cationic NPs/NCMPs. Data represent mean±SD, n=3. 

 
BSA loading (µg/mg) EE (%) 

Anionic NPs 43.67±2.3* 48.04±2.6* 

Anionic NPs/NCMPs 5.37±1.7**  

Cationic NPs 7.29±1.4* 4.9±1.3* 

Cationic NPs/NCMPs 1.09±0.03**  

 * (Anionic vs Cationic NPs) and ** (Anionic vs Cationic NPs/NCMPs) is p < 0.05, 

ANOVA/Tukey’scomparison. 

4.4.5. Characterisation of nanocomposite microparticles 

Spray-drying was applied to incorporate the selected cationic NPs into NCMPs using L-

leucine as a carrier and to enhance powder dispersion.  

The size of anionic NPs after recovery from spray-dried anionic NPs/NCMPs and 

cationic NPs/NCMPs in distilled water were 453.6± 19.7 nm and 490±17 nm 

confirming the recovery of NPs from NPs/NCMPs. 

4.4.5.1. Morphology of nanocomposite microparticles 

The shape and morphology of cationic NPs/NCMPs were investigated using SEM 

(Figure 4-7). Photomicrographs of cationic NPs/NCMPs showed irregular and porous 

microparticles.  
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Figure 4-7: SEM images of cationic NPs/NCMPs: 1 µm scale (A) and 2 µm scale 

(B). 

 

 

4.4.6. Powder density and primary aerodynamic diameter 

Cationic NPs/NCMPs formulation had a geometric particle size of 5.52±0.64 µm 

(Table 4-5). The tapped density was 0.08±0.002g cm
-3

; and this was used together with 

the geometric particle size to calculate the theoretical aerodynamic diameter (dae). The 

cationic NPs/NCMPs had the theoretical aerodynamic diameter within the respirable 

range. 

Table 4-5: The geometric particle size, tapped density and theoretical aerodynamic 

diameter of cationic NPs/NCMPs. Data represent mean ± S.D., n=3. 

NCMPs 

Formulation 

Geometric 

particle 

size 

(µm) 

Tapped density 

(g/cm
3
) 

Carr’s index 

 dae 

(µm) 
% Flowability 

Cationic 

NPs/NCMPs 
5.52±0.64 0.08±0.002 36.71±0.83 Very poor 1.56±0.19 

 

 

B A 
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4.4.7. In vitro aerosolisation studies  

The percent mass of BSA recovered from the NGI was approximately 89 %, which is 

within the pharmacopeia limits (75 – 125 %) of the average delivered dose (139). BSA 

deposition data obtained from anionic NPs/NCMPs and cationic NPs/NCMPs 

formulations (Table 4-6) indicated there was a significant difference in aerosolisation 

performance between these formulations for FPD, and FPF% (p<0.05, 

ANOVA/Tukey’s comparison). Anionic NCMPs produced a higher FPD 45.00±4.70 

µg, and FPF% 78.57±0.1% than cationic NPs/NCMPs 32.51±6.67 µg and 

46.79±11.21%, respectively. 

 

Table 4-6: The Fine particle dose (FPD), percentage fine particle fraction (FPF), 

and mass median aerodynamic diameter (MMAD) of cationic NPs/NCMPs. Data 

represent mean ± S.D., n=3. 

 

 

FPD (µg) 

 

FPF (%) 

 

MMAD (µm) 

Cationic 

NPs/NCMPs 
32.51±6.67 46.79±11.21 1.49±0.29 

 

 

4.4.8. Investigation of BSA structure 

The primary structure of BSA released from cationic NPs and cationic NPs/NCMPs was 

investigated using SDS-PAGE analysis. According to Figure 4-8, the BSA standard and 

the molecular weight marker had shown in Lanes 1 and 2, respectively, revealed a clear 

band at around 66 KDa. The BSA released from cationic NPs and cationic NPs/NCMPs 

(Lanes 3 and 4, respectively), showed similar clear banding patterns to the BSA 

standard. The single lines in the gels provided evidence that the entrapped BSA in the 

cationic NPs and cationic NPs/NCMPs samples was stable. 
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The secondary structure analysis of released BSA was carried out using CD. Figure 4-9 

shows the structure of standard BSA and BSA released. The CD spectra show minima 

at 221 - 222 and 209 – 210 nm and a maximum at 195 nm for both samples, which is 

characteristic of an α-helical structure. In support of these data, structural analysis 

showed that BSA was predominantly helical displaying 51.5% helicity (Table 4-7). In 

contrast to standard BSA, structural analysis of BSA released showed a reduced level of 

α-helical conformation (circa 43 % helical) (Table 4-7). Furthermore, a comparison of 

BSA released with standard BSA, showed that the α-helical content decreased by 8.5 %, 

the β-sheet content increased by 8%, the turns content decreased by 2%, and the random 

coils’contentincreasedby3%, respectively. 
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Figure 4-8: SDS-PAGE behaviour of BSA released from NPs for the 

assessment of BSA stability. Lanes represent, molecular weight (MW) 

standard markers, BSA (MW 66,000) (1), BSA standard (2), BSA released 

from cationic NPs (3), and BSA released from cationic NPs/NCMPs (4). 

Difference in band intensity was due to different loading. 
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Table 4-7: The percentage of secondary structure conformation for BSA standard 

and BSA released from cationic NPs/NCMPs (n=3).  

 

4.4.9. In Vitro Release Studies 

In vitro release studies were performed on cationic NPs/NCMPs formulations and 

reported as cumulative percentage BSA released over time (Figure 4-10). Cationic 

NPs/NCMPs formulations showed a biphasic release profile. The % cumulative BSA 

released at time zero was considered as surface-associated BSA, the % cumulative BSA 

 

 
Helix Strands Turns Unordered 

BSA standard 51.5 ± 0.007 21.50 ± 0.007 9.0 ± 0 17.50 ± 0.007 

BSA released 43 ± 0.007 29 ± 0.014 7 ± 0 20.5 ± 0.007 

Figure 4-9: The CD spectra of BSA released from cationic NPs/NCMPs (grey) 

and BSA standard (black) (n=3). 
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released at the end of 4 h was considered as the initial burst phase of BSA release, and 

followed by a second continuous sustained release phase over 48h (Figure 4-10).  

The anionic NPs/NCMPs formulations showed a lower cumulative release achieving 

38.77±3% release after 48 h (Figure 3-12). The cationic NPs/NCMPs formulations 

showed a higher cumulative releases, with nearly 88.93 ±14.8% of BSA released after 

48 h (p<0.05,ANOVA/Tukey’s comparison) (Figure 4-10).  

In vitro release kinetics were used to determine the mechanism of BSA release. 

Comparison of the rates of release using zero, first order and the Higuchi rate equations 

are shown in Table 4-8.  

BSA was released from cationic NPs/NCMPs formulations according to a dual pattern 

first order model with an r
2
 value of 0.919. The release rate constant k1 (h

-½
) was -0.016, 

the Higuchi diffusion model r
2
 value was 0.928, and the release rate constant k1 (h

-½
) was 

9.316 (Table 4-8).  

 

 

 

Figure 4-10: % Cumulative in-vitro release of BSA from cationic NPs/NCMPs in 

PBS buffer at 37°C. Data represent mean ± S.D., n=3. 
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Table 4-8: Release parameters of BSA from cationic NPs/NCMPs. 

Formulation Zero Order First order Higuchi 

r
2
 ko (h

-1
) r

2
 k1 (h

-1
) r

2
 k1 (h

-½
) 

Cationic 

NPs/NCMPs 

0.777 1.218  0.919 -0.016 0.928 9.316 

 

 

 

4.4.10. Cytotoxicity study 

The A549 cell line toxicity studies (Figure 4-11) of cationic NPs and cationic 

NPs/NCMPs showed a cell viability of 63.91±0.87% for cationic NPs and 78.85±9.96% 

for cationic NPs/NCMPs at a concentration of 2.5 mg/ml after 24 h exposure indicating 

a good toxicity profile.  

 

 

 

 

 

 

 

 

 

 

 

 

0

20

40

60

80

100

120

140

0 0.15 0.31 0.62 1.25 2.5 10%DMSO

V
ia

b
ili

ty
 (

%
 c

o
n

tr
o

l)
 

Concentration (mg/ml) 

Cationic NPs Cationic NPs/NCMPS

Figure 4-11: A549 cell viability measured by MTT assay after 24 h exposure to 

cationic NPs and cationic NPs/NCMPs. Data represent mean ± S.D., n=3. 
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4.5. Discussion 

Adsorption of CHL was investigated in order to modify the particles surface charge, 

favouring potential interactions with negatively charged cell membranes and facilitating 

uptake by DCs (156). 

4.5.1. Cationic nanoparticles characterisation  

Effect of different concentrations of CHL and PVA on zeta potential and particle 

size  

In the first strategy, different concentrations of CHL were used with and without 1% 

PVA. When 1% PVA was used, upon addition of CHL, the zeta potential changed from 

negative to neutral regardless of CHL concentration (Figure 4-1.A). This was due to the 

ability of the PVA layer to screen CHL charges leading to an almost neutral zeta 

potential value (211). 

When PVA was not included the zeta potential changed from negative to neutral at 

lower CHL concentrations (4 and 8 mg/ml) but at higher CHL concentrations (20 and 

30 mg/ml) the zeta potential changed to positive (Figure 4-1.A). Chronopoulou et al. 

reported a similar pattern with chitosan coated PLGA NPs (110). They found that in the 

case of lower concentrations, the relative PLGA and chitosan concentrations 

corresponded to a concentration close to the one of the isoelectric condition, justifying 

the finding that the zeta potential of the resulting coated PLGA NPs was very close to 

zero and then at higher concentration inverts its charge, indicating that the adsorbed 

chitosan reversed the NPs charge (110). At the highest concentration of CHL tested (34 

mg/ml) the NPs surface charge was neutral again, probably because of the high 

viscosity which would decrease the efficiency of adsorption (111). This decrease in 

efficiency of adsorption is evident by particle size of NPs. where the increase in particle 

size could be attributed to particle aggregation due to absence of PVA and only small 

amount of CHL adsorbed. 
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The particle size increased significantly when the concentration of CHL increased to 8 

mg/ml (Figure 4-1.B). The increase in particle size has been attributed to either the 

increased viscosity of the CHL solution, which lowered the shear stress on NPs during 

stirring, and/or the increasing amounts of CHL on the surface of the NPs (212). 

However, at CHL concentration of 20 and 34 mg/ml there was no significant change in 

particle size. This indicated a complete coating of CHL on the surface leading to CHL 

molecules repelling each other, preventing particle aggregation and hence an increase in 

particle size (111). 

At the same concentration of CHL with highest PVA concentration used (1%, 

Figure 4-2.B) the particle size decreased significantly this is because the PVA is known 

to prevent particle aggregation (80). 

Effect of adsorption time 

Figure 4-3.A and B shows the effect of adsorption time on zeta potential and particle 

size. The zeta potential changed significantly from negative to positive at 2 and 6 h and 

became neutral after 4 and 24 h. This pattern of change in zeta potential could be 

attributed to interfering by BSA released from NPs which could be adsorbed by CHL on 

NPs surface. At 2-6 h incubation it is positive with CHT charge dominating and some 

aggregation of NPs. At other time points the neutral charge could be due to the release 

of BSA into media and aggregation of BSA which dominates the CHT adsorbed on 

NPs. Moreover, this was confirmed by increased particle size significantly after CHL 

adsorption in comparison with anionic NPs regardless of adsorption time.  

Effect of method of addition CHL  

In the second strategy CHL was added to EAP in different concentrations (0 to 20 

mg/ml) during the NPs preparation process. Anionic NPs produced were electronegative 

-17.44±1.2 mV, while all cationic NPs were electropositive this confirmed the presence 

of CHL on NPs. The zeta-potential of cationic NPs increased with CHL feed 
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concentrations until a zeta-potential plateau was reached at approximately +24 mV 

(CHL concentration of approximately 16–20 mg/ml, Figure 4-4.A). This could be 

indicative of saturation in adsorption of CHL on the NPs (111; 72; 212). 

The particle size of cationic NPs was heterogeneous with two populations of particles 

present regardless of the concentrations of CHL (Figure 4-4.B). The particle size of 

cationic NPs increased significantly at lower concentrations of CHL ranging from 2 to 4 

mg/ml. This could be attributed to the increased viscosity of CHL, lowering the shear 

stress of the OP during sonication producing larger emulsion droplets and subsequently 

larger NPs (212). At higher concentrations of CHL (6, 10, 16 mg/ml) the particle size 

did not change significantly. This has been attributed to a complete coating of the NPs 

by CHL molecules so additional CHL would repel each other (due to similar charge) 

and prevent particles aggregation. Also, the pattern of change in particle size when CHL 

was added to the EAP was similar to that when CHL was added after NPs formation. It 

was observed that all cationic NPs regardless of preparation method displayed a neutral 

or positive charge that could be due to electrostatic interactions between the negatively 

charged groups (-OH) of PGA-co-PDL and the positively charged CHL inducing 

adsorption of CHL onto the NPs surface. Only a fraction of the amino groups would be 

required to neutralize the negative charges of PGA-co-PDL, whereas the remaining free 

amino groups could be responsible for the resulting change in the measured zeta 

potential (211). 

The second strategy was selected to examine CHL adsorption onto NPs and to explain 

the mechanism of adsorption because it had positive zeta potential over the entire range 

of CHL concentrations examined. The cationic NPs prepared at a CHL concentration of 

10 mg/ml was selected for further investigations in this study because these particles 

had a similar size to the anionic NPs. 
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The amount of adsorbed CHL per mg of NPs increased with initial CHL concentrations 

over the entire range (0–20 mg/ml) of CHL concentrations examined and no plateau of 

adsorption was reached. The continued adsorption of CHL onto NPs did not affect the 

apparent zeta-potential at high concentrations (greater than approximately 16–20 

mg/ml). As a possible model, multiple layers of CHL only allow a small amount of 

CHL to influence the measured zeta-potential. Layers beyond the first few do not 

increase the zeta-potential because the apparent surface charge per unit area (amine 

groups) is constant (111). 

Adsorption isotherm model 

Different presumptions of the parameters of adsorption, such as the characteristics of 

compositions and interaction between adsorbate (CHL) and adsorbent (PGA-co-PDL) 

influenced the analysis of adsorption isotherms. The mechanism of adsorption can be 

predicted from the model that fits best with the experimental results. (111).  

The first model tested was Langmuir model (Figure 4-6.A). This model described 

monolayer adsorption of adsorbate on the adsorbent where there is no interaction 

between adsorbate molecules, the adsorption is not governed by surface occupation, and 

equivalent adsorption sites (111).  

The adsorption of CHL onto NPs did not comply with the Langmuir model at the range 

of CHL concentration investigated. However, the Langmuir monolayer model was valid 

at low concentrations (0–8 mg/ml). The monolayer adsorption capacity (qm) was found 

to be 1.2366 mg/mg NPs, which corresponded to the initial concentration of CHL at 8 

mg/ml. However, the Langmuir monolayer model could not explain adsorption at high 

concentrations of CHL. 

The second model tested was BET model (Figure 4-6.B). This model did not describe 

the results in the concentrations range investigated. The BET model was a development 

of the Langmuir model (monolayer model) to include multilayer adsorption. Depending 
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on the BET type, the following layers are the condensed adsorbate molecules. Also, it 

assumed that the energies of adsorption are equal for layers after the monolayer, which 

is property of a uniform surface. Moreover, this model bears in mind little interactions 

between adsorbate and adsorbent. The adsorption model demonstrated in this study did 

not fit the BET type due to the ideal characteristic of this type (111). 

The adsorption results for CHL were in good agreement with the Freundlich model 

(Figure 4-6.C). The nonlinear adsorption model was commonly described by Freundlich 

model. This model is applicable for multilayer adsorption with a uniform surface or a 

greatly non-uniform surface (111). The slope 1/n, ranging between (0.33-1.18), is a 

measure for the adsorption intensity or surface heterogeneity, becoming more 

heterogeneous as its value gets closer to zero. The calculated value of 1/n is above 1 

which is an indication of a cooperative adsorption (213).  

The Halsey isotherm model (Figure 4-6.D) illustrates multilayer adsorption of an 

adsorbate (at relatively far distances from a heterogeneous surface) which fit with the 

exponential relationships between the mass of adsorbate (q) and free concentration of 

adsorbateat equilibrium (Ce). Accordingly, the typical multilayer isotherm consisted of 

three sections where in the first section the adsorption is non-cooperative on a highly 

non-uniform surface; in the second section the adsorption is cooperative on a still non-

uniform surface; and in the last section the multilayer adsorption is cooperative 

provoked by little van der Waals force influences at some length from the surface (111). 

It was found that the adsorption of CHL on NPs complied with multilayer adsorption 

pattern irrespective of which model was examined. The leading factor particularly in the 

development of the first adsorption layer was electrostatic force between CHL (with 

positive charge) and PGA-co-PDL surface (with negative charge). When the CHL 

concentration increased it is likely that the following layers of CHL adsorbed on the 

first layer of CHL without interaction with the NPs surface. When more CHL layers 
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adsorbed the CHL molecules would repel each other because of the same charge 

however CHL molecules interacted via hydrogen bonds, hydrophobic interactions, and 

van derWaal’s forces.Mainly, theNPs great surface energy and surface area had a

significant function in CHL multilayer adsorption (111). 

BSA loading and EE % 

The EE% of BSA in anionic NPs was (48±2.6 %) but this decreased significantly after 

CHL adsorption (4.9±2.1 %). This could be explained by electrostatic interactions 

between the negative charge of BSA and positive charge of CHL. The isoelectric point 

of BSA is 4.8 indicating it was negatively charged at pH>4.8, so could potentially 

adsorb cationic CHL in an aqueous solution (measured 1% in water pH =6) (214). The 

CHL may adsorbs some of the BSA to the surface of the NPs during the preparation and 

hardening process, significantly decreasing the encapsulation efficiency (109). This was 

confirmed by the first initial burst release phase (section 4.4.9) at time 0 h which was 

the result of loss of surface BSA. However, DL decreased substantially with increasing 

polymer amount (PGA-co-PDL and CHL), as it was expected from predictions based on 

the respective equation 2-2 in which DL is inversely proportional to the amount of 

polymer (147). 

4.5.2. Cationic nanocomposite microparticles characterisation 

Photomicrographs of cationic NPs/NCMPs showed irregular and porous microparticles 

(see section 3.5.2 for more detail and explanations). Furthermore, the size of anionic 

and cationic NPs after dispersing anionic and cationic NPs/NCMPs in distilled water 

confirmed the recovery of NPs with suitable size for uptake by DCs (89). 

The cationic NPs/NCMPs formulations had a geometric particle size of 5.52±0.64 µm 

suitable for pulmonary delivery. The tapped density was 0.08±0.002g cm
-3

; suggesting 

highly porous particles. The cationic NPs/NCMPs showed the theoretical aerodynamic 

diameter was in the respirable range despite having a larger geometric particle size than 
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anionic NPs/NCMPs. This is because the density of cationic NPs/NCMPs was lower 

than that of the anionic NPs/NCMPs (66). 

Anionic NPs/NCMPs produced a higher FPD 45.00±4.70 µg, and FPF% 78.57±0.1% than 

cationic NPs/NCMPs 32.51±6.67 µg and 46.79±11.21%, respectively. This could be 

explained by the observation that the cationic NPs/NCMPs aggregate more and have a 

poorer powder flow asindicatedbyCarr’sindex. This could be attributed to incomplete 

powder de-aggregation as van der Waals forces between particles were not completely 

overcome upon inhalation despite the low density of the particles. In addition, powder 

aggregation of cationic NPs/NCMPs was confirmed with a Carr’s index of ≥32, 

indicating the flow was very poor (66). 

In the cationic NPs/NCMPs formulation the observed high-burst release at time zero 

(22.41±6.7%) could be explained by the majority of the BSA being adsorbed onto the 

surface (110). Also, the cationic NPs/NCMPs formulations showed a higher cumulative 

BSA release at the end of 48 h compared to anionic NPs/NCMPs. These differences in 

release patterns may be due to a combination of factors, such as BSA loading, and 

presence of CHL on the surface of the NPs (141). For both formulations the notable 

change in release profile at 20-24h after the initial burst release could be due to the 

distribution of BSA inside NPs or a change in degradation rate due to changed surface 

porosity (141). Also, it is worth noting that CHL adsorbed on NPs dissolves in water 

and therefore does not hinder drug diffusion from the NPs (156; 110). 

A study of the in vitro release kinetics was carried out to determine the mechanism of 

BSA release. BSA was released from anionic NPs/NCMPs formulations according to 

the Higuchi diffusion model (for details see section 3.5.4).  

However, BSA was released from cationic NPs/NCMPs formulations according to a 

dual pattern first order model and Higuchi diffusion model. A first order kinetics 

equation described the release of BSA which was not efficiently encapsulated in 
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cationic NPs and is available for dissolution from cationic NPs surface. This takes place 

immediately after introducing the formulation into the release medium (215). The 

Higuchi model describes the second and third part of the BSA release which appears to 

be a diffusion-limited process. 

The primary structure of BSA released from cationic NPs and cationic NPs/NCMPs was 

analysed by SDS-PAGE. BSA standard and the BSA released from anionic NPs and 

cationic NPs/NCMPs showed similar clear banding patterns in the gels providing 

evidence that the BSA entrapped in cationic NPs and cationic NPs/NCMPs samples 

maintained its primary structure during the preparation methods used. 

The secondary structure of BSA in the formulation was analysed using CD 

spectroscopy. Structural analysis showed that BSA was predominantly helical which is 

in good agreement with previous reports (172). The BSA released samples confirmed 

thepresenceofα-helixandβ-sheets although these were decreased in comparison with 

standard BSA (140).   

The aerosolisation studies indicated that the cationic NPs/NCMPs would reach the 

bronchial-alveolar region in the lung so cytotoxicity studies were carried out on A 549 

cell line. The cationic NPs and cationic NPs/NCMPs appear to be well tolerated by the 

cell line at 2.5 mg/ml concentration indicating a good toxicity profile. The difference in 

cell viability between cationic NPs and cationic NPs/NCMPs at the same concentration 

could be due to dilution of cationic NPs with L-leucine for spray drying. Also, the 

possibility of reaching a high local concentration can be ruled out because after 

inhalation the dose would be spread over different part of the lungs and not be 

concentrated in certain area (216). Furthermore, cationic NPs have a greater ability to 

interact with negatively charged proteoglycans on the cell surface of macrophages and 

DCs (173). Kwon et al. have showed higher delivery of cationic NPs with ovalbumin as 

model antigen to bone marrow DCs in comparison with neutral NPs while the cell 
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viability of both cationic and neutral NPs were comparable at concentrations of 125-250 

µg/mg (217). This provides an indication of the feasibility of using cationic 

NPs/NCMPs as safe carriers for pulmonary drug delivery (68). 

4.6. Conclusion 

Adsorption of CHL on PGA-co-PDL NPs can be used as a successful strategy to 

produce cationic NPs. Two strategies were used. The first strategy involved attachment 

of CHL onto the surface of the preformed NPs by physical adsorption. The second 

strategy involved addition of CHL to EAP during the process of NPs preparation by 

double emulsion solvent evaporation method. The second strategy successfully 

produced cationic NPs with a positive charge in the whole range of CHL concentrations 

examined while the first strategy failed. The adsorption of CHL on NPs complied with 

multilayer adsorption behaviour as indicated by Freundlich model. 

The cationic NPs prepared at a CHL concentration of 10 mg/ml was selected for further 

investigations in this study because it has a similar size to anionic NPs with a positive 

zeta potential. The BSA loading for this selected formulation was 7.28±1.3 µg/mg. 

After spray drying, the photomicrographs of cationic NPs/NCMPs showed irregular and 

porous microparticles. In vitro aerosolisation performance of cationic NPs/NCMP FPD, 

and FPF% were 32.51±6.67 µg and 46.79±11.21%, respectively. The cationic 

NPs/NCMPs formulations showed high BSA cumulative releases, with nearly 88.93 

±14.8% of BSA released at the end of 48 h. Further cell viability studies on A549 cells 

showed a low toxicity profile. This study suggests that cationic NPs/NCMPs could be 

further investigated for encapsulation of PspA as therapeutic antigen to be delivered 

through the lung. 
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5.1. Introduction 

Over the last decades, many researchers have explored the use of pneumococcal 

proteins as possible replacements for current pneumococcal vaccines (PPV and PCV). 

A protein-based vaccine can overcome the limitations of PPV and PCV and provide 

protection against nasopharyngeal carriage upon mucosal delivery. One of the most 

promising pneumococcal proteins is pneumococcal surface protein A (PspA) which has 

an important role in preventing the accumulation of complement on the surface of the 

bacterium which leads to inhibition of clearance and phagocytosis of S. pneumoniae 

(157). 

PspA is a surface protein located on the cell wall of all strains of pneumococci 

(Figure 5-1.A), and has an N-terminalα-helical domain exposed on the bacterial surface 

and a C-terminal choline-binding repeat region responsible for the attachment to the cell 

wall (Figure 5-1.B) (218). PspA sequences are variable, especially in the N-terminal 

domain, and have been classified into three families based on sequence homologies. 

Ninety-five percent of pneumococcal strains carry PspA of family 1 (PspA1) or family 

2 (PspA2), and there is a significant serological cross-reactivity between the different 

families (29). Moreover, PspA has been shown to provoke protective antibodies in 

humans (157).  

Recombinant protein based vaccines are often poorly immunogenic alone or in 

combination. Encapsulating PspA in polymer based particle or nanogel has been 

documented to improve its immunogenicity (35; 157). In previous chapters, the 

biodegradable PGA-co-PDL successfully encapsulated in NPs and released stable BSA.  

The mucosal surface of the respiratory system is the main entrance for S. pneumoniae. 

Delivery of a vaccine through the pulmonary route has been proposed for evoking an 

immune response at mucosal and systemic level against airborne pathogens and 

consequently may prevent colonization at mucosal surfaces (43; 42). Furthermore, the 
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stimulation of the immune system requires the successful delivery of the antigen to DCs 

which process the antigen and generate the immune response (217). Therefore 

encapsulating PspA into polymeric NPs followed by incorporation into microparticle 

carriers to produce NCMPs as DPIs is a promising vaccine delivery system.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-1: A. alignment of PspA on the cell wall of pneumococci. B. Model of 

PspA structure (with permission from (218)). 
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5.2. Aim 

The aim of this study was to formulate anionic and cationic NPs (optimum formulations 

from chapters 3 and 4) encapsulating PspA followed by incorporation into microparticle 

carriers to produce anionic and cationic NPs/NCMPs as DPIs via spray-drying suitable 

for pulmonary vaccine delivery.  

5.3. Methods 

5.3.1. Production and purification of PspA4Pro 

Recombinant PspA4Pro was produced as described in section 2.2.13. 

5.3.2. Anionic and cationic NPs preparation 

PspA4Pro loaded PGA-co-PDL anionic NPs were prepared by a previously optimised 

(w/o/w) double emulsion/solvent evaporation method as described in section 2.2.3 and 

section 2.2.4. Briefly, IAP containing 1% PspA4Pro and 1% PVA was emulsified in OP 

(DCM and 50 mg PGA-co-PDL), by sonication using a probe sonicator at 45% 

amplitude for 15 seconds over an ice bath. The resulting single emulsion was emulsified 

into 25 ml of a 1% PVA solution (EAP) using the same probe sonicator for 30 seconds 

to form a w/o/w double emulsion. The double emulsion was stirred magnetically for 2 h 

at room temperature to evaporate the DCM. The anionic NPs were collected by 

centrifugation (Sigma 3-30k, SIGMA Laborzentrifugen GmbH, Germany) at 40,000 xg 

for 1 h at 4 ⁰C, and washed with distilled water twice. Cationic NPs were prepared 

using the same method except CHL 10 mg/ml was added to the EAP. Control NPs were 

prepared using the same method but without protein. For particle uptake studies, 

fluorescein isothiocyanate (FITC-BSA) was added in the IAP. 
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5.3.3. Anionic and cationic NPs characterization 

The particle size and zeta potential, EE % and PspA4Pro loading of anionic and cationic 

NPs were characterised as described in section 2.2.7. 

5.3.4. Preparation and characterisation of NCMPs 

The anionic and cationic NPs were dispersed into L-leucine solution (1:1.5 w/w) and 

spray dried according to the spray drying condition described in section 2.2.8 to produce 

NCMPs as a dry powder for inhalation. The produced NCMPs were characterised for 

morphology as described in section 2.2.9.2. 

5.3.5. In vitro release study  

The in vitro release studies were performed as described in section 2.2.11. 

5.3.6. Investigation of PspA4Pro structure 

The released PspA4Pro was examined for primary structure stability by SDS-PAGE 

analysis and for secondary structure by circular dichroism spectroscopy analysis as 

described in section 2.2.12. 

5.3.7. In vitro antigenicity study of PspA4Pro 

The antigenicity of PspA4Pro was examined as described in section 2.2.14. 

5.3.8. Cytotoxicity study 

The DCs viability of anionic and cationic NPs was determined as described in 

section 2.2.15.2. 

5.3.9. NPs cellular uptake by DCs  

DCs uptake of FITC-BSA loaded anionic and cationic NPs was evaluated as described 

in section 2.2.16. 
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5.4. Results  

5.4.1. Characterisation of anionic and cationic NPs 

The encapsulation of PspA4Pro into anionic and cationic NPs was carried out using the 

processing parameters optimised in chapters 3 and 4. PspA4Pro loading into cationic 

particles (9.84±1.4 µg/mg) was significantly less (p<0.05, ANOVA/Tukey’s

comparison) than in anionic particles (65.73±5.6 µg/mg). The EE % of PspA4Pro into 

the anionic NPs was 75.3±6.2% which was significantly (P<0.05, ANOVA/Tukey’s

comparison) higher than the EE% of cationic particles (50.2±7.1%).The particle size of 

anionic and cationic NPs were 328.4±56.16 nm and 409.7±49.5 nm respectively, 

indicating a significantly increased particle size (p<0.05, ANOVA/Tukey’s

comparison). Table 5-1 presents the particle size, PDI, zeta potential, EE % and 

PspA4Pro loading of anionic and cationic NPs.  

 

Table 5-1: Particle size, PDI, zeta potential, EE % and PspA4Pro loading of PGA-

co-PDL NPs. Data represent mean ± SD, n=3. 

 
Anionic NPs

a
 Cationic NPs

a
 

Particle size (nm) 310.4±25.3* 409.4±49.5* 

PDI 0.302±0.02 0.418±0.06 

Zeta potential (mV) -29.20±0.9 21.30±1.3 

EE (%) 75.3±6.2* 50.2±7.1* 

PspA4Pro loading (µg/mg) 65.73±5.6* 9.84±1.4* 

a
 NPs characterised after centrifugation, * significantly different (p<0.05, 

ANOVA/Tukey’scomparison). 
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5.4.2. Characterisation of NCMPs 

The shape and surface texture of anionic and cationic NPs/NCMPs were investigated 

using SEM (Figure 5-2). Photomicrographs for both formulations showed irregular and 

corrugated microparticles. 

 

 

 

 

 

 

 

 

5.4.3. In Vitro Release Studies 

In vitro release studies comparing anionic and cationic NP/NCMPs formulations were 

performed (Figure 5-3) and reported as the % cumulative PspA4Pro released. Anionic 

NPs/NCMPs formulation showed a biphasic release profile with an initial burst release 

(14.56±1.6%) followed by a second continuous sustained release phase over 48h. 

Cationic NPs/NCMPs formulation showed a biphasic release profile with the PspA4Pro 

released at time zero (12.76±0.11 %) considered to be surface-associated PspA4Pro, the 

PspA4Pro released at the end of 4 h (66.93±1.2%) was considered as the initial burst 

phase of PspA release, followed by a second continuous sustained release phase over 

48h. The anionic NPs/NCMPs formulations showed a significantly (p<0.05, 

ANOVA/Tukey’s comparison) lower cumulative release achieving only 21.01±1.5% 

release after 48 h compared to  the cationic NPs/NCMPs formulations with nearly 

83.13±0.84% of PspA4Pro released at the end of 48 h.  

A B 

Figure 5-2: The SEM image of anionic NPs/NCMPs (A) and cationic NPs/NCMPs 

(B). 
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An in vitro release kinetics study was performed to determine the PspA4Pro release 

mechanism. Comparison of the rates of release using zero and first order and the 

Higuchi rate equations are shown in Table 5-2. PspA4Pro was released from anionic 

NPs/NCMPs formulations according to the Higuchi diffusion model (r
2
 value of 0.836, 

and the release rate constant k1 (h
-½

) was 2.1 (Table 5-2). For cationic NPs/NCMPs 

formulations, PspA4Pro was released according to a first order model r
2
 value of 0.944, 

and the release rate constant k1 (h
-½

) was 8.1 (Table 5-2).  

 
Figure 5-3: Cumulative in-vitro release of PspA4Pro from anionic and cationic 

NPs/NCMPs formulation in PBS buffer at 37°C. Data represent mean ± S.D., n=3. 

 

 

Table 5-2: Release parameters of PspA4Pro from anionic and cationic 

NPs/NCMPs formulations. 

Formulation Zero Order First order Higuchi 

r
2
 ko (h

-1
) r

2
 k1 (h

-1
) r

2
 k1 (h

-½
) 

Anionic 

NPs/NCMPs 
0.671 0.27 0.699 -0.0014 0.836 2.1 

Cationic 

NPs/NCMPs s 
0.519 0.98 0.944 -0.0097 0.723 8.1 
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5.4.4. Investigation of PspA4Pro structure 

The primary structure of PspA4Pro was investigated using SDS-PAGE analysis. 

According to Figure 5-4, the molecular weight markers are represented in Lanes 2 and 

7, and PspA4Pro standard in lane 1 revealed a clear band at about 55 KDa. The 

PspA4Pro released from anionic NPs, anionic NPs/NCMPs, cationic NPs/NCMPs and 

cationic NPs Lanes 3, 4, 5 and 6, respectively, also showed similar clear banding 

patterns to the PspA4Pro standard (Figure 5-4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

The secondary structure analysis of PspA4Pro standard and PspA4Pro released from 

anionic and cationic NPs/NCMPs was performed using CD spectral data. Figure 5-5 A 

and B shows the structure of standard PspA4Pro and PspA4Pro released from anionic 

and cationic NPs/NCMPs respectively. The CD spectra show two characteristics 

minima at 222 and 208 nm which are known to be associated with an α-helical structure 

(30). In support of these data structural analysis showed that the predominant structure 

of standard PspA4Pro, and, PspA4Pro released from anionic and cationic NPs/NCMPs 

was helical displaying 50, 51 and 45 % helicity respectively (Table 5-3). Comparing the 

    Lane   1     2     3                4     5                6     7 
MW 

KDa 
 

205 

129 

116 

97.4 

84 

 

66  

 

45 

 

 

36 

 

20 

17.5 

7.1 

 

Figure 5-4: SDS-PAGE behaviour of PspA4Pro released. Lanes represent, 

PspA4Pro standard (1), molecular weight standard markers (2, 7), PspA4Pro 

released from anionic NPs (3), PspA4Pro released from anionic NPs/NCMPs (4), 

PspA4Pro released from cationic NPs/NCMPs (5), and PspA4Pro released from 

cationic NPs (6). Difference in band intensity was due to different loading. 
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CD results of PspA4Pro released from anionic and cationic NPs/NCMPs with that of 

standardPspA4Pro,thecontentofα-helix increased by 1 and 5 %, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 

B 

Figure 5-5: The CD spectra of PspA4Pro released from anionic 

NPs/NCMPs (grey) and PspA4Pro standard (black) (A) and PspA released 

from cationic NPs/NCMPs (grey) and PspA4Pro standard (black) (A). 
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Table 5-3: The percentage of secondary structure conformation for PspA4Pro 

standard and PspA4Pro released from anionic and cationic NPs/NCMPs. 

 

5.4.5. In vitro antigenicity study of PspA4Pro 

The antigenicity of PspA4Pro released from anionic and cationic NPs/NCMPs were 

evaluated using ELISA with specific PspA monoclonal antibody and presented as 

relative antigenicity. The ELISA assay measures the ability of released PspA4Pro to 

bind and be recognized by an anti-PspA antibody. The results show that the relative 

antigenicity of PspA4Pro is maintained after release from the anionic NPs/NCMPs 

(0.95±0.14) and from cationic NPs/NCMPs (0.26±0.00). 

5.4.6. Cytotoxicity study 

The cytotoxicity of unloaded anionic and cationic NPs on DCs cell line was assessed 

after 4 h exposure using MTT assay (219). Figure 5-6 shows decreasing cell viability 

with increasing NPs concentration. The anionic NPs displayed a cell viability of 

86.38±5.5 % at 5 mg/ml concentration after 4 h exposure. On the other hand, cationic 

NPs displayed a DCs viability of 69.82±5.28 % at 5 mg/ml concentration after 4 h 

exposure. Both NPs showed cell viability more than the A549 cell viability after 24 h 

reported in section 3.4.9 and 4.4.10. This could be due to short period of exposure. 

 

 

 

 

 

 Helix Strands Turns Unordered 

PspA standared 50.0 ± 0 22.0 ± 0.014 7.5 ± 0.007 21.0 ± 0.014 

PspA released from 

anionic NPs/NCMPs  
51.0 ± 0.04 21.0 ± 0.0566 7.50 ± 0.007 21.0 ± 0 

PspA released from 

cationic NPs/NCMPs 45.0 ± 0.0212 28.0 ± 0.0212 7.00 ± 0 20.0 ± 0 
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5.4.7. NPs cellular uptake by DCs 

The uptake of FITC-BSA loaded anionic and cationic NPs by DCs was confirmed by 

CLSM. The cell wall of the DCs was stained with WGA TR, the nucleus was stained 

with DAPI and the NPs loaded with FITC-BSA were observed under red, blue and 

green channel, respectively. Regardless of the surface charge of NPs, the green 

fluorescence was seen inside DCs confirming the presence of NPs. Figure 5-7 shows 

NPs intracellular localisation inside DCs after 1 h of co-incubation in cell culture media. 
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Figure 5-6: DCs viability measured by MTT assay after 4 h exposure to anionic 

and cationic NPs. Data represent mean ± SD, n=3. 
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Figure 5-7: Confocal microscopic image of anionic NPs uptake by DCs. (A) DCs 

incubated without NPs at 20x, (B) DCs incubated with anionic NPs at 63x, and (C) 

DCs incubated with anionic NPs at 20x, and (D) DCs incubated with cationic NPs 

at 20x (red channel for WGA TR), (blue channel for DAPI), and (green channel for 

FITC-BSA). 
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5.5. Discussion 

The results obtained with BSA as a model antigen in chapters 3 and 4 were promising 

so further work was performed on PspA4Pro as a therapeutic antigen. However, it 

should be taken into account that each protein has a different molecular weight, and 

chemical structure. In this study, the optimum parameters inferred from BSA for 

PspA4Pro encapsulation into anionic and cationic NPs followed by spray drying with L-

leucine to produce NCMPs as pneumococcal protein vaccine against S. pneumonia to be 

administered by dry powder inhalation were used.  

The particle size of anionic NPs increased when CHL was incorporated (Table 5-1). The 

increase in size observed can be related to the increased viscosity of EAP due to the 

presence of CHL, which lowered the shear stress on polymer OP during sonication and 

produced larger emulsion droplets and consequently larger NPs. Also, it could be 

attributed to the presence of CHL on the surface of the cationic NPs. However, the 

CHL: PGA-co-PDL ratio in the final cationic NPs was lower than the theoretical ratio, 

due to the fact that a certain amount of CHL was remained in the EAP and removed by 

washing (212) (more detail discussed in section 4.5.1).  

Also, it could be observed that the particle size of BSA loaded anionic and cationic NPs 

(Table 4-2) were larger than the PspA4Pro loaded anionic and cationic NPs (Table 5-1).  

This could be attributed to the fact that the PspA4Pro has an elongated shape structure 

(Figure 5-1.B) and a lower Mwt (55 kDa) while the BSA has a heart shape structure 

(Figure 3-1) and larger Mwt (66 kDa) thus enhance increase in particle size of NPs. 

The efficiency of NP surface coating can be measured by estimating the zeta potential 

of the aqueous suspension containing NPs. The surface charge values may be positive 

or negative depending upon the nature of the polymer or the material used for coating. 

The zeta potential of the anionic NPs was negative, as expected, because of the 

hydroxyl end groups on PGA-co-PDL (Table 5-1). The cationic NPs were 
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electropositive confirming the presence of CHL on the PGA-co-PDL NPs surface 

Table 5-1. This could be explained by electrostatic interactions between the negatively 

charged groups of PGA-co-PDL and the positively charged CHL that induce adsorption 

of CHL onto the NPs surface. Only a fraction of the amino groups were required to 

neutralize the negative charges of PGA-co-PDL, whereas the remaining free amino 

groups were responsible for the resulting positive zeta potential (109; 211). 

The encapsulation efficiency of PspA4Pro in the anionic NPs 75.3±6.2% was 

significantly higher than for cationic NPs 50.2±7.1%. This could be explained by 

electrostatic interactions between the negative charge of PspA4Pro and the positive 

charge of CHL (214). The CHL attracts some of the PspA4Pro to the surface of the NPs 

during the preparation and hardening process, which significantly decreases the 

encapsulation efficiency (214). This was confirmed by the first initial burst release 

phase (section 0) at time 0 h which was considered as a result of loss of surface 

PspA4Pro. 

The PspA4Pro loading in anionic NPs (65.73±5.6 µg/mg) decreased substantially 

(9.84±1.4 µg/mg) when CHL was added to the EAP to produce cationic NPs. This was 

expected from predictions based on equation 1-2 in which DL is inversely proportional 

to the polymer amount (PGA-co-PDL alone for NPs and PGA-co-PDL and CHL for 

CHL-NPs) (147).  

Also, it could be observed that EE% and DL of BSA loaded anionic and cationic NPs 

(Table 4-4) were lower than the PspA4Pro loaded anionic and cationic NPs (Table 5-1).  

This could be attributed to the fact that BSA has a heart shape structure (Figure 3-1) and 

larger Mwt (66 kDa) while PspA4Pro has an elongated shape structure (Figure 5-1.B) 

and a lower Mwt (55 kDa) thus providing more space to encapsulate more protein 

inside the NPs. 
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It has been reported a dose of 1-5 µg of PspA was sufficient to stimulate an immune 

response in mice when injected intramuscularly or subcutaneously (30; 157; 220). 

However, when PspA was delivered nasally (a mucosal site) with an adjuvant (nontoxic 

A subunit mutant of cholera toxin S61F), a dose of only 100 ng was needed to stimulate 

an immune response correspondent to the response produced by oral delivery of 7.5 µg 

(221). Assuming that PGA-co-PDL particles developed in this study were delivered via 

inhalation (through mucosal site), the dose needed would be about 100 ng of PspA for 

mice which is equivalent to a dose of 4 µg of anionic NPs/NCMPs and 25 µg of cationic 

NPs/NCMPs. Also, one should consider that the dose of PspA4Pro would be changed 

when applied to human vaccination (although it would be based on the animal studies). 

The anionic and cationic NPs/NCMPs were produced via spray drying using L-leucine 

as a carrier. The photomicrograph of anionic and cationic NPs/NCMPs shows irregular 

and corrugated surface texture (for more detail and discussion see section 3.5.2). 

The higher burst release observed with the cationic NPs/NCMPs formulations at time 

zero (12.75±0.1%) compared to anionic NPs/NCMPs may be due to some of the PspA 

not being encapsulated in the particles, but instead was on the surface, due to 

interactions between the positive CHL and negative PspA, affecting the real 

encapsulation efficiencies (110). 

The in vitro release data of anionic NPs/NCMPs formulations showed a lower 

cumulative release achieving 21 % release after 48 h. The cationic NPs/NCMPs 

formulation showed higher cumulative releases, with nearly 83 % of PspA4Pro released 

at the end of 48 h. These differences in release pattern of the formulations may be due to 

a combination of factors, such as PspA4Pro loading, and presence of CHL on the 

surface of NPs (88). For both formulations the noticed change in release profile at 20-

24h after the initial burst release could be due to the distribution of PspA4Pro inside 

NPs or a change in degradation rate f NPs due to changed surface porosity (141). 
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CHL coating NPs dissolves in water and therefore does not slow down drug diffusion 

from NPs (156; 110). 

The in vitro release kinetics were studied to determine the PspA4Pro release 

mechanism. PspA4Pro was released from anionic NPs/NCMPs formulations according 

to Higuchi diffusion model. Therefore, the sustained release of PspA4Pro from anionic 

NPs/NCMPs appears to be a diffusion-limited process (66). PspA4Pro was released 

from cationic NPs/NCMPs formulations according to dual pattern first order model and 

Higuchi diffusion model. First order kinetics equation describes release of PspA4Pro 

which is not effectively encapsulated in NPs and is ready to dissolve from NPs surface. 

This is a rapid process occurring immediately after placing the formulation into the 

release medium (215). The Higuchi model describes the second and third phase of 

PspA4Pro release which appears to be a diffusion-limited process. 

The primary structure of PspA4Pro was investigated using SDS-PAGE analysis. The 

identical bands observed for PspA4Pro standard and released suggests the primary 

structure has been maintained and was not degraded or affected by the procedure. 

The secondary structure of PspA4Pro in the formulation was analysed using CD 

spectroscopy (172). The PspA4Pro released from anionic NPs/NCMPs confirmed the 

presence of α-helix structure. However, the PspA4Pro released from cationic 

NPs/NCMPs confirmed the decreased (~ 5 %) ofα-helix structure compared to standard 

PspA4Pro. This has been related to electrostatic interaction between the positive charge 

of CHL and the negative charge of PspA4Pro (172). 

The ELISA was used to examine the ability of PspA antibody to bind to PspA4Pro 

released from anionic and cationic NPs/NCMPs (30). This assay determines the ability 

of PspA4Pro released from anionic and cationic NPs/NCMPs to be identified by a 

specific anti-PspA antibody. The results indicated the relative antigenicity of the 

PspA4Pro released from anionic NPs/NCMPs was preserved. These results demonstrate 
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that PspA4Pro was not susceptible to the conformational changes as those observed 

with other proteins. However, it was observed that PspA4Pro released from cationic 

NPs/NCMPs showed 25 % of relative antigenicity. This could be attributed to changes 

in secondary structure of PspA4Pro after release and could be due to the release of CHL 

from the surface of the particles and interact with PspA4Pro released in the medium.  

The formulation is designed to target DCs so cytotoxicity studies were performed on a 

DCs cell line. The anionic and cationic NPs were well tolerated by DCs with 

approximately 90 % viability at 0.312 mg/ml which decreased to 86.38±5.5 % with 

anionic NPs and 69.82±5.28 % with cationic NPs at 5 mg/ml concentration. This 

provides an indication about the feasibility of using anionic and cationic NPs as safe 

carriers to target DCs.  

The uptake of anionic and cationic NPs by JAWS II DC cell type after 1h co-incubation 

was confirmed by CLSM. Wischke et al. reported similar results with FITC-BSA 

loaded PLGA microparticles where the FITC-BSA loaded microparticles internalized 

successfully by DCs (135). In this study the fluorescence signal visualized have not 

quantified due to non specific staining visible in some parts of the well and to prevent 

false positive data.  

5.6. Conclusion 

This study introduced a successful method for preparing anionic and cationic 

NPs/NCMPs for encapsulating and delivering PspA4Pro as a dry powder. The results 

showed reproducible size and entrapment efficiency with a good antigen loading and 

morphological characteristics. The PspA4Pro antigen entrapped in NPs preserved its 

primary and secondary structure to a large extent. The relative antigenicity (i.e. activity) 

has been retained for anionic NPs/NCMPs while less antigenicity was observed for 

cationic NPs/NCMPs. Furthermore, cell viability studies on DCs showed that the 

particles were well tolerated. DCs uptake studies provide evidence of NPs uptake by 
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DCs within 1 h of incubation. This study suggests that PGA-co-PDL NPs/NCMPs could 

be further investigated for evaluating the activity and immunogenicity of the released 

PapA4Pro.  
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6. General Discussion 
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6.1. Overview 

S. pneumoniae is one of the most significant human pathogens, causing high morbidity 

and mortality rates globally (3). It is implicated in both non-invasive diseases (e.g. otitis 

media, sinusitis, and bronchitis) which are generally non-life threating conditions, but 

lead to discomfort and loss of school or work days and invasive diseases (e.g. 

pneumonia, bacterial meningitis, and septicaemia) which are life threating conditions 

(4). There are two types of pneumococcal vaccine available: PPV and PCV. However, 

they are expensive and do not cover all serotypes (3; 4; 23; 24). Universal research is 

presently concentrated on establishing other pneumococcal-vaccine approaches that 

compromise these defects. PspA has gained a special focus because it is a surface 

protein located on the cell wall in all strains of pneumococci (29). S. pneumoniae are 

generally transmitted by air droplets or direct contact with contaminated respiratory 

secretions (7) so it is ideal to deliver the vaccine through the pulmonary route. There are 

limited studies published in literature regarding the development of a delivery system 

for PspA as a vaccine. The aim of this project was to formulate and characterise 

nanocomposite microparticles encapsulating PspA4Pro as a vaccine for the prevention 

of pneumococcal disease by dry powder pulmonary delivery. 

6.2. Optimisation of size and drug loading of NPs 

Precise adjustment of the various formulation and processing parameters is important to 

obtain NPs of a desired size and antigenloading.Inthisstudy,aparticlesizeof≤500

nm was desired to facilitate uptake of NPs by DCs (43; 98; 156). BSA was used as a 

model antigen and Taguchi experimental design was applied to optimize the double 

emulsion solvent evaporation method to achieve desired size and loading.  

It was found that the NPs size was influenced by different parameters in the following 

order: polymer mass > OP volume > sonication amplitude > surfactant concentration > 

EAP sonication time IAP sonication time > IAP volume > BSA concentration. While 
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the influence on BSA loading had the following order: BSA concentration > IAP 

volume > polymer mass > surfactant concentration > OP volume > EAP sonication time 

> sonication amplitude > IAP sonication time. 

It was found that that the polymer mass followed by the OP volume and sonication 

amplitude had the greatest influence on the particle size of NPs. 

In general, an increase in the mass of substances used will increase the particle size. 

This effect of the polymer mass on the particle size attributed to the increased viscosity 

of the OP leading to a less efficient stirring of the medium and to increased NPs 

coalescence (144). Also, a low OP volume produces a concentrated and viscous 

polymer solution therefor it is more difficult to break up the polymer solution into 

smaller droplets during the second emulsification (222). This size increase was also 

observed with PLGA protein-loaded NPs, when using a double emulsion solvent 

evaporation method. When the polymer mass increased from 200 mg to 400mg the 

particle size increased from 207±6 nm to 1090±210 nm (143). The presence of high 

concentrations of the surfactant (PVA) in the IAP leads to increase in the viscosity of 

the primary emulsion (w/o) and lead to the formation of larger particles. Yang et al. 

investigate the effects of the presence of PVA into the IAP on the different 

characteristics of BSA loaded PCL microspheres. They noticed that at higher 

concentrations of PVA in the IAP the viscosity of the primary emulsion increased and 

lead to difficulty in breaking up the emulsion into smaller droplets (222). A similar 

result was reported in previous study in which the size of IgG loaded PCL microspheres 

increased with the presence of PVA in the IAP (223). 

Furthermore, the rate of size reduction decreased considerably when sonication was 

carried out beyond the amplitude of 45 % or when the EAP and IAP sonication time 

increased. This effect could be attributed to more cavitation created by increasing the 

amplitude, which reduced the efficiency of energy transmission and decreased the 
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ultrasonic effect (145). Similar results reported by Ito et al. who found that the particle 

size of PLGA microspheres was not affected by stirring time period (224). In contrast to 

Yang et al. who found that the speed of stirring is the predominant factor affecting 

particle size of PCL: PLGA microspheres encapsulating BSA (222). 

A successful drug delivery system should have a high loading capacity in order to 

decrease the amount of drug and excipients used for manufacturing the delivery system. 

(143). The influence of different parameters on the DL of NPs had the following order: 

BSA concentration>IAP volume > polymer mass > PVA concentration > OP volume > 

EAP sonication time and IAP sonication time > sonication amplitude. While the effect 

on the EE % had the following order: polymer mass > PVA concentration BSA 

concentration > IAP volume > OP volume > EAP sonication time and IAP sonication 

time > sonication amplitude. 

BSA concentration had the greatest influence on the DL. The DL increased profoundly 

as the BSA concentration increased from 0.2 to 1 %. This was expected from 

predictions based on equation used for DL calculation in which DL is positively 

proportional to the amount of BSA. Similar results were reported in literatures. Bilati et 

al. prepared FITC-BSA loaded PLGA NPs at different concentrations. When FITC-

BSA concentration increased the DL increased subsequently (143). Also, Youan et al. 

fabricated PCL microparticles using the w/o/w emulsion solvent evaporation method 

and BSA as a model drug. When the BSA: polymer ratio increased from 5:100 to 

37.5:100, an increase in BSA loading (11.8 times higher) was reported (225). 

Also, BSA concentration was the third factor that affects EE %. The EE % of BSA 

increased when BSA concentration increased from 0.2 to 0.5% but interestingly it 

decreased considerably as the BSA concentration increased further to 1%. In fact, an 

increase in BSA concentration to high levels (1 %) is not always beneficial; this trend 

has been explained by the amount of polymer used being insufficient to completely 
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encapsulate the BSA (143). Furthermore, higher concentration of BSA provide a higher 

BSA concentration in IAP droplets and thus increase the concentration gradient between 

the IAP droplets and the EAP and so increases the amount of BSA transported into the 

EAP (153). Yang et al. reported similar results. They prepared PCL: PLGA 65: 35 

microspheres encapsulating BSA. At higher BSA theoretical loading (0.57 to 4.8 %), 

the EE % decreased significantly (79.1 to 55 %) (222). 

IAP volume played an important role on DL and EE %, such that, the larger the volume 

of IAP used, the higher the BSA loading. This effect has been previously reported (147; 

152) and is thought to be due to a decrease in the concentration gradient between IAP 

and EAP. In contrast, Youan et al. found that an increase of IAP volume (0.25 to 1.25 

ml) lead to decrease in BSA EE % and loading (70 times lower) (225). 

The third factor affecting DL was polymer mass. DL decreases substantially with 

increasing polymer mass, as it was expected from predictions based in the respective 

equation 2-1 in which DL is inversely proportional to the polymer amount (147). 

Similar observation was reported by Baras et al. They found that the DL of BSA 

decreased with an increase in PCL concentrations. At a 0.5 % (w/w) concentration of 

PCL a 24 % BSA loading were obtained while at 3 % (w/w) concentration of PCL the 

BSA loading decreased to 3 % (w/w) (226). 

On the other hand, the polymer mass had the greatest influence on EE % of BSA. This 

could be correlated with the increased mass of the polymer resulting in a further 

stabilization of the primary emulsion and limiting the diffusion of BSA through and out 

of the OP due to higher viscosity of the OP (92). Similar observations were reported by 

Devineni et al. They found that the BSA EE % for microparticles prepared by 4 and 8% 

(w/v) PCL concentrations increased from 12 to 25% (227). In contrast, Baras et al. 

reported that the EE % of BSA decreased with an increase in PCL concentrations. At 

0.5 % (w/w) concentration of PCL a 73 % BSA encapsulation efficiency were obtained 
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while at 3 % (w/w) concentration of PCL the BSA encapsulation efficiency decreased to 

42 % (226). 

The fourth factor affecting DL was PVA concentration. Among the PVA concentrations 

used, 1 % PVA was found to result in a considerably higher BSA loading. One possible 

explanation is that 1% PVA concentration provided sufficient covering of the 

organic/aqueous interface so as to reduce possible leaching of the BSA. Consequently, 

any further increase in PVA concentration (5, 10 %) resulted in more BSA molecules 

partitioning rapidly into the aqueous phase during the emulsification procedure due to 

the emulsifying effect of PVA, resulting in decreased DL (146). Although the PVA 

concentrations ranked the second factor affecting EE % but there effects on EE % were 

similar to DL. Mao et al. reported similar results when preparing PLGA microspheres 

by double emulsion solvent evaporation method using PVA as a surfactant. When PVA 

concentration increased (0.1 to 0.5%) the results shows no further increase in DL and 

EE % (148). In contrast Yang et al. reported that increasing PVA concentration (from 

0.025 to 0.05 to 0.1 %) of the IAP results in an increase in EE % and loading of BSA 

encapsulated PCL microsphere (222).  

In addition, the results showed that reducing the OP volume increased DL and EE%. 

This could be due to the higher viscosity of the organic phase leading to a further 

stabilization of the primary emulsion and minimize the diffusion of BSA through the 

OP. This was consistent with Baras et al. who observed that the use of a lower OP 

volume leads to a significant increase in the BSA EE % (from 7 to 13 %) (226). 

EAP sonication time and IAP sonication time exert similar effects on DL and EE%. 

Increasing the sonication time of IAP and EAP resulted in higher encapsulation 

efficiency % and DL. These results were consistent with the results obtained by Bilati et 

al. They reported that increasing sonication time of IAP up to 30 seconds increased 

loading efficiency of BSA loaded PLGA microspheres (143). 
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The factor that has the least effect was sonication amplitude. Increasing sonication 

amplitude (30 to 45 or 65%) had almost no effect on the BSA encapsulation efficiency 

% or DL. This effect have been reported in literature and is thought to be caused by a 

BSA precipitation within the sonication probe due to high pressure and increased fluid 

cavitations during sonication (136; 149). Similar results were obtained by Bilati et al. 

They reported that increasing sonication intensity from 35 to 65 W increased loading 

efficiency of BSA loaded PLGA microspheres (143). 

From the suggested optimized run produced NPs (HDL NPs) with DL 43.67±2.3 

µg/mg, particle size of 445±46.8 nm and zeta potential of –17.44±1.2 mV was selected 

for further investigations. 

6.3. Optimisation of size, drug loading and charge of cationic NPs 

Cationic NPs are effectively taken up by DCs. The ionic interaction between the 

positive charge on the particles surface and the negative charge on cell surface generates 

a successful bond and promotes particle uptake (87). Furthermore, cationic NPs have 

greater ability to interact with the proteoglycans on the surface of macrophages and DCs 

(173). Incorporation of cationic polymers such as chitosan or chitosan derivatives have 

been shown to enhance uptake of antigens by DCs and subsequently induce a strong 

immune responses (174). CHL adsorption to PGA-co-PDL NPs was used as a 

successful strategy to produce cationic NPs. In this study two strategies were used to 

adsorb CHL to NPs. The first strategy involved adsorption of CHL onto the surface of 

the already formed NPs by physical adsorption. The second strategy involved addition 

of CHL to EAP during the process of NPs preparation by double emulsion solvent 

evaporation method. 

In the first strategy, different concentrations of CHL were used with and without 1% 

PVA. When 1% PVA was used, upon addition of CHL, the zeta potential changed from 

negative to neutral regardless of CHL concentration. This was due to the ability of the 
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PVA layer to screen CHL charges leading to an almost neutral zeta potential value 

(228). These results were consistent with previous work carried out by Mura et al. They 

prepared PLGA NPs by emulsion solvent evaporation method and in the presence of 

PVA in EAP the fabricated NPs had neutral zeta potential (211).  

When PVA was not included the zeta potential changed from negative to neutral at 

lower CHL concentrations ( 4 and 8 mg/ml) but at higher CHL concentrations (20 and 

30 mg/ml) the zeta potential changed to positive. Chronopoulou et al reported similar 

pattern with chitosan coated PLGA NPs, in the case of lower concentration, the relative 

PLGA and chitosan concentrations correspond to a concentration close to the one of the 

isoelectric condition, justifying the finding that the zeta potential of the resulting coated 

PLGA NPs was very close to zero and then at higher concentration inverts its charge, 

indicating that the adsorbed chitosan reversed the NPs charge (110). At the highest 

concentration of CHL tested (34 mg/ml) the NPs surface charge was neutral, probably 

because of the high viscosity of the CHL solution and steric hindrance created by CHL 

molecules in the solution which would decrease the efficiency of adsorption (111; 229).  

The particle size increased significantly when the concentration of CHL increased to 8 

mg/ml. The increase in particle size has been attributed to either the increased viscosity 

of the CHL solution, which lowered the shear stress on NPs during stirring, and/or the 

increasing amounts of CHL on the surface of the NPs (212). Similar results reported by 

Yuan et al (212). It was reported that the NPs size increased (182 to 543 nm) with the 

increase of initial chitosan concentration (0 to 0.17%). However, at CHL concentration 

of 20 and 34 mg/ml there was no significant change in particle size. This indicated a 

complete coating of CHL on the surface leading to CHL molecules repelling each other, 

preventing particle aggregation and hence an increase in particle size (111).  
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At the same concentration of CHL there was no effect of different PVA concentration 

on the particle size. But when no PVA was used the particle size increased significantly 

this is because the PVA is known to prevent particle aggregation (80). 

The second strategy produced successfully CHL-NPs with positive charge in the whole 

range of CHL concentrations examined (2, 4, 6, 8, 10, 16, 20 mg/ml) while the first 

strategy failed to.  

The zeta-potential of cationic NPs increased with CHL feed concentrations until a zeta-

potential plateau was reached at approximately +24 mV (CHL concentration of 

approximately 16–20 mg/ml). This could be indicative of saturation in adsorption of 

CHL on the NPs (191; 111; 212). The particle size of cationic NPs was different with 

two groups of NPs present regardless of CHL concentrations. The particle size of 

cationic NPs increased significantly at low concentration of CHL ranging from 2 to 4m 

g/ml. This could be attributed to the increased viscosity of CHL, lowering the shear 

stress of the OP during sonication producing larger emulsion droplets and subsequently 

larger NPs (212). Higher concentrations of CHL (6, 10, 16 mg/ml) the particle size did 

not change significantly. This has been attributed to a complete coating of the NPs by 

CHL molecules so additional CHL would repel each and prevent particles aggregation.  

Similar results were reported by Guo et al. Cationic PLGA NPs were produced by 

adsorption of different chitosan concentrations (0–2.4 g/L) on PLGA, via double 

emulsion solvent evaporation method. They found that the NPs size increased from 

261.5 nm to 972.7 nm with increase in chitosan concentration from 0 to 2.4 g/L. These 

increase in size accompanied by increase in zeta potential from - 20.3 to +55 mV which 

confirm the adsorption of chitosan on PLGA NPs (111). 

Also, the pattern of change in particle size when CHL was added to the EAP was 

similar to that when CHL was added after NPs formation. It was observed that all 

cationic NPs regardless of preparation method displayed a neutral or positive charge 
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that could be due to electrostatic interactions between the negatively charged groups (-

OH) of PGA-co-PDL and the positively charged CHL inducing adsorption of CHL onto 

the NPs surface. Also, the change in zeta potential need a small ratio of the amino 

groups to neutralize the negative charges of PGA-co-PDL while the reset of free amino 

groups could be reason behind the change in zeta potential (211; 230). 

As the concentration of CHL increased the amount of adsorbed CHL per mg of NPs 

increased over the entire range of CHL concentrations examined (0–20 mg/ml) and 

there was no plateau of adsorption was reached. In contrast, the zeta potential did not 

change with increased amount of CHL adsorbed on the NPs at high concentrations of 

CHL (greater than approximately 16–20 mg/ml). This could be attributed to the multiple 

layers model of CHL adsorption on NPs. In this model only a small ratio of CHL 

influenced the zeta-potential (the first few layers) and the layers after do not change the 

zeta-potential due to the apparent surface charge (amine groups) per unit area is 

constant (111). 

The second strategy was selected to examine CHL adsorption onto NPs and to explain 

the mechanism of adsorption because it gave positive zeta potential over the entire 

range of CHL concentrations examined. The four adsorption isotherms (Langmuir, 

BET, Freundlich, and Halsey) models evaluated to describe the adsorption mechanism 

of CHL onto NPs. It was found that the adsorption of CHL on NPs complied with 

multilayer adsorption pattern irrespective of which model was examined. The leading 

factor particularly in the development of the first adsorption layer was electrostatic force 

between CHL (with positive charge) and PGA-co-PDL surface (with negative charge).  

When the CHL concentration increased it is likely that the following layers of CHL 

adsorbed on the first layer of CHL without interaction with the NPs surface. When more 

CHL layers adsorbed the CHL molecules would repel each due to similar charge other 

because of the same charge however CHL molecules interacted via hydrogen bonds, 
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hydrophobic interactions, and van derWaal’s forces. Mainly, the NPs great surface 

energy and surface area had a significant function in CHL multilayer adsorption (111). 

The cationic NPs prepared at a CHL concentration of 10 mg/ml was selected for further 

investigations in this study because these particles had a similar size (480.23±32.2 nm) 

to the anionic NPs. 

6.4. Preparation and characterisation of PspA loaded anionic and 

cationic NPs 

When the optimised conditions applied for the preparation of PspA encapsulated NPs 

the particle size of anionic NPs was 310.4±25.3 nm and for cationic NPs was 

409.7±49.5 nm. The presence of CHL increased the particle size significantly and 

changed zeta potential of anionic NPs (-29.17±0.09 mV) to positive (+21.33±1.2 mV).  

The EE % of Psp4ProA in the anionic NPs was 75.3±6.2% and it was significantly 

higher than EE% of cationic NPs 50.2±7.1%. Also, the PspA4Pro loading in cationic 

NPs (9.84±1.4 µg/mg) decreased significantly in comparison with anionic NPs 

(65.73±5.6 µg/mg). Similar results reported by Anish et al. (157). They prepared PLA 

microparticles encapsulating PspA using double emulsion solvent evaporation method. 

The EE % of PspA obtained ranged from 43 to 78 % and PspA loading of 2.5 to 3.67 

µ/mg (157). 

The dose of PspA in range of 1-5 µg has been shown to be sufficient to evoke immunity 

in mice when delivered intramuscularly or subcutaneously (30; 157; 220). On the other 

hand, when PspA was delivered through nasal route (i.e. mucosal site) with an adjuvant, 

only a dose of 100 ng was needed to stimulate immunity compared to the immunity 

produced by oral delivery of 7.5 µg (221). Assuming that PGA-co-PDL NPs/NCMPs 

developed in this study were to be delivered by inhalation (through mucosal site), the 

PspA dose would be about 100 ng for mice, which is equivalent dose of 4 µg of anionic 

NPs/NCMPs and 25 µg of cationic NPs/NCMPs. In addition, one should consider that 
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the dose of PspA4Pro would be changed when apply to human vaccination (although it 

would be based on the animals studies). 

The anionic and cationic NPs appear to be well tolerated by DCs. This provides an 

indication about the feasibility of using anionic and cationic NPs as safe carriers to 

target DCs.  

The uptake of anionic and cationic NPs by JAWS II DCs cell line after incubation for 1 

h was confirmed by CLSM. There was good agreement between particle size (around 

200 and 445 nm) and the ability for an uptake by DCs (89; 135). 

Similar results reported by Foged et al. (89). They examined the DCs uptake of a wide 

size range and surface charge characteristics of model fluorescent polystyrene particles. 

They found that the optimal size of particles for efficient uptake by DCs was 500 nm 

and below. Also, they found that the larger particles uptake enhanced by modifying the 

surface charge (89). 

So we may conclude that anionic and cationic NPs are efficiently ingested by DCs and 

could be applied for the delivery of antigens to DCs.  

6.5. Optimisation of spray drying of NPs into NCMPs  

The PGA-co-PDL NPs were dispersed into L-leucine solution and spray dried to 

produce NCMPs carriers suitable for pulmonary delivery via DPIs. The Taguchi 

experimental design was applied to evaluate the influence of the spray drying 

parameters on the yield % of NCMPs powder and the order was as follows: the feed rate 

> aspirator capacity > air flow rate > inlet drying temperature > the feed concentration. 

The highest yield (Run H, 50.96±2.26 %) was obtained when the suggested 

combinations were as following: the feed rate= 10 %, aspirator capacity= 100 %, air 

flow rate=400 L/h, inlet drying temperature= 100 ºC, the feed concentration= 12.5 

mg/ml.  



 

168 
 

The most important factor was feed rate at 15 %, the atomizing air may not be able to 

penetrate the stream of liquid. Consequently, insufficient atomization and drying may 

cause deposition of a large amount of NCMPs on the walls of the drying chamber and 

the cyclone separator (161). Similar observation was reported by Motlekar et. al. (161). 

They found that the high feed rate (25 %) of the spray suspension lead to almost no 

yield of dry powder (161). 

 The second important factor was aspiration as a high aspirator flow rate created greater 

centrifugal force leading to an increase in the collection efficiency (162). Airflow can 

have a negative effect on powder yield % at high spray flow small droplets are 

produced, which are collected less efficiently by the centrifugal force (162). Shi and 

Hickey optimised spray drying condition to prepare PLGA microparticles suitable for 

inhalation. They found that the airflow and aspirator capacity had significant effect on 

the yield of dry powder. Where the airflow had negative effect, showing that powder 

yield decreased with the increase of the airflow while the aspirator capacity had positive 

effect, showing that powder yield increased with the increase of the aspirator capacity 

(162).  

The inlet temperature of drying air had considerable effects on the yield of dry powder. 

It was noticed that as inlet temperature increased from 50 to 100 ºC this resulted in an 

increased powder yield. It has been reported that high inlet temperature can reduce the 

drying time and inhibit particle aggregation (163). Furthermore, a higher inlet 

temperature promotes a decrease of residual moisture by enhancing water evaporation 

resulting in less particles stick in the drying chamber (164).  

Also, it was observed that the change in the concentration of total solid in the spray 

dried suspension showed no improvement in the yield of dry powder. This observation 

was in contrast to the results reported by Jensen et al. were they found that as the 
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concentration of solid in the suspension increased the yield of dry powder increased 

(92). 

Optimum conditions for the production of the highest yield% of dry powder resulted in 

50.96±2.26 % of NCMPs (92). 

Photomicrographs of NCMPs showed irregular and porous microparticles. This 

occurred due to excessive build-up of vapour pressure during water evaporation in the 

spray drying process and occurs with hydrophobic amino acids, such as L-leucine, for 

improved aerosolisation performance (100; 165; 169). These observations were in 

contrast to results reported by Tawfeek et al (66). They produced PGA-coPDL/L-

leucine microparticles with smooth surface.  

Anionic NPs/NCMPs produced a higher FPD, and FPF % 45.00±4.70 µg and 78.57±0.1 

%, respectively, than cationic NPs/NCMPs 32.51±6.67 µg and 46.79±11.21 %, 

respectively. This could be attributed to incomplete powder de-aggregation as van der 

Waals forces between particles were not completely overcome upon inhalation despite 

the low density of the particles. In addition, powder aggregation of cationic 

NPs/NCMPswasconfirmedwithaCarr’s indexof≥32, indicating the flow was very 

poor (66). Similar results were reported previously where PGA-co-PDL/L-leucine 

NCMPs aerosolisation studies showed FPF% of 76.95±5.61% (68). 

As the anionic and cationic NPs/NCMPs deposition in term of MMAD will reach 

bronchial-alveolar region in the lung, cytotoxicity studies were carried out on A 549 cell 

line. The anionic and cationic NPs/NCMPs appear to be well tolerated by the cell line at 

2.5 mg/ml concentration indicating a good toxicity profile. This provides an indication 

about the feasibility of using anionic and cationic NPs/NCMPs as safe carriers for 

pulmonary drug delivery (68).  
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6.6. Investigation of In vitro release of protein  

In vitro release studies of NPs/NCMPs formulations showed biphasic release profile 

with a first initial burst release followed by a second continuous sustained release phase 

over 48h. In the cationic NPs/NCMPs formulations the observed high-burst release at 

time zero (22.41±6.7%) could be explained by the majority of the BSA being adsorbed 

onto the surface (110). Also, the cationic NPs/NCMPs formulations showed a higher 

cumulative BSA release at the end of 48 h compared to anionic NPs/NCMPs. These 

differences in release patterns may be due to a combination of factors, such as BSA 

loading, and presence of BSA on the surface of the NPs (152). Similar results reported 

by Wang et al. (230). They found that chitosan modified PLGA NPs showed higher 

burst release of the drug than the PLGA NPs.  

For both formulations the notable change in release profile at 20-24h after the initial 

burst release could be due to the distribution of BSA inside NPs or a change in 

degradation rate due to changed surface porosity (152). Furthermore, it is worth noting 

that CHL adsorbed on NPs dissolves in water and therefore does not hinder drug 

diffusion from the NPs (156; 110). These results were consistent with results reported 

by Gupta et al. where they found that poly-ω-caprolactone and chitosan coated poly-ω-

caprolactone NPs had similar in vitro percentage cumulative release of hemagglutinin 

protein irrespective of presence of chitosan coat on NPs surface (54).  

A study of the in vitro release kinetics was carried out to determine the mechanism of 

BSA release. BSA was released from anionic NPs/NCMPs formulations according to 

the Higuchi diffusion model. However, BSA was released from cationic NPs/NCMPs 

formulations according to a dual pattern first order model and Higuchi diffusion model. 

A first order kinetics equation described the release of BSA which was not effectively 

encapsulated in cationic NPs and is readily to dissolve from cationic NPs surface. This 

was a rapid process occurring immediately after introducing the formulation into the 
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release medium (215). The Higuchi model describes the second part of the BSA release 

which appears to be a diffusion-limited process. 

The in vitro release data of anionic and cationic NPs/NCMPs formulations showed 

similar results with PspA4Pro encapsulated. 

6.7. Investigation of structure and relative antigenicity of released 

protein  

In this study the released BSA and PspA4Pro from anionic and cationic NPs/NCMPs 

maintained their structure and preserved its activity. The BSA and PspA4Pro released 

maintained their primary structure and was not degraded or affected by the procedure. 

The secondary structure of BSA and PspA4Pro released from anionic NPs/NCMPs 

confirmed the presence of α-helix. However, the BSA and PspA4Pro released from 

cationic NPs/NCMPs confirmed the presence of decreased α-helix (8.5 and 5 %, 

respectively) compared to standard BSA and PspA4Pro. This could be due to 

electrostatic interaction between positive charge of CHL and negative charge of BSA 

and PspA4Pro (172). This relative low decrease in α-helix content has also been 

reported in literature (140; 231; 232). 

The relative antigenicity of the PspA4Pro released from anionic NPs/NCMPs was 

preserved. These results demonstrate that PspA4Pro was not susceptible to formulation 

parameters induced conformational changes as those observed with other proteins. 

However, it was observed that PspA4Pro released from cationic NPs/NCMPs showed 

25% of relative antigenicity. This could be attributed to changes in secondary structure 

of PspA4Pro after release.  
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7.1. Future work 

These results would be helpful in improving optimised processes for producing 

polymeric particles to enhance the immunogenicity and stability of protein antigens. 

The selected formulations encapsulating PspA4Pro have been provided to Instituto 

Butantan, Brazil to examine the activity, immunogenicity, and pneumococcal challenge 

in vivo (233).  

Moreover, the immunogenicity of the formulation can be examined by measuring the up 

regulation of MHC II, CD 40, CD 80, CD83, and CD86 surface markers expressed on 

DCs surfaces by flow cytometry. 

The biological activity of PspA4Pro released from anionic and cationic NPs/NCMPs 

can be evaluated by Escherichia coli killing assay (30). This assay depends on the role 

of apolactoferrin as bactericidal. The function of PspA in pneumococcal infection is to 

interact with apolactoferrin and avoid its bactericidal action. Shortly, the E. coli culture 

will be grown to early log growth phase then it will be inoculated at predetermined 

number in a microtiter plate. Apolactoferrin will be dissolved in medium at a selected 

concentration, followed by the addition of control PspA or PspA released from 

NP/NCMPs. Then E. coli will be added. After overnight incubation colony forming 

units will be detected by counting colonies grown on plates. The log colony forming 

units killed will be figured out by subtracting the experimental readings from control 

bacteria cultures grown under the same conditions.  

The bio distribution of PspA after inhalation can be examined by radioisotope counting 

assay (35). Briefly, PspA will be labeled with indium chloride via N-terminalandε-Lys 

amino groups, using diethylenetriaminepentaacetic acid then it will be delivered alone 

or as a complex with the formulation. The radioisotope counts in the body tissue 

(mouth, olfactory area, nasopharynx, bronchi, and lungs) at 0.5, 1, 4, 8, 20, and 40 h 

after inhalation will be evaluated with a γ-counter.  
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Further studies will evaluate the long term stability of the dry powder formulation at 

various temperature and humidity conditions. Stability of the formulation at ambient 

conditions is beneficial in order to prevent cold-chain requirements, avoid moisture 

adsorption which can lead to powder aggregation and poor flow and aerosolisation 

behaviour; moreover it will affect the stability and integrity of PspA4Pro. The stability 

of the dry powder will be examined using DSC and X-ray powder diffraction to 

determine changes in the crystallinity of the particles. PspA4Pro stability, integrity and 

activity will be evaluated by SDS-PAGE, CD and lactoferrin assay, respectively (30). 

Moreover, the biochemical response of NPs/NCMPs dry powder administered via 

inhalation into rat lung (in vivo) can be assessed. The potential inflammatory reactions 

will be evaluated by testing the following factors: lung fluid protein activity, lactate 

dehydrogenase activity, and existance of inflammatory polymorphonuclear cells (234).  

Briefly, the bronchoalveolar lavage fluid samples will be added to Coomassie- plus 

protein assay reagent and will be measured by spectrophotometer at 595 nm. The 

amount of total protein will be calculated by using a standard curve prepared with BSA 

(234).  

To examine lactate dehydrogenase activity in bronchoalveolar lavage fluid, samples will 

be centrifuged; then, the supernatant will be added to NADH in Tris/NaCl solution, 

followed by the addition of pyruvate solution. Lactate dehydrogenase activity was 

evaluated by kinetic measurements (234). 

To evaluate the existance of inflammatory polymorphonuclear cells the bronchoalveolar 

lavage fluid samples will be centrifuged and the pellet will be dissolved in saline then it 

will be stained with Diff-Quik and examined by light microscopy to identify 

macrophage and polymorphonuclear cells (234). 
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Appendix- 1 

SDS-PAGE analysis of protein integrity 

Sodium dodecyl sulfate poly (acrylamide) gels (10 cm W × 8 cm L × 0.5 mm thick) 

were freshly cast for all experiments. The resolving layer solution prepared using 6 mL 

protogel solution (to produce a final acrylamide concentration of 7.5%), 5 mL resolving 

buffer, and 8.78 mL water. Polymerizationwas initiated by adding 100 μl of freshly

prepared 10% ammonium persulfate (APS) and 10 μl N, N, N`, N`,-tetramethyl 

ethylenediamine (TEMED). Then the solution was poured between the gel casting 

plates and allowed to set for 15 minutes. The stacking layer gel was prepared using 1.3 

mL protogel solution (to produce 4% acrylamide final concentration), 2.5 mL stacking 

buffer, and 6 mL water. Polymerization was initiated by adding 50 μl of freshly

prepared10%APSand10μlTEMED.Thenthesolutionwaspouredbetweenthegel

casting plates to the top of plates and the comb inserted between the plates. The gel was 

allowed to polymerise for 15 minutes then the comb gently removed. The gel was then 

placed into the electrophoresis tank, filled with fresh (10X) Tris-glycine-SDS Buffer. 

Protein samples and standard were treated with protein loading buffer in a ratio (1:1) for 

3 min at 95°C. The protein molecular weight marker, standard, and samples were 

loaded into the wells (25 µl per well). The gel was transferred to colloidal Coomassie 

Brilliant Blue stain (to stain the protein band) and placed on a shaker for 24 h. Then the 

gel was rinsed with water and placed on the shaker for a further 24 h (to destain the gel).  
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Abstract: Growing demands on a suitable formulation method that ensures the stability of the active compound coupled 

with the limitations of current methods (milling, lyophilization, spray drying, and freeze spray drying) has brought wide 

attention to supercritical fluid (SCF) technology. Advantages of using the SCF technology comprise its high abilities, 

adaptability in providing alternative processing methods, high compressibility and diffusivity of the supercritical fluid, ca-

pability as an alternative for conventional organic solvents, and the option to attain different processing parameters which 

would be otherwise difficult to conduct with traditional methods. This review proposes to present an up-to-date outlook on 

dry powder pulmonary formulations of macromolecules using SCF technology.  

Keywords:  Dry powder, inhalation, macromolecules, microparticles, peptide, protein, super critical fluid. 

1. INTRODUCTION 

 Over the past two decades a rapid growth of innovative 
technologies for producing novel therapeutic agents has 
arisen. This growth has mostly been initiated by the discov-
ery of new therapeutic agents, such as macromolecules, to-
gether with an increased understanding and knowledge of 
pathophysiology [1]. Consequently, novel macromolecules 
(also known as biotechnology-derived pharmaceuticals, bio-
therapeutics, or biological drugs and include recombinant 
therapeutic proteins, monoclonal antibody based products 
and nucleic acid-based medicinal products) can now be pro-
duced with preferential selectivity for definite targets [1, 2]. 
To date many macromolecule based drugs are in clinical 
trials or at approval phase (Table 1) [3]. Over the past decade 
pharmaceutical research and development has been focused 
on developing macromolecules for treatment of many dis-
eases, and are preferred due to their greater selectivity; lower 
disruption of normal biological processes; effective substitu-
tional therapy in mutated or deleted normal protein and less 
clinical development time in addition to a shorter FDA ap-
proval period [4,5]. 

 However, most of these macromolecules must be admin-
istered repeatedly using an invasive manner to reach a thera-
peutic concentration, even though these procedures would be 
painful to the patients [6-8]. As an alternative to repeated 
injection, pulmonary inhalation could enhance macromole-
cule administration because it is a non-invasive technique for 
local and systemic drug delivery. The lungs own many fa-
vorable features, including large surface area for absorption, 
highly vasculatures, thin epithelium in the alveolar tissue and 
short path of gas–blood exchange movement [8].  
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However, formulating macromolecules into suitable pulmo-
nary delivery systems remains a challenge.  

 A variety of micro/nanoparticulate systems such as 
polymer based micro/nanoparticles, liposomes and solid lipid 
micro/nanoparticles have been used for the encapsulation of 
macromolecules serving specific therapeutic purposes such 
as controlled release or targeted drug delivery. Major con-
cerns on the formulation method of macromolecules must be 
addressed when dealing with these molecules [7]. The stabil-
ity and biological activity of macromolecules are extensively 
dependent on their entire structures, and can be easily altered 
by physical means (e.g. denaturation, adsorption, or nonco-
valent aggregation) or chemical means (e.g. oxidation, 
deamidation, or peptide cleavage). The impact of modifica-
tions can be very complicated (losses in therapeutic activity, 
changes in absorption, biodistribution, elimination, toxicity 
and immunogenecity). In addition, these intact structures are 
important characteristics which have impact on the physico-
chemical properties of the final therapeutic products, espe-
cially in the case of pulmonary drug delivery that require 
careful manipulation of the particle size, shape, density, and 
surface properties (Table 2). Many different routes are em-
ployed to achieve solid-state formulations, including milling, 
freeze drying (lyophilization), spray drying (SD), and spray–
freeze drying (SFD) (Table 3). 

 Growing demands on a suitable formulation method that 
ensures the stability of the active compound coupled with the 
limitations of current methods (milling, lyophilization, spray 
drying, and freeze spray drying) brought wide attention to 
supercritical fluid (SCF) technology [2]. SCF are gases and 
liquids above their critical pressure (Pc) and critical tempera-
ture (Tc), and under these conditions, the molecules exhibit 
the flow, polarity, and solvency properties common of liq-
uids but have the diffusion and reactivity characteristics of 
gases. SCF technique can be performed using carbon dioxide 
(CO2), water, propane, acetone, nitrous oxide (N2O),
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Table 1. Examples of Therapeutic Macromolecules being Investigated for Systemic Delivery via the Pulmonary Route 

Type Active Agent Disease Ref. 

Erythropoeitin Anaemia [15] 

Insulin Diabetes [15] 

Parathyroid hormone Osteoporosis [14, 15] 

Cetrorelix LH-RH antagonist [15] 

Follicle stimulating hormone Fertility treatment [15] 

Hormone 

LH-RH analogues Endometriosis, prostate cancer [15] 

Sargramostim Sarcoma [15] 
Growth factor 

Growth hormone releasing factor Pituitary dwarfism [14] 

Blood derivative Immunoglobulin Trigger/modulate immune response [15] 

Interferon-beta Interferon Multiple sclerosis [14, 15] 

Calcitonin-salmon Osteoporosis [14, 15] 

Heparin Inhibit thrombosis [14, 15] Natural extract 

Cyclosporine immunosuppression [15] 

Recombinant protein Human recombinant F.IX Hemophilia B [15] 

HBsAg Hepatitis B [16] 

P30B2, (NANP)6P2P30 Malaria [16] 

SPf66 Malaria [16] 

Hemagglutinin Influenza [16] 

Mtb8.4 peptide Tuberculosis [16] 

HLA-A*0201 plasmid Tuberculosis [16] 

Diphtheria toxoid Diphtheria [16] 

Tetanus toxoid Tetanus [16] 

Vaccine 

Formalin- inactived rotovirus Rotavirus [16] 

 
Table 2. Product Parameters and Pharmaceutical Considerations in Drug Product Design 

Parameter Importance/Effect Ref. 

Particle size and distribution 

Precise targeting 

Content uniformity 

Rates of dissolution, 

Rates of release, 

Dose delivery 

[18-20] 

Particle shape (morphology) 
Flow property 

Dispersibility 
[21] 

Particle density 
Flow property 

Dispersibility 
[22] 

Particle surface charge 

Optimal surface properties of particles must be obtained to prevent particles agglomeration 

Flow property 

Dispersibility 

Precise targeting 

[16, 21, 23] 

Crystal form Crystal form influences all steps of the development from discovery to marketing [10] 
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Table 3. Common Methods for Formulations of Macromolecules 

Method Description Disadvantages Excipients Ref. 

Jet Milling 

Bulk particles are introduced into the milling chamber. Air or 

nitrogen, fed through nozzles at high pressure, accelerates the 

solid particles to sonic velocities. The particles collide and 

fracture. While flying around the mill, larger particles are sub-

jected to higher centrifugal forces and are forced to the outer 

perimeter of the chamber. Small particles exit the mill through 

the central discharge stream 

Broad particle size 

Physical/chemical degradation 
e.g. trehalose [21] 

Freeze drying 

(Lyophilization) 

The formulation is frozen and the bulk water is removed by 

sublimation. The resulting cake is composed of the protein, any 

nonvolatile excipients, and a small amount of residual water 

tightly associated with the protein 

Time consuming 

Broad particle size distribution 

e.g. trehalose, 

inulin,  dextran 
[6, 11] 

Spray drying 

Uses atomization to form microdispersed droplets. The water in 

these droplets quickly evaporates when passed through a 

stream of hot gas, resulting in the formation of a fine powder of 

microparticles containing protein and excipients 

Degradation 

Low process efficacy 

Time consuming 

e.g. leucine, 

lactose, treha-

lose, dipamitoyl-

phosphatidylcho-

line (DPPC), 

albumin 

[8, 11, 22, 

24, 25] 

Spray-freeze 

drying 

The microdispersed liquid particles are generated through the 

jet nozzle in the absence of heat, then collected and frozen in 

liquid nitrogen before sublimation occurs. The frozen particles 

are then lyophilized 

Degradation 

Low process efficacy 

Time consuming 

e.g. inulin, treha-

lose, manitol 

[6, 8, 21, 

24] 

Supercritical 

Fluid 

SCF are gases and liquids above their critical pressure and 

critical temperature. SCF technique can be performed using 

carbon dioxide (CO2), water, propane, acetone, nitrous oxide 

(N2O), trifluoromethane, chlorodifluoromethane, diethyl ether, 

water, or CO2 with ethanol 

Solubility of molecules in solvent 

Degradation 

Particle size control 

Residue of organic solvent 

Scale up of this process is re-

stricted by particle aggregation 

and nozzle blockage due to rapid 

expansion cooling. 

e.g. sucrose, 

trehalose,  

manitol 

[2, 8, 11, 

13] 

 

trifluoromethane, chlorodifluoromethane, diethyl ether, wa-
ter, or CO2 with ethanol [13]. In addition SCF possess sev-
eral fundamental advantages as solvents and/or anti-solvents 
for processing heat-labile solutes at low temperature. For 
example, supercritical CO2 is a good solvent for water-
insoluble as well as water-soluble compounds under suitable 
low critical conditions (Tc = 31.2 °C, Pc = 7.4 MPa) [8]. In 
addition, compressed CO2 is accessible in ample proportions 
with a higher degree of purity [9]. Moreover, CO2 is non-
toxic, nonflammable, and inexpensive [8]. Therefore, super-
critical CO2 has potential as an alternative for conventional 
organic solvents used in solvent-based processes for forming 
solid dosage forms. Furthermore, the general consideration 
of SCF as a “green” substitute has become very significant 
as the harmful effects of residual organic solvents, from both 
a processing and environmental point of view, have been 
known, and in addition, the regulatory specifications for the 
utilization and residual amounts of organic solvents in the 
final pharmaceutical product become more stringent [10]. 

 There are two major principles based on SCF. The first 
process utilizes supercritical fluids as a solvent. The Rapid 
Expansion of a Supercritical Solution (RESS) process is the 
method that represents this first principle. Initially the solute 

must dissolve in a SCF followed by sudden decompression, 
after which the solution is rapidly expanded at low pressure 
by passing through an orifice. The restrictions facing appli-
cation of RESS for macromolecules formulations include: it 
is restricted to molecules that are soluble in SCF CO2, rela-
tively high temperature required for the rapid expansion 
(typical temperature of 40 ºC) which can destroy proteins, 
lacking control of particle size, and scale up of this process is 
restricted by particle aggregation and nozzle blockage due to 
rapid expansion cooling [8].  

 The second process involves the solute being insoluble in 
SCF and hence utilizes SCF as an antisolvent. Many macro-
molecules which are suitable as therapeutic agents are 
slightly soluble in SCF and have high solubility in water. 
These processes use SCF as an antisolvent where a solute is 
dissolved in an organic solvent then precipitated by SCF. 
Precipitation develops when the SCF is absorbed by the or-
ganic solvent followed by expansion of the liquid phase and 
decreases in the solvent power leading to particle formation. 
The Gas Anti-Solvent (GAS), Aerosol Solvent Extraction 
System (ASES), Supercritical Fluid Antisolvent (SAS), Pre-
cipitation with Compressed Antisolvent (PCA), Solution 
Enhanced Dispersion by Supercritical Fluids (SEDS), and 
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supercritical fluid extraction of emulsion (SFEE) are the 
processes that exemplify this second group Fig. (1). The 
main disadvantage of the second process that applies SCF as 
antisolvent is the difficulty to remove the residual organic 
solvent completely [8]. 

 Thorough discussions of differences in the above tech-
niques have been recently published elsewhere [8-13]. This 
review proposes to present an up-to-date outlook on the pro-
gression of dry powder formulations for inhalation of mac-
romolecules using SCF techniques, covering its challenges, 
possibilities and recent developments.  

2. SUPERCRITICAL FLUID APPLICATIONS IN 

PREPARATION OF MACROMOLECULES FOR DRY 

POWDER INHALATION 

 Unlike conventional methods of particle formation such 
as milling, lyophilization, spray-drying, and freeze-spray 
drying, where large particles are reduced to the intended size, 
SCF technology includes developing the particles in a con-
trolled approach to achieve the intended size. Therefore the 
negative effect of the energy transmitted to the system such 
as denaturation of protein to produce the desired size can be 
avoided. Ideally, the particles once formed must not be sub-
jected to further treatment and this property makes SCF 
technology suitable to produce macromolecules in their na-
tive pure state and/or encapsulating these agents [13].  

 Advantages of using the SCF technology comprise its 
high abilities, adaptability in providing alternative processing 
methods, the high compressibility and diffusivity of SCF, 
capability as an alternative for conventional organic solvents, 

and the ability to reach different processing parameters (such 
as pressure and the rate of solvent evaporation) which would 
otherwise be difficult to conduct with conventional methods 
[10]. 

2.1. Encapsulation of Insulin 

 SCF have unique properties as mentioned above that 
makes them applicable for various processing methods such 
as particle formation and extractions. Recently, a significant 
interest in SCF technology has been revealed in an attempt to 
find other preferable approaches of insulin processing. 

 Todo et al. [26] examined the absorption of insulin dry 
powders processed with mannitol (carrier) and citric acid (an 
absorption enhancer) by the SCF process known as solution 
enhanced dispersion by supercritical fluids (SEDS) with that 
prepared by spray drying (SD) technique. In this investiga-
tion insulin powder was precipitated by dispersing the insu-
lin aqueous solutions through V-type nozzles into supercriti-
cal CO2/ethanol/water ternary system. Water feed rate, liquid 
CO2 feed rate, ethanol feed rate, pressure, and temperature 
were 0.035 mL/min, 5.7 g/min, 0.665 mL/min, 15 MPa, and 
35 ºC, respectively. These operating conditions enabled the 
water to be miscible with the non-polar CO2. A manual in-
jector was used to introduce aqueous 0.25 % insulin solution 
with 0.2% citric acid and 5.0 % mannitol into the water 
stream. For dry powders (0.25 % insulin solutions containing 
5 % mannitol and 0.20 % citric acid) prepared by SD tech-
nique the following standard operating parameters were 
used: an inlet temperature of 90 ºC, a drying air flow rate of 
0.75 m

3
/min, a solution feed rate of 5 mL/min, and an atom-

izing air pressure of 100 kPa. The authors found that insulin 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Schematic diagrams of various particle-formation processes using supercritical fluid technology. RESS: Rapid Expansion of a Su-

percritical Solution, GAS: Gas Anti-Solvent, ASES: Aerosol Solvent Extraction System, SAS: Supercritical Fluid Antisolvent, PCA: Precipi-

tation with Compressed Antisolvent, SEDS: Solution Enhanced Dispersion by Supercritical Fluids, and SFEE: supercritical fluid extraction 

of emulsion. 
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powder prepared by the SCF method showed enhanced aero-
solisation efficiency at 28 L/min using an Andersen Cascade 
Impactor in comparison with insulin powder prepared by the 
SD method. For example, SCF insulin powders had the 
greatest quantity of powder retrieved from stages 2–7 and a 
mass median aerodynamic diameter of 3.2 m with 
respirable fraction of 47.6 %. The hypoglycemic effect of 
insulin powder processed by SCF after intratracheal applica-
tion was higher than that produced by SD. In addition, they 
found that SCF technique provided the largest yield of insu-
lin powder (>80 %) although it was on a laboratory scale 
production. These results demonstrated that the SCF process 
would be beneficial to prepare inhalable insulin powder.  

 Amidi et al. [27] demonstrated that PCA-type SCF tech-
nology is an appropriate method to manufacture inhalable 
insulin-loaded microparticles with specific particle properties 
and retained structure of insulin. The authors used N-
trimethyl chitosan (TMC), as a mucoadhesive absorption 
enhancer, and dextran as carriers for insulin, and prepared 
two formulations of 10 % (w/w) of insulin/TMC or insulin/ 
dextran. The particles were formed by spraying an acidic 
water/dimethyl sulfoxide (DMSO) solution of insulin and 
polymer within supercritical CO2. The flow rates of polymer-
insulin solution and CO2 were 4.5 mL/min and 333 g/min, 
respectively. The pressure and temperature were maintained 
at 110 bar and 40 °C. The mass median aerodynamic diame-
ter was 4 m and the percentages of the emitted dose were 
62 and 67 % for insulin/TMC and insulin/dextran respec-
tively. The water content of the particles was 4 % (w/w), and 
neither crumpled nor agglomerated after formation and stor-
age. The intact structure of insulin in the freshly formulated 
dried insulin powders were monitored by circular dichroism 
spectroscopy, which indicated the secondary and tertiary 
structures of insulin was retained in all preparations. Fur-
thermore, at the end of one-year storage at 4 °C, the particle 
properties were preserved and the insulin structure almost 
retained in the TMC powders.  

 Kim et al. [28] compared micronized insulin using man-
nitol as a stabilizer alone or with the addition of trehalose as 
a second stabilizer using a process known as aerosol solvent 
extraction system (ASES) SCF technology. They injected 
co-currently the solution of insulin/mannitol (15/85 wt.%) 
with or without 10 and 15 wt.% trehalose with the CO2 into 
the precipitation vessel using the solvent, N,N-
dimethylformamide (DMF) at 35 °C, 180 bar, 8 mg/mL solu-
tion concentration, and 5 ml/min solution flow rate. Results 
indicated that when trehalose was used as a second stabilizer, 
the particles were almost uniform, more spherical, less adhe-
sive, and less aggregated in air flow, in comparison to insu-
lin mannitol particles alone. The mass median aerodynamic 
diameter of the insulin/mannitol particles was ~5 m and of 
the insulin/mannitol/trehalose particles was ~2.32 μm, 
which are appropriate for inhalable dosage from. In vitro 
aerosolisation deposition test conducted with a micro-orifice 
uniform deposit impactor (MOUDI-II™Impactor) at 30 
L/min revealed 69 % by weight of the insulin/mannitol and 
41 % by weight of the insulin/manitol/trehalose particles was 
deposited on stages 3, 4, 5 and 6. This study showed the 
ASES process was able to retain the secondary structures of 
insulin in both insulin/mannitol and insulin/manitol/trehalose 
particles. 

2.2. Gene Powders 

 Polymer based non-viral gene delivery systems have 

been shown to offer protection from nuclease degradation, 
increased plasmid DNA (pDNA) uptake and sustained dura-

tion of pDNA action [29]. These gene delivery systems can 

be prepared from biologically compatible and degradable 
polymers e.g. poly (d,l-lactic-co-glycolic) acid (PLGA). The 

effectiveness of gene therapeutic systems depends on the 

ability of such system to deliver nucleic acid into the target 
cells. Gene dry powders are anticipated to have further ad-

vantage of prolonged shelf life of the preparation [29]. 

 Okamoto et al. [29] compared stability of a chitosan–
pDNA complex powder processed by a SEDS-type SCF 

technique and gene solution alone for inhalation. They pre-

cipitated the gene powder by dispersing an aqueous chito-
san–pDNA complex solution with mannitol into the stream 

of a SCF CO2/ethanol admixture. In the mixing column, the 

CO2 was admixed with ethanol at a flow rate of 5.7 g/min 
and 0.665 mL/min respectively. Using these operating condi-

tions resulted in complete miscibility of ethanol, water, and 

CO2. The admixture was dispersed into the particle forma-
tion vessel at 35 ºC and 15 MPa using one end of the V-

shaped nozzle, while the other end of the V-shaped nozzle 

was used to disperse water at a flow rate of 0.035 mL/min. 
The aqueous chitosan–pDNA complex solution (0.4 mL) 

was manually injected into the water stream and the dry 

powder was collected from the depressurized vessel. This 
procedure resulted in powder yields of ~80 % and aerody-

namic particle sizes of ~3 m, which was appropriate for 

pulmonary delivery. Scanning electron microscopy examina-
tion revealed the powders to have rectangular shape. Gene 

integrity and transfection potency were determined by elec-

trophoresis and in vivo pulmonary transfection test in mice. 
The SCF technique minimized the supercoiled DNA during 

the formulation processing; although, the reduction in the 

remaining supercoiled and open circular DNA in the pow-
ders during storage was more prolonged than in solutions. As 

a result, the powders generated using SEDS had increased 

transfection potency in comparison to the gene solutions for 
the same quantity of DNA.  

 Mayo et al. [30] developed a SCF extraction of emul-
sions (SFEE) technique based on CO2 for formulating 

nanoparticles having high plasmid (pFlt23K, an anti-

angiogenic pDNA capable of inhibiting vascular endothelial 
growth factor (VEGF) secretion) loading and loading effi-

ciency. First they prepared a lipophilic phase by dissolving 

PLGA into ethyl acetate and the inner aqueous phase com-
posed of pFlt23K Tris-EDTA buffer. The aqueous phase was 

sonicated for 1 min (15W) with the lipophilic phase to obtain 

a 1° emulsion (w/o). The outer aqueous phase consisted of 
0.5 % (w/v) polyvinyl alcohol (PVA) saturated with ethyl 

acetate. The 1° emulsion was further sonicated with the outer 

aqueous phase for 3 min to obtain the 2° emulsion (w/o/w). 
The emulsion extraction and particle production was per-

formed using coaxial SFEE apparatus consisting of a cylin-

drical pressure vessel, placed in a temperature controlled 
water bath at 45 °C. Supercritical CO2 was injected via a 

syringe pump to the base of this vessel. The emulsion was 

introduced counter currently by means of a 100 m capillary 
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tube within a 1/16” stainless steel high pressure tubing at the 

top of the vessel, permiting CO2 to flow continually from the 

vessel. During the process the pressure and flow rate of the 
emulsion were kept at 8 MPa and 0.4 ml/ min, respectively. 

Results revealed spherical particles with smooth surface and 

280 nm in diameter. In addition, a high loading of pFlt23K 
(19.7 %, w/w) and high encapsulation efficiency (>98 %) 

was achieved, while a low residual solvents (<50 ppm), at-

tributed to rapid particle formation due to successful solvent 
removal afforded by the SFEE technique. In vitro transfec-

tion of pFlt23K-PLGA nanoparticles were able to signifi-

cantly reduce secreted VEGF from human lung alveolar 
epithelial cells (A549) with normoxic and hypoxic status, 

with no cytotoxicty detected. 

2.3. Vaccination 

 Recently immunization by inhalation has been investi-

gated as a substituent for parenteral vaccination. Vaccines 

delivered via the lung route can initiate both systemic and 
local immune responses due to the presence of extensive 

dendritic cells and macrophages lining the respiratory epithe-

lium. 

 Amidi et al. [31] examined the potential of N-Trimethyl 

chitosan (TMC) and dextran microparticles for pulmonary 
delivery of diphtheria toxoid (DT). DT-loaded microparticles 

were formulated by spraying an aqueous solution of 

DT/dextran (w/w) or DT/TMC into supercritical CO2 and 
ethanol using SEDS type SCF technology. When the operat-

ing temperature (38 ºC) and pressure (100 bar) was achieved, 

CO2 and ethanol were completely miscible forming a single 
supercritical phase. The ethanol/CO2 mixture was immedi-

ately introduced via a concentric coaxial two-fluid nozzle 

and sprayed into the vessel for 5 min. This was subsequently 
followed by pumping the aqueous polymer-DT solution into 

the T-mixer at a flow rate of 0.5 ml/min using two syringe 

pumps. This was mixed with SCF-CO2 (367 g/min) and 
ethanol (25 ml/min) and fed into the precipitation vessel 

through the concentric coaxial two-fluid nozzle. Smooth 

spherical particles were produced with median volume di-
ameter of ~3 m and the fine particle mass fractions less 

than 5 m, as revealed by cascade impactor analysis at 30 

L/min, were 35 % for the dextran and 56 % for the TMC 
formulations. 

 This study demonstrated that the generated powders had 

a significant mass fraction of particles less than 5 m, suit-
able for inhalation. In addition, this investigation revealed 

that TMC microparticles were a potent pulmonary delivery 

system for DT antigen. Pulmonary immunization with DT-
TMC microparticles containing 2 or 10 Lf of DT produced a 

strong immune response as manifested by the production of 

IgM, IgG, IgG subclasses (IgG1 and IgG2) antibodies simi-
lar to or significantly greater than those gained after subcuta-

neous application of alum-adsorbed DT (2 Lf). In addition, 

the IgG2/IgG1 ratio after pulmonary immunization with DT-
TMC microparticles was significantly greater in comparison 

with subcutaneous administered alum-adsorbed DT. While 

pulmonary administrations of DT-dextran particles produced 
a very poor immune response.  

 

3. CONCLUSION 

 There has been great progress in supercritical CO2 tech-
niques to increase performance of macromolecules without 
losing the biological activity of these sensitive molecules. 
However, there are still possibilities for optimizing process-
ing parameters, such as temperature, pressure, flow rates, 
and concentration of ingredients. In addition, processing of 
therapeutic macromolecules with supercritical CO2 permit a 
wide range of macromolecules to be processed, and in the 
future it is expected that SCF techniques will provide a more 
favorable alternative to producing formulations encapsulat-
ing macromolecules.  
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Introduction 
As an alternative to repeated injection, dry powder 

pulmonary inhalation offers a non-invasive technique for 

local and systemic delivery of protein-based formulation 

(1). The lungs possess many favourable features (2). In 

our laboratory we have been investigating and 

developing alternative biodegradable polyester polymers 

[poly (glycerol adipate-co-ω-pentadecalactone, PGA-co-

PDL)]. Using this polymer we have successfully 

encapsulated a model protein (α-chymotrypsin enzyme). 

In addition, release studies revealed most of the protein 

released over several hours (3). Furthermore, we have 

successfully demonstrated that PGA-co-PDL 

microparticles could be used as an alternative carrier for 

pulmonary delivery with enhanced aerosol performance 

and reduced toxicity to normal lung cells compared to 

PLGA microparticles (4).  

In this study we aim to produce PGA-co-PDL 

nanocomposite microparticles (NMs) loaded with bovine 

serum albumin (BSA), a model protein, which may be 

administered to the lung via dry powder inhalation. The 

impact of these characteristics on important aspects of 

pulmonary delivery such as aerosolization, and release 

will be determined. 

Methods 
Nanoparticles Preparation 

BSA (Avenchem, UK) loaded PGA-co-PDL nanoparticles 

(NPs) were prepared by probe sonication (sonics, VCX 

500) of water-in-oil-in-water (w/o/w) double 

emulsion/solvent evaporation method (Table 1). The 

double emulsion was stirred for 2 h at room temperature 

and the NPs were collected by centrifugation at 30,000 g 

(Beckman J2-2IM/E) for 45 min at 4 ºC. Control empty 

NPs were prepared. 

Spray drying NPs 

The NMs were prepared by spray drying NPs suspension 

in aqueous L-leucine solutions (1.5%w/w) using a mini-

spray dryer (Büchi, B-290) with two-fluid nozzle (0.7 mm 

diameter), feed rate of 15 ml/min, air flow of 414 L/h, 

aspirator  at  40m³/h, inlet and outlet temperature of 100 

and 47 ºC, respectively. 

Nanocomposite Microparticles characterisation 

Particle size & zeta potential  

The particle size & zeta potential were measured using a 

Zetaplus. Briefly, 100μl of the suspension was diluted to 5 

ml using double distilled water and the measurements 

recorded at 25ºC (n=3). 

Spray dried yeild & drug loading 

The yield of spray dried NMs was quantified as a 

percentage mass of expected total powder yield (n=3). 

The amount of BSA loaded in the NPs was determined 

by measuring the amount of BSA remaining in the 

supernatant with a QuantiPro BCA protein assay (Sigma) 

after centrifugation (n=3). 

Particle morphology 

Spray dried NMs were mounted on gold coated 

aluminium stubs (EmiTech K 550X Gold Sputter Coater, 

25mA for 3 min), and visualised by scanning electron 

microscopy.  

In-vitro relese study 

20mg of BSA encapsulated spray dried NMs were placed 

in an eppendorf and dispersed in 1.2ml of PBS (pH 7.4). 

The samples were incubated at 37C in the orbital shaker 

set at 250 rpm. At predetermined time intervals up to 24h, 

the samples were centrifuged (30,000 g for 20 min) and 

1ml of the supernatant removed and replaced with fresh 

buffer. The supernatant was analysed by QuantiPro BCA 

protein assay as mentioned above (n=3). 

 

 

 

Table 1 Different formulation parameters for 

preparation of NPs by (w/o/w) double emulsion 

solvent evaporation 

Formula 

No. 

Polymer 

conc. 

(mg/ml) 

BSA 

 Conc. 

(%) 

 

IAP volume 

(µl) 

PVA 

Conc

. IAP  

(%) 

PVA 

Conc. 

EAP  

(%) 

EAP 

volume 

(ml) 

NM1 25 0.5 500 1 13 25 

NM2 25 0.5 500 5 13 25 

NM3 25 0.5 250 5 13 25 

*IAP: internal aqueous phase **EAP: external aqueous phase   

Aerosolisation studies  

Dry powder samples (10mg) were manually loaded into 

hydroxypropyl methylcellulose capsules (size 3), and 

aerosolised via a cyclohaler into a Next Generation 

Impactor (NGI), coated with 5% tween 80: acetone 

solution, at a flow rate of 60L/min for 4s to determine 

aerodynamic particle size. The samples were collected 

by washing with DCM/0.15 M NaCl mixture (2:1) to 

dissolve the polymer and the encapsulated BSA, which 

was determined by QuantiPro BCA protein assay as 

mentioned above (n=3). The FPF (%) was determined as 

the fraction of emitted dose deposited in the NGI with 

aerodynamic diameters less than 4.6 μm, and the MMAD 

was calculated from log-probability analysis. 

Results & Discussion 
Nanocomposite Microparticles characterisation 

The particle size achieved ranged from 196.6±1.9 – 

290.6±7.5 and the yield of NMs achieved after spray 

drying ranged from 24.4±4.7 – 35.9±5.1 (Table 2). All 

particles had a negative zeta potential, possibly due to 

PVA remaining on the particles after centrifugation and 

washing.  The drug loading ranged from 14.6±2.5 to 

20.54±3.1 µg/mg particle. There was a significant 

increase in drug loading between NM1 and NM2, due to 

an increase in PVA concentration in the IAP. However, 

decreasing IAP volume led to no significant difference in 

BSA loading between NM2 and NM3. 

SEM analysis indicated that NMs (NM2) had a 

corrugated surface with pores visible on the surface (Fig. 

1). This occurred due to excessive build-up of vapor 

pressure during solvent evaporation in the spray drying 

process and occurs with hydrophobic amino acids, such 

as L-leucine, for improved aerosolization performance 

(5). The size of the NM was approximately 2-3 µm 

according to SEM analysis.  

 

Figure 1 SEM images of NMs (NM2). Scale bar 

represents 5 µm (A) & 2 µm (B) respectively. 

 

Formula 

No. 

Particle 

size 

(nm) 

Zeta 

potential 

(mV) 

Yield 

(%) 

BSA 

loading 

(µg/mg) 

NM1 275.5±12.7 -24.5±1.3 25.4±5.3 14.6±2.5 

NM2 196.6±1.9 -19.3±3.3 24.4±4.7 20.5±3.1 

NM3 290.6±7.5 -12.4±2.1 35.9±5.1 19.5±0.6 

The data in Fig.2 represents the % cumulative 

release of BSA as a percentage of the drug 

loading.  All formulation showed biphasic release 

profile with a first initial burst release followed by a 

second continuous sustained release phase over 

24h. All formulations had a similar initial burst 

release of BSA ranging from 9.6±1.0 – 11.5±2.3%. 

Significant difference was noted in release profile (2 

– 24 h) between NM1 and NM3, with NM1 achieving 

19.8±1.5% release after 24 h compared to NM3 

(14.1±2.0%). 

Conclusion 
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 we have shown the potential for encapsulating 

proteins within PGA-co-PDL NMs as carriers for 

pulmonary delivery using double emulsion/spray 

drying as a preparation method. Future studies will 

involve improving the drug loading, stability studies 

and release by optimising the preparation method.  

Table 2 The drug loading, particle size, zeta 

potential, spray dried yield & drug loading of different 

NMs formulations.  

Figure 2 % cumulative in-vitro release profiles for 

different BSA-PGA-co-PDL NMs as a percentage of 

drug loading in phosphate buffer saline, pH 7.4. 

NM2 was chosen for aerosolisation studies due to a 

high drug loading and reasonable drug release 

profile compared to NM1 and NM3. The results in 

Tab.3 indicate good aerosolisation properties and 

the MMAD corresponds to particle size data 

achieved with SEM. 

Table 3 Aerosolisation performance of NM2 

Formula No. FPF (%) MMAD (µm) 

NM2 70.1 ±13.2 1.6 ± 0.4 
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Introduction 
  Over the past decade pharmaceutical research has been focused on developing macromolecules for 

treatment of many diseases [1]. Most of these macromolecules are administered using an invasive 

manner to reach a therapeutic concentration, even though these procedures would be painful to the 

patients. As an alternative, pulmonary inhalation could enhance macromolecules administration because it 

is a non-invasive technique for local and systemic drug delivery. The lungs own many favourable features, 

including large surface area for absorption, high vasculatures, thin epithelium in the alveolar tissue and 

short path of gas–blood exchange movement [2]. However, formulating these macromolecules into 

suitable pulmonary delivery systems remains a challenge. .  

  The most common method for the encapsulation of proteins in polymer-based nanoparticles (NPs) is the 

water/oil/water (w/o/w) double-emulsion solvent evaporation method [3]. NPs can also be formulated into 

dry powders for inhalation by spray-drying.  

  Here at Liverpool John Moores University we have been investigating poly glycerol adipate-co-ω-

pentadecalactone (PGA-co-PDL) as alternative to PLGA as a carrier for pulmonary delivery of 

macromolecules [4]. The results revealed that these polyesters could exhibit an alternative pulmonary 

delivery as they provide a protective matrix and faster release in a short period of time in comparison with 

other similar polymers, such as PLGA. 

Objective 
  

 The aim of this study was to formulate PGA-co-PDL NPs encapsulating bovine serum albumin (BSA), a 

model protein, incorporated into a microparticle L-leucine matrix via spray drying to produce 

nanocomposite microparticle (NCMPs) carriers suitable for pulmonary delivery via dry powder inhalation. 

Formulation & Drug Delivery 

Research 

Protein Loaded PGA-co-PDL Nanocomposite Microparticles for Inhalation 

 

Methods 
Nanocomposite microparticles preparation 

  The protein solution 1% 0.5 ml was emulsified in dichloromethane,DCM containing 50 mg PGA-co-PDL, by a 

probe sonicator at 45% amplitude over an ice. Then emulsified into a 1% PVA solution 25ml at 45% ampliyude and 

stirred for 2h at room temperature to evaporate DCM. NPs collected by centrifugation at 25,750xg and 4⁰C.  

  NCMPs were prepared by spray drying NPs suspended in L-leucine solution (1:1.5w/w) using a mini-spray dryer 

(Büchi, B-290) at pump: 10%, air flow: 50 mm, aspirator: 50 % and inlet temperature:100 ºC. 

  

Nanocomposite microparticles characterization 

• NCMPs zeta potential and size were carried out using a Zetaplus, Brookhaven Instruments, U.K.  

• BSA loaded in NPs was determined by measuring BSA remaining in the supernatant and wash after 

centrifugation using a QuantiPro BCA  protein assay kit (Sigma-aldrich).  

• NCMPs were visualised by scanning electron microscopy (SEM) (FEI – Inspect S Low VAV Scanning). 

• The yield of NCMPs was quantified as a percentage mass of expected total powder yield. 

  

In-vitro release study 

  Ten mg of NCMPs were dispersed in 1.2ml of phosphate buffer saline, PBS (pH7.4) at 37°C and rotated on a 

mixer (HulaMixer, Life Technologies).  

  

Aerosolisation study (Next Generation Impactor, NGI) 

  Ten mg of NCMPs were loaded into HMC capsules and aerosolised via a cyclohaler into a NGI, coated with tween 

80: acetone solution,flow rate of 60L/min for 4s. Samples were collected by washing with DCM/0.15M NaCl 

mixture. FPF%: the fraction of emitted dose deposited in NGI with aerodynamic diameters < 4.6μm and the MMAD 

was calculated from log-probability analysis. 
 

 

 

Results and Discussion 

 

 
 
Nanocomposite microparticles characterization 

The selected w/o/w double emulsion solvent evaporation process produced particles in the nanometer 

size range with a narrow particle size distribution (Table 1). The %EE of BSA loaded NPs was 39.49±2.63 

% with BSA loading of 35.9±2.39 µg/mg and a zeta potential of -17.17±0.61 mV. NPs were further spray-

dried to produce NCMPs with a reasonable yield for BSA loaded (38.22±1.17 %) and empty NCMPs 

(61.32±5.67 %). 

 
Table 1 The particle size, polydispersity index (PDI), zeta potential, encapsulation efficiency (%EE), drug 

loading (DL), and yield (%) of  NCMPs (n=3). 

 

 

 

 

 

 

 

SEM analysis (Figure 1) indicated that NCMPs were irregular and corrugated with a porous surface. The 

geometrical particle size of the produced nanocomposite microparticles as observed by SEM was 

approximately 2-4 µm. 

 

Figure 1 SEM images of spray dried BSA-PGA-co-PDL NCMPs. (The scale bar represents 1µm). 

 

 
 

 

Conclusions 
  The water-oil-water double emulsion solvent evaporation technique was able to manufacture PGA-co-PDL NPs with suitable BSA EE % (39.49%) and sustained release over 48h. Incorporating L-leucine during spray 

drying to produce NCMPs yielded FPF (70%) and MMAD (1.5 µm)  allowing for high efficient delivery of protein to the lungs.  

 

Formulation 
Particle size 

 (nm) 
PDI 

Zeta potential 
(mV) 

 

EE 
 (%) 

 

DL  
(µg/mg) 

 

Yield  
(%) 

BSA-PGA-co-PDL  203.03±5.4 0.145 -17.17±0.61 39.49±2.63 35.9±2.39 38.22±1.17 

Empty PGA-co-PDL  284.1±9.9 0.280 -15.86±0.85 - - 61.32±5.67 

 

 
In-vitro release study 

BSA showed biphasic release profile (Figure 2) with an initial burst release followed by a second 

continuous sustained release phase over 48h. The initial burst release of BSA from NCMPs was 

1.26±1.5% which after 4 h increased rapidly to 9.08±3.4%, which then slowed to 20.84±4.2% after 48 h.  

Figure 2 In-vitro release profiles of BSA –PGA-co-PDL NCMPs in PBS, pH 7.4 (n=3). 

 

 

 

 

 

 

 

 

 

Aerosolisation study (Next Generation Impactor, NGI) 

Aerodynamic particle characteristics revealed that the studied formulation yielded NCMPs capable of 

delivering efficient BSA with %FPF of 70.97±4.7% and a MMAD of 1.5±0.35 µm, indicating deposition in 

the bronchial-alveolar region. As NCMPs penetrate to the bronchial-alveolar region it is anticipated the L-

leucine component will dissolve, releasing PGA-co-PDL NPs which will eventually degrade into its 

individual components (glycerol, divinyl adipate, and caprolactone) releasing BSA for uptake. 

 

Table 2 The % fine particle fraction & MMAD(µm) of BSA-PGA-co-PDL nanocomposite NCMPs (n=3). 

 

 
Formulation %FPF  MMAD (µm) 

BSA-PGA-co-PDL 70.97±4.7 1.5±0.35  

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 45 50 55

%
 C

u
m

u
la

ti
ve

 B
SA

 r
e

le
as

e
 

Time (h) 

http://www.google.co.uk/imgres?imgurl=http://upload.wikimedia.org/wikipedia/commons/0/0b/NHS-logo.jpg&imgrefurl=http://en.wikipedia.org/wiki/File:NHS-logo.jpg&h=200&w=494&sz=77&tbnid=lj4i2PQ-iGjJsM:&tbnh=53&tbnw=130&prev=/search?q=nhs+logo&tbm=isch&tbo=u&zoom=1&q=nhs+logo&hl=en&usg=__GCJe34hMqINVVmuj3Z0Dqy1sGaM=&sa=X&ei=51P3TdnYGs2x8QOR3bmuCw&ved=0CBwQ9QEwAA
http://www.google.co.uk/imgres?imgurl=http://upload.wikimedia.org/wikipedia/commons/0/0b/NHS-logo.jpg&imgrefurl=http://en.wikipedia.org/wiki/File:NHS-logo.jpg&h=200&w=494&sz=77&tbnid=lj4i2PQ-iGjJsM:&tbnh=53&tbnw=130&prev=/search?q=nhs+logo&tbm=isch&tbo=u&zoom=1&q=nhs+logo&hl=en&usg=__GCJe34hMqINVVmuj3Z0Dqy1sGaM=&sa=X&ei=51P3TdnYGs2x8QOR3bmuCw&ved=0CBwQ9QEwAA


References 

1. Kunda, N., Somavarapu, S., Gordon, S., Hutcheon, G., Saleem, I. Nanocarriers targeting dendritic cells for pulmonary vaccine delivery. Pharm Res. 2013, Vol. 30, pp. 325-341. 

2. Koppolu, B., Zaharoff, D. The effect of antigen encapsulation in chitosan particles on uptake, activation and presentation by antigen presenting cells. Biomaterials. 2013, Vol. 34, pp. 2359-2369. 

3. Thompson, C., Hansford, D., Higgins, S., Hutcheon, G., Rostron, C., Munday, D. Enzymatic synthesis and evaluation of new novel pentadecalactone polymers for the production of biodegradable microspheres. Journal of Microencapsulation. 2006, Vol. 23, pp. 213-226. 

4. Kallinteri, P., Higgins, S., Hutcheon, G., St Pourçain C., Garnett, M. Novel functionalized biodegradable polymers for nanoparticle drug delivery systems. Biomacromolecules. 2005, Vol. 6, pp. 1885-94. 

5. Zhang, Y., Niu, Y., Luo, Y., Ge, M., Yang, T., Yu, L., Wang, Q.,. Fabrication, characterisation and antimicrobial actiities of thymol loaded zein nanoparticles stabilized by sodium caseinate-chitosan hydrochloride double layers. Food chemistry. 2014, Vol. 142, pp. 269-275. 

 

I M Alfagih1, 2, N K Kunda1,F K Alanazi2, G A Hutcheon1, I Y Saleem1 
1. School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, UK. 

2. Department of Pharmaceutics, King Saud University, Riyadh, Saudi Arabia. 

 
 

Introduction 
  Pulmonary vaccine delivery has gained major attention to produce both mucosal and systemic immunity 

(1). The encapsulation of antigens in nanoparticles (NPs) has been investigated extensively as an 

approach to enhance immunogenicity (2). 

  A number of polymers have been studied for pulmonary vaccine delivery. In recent years, poly glycerol 

adipate-co-ω-pentadecalactone (PGA-co-PDL) was studied as a drug carrier (3), (4).   

  Chitosan hydrochloride (CHCl) has been described as a water-soluble and a positively charged 

polyelectrolyte, which may overcome the low water solubility of chitosan at neutral pH. However, like other 

cationic polymers, the strong positive charge of CHCl contributes to the toxicity of the polymer. The 

amount of CHCl can be decreased by making CHCl-coated PGA-co-PDL NPs, because only a lower 

amount of CHCl was expected to coat on the surface of a particle compared to CHCl NPs (5).  
  

Objective 
  The aim of this study was to prepare CHCl coated PGA-co-PDL NPs encapsulating bovine serum 

albumin (BSA), a model antigen to produce cationic NPs which further spray dried to form nanocomposite 

microparticles (NCMPs) suitable for antigen delivery via inhalation. 

  
 

 

Formulation & Drug Delivery 

Research 

Cationic PGA-co-PDL nanocomposite microparticles for antigen delivery via inhalation 

 

Methods 
Nanocomposite microparticles preparation 

  The protein solution 1%, 0.5ml was emulsified in 2ml of dichloromethane,DCM containing 50mg of PGA-co-PDL, by sonication using a probe 

sonicator at 45% amplitude (VC X 500 Vibra-CellTM, Sonics & Materials, Inc., USA) for 5s over an ice bath. Then it was emulsified into a a mixture of 

1% CHCl and 1% PVA solution 25ml using a probe sonicator at 45% amplitude for 15s. Then it was stirred magnetically for 2h to evaporate DCM. The 

NPs were collected by centrifugation (SIGMA 3-30 K, SIGMA Laborzentrifugen GmbH, Germany) at 40,000xg for 1h at 4⁰C, and washed with distilled 

water.        

  NCMPs were prepared by spray drying NPs suspended in aqueous L-leucine solutions (1:1.5 w/w) using a mini-spray dryer (Büchi, B-290) with a 

standard two-fluid nozzle, feed rate of 10ml/min, air flow of 535L/h, aspirator  at  50% and inlet temperature of 100ºC. 

  

Nanocomposite microparticles characterization 

• NCMPs zeta potential and size were carried out using a Malvern NanoZS (Malvern Instruments Ltd., Worcestershire, UK).   

• The amount of BSA loaded in the NPs was determined by measuring the amount of BSA remaining in the supernatant and wash after 

centrifugation using a QuantiPro bicinchoninic acid (BCA) protein assay kit (Sigma-aldrich).  

• Spray dried NCMPs were visualised by scanning electron microscopy (SEM) (FEI – Inspect S Low VAV Scanning Electron Microscope). 

  

In-vitro release study 

  Ten mg of NCMPs were dispersed in 1.2ml of phosphate buffer saline (pH7.4) at 37°C and rotated on a sample mixer (HulaMixer, Life Technologies).  

  

Aerosolisation study (Next Generation Impactor, NGI) 

  Fifteen mg of NCMPs were loaded into HMC capsules, and aerosolised via a cyclohaler into a NGI, coated with 1% tween 80: acetone solution, at a 

flow rate of 60L/min for 4s. The samples were collected by washing with DCM/0.15M NaCl mixture (2:1). The FPF (%) was determined as the fraction 

of emitted dose deposited in the NGI with aerodynamic diameters less than 4.6μm, and the MMAD was calculated from log-probability analysis. 
 

 

 

Results and Discussion 
 

 
 
Nanocomposite microparticles characterization 

The w/o/w double emulsion solvent evaporation process produced particles in the nanometer size range 

with a narrow particle size distribution (Table 1). The BSA loading for CHCl coated and uncoated PGA-co-

PDL nanoparticles were 7.2±1.3 and 33.1±3 µg/mg respectively. The change in BSA loading observed 

attributed to increased amount of solid. The surface charge of CHCl coated PGA-co-PDL nanoparticles 

changed to +14.2±0.7mV. 

 
Table 1 The particle size, polydispersity index (PDI), zeta potential, and drug loading (DL) for 

nanocomposite microparticles (n=3). 

 

 

 

 

 

 

 

SEM analysis (Figure 1) indicated that NCMPs were irregular and corrugated with a porous surface. The 

geometrical particle size of the produced nanocomposite microparticles as observed by SEM was 

approximately 2-4 µm. 

 

Figure 1 SEM images of spray dried  

CHCl-PGA-co-PDL nanocomposite 

 microparticles.  

(The scale bar represents 1µm). 

 

 
 

 

Conclusions 
The water-oil-water double emulsion solvent evaporation technique was able to manufacture CHCl-PGA-co-PDL NPs with suitable BSA loading (7µg/mg) and sustained release 

over 48h. The use of L-leucine during spray drying produced NCMPs with FPF (47%) and MMAD of 1.7±0.29 µm allowing for high efficient delivery of protein to the lungs. 
 

 
 

 

 
 
In-vitro release study 

BSA showed biphasic release profile (Figure 2) with a first initial burst release followed by a second 

continuous sustained release phase over 48h. The initial burst release of BSA from NCMPs was 19.6±6% 

which after 4 h increased rapidly to 49.7±2%, which then slowed to 57.96±3.03% after 20 h then 

increased to 74.52±10% after 24 h followed by slow release to 81.9±12% after 48 h. This could be 

attributed to the distribution of BSA inside NPs matrix or a change in matrix degradation rate due to 

changed surface porosity.  

  

Figure 2 In-vitro release profiles for CHCl-PGA-co-PDL nanocomposite microparticles in phosphate 

buffer saline, pH 7.4 (n=3). 
 

 

 

 

 

 

 

 

 

 

 

 

Aerosolisation study (Next Generation Impactor, NGI) 

Aerodynamic particle characteristics revealed that formulation yielded NCMPs capable of delivering BSA 

with %FPF of 47.3±12% and a MMAD of 1.7±0.29 µm, indicating deposition in the bronchial-alveolar 

region. As NCMPs penetrate to the bronchial-alveolar region it is anticipated that the L-leucine 

component will dissolve, releasing CHCl-PGA-co-PDL NPs for cells uptake. 

Formulation 
Particle size  (nm) Zeta Potential (mV) DL (µg/mg) Polydispersity  (PDI) 

PGA-co-PDL 
  

445±46.8 -17.4±1.2  33.1±3 0.145 

  
CHCl-PGA-co-PDL 
  

480.2±32.2 +14.2±0.7 7.2±1.3 0.280 
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Introduction 
As an alternative to repeated injection, dry powder 

pulmonary inhalation offers a non-invasive technique for 

local and systemic delivery of protein-based formulation 

(1). The lungs possess many favourable features (2). In 

our laboratory we have been investigating and 

developing alternative biodegradable polyester polymers 

[poly (glycerol adipate-co-ω-pentadecalactone, PGA-co-

PDL)]. Using this polymer we have successfully 

encapsulated a model protein (α-chymotrypsin enzyme). 

In addition, release studies revealed most of the protein 

released over several hours (3). Furthermore, we have 

successfully demonstrated that PGA-co-PDL 

microparticles could be used as an alternative carrier for 

pulmonary delivery with enhanced aerosol performance 

and reduced toxicity to normal lung cells compared to 

PLGA microparticles (4).  

In this study we aim to produce PGA-co-PDL 

nanocomposite microparticles (NMs) loaded with bovine 

serum albumin (BSA), a model protein, which may be 

administered to the lung via dry powder inhalation. The 

impact of these characteristics on important aspects of 

pulmonary delivery such as aerosolization, and release 

will be determined. 

Methods 
Nanoparticles Preparation 

BSA (Avenchem, UK) loaded PGA-co-PDL nanoparticles 

(NPs) were prepared by probe sonication (sonics, VCX 

500) of water-in-oil-in-water (w/o/w) double 

emulsion/solvent evaporation method (Table 1). The 

double emulsion was stirred for 2 h at room temperature 

and the NPs were collected by centrifugation at 30,000 g 

(Beckman J2-2IM/E) for 45 min at 4 ºC. Control empty 

NPs were prepared. 

Spray drying NPs 

The NMs were prepared by spray drying NPs suspension 

in aqueous L-leucine solutions (1.5%w/w) using a mini-

spray dryer (Büchi, B-290) with two-fluid nozzle (0.7 mm 

diameter), feed rate of 15 ml/min, air flow of 414 L/h, 

aspirator  at  40m³/h, inlet and outlet temperature of 100 

and 47 ºC, respectively. 

Nanocomposite Microparticles characterisation 

Particle size & zeta potential  

The particle size & zeta potential were measured using a 

Zetaplus. Briefly, 100μl of the suspension was diluted to 5 

ml using double distilled water and the measurements 

recorded at 25ºC (n=3). 

Spray dried yeild & drug loading 

The yield of spray dried NMs was quantified as a 

percentage mass of expected total powder yield (n=3). 

The amount of BSA loaded in the NPs was determined 

by measuring the amount of BSA remaining in the 

supernatant with a QuantiPro BCA protein assay (Sigma) 

after centrifugation (n=3). 

Particle morphology 

Spray dried NMs were mounted on gold coated 

aluminium stubs (EmiTech K 550X Gold Sputter Coater, 

25mA for 3 min), and visualised by scanning electron 

microscopy.  

In-vitro relese study 

20mg of BSA encapsulated spray dried NMs were placed 

in an eppendorf and dispersed in 1.2ml of PBS (pH 7.4). 

The samples were incubated at 37C in the orbital shaker 

set at 250 rpm. At predetermined time intervals up to 24h, 

the samples were centrifuged (30,000 g for 20 min) and 

1ml of the supernatant removed and replaced with fresh 

buffer. The supernatant was analysed by QuantiPro BCA 

protein assay as mentioned above (n=3). 

 

 

 

Table 1 Different formulation parameters for 

preparation of NPs by (w/o/w) double emulsion 

solvent evaporation 

Formula 

No. 

Polymer 

conc. 

(mg/ml) 

BSA 

 Conc. 

(%) 

 

IAP volume 

(µl) 

PVA 

Conc

. IAP  

(%) 

PVA 

Conc. 

EAP  

(%) 

EAP 

volume 

(ml) 

NM1 25 0.5 500 1 13 25 

NM2 25 0.5 500 5 13 25 

NM3 25 0.5 250 5 13 25 

*IAP: internal aqueous phase **EAP: external aqueous phase   

Aerosolisation studies  

Dry powder samples (10mg) were manually loaded into 

hydroxypropyl methylcellulose capsules (size 3), and 

aerosolised via a cyclohaler into a Next Generation 

Impactor (NGI), coated with 5% tween 80: acetone 

solution, at a flow rate of 60L/min for 4s to determine 

aerodynamic particle size. The samples were collected 

by washing with DCM/0.15 M NaCl mixture (2:1) to 

dissolve the polymer and the encapsulated BSA, which 

was determined by QuantiPro BCA protein assay as 

mentioned above (n=3). The FPF (%) was determined as 

the fraction of emitted dose deposited in the NGI with 

aerodynamic diameters less than 4.6 μm, and the MMAD 

was calculated from log-probability analysis. 

Results & Discussion 
Nanocomposite Microparticles characterisation 

The particle size achieved ranged from 196.6±1.9 – 

290.6±7.5 and the yield of NMs achieved after spray 

drying ranged from 24.4±4.7 – 35.9±5.1 (Table 2). All 

particles had a negative zeta potential, possibly due to 

PVA remaining on the particles after centrifugation and 

washing.  The drug loading ranged from 14.6±2.5 to 

20.54±3.1 µg/mg particle. There was a significant 

increase in drug loading between NM1 and NM2, due to 

an increase in PVA concentration in the IAP. However, 

decreasing IAP volume led to no significant difference in 

BSA loading between NM2 and NM3. 

SEM analysis indicated that NMs (NM2) had a 

corrugated surface with pores visible on the surface (Fig. 

1). This occurred due to excessive build-up of vapor 

pressure during solvent evaporation in the spray drying 

process and occurs with hydrophobic amino acids, such 

as L-leucine, for improved aerosolization performance 

(5). The size of the NM was approximately 2-3 µm 

according to SEM analysis.  

 

Figure 1 SEM images of NMs (NM2). Scale bar 

represents 5 µm (A) & 2 µm (B) respectively. 

 

Formula 

No. 

Particle 

size 

(nm) 

Zeta 

potential 

(mV) 

Yield 

(%) 

BSA 

loading 

(µg/mg) 

NM1 275.5±12.7 -24.5±1.3 25.4±5.3 14.6±2.5 

NM2 196.6±1.9 -19.3±3.3 24.4±4.7 20.5±3.1 

NM3 290.6±7.5 -12.4±2.1 35.9±5.1 19.5±0.6 

The data in Fig.2 represents the % cumulative 

release of BSA as a percentage of the drug 

loading.  All formulation showed biphasic release 

profile with a first initial burst release followed by a 

second continuous sustained release phase over 

24h. All formulations had a similar initial burst 

release of BSA ranging from 9.6±1.0 – 11.5±2.3%. 

Significant difference was noted in release profile (2 

– 24 h) between NM1 and NM3, with NM1 achieving 

19.8±1.5% release after 24 h compared to NM3 

(14.1±2.0%). 

Conclusion 
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 we have shown the potential for encapsulating 

proteins within PGA-co-PDL NMs as carriers for 

pulmonary delivery using double emulsion/spray 

drying as a preparation method. Future studies will 

involve improving the drug loading, stability studies 

and release by optimising the preparation method.  

Table 2 The drug loading, particle size, zeta 

potential, spray dried yield & drug loading of different 

NMs formulations.  

Figure 2 % cumulative in-vitro release profiles for 

different BSA-PGA-co-PDL NMs as a percentage of 

drug loading in phosphate buffer saline, pH 7.4. 

NM2 was chosen for aerosolisation studies due to a 

high drug loading and reasonable drug release 

profile compared to NM1 and NM3. The results in 

Tab.3 indicate good aerosolisation properties and 

the MMAD corresponds to particle size data 

achieved with SEM. 

Table 3 Aerosolisation performance of NM2 

Formula No. FPF (%) MMAD (µm) 

NM2 70.1 ±13.2 1.6 ± 0.4 
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Introduction 
  Over the past decade pharmaceutical research has been focused on developing macromolecules for 

treatment of many diseases [1]. Most of these macromolecules are administered using an invasive 

manner to reach a therapeutic concentration, even though these procedures would be painful to the 

patients. As an alternative, pulmonary inhalation could enhance macromolecules administration because it 

is a non-invasive technique for local and systemic drug delivery. The lungs own many favourable features, 

including large surface area for absorption, high vasculatures, thin epithelium in the alveolar tissue and 

short path of gas–blood exchange movement [2]. However, formulating these macromolecules into 

suitable pulmonary delivery systems remains a challenge. .  

  The most common method for the encapsulation of proteins in polymer-based nanoparticles (NPs) is the 

water/oil/water (w/o/w) double-emulsion solvent evaporation method [3]. NPs can also be formulated into 

dry powders for inhalation by spray-drying.  

  Here at Liverpool John Moores University we have been investigating poly glycerol adipate-co-ω-

pentadecalactone (PGA-co-PDL) as alternative to PLGA as a carrier for pulmonary delivery of 

macromolecules [4]. The results revealed that these polyesters could exhibit an alternative pulmonary 

delivery as they provide a protective matrix and faster release in a short period of time in comparison with 

other similar polymers, such as PLGA. 

Objective 
  

 The aim of this study was to formulate PGA-co-PDL NPs encapsulating bovine serum albumin (BSA), a 

model protein, incorporated into a microparticle L-leucine matrix via spray drying to produce 

nanocomposite microparticle (NCMPs) carriers suitable for pulmonary delivery via dry powder inhalation. 

Formulation & Drug Delivery 

Research 

Protein Loaded PGA-co-PDL Nanocomposite Microparticles for Inhalation 

 

Methods 
Nanocomposite microparticles preparation 

  The protein solution 1% 0.5 ml was emulsified in dichloromethane,DCM containing 50 mg PGA-co-PDL, by a 

probe sonicator at 45% amplitude over an ice. Then emulsified into a 1% PVA solution 25ml at 45% ampliyude and 

stirred for 2h at room temperature to evaporate DCM. NPs collected by centrifugation at 25,750xg and 4⁰C.  

  NCMPs were prepared by spray drying NPs suspended in L-leucine solution (1:1.5w/w) using a mini-spray dryer 

(Büchi, B-290) at pump: 10%, air flow: 50 mm, aspirator: 50 % and inlet temperature:100 ºC. 

  

Nanocomposite microparticles characterization 

• NCMPs zeta potential and size were carried out using a Zetaplus, Brookhaven Instruments, U.K.  

• BSA loaded in NPs was determined by measuring BSA remaining in the supernatant and wash after 

centrifugation using a QuantiPro BCA  protein assay kit (Sigma-aldrich).  

• NCMPs were visualised by scanning electron microscopy (SEM) (FEI – Inspect S Low VAV Scanning). 

• The yield of NCMPs was quantified as a percentage mass of expected total powder yield. 

  

In-vitro release study 

  Ten mg of NCMPs were dispersed in 1.2ml of phosphate buffer saline, PBS (pH7.4) at 37°C and rotated on a 

mixer (HulaMixer, Life Technologies).  

  

Aerosolisation study (Next Generation Impactor, NGI) 

  Ten mg of NCMPs were loaded into HMC capsules and aerosolised via a cyclohaler into a NGI, coated with tween 

80: acetone solution,flow rate of 60L/min for 4s. Samples were collected by washing with DCM/0.15M NaCl 

mixture. FPF%: the fraction of emitted dose deposited in NGI with aerodynamic diameters < 4.6μm and the MMAD 

was calculated from log-probability analysis. 
 

 

 

Results and Discussion 

 

 
 
Nanocomposite microparticles characterization 

The selected w/o/w double emulsion solvent evaporation process produced particles in the nanometer 

size range with a narrow particle size distribution (Table 1). The %EE of BSA loaded NPs was 39.49±2.63 

% with BSA loading of 35.9±2.39 µg/mg and a zeta potential of -17.17±0.61 mV. NPs were further spray-

dried to produce NCMPs with a reasonable yield for BSA loaded (38.22±1.17 %) and empty NCMPs 

(61.32±5.67 %). 

 
Table 1 The particle size, polydispersity index (PDI), zeta potential, encapsulation efficiency (%EE), drug 

loading (DL), and yield (%) of  NCMPs (n=3). 

 

 

 

 

 

 

 

SEM analysis (Figure 1) indicated that NCMPs were irregular and corrugated with a porous surface. The 

geometrical particle size of the produced nanocomposite microparticles as observed by SEM was 

approximately 2-4 µm. 

 

Figure 1 SEM images of spray dried BSA-PGA-co-PDL NCMPs. (The scale bar represents 1µm). 

 

 
 

 

Conclusions 
  The water-oil-water double emulsion solvent evaporation technique was able to manufacture PGA-co-PDL NPs with suitable BSA EE % (39.49%) and sustained release over 48h. Incorporating L-leucine during spray 

drying to produce NCMPs yielded FPF (70%) and MMAD (1.5 µm)  allowing for high efficient delivery of protein to the lungs.  

 

Formulation 
Particle size 

 (nm) 
PDI 

Zeta potential 
(mV) 

 

EE 
 (%) 

 

DL  
(µg/mg) 

 

Yield  
(%) 

BSA-PGA-co-PDL  203.03±5.4 0.145 -17.17±0.61 39.49±2.63 35.9±2.39 38.22±1.17 

Empty PGA-co-PDL  284.1±9.9 0.280 -15.86±0.85 - - 61.32±5.67 

 

 
In-vitro release study 

BSA showed biphasic release profile (Figure 2) with an initial burst release followed by a second 

continuous sustained release phase over 48h. The initial burst release of BSA from NCMPs was 

1.26±1.5% which after 4 h increased rapidly to 9.08±3.4%, which then slowed to 20.84±4.2% after 48 h.  

Figure 2 In-vitro release profiles of BSA –PGA-co-PDL NCMPs in PBS, pH 7.4 (n=3). 

 

 

 

 

 

 

 

 

 

Aerosolisation study (Next Generation Impactor, NGI) 

Aerodynamic particle characteristics revealed that the studied formulation yielded NCMPs capable of 

delivering efficient BSA with %FPF of 70.97±4.7% and a MMAD of 1.5±0.35 µm, indicating deposition in 

the bronchial-alveolar region. As NCMPs penetrate to the bronchial-alveolar region it is anticipated the L-

leucine component will dissolve, releasing PGA-co-PDL NPs which will eventually degrade into its 

individual components (glycerol, divinyl adipate, and caprolactone) releasing BSA for uptake. 

 

Table 2 The % fine particle fraction & MMAD(µm) of BSA-PGA-co-PDL nanocomposite NCMPs (n=3). 

 

 
Formulation %FPF  MMAD (µm) 

BSA-PGA-co-PDL 70.97±4.7 1.5±0.35  
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Introduction 
  Pulmonary vaccine delivery has gained major attention to produce both mucosal and systemic immunity 

(1). The encapsulation of antigens in nanoparticles (NPs) has been investigated extensively as an 

approach to enhance immunogenicity (2). 

  A number of polymers have been studied for pulmonary vaccine delivery. In recent years, poly glycerol 

adipate-co-ω-pentadecalactone (PGA-co-PDL) was studied as a drug carrier (3), (4).   

  Chitosan hydrochloride (CHCl) has been described as a water-soluble and a positively charged 

polyelectrolyte, which may overcome the low water solubility of chitosan at neutral pH. However, like other 

cationic polymers, the strong positive charge of CHCl contributes to the toxicity of the polymer. The 

amount of CHCl can be decreased by making CHCl-coated PGA-co-PDL NPs, because only a lower 

amount of CHCl was expected to coat on the surface of a particle compared to CHCl NPs (5).  
  

Objective 
  The aim of this study was to prepare CHCl coated PGA-co-PDL NPs encapsulating bovine serum 

albumin (BSA), a model antigen to produce cationic NPs which further spray dried to form nanocomposite 

microparticles (NCMPs) suitable for antigen delivery via inhalation. 

  
 

 

Formulation & Drug Delivery 

Research 

Cationic PGA-co-PDL nanocomposite microparticles for antigen delivery via inhalation 

 

Methods 
Nanocomposite microparticles preparation 

  The protein solution 1%, 0.5ml was emulsified in 2ml of dichloromethane,DCM containing 50mg of PGA-co-PDL, by sonication using a probe 

sonicator at 45% amplitude (VC X 500 Vibra-CellTM, Sonics & Materials, Inc., USA) for 5s over an ice bath. Then it was emulsified into a a mixture of 

1% CHCl and 1% PVA solution 25ml using a probe sonicator at 45% amplitude for 15s. Then it was stirred magnetically for 2h to evaporate DCM. The 

NPs were collected by centrifugation (SIGMA 3-30 K, SIGMA Laborzentrifugen GmbH, Germany) at 40,000xg for 1h at 4⁰C, and washed with distilled 

water.        

  NCMPs were prepared by spray drying NPs suspended in aqueous L-leucine solutions (1:1.5 w/w) using a mini-spray dryer (Büchi, B-290) with a 

standard two-fluid nozzle, feed rate of 10ml/min, air flow of 535L/h, aspirator  at  50% and inlet temperature of 100ºC. 

  

Nanocomposite microparticles characterization 

• NCMPs zeta potential and size were carried out using a Malvern NanoZS (Malvern Instruments Ltd., Worcestershire, UK).   

• The amount of BSA loaded in the NPs was determined by measuring the amount of BSA remaining in the supernatant and wash after 

centrifugation using a QuantiPro bicinchoninic acid (BCA) protein assay kit (Sigma-aldrich).  

• Spray dried NCMPs were visualised by scanning electron microscopy (SEM) (FEI – Inspect S Low VAV Scanning Electron Microscope). 

  

In-vitro release study 

  Ten mg of NCMPs were dispersed in 1.2ml of phosphate buffer saline (pH7.4) at 37°C and rotated on a sample mixer (HulaMixer, Life Technologies).  

  

Aerosolisation study (Next Generation Impactor, NGI) 

  Fifteen mg of NCMPs were loaded into HMC capsules, and aerosolised via a cyclohaler into a NGI, coated with 1% tween 80: acetone solution, at a 

flow rate of 60L/min for 4s. The samples were collected by washing with DCM/0.15M NaCl mixture (2:1). The FPF (%) was determined as the fraction 

of emitted dose deposited in the NGI with aerodynamic diameters less than 4.6μm, and the MMAD was calculated from log-probability analysis. 
 

 

 

Results and Discussion 
 

 
 
Nanocomposite microparticles characterization 

The w/o/w double emulsion solvent evaporation process produced particles in the nanometer size range 

with a narrow particle size distribution (Table 1). The BSA loading for CHCl coated and uncoated PGA-co-

PDL nanoparticles were 7.2±1.3 and 33.1±3 µg/mg respectively. The change in BSA loading observed 

attributed to increased amount of solid. The surface charge of CHCl coated PGA-co-PDL nanoparticles 

changed to +14.2±0.7mV. 

 
Table 1 The particle size, polydispersity index (PDI), zeta potential, and drug loading (DL) for 

nanocomposite microparticles (n=3). 

 

 

 

 

 

 

 

SEM analysis (Figure 1) indicated that NCMPs were irregular and corrugated with a porous surface. The 

geometrical particle size of the produced nanocomposite microparticles as observed by SEM was 

approximately 2-4 µm. 

 

Figure 1 SEM images of spray dried  

CHCl-PGA-co-PDL nanocomposite 

 microparticles.  

(The scale bar represents 1µm). 

 

 
 

 

Conclusions 
The water-oil-water double emulsion solvent evaporation technique was able to manufacture CHCl-PGA-co-PDL NPs with suitable BSA loading (7µg/mg) and sustained release 

over 48h. The use of L-leucine during spray drying produced NCMPs with FPF (47%) and MMAD of 1.7±0.29 µm allowing for high efficient delivery of protein to the lungs. 
 

 
 

 

 
 
In-vitro release study 

BSA showed biphasic release profile (Figure 2) with a first initial burst release followed by a second 

continuous sustained release phase over 48h. The initial burst release of BSA from NCMPs was 19.6±6% 

which after 4 h increased rapidly to 49.7±2%, which then slowed to 57.96±3.03% after 20 h then 

increased to 74.52±10% after 24 h followed by slow release to 81.9±12% after 48 h. This could be 

attributed to the distribution of BSA inside NPs matrix or a change in matrix degradation rate due to 

changed surface porosity.  

  

Figure 2 In-vitro release profiles for CHCl-PGA-co-PDL nanocomposite microparticles in phosphate 

buffer saline, pH 7.4 (n=3). 
 

 

 

 

 

 

 

 

 

 

 

 

Aerosolisation study (Next Generation Impactor, NGI) 

Aerodynamic particle characteristics revealed that formulation yielded NCMPs capable of delivering BSA 

with %FPF of 47.3±12% and a MMAD of 1.7±0.29 µm, indicating deposition in the bronchial-alveolar 

region. As NCMPs penetrate to the bronchial-alveolar region it is anticipated that the L-leucine 

component will dissolve, releasing CHCl-PGA-co-PDL NPs for cells uptake. 

Formulation 
Particle size  (nm) Zeta Potential (mV) DL (µg/mg) Polydispersity  (PDI) 

PGA-co-PDL 
  

445±46.8 -17.4±1.2  33.1±3 0.145 

  
CHCl-PGA-co-PDL 
  

480.2±32.2 +14.2±0.7 7.2±1.3 0.280 
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