DIEGESIS

A multi-agent Digital Interactive Storytelling
framework using planning and re-planning
techniques

Efstathios Goudoulakis

A thesis submitted in partial fulfilment of the requirements
of Liverpool John Moores University for the
degree of Doctor of Philosophy

June 2014

ABSTRACT

In recent years, the field of Digital Interactive Storytelling (DIS) has bes@mye
popular both in academic circlegs well asn the gaming industryin which stories are
becoming a unique selling poinAcademic research on DIS focuses in the search for
techniques that allow the creation of systems that can generate dynamically
interesting stories which are not linear and can change dynamically at runtime as a

O2ya8ljdSy 08 27T therefdrdflendhdiddiderent sO dndings =

To reach this goal, DIS systems usuathploy Artificial Intelligence planningnd re
planning algorithms as part of their solutianThere is a lack of algorithms created
specifically for DIS purposesice most DIS systems use generic algorithms, and they
do not usually assess if and why a given algorithm is the best solution for their
purposes Additionally, there is no unified way (e.g. in the form of a selection of

metrics) to evaluate such systems and algorithms.

To address these issues and to provide new solutions to the DIS fiefgerfeemed a
review of related DIS systems and algorithnmg] Based on the critical analysis of that
work we designed and implemented a novel medtjent DIS framework called
DIEGESIS, which includ@snong other novel aspectswo new DISocused planning

and replanning algorithms.

To ensure that our frameworknal its algorithms have met the specifications we set,
we created a large scale evaluation scenario which models the story of Troyedle
fINEY | 2YSNDa S Lwhich wellsél Yoperfdrm & ruinbeiEoE evaluations
based on metrics that we chose and wensider valuable for the DIS field. This
collection of requirements and evaluations could be used in the future from other DIS

systems as a unified tebied for analysis and evaluatiah such systems.

ACKNOWLEDGEMENTS

This work is dedicated to my twin daughters, Evdokia and Myranda, who were born a
few months before | completed my research.

Firstly, | would like to thank my primary supervisor Professor Abdennour El Rhalibi for
his coninuous support, guidance, encouragement, and inspiration throughout my
research whichwere crucial for the completion of it, as well as my second and third
supervisors, PiiessorMadjid Merabti andProfessolA. TalebBendiab

| would also like to thank mgarents, Christos and Evdokia, my partner, Filian, as well
as the rest of my family (with a special mention to my grandmother Eftichia and my
uncle Vasilis who passed away last summer and were always proud of me pursuing a
PhD)for the support, patienceand encouragement that they showed me both during

the course of my research, and during mfiyole life.

Finally, | would like to thank Liverpool John Moores University for the scholarship that
made this research possible gridst but not leastall my friends (vhoselist of names
is lengthy tomention here) for their supporand companionship

DECLARATION

| declare that as the solauthor of this doctoral thesighe work contained herein is
my own, unless explicitly statestherwise During thecourse ofmy research, the
following research publications were produced to disseminate my work. Certain
material andconcepts from these publications will, by necessity, be presented within

the context of this thesis.

1 Goudoulakis E., ElI Rhalibi, A., Merabti, Mand TalebBendiab, A. 2011.
Evaluation of Planning Algorithms for Digital Interactive Storytellg 13
Annual Post Graduate Symposium on the Convergence of Telecommunications,
Networking and Broadcasting (PGNet2Q11)

1 El Rhalibi, A., Goudoulakis, E., and Merabti, M. 2012. DIS Planning Algorithms
Evaluation. 4" |IEEE International Workshop on Digital Entertainment,
Networked Virtual Environments, and Creative Technology

1 Goudoulakis E., ElI Rhalibi, A., Merabti, M., afialebBendiab, A. 2012.
Framework for multagent planning and coordination in DFBoceedings of the
22N) aK2LJ Fd {LDDw!tl ! &Al 621 {! QMHO

1 Goudoulakis E., ElI Rhalibi, A., Merabti, M., and TaBsmdiab, A. 2012.
Opportunistic MultiAgent Digital Interaive Storytelling SystemThe B
Annual Post Graduate Symposium on the Convergence of Telecommunications,
Networking and Broadcéisg (PGNet201R

1 Duarte, R., Goudoulakis E., El Rhalibi, A., and Merabti, M. 2013. A
Conversational Avatar Framework of Digital Interactive Storytelfling 4™
Annual Post Graduate Symposium on the Convergence of Telecommunications,
Networking and Broadc#éisg (PGNet2013

1 Goudoulakis E., ERhalibi, A., Merabti, M., and Tal&endiab, A. 2013. Re
planning in Digital Interactive Storytellinghe #™ Annual Post Graduate
Symposium on the Convergence of Telecommunications, Networking and
Broadcating (PGNet2013

1 Goudoulakis E., ElI RhalibiA., Merabti, M., and TaleBendiab, A. 2014.
DIEGESI® A Novel MultiAgent Planning System for Digital Interactive

iv

Storytelling. ACM Journal Computers in Entertainmemgésue 12, Vol. 3,
September 2014 (in print).

TABLE OFCONTENTS

ADSITACT ...t e e e e a e L.
1 INErOAUCTION. ..ot e e e e e e e r e e e e e e e e e e aann 1
1.1, MOUIVATION ...ttt e e e e e e e s r e e e e e e e e e a e 1
O AN [4 I 2 @ o1 = od 1)Y= 2.
1.3. Research Methodology.......ccoouuiiiiiiiiiieeeeee, 3
1.3.1. Literature Survey and Critical ANalySiS........cccceeeiiiiiiiiiiiiieieieeeeeeeeenn, 3
1.3.2. Problem Analysis and DeSIQN............uuuurrmmmmmimiiiiiiiieeeeeeseeeaeeeeeeeeeeens 3
1.3.3. Framework Implementation...........ccccoiiiiiiiiiieiiieeeeeeii e 4
1.3.4. Evaluation ASSESSMENL........ccuuiiiiiiiiiiiie e 4
1.4. Contributions t0 KNOWIEAQGE.uuiiiiiiiiieiiiiii e 5
1.4.1. Critical Analysis ConsolidatiOn.............oooiuiiiiiiieiiiee e 5
1.4.2. Design of a Novel DIS FrameWoOrK............cccceveiiiiiiieiiiiiiiieee e, 5.
1.4.3. Implementation of a Novel DIS Framework.........cccccccoovviiviiiieneennnn. 8
1.4.4. A New Planning Solution for DIS Framewarks................cccccuvvnnnnnnn. 8
1.4.5. A New Replanning Solution for DIS.............ccociiiiiiiiiiiiiiiieeeeee 9
1.4.6. Evaluation of DIS SYSIEMS.......cccuiiiiiiiiiiiiiiiieeeeee e 10
1.4.7. Proposal of Possible Applications.............ccccvvieiiiieiiiiiiiiiii e 11
1.4.8. Dissemination of Our FINAINGS..........c.oouiiiiiiiiiieiiieeee e 11
1.5, StrucCture Of TNESIS......uuiiiiiiiiiiieii e 12

2 Background & Related WOrK............oeoiiiiiiiiiiiiiiiiiee e 13
2.1. Digital Interactive Storytelling.........ccooovviiiiiiiiiiiic e 13
2.2, PlanniNg.....coooiiiiiii e 15
2.3. Planning Using CONSIIAINLS........cooeiiiiieiiiiiiieeieee e e e e ee e 17
2.4, MUlti-ageNt SYSTEMIScciiiiiiiiiiiiiiiiiiii i a e e 17
2.5. Multi-agent Planning...........cooouiiiiiiiiiiieiiiiiiiiiiei e 20

2.6. AQent ArChItECIUIES....... .o 21

2.7. RePIANNING......cooiiiiiiiieiee e e e e e e e e e e e aaaaaaaaaaas 23
2.8. Planning Algorithms Used in DIS............oiiiiiiiieee e 24
P2 < T B e (= 1S 0] 7= T o | 24
2.8.2. Graphplan..........ccoueeiiiii 25
2.8.3. Heuristic Search Planner (HSB).........cccooiiiiii 26
2.8.4. Hierarchical Task Network (HTN) Planning..............cccccovivevniennnnn. 27
2.9. Representation LANQUAGES.cuuiiaaeiiiiiiiiieiiiieieee e e e ssiiinreeeeeeeae e e e 27
2.9.1. Stanford Research Institute Problem Solver (STRIRS).................. 27
2.9.2. Action Description Language (ADL)...........coovvviiiiiiveeieieiiiiiininnninnnnns 28
2.9.3. Planning Domain Definition Language (PDDL)...........ccccveeeiininnnnee 28
2.9.4. Hierarchical Task Network (HTN)...........coooviiiiiiiiieeeeeeeeeviiies 29
2.10. Review and Critical Analysis of Existing DIS Systems....................... 30
2.10.1. FADUIALOL. ... 30
2.10.2. Cl GE.RS e 31
2.10.3. GADIN . e 32
2.10.4. I-StOrytelling........eeeeeiiieeee e 35
2.10.5. LOGTELL...uue e 37
2.10.6. MIMESIS. .. uuiiiiiiiiiiee ettt e e e e 38
2.00.7. MIST e aaeeee 40
2.10.8. OtNEIIO....ceei i 43
2.10.9. PASSAGE ... 44
2.11. DIS Systems COmMPAriSON........ccuviiriiiiieeeeeeeeiiiie e e e e e e e e eenana 45
2.12. Replanning outside of the DIS field............ccccceiiiiiiniiiiiiiied 54
3 DIEGESIS DIS FrameWOIK........cccoiiiiiiiieieiriiie e 26
3.1. User Types and CharacteriStiCS........ccceeeiieeiiii e 56
3.2, General SPECIfICALIONS.uu i 57

vii

3.3. Choice of Base Representation LanNgUage............euueeemmmmininiiieesseeaeeennns 58
3.4. Choice of Base Planning Algorithm...............oovvviiviiieiiiiiiiiiiiinieenninnnns 62
3.5, MUlti-ageNt NEEUS......cciiiiiiiieiiiiieeeetttee e 64
4 Desgn of the FrameWOIKccoooiiiiiiiiiiiiiie e 66
4.1. Game World Archit@CtUIE..........ooii i 71
4.2, ParSEl...cciiiiiiiiiiiei e 74
4.3. KNOWIEAQE BASE......ccoveviieiieiiiieiiiiietiiiiii s e e nnnnnnnnaaanaeaa D
4.4, LBl MANAGEL.......ci ittt e 76
4.5, WOrId Manager.........uuuuuuuuuiiiiiiiiiieisseseseseeseeeeeaeeaaeeeeaaaaaaaseasesesseesseeeseeen d B
4.6. ChOICES MANAJGEL.......uutiiiiiiiieeeei ittt e e e e e e e e seebneeees 87
4.7. Transitioning ManNAgQEL..........uuuuuuuuiiiiiiieee e ee e e e e e e e ee e e e e e e e e e e e aeaae e e e e e e e e aeeeees 90
4.8. Goal INJection Manager...........ccevvvviieiiireieiriiiiieei e 98
4.9. Futile GOa MaNAQEL.......ccuiiiieiiiiiiiieiee et 102
410, OFACIE.....ceeeeie et 105
4.11. Uncertan ACtIONS MANAGEL.......ccouiiiiiiiiiiiiiiiieee et e e e e 106
4.12. Vantage PoiNt MANAQEL.........cccouiiiiiiiiiiieeeee e 108
G T O L= g Y/ = T =T] (PRSPPI 111
N e b 10 01T PP PP PPPPPUPPPPPTPPPP 113
T o =T o | PPN 129
4.16. Battle MAmBQEr......ccoiiiiiiiiiiiiiiieeeee et 133
4.17. EValuation MONITOL.......ccuiiiiiiiiiiiiiiiieee e 140
4.18. Tools for Story Modelling........cccoovviiiiiiiiiieecee e 142
5 IMPIEMENtAtION........oviiiiii e ——— 144
5.1. Choice of implementation platform...........ccccccceeiiiiiiiiiiiii e, 144
I == 1611 To B @ 0] aq] oo = 1 A 145
5.3. Knowledge Base COMPONENT..........uuuuurmmmmmmimiiiiiinnseeeseeaseeeaseeeeseeeeeaeas 146
5.4, LeVel MaNAGEL ... 149

viii

5.5, WOrId MAnNAQEr......cccvviiiiiiiiiiiiiiiiiiiiiiiiiiiieeei e 150
5.6. ChoiCeS ManNAQELr.......ccoceiii e 156
5.7. TransSitionNing MaNAGEL.........uuuiiiiiiieaiiiiiii et e e e e 157
5.8. Goal Injection Manager............ccoeeiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeeeeee e 158
5.9. Futile G0alsS MANAQGEL.........ccoiiiiiiiiiiiiiieeee et 161
5.10. OrACIE ... 162
5.11. Uncertan ACtioNS ManNAgQEel.............euvurrurrrmmmmmunnnnninninnnnnnseeeeeeeeas 162
5.12. Vantage Point MaNaAgEL.........cccuuuiiiiiiiiiieeeeeeieiiie e 163
5.13. USEI MaANAGEL. ...ttt e e aaa s 164
5.14. PlaNNEI ... ettt 168
0.5, AGBNL .. 175
5.16. Battle MANAQeL........uuvuvuiiiiiiiiiriieis e s e aa e 177
5.17. EVAluation MONITOL......ccoiiiiiiiiiiiiiiie et 178
6 EVAIUALION ... 180
6.1. Evaluati®l SCENAIOS.........uuuiiiiiiiieeiiiiiiiee et 180
6.2. Potential StOryliNES.......ccooiiiiiiiii e 181
6.3. Story MeChanICS.........cooooiiiii s 188
6.4. EVAluAtioN METIICS.......uuiiiiiiiiiiee e 194
6.5, EVAIUALIONS.oiiiiiiiiii e 196
6.5.1. Planning Algorithms Evaluation..............ccccccceieiniiiiiiiiieeeeeeeen 196
6.5.2. DIEGESIS Scalability Evaluatian...............cccceeveeeeeeiniiiiiiiiiieeeenn. 199
6.5.3. Planning Algorithm Performance Evaluation.....................ccevveee. 203
6.5.4. Replanning Algorithm Evaluatian.............ccccccoviiiiiiiiiiiiiiieneeeennnn 208
6.5.5. Summarisation evaluation.............ccccooviiiiiiiiiiiie e 213

7 Conclusion & FULUIE WOIKccuviiiiiiiiiiiee e 228
7.1. ReSearch SUMMALY.........ccooeiiiiiii ettt 228
7.2, THESIS SUMMALY....cciiiiiiiiiiiiiiiiiiiiiitiititee i 230

iX

7.3. Possible AppliCationS..........cooiiiiiiiiieeeeeee 231

7.3.1. 3D Visualisation Of STOMES........c.cccvuiiieiiiiiiiiee e 232
7.3.2. Virtual Storyteller.........ooceeeieiieeeeeee e 234
T4, FULUIE WOTK ..ottt 237
7.4.1. AULNONNG TOOISciiiiiiiiiiiiiiiiiiiiir e e e e e e e e aeeeaeeees 237
7.42. Emotions Manager COmMPONENT..........ccuuviriiiiieeeeeeeaiiiiireeeeeeeens 237

743. LYLINR@GSYSyd 27F t f prdogssipgd......£.22.NB80 KY Qa

T.4.4. DUrative ACHIONSuuuiiiiiiiiiiee ettt e e 238
7.4.5. Possible ApPliICAtIONS..........ccevvviiiiiiiiiiiii e 239
7.4.6. Application Programming Interface (APL.......cccccoeeiiiiiiiiiieenneeneenn. 239
7.4.7. Further Framework Evaluations.............cccccccciiieiiiiniiiiiieeeeeeee 239
A T (o] Y1 \Y [To [{11 Vo SRR 240
REIEIENCES. ...t 241
APPENAICES ...ttt ettt e e e e e e e e et e e e e e e e e e e 247
Appendix A: Use of UML in the ThesSIS..........uuuiiiiiiiiceeeeee 247

LISTOFFIGURES

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:

CA3IdzNB oY

Blackboard arChiteCture...........ccuvuviiiiiiiiee e 18
Message passing arChiteCture............ccuvvviiiiiiiieeee e 19
Deliberative agent architecture...............cccooeeiveeeiiiiieeeeeeeeeeeeeeeee e 22
Reactive agent architeCture............cc.uuviiiiiiieeeee e 22
BDI agent arChiteCULE.ceiiiiiiiiiiiie e 23
User types use Case diagrall...........uuuuurerurruunnneinnessssesseeeseeaeseeeaeeeas 57
PDDL domain definition eXample............oooiiiiiiieiiieeeeeiiieeeeee e 59
PDDL problem definition example...............cccoooiiiiiiiiiiiiieeeeeeeeeeeiies 61

Figure 10: DIEGESIS architeCture...............ooooiiiiiieiiiieeeeeeeeeeeeeeeee e 70
Figurell: Game world arChiteCtULE...........ccuuiiiiiiiiiiee e 71
Figure 12: Example of a PDDL representation............ccccceevvvvvvvevvvvvevvnnennnnnnnnnnnnn 3
Figure 13: Parser activity diagram..............ueeeiiiiiioiiniiiiiiie e 74
Figure 14: Preliminary database SChema..............cccvvvvivieiiiiiiiiiciccccccce e, 75
Figure 15: Semantics of XML level nodes..............ccooeeiiieeiiiieeeieeeeeeeeeeeeeae, 77
Figure 16: Level Manager sequence diagraml........ccccoouiriuimimeiireeiieee e 18
Figure 17: World Manager hidavel activity diagram..................oeevvvvvvvvvvnevnnnnnnnnn. 79
Figure 18: Level initialisation sequence diagraml............uueeeerieeereerininiiiiiieneeeeeens 80
Figure 19: Initialisation of agents activity diagram..................c..evvvvevrveevvnnnnnnnnnnnn. 80
Figure 20: An XML Character NOGE.ceveiiiiiiiiiiiiiiiiieiieee e 81
Figure 21: Activity diagram of the process of executing a.turi...........ccccceeeeeennee. 83
Figure 22: Sequence diagramdefaling with messages............ccccoceviieeiiiiiiinnee, 86
Figure 23: A set of XML ChoiCe NAUES.......ccceeeiiiiiiiiiiie e 87
Figure 24: Sequence diagram of loading a new level's chaices.......................... 88
Figure 25: Sequence diagram of dealing with choices.............cccooieees 89
Figure 26: Transitioning information in XML............ccoooviiiiiiiiiiiii e 91
Figure 27: A group of mutually exclusive levels modelled in. XML...................... 92
Figure 28: Activity diagram of the transitioning ProCess.........ccccevveeevieieeeeeeeeeeenn. 93
Figure 29: Transitioning sequENAIiagram..............euuurrrurrrremmrmmnnnen 94
Figure 30: Example of transitioning layerS........cooooveeiieieeeeee 96

Xi

5L9D9 {.L{.Q. AY.AGALL.LNOKALGLSDG dzNS

Figure 31:
Figure 32:

Transitioning layers containing mutually exclusive levels.................. 97

Transitioning layers after the mutually exclusive levels are remaved98

Figure33: A set of XML Goal Injection rule nodes............ccccovvviiiiiiiiieiiiinnnnn. 100
Figure 34: Loading of new goal injection rules sequence diagram................... 101
Figure 35: Sequence diagram of dealing with goal injections.................oeeee.. 102
Figure 36: A set of XML futile goal and illegal location nodes........................... 103
Figure 37: Loading of new futile goals sequence diagram.................cccvvvveeeenn. 104
Figure 38: Sequence diagram of requesting a futile goal................cccccceeeeinnnnn 105
Figure 39: Calculating a random outcome activity diagram................oceeuuneee 106
Figure 40: A set of XML uncertain actions nodes...............ccceeeeveeiiiiiiiiiiieeeee, 107
Figure 41: Loading of new uncertain actions sequence diagram...................... 107
Figure 42: Sequence diagram of checking iaétion is uncertain......................... 108
Figure 43: Vantage point generation sequence diagtam..............cccvvvvnnnnnnnnnnns 110
Figure 44: Checking if an action will be displayed sequence diagram.............. 111
Figure 45: Initial GUI MOGKDeiiiiiiiiiiiie e, 112
Figure 46: Intermediate GUI MOOIcooviiiiiiiiiiiiiiiicee e 112
Figure 47: Final GUI MOOK............cooviiiiiiiiiiiiiiiiniii e 113
Figure 48: Modal boOX GUI MGBORcceiiiiiiiiiiiiiiieieeee e 113
Figure 49: Planner initialisation sequence diagram...................ccceevvvvevvveeenneen. 114
Figure 50: A set of XML action NOAES.......cccoeeviiiiiiiiiiieiiee e, 115

Figure 51:

Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:
Figure 62:

Activity diagram of the initialisation (gmecessing) of planning domalrii6

Figure52: A PDDL action eXample............cooiviiiiiiiiieeiiieeeeeeeeeeeeeevveesnaes 117
Activity diagram of the planning proCess........cccccccvviiiiiiiiiiieeeeeennn. 119
A PDDL planning domain and problem................o.oiiiiiiinnenn, 120
A simple planning graph example..........cccccoiiiiiiiiiiiieiie e, 120
An expanded PDDL planning domain and problem......................... 123
The expanded planning graph...........ccueeeeeiiieiiee e 124
The new simplified planning graph..........cccccooeeiiiiiiiiiiee, 125
Activity diagram of the-panning proCess..........cccovvviiviiiieieeeeeeeenens 127
An abstch re-planning example........cccceeieeee e, 128
Sequence diagram of the initialisation of agents..............ccccoeeeeeen. 130
Activity diagram of the agent goal selection process............ccccuuuee. 131
Activity diagram of agent plan request ProCess..........cccceeeeeeeeeeneenn. 132

Figure 63:

Figure 64
Figure 65

Figure 66:
Figure 67:
Figure 68:
Figure 69:
Figure 70:
Figure 71:
Figure 72:
Figure 73:
Figure 74:
Figure 75:
Figure 76:
Figure 77:
Figure 78:
Figure 79:
Figure 80:
Figure 81:
Figure 82:
Figure 83:
Figure 84:
Figure 85:
Figure 86:
Figure 87:
Figure 88:
Figure 89:
Figure 90:
Figure 91.:
Figure 92:
Figure 93:

A set of XML battl@tahils.............cooiiimiiiiiieiiee e 134
A set of XML battle groups............evveeririiiierssssess e ee e 135
Battle Manager initialisation sequence diagram...............ccccceeeeeeee.. 135
Alliances' initialisation activity diagram..............cccceevvvveevvevvvvvnnnnnnnnns 136
Activity diagram of checking for an alliance retreat.......................... 138
Activity diagram of perfaing a battle.................coovviiiiiiiieiiii, 139
Battle configuration XML NOAES...........ooeiiiiiiiiiieiiieeeeeeeiieeee e 140
Screenshot of (Cooper, 2011)'s PDDL editor..............cvvvvvvveennnnnnnnnn. 142
DIEGESIS Software ArchiteCture............cccvvvieieeeiiieeeeiiieeeeen 144
Parser Class diagraml..............uuvivriiiieiiiiiii e 145
Knowledge Base class diagrtam..........ccccceeveeeeiiiiiiieeeeeeeeeeeeeeeeeee, 147
Knowledge Base database schema.............ccccoevvvvvviiiiiiiiiininiinnnnnnns 148
Level Manager class diagraml..........cccceeeeiiiiiieeiiiii e 150
World Manager class diagram..............c.eeveeeiiieeriiniiiiiiiiiieeeeee e 151
Choices Manager class diagram..............ccccceovveeiiiiiiiieieeeeeeeeeeiiens 156
Transitioning Manager class diagram.............ooccvvveeeiriiiieeeeneeiieee, 158
Goal Injection Manager class diagram................oeevveveervvenineninnnnnnnnn. 160
Futile Goals Manager class diagram............ccoccuveveieiiieeeeennnesiiene 161
Oracle Class GHaMuuverrrriiiicrr e e e e e e e e e e e e e e e 162
Uncertain Actions Manager class diagram....................cccceeeveeneee. 163
Vantage Point Manager class diagram...........cccccceeeerniiiiiiiiiieeeneenn. 164
The initial User Interface of the system............ccccoooo 165
First version of DIEGESIS!.GUL..........ccoooiiiiiiiiiiiiiieee e 165
Intermediate version of DIEGESIS . GUL..........cccccciiiiiiiiiii 166
Finalised version of DIEGESIS..GUI...........cooooiiiiiiiiie, 167
A poIp MOdal DOX....ooiieiiiiiie e 167
User Manager class diagram............coooiiiiiiiiiiiiieeee e 168
Planner class diagram...........ccoouuuiiiiiiieiieicee e 169
Planning graph expansion visualiSation............ccccccoovvviivviiieeeneeeenn. 171

Information about a specific action in the visualisation of the planning graph

... 171
Figue 94: Agent Class diagrail............uuuueriiiiieeiieeseee e ee e e e e e e e e eeeeeaeeaeeeaeeeeeeeees 176
Figure 95: Battle Manager Class diagraml..............uuueeueiimiiiiiiiiieiaeeeee e 178

Figure 96: Evaluation Monitor class diagram.............ccccceeeeeeiiiiiiiiiieiceeeeeeeeee, 179

Figure 97Troy scenario levels and potential transitions................cvvvveennnn. 187
Figure 98: Levels affected if Achilles decides not to join the.war...................... 189
Figure 99: Levels affected if Helen decides not to flee with Ratris..................... 191
CAIdzNBE mnnyY ! OKALL.S.4.0..02.Ya.AY.SR...LX.L.yO3
Figure 101: Troy charactereordination................coovvvvviiiieeeiieeeeeeeeeeiieeeeeeeneeaeens 194
Figure 102: The generated valid plan..........ccoooiiiiiiiieiieeee e 199
Figure 103: Total times vs number of agentS............uuvvueiiiiiiiiiiiiee e 201
Figure 104: The generated valid plan..........coooiiiiiiieeiieeeeee e 201
Figure 105: Total times vs number of agentS..............uveiiiiiiieiiiiiiiieee e, 203
CAIdzNBE mMnc Y...L.SOU2NDA. ...LE. LY. 204
CAIdzNE MAT.Yo b L NRAQ. LI Ly e 205
Figue 108: Total and average planning times..............oovvvvvvvevveiviviiiviiniiinennnnnn, 206
Figure 109: Total and average number of nodes in planning graph.................. 206

Figure 110: Successful and failed actions, times instructed to wait, and numbers of

total generated PlanS..........oooi i 207
CAIdzNBE mMmMmY t L.NRAQ..O2Y.LI.S0.S.LX.L.Y......208
Figure 112: Relanning process and action execution of the newl@nning solution
... 209
Figure 113: Number of fplanning tasks................cccoviiviiiiiiiiiiiieeeevees 210
Figure 114: Total and averagepnning tiMes............ciiierriiiiiiiiiiiiiieeeeee e 211
Figure 115: Individual planning time for eachptanning task.............................. 212
Figure 116: Total and average number of NQdes...........ccccveveiiiiiiiiecc e, 212
Figure 117: Individual number of nodes for eaciplaning task......................... 213
Figure 118Execution order of levels in Story.L.........ccccoeiiiiimieeeinieec e 214
Figure 119: Execution order of levels in Story.2...........ccviiiiiiiieiiiiiiciii e, 215
Figure 120: Execution order of levels in Story.3........cccveiiiimieee e 216
Figure 121: Execution order of levels in Story.4..........coooiiiiiiiiiiiiiiiciee e 217
Figure 122: PHRrOCESSING NOUEBScciiiiiiiiiiiiiitiiee ettt e e e e e e 219
Figure 123: Total story duration..............coooiiiiiiiieiiieeeeeeeeeeeeeeeee e 223
Figure 124: Levels of Achilles’ vantage point..........cccccoeeeiiiiiiiieieeeeeeeee, 225
Figure 125: Levels of Helen's vantage point.............cccoevvveeeeiveeeveveveeiviiiiiiiinnnns 226
Figure 126: SPartan WarTIQ........ccoooieeiieeeeeeeeeee e e e e e eeeeeeeees 232

Figure 128: Achilles Watching Ships Preparing forWar.................ccoveeveeeee, 233
Figure 129: Achilles meeting Greek Goddess Athena...........ccccccooviiiiiiiiinnenen. 234
Figure 130: The Charisma interfaCe.........cccoeeeiiiiiiiiiiiie e, 234
Figure 131: Framework layers for facial animation and.DIS..................c...c...... 235
Figure 132: The flow of a story used as INPUL.............eeeeiiiiiiiiiiiieicee e 235
CA 3dzNBE ™ acombined QdaA.L.£.5.8.Q i, 236
Figure 134: Information flow to create a narrative in the framewaork................. 237

XV

LIST OFTABLES

Table 1: Feature sets of Digital Interactive Storytelling systems................cc.vuue. 48

¢FofS HY !'fI2NAOKYAQ. . FSL.0.dzNK....4a.8.0.4...196

Table 3: Algorithms' execution time COMPAriSON...........uuueeiiiiiiiieeeeeeeeeeeeeeeeeenns 198
Table 4: Prgrocessing and planning times vs number of agents.................... 200
Table 5: Prgrocessing and planning times number of agents...............ccccec.... 202
Table 6: Planning evaluation results.............cccooeee e, 205

Table 7: Successful and failed actions, times instructed to wait, and numbers of total

(oI U=l =1 (=T o] = T F PP 207
Table 8: Planning times and number of NOdES...........ccoooiiiiiiiiiiiiie e, 210
Table 9: Planning tasks reSUIS..............uuuiiiiiiiii e 211
Table 10: Generic Story data reSUILS.........ueeiiiiiiiiii e 218
Table 11: Prerocessing NOAES........coooeeeeiiiie e 219
Table 12: Planning data reSUltS...........oooiiiiiiiiiiiee e 220
Table 13: Performance data results............ccccoveeiiiiiiie e 221
Table 14: Transitioning data reSUltS...............oevvviiiiiiiiiiiii 221
Table 15: Interetivity performance data............ccccuvvviiiiiiiieei e 222
Table 16: Maximum waiting durations.............oeeeeeeeeieeeeieeeeeeeeeeeee, 222
Table 17: Vantage points data resultS............cccceeeiiiiiiiiiiiiieeeeee 224

XVi

LIST OFABBREVIATONS

Al ¢ Artificial Intelligence

AMc! 3SydaQ al yl 3SNJ
BM ¢ Battle Manager

CMc¢ Choices Manager

DIS¢ Digital Interactive Storytelling
FGMc Futile Goals Manager

GIM¢ Goal Injection Manager

GUI¢ Graphical User Interface

HTNc Hierarchical Task Network

KB¢ Knowledge Base

LM¢ Level Manager

MASCc Multi-Agent System

NPC; Non-Player Character

OG¢ Output Generator

PDDIL¢ Planning Domain Definition Language
STRIP& Stanford Research Institute Problem Solver
TiM ¢ Time Manager

TM ¢ Transitioning Manager

UAM¢ Uncertain Actions Manager

UM ¢ User Manager

VPM¢ Vantage Point Manager

WM ¢ World Manager

Xvil

INTRODUCTION

1.1. MOTIVATION

In recent years, the field of Digital Interactive Storytelling (DIS) has besemye
popular both in academic circles and in the gaming indu3tmg latter is gorosperous
industry, since it has surpassed in revenue the music and movies industriess Storie
and storytelling are becoming more important in games (for example in Role Playing

Games) and are transforming into a unique selling point of them.

DIS systems can also be used in education and also in other entertainment areas (apart
from games) suchsin TV, movies, series, etc. For example, in the future the viewer
may be able to interact and change the outcome of a story presented to her via
animation. Such systems can also generate scripts for movies/series to help writers

with ideas.

DIS is a verfjourishing research area in academia and is a platform which allows us to
do a multidisciplinary research containing interesting and exciting areas to work on,
such as multagent systems, planning,q@anning, etc., solving difficult problems (for

exanple regarding realime performance).

Also, we get the chance to combine all these disciplines and apply and use them in a
different area from where they were traditionally used. For example, there is extensive
research for planning algorithms with a facon industrial themes, but not much in

the DIS field.

Academic research on DIS focuses in the search for techniques that allow the creation
of systems that can generate dynamically interesting stories which are not linear and
that can change dynamicaluring runtime as acg 4 S1j dzSy 0S 2 F | LJ |

thereforeleadngto different story endings.

There have been numerous approaches attempting to reach this goal by employing
Artificial Intelligence (Al) planning algorithms as part of the solution thoey typically

do not discuss in detail or assess if and why a given planning algorithm was used and if
that algorithm is the best solution for the story scenarios used or if it is suitable for
other DIS scenarios. Also, there is a gap in the developmedtuse of regplanning
methods in existing systems, as no specifiplenning algorithm has been proposed to

deal specifically with DIS. In this research we propose to contribute to the assessment
of existirg Al planning solutions for DI®, create a noel multi-agentframeworkthat
providesnew solutiors for DIS andto designnew Al planning rgplanning algorithms

which will have been evaluated to be the most suitable for DIS characteristics.

1.2. Aim & OBJECTIVES

The proposedesearch aims at investigatidgl planning and r@lanning algorithms
and exploitingtheir potential for the field of DIS, to evaluate their suitability for such
systems and to develop new algorithms to improve them. To this amdl to also
provide more solutions to DIS researehmulti-agent DISramework using planning
and replanningtechniqueswill be specified, designed, implementeand evaluated

usingappropriate DIS scenarios.

The objectives of this research work will be to consolidate the knowledge related to
existing planing and replanning algorithms for DIS, and develop a more generic
multi-agent DISramework providing a more robust, flexible and performant solution

for a large class of DIS. In particular we will:

1 Review the related work in DKystems, as well gslannng and replanning
algorithmsrelated to DIS;

1 specify the requirement®f a multtagent DISframework which uses planning
and replanning techniques;

1 design and implement a novel muéigent DISframework which utilises
planning and replanning techniqueso generatea narrative

1 introduce mechanisms to generate different stawytcomes andperspectives,
for example using choicegjoal injections,levels transitioning and vantage

points;

1 design andmplementa new planning algorithrfor DIS taking into &countits
performance andmpact on thestoryline quality

1 design andmplementa new replanning algorithm for DI$aking into account
its performance, minimal disruptioto the original plan, and impact on the
storyline quality;

1 define the evaluation riteria, create evaluation scenarios and evaluate the
implemented framework and algorithms;

1 exploit the research outcomes for generalisation and dissemination purposes

1.3. RESEARCHVMIETHODOLOGY

In order to achieve the research objectives that we outlipedviocusly, the research
methodologythat we used duringhe course ofour researchfollows an incremental
and iterative modelln each iteration, srting with an initial idea, we performed a
(neverending) literature survey on the related work to idemtiproblems inone (or
more) of our fields of research. By analysinhe data derived from this survey, we
designed new and/or modified existing components of our framework, which we
implemented and evaluated (when was required). The following sectionss$ishese

steps in more details.

1.3.1.LITERATURESURVEY ANMCRITICALANALYSIS

In order to develop a deep and varied understandingthia fields related to our
research we performed acomprehensive survegn existing DIS systemsjulti-agent
systems,as well asplanning and replanning algorithms with the DIS field in mjnd

which we documented in chapter 2.

1.3.2.PROBLEMANALYSIS ANDESIGN

Based orthe critical analysi®f our literature review, wespecified the requirements
and specifications of a scalable, abstraoteractive, and decoupledulti-agentDIS
framework which includes dynamic story generation and narration, dsasealifferent

points of view.

To achieve these requirements and specifications we designed DIEGESISagenulti
DIS framework using plamg and replanning techniques. DIEGESIS consists of several
different components, each responsible for one or more features of the framework,

such as the planner which includes a planning and@aening algorithm.

Although we used an incremental arigrative approach during the design or our
framework and its components, for the sake of simplicity and clarity of the thesis we
are documenting everything showing DIEGESIS as a final prddhatequirements

and specifications of our framework are docemted in chapter 3, and itdesign in

chapter 4.

1.3.3.FRAMEWORKMPLEMENTATION

While implementing our designeahulti-agentDIS frameworkincludingour planning

and replanning algorithms, we took aiterative prototyping approachAs soon as a

part of a desigrwas complete (e.g. a new component) we implemented it and then
when it was required, weesigned and created an evaluation case to test and evaluate
it. As soon as this process was complete, changes and refinements were made to the
design (and thereforgéo the implementation) of our frameworkefore starting this
iterative process again. The implementation of our framework is documented in

chapter 5.

1.3.4.EVALUATIONASSESSMENT

As we mentioned in the previous section, during the course of our desigh
implementation phases, we performed a number of evaluations to evaluate several
aspects of our frameworkexpose any limitations that it haand ensure we were in

course with the requirements and specifications we had set.

To aid us in these evaluationsge either used parts or the whole of the largeale
evaluation scenariove modelled, which includes several characters with rich relations
between them, and a high number of possible actions and choices, that can provide
different outcomes. This scenarialong with other related informationand our

evaluations arelocumented in chapter 6.

1.4. CONTRIBUTIONSOKNOWLEDGE

This thesis makes the following contributiottsknowledge,in relation tothe field of

Digital Interactive Storytelling (DIS):

1.4.1. QRITICALANALYSISCONSQ@IDATION

Consolidating the knowledge of previous related work in the field of DIS, can help to
identify techniques that provide good results and also to identify areas in the field
which have not been thoroughly explored yet and in which weldtpuovide a novel

perspective.

Planning and rglanning techniques used in DIS systems are such an area, therefore
we are presenting the results of oaritical analysis and evaluation mosthcused on
that, identifying (among other data) the types of plamg and the planning algorithms

the state of the art ofrelated DIS systems use, as well as if they considelareing.

Parts of our literature survey have been published in the following pajfersarte et
al., 2013 El Rhalibi et al., 201Zoudoulakis et al., 201Goudoulakis et la, 2012h
Goudoulakis et al., 201&oudoulakis et al., 2012&oudoulakis et al., 20)4

1.4.2.DESIGN OF NOVELDISFRAMEWORK

DIEGESIS is a scalaligeractive and modular DIS multi-agent framework which
includes dynamistory generation andarration, as well as different points of view
Most DIS systems use generic Atrtificial Intelligence (Al) planning algorithmis whic
were not created specifically with DIS requirements in mind, and very few of them
consider replanning as part of their planners. DIEGE®Bcludes a new plann&hich
consists ofa planning anda replanning algorithmcreated with the needs ofDIS

systems in mind.

Most DIS systems perform either centralised or decentralised planning; DIEGESIS
follows a hybrid approach. On the plan generation level, it performs decentralised
planning in which each character in a story is represented by an autonomous agent
able to opportunistically generate plans based on its own goals. In the same manner,

each agent tries to execute its own plans autonomously. We believe that this provides

5

a more flexible and realistic approach to the generation of a story, since each agen
acts as a seBufficient agent, generating an autonomous plan considering its own

needs.

In the case of plans execution though, our approach borrows the control and
coordination concepts from the centralised planning approach. Although the plans are
indA @ARdzl £ 2 ¢S 46l yld 5L9DO9{L{ G2 RAOGIGS
(therefore the generation of the story) so the system can have a better control and
understanding of what happens during the generation/execution of the story, and to

be able tainterfere if needed.

5 L 9 D 9afeint {afehitecture, follows a hybrid approach; it includeelements of
reactive agents (the agenteceivesinput, processs it, and produce an output),
elements of deliberativagents the agent keepsn internal view of its environment)

and elements of BDI agents (Beligfsi KS | 3SyiQa OASg cthd (KS
F3SydiQa 3J2ki RS LYySEVYyQa 208 yaood

In terms of interactivity, \Wwile many DIS systems allow the emser to control only
one character in the story (i.e. the protagonisin DIEGESIS, there is not a main
character(i.e. agent)that the player controls/observes; instead, tipdayercan make
choices defined by the person who creates thstory, i.e. the storytelley for actiors

that can affect every character in the active story.

Apart from choices which can have a huge impact on the outcome of the generated
narrative, DIEGESIS implements other mechanics which candmaiapact on the
story as wellA goal injection mechanisican inject new goals to thagentsbased on
situations that occur dung the generation of the storyg battle mechanism is able to
calculate the outcome of both duels betweemgentsand/or nonplayer characters
(NPCs), and larggcale battles between laegarmies of NPCa futile goals module is
able to assign goals tagents whichare idle; and the concept of uncertain actions
(actions which have a chance of succeeding or failing) have the potential to delay

I 3 S yléna f@bom being successfully executed even invalidate them.

Traditionally, related DIS systems use either a -pemtson or a thirdperson

perspective to present their stories to the playdn its default mode, DIEGESIS

presents the generated story as a whole, allowing the player to vesand interact
(when is required) with any of thegents present in the story. These abilities
constitute a thirdperson perspective, but since we want to provide the player with a
first-person perspective as well, we created the concept of vantage fdinthe player
selects to view the sty from the vantage point of an ageshe will view only the
story outcome which is related to the chosagent and will be available to interact
with the story (i.e. make choices) only when an action is relatadeéastoryagent The

rest of the story (which is unrelated to the selectaden) will continue normally in

the background. The player is able to choose between different vantage points or
return to a full story view freely during rdtime. All these mechacs areallowing

linear storyline with differing endings, interleaved storylinasd even flashbacks

Finally, DIEGESIS uses a hybrid story modelling approach, combining bdihsgldt

and characteibased elementsThe game world is organised multiple relatively
abstract levelswhich can represent possible parts of a stoBIEGESIS is able to
transfer knowledge between levels (acquired by previously executed sjevahd
judiciously choose which level needs to be executed next to form a vahd
interesting story, based on a level transitioning systerdsing this plobased
approach, DIEGESIS always has albigh control over the overall structure of the
story, being able to transition the story between levels which make sense, producing a

coherent narrative.

But, when a level is loaded to be executed, we move closely to a chatzated
model; each agent may have some initial intentidesires but is able to operate
autonomously and opportunistically to achieve its goals. The framewo2kyvR U
interfere with the decisions of an agent even if they mean that the story cannot
progress any further. The authoring process in DIEGESIS provides enough freedom to
the storyteller to operate whichever way she wants; either to create a relatively rigid
storyline without much room for highly diverse narratives, or to model a story in a way
that everything is fluid; a lot of player choices, several potential goal injections based
on actions that may occur, and several uncertain actions; all of theserésatan

contribute to unexpected situations and more emergent narratives.

Parts of the5 L9 D9 { L{ Q | NOKAGSOGdzZNE KI @S o6SSy R
papers: (Duarte et al., 2013Goudoulakis et al., 2012kGoudoulakis et al., 2013
Goudoulakis et al., 20126oudoulakis et al., 2014

1.4.3.IMPLEMENTATIONOF ANOVELDISFRAMEWORK

The aforementioned design of DIEGESIS is fully implemented into a full wonkitig
agent DIS framework This implementation provides us with framework for the
creation and evaluationof our new planning and replanning algorithmsas well as
enabling us toprovide an accurate evaluation of thenThat also gives us the
opportunity to use the framework in conjunction with other systems in the future,

creaing new expanded DIS solutions.

1.4.4. ANEWPLANNINGSOLUTION FORISFRAMEWORKS

Most DIS systems use generid planning algorithms which were not created
specifically with DIS requirements in mind. A few DIS systems have created
adaptations of planning algariK Ya F2NJ 0 KSANJ ySSRazx odzi GK

about their mechanics.

DIEGESIS includes a rganningsolution created based on the needs of the DIS field,
FofS G2 3ISYSNIXaGS LXlya 2F OGA2ya ol aSR

both the current world state and the available resoas.

The planning algorithris based on Graphplatexpanded to include support for several
language requirements that we consider valuable for BiS¥olutions expansion, and
a backtracking heuristic sech for plan extraction, enriched with constraints
satisfaction and dynamicpportunisticrestart when requiredThe planning algorithm
is also aware of thavailable timgduration) an agent/character has for a plan when it

is asked to generate one

The expansion stage allosithe generation of all the suljoals compatible with the
current constraints, while the plan extraction invotv@a search technique using

appropriate heuristics to link the gda)to the initial stateand generate a valid plan.

Details about our planning solution have been published in the following papers:

(Goudoulakis et al., 2012oudoulakis et al., 2012&oudoulakis et al., 20)4

1.4.5. ANEW RE-PLANNINGSOLUTIONFORDIS

When we consider classic@ll planning for DIS, one of the premises is that the

environment is static, which means that the planner is the only agent that can make
changes in the story environment. However, a more realistic proposal is that the
environment is dynamic; that is, there are other agents in the story and the actions

generated by the planner may fail diethe actions of these agents.

We believe that &eyaspect in the use of planning formalismsDiSconsists in their
ability to support replanning and to offer representations embedding the potential for
failure. However, research for q@anning in DIS is sporadithere are some DIS
systems that clainto use replanning approaches, but the information they provide is

scarce.Most planners solve each planning task from scratch, which is time consuming.

5L9D9{L{ RSIfta 6AGK (GKS SESOQdziaz2y 27F (KS
part of a plan fds, instructs the agent to rplan based on its current knowledge of the

state of the world. Considering that we modelled each agent to act as a real person in

the way they generate and try to executeplan, it does not make sense (in our
context) to pralict and prevent plan failures as some related DIS systems do, since a
plan can fail either due to user intervention (which cannot be predicted), or
intervention by other characters, arfin some caseaspure chance. In any case, failed

L ' yad RdzSOUBRHBAZNBINBRYE | NBE NBFIfAAGAO |yl

generated narrative.

In our replanning solution, as we interleave plan generation and plan execution, when
a plan fails, we discard the already completed actions and we onpjare for the
failed (and some of the pending) actions of the plan, merging the new partial plan with

the unexecuted portion of the original plan.

Details about our rglanning solution have been published in the following papers:

(Goudoulakis et al., 201&oudouékis et al., 2014

1.4.6.EVALUATIONOFDISSYSTEMS

DIEGESIS has to be evaluaigith experiments that provide evidence in support of our

thesis and emphasise either the preaffconcept (i.e. demonstrating the validity of a
technique) or efficiency (i.e. demonstrating that a technique provides better
performance than those that exist RSLISYRAYy 3 2y GKS SgI f dzf

the overall framework.

There are no widely accepted metrics to evaluate DIS systems that we could use, so we
had to specify some of them, based on what we consider valuable for the DIS field.
This collectia of requirements and evaluations could be used in the future from other

DIS systems as a unified tdstd for analysis and evaluation of such systems.

The outcome obur work is evaluated for the following requirements thate consider

important for DISrameworks

1 Performanceof planning and replanningsolutions Many related DIS systems
reported that their planning and rplanning solutions suffered from
performance issues, making the planning andpl@nning expensive in any
sizable domain. Ouplanner needsto have a goodoerformancein order to
generate (and regenerateplans in reatime. To this end, w designed and
performed a number of evaluation® identify potential bottlenecks of our
planning and replanning solutios, and explore their suitality for our DIS
needs.

T {dAdGFoAfAGE 27F LI | VY A yApartfrdmDperiidndnéeysa Q T
planning algorithm should possess a number of features that we consider
valuable for the DIS field. We performed an evaluation to identify which of the
existingplanning algorithms are suitable to be used in the DIS field, to be used
as a base algorithm of our planning solution.

1 Performancebased nteractivity of the framework Any DIS system and
framework should supportsome kind of interactivity. To this end, the
TN YS62N] Qa LISNF2NXIF YOS aKz2dzZ R 06S | RS
suffer from delays causing the framework to be potentially unusable and

possibly frustrating to uselo evaluate the performaneeased interactivity of

10

DIEGESIS, weesigned and performed an evaluation measuring the
TN YSSE2NL Qa tS@St t2FRAy3a yR GdzNy SE
execution of a largscale scenario

1 Summarisation metricsAlthough their types can vary in different DIS systems
and frameworks in most there should be some data which can quantify the
complexity of a generated story. We performed an evaluation measuring
several metrics of some storylines generated by DIEGESIS, such as the volume

of levels, characters, turns, actions, potentiabes, etc.

To perform the aforementioned evaluations, we created a large scale evaluation
scenario which models the story of Troy,rided NB Y | 2 YSNRa SLIAO LJ

which will be presented in sectidhl

We have published evaluations ofir framework and of relevant planning algorithms
in the following papers(El Rhalibi et al., 2018oudoulakis et al., 201 Goudoulakis et
al., 2012 Goudoulakis et al., 20135oudoulakis et al., 2012&oudoulis et al.,
2014).

1.4.7.PROPOSAL OPOSSIBLEAPPLICATIONS

Apart of operating on its own, we are proposing two different possible applications
which use DIEGESIS as a relying framework: an application which uses a 3D engine that
will enable us to visualise the generated stories and improve the interactivity héth t
enduser; and a virtual storyteller application which interfaces our framework with a

3D character animation framework which will act as a narrator for the stories which
our framework produces, using a natural language generation system as an

intermediae, an application which we proposed (iDuarte et al., 20183

1.4.8.DISSEMINATION OURFINDINGS

The outcomes of our research have beessdminated via publishing a number of
papers (Duarte et al., 2013 El Rhalibi et al.,, 2012Goudoulakis et al., 2011
Goudoulakis et al., 2012bGoudoulakis et al., 2013Goudoulakis et al., 2012a
Goudoulakis et al., 20)4 and our work has been presented at international

conferences.
11

1.5.

STRUCTURE OFHESIS

The rest of the thesis is structured in theléoling way:

T

In Chapter2 (Background® Related work we present the background of our
research area. More specifically, we discuss about the field of Digital Interactive
Storytelling,about multragent systems presenting some agent architectures,
and abou DISrelated as well as multagentrelated planning and r@lanning.

We alsopresentsome of theplanning algorithms which are typically used in
DIS systems along with sorakthe representation languages used them, we
present some examples of q@anning outside of the DIS fieldnd we survey
and critically assess a nhumber of DIS systems, stating their relation to our own
work.

In Chapter 3 DIEGESIS DIS Framewone document the requirements and
specifications obur multi-agent DIS framework

In Chapter 4 Design of thecramework) we discuss in detail the desigspect

of every component of our framework.

In Chapter 5 (Implementation)we document all the details about the
implementation of the multagent DISrmework wediscussedn the previous
chapter.

In Chapter 6 (Evaluationjve provide detailed information about the evaluation
scenario that we modelled, showing its potential storylinge, discuss some of
the mechanics that can have an impact on the gated story, and we specify
the metrics used in our evaluationgVe are also documenting a number of
evaluations for the different components of our framework, using the
evaluation scenario we presented earlier in the chapter.

Finally, inChapter7 (Conclgion & Future Work)we conclude this thesis and
we document some future work ideas for our framewokke also describe
some potential routes for our framework, utilising its capabilities via connecting

it to other components and engines to allow us toatenew DIS applications.

12

BACKGROUNZ RELATEDWORK

In thischapterwe present the background of our research areas, which are the fields
of Digital Interactive Storytelling (DIS), planningplanning, and multagent systems
(MAS).Afterwards, we present some of the planning algorithms which are typically
used in Digital Interactive Storytelling (DIS) systems along with some of the
representation languages used by them, then some examples-pfaraing outside
the DIS field, and rially we survey and critically assess a number of DIS systems,

stating their relation to our own work.

2.1. DIGITALINTERACTIVESTORYTELLING

Video gamesfor computers and consoles are established as the leading form of
interactive digital entertainment(Barros and Musse, 200faare becoming more
complex and so their use as a storytelling medium is growing in importanak an
popularity. The unique interactive nature of games means that stories and characters

can become more personal and involving.

Until now, stories in contemporary games are typically implemented using one or
more standardised methods such as linear, bramcbe layered narrativéPaul et al.,
2009. DISis a relatively new field of interactive computentertainment(Barros and
Musse, 200% that aims to create interactive apphtions capable to generate

consistent narratives.

Traditionally, a story is considered to be a sequence of actions that leads to a sequence

of events(Spierling, 200P As defined in(Thue et al.,, 200 5 L { AlFasedy | a
experiencein which the sequence of events that unfolds is determined while the

LI Fe@SNI LX leasgd ! AG2NRGSEtAYy3a aeaidasSy Oy
just to tell different stories based on previously computed sequences of actions
(Karlsson et al., 2007 As mentioned in(Thue et al., 200 & Rn§ Btéryélling
decisions to rurime can greatly improve the flexibility and replay value of a
Aa02NRGOSEEAY3a 3IIFYSED

13

In fact computer gamestories can be implemented in different wagderabti et al.,
2008 either linear, branching, parallel, or threadedost games tyically follow a
linear storyline, where the events of the story are presented in a predefined sequence.
It can be argued that making a player follow a defined story can diminish the
interactivity level of a game; the player is, after all, following ageepath already laid

out for him’her by the author. In order to still convey a story and allow the player to
feel a high degree of interactivity, the concept of interactive or4fioear storytelling

has to be introduced. Simply put, interactive storyitedl presents the opportunity for
players to have an input on what is happening in the game wiorlhichthey are
placed, to be the ones who dictate how certain events may come to waks the

constraints set by the story author

Similar to otherentertainment media, stories in games play a big role in increasing
immersion, building tension and adding interest to the player. However, one main
difference from the games to those other media is that games are interactive; they
expect participation fran the player and in turn, players expect to participate and get

involved in the events the game is presenting and the outcomes of those events.

As thoroughly described ifiKarlsson et al., 200Q,7a story model can bfacused either

on characters or on plots:

1 In a charactebased model, the storyline results from the rdimhe interaction
among virtual autonomous agents. The main advantage of this model is the
ability of anytime user intervention, meaning that the user may alter the plot as
it unfolds by interéring with any character in the story. On the other hand,
such an extreme interference level may lead the plot to unexpestedtions
or even to miss essential predefined events. Also, there is no guarantee that
the narratives that emerge from the intecdon of the above mentioned
autonomous agents will be complex enough to create an interesting drama.

1 In a plotbased model, characters should follow more rigid rules, specifying the
intended plot structures. In a pure pkiased model, user interventios more
limited than in a charactebased model but it is usually easier to guarantee

coherence and a measure of dramatic power.

14

Another consideration is whether stories should be told using afiesson or a third
person perspective. As discussed(iarlsson et al., 200,7a first person perspective
tends to be particularly suitable for applications closer to digital games, whereas a

third-person perspective is more appropriate for those involving film making.

Apart from its application in computer gaming, DIS has applications in several other

areas like military training and interactive drarfi®aul et al., 2000

As discussed ifCharles et al., 20Q03with the exception of emergent storytelling, DIS
systems rely on various Artificial Intelligence (Al) techniques to support their behaviour
including Assumjon-based Truth Maintenance Systems (ATMS), Reasoning

Maintenance Systems (RMS), logic programming and planning systems.

2.2. PLANNING

Planning is a combination of search and logic, two major areas @RuSlsell and

Norvig, 20100 t f I yYAYy3d Ay @2t @Sa (y2eAiy3a (GKS ail
be in and then finding the sequence of operators that will get you from the current
state to the final state. According t(Russell and Norvig, 2010a planner can be
considered as either a program that performs a search for a solution or as one that

provesthe existence of a solution.

To generate a storyline in DIS, planning systems are the most widely used techniques.
They are considered extremely appropriate for DIS applications since plans are
composed of discrete operations and stories can be easihwearted to computer
graphicsbased output(Barros and Musse, 200)a&part from DIS systems, even AAA
game titles sch asthe 2005 firstperson shootelr.E.A.R(Orkin, 200¢ have employed

successfully planning ethods.

As stated in(Barros and Musse, 20Q)5he use of planning algorithme DIS has two

advantages:

1. Plans are a sequence of actions that can be used to achieve a given goal. They
have an inherent notion of cause and effect that maps naturally to the concept
of story.

2. Plans consist of discrete actions that can be individualsigasd to and

executed by characters.
15

However, there are fundamental differences between the goals of Al and DIS that
should not be ignoredBarros and Musse, 200/Barros and Musse, 20D5In one

KFyR 'L Ff32NRGKYA FNB GeLAOIf t &suctOasy OS N,
optimality (e.g. finding the shortest path to a given place) whilst, on the other hand,

the narrative goals in DIS are more subtle and not easily defined formadly cah be
improved by using languages that use predicate logic, such as (PRidiing Domain
Definition Languagediscussed later in this section). Therefore, when applying Al
algorithms in DIS problems these differences must be taken into account satinarr

consistency of the generated stories will not be compromised.

Some of the problems with the current research in DIS, as discussggpierling,
2009, are:

1 Al engines appear obscure for authors from rammputerscience areas, and
approaches in automatic planning are hard to grasp.

1 Due to a lack of available playable prototypes, practical experience is missing.

T bl O@S | dzil K2 NR y JenefalyLtihdPlihear K& suffice kS highaly
interactive storytelling, which means granting easers participation in the

story.

There are many different description languages for representing planning problems.
The most widely used is called PDDL (PlanDmigain Definition Languagéfox and
Long, 2008 PD was derived from the origin8tanford Research Institute Problem
Solver ETRIP®Ilanning language which is slightly more restricted than PDDL since for
example, STRIPS preconditions and goals cannot contain negative literal§ S&RIP
first-order predicate logic, and a world state is represented as a conjunction of
predicates. There have been several versions of PDDL, conseceaxtehdng the
language expressiveness and features. Its first version was released on 1998 and the
last version (i.e. 3) in 2008. Another planning language is ADL (Action Description
Language) which is included as a PDDL exter{imxa and Long, 2003ADL relaxed
some of the STRIPS restrictions and made it possible to encode more realistic
problems. Another major difference between these planning languages is that, in
contrast to STRIPS, which use a clesedd model, the open world assumption

applies to ADL(Russell and Norvig, 2010

16

Although planning systems have been used intensively in DIS systems, there have not
been much novel solutions for DIS research with respect to planning algorithms. No
DIS dedicated planning algorithm has been propaseget, and the justification of the
choice of a planning algorithm for a DIS prototype is usually inadequate. In particular, a
discussion of the specific requirements necessary for planning is often missing, and
authors just propose comparisons of altative existing planning algorithms in order

to find the most appropriate one for a specific-adc DIS problem domain.

2.3. PLANNINGUSINGCONSTRAINTS

Interest in using constraint techniques in planning problems has grown in recent years
and has proven success$ffor many domaingNareyek et al., 2005 As described in
(Nareyek et al., 2005the basic units of constraifitased problemsre the constraints

and the variables, where the constraints are entities that restrict the values that can be
assigned to the variables. As further explained.in- NIi t | §)iconbktfidt<ares n m n
just relations while a Constraint Satisfaction Problem (CSP) iediwetich relations

(constrains) should hold among the given decision variables.

An interesting application of CSPs is in scheduwlihgch shares some similarity with
planning, but focuses essentially on actions, resources and time optimisation
techniques As explained in(. I NIit { S schetlung concermsnwith the
allocation of resources (such as time, machines etc.) to activities (actions) with the
objective of optimising some performance measures. For example in time scheduling,
the duration of a number of aans can be modelled as a CSP so thiglynot overlap

while selected, or the final plawill not exceed the available time.

2.4. MULTI-AGENTSYSTEMS

A definition of anagentin our contextis that an agent isan entity which is part of an
environment, perceives ivith the help of sensors, and is able to act intelligently on it
via a set of action mechanismsadlable toit (Vlachavas et al., 2005 Extending the
above definition, we can add that an agent should be able to operate autonomously,
persist over a prolonged time period, adapt to change, arehier and pursue goals
(Russell and Norvig, 2010

17

A multragent system (MAS}¥ ia system designed and implemented as a group of
agents interacting with each other (i.ecommunicatiry, competing, cooperating,
coordinating, negotiating, and so forth). In such systems, the agents either work
individually exchanging information and/orervices with other agents trying to
succeed to their individual goals or work together solving-gdblems so the

combination of their solutions become the final solutigiWlachavas et al., 2005

According taVlachavas et al., 2003here are two basic categories of interconnection
models, i.e. ways for the agents to communicate with each other or with other

systems; the blackboard systems, and the message passing systems.

In blackboard systems, there is a common working space (i.e. the blacklioand)
used byl £ f 2F GKS &deadsSyQa I 3 Sebuits ar theyksans o &
tasks. When something is shared in this common area is accessible by all of the agents
participating in the system. A blackboard system architecture is illustrat&igurel,

adapted from(Vlachavas et al., 26).

Blackboard
system

Figurel: Blackboard architecture

On the other hand, in message passing systems the agents communicate directly with
each other, sharing information via messages written in a communication language
commonly accepted byfal 0 KS aeadsSyQa 3aSydaoe ! YSaal
is illustrated inFigure2, adapted from(Vlachavas et al., 2005

18

Figure2: Message passing architecture

In any of theaforementionedinterconnection models, there can be twiypes of
communication: Either synchronous, meaning that an agent which asks a question to
the system or to another ageninhibits its operation until an answer has been
received, or asynchronous, meaning that the answer can be received at any point
gAUK2dzO | RA & NHzLIG A 2(WlacHayas el &.,.2006 ISy G Q& 2 LIS NJ

An intelligent agent maymplement somethe following abilities(Vlachavas et al.,
2009

1 Autonomy The agents can operate without a direct intervention by a user or
other agents, and they have (total or partial) control over their internal state,
meaning that the agents are able to pursue their goals without constantly
receiving user input.

1 Social ability The agents can communicate with other agents (or the user)
using any kind of languagkat all of them can understand y R &+ INBESR¢E
for the purposeof communication. Therefore, they are able for cooperation,
coordination, and negotiation between them.

1 ReactivenessThe agents are able to perceive the environment they exist in,
and react to it based on the changes that are happening in it.

1 Proactiveness The agents are not only able to react to the environment
changes, but to act practively as well, meaning that they can have goals and
create plans to be able to achieve them.

1 Mobility: The agents are not only static, but are also able to move in the
environment they exist in.

1 Adaptivity. The agents can constantly adjust to the environment or the choices
of a user, meaning that they have an ability to learn.

1 Veracity The agents do not send wrong information on purpose.

19

1 BenevolenceThe agents are alwa trying to achieve their given goals.
1 Rationality The agents always act to achieve their goals, meaning that they
R2y Qi R2 TFdziAfS FOGA2ya gAlK2dzi o0SAY

achieving their goals.

In any definition of an agenit is partof an environment, which can be categorised
based on the characteristics they possess, as follRugssell and Norvig, 2010

Vlachavas et al., 2005

 Fully observabless. partially observabl(2 KSGKSNJ 'y | 3ISydQa
access tolie complete state of the environment at each point in time or not.

71 Deterministicvs. stochastic If the next state of the environment is completely
determined by the current state and the effects of the action executed by the
agent, then the environment ideterministic; otherwise, it is stochastic.

f Episodioss.sequentialL y 'y SLIA&a2RAO Gl &1 SYQGANRYY
is divided into atomic episodes. In each of these episodes, the agent receives a
percept and then performs a single action. Crligjahe effects of the actions
taken in previous episodes damt affect at all the next episode.

7 Static vs. dynamic If the environment can change while an agent is
deliberating, then the environment is considered dynamic for that agent,
otherwise is conslered static.

1 Discretevs.continuous The discrete/continuous distinction applies to the state
of the environment, to the way time is handled, and to the perceahd

actions of the agent.

2.5. MULTI-AGENTPLANNING

A common characteristic of the agents that work togetirera multragent systenis

the capability of coordination via a communication language so they can communicate
agreements and solve possible conflicts. A definition of coordination is that it is the
attribute of a multragent system to solve problems in a common environment. Agents

may coordinate their actions either to succeed a common goal (cooperation) or to

succeed their individual goals (negotiatidijachavas et al., 2005

20

As explained inRussell and Norvig, 2010when there are multiple agents in the
environment, each agent faces a mwdtjent planning problem in which it tries to
achieve its own goals with theelp (or not) of the othersAs discussed ifVlachavas et

al., 2005, in multragent planning, @ents are generating a plan of actions and they will
solve the problem based on that plan. During the execution, the plan is revised based

on the new details and results.
Based or(Vlachavas et al., 200%here are two types of mukagent planning:

1 Centralised multagent planning, in which a central agent is responsible to
collect the partial or loal plans of the other agents, to combine them in one
plan and solve any conflicts that may occur.

1 Distributed (a.k.a.decentralisedl multi-agent planning, in which all the agents
communicate with each other to generate their plans and to negotiate any

possible conflicts.

2.6. AGENTARCHITECTURES

¢ KSNBE | NB &S @S Nardhitedtuyed tBat drelues iy mukiedt Sygtanis Q
such as the reactive agents, the deliberative agents, andbief-desireintention
(BD) agents(Vlachavas et al., 2003ut, depending on the needs of the system, it is
very common to see hybrid agent architectures, wheombine elements from several

architecturegRussell and Norvig, 2010

The deliberative agentgFigure3, adapted from(Vlachavas et al., 20Q)5include an
internal representation of the environment they exist in, and have knowledge of the
set of rules that they must obey to, as well as of the set of actions they are able to
execute. Theefore, they store a state which represents the evolution of their
environment, as well as the current action they are executing, so they can decide for

their next action(Vlachavas et al., 2005

21

Deliberative Agent)

Sensors = Observe fr

Action)
Select action

Mechanisms rf—RuIe

Figure3: Deliberative agent architecture

The reactive agents (Figure 4, adapted from(Vlachavas et al., 28)) on the other
hand, do not store a representation of the environment that they base their reasoning
on, and they implement a stimulus/responsgpe behaviour based on the current
state of the environment they exist if.hese agents are receiving dainformation
from their environment (perception) and, based on the rules they operate by, they
decide on the action they will choose as a reaction to their perceptamally, these
agents do not have an internal memory, meaning that they do not cakeukheagir next

actions based on previous states of the waitlachavas et al., 2005

Reactive Agent)

Sensors = (Observe
, W
Action = Select action
Mechanisms rr_FtuIes

Figure4: Reactive agent architecture
The belietdesireintention (BDI)(Figure 5, adapted from(Vlachavas et al., 2®))
agentshave a more complicated representation of their environment and they plan to
achieve their goalsTheir internal state consists of beliefgesiresand intentions ice.
0KS | 3S)yNia@ravas &t al. y2ap5

 Beliefds NS GKS | 3SyidQa G@ASg rmeytihatpxysdiat SRIS

1 Desiresare related with the judgment that an agent will make for the future

states of its environment, for example if a future state is desirable orindhe

RS&aANB tS@St>x GKS 3Syid R2SayQi SEI YA

22

is also the possiliiy that some of the desired states are in conflict with each

other.

1 Goalsare a subset of desires, and this is what the agent acts for. They should

be achievable, and not in conflict with each other.

1 Intentionsare a subset of goals, which an agent trtesachieve at a given

moment in time. In most cases, it is not possible to achieve all goals at once,

therefore the agent selects a subset of them, which forms the intentions set,

based on some hierarchy criteria.

1 Plansare the set of actions that the agecan excute to achieve its intentions.

2.7. RE-PLANNING

BDI Agent)

Sensors

Update
beliefs

Action
Mechanisms

M

(Desires

@D

Generate
options

Filter
options

Cinentions)

Select
action(s)

Figure5: BDI agent architecture

As discussed i(Doyle, 1998 planning is neceasy for the organisation of largecale

activities since decisions about actions to be taken in the future have direct impact on

what should be done in the shorter term. But even if a plan is thoroughly tested and

well-constructed, its value decays as charg circumstances, resources, information,

or objectives render the original course of action inappropriate. When changes occur

before or during the execution of a plan, it may be necessary for a new plan to be

constructed by either starting from scratcin by revising @reviously generateglan.

Agents acting in complex and dynamic environments must often adjust their plans at

runtime to avoid potential conflicts with other agents or using resources that are not

available anymore. According t®artold and Durfee, 2003 such conflicts can be

~ A s oA 2 s oA

RSUSOUSR

w

0 e

aSt SOGArQSt e

SEOKIy3IAay3

YR O
23

identifying inconsistent expectations, and adding synchronisation actions and/or

blocking some action choices to ensure conflicts cannot arise.

Most planners solve each planning task from scratch by solving a series of similar
planning tasks. Planning is tirgensuming and severely limits the responsiveness
and/or the number of whaif analyses that the planners can perform. To enhance
their perfoomance, (Koenig et al, 2002) states thatptanning methods that reuse
information from previous planning episodes to solve a series of similar planning tasks
are much faster than the approach of solving each planning task from sc(Biayie,

1999 a G | (1 Sa {pkn effectivalydn d&tdanding situations,-péanning must be
incremental, so that it modifies only the portions of the plan actually affected by th

OKI y3aSat o

As discussed i(Charles et al., 2003a key aspect in the use of planning formalisms in
storytelling consists in their ability to support-pdanning and to offer representations
embedding the potential for failure, however no solutionviesbeen proposed since for
re-planning in DIS. There is an important gap in the use gflaening methods in

existing DIS systems and the proposed research will attempt to fill it.

2.8. PLANNINGALGORITHMSJSED INDIS

The following are some of the planning @lighms that have been used in DIS systems

listed alphabetically

2.8.1.FF(FAST-FORWARD

FF(Hoffmann, 200}is a forward statespace searcher that uses the ignatelete-lists
heuristic, estimating the heuristic with the help of a planning graph. It then uses
enforced hilliclimbing search (modified to keep track of the plan) with the heuristic to
find a solution. When it hits a plateau or local maximgie. when no action leads to

a state with better heuristic scor¢hen FF uses iterative deepening search until it finds
a state which is better, or it gives up and restarts-bilinbing (Russell and Nuorg,
2010. FF was created by mixing some novel ideas with features of GrapdpddtSP
(discussed in secti@.8.2 and 2.8.3 accordingly among others(Barros and Musse,
20073.

24

Fadng a search state S, a relaxed (ignoring delete lists) version of Graphplan is used to
generate output for heuristic evaluation (the length of the solution plan) and the
generation of helpful actions. Then, an enforced version ofchitibing method
consdering only the helpful actions are used to find a solution plan. That is, all the
direct successors of a state S are evaluated. If none of them has a better heuristic value
GKFY {2 GKS &adz00S&aa2NBQ &dz00Saa2 Nbettek NBE S
heuristic value than S is found. When such a state is found, the path to it is added to
the currentplanay R G KS &St NOK O2yiAydz$Sa sgAGK {Q |

In summary, each iteration performs a complete breafitbt search for a state with
strictly better evaluation. If enforced hitllimbing with helpful actions fails, then a

bestfirst search considering all the applicable actions is performed to find a solution.

2.8.2. GRAPHPLAN

Graphplan(Blum and Furst, 1997vas the first planning algorithm that converted the
planning problem into an intermediary data structure called a planning graph.
Graphplan have moved the field of planning forward by obtaining impressive gains in
performance compared to previous plangirapproachesbased on the experimental

results documentedin (Blum and Furst, 1999 DNJ LK LI I y Q& YIFAYy R
although it is an optimal partiadrder planner, its input language is quite limited
(Russell and Norvig, 20110

In Graphplan a plan is extracted from a graph. The graph d¢erfidevels of literals
which could beeither true or false,and levels of actions of which the preconditions
could bealso eithertrue or false The graph ig€onstructed starting at level zero (0)
where all literals that are currently truare representd; these are true or false
depending on the initial state and there are no other possibilities. Thelevel of
actions for which the preconditions hold the first level is added. This is followed by
another level of literals that could hold if an actionakes it true. Each level of literals
gives the literals that could possibly be made true at that level depending on choices
made earlier. Each level of actions gives all actions that could be used at thkt leve

depending on earlier choices.

25

The Graphpla algorithm creates the graph in steps; if at the current level of literals all
literals from the goal are present without mutex relations between thersolution
plan may exist in the current graph. Otherwisige graph is expanded by adding a new
level of actions and a resulting literals level. If the graph possibly contains a sglution

the algorithm tries to find it.

2.8.3.HEURISTICSEARCHPLANNER(HSP)

Heuristic Search Planner (HSP)XBonet and Geffner, 20Qluses a STRI®Ssed
representation for problem description and searches the space of states from the
initial state, using a traditional heuristic search algorithm and a heuristic automatically

extracted from the STRIPS formulati@harles et al., 2003

HSP is a statspace planning approach that can run either forward or backward and is
much like patHfinding. A state space search planner searches for a path along world
states to the goals state. A world state can be reached by using an action. A forward
searching @anner starts with the initial state of the world and constructs a list of all
reachable world states. These possible world states are nodes in the search tree. It will
then choose one and repeat the process until it reaches a goal state. It will usually
have a heuristic that gives rules for which node to expand, which world state to try

first. A good heuristic function is impant to make the planning fast.

The search can also start at the goal state. This is backward or regression planning.
Regression phning may have a smaller space to sealthugh. A state space planner

will return a single plan. Actions in the plan are sometimes motivated by the next
action in the plan but we cannot be sure of this. And sometimes actions are motivated
by actions tha are further along the plan. This is because actions that are in the plan
are placed in a sequence that will make the preconditions of the actions be satisfied at

the time they are executed.

According to(Russell and Norvig, 200HSP was the first statpace searcher that

made statespace search practical for large planning peois.

26

2.8.4.HEERARCHICATASKNETWORK(HTN) PLANNING

HierarchicalTask Network (HTN)oased planningCavazza et al., 20)2which is also
known as taskdecomposition planning, is among the oldest approaches for providing

domainspecificknowledge to a planning system.

An HTN planner solves problems by decomposifidre initial problem statement, the
initial state and goal are viewed as a single action that must be decomposed into lower
level actions. On the lower levebsctions are decomposed further until only primitive
actions remain. There will often be choicegadable to the planner when choosing
decomposition for an action. Action decomposition specifies a way to turn an action

into a plan.

HTN is based on forward search, and thus can be searched to extract a task
decomposition corresponding to a solution pladh is also goatlirected at the same
time, since the todevel task is the main goal. This brings the unique property that

during planning itself the state of the world is known at all tinfl€barles et al., 2003

2.9. REPRESENTATIONANGUAGES

There aredifferent description languages for representing planning problems. The
following sections contain overviews sbme ofthe representation languages which

are typically used in planning algorithms.

2.9.1. STANFORDRESEARCHINSTITUTEPROBLEMSOLVER(STRIPS)

Accordng to (Russell and Norvig, 20)10the Stanford Research Institute Problem

Soler (STRIPSNilsson and Files, 19Yivas the first major planning system. The
representation language used by STRIPS was way more influential than its algorithmic
alJLINB | OK® 2 KIFG ¢S G2RIFe OFff GKS aOflaaic
STRIPS use8TRIPS use firstder predicate logic, and a world state is represented as

a conjunction of predicates.

To describe a planning problem in STRIPS we neédtiah state of the world, a set of

goals that should be achieved, and a set of actions that can be executed to achieve any

27

goals.According to(Vlachavas et al., 20p5the STRIPS model makes the following

admissions:

1 Indivisible actions The actions of the phning problems are indivisible,
meaning thatthe state of the world during the execution of an actian
irrelevant; it is relevanonly at the beginning and at the end of the action. Also,
the execution of an action cannot be interrupted.

91 Deterministic effectsThere is no uncertainty for the effescof an action, since
they are known beforehand.

1 OmniscienceThe planning system has complete knowledge of the current state
of the world, as well as its options (based on the available actions).

1 Closed world assumptioThere is nopossibility to inclu¢ new or remove
SEAAGAY3T 2028004 TNRY (KS aeadisSvyqa g2

i Static world The world is modified only as a result of the actions executed by

the planning systemandnot by itselfor by the actions of another entity.

2.9.2. ACTIONDESCRIPTIONLANGUAGHEADL)

The Acton Description Language &DL(Pednault, 1989relaxed some of the STRIPS
restrictions and made it possible to represent more realistic problems. Another major
difference between these planning languages is that, in contrast toPST®hich uses

a closedworld model, the open world assumption applies to ABDL also allows

negative lierals, as well as disjunction®ussell and Norvig, 2010

2.9.3.PLANNINGDOMAINDEFINITIONLANGUAGEPDDL)

The Planning Domain Definition Language (PGhallab et al.,, 1998s the most
widely used among planning algorithms. PD®A&n actiorcentred modular language
andwas derived from the original SIHS planning language which is more restrictive
than PDDL since, for examp&TRIPS preconditions and goalsnca contain negative

literals (Russell and Norvig, 2010

Apartfrom its relation to STRIPS, PDDL is dededrirom several forebear&hallab et
al., 1998. ADL(which is included as a PDDL extensidhg SIPR formalism, the

28

Prodigy4.0 formalism, the UMCP formalism, the Unpop formalism, and, most directly,

the UCPOP formalism.

As discussed i(Ghallab et al., 1998PDDL is intended to expres$Sth ¢ LIK & a A 04 ¢
domain, i.e. which predicates exist and which actions are possible along with the
FOGA2yQa &AGNHzZOGdzZNBE FyR STFFSOlaod t55[Aa
2F al (@.6 wWhidh &ctions to choose to achieve a goal)h® planners using it,

and as a result of this neutrality, almost all planners will require extending the notation
in different way. To this end, the language is factored into subsets of features
(modules) called requirements, so each planner can choosepéementa subset of

them.

There have been several versions of PDDL, consecutively éxgetind language
expressiveness and featurefor exampleexpressing temporal planning domains in
PDDL 2.1Fox and Long, 2003lts first version was released in 1998 and thieda
version (i.e. 3.1) in 2008.

2.9.4. HIERARCHCALTASKNETWORK(HTN)

Apart from the planners which are using STRIlRS languages, there are also
Hierarchical Task Network (HTN) based planners, wadtording to(Lekavy and
Navrat, 200]¢ are based on hanthade hierarchical decompositioof the problem
domain. The planner is provided with domain knowledgepressed as the possible
decompositions of tasks into subtasks. Taakes categorised tgrimitive (.e. directly

executable) and noprimitive, which have tde decomposed into other tasks.

Each norprimitive taskincludesone or morelists of tasks it can be decomposed into
and these listsof tasksalongwith any other restrictions €.g. precedence of tasks,
variable bindingmutual exclusiors, etc.) comprise task network.(Lekavy and Navrat,

2007)

According to(Lekavy and Navrat, 20)7although he theoreticalmodel of HTN is
strictly more expressive than STRIPSth approachesare ¢in practice; identically

expressive and can solve dimains solvable by a Turing machine with finite tape.

29

2.10.REVIEW ANDCRITICALANALYSIS OEXISTINGDISSYSTEMS

The following aremost of the existing DISsystemsthat we researched, listed

alphabetically

2.10.1. FABULATOR

In Fabulator(Barros and Musse, 20Q)5a planning algorithm is used to generate a
sequence of actions (an actual story) performed by charactée is capable to
OGN yaF2NYy GKS aeadisSyQa ¢2NI RO

The player controls one character (the protagst) and every other character is @M
Playe KI NI OGSNJ 6bt/ 0od £t bt/ Qa OGA2ya | NF

In DIEGESIS, there is not a main character that the player controls/observes; instead,
the player can make choicesdéfined by the storytellej for actions that can affect
every character in the active storplso, theplayeris allowedto select and view the
story from the perspective of any of the characténs the default view mode, the
story is presented as a wholeand to be able to switc betweenthem without any

limitations, during the generation of the narrative

Clodzf FG2NILHZAGHA YT aNER ¥ afGaNJadliod OF the lplajleiNe | O
renders the current plan invaljdhe systemuses the planning algorithm to create a

newplant¢ KAa gl ez (0KS ad2N®R Aa FFRIFILGISR 2 0K

In DIEGESIS, we have designed and impitsdea new replanning approachaiming

to make a minimal disruptioto the original plan. We evaluatetttis approachagainst

the approach oplanningfrom scatch, concluding that the new approach has a better
performance and has no difference in the outcome of the generated story compared

to the other approach.

Cl 6 dzf Implemédidadion dtreats the planning problem as a state space search
problem and uses thé* algorithm to solve & The creators of Fabulator state that
there are several planning algorithms specific for STRESomains that can achieve
better performance than A*but for small storyworlds (the result of authoring process

in DIS) like thene the current implementation uses, performance is not an issue. They

30

also state that the most important shortcoming of their work was its reliance on

predicate logic to represent the world state.

In a latter implemerdtion of the system, the Metri€F panning algorithm is being
used (Barros and Musse, 200ydn this implementation, the notion of tension arc is
bey 3 AYUGNBRddzZOSR 060aiGKS tS@St 2F (GSyaazy Ay
Ottt SR (Syaazy IINO&é0v Ff2y3a gAGK | YSOKIY

an authordefined tension arc.

2.10.2. FI K $%

C I ceMRtBas and Stern, 2008 a20 minuteinteractive dramawhich can be played
multiple times, where the plagr has to interact witha couple of NPCsthat are
experencing marriage issuesAccording to (Karlsson et al., 2007 it integrates

characteristics of both plebased and charactdsased approaches.

C | cekdRsssts of a 3D worldhelievableagents,a broad andshallownatural language
processing system, anal drama managerC | cel RS A YLJX SYSyda | NI
planner that selects, orders, and executes fgrain plot elements called beats that
describe action/reaction behaviours that story world characters will penfoThe

drama manageuses this planneto manage the story resulting from the simulation

A beat is the smallest unit of dramatic actitmat moves a story forward. Beats are
authored by a human author and are given preconditions and effects. The
precondtions specify when the beat can be applied and the effects specify what the
result will be in the story state. The set of beats together inipliclefines a narrative

graph.

According to(Arinbjarnar et al., 2006 G KS 06 S| (& dJantdBredaviticdl)t A OA
actions within the beat being fully defined, and the actions of all roles being assigned
to allow formultitt 3Sy G O22NRAYIFI A2y ¢ O

By traversing the beats in some sequence, which depends on the interaction of the

human player, the story is moved forward the drama manager. Because the number

of different ways in which beats can be sequenced is large the player can experience a
lot of freedom in what story is experienced. The way the drama manager changes the

31

simulation is by modifying the behaviour of treharacters; it adds and removes
OSKI @GA2dz2NB o KAES GKS aAAYdzZ I GA2y Nizyaoe Ly

200 and they are useid the rate ofonce every minute.

As discussed ifRoberts and Isbell, 208due to the level ofyranularity required to

author beats and their interactions, a bebased drama manager seems ideally suited
tosmakg 2 NI R O NASG& RNIYIFa o0fAl1S GKS 2yS dz
replayability and authorial control may come at the priceeabe of authoring, at least
FT2NJ I NBS aeaidsSyvyaoé

¢KS OKINIYOGSNE FNB LINPINFYYYSR dzaAy3a ! .S
planning language, based on the Oz Project language Hap, designed specifically for

authoring believable agentscharacterswhich express rich personality, and which, in

[this] case, play roles in ant@ractive, dramatic story workd (Cooper, 201}

Cl el RS Aa (KBS sysktemplished.2Avchbiblirt i¢$eessideUniversity,
2010, its global agency is limited and user's actions (which mainly consist of typed

text) have little explicit consequence on future developments of the story.

2.10.3. GADIN

The @nerator of Adaptive Dilemmabasedinteractive Narratives (GADINBarber and
Kudenko, 200pdynamically generates interactive narratives which are fodusa
dilemmas to create dramatic tension. Its authors claim that the system addresses two
open challenges: maintaining the dramatic interest of the narrative over a longer

period and (story) domain independence.

As described irfRoberts andsbell, 2008 to construct the narrative, GADIN selects
among the set of available dilemmas based on an appropriateness estimate, as well as
based on the frequency with which each particular type of dilemma has been

employed already.

Its planner (whih is based on the Graphplan algorithm) creates sequences of actions
GKFG FEf £SFR G2 | RAESYYEF F2NJ I OKIF NI OF

with the storyworld by making decisions on relevant dilemmas and by freely choosing

32

their own actions.Using this input, the system chooses and adapts future storylines

F O0O2NRAY3I (G2 (GKS dzZASNINA LI &G o0SKI OA 2 dzNIp€

5L9D9{L{ AyOftdzRSa | O2yOSLJi aAYAtl N G2
storyteller (i.e. the person who motkethe story which is generatemhd executed by
DIEGESISan mark any kind of action as a choicévhen such an action is about to
occur, DIEGESIS either makes a choice itself, or askslayerto make a choice
whether the action will happen or nofThe idea behind choices in DIEGHESI®Bat
important decisions throughout the story should be marked as choices so they can

potentially alter the outcome of the generated narrative.

According to(TeessideUniversity, 2010 D! &ohtihuously presents the user with
dilemmas to keep the narrative ga@a While in GADIN the generation of dilemmas
necessaryli 2 1 SSLJ GKS yIFINNIGAGS AyGSNBaday3
generated even without any choices, althouglas we already mentionedthe
storyteller is encouraged to use them since they gaentially have a significant

impact on the outcome of the generated narrative.

Although the authors consider loér application domaingin (Barber and Kudenko,

2009 G KS@& A YLI SYSy i SRshort sty §5disc8ssed KBarbdr bidd y Q
Kudenko, 200)f GADIN is best suited for genres which places a particular asiplon
aiSNB2GeLISa FyR Of AOKSAazIX 4&dzbKhe bystemanad L) 2
evaluated on.Comparing the above to our framewgrkve believe that DIEGESIS is

both suited for movielike experiences including relaély longlength finite storiesas

well as shorter stories, since it provides to the storyteller the flexibility required to

experiment with multiple genres and lengths of stories.

(Roberts and Isbell, 20D&rgues that authoring a story in GADIN is not easy, since it
requires STRIFKe specification of the domain and character specific information,
which necessitates Al competence. DIEGESIS uses a combination of modelling
approaches: The storyteller needs to model the game world both in PDDL and in XML.
To make the athoring process easier, we are using a PDDL editor creat@ddoper,

2011), and although the authoring process in XML is quite easier compared to PDDL,

we have desigad an XML editor as an extension to the PDDL one.

33

D! 5LbQa I dzii K2 NA thHe maprobldnSoDi /6 1 pidi@r isitkat as

more characters and actions are included, the time spent planning becomes
unreasonably longthe time increases exponentip with the number of characters

and the number of actions. On the other hand, neither the number of locations nor the
number of dilemmas has an impact on the spe@dcording to(Arinbjarnar et al.,

2009 G AGK Fy AYONBI &SR ydzYo &d, tBeTplarinidgi A 2 v
becomes too slow for aredilY S SELISNA Sy OS Raéberts BKnf Ishel, NNJI
2009 ANBSax adldAy3a GKFEG a2yt AyS LIEIYYAY:
R 2 Y | Khy¢ authors claim that a potential solutiomould be the use of a form of

hierarchical planning.

During the implementation phase of our researche vave identified that the
020Gt SySO1 27 Stdpeepmddedsifigitocds i.k. yh¢ Griendeded by
the planner to pregenerate nodes thaare later used in the actual planning and re
planning process. Our planner only needs to-precess the information of a level
once and then the prg@rocessed information can be reused in any planning and re
planning episode of that level. Therefore, aiglay due to the preprocessing will only
affect the loading time of the level, and not the experience of the player while

executing the level.

The results of the evaluation we document in secti®®.5 show that DIEGESIS is
capable of generating and executing a large and complex story containing several
characters in a very short amount of time, making the framework suitable to be used

for the purpose oDIS

Asit is mentionedby its authorsGADINs performing replanning, but there are not a

lot of details for its mechanicé&ccording to(Paul et al., 201,0Paul et al., 201}1 if the

LI I @SNR& | OdA2ya Y2@S G222 FIN Fgteé FNRY
improbable, GADIN randomly selects a new story goal and reveals i fgldager. This

new story goal does not involve any further player actions; all further actions are

carried out by NPCs.

The system performs continuous planning in a thread using a global planning graph, so
the re-planning can be faster, and performs a aafised planning for all the agents
operating in the system.

34

In contrast,DIEGESIgerforms a decentralised planning; each agent is generating a
plan based on its own goals, and then tries to execute it. The framework deals with the
execution of the agents in a higher level, and when a part of the plan fails, instructs the
agent to replan basedn its current knowledge of the state of the world. We believe
that this provides a more realistic approach to the generation of a story, since each

agent acts as a real person, generating an autonomous plan considering its own needs.

2.10.4. |-STORYTELLING

The Interactive Storytelling approach describedGavazzat al., 2002 and (Charles et

al., 2003 is characteibased supporting user interventions at any time. The graphic
SYGANRYYSyl 2F GKS aeaiasSy gla olFlaSR 2y
dzZa SR A& AYAaLANBR FTNRY G(GKS L}RLJz I N aaidoz2y

The first prototype of the system(Cavazza et al., 20pihdudes four autonomous
agents/characters, and is able to generate short stories up to three minutes in
RdzZNF A2y S 6AGK | LILINBdad dhid (B@rmh,22002¢f Sninuded S G ¢
According toBarber and Kudenko, 20)% longemarrative is not easy to accomplish

due to the large amount of content and ordering predefinition requirdd. further
discussed in(Paul et al., 2009 each character has a number of contspiecific
ddzodlalaz GKSNBEF2NBE OF NBFdzZ | dziK2NAYy3I 27
ensure that an interesting narrative will occur. The charaoiégs are designed a priori

for the story, therefore the actions that a character can take are scripted for a

LI NI A Odzf NJ NRB f ST -sédcted\at désigS thide for ap@ticubagstory. NS LJI

As discussed inKarlsson et al., 200¥ daniiai Soubt about pure charactdrased
approached is to what extent dramatic and engaging narratives may actually result.
The task seems to be easier with genres like sitcoms, wherein the climax of a story is

notsoclearlydi G Ay 3dzA aKIl 6f SPé

The uer of the systemcan wander in the 3D world as an invisible avatar and interact
with key objects andcan make suggestions (usingeechrecognitioninterface) to
NPCswhich may or may not be followg@rinbjarnar et al., 2009 Accordingto (Paul
etal, 2010z &L 240 O2KSNByOS Aa SyadzaNBR o6& | ff
on-goingd 0 2 NB ¢ @

35

Hierarchical Task Netwaik 01 ¢ b&auv FNBX o0SAy3 dzaSR &aiayoS
represented in a consistent fashion as such. A single HTN corresponds to several
possible decompositions for the main task therefore an HTN can be seen as an implicit

representation for the set gbossible solutions.

The search algorithm that produces a suitable plan from the HTN searches the HTN
depthfirst left-to-right and executes (or at least attempts to execute) any primitive
action that is generated. Backtracking is allowed when these acfahdn addition,
heuristic values (which are used to represent narrative concepts as well) are attached
to the various suliasks, so forward search can make use of these values for selecting a

subtask decomposition.

lye | 3SydQa | Oderépinniagh This is implemérded ysingitheFseirch
mechanism of the HTN planner by bgmpagating the failure of the action to the

corresponding sulgioal, so search will backtrack and produce an alternative solution.

Another planning formalism that vsaused in a second implementatiq€harles et al.,

2003 of the same scenario (for comparison reasons) was HSP. Compared to the HTN
implementation, HSP offsrgreater flexibility in the definition of action and more
variability in the stories generatedhile HTN offes clear authoring principles and a

global vision of the baseline plot.

According to(TeessideUniversity, 200D (KS aeadasSvyQa aidiNRy3d L
nature of the HTNbased planning system, thdramatization of narrative situations
and the userinteractions' influences on the unfolding of the narrative in riaile,

while its limitation is the lack of control over the quality of the narrative generated.

In (Charles et al., 20Q3the authors mentiorthat HTN is not a good solution when it
comes to replanning, and they switched to the HSP algorithm, claiming that it
provides a better replanning solution. The actual mechanics ofptanning are not
describedthough. Based on the provided examples, the factors which can trigger

planningare usuallyuser interferenceor the availability of a resource

In our framework user interference is just one of the options which can trigger re

planning. Since each agent operates as an individual, generating its own plans as we

explained before, it SYNE O2YY2y F2NJ +y 3ASydQa LI Iy
36

another agent, causing the latter toq@an. The interference can be something simple

such as the availability of a resource, or even something more complicated, like the
death of a character (repsented by an agent), which can potentially have a huge
AYLI OG G2 GKS ¢gK2fS aiu2NEBs FEOGSNAY3I aady,

2.10.5. LOGTELL

LOGTELIKKarlsson et al., 2007is a storytelling system lsad on modelling and
simulation. Its model includes typical events and goBdrence rules and tries to
conciliate both plotbased and charactdsased modelling. Successive cycles of -goal

inference, planning, plan recognition and user intervention aredusegenerate plots.

Typical events are described by parameterised operations withcpnglitions and
post-conditions so that planning algorithms can be used for plot generation while, on
the other hand, the goahference rules model the behaviour of tharious actors
providing some charactdrased features. The rules specify how situations can bring

about new goals for each character.

In LOGTELL, the stories are told with a tipedlson viewpoint, and useintervention is
always indirect. That means thauring the simulation the user can either let the
partially-generated plots that seem interesting to be continued, or try to enforce the
occurrence of situations and evenBut, these interventions might be rejected by the
system whenever it finds no kd way to change the story to accommodate the
intervention. According to (Barber and Kudenko, 20§7the resulting story is

graphically presented at a lower level, without any possible user interaction.

In DIEGESIS, as we already mentionesl stbryteller (i.e. the person who models the
story) can mark any kind of action as a choice, which is the wayldlyercan interfere

with the story. User interferences are always accepted by DIEGEStBey affect the
generation and execution of the®y in real timeso the user will be able to form the
story in the way she wants, no matter how much impact they have on the generated

narrative.

37

The planning tool used is a ndinear planner implemented in Prolog, adapted from
20 KSNEQ ¢ 2 Nkhs. é us& of & elinéay/panngr is justified as it seems

more suitable because it uses a leastmmitment strategy.

The generation of a plot starts by inferring goals of characters from their initial
configuration. Then, the system uses the plannertthmeserts events in the plot in
order to allow the characters to try and fulfil their goals. When the planner detects
that all goals have been either achieved or abandoned, the partial plot is generated
and presented to the user and can be optionally drémead. If the user does not like

the partial plot, an alternative can be generated. If the plot is accepted, the process
continues by inferring new goals from the generated situations. If new goals are
inferred, the planner is activated again to fulfil the The process alternates geal
inference, plan generation/recognition and user interference until the moment the
user decides to stop, or no new goal is inferred. In the -gdatence phase, forward
reasoning is being used, where in the planning phasevamt inserted in the plot for

the achievement of a goal might have unsatisfied preconditions, so they are checked

via backward reasoning.

The authors argue that combining goal inference, plan generation/recognition and
user participation constitutes a pmising strategy towards the production of
entertaining and coherent plots, but on the negative side, plan generation is limited by
computational complexity considerations. K S& | f a2 YSyGAz2y -0KI
modern genres with their emphasis on a moaglical transgression of any conventions

aK2dzZ R y2i4 06S a2 Slhaeée G2 FT2NXYIfAasS Ay |

2.10.6. MIMESIS

The MimesigRiedl et al., 2003Young and Ried!,0D3) system defines an architecture
for building and coordinating interactive adaptive narratives. Accortbn@rinbjarnar
et al., 2009, it is designed as a general architecture, therefore it should work with any

game engine.

Mimesis uses two plannersheé rarrative planner,which is responsible both for

determining the actions that will occur within the virtual environment as the story

dzy F2f R&a FyYR FT2NJ Y2RATFeAy3d GKS LiplyQ R dzZNR
38

actions deviate substantially from the & ifénded structure; andhe discourse
planner,whichis responsible for selecting the communicative techniques that will be
used to convey the unfolding action to th#ayer. Both plannes use the Longbow
planning system, a hierarchical part@ider causal link planner that can produce plans

both for physical actions as well as communicative ones

The narrative planner takes as input a declarative representation of all the actions that
are applicablen the virtual worldas well asa specification othe goals for the end of
the story. The narrative planner searches for a story plan, which is a sequence of
actions which will be carried out by the characters in the story (including the character
controlled by theplayen and will both satisfy the goalsf the story and provide an

engaging narrative arc.

The discourse planner takes as input the story plan generated by the narrative planner
and a library of communicative actions that can be used by the game engine to convey
the unfolding action of the stgr Then, the discourse planner creates an action
sequence containing directives to be carried out not by charactetsarstory world

but by the gameSy IAySQa Ay iSNFIFOS NBaz2dz2NOSa |

concurrently with the story plan itself.

Mimesis deals with replanning in the following wayMateas and Stern, 2003t

monitors the story world for potential player actions that might threaten causal links in

the current story plan. When threat is detected, the system either generates a new

LI Iy SgKAOK | OO0O2YY2RIGSa (GKS LJ I &Sditked LJ2 0
story objectives, or intervenes by causing the player action to fail and thus protect the
threatened causal linkAccording to(Paul et al., 200F A F aAYSaia FIl A
action, she will be given a pathored reason for the failure (e.g. a gun jamming

preventing the player from killing an important character).

(Roberts and Isbell, 20p8laimthat re-planning in Mimesis is expensiin any sizable
domain. Because of that, Mimesis builds-pé&anning policies in an opportunistic
fashion; when processing demands are low, the systerragtively computes policies

for plans other than the one that is curry executing.

39

In contrast, DIEGESI®Bterleaves plan generation and plan execution, therefore re
planning is happening in real time during execution for each individual agent when is
required Furthermorebased on our evaluationghe re-planning solutio we created

does not suffer from performance issues.

2.10.7. MIST

Multiplayer Interactive StoryTelling (MIS(Paul et al., 2009Paul et al., 201,0Paul et
al.,201)A & al aeaidsSy TFdiNg ima/dyraNid Ol @ofld véhére NB {
NPCs can perform tasks autonomously to satisfy their internal motivations, as well as
AYGSNI OGAy3a sAlGK S OKses2Al fléhmMidg mgthodd foNStoydza
creation and revision and characterrole sélek 2 y @ ¢ KS a@aiSYQa LINZ

has two main components: gameengine and alramamanager.

The game engindandles the display and update of game world objects and also
interacts with characters and thedrama manager. Each character in the game
operates under a BelidDesirelntention (BDI) framework anldasits own HTN planner

in order to facilitate the creation of a dynamic game world where characters can

interact with each dber in a nordeterministic way.

Generally, characters use their plamaeto decide how to perform tasks or achieve
goals assigned to them by either tideamamanager or thegame engine. Characters

also convert their local knowledge (acquired by sensors) into a partial game state
representation for use by its planner. The mt&r uses this information to guide the
decomposition of an assigned task into primitive tasks whose preconditions are known
to be satisfied.All possible plans generated by the planner are ranked in order of
decreasing plan cost; in case there is morentlbae possible plan, the planner returns

one that minimises the total cost of all primitive tasks in the plan.

Thedramamanagerhasa hierarchical network of story elements, which can be pieced
together in different ways to form a storyLhe current stateof the game world is
passed to the drama manager periodically from the game engine. Then, the drama
manager attempts to create a story that fits the current state of the world via its HTN
planner, and the network of story elements. The authors argue tlemahg an HTN

planner in this way (i.e. as part of the drama management subsystem) could
40

potentially enable the creation of many story variants based on the state of the world

at a particular time.

In MIST, NPCs that have been assigned roles in a storyaptaprevented from
disrupting the story by being prevented to attempt to achieve their internal desires
while the story is in progress. When it detects an invalid plan step resulting from the
actions of nomstory characters in the story plan, the drama mager attempts to
repair the ongoing story. The repaired plan is required to be consistent with the steps

that have already beenompleted in the original plan.

The authors have considered two different approaches to detecting invalid plan steps
while a sory is in progress: The first is to look one step ahead to check that the
preconditions of the next plan step are satisfied. An important limitation of this

approach is that because of commitments made by characters close to the point of

(potential) failue, a consistent plan repair may not be possible.

The second approach is that the drama manager continuously checking the
preconditions of all future plan steps. This kind of detection increases the chance of
finding a consistent plan repair because it bles the drama manager to avoid
commitments being made by story characters close to the point of failure; therefore it
is more likely to find a consistent plan repair that bypasses the invalid step. This
approach applies though only to situations where lanpstep is made invalid by the
deletion of a precondition that was true in the initial state from which the story was
generated; it does not apply to situations where a plan step is made invalid by the

deletion of a precondition achieved by an earlierrpktep.

The approach that they ended up using removes the unsatisfied precondition from the
initial state and uses the HTN planner to search for an alternative story plan that
begins with the same steps as the original plan, up to (and including) the rexesit

step that has already been completed. The new story plan is both consistent with the
original plan and generated from the same (correctly authored) HTN, thus ensuring

that plot coherence is maintained.

In DIEGESIS, we have modelled our agents @eptieg characters in the story) to be

autonomous and opportunistic, generating and trying to execute plans considering

41

only their own needs, as we believe that this provides a more realistic approach to the
generation of a story, since each agent actaasal person. Therefore, in our context

it does not make sense to predict and prevent plan failures since a plan can fail either
due to user intervention (which cannot be predicted), or intervention by other
characters, orgin some casespure chance (dmussed in sectiod4.10. In any case,
FIAEf SR LXIFya RdzS (2 adzyLNBRAOGSRE NBIFazy

a generated narrative.

Another diffeence between MIST and DIEGESIS is in the way we deal with plan repair.
In our replanning solutionas we interleave plan generation and plan execution, when

a plan fails,we discardthe already completed actions and we only-pian for the

failed (andsome of the pending; discussed in detail in sectich14) actions of the

plan, merging the new partial plan with the unexecuted portion of the original plan.
Find f @82 aAdda GAz2ya tA1S GKSaS RSaONROSR
0KS RSESGA2Y 2F | LINBO2YyRAGAZ2Y | OKANSOSR

DIEGES|Sinceit is not possible to generate a valid plan where the effects of a

—

€

previous action renders a future action (in the same plan) invalid.

Although the system was designed to use a set of HTN planmerthei initial
implementation of the system(Paul et al., 2009the authors usedJPlan, a Java
implementation of Graphplanas the panning component of the system. As they
explain, they needed a Java implementation ofadgorithm for their first prototype,
and JSHOP2 which is the most popular kmsed HTN planner had limitations when it

comes to reatime planning that was needed in the system.

Although that the algorithm is efficient and optimal, it has been iderdifley the

creators of the system to have limited features for the purposes of their research. It
glra faz2 &adliSR (KFd aGKS 01 2F SELNBa
a Ol f | @Hefcrealodséddrided that, given the limitations of theagh planning
algorithm, the most flexible solution would be the creation of a HTN plannex in
subsequent implementation of the systenmwhich they did in(Paul et al., 2010

implementing an HTN planner written in Prolog.

42

2.10.8. OTHELLO

Othello (Chang and Soo, 2008hang and Soo, 20P& a multiagent simulation game
environment where narratives arise on the fly from spontaneous interactionsngm

characters during the game.

An agentbased and plaibased storytelling approach has been used and assumes that
plans serve as a proper re@@ntation of narratives and that a narrative is the result of
plan execution by individual Al characters. A simulation session is considered to
contain multiple autonomous planning agents who are given mental states, personality
traits and social relationdNarratives are expected to be the total sequence of actions

in the plans that the agents make and execute.

hiKStt2Qa OKIFNIOGSNI LIXIlya SYoz2Reée (GKS az
plans. A social plan realises a common narrative idiom théasacter works to bring

change to another character. Although a persistent game universe can develop
intertwining narrative units where multiple characters exist (with all of them having
their own social plansthello limits the focus on generating septe narrative units,

each of which have a main character who is the builder of the sokal A narrative

unit is considered to be the result of the execution of a social plan.

As an example of the size of a social plan, the authors mention that thdifsatplot
2F {KIFI1SaLISIFINBQa hiKSftt2 O6AdSd GKS YIyAL

they used in their simulations can be viewed as one social plan.

To generate these social plaaad allowNPC agents to engage in stdilke activities

by influencing others during a game sessi@thello useHSSKthe authors mention

that in a previous version of the system they were using the Optop planmer)
planning tool which interleaves social reasoning with stagpace forwaresearch
planning, guided byan adapted version othe HSP heuristicAs the authors explain,

GF LI NI FNBY (KS KSdzZNAadAaAOa LI NIZ GKS LX |
Ayid2 GKS adrdsS aLlk 0SSt o

Finally, the authors discuss that although the scalability of the total naedéngth is

not within the scope of their research, their findings suggest a negative

43

correspondence between the number of actions and the social plan length using a

classical planning approach like HSSP.

2.10.9. PASSAGE

PaSSAGKPlayerSpecific Stories via Autatically Generated EventgJhue et al.,

2007 is an interactive storytelling system thaluses player modelling to automatically
fSINYy + Y2RStf 2F (GKS LIXIF&SNna LINBTSNNBR
ReylFYAOFLftfe asStSOG GKS (asSSAGEyuses & fasddy A Y
approach, including personalisation of the narratiegperiences in the form of

selection of events which matches the player preferences.

According to(Roberts and Isbell, 20p8the system uses a three level hierarchy for
RSTAYAYI | yYINNIGADS Hardive dedtd Vi @A YUKYS GAIRKSS
sequence level where the components of the story are selected; the structure level
where the details concerning the time and place of story events are determined; and

lastly, the behaviour level where the actions of individual charaéiterr N3 RS G S NI A

PaSSAGE uses some-gefined player types (FighteMethod Actor,Power Gamer,
Storyteller, andTacticiar) and during gameplay, it learns a player model expressed as
weights for each of the above player types. PaSSAGE generates its stories using a
library of possible events, called encounters, each of which has peefiled by an

author with a number of pssible events that would be suitable for each player type.
Each encounter has one or more branches (i.e. potential courses of action for the
player to take in that situation)Tlhe encounters follow a particularder depending on

their type (Arinbjarnar et al., 2009 As it is mentioned irffRoberts and Isbell, 2008

this approach makes the stories hard to author, since it requires exhaustive and rich

annotations of many sublots.

While searching for an encounter to run, the system examines 8a¢hO 2 dzy 0 SN A&
branches, and chooses the encounter whose branch fits the player model the best, via
an innerproduct calculation. Also, to help maintain a strong sense of segounters

are grouped into sets.

44

The system is independent of timplace and actor identity since the encounters are
scripted generically and their details (e.g. when and where an encounter should occur)

are determined at runtime.

la +y SELSNAYSYyG: (GKS |dzikK2N& Y2RSttSR |
rdA Yy 3 Kafd?wsdalised using the toolset provided by the role playing game
Neverwinter Nights Their finalisedmodel consistof 20 possible lines of gameplay

called paths, with five different endings.

According to(Barber and Kudenko, 200%he player model used in PaSSAGE is less
likely to be applicable in less computer gaorented domains, since itsibased

specifically on computer game players.

2.11.DISSYSTEMSCOMPARISON

The following tabl€1) provides an overview of the features of the related DIS systems

discussed in the previous section. The presented features are the following:

1 Story Model The stoy model of the system, which (as discussed in se@i@n
can be either charactebased, or plotbased, or a combination of both.

 Type of PlanningEither OSY i N} f AaSRX YSFyAy3 GKI G
generates a combined plan for all of the involved agents, either decentralised,
meaning that each of the agents generate its own plan.

1 Replanning Whether the system performs fglanning or not.

1 Planning Algathm: The planning algorithm used to generate plans of actions.

1 Representation Languag&he representation language used to model the
story world.

1 PerspectiveWhether the stories are presented via a figrson perspective,
I.e. theplayerexperiencegarts of the story which are related to one character,
or via a thirdperson perspective, i.e. th@layer can experience the story
irrelevant of a main character.

1 Interactivity. How the enduser can interact with the system.

1 Extendibility If the system povides tools to connect it with other systems, or
generate new stories.

1 AudienceThe types of audience the system is designed for

45

Type of Planning | Representation : . . . :
DIS Systen] Story Model Planning Algorithm Language Replanning | Perspective| Interactivity | Extendibility | Audience
No
Playercontrols authorin
Initially A*, | Initially STRIPS Yes. from First only tools thg
Fabulator Plot-based Centralised | then Metric- & ADL, then ' protagonist; L General
scratch person PDDL files
FF PDDL the rest are
NPCs can be
modified
Plot-based Playercontrols
with some Reactive . only
Cl cel §F character . No : behaviour ABL . No . First protagonist; No too_Is_for Adults
information information person extendibility
based planner the rest are
elements NPCs
No tools,
Adaptation ves, without Playerinput to newstories Soap opera
Character Continuous P information Third yennp are possible P op
GADIN : of STRIRfke . resolve fans and
based centralised about its person . but they :
Graphplan . dilemmas children
mechanics need to be
hard coded
Yes, initially Playercan
Initially HTN by~ wander in the
" : backtracking 3D world as an
Initially (depthirst - . N
4) Initially HTN, | inthe HTN, . invisible avatar
I- Character | decentralised, left-to-right Third i No .
. . then STRIRS then and interact | . . Sitcom fans
Storyteling based then no search with . person . . .| information
. . . based without with objects;
information heuristics), . : .
information speech input to
then HSP . . .
about its provide advice
mechanics to NPCs

46

Plotbased
with some Nonlinear . . . Anyone
LOGTELL| character Centralised | plannerin Prolog : NO. Third: Int_ﬂrect/pgsswe No .tOOIS (depending
information person interaction available
based Prolog on story)
elements
Yes,
monitors Playercontrols
Longbow game world First only NoO NoO
Mimesis Plot-based Centralised planning | No information| for threats protagonist; | . : . .
. person information | information
system and builds the rest are
solutions NPCs
pro-actively
Yes, by
Initially trying to
Character | Craphplan | ooy sTRIpg Predictand |y . . No Computer
MIST Decentralised| then HTN repair in No information | . : game
based . . then Prolog person information
written in advance a players
Prolog potentially
invalid plan
HSSP (state
space
forward-
search
Othello Character Decentralised| planning, PDDL No . NO. No information | . NO. . NO.
based . information information | information
guidedby
an
adaptation
of HSP)

47

Playercontrols
. only Computer
PaSSAGE Plotbased : No . . No . No information | . No . First protagonist; | . No : game
information | information information person information
the rest are players
NPCs
Yes, Both first Plavercan
New interleaving | and third yerea
lanner plan person ELE GrolEEe PDDL and Anyone
DIEGESIS Hybrid Hybrid P PDDL and XML . : . for any) (depending
based on generation | including XML editors
characteror on story)
Graphplan and plan vantage
. . event
execution points
Tablel: Feature sets of Digital Interactive Storytelling systems

48

In the previous section we reviewed armliticaly analysed9 state-of-the-art DIS
systems and iTablel we combined and presented a set of their features (analysed at

the beginning of this section) for comparison purposes.

Regardingstory models4 of the systemgGADIN,-Gtorytelling, MIST,rad Othellg are
using a pure charactdrased approachand 3 of them (Fabulator Mimesis and
PaSSAGHE pure plotbased approach. The remaini@gystems(Cl cel RS 'y R [h
claim that they arausing a pot-basedapproachcombinedwith some charactebasedl

elements

DIEGESIS uses a hybrid approach, combinatly plot-based and charactdrsased
elements. More specifically, age will discussn section4.1, the gameworld (created

by a storyteller)s organised in multiple levels which can represent possible parts of a
story. Typically, a level represents a broad area where a number of events in a story
may occur.The levels are organisad a hierarchical manneeach levelmay include
potential successor levels which have a logical connection with it. As soon as a level is
complete, the framework makes anformed decisiorand based on what happened
previously during the generation and execution of the stortheziloads a new level or
ends the story (the detailed process is discussed in sedtifn Using thiglot-based
approach, DIEGESIS always has albigh contrd over the overall structure of the
story, being able to transition the story between levels which make sense, producing a

coherent narrative.

The authors of(Carmichael and Mould, 20)4lesigned a framework focusing on
RSOARAY3 HKAOK &a0SySa ofF O2yOSLIi aamYAaftl N
Theyuse asimilarpl@i a SR F LILINR I OK | yR GKSANI FNI YSg
G2 LINA2NRAGAAS &40SyS y2RS&a¢d ¢KSAN aoSy!
storyteller) are loosely connected to each other and they include values that can be
modified during runtime to prioritise them over others, as well as preconditions that

need to be meto the scene can be applicable.

¢KS YIFIAY RAFTFSNBYOS 06Si6SSy (Klcodmpanett YS g 2
is thatin (Carmichael and Mould, 20)@ &tamework when a scene is complete the
player is preseted with the potential scenes and is asked to select which one she

wants to execute next, knowing beforehand the content of each scene, a concept
49

AAYAEFNI 02 GKS ljdzSadta AyOfdzRSR Ay NRES LI
component makes th choice of which level to execute next itself based only on what
happened previously in the story and the preconditions set by the storyteller for each
level, something that we believe it adds both to the generation of a coherent narrative

and to the emoion of unexpected of the player since she does not know what will

happen next based on choices she made during the execution of the story.

Continuing with the story model discussian,DIEGESI®/hen a level is loaded to be
executed, we move closely to characterbased model; each agent may have some
initial intentions, but is able to operate autonomously and opportunistically to achieve
AGa 3F2rfad ¢KS FTNIYSE2NY 62y Qi evenyifeWNIF S NB
are imposed by th@layeror the Oracleg discussed in section 4.1@ven if they mean
that the story cannot progresany further, althoughgin the bottom line; that is based

on the story modelling performed by the storytell@he authoring process in DIEGESIS
provides enough freedom tdhe storyteller to operate whichever way she wants;
either to create a relatively rigid storyline without much room for highly diverse
narratives, or to model a story in a way that everything is fluid; a Iqilayeroracle
choices, several potential goaljections based on actions that may occur, and several
uncertain actions all of these features can contribute to unexpected situations and

more emergent narratives.

Moving totypes of planning4 systemgFabulator GADINLOGTELlandMimesig are
performing a centralised planning, 8ystems KStorytelling MIST and Othello) a
decentralised planning, antthe rest2 systems(C I celaritl BaSSAGHEo not provide

any information about it.

DIEGESIS follows a hybrid approach. On the plan generation leysaforms a
decentralised planning; each aggnépresents a character in the stongimodelled to

be autonomous opportunisticallygeneratingand executing planbased on its own
goals.We believe that this provides a more realistic approach to the generation of a
story, since each agent acts as a real person, generating an autonomous plan

considering its own needs.

In the case of plans execution though, our approach borrows the contndl a
coordination concepts from the centralised planning approach. Although the plans are
50

AVRAGARdAzr X ¢S 6yl 5L9D9{L{ G2 RAOGIGS
(therefore the generation of the story) so the system can have a better control and
understanding of what happens during the generation/execution of the story, and to

be able to interfere if needed.

The systera usea variety ofplanning algorithmsC |l 6 dzf I G 2 ND& Ay AGA L €
was using A*, but then moved to MetrleF. GADIN uses an adaptation of Graphplan.
aL{¢Qa AYAGAFf AYLIXSYSyidlradAz2yz FfdK2dzaK
implementation of Graphplan, but afterwards its autharseated an HTN planner
written in Prolog. LOGTELL uses a-loear planner written in Prolog as well, and
Mimesis the Longbow planning system{ [2 NR 0 St t Ay3aQa AYyAGALf
using an HTN planner (using degifst left-to-right search with haristics), but since

moved to HSP. Othello uses HSSP, which is a-spatee forwaresearch planning
system, guided by an adaptation of HEH. cel R S eattivéSh@haviourlanneand

finally, PaSSAGE does not provide information alisadgorithm.

Fa DIEGESIS, we have created a planner wiankiss of a planning and a rplanning
algorithm ! 6t S G2 3ISYySNIGS LI tya 2F | OGAaAzya ol
considering both the current world state and the available reses.The planner is

aware of theavailable time(duration) an agent/character has for a plan when it is
asked to generate oneOur planning algorithmis based on Graphplan for solutions
expansion, and backtracking heuristic searfcn plan extraction, enriched with
constrains satisfaction and dynamapportunisticrestart when requiredThe Planner

is discussed in detail in sectidrl4

Regardingrepresentation languagesmost of the systems (Fabulator, GADIN, |
Storytelling, MISTand Othello) usecor used in some of their versiogither the

STRIPS language or adaptations of it, or languages derived from it like ADL and PDDL. A
couple of systems (LOGTELL and the second version ®T)Mkpresent their
storyworlds in Prolog, the same language their planner is implemented witially,

the first version of -Storytelling was modelledsingl y | ¢ b NBLINBaSy il
uses ABL, and a couple of systems (Mimesis and PaS88@B) provide such

information.

51

DIEGESIS uses a combination of modelling approathedasic information for every
level of a story is modelled using PDDL and further information such as information for
each character, goal injection rules, choices and theirbfadks, etc. in XMILAIl the

representation information including examples is documented in chafter

In terms of re-planning 3 systems(Cl cel RS> [h D¢ 9]) [providd nbR t |
information whether they suport re-planning or not,h it KSt £ 2 R2 S&y Qi
planning, andGADIN mentions rplanning without giving much information about its
mechanics.The rest implement different rplanning approaches=abulator replans

from scratch;l-Storytellingby backtracking in the HTN; andthdVlimesis and MIST

pro-actively, trying to predict and repair faulty plans in advance.

5L9D9{L{ RSIfta 6AGK (GKS SESQOdziaz2y 27F (KS
part of a plan fails, instructs the agent to-péan based on its current knowledgé the

state of the world.Considering that we modelled each agent to act as a real person in

the way they generate and try to execute pgant does not make senséin our

context) to predict and prevent plan failuresince a plan can fail either due tser
intervention (which cannot be predicted), or intervention by other characters;ior

some casespure chance (discussed in sectidri0. In any case, faileglans due to

Gdzy LINBRAOUGUSRE NBIFazya FNB NBIfAadAO | yR

narrative.

In our replanning solution, as we interleave plan generation and plan execution, when
a plan fails, we discard the already completed actions and wlg we-plan for the
failed (and some of the pendingdiscussed in detail in sectich14) actions of the

plan, merging the new partial plan with the unexecutedtmm of the original plan.

Regardingperspectives Othello does not provide information about it, half of the
NEBYIFIAYyAy3 &adeéaidisSvya o6ClodzZ | §2NE Cl-pelsdRSZ a
perspective to present their stories to thelayer, while the othe half (GADIN,-I
Storytelling, LOGTELL, and MIST) use apleirson perspective.

In its default mode DIEGESIfesents thegeneratedstory as a wholeAt any point

during the generation of the story thglayeris able to view any action that a character

52

is executing, make choices related to any character, as well as view details about them

(i.e. their current goals and plan)hese abilities constitutethird-person perspective.

But, apart from the default mode, we wamb provide theplayerwith a firstperson
LISNBRLISOGA®GS a ¢Sttt GKIFiQa ¢gKeé& ¢S ONBI
detail in section.12). If theplayerselects to view the story from the vantage point of

a character she will view only the story outcome which is related to the chosen
character, and will be available to intetamith the story (i.e. make choices) only when
an action is related to the story character. Theneration of therest of the story
(which is unrelated to the selected character) will continue normally in the background
(with the exception that any choice®ncerning other characters supposed to be made
by theplayerwill be made by the Oracle instepdet invisible to thelayer. The player

is able to choose between different vantage points or return to a full story view freely
during runtime, allowing inear storyline with differing endings, interleaved storylines,

and even flashbacks

In terms ofinteractivity> Ay Y2ad 2F GKS adadsSvya ocCl o
PaSSAGE) tiptayeris able to control only the protagonist; the rest of the characters

are NPCs. In GADIN, the oplgyerinput is to resolve dilemmas. In LOGTELL there is
only indirect/passive interaction during the generation of a narrative; in the
dramatization phase there is no user interaction.-Btdrytelling, theplayeris able to

wander in the 3D world as an invisible avatar and interact with objextswvell as to

provide advice to NPCs vspeech input Finally, MIST and Othello does not provide

any information on interactivity.

In DIEGESIS, there is not a main character thapliager controls/observes; instead,
the player can make choicesdéfined by the storyteller) for actions that can affect
every character in the active storjlso,as we already explained beforéne playeris
allowed to select and view the story from tlperspective of any of the characters (in
the default view mode, the story is presented as a whole), and to be able to switch

between them without any limitations, during the generation of the narrative.

As we just mentioned)IEGESIS inclesi conceptsii f | NJ 42 D! 5LbQ& RA
F2NY 2F aOK2AO0Saé¢d ¢KS adi2NRGStftSNI Oy Y
an action is about to occur, DIEGESIS either makes a choice itself, or gslleydnt

53

make a choice whether the action will happen mot. The idea behind choices in
DIEGESIS is that important decisions throughout the story should be marked as choices
so they can potentially alter the outcome of the generated narratiiéser
interferences are always accepted by DIEGESIS and they thigegeneration and
execution of the story in real time so ti@ayerwill be able to form the story in the

way she wants, no matter how much impact they have on the generated narrative.

Regardinghe extendibilityof the systems, the information provided by the systems

themselvesis scarce According to(Cooper, 201}, Fabulatorhas source files for the

planner which can be modéd but no edittNBE 2 NJ a 2 dzZNOS O2RS RA &

not designed to be modified therefore there are no tools available, GADIN provides no
tools but new stories are possible if hard coded, and LOGTELL has no tools available.
The rest of the systems-8torytelling, Mimesis, MIST, Othello, and PaSSAGBEpt

provide such information.

To make the authoring process eadier DIEGES|®/e are using a PDDL editor created
by (Cooper, 201}, and although the authoring process in XML is quite easier

compared to PDDL, we have designed an XML editor as an extension to the PDDL one.

Finally, regardingaudienc& Cl o6dzf F 6 2NJ K& | 3ISySNIf |
adults; GAIN fits best soap opera fans (and possible children based on a children story
they modelled); 4 62 NBE OGSt f Ay3aQa I dzRASYOS Aa aAi002

dz

Y
based on the famous sitcom Friendd [hD¢ 9 [[Qa | dzRASy O0S Ol y

onthesi2NBET aL{¢Qa FtyR tI{{! D9Qa& I dZRASYOS

Othello does not provide enough information to categorise them.

We believe that DIEGESIS is both suited for mitkeeexperiences including relatively
long-length finite stories, asvell as shorter stories, since it provides to the storyteller

the flexibility required to experiment with multiple genres and lengths of stories.

CKSNEF2NBX 5L9D9{L{Q dzRASYyOS O2dzt R 06S I

2.12.RE-PLANNING OUTSIDE OHE DISFIELD

Moving away from the DIS field, there is research dealing wiplaening in several

different fields, using multiple approaches.

54

\

For example, ifZhang et al., 20Q7a distributed graph planning algorithm is used by
the agents to generate a plan collectively in a distributed manner, anglame
accordingly. As we previously mentionddlEGESIfastructs each agent to generate
and execute a plan individually. If at apgint during execution the plan fails, e

planning occurs only for an individual agent.

A hybrid FastForward and HTN-planning approach is explained (Klusch et al.,
2005 Klusch and Renner, 2006n which the replanning is being performed ofihe.

In (Van Der Krogt and De Weerdt, 200%he replanning approach is to generate a
number of subplans (by removing actions from the initial plan), and then calculate
heuristic values for each one of them to decide which is the best candidate to expand,

so a new valid plan can be constructed.

In (Fox et al., 2006 the authors use a solution based on LPG algorithm and investigate
the efficiency of repairing a plan versus-panning from scratch. The approach
considers plans which have themitial state and goals modified, and do not focus on

re-planning during the execution of a plan.

As we already mentioned, our solution is focused olenning during the execution

of a plan in real time. The #@glanning is being performed using the plamrwe have
created and is based on Graphplan for solutions expansion, and backtracking heuristic
search enriched with constraints satisfaction and dynamic opportunistic restart when

required.

In this chapter we presented the background and the related wafrlour research
area. More specifically, we discussed about the field of DIS, about-agefit systems
and presented some of the relevant agent architectures, and aboutdlagd as well
as multtagentrelated planning and rplanning. V& also presened some of the
planning algorithms which are typically used in DIS systaiag with some of the
representation languages used by therhinally, wepresened some examples of re
planning outside of the DIS field, and we suegnd critically assessl a number of
DIS systems, stating their relation to our own wdrkthe next chapter, we will discuss

the requirements and specificatiores our DIS framework.

55

DIEGESIDISFRAMEWORK

In this chapter, we document the requirements and specifications ofroulti-agent
Digital Interactive Storytelling (DIS) framewodalled DIEGESIBhe functionality of
GKS FTNIYSE2N] Q4 O2YLIRySyia gAff 06S RSaON

In the three chapters where we describe our framework in detail (i.e. chapters 3, 4,
and5), we used a number of UML diagramasing the notation and recommendations
made by(Fowler, 2003 More information about the use of UML in this thesis can be

found in Appendix A.

To properly design ouiramework we need to think about who will use it and what
would be helpful to them, who will create the story, which are the needs of the stories
that our system will be able to manage, amnhich are going to be the key

requirements of ouframework

3.1. USERTYPES ANMCHARACTERISTICS

There will be two types of users associated WRFEGESIS-irstly, the person who
creates the structure of a story to hesed by ouframework and secondly, the person
who is going to use odrameworkto interact with the already created story structure

and view the outcome of it.

For the rest of this thesis, vQf f OF f £ (KSoryelledNBE (I YRNBER$ &
2yS qlage® da ! a0 2NRISEESNE (G2 06S ofS (2 RS
that will be used in ouframework needs to havé&nowledge of the PDDL and XML
languagesAs we will discuss in sectighl8 to make it easier for the storyteller to

generate the story data we will design and use a PDDL and an XML editor.

On the other hand, the characteristics of tpéayerare more relaxed, since the only
requirement is the ability to use a computeo he can interact withDIEGESI@#a a

Graphical User Interface (GUI)

56

As it is illustrated ifFigure6, a use case for a stgeller is to use any available editors
to create a story to be used in DIEGESIS, and also play the story she created in

DIEGESIS, usually for testing purposes, a use case which they share pidly¢ne

Use cases J
DIEGESIS ECMTORS

Eturj.-'telk

Player

Figure6: User typesuse case diagram

3.2. (GENERALSPECIFICATIONS

We want to build a scalable, abstradDIS framework which includes dynamic

narration and story generation.

1 Scalable Theframeworkneeds to be able to accommodate multiple characters
and levels.Therefore, duringthe implementation of ourframework we will
have to constantly evaluate its performance, to ensure that fremework
stays responsive and usable even when using large stories.

1 Abstract We intent to design thérameworkin the most abstract way we can,
to be able to be used with any kind of story, instead of being highly coupled
with one. That will enable thdrameworkto be used in the futuras a testing
framework for planning and rplanning algorithms used in DIS.

1 Dynamic story generation and narratio The storyteller has to modethe
elements of the story. Such elements can include characters, locations, items,
actions, goals of the character etc. Ourframework should generate the
outcome of the story in a dynamic wdye. not predefined). To this end, we
will create and use a planning andpanning solution, which fits the needs of

such aframework

57

1 Interactive: Since we are creating Rigital Interactive Storytellingframework
the resulting frameworlkneeds to banteractive. We intent to include a way for
the playerto be able to interact with thdramework altering the outcome of
the story based on any choices made, as well as a way to alloywlalger to
view and interact with the story from different vantageipts.

1 Different points of view A different point of view (or vantage point) can
dramatically alter the experience for a spectator or a participaice it can
change the context of a storyWe want theplayerto be able to experience the
generated story in different ways: both viewing and participating in the story as
I ¢6K2ftS3Y YR @GASgAy3d 6FyR AYGSNI OlGAy3
character while the story progresses as usubtheframeworkshould be able to
alter these vantage points during runtime.

1 Decoupled The components ofour framework should be created in a
decoupled waywhen possibleto allow it to be embeddable to other systems.
We need to be able taeplace some of our components with others. For
example, we want ouframeworkto be able to be connected to a 3D virtual
world representation that will deal with a visual representation of the

generated story.

3.3. CHOICE OIBASEREPRESENTATIONANGUAGE

As wealready discussed ichapter?2, there are many different description languages
for representing planning problems. We decided to use PDDL (Planning Domain
Definition Languagg)Ghallab et al., 1998whichbelongs to the STRIPS family, which

isextensivelyused among planning algorithms.

To model a story into a planning task for PDDL, the fatigwomponents are required
as a minimuma domain consisting danguage requirementgypes, predicates, and
actions; and a problem consisting of objects, and initial state, and a set of Gaplse

7 contans a simple example of a domain aRtjure 8 an example of a problem

definition.

58

(:requirements

‘typing :conditional - effects :equality :disjunctive - preconditions
)
(:types

character location item object
)

(:predicates
(at?x - (either character item) ?y - location)
(has ?x - character?y - item)

)

(action walk -to
parameters (?who - character ?from - location ?to - location)
:precondition (and
(at ? who ?from)
(not (= ?from ?to))

)
-effect (and

(at? who?to)

(not (at ? who ?from))
)

)

(:action pick -up
:parameters (?who - character ?what - item ?where - location)
:precondition (and

(at ?who ?where)

(at ?2what ?where)
)
-effect (and

(has ?who ?what)

(not (at ?what ?where))
)

)

(:action drop
parameters (?who - character ? what - item ?where - location)
:precondition (and
(at ?who ? wherée
(has ?who ?what)
)
-effect (and
(at ? what ?wherg
(not (has ?who wha)

Figure7: PDDL domaimulefinition example

59

PDDL is a modular languadgach set of features are packedarmodule, and can be
includedand used in a domain if they are declared in the requirements declardfian.
domain does not contain any requirements declaration, then the basic set of STRIPS
requirements is assumedThe version 3.0 of PDDL (whiete will use in our

frameworK includes the following requiremen{&erevini and Long, 205

1 :strips¢ Basic STRIRS/le adds and deletes

1 :typingg To allow type names in declaration of variables.

f :negativepreconditonsc¢ 2 | ff 26 ay20¢ Ay LINBO2YRAI

q disjunctivepreconditionsg¢ 2 | ff2¢ a2NE Ay 3F21f RSAC

§ :equality¢ Toa dzLJLJ2 NIi dnlpredichté 0 dzA £

1 :existentid-preconditionsc¢ 2 | f t 2¢ GSEA&GAaAé Ay 3I2I| ¢

1 universalpreconditionsc¢ 2 |t f2¢ GF2NIFf €& Ay IF2Ff F

1 :quantified-preconditions¢ Combined declaration of existential and universal
preconditions.

f :conditionaleffects¢Todlowa s KSy ¢ Ay I OQlA2y STFFSOlac

1 :fluents ¢ To allow function definitions and use of effects using assignment
operators and arithmetic preconditions.

1 :adl ¢ Combined declaration of strips, typing, negative preconditions,
disjunctive preconditions, equality, quafied preconditions, and conditional
effects.

1 durative-actions¢ To allowdurative actions.

1 :derivedpredicates¢ To allowpredicates whose truth value is defined by a
formula.

1 :timed-initial-literals ¢ To allow the initial state to specify literals thaiill
become true at a specified time point (implies durataetions).

1 :preferences¢ To allow the use of preferences in action preconditions and
goals.

1 :constraintsg To allow the use of constraints fields in domain and problem files.

These may contain naal operators supporting trajectory constraints.

Based on our needs, evhave specified thredasetypes of objects (i.e. characters,

items, and locations) that can existadomain which can be extended if requirgfibr

60

example, there can be different nds of items.Predicates are expressions that
describe simple or complex states of the world in relation to the types we specified,
which can be either true or false. In our example, a character or an item can be located

at a specific location, and a chatar may have an item.

Actions are usually made up of three parparameters, preconditions, and effects.
Parameters are variables which define the objects which need to exist for an action to
be executed, as well as their types. The preconditions argtbdicates related to the
parameters which need to be either true or false for an action to be executed, and
finally the effects are the predicates which are going to be true or false after an action
is executed successfully.
(:objects

tom character

mary character

living -room location

kitchen location
glass-of-water item

tv - remote- control item
)
(init
(attom living -room)
(at mary living -room)
(at glass -of - water kitchen)
(attv -remote-control living -room)
)
(: goal
(and
(has mary glass - of -water)
)
)

Figure8: PDDL problem definition example

In the problem file, we define the actual objects (based on the types we defined
before) that exist in the story that we are modelling. We also define an initial state for
all of the objects present, in the form of predicates. Goals are also predicates of a
desired outcome for our story, and the job of the planner is to find a vaiid pking

the available actions to reach this outcome.

61

In the example we are using, the goal is that Mary has the glass of water. Since Mary is
located in the living room, and the glass of water is located in the kitchen, the most
likely outcome that the @inner will produce will be that Mary will have to execute the
Gol-GAe OUA2Yy G2 Y2@0S G2 GKS alryYS 20 GA:
as soon as this happensi KS -dzL3¥ O Ol A2y s (2 KIFI@S (GKS

possession.

3.4. CHOICE OBBASEPLANNINGALGORITHM

To aid us to decide which planning algorithm to use as a base for our solution, we
performed an evaluation of planning algorithms with a DIS perspective in mind. In
section2.8 we documentedthe planning solutions some of the relevant DIS systems

utilise.

When we had to make the choice of a base planning algorithere was only one
paper available in the literatur¢hat investigated the suitabilt of generajpurpose
planning algorithms for DIS systeniBarros and Musse, 200)bdescribing an

approach to perform such an evaluation, so we decided tothiseapproach as well

The approak was to benchmark different planning algorithms testing their
performance to solve a specific problem in a specific domain and to compare their
feature sets with DIS applications in mifthe feature sets considered valuable to DIS
applications are the fitowing: Support for extra language requirements; capability to
generate partialorder plans; optimality; support for actions with costs; support for

numeric variables.

Support for extra language requiremeniss we have already mentioned, most of the
plaming algorithms have adopted PDDL as their input langaagkit is our choice as
well. PDDL is a modular languagfeerefore planning algorithms are only required to
implement a very basic set of its features. Every extra feature (requirement) supported
by a planning algorithm adds expressive power to its input language (and enables the
creation of more interesting actions from a storytelling point of view) or just eases the

taskof describing certain actions.

The five language constructs which are consdamportant are the following Type

hierarchies typing requirement) Built-in equality operator :equality requirement)

62

Negative preconditions :rfegativepreconditions requirement) Conditional effects
(:conditionateffects requirement) and Existential preconditions :éxistential

preconditiors requirement

Capability to generate partiadrder plans Totalorder plans are sequence of actions
without any sort of parallelism. In a DIS context, these actions represent story events.
To be able tdhave actions occurring simultaneously in a story, partial ordered plans

are needed.

Optimality. Optimal planning algorithms are guaranteed to produce the best possible
plan in a given problem. We must keep in mind however that optimality can be
misleading(e.g. a partiabrder plan including unnecessary actions will be considered
2LIWGAYIE AF GUKS YSGNRO 2F aLI NXEfSt adsSLia:

Support for actions with costdlany planners have a fixed metric that can be used to

evaluate the value of the plan generatdle number of actions executed.

Support for numeric variable€lassic planning systems represent the world state as a
conjunction of Boolean predicates which can be a limiting factor in mtherdctive
Sorytelling (IS)field since almost nothing is (rily) black or white in redlfe stories

that an IS system is trying to generate. The use of numeric variables (in addition to

Boolean variables) can be used in IS to go beyond this limitation.

The details of this evaluation are discussed in sedi&nl There, we discoverethat

there is no planning algorithm that combines all the characteristics describeaebefo
Therefore, we concluded thato planning algoritm can be considered ideal for DIS
applications and kased on the available planning algorithms and considering that each
DIS system has its own goals, the final choice of algorithm must be done based on the

unigue requirements of each DIS system.

We beliee that a new planning algorithm (combining some features from existing
algorithms with novel ideas) needs to be created specifically with DIS systems in mind.
Extra attention to the expressiveness of its language must be given since it will help
authors aml researchers easily create better stories, the fundamental principle of
every DIS systenAlso, support for numeric variables, actions with costs and, possibly,
capability to create partiabrder plans would be desirahle

63

We published the evaluatiofGoudoulakis et al., 20} With the idea that the family of
the FF planners (FF, Maryiand MetricFF) seem to posse a number of these
capabilities (especially the latter) along with a good performance (they had some of
the quickest times in solving the test problem) so they could be used as a starting point

to our planner.

After we continued the design of our systahough, we finally decided that our base
planning algorithm would be Graphplan, since we wanted to be able to have more
flexibilty in the design of our planneand Graphplan provided that (several of
DNJ LIKLX FyQa FSI Gdz2NBa | NBanyzayS Rnceitd majokl&k C C
of features comparing to the other solutions was the lack of support for the extra
language requirements, we decided to extertle algorithm and includeany

requirements that we neeavhile progressing with the implementation of our system

3.5. MULTI-AGENTNEEDS

¢KS ad2NASa GKFG 5L9D9{L{ ¢Aff 3ISYSNIGS
likely include multiple charactersagh of these characters should be able to act as a
real person, even if they play a very small part in the whole story. To elaborate on that,
a character should haviiss own will (i.e. try to achieve his own goal¥e able to
generate plans to achieve hg®als andact indegendently from anotherif required to

do sq have knowledge of the worlthat he exists inand be able to take decisions if

needed.

All the above makes it clear that each character should be represented by an agent,

which will make [HGESIS a mu#tgent system.

Each agent in the game wondll use aninstance of thePlanner (i.e. the planning and
re-planning algorithms of our framework; discussedhe nextchapter)to be able to

generate plans of actions and regenerate them if negdrhe frameworkshould be

able to dictateli KS SESOdziAz2zy 2F GKS 13SydaqQ L}Xly
story, andshould beable to coordinate them during the execution phasénally, to

allow the frameworkto be as flexible as possible, thei®not going to bea main

character that the player controls/observes; instead, thlayerwill be able tomake

64

choices for actions that can affect eyecharacter in the active story, anth extend

the outcome of the story

As we already discussed in seat2.5, there are two types of mukagent planning:
centralised planning, in which a central agent is responsible to collect the partial or
local plans of the other agents, to combine them in oranpand sale any conflicts
that may occur, and idtributed (a.k.a. decentralised)in which all the agents
communicate with each other to generate their plans and to negotiate any possible

conflicts.

In DIEGESIS, as we already mentioned at the beginhitigscsection, we want each
agent (i.e. character) toperate as a real person. Relating thatthe planning process,
we want each agent to be able to generate its own plans based on each own goals and
try to execute them individually and opportunistigal\We believe that this provides a
more realistic approach to the generation of a story, since by this way each agent can
act as a real person, generating an autonomous plan considering only its own needs.

This approach is similar to the description otdetralised planning.

Decentralised planningnvolved that agents communicate only with each other to
negotiate conflictsS G O® 2 S R2y QiU dzaS GKIF G | LILINE | OKd
individual, ve want DIEGESIS to dictate the executidraseof the e Sy (i Q& LJ |
(therefore the generation of the story) so the system can have a better control and
understanding of what happens during the generation/execution of the story, and to

be able to interfere if needed. Therefore, in the case of plans executianagproach

borrows the control and coordination concepts from the centralised planning

approach.

In this chapter, we documented the requirements and specifications of our +agktnt
DIS framework. In the next chapter, we will document and discuss inl de¢adesign

aspect of every component of our framework.

65

DESIGN OAHE FRAMEWORK

In this chapter, we discuss in detail the design aspect of every component of our multi
agent Digital Interactive Storytelling (DIS) framewd&.described in sectioh3, while
designing and implementing the framework we used an incremental and iterative
process.The work reported in the design and implementation chapters ésrésult of

the aforementioned process.

To achieve our needs, we designed DIEGBSIS multi-agent Digital Interactive
Storytelling (DIS) framework using planning andplanning techniques. DIEGESIS
consists of several different components, each respaedior one or more features of

the framework. The design of the framework and its components evolved while
progressing with the implementation and the evaluation of the systenketep up and
O2yYL) & gA0K GKS S@g2ft@Ay3 yI (dodlls aadf |

specifications.

Figire 9 depicts 5 L 9 D 9hi{gh. fev@l architecturethat we used in some of our
publications, and illustrate§8 K S ¥ NJ Manc@mpdneénsmt the time There have
been some changes since then since some of thecsafponents of the main
components grew and became main components themselves, as well as new
components were added, buhost the processes of the systememain the same, so

we will briefly discussiow the systemnitially operated

As we discussed in secti@l, there are two types of users; the storyteller and the
player. The Storyteller nuels the story in a set of XML & PDDL files, and the Parser
component is responsible of translating them into a representation the framework
understands and feed them to the World Manager (WM), which is the main
component of the systerand coordinates therest. The WM stores this information to

the Knowledge Base component, and uses it to update the environment which is
perceived by the multiple instances of the Agent component (each Agent represents a

character in the story).

66

I Knowledge Base .k}:{)
N | World Manager
User Manager [—— T = Ag_ent_ Conflict Resource
@ I Coordination Management Pool
Transition Time Choices Current
Manager Manager | | Manager Active Level
Player I /\
Milestones Domain Output Active Available
| Parser k:'\ Manager Manager Generator Characters Actions
- XML & PDDL File(s) * ‘ ‘
Story Data Planner
Facts Operators
Plan <
Generator Generator
Storyteller
_____________________ L
i i I : Re-planning
Extraction Phas

i xpanion Phase i i :
! Layer Generator] —> Plan Extractor i
| | | |
| I | | __$ |
: Mutex ! Goals ! .| Time Failure |
! Calculator : : Manager I

Figre9Y 5L9D9{ L{ Q AYAGALFT |

|

Agent

Communication Futile Goals
Sensors
Module Manager
Knowledge Base
Current State Previous
of World Plan(s)

NOKAGSOG dzNB

67

The planner consists of a planning and gl&nning algorithm able to generate plans
2T TOGA2ya ollaSR 2y SFEOK F3SydaQa 321t a

environment as the agent perceives it.

The User manager is responsible of communicating with the player to either receive
0KS LIXF&d8SNRa AYyGSNIOlA2yS>S 2N (12 &aAKeks KA
already mentioned andk illustrated inFigure 9 as wel| the WM component included at

the time several other suslsomponents. Eventually, as the framework grew and extra
functionality was designed and implemented, maxt these subcomponents grew

enough to become components by themselves, something which also promotes the

modularity of the framework.

Figure10 illustrates the finalarchitecture of the DIEGESIS DIS framewbhk. finalised

components are the following:

1 Parserlt is responsibldor parsing and processing the storyteHereated files.

1 Knowledge BaseA centralised repository of information, including a relational
database and information stored in memory. The Knowledge Base component
stores information about the currently active story.

1 Level Manager It is responsible of keeping track of most of timéormation
about each possible levefi.e. scene)of the story, and distributing this
information to other components when required.

1 World Managerlt is the main component which coordinates the whole system
so the stories can be generated and executéslsubcomponents include the
' 3SydaQ alylF3aISNE (GKS . fF0O1062FNR {&ais
the Time Manager, and the Output Generator. It also keeps atoigate
representation of the world and is responsilite distributing it to the agents
when required.

1 Choices ManagerBased on the modelling of the story by the storyteller, the
player may be able to make choices about important circumstances occurring
while the story is being generated and executed. This component is responsible

for dealing with them.

68

Transitioning Manager The component is responsibléor performing a
transition from a level which was just concluded to a new one which makes
sense in the context of the story.

Goal Injection Manageiit is responsibldor injecting goals tahe agents based

on specific conditions specified by the storyteller.

Futile Goals ManageA component responsible of providing futile goals to the
agents which are idle.

Oracle In certain situations during the generation and execution of a story, a
relatively random outcome needs to be calculated. This component is
responsiblgor doing that.

Uncertain Actions Manageilhere are some actions that make sense that they
should have a percentage that will succeed (or fail) due to pure chance. This
componentdeals with them.

Vantage Point ManageDuring the execution/generation of a story, the player

Aad FtofS (2 OK22aS FTNBSte 0SisSSy RATF-
view the story from the perspective of a specific character) and a full story
view, and this component deals with thesantage points.

User Managerlt contains a graphical user interface to communicate the story
outcome and other relevant information to the player, and receive user input
when is required.

Planner As we already mentioned, @onsists of a planning and a-ptanning
Ff32NAGKY |16fS G2 3ISYySNraS LXlya 27
considering the current state of the environmentasagent perceives it.

Agent9 3SNE OKFNF OGSNI Ay | ad2NB Aa NBLN
architecture follows a hybrid approach including elements of reactive,
deliberative, and BDI agent architectures.

Battle Manager There are cases in thevaluation scenario that we Hui
(discussed in chapteb), in which we needlargescale battles to occur;

therefore, we built a component which deals with them.

69

Agent | User Manager
-
Knowledge i Graphical User
h | Base ‘ e ‘ Interface l—l
Transitioning Manager ‘ Planner J _m_—l
Transitions Mutexes Planning Re-planning = @
calculation calculation Algarithm Algaorithm

t F

F

antage Point Manager |

A

- =

Uncertain Actions Manager ‘

companent

sub-component

process

list of elements

uses

Display Story Based on
Vantage Point

h 4
Knowledge Base |

Databaze plamon
Storage
[y

‘World Manager

Manager

Agents’

Blackboard Time
System Manager

Cutput
Generator

System Level Turn
Initialisation Initialization Execution

I

—I—' COracle N

h J

[

Random Dutcome
Calculation

E

h

h 4

Futile Goals Manager |

Futile Goals I

}

L L

» Lewvel Manager le— Battle Manager
> - ™ r
- Levels | Alliances |J | Soldiers |J
Y [|
v
Goal Injection Manager ‘

Goal Injection Rules I

Choices Manager ‘

I
Parser

hd

A A

[Tohoices |

PDOL
parser

XML
parser

Figure10: DIEGESIS architecture

70

In thefollowing sections, we will discuss all the components of the, explaining in detail

their processes and how they are operating together with other components.

4.1. GAMEWORLDARCHITECTURE

The game worlds created before the execution of a story, by a storgtellThe world

is organised imultiple levels whichcanrepresent possible parts of a stoffypically, a

level represents abroad area where a number of events in a story may octhe

levels are organiseth a hierarchical mannerach levelmay have sme potential

successor levels which have a logical connection witknitexample of a game world is

illustrated inFigurell.

Transitioning Goal injection
Level 1 data rules
|] ’ evel Futile goals
P / information
,:j O <> Q e
4/' - . Uncertain
< o Actions o
Choices Battle details
Level 2 ——i— i — i — -~ Lewvel 3
e N -
L \\] —
Level4 (3 Level5s — Levelts [Level 7

T

Figurel1l: Game world architecture

Q

Ol

location

character

item

at lecation § has item
potential transition
miutual exclusion

list of data

A level cand in extend thegame worldwhich will produce astoryg consists of the

following elements:

)l

Locationswhich can be either small such as rooms or large such as whole

countries

Charactersalong with their individual inform#on which will be discussed in

detail in sectio™.15 such as their list of goals.

Items which can be anything

Actions which are applicable in a level and carekecuted by the charaets

based on certain conditions.

71

1 Information about the level(such agts title, etc.), which will be discussed in
section4.4.

1 A set of boiceswhich are potential decision making moments fther the
player or theframework and arebased on rules specified by the storyteller,
which will be discussed in sectidib.

1 A set of transitioning data such as potential successor levels, milestones, etc.
(will be discussed in detail in secti@h7) which will be used to perform a
transition to a new level as soon as a level comes to an end.

1 Goal injection rules which will be discussed in secfi@h

1 A set of futile goals which can be assigned to a character if is idle, which will be
discussed in sectioh.9.

1 A set of uncertain actions whiahill be discussed in sectighll

1 Information about a largecale battle which may occur in a level, which will be

discussed in sectiofh.16

The minimum mandatory elements that must exist in a level so DIEGESIS can process it

consist ofa set of locations, characters, and actions; everything else is optional.

As wementionedin section3.3, each levef2 @ain representation is modelled in PRDL
That includes the locations, characters who are present in a level (specifying in which
location they are initially located), items pe# in a level (associated either with

locations or with characters), and a set of applicable actions for a level.

An example of a PDDL representatmfra part ofthe story we are usinfdiscussed in
detail in sectior6.l) is displayed ifFigurel2, where we omitted some information to
ensure readabilityAn initial (default) sate of all the characters and item# a level
needs to be definedy the storyteller but it can be dynamicallgltered based on

eventsthat occurredin previously executed domains

(:objects
helen - character
menelaos- character
paris character
hector character
throne-room room
private -room room
guest-room room

72

docks room

troy location

gift item

troy -ship - transportation -method

)

(:predicates
(at?x - (either character transportation -method) ?y - location)
(has ?x - character?y - item)
(in -discussion ?x - character ?y - character)
(emotion-loves ?who - character 2whom - character)

)

(init
(at menelaos throne -room)
(at helen private -room)
(at hector docks)
(at paris docks)
(attroy -ship docks)
(has hector gift)
(emotion- loves paris helen)

)

(actiontalk -to
parameters (?x - character ?y - character ?z - room)
:precondition (and

(at ?x ?2)

(at ?y ?2)

(not (= ?2x ?y))
)
:effect (and

(in -discussion ?x ?y)
)

)

(:action seduce

parameters (?who - character ?whom - character ?where - location)

:precondition (and
(at ?who ?where)
(at 2whom ?where)
(in -discussion ?who ?whom)
(emotion - loves ?who ?whom
(not (= ?who ?whom))

)

-effect (and
(emotion-loves ?whom ?who)

)

Figurel2: Example of a PDDL representation

73

Apart from the main representation of each level which is modelled in PDBlLest
of the elements ardurther modelled in XMland we will discusshem in detailin the

following sections.

4.2. PARER

As we already mentioned,aeh story is written and modelled by the person who is
creating the story, i.e. the storytellerhe modelling of the story world includiteyels,
characters locations, items, goals, milestones, available actiats. is sbred in a

number offiles, available to the systenThere are two types of file$?DDL and XM

The ParseiComponentcan be instructed by the World Manager (tlm®mponent
which coordinates the whole systerand will be discussed laterpr any other
componentto parse and analyse a set of files corresponding to a specific level, create a
representation of them in the format needed, armbmmunicatethem backto the
World Manageror the component which requested theto be used appropriatgl

This process is illustrated gurel3.

The files are parsed in an iterative manner. After each file is parsed, analysed, and the
information it contains is passeto the component which requested them, the Parser
checks if there are still files left in the queue to be parsed. If there are no files left, the

process ends.

Parsing process)

List of files

Parse fila

o system data

L

Send data to component
which requested them

[Convert parsed data]

e ——— e — — — =

S

RN — PR ——

Figurel3: Parseractivity diagram

74

4.3. KNOWLEDGHASE
Ly 2dzNJ da2ai0SYQa O2yGSEGEZ | -readgbr gdntfaksedS . |
repository of information.DIEGESIS includes two types of KB; a relational database,

and information stored in memory.

The memorybased part of theKB is responsible to keepnformation about the
currently active level of the game worldh&relational database includes tables about
characters and their options, levelgand mutual exclusions between them)
milestones, story actions, transitionand information about the charéers and any

battle groups A preliminaryschema is illustrated iRigurel4.

The KB is populated during runtime by the framework, using data both from the
information contained in the files created by the storyteller and parsed by the Parser
as described in the previous section, as well as from information produced during the

generation and execution of the story.

Characters Character Options Story Actions
PK | character id PK | character id (FK) PK | action id
PK | option
name action name
is dead value character id (FK)
involved character id (FK)
level id
Levels Mutually Exclusive Levels turn
PK | level id PK | mutex id
Battle Groups
title first level id (FK)
is executed second level id (FK) PK |battle group id
title
Milestones Transitions fighting ability
total volume
PK | milestone PK | transitioning layer character id (FK)
PK |level id (FK) PK |levelid (FK)

is complete triggers fired
parent level id (FK)

Figurel4: Preliminary datdase schema

Characters table include information about individual characters, such as a unique id, a
YIEYSS YR AF GKS OKFNIYOGSNI Aa adAatt |fAQ
Ad FotS (G2 ad2NB OKI NF Ol S MAEMRtrad wiy ARkajoivd ¢ K
the storyteller to represent any types of options. For example, a character based on his

75

previous actions, might need to be present at a certain point in the future of a story.

The storyteller can create and store an option to k&g information.

Levels table contain information about the different possible levels which are present
in the story, such as a unique id for each leveltitts, and if it was executed. Any

mutual exclusion between levels is stored in the mutuallyestee levels table.

The milestonegable is related to the levels table, and is used to store the milestones
of each level, and their state (i.e. are complete or ndfjansitions table holds
information about all the transitions, past and future, which occurred or will occur
during the execution of the story, so the transitioning betwekavels, can be

instructed.

The story actions table is used to store and keep tratchll the actions that occurred
during the execution of the story, along with information about them (i.e. the

characters related to them; when and where the action occurred).

Finally, the battle groups table is used to store information about any bgtibeips
LINBaSyid Ay GKS aid2NEI repiekentddsdy &l dhaBacta)NE dzLJ

fighting ability, and total volume.

4.4. LEVELMANAGER

As we discussed in sectignl, the game world is organised in multiple levels which
can represent possible parts of a story. The Level Manager (LM) component is
responsible of keeping track ofiost of the information abow each possible level of

the story.

Apart from the PDDL representation of each level which we explained in secfion
we intentionally omitted to explain in detiathe list of centralised information about
each level.lt is a list of all the possible levels which may be executed during the
generation of the story, containing important information about thenthis
information is modelled by the storyteller in an XMile, using the semantics

presented inFigurels.

76

<levels>
<level>
<title>level -title</title>
<filename>level - base filename <f/filename>
xAv,.".,v..v..‘ NDvAv\ ~iTv~";,ii ~ ~
<info>A small description about the level.</info>
<milestones>
<milestone>(a- pddl-fact - maybe- a milestone)</milestone>
</milestones>
<is_battle | evel>false</is_battle_level>
</level>
</levels>
Figurel5: Semantics of XML level nodes

ThemandatoryA Y T2 NX I G A2y FT2NJ SII OK f S@St AyOf dzR
(so the rest of the level informatiomentioned in section4.1 can be retrieved), a
humanreadabletitle and description of the level, and a flag informing the system if

the level is a battle level or not. Ifig a battle level, then further information about the

battle is included which is discussed in detail in seclidi®.

Finally, each level includes three setsridgers, a set of milestones, a set of potential
successor levelaand a set of character optionall this information i®ptional and is
used in thelevel transitioning phase. lis omitted in Figure 15 since it isfurther

discussed in sectiofh.7.

When initialised by the World ManagéWM), LM usesan instance of the Parser to
load all the information related to each level, translateem into a systerreadable
representationand stores whatever is needed to th&Knowledge Basdt also has direct
communication with the Bi#le Manager componentto request any information
needed which is relatedo a battle which may occurn a level. This process is

illustrated inFigurel6.

Only one level of the whole story cde active at a time. LM is responsible to keep
track of which level is active at a given moment in time, and keep it in memory so it
can be easily accessible to the other components (such as the WM and the

Transitioning Manager) when is required.

s

Level Mamnager's sequenaey

World Level Battle
Farser
Manager Manager Manager
J— Initialise J— | |
— Fequest list of all levels

e

Return list of all levels
=—————————

|

|

| |

loop [for eaclh lewel] |
|

|

|

Request level info

Return level infa
= ——————— = —

T
alt J [If = battle lewvel]

|
Feguest battle info for level
| e
Return battle info for level
= ——————————]— ——————————

Request title of initial level x
_—

Return title of initial level

e —

Request current level
=

Return current lewel

e — —— — — — — — —]

T
|
Load and set current level
| |

Figurel6: Level Manager sequence diagram

4.5. WORLDMANAGER

The World Manager (WM) is the main component whbordinatesthe whole
system. Ithasdirect access tall the other components of the systerand (among
other responsibilities)s responsible for keeping track of and updating the current

state of the world i.e.the environmentthe agents are aware of.

Figurel7 illustrates the high level factionality of the component. As soon as DIEGESIS
launches, it initialises the system, by initialising most of the components which are
going to be used during the generat and execution of the storywhich are the
following: Knowledge Bas€KB) Battle Manager (BM), Level ManagefLM), Futile
Goals Manage(FGM) Planner, Goal Injection Manag@sIM) Transitioning Manager
(TM), Choices ManagdCM) UncertainActions ManagefUAM), User Manage(UM),

78

Vantage Point ManagdivPM) Time ManagelTiM), Parser, Output GeneratqiOG)
and! ASy GaQ @Myl 3SNJ

When the initialisation of each component includes further processes other than a
simple enabling of the component, the explanation of each process is included in the

sub-section in which each compent is documented.

World Manager)

Initialise system
Imitizl is%

Execute turn

AL

YES

fure there
turms left?

Perform transition

Next level exist?

Figurel7: World Manager higHevel activity diagram

The next stepafter the initialisation of the systens to initialise the currently active
level. This process is depicted kigurel8. Initially, the WM requests the information

of the currently active level from the LM. Then, it sends the relevant information to the
Planner, instructing it to perform an initialisatiarf the level based on the PDDL model

of the level, and after this initialisation is complete, the WM requests the current state
of the world, as well as the generated PDDL representation of the level which was

constructed by the Planner.

Afterwards, the WMinstructs a number of components to load a new set of
information for the new level: the BM to load the battle details, the FGM to load the
futile goals, the GIM to load the goal injection rules, the CM to load the choices, and
the UAM to load the unceria actions. Finally, the WM instructs the AM to initialise

the agents of the new level, requests the lists of agents, and passes it to the UM.

79

Level initialisation sequence J

World
Manager

Level
Manager

Battle
Manager

Futile Goals
Manager

| Planner ‘ ‘

Goal Injection Chuoices Uncertain
Manager Manager Actions Man,

Agents’
Manager

User
Manager

i Request current! level

Return current level

Initialise level

r T
Return current state & PDOL representation of world

I
|
|
T =
‘EHUESI current state & PDOL representation of worldl |
|
|

Load batte detafs for new level
Load fuble goals for new eved ’g

Usadlgwlm.eu-m rules for newl\ewel ’g }g
+ t

t
Load choices for new level |
|

Lﬂadl uncertain actions for new Ilewl

Initialise agents for new level
I

Request agents

—

Figurel8: Level initialisation sequencdiagram
The AM is a subomponent of the WMwhich is responsible of managing the agents.
It also keeps list of theactivatedagents along with any information relevant to them

so they can be easily accessible when is required

The initialisation of the agents that the WM requested is illustratedigurel9, and
operates in the following way: Initially, the AM finds which characters are present in
the currently active level by using the PDDL representatibthe level which was
previously created by the Parser. In the samanner;, it identifies in which location

each of the characterns initially located in.

Initialisation of agents)

Find characters using
PODL regresantation
i

Find where each character
s located usimg POOL representation

W List of characters

-
i’ M 1
|
| Parse character I
| information |
' [
I : |
|
I Instruct agent to
I Agent generate initial plan :
I'_, }

Figurel9: Initialisation of agentsactivity diagram

80

Afterwards, using th Parser, it parses all the character information for each one of the
characters, and creates an instance of the Agent comporenteach individual
character, feeding it with the parsed information. Finally, it instructs each created

agent to generate amitial plan based on its current set of goals (if there are any).

The character information is created by the storyteller and is written in XML. A
character node is required for every character present in each level. It is illustrated in
Figure20 andincludes the PDDL name of the character that is related to, inclutang

followinginformation related to him/her:

1 The available time to complete the specified gaaisl the PDDL goals list;

T LT GKS OKIFNIOGSNI gAff 0SS +Eft20GSR @A

f ¢KS OKINIOGSNDa FAIKIGAYTI FoAfAGeE GKAC
battle during the execution of the level, along with the alliancewhich the
character belongs to;

1 And a set of initial goals (which can change during runtime). Each goal node
includes a name of a PDDL fact, (optionally) the importance value of the goal,

and (optionally as well) one or more PDDL facts as preconditions.

<character>
<name>paris</name>
<futile_goals>disabled</futile_goals>
<available_time>3600</available_time>
<alliance>troy</alliance>
<fighting_ability>70</fighting_ability>
<goals>
<goal>
<name>(will - follow helen paris troy) </name>
<importance>50</importance>
<precondition></precondition>
</goal>
<goal>
<name>(at paris troy)</name>
<importance>100</importance>
<precondition>(will - follow helen paris troy)</precondition>
</goal>
</goals>
</character>

Figure20: An XML Character node

For the agents to communicate with the framework, DIEGESIS implements a

blackboard system as an interconnection model. In our implementation of a
81

blackboard system, evelggent communicates synchronously with the WM to access

and update the shared knowledge base and coordination information, and not directly
gAGK SIOK 20KSNXY ¢KS 2a O2ylAydzzdzate | yR
of the current state of the world 2 NJ | y& dzLJRIF4S&azX FyR (KSy
action to execute. Other communication (which will be discussed in detail in the
remainder of the section) includeheckingf an agent is busy, to instruct an agent to

plan/re-plan, or wait, and to ijct a new goal based on executed actions.

After the initialisation of the level, the WMeginsthe generation andxecution of the
story. The story is executed in turns. The execution process is illustrategjume21.
Initially, the WM informs the UM that the execution of a turn started so the UM can
disable the next turn button Afterwards, the WM checks if a battle is in progress with
the help of the BMIf it is, then the next step is to check if an alliance needs to retreat.
If the battle ended due to a retreat, then the current state of the world is updated with
the retreat information. If not, a battle is performed. Allthie battle-related processs

are discussed in detail in sectidril6.

Then for each individual agent the WM informs the agent of any changes in the
current state of the world and checkstife agent is dead or busy (i.e. was either part
of an actionof another character or already involved in a battle). If it is, then the agent

does nothing in this turn.

The WM then makes an inquiry to the agent, asking if the agent has a plan to execute.
IfGKS | 3Sy il iRgisstuftéliiacgengr&i&Sonie before asked again if it has a

LX Fyd LT Ad adAtf R2SayQixz GKSy GKS 2a O
a battle going on, and if the agent is in a battlefield locationi}. dbes, then a battle

versus a soldier of the oppositdliance is performe@nd the turn of the agent comes

to an end.

If the agent has a plan to execute, then the WM requests the next set of actions from
the agent. The generation and structure of a plamliscussed in detail in sectidnl4
C2NJ SIIFOK 2F GKS 3SyiQa |OtAazyas GUKS 2a
in the action and checks if theare available(i.e. still alive and not busy) and if the

actionis interruptive. An interruptive action (set by the storyteller) will ignore the fact

82

that an involved agent (other than the one who executes the action) might be busy,

and will be executed anway.

Execution of turn)

Inform UM that
trn execution started

Did battle
end?

YES

15 battle in
progress?

Send cument world
state to agent

[Inform agent that

Perform battle

_——— e — — — —

List of agents action set was executed

______________________________ - 3
I= agent dead or busy? YES WO
Send current world
state to agent -
Does agent
have plan?
Request next action Instruct agent to
set from agent generate plan
YES N Executed
Does agent Perform battle an actien?
have plan? O Can agent fight? versus soldier
List of actions

i
|
|
M
H
H
m

-

Are involved agents available 15 at least one

ar action intermuptive? agent dead? NO
Identify imvolved
agenis
E5

Get

preconditions
of action

15 action

Update cument world Send current world
choice? state with fallback state to agent

YES

Is agent forced
to fight?
YES_ | Perform battle /L
versus soldier T

M

Can agent
fight?

=
15 action clear to NO
execute from doubt?

[Update current state of J

Deal with goal injections

i

Store action delails to KB

il

Update currant
world state
Calculate duel
outcome
ES

¥

world with effects of action

|
NO

[Sen involved agants busy :] =

J Dead with dead agents]

|5 action duel ¥

M e ——— = —— —— — — —————— —— — — —— ——

o ——— e ——
M = o — — —— . — . — " —— —— —— — — — ———— — — — — — —

Figure21: Activity diagram of he process of executing a turn

83

If any of the agents is not available (and the action is not interruptive), then the WM
checks if at least one of them is dead. If not, then the action isemetuted in this
turn, but will be pending for execution at the next one. But, if an agent is dead, the

action fails, and the agent is instructed toptan.

When the involved agents are available (or there are no involved agents in the action
except fromii KS | 38y ¢K2 SESOdziSa GKS | O0lGAazy
checked by the WM against the current state of the world, to identify if they are met.

If even one of them is not met, then the action fails, and the agent is instructed to re

plan.

In the case that the preconditions are all met, the next step for the WM is to contact
the CM and identify if the action is marked as a choice. Again, all the choices processes
are discussed in more detail in sectidi®. If the action is marked as a choice, the WM
(with the help of CM) deal with the choice. When the outcome of the choice is the
action notto be executed, the WM updates the current world state with théofatk(s)

of the choice, sends it to the agent, and instructs the agent ipla@.

On the other hand, when the outcome of the choice is that the action will be executed
62N AG slayQid YIENJSR a I OK2AO0S Ay (KS
if the agent can fighti.e. if the agent is located in a battlefield location and there is a
battle in progresslifi KSaS O2yRAGA2ya FFNBX (NHz2S:Z GKSYy
action will be interrupted by a battle. The WM makes a decision wiéhitelp of the
Oracle(discussed in sectiofh.10) whether the action will be interrupted or nqusing

an interruption percentage provided by the BM)nd if it doe, a battle is performed

between the agent and a soldier of the enemy alliance.

If the action is still ok to be executed, the last check involves if an action is clear to be
executed due to doubt. The WM makes the appropriate checks withUAM (the

details are discussed in sectidnll), and if the action cannot be executed in this turn

AG Aa AIJYy2NBRO . dzixs AF Al R2Saghappen:iieSy A
current state of the world is updated with the effects of the action, the action is

marked as complete, and the involved characters are set to busy.

84

There is also ahance that the action is a duel. In the event that it is, the WM
calculatesthe outcome of the duel (with the help of th®raclg and updates the

current state of the world withts outcome (i.e. who won and who lost the duel). The
FAYLE adSLI Aa G2 RSIE gAGK yeé RSFR | 3Sy

deal with any goal injections.

It is also important to mention that even if an agent is in a position to execute multiple
actions in a single turn, it can only fight once, and if an action fails and the agent is
instructed to replan, then the agent cannot try arekecute any other actions during

the same turn.

After the execution of actions is finished, the WM checks if at least an action was
executed. If it did, then the WM informs the agent which of the actions were executed,

and updates the current world statbat the agent is aware of.

As soon as all of the agents finished their turn, the WM informs the UM that the turn
execution is complete, it increments the time (with the help of the TiM), and

completes the execution of the turn

The TiM is a small sudtomponent of the WM,whose only responsibility is to keep
track of the time steps (i.e. turns) in which the story is at any point, and feed this

AYVF2NXYIEGAZ2Y (2 GKS 2a ¢gKSY AGQa NBIjdzAi NBR¢

After the end of a turn, the WM checks if at least one action eeecuted by an agent

during that turn, if there is an active battle going on, and if any of the agents have a
valid plan which is still pending completion and does not consist of futile goals. When
none of the above conditions are met, the WM understankattthe execution of a

level is finished, and instructs the TM to calculate and perform a transition. If there
AadyQil | adaadloftS adz00Saaz2N) tsGo@is ThE dethis S &

for the transitions are discussed in sectib.

The player who uses DIEGESI® execute and interact with a story created by a

storyteller needs to be able to view the outcome of the generated story, as well as

other information relevant to the story. Therefore, we need a component which

responsibility is to generate all these messages in a hureadable formDuring all of

the WM processes,the WM | & ¢St f | a 20§KSN QRe¥thrQESy (i &
85

to generateand display (with the help of the UM) appropriate messages topthger,

as well ago the console for debugging purposes

The OG includes some pdefined templates to visually represeatdifferent variety
of messagesThe templates include headers, shbaders, alerts, and plain messages.
An example of requests for printing messages in the console as well as displaying them

to the playercan be found irFigure22.

There, the WM requests from the OG to print and display an alert message. The OG
prepares the final message passing it through the alert template, and prints it to the
console itself, as well as sending it to the UM so it can be displayed tpldyer.
Afterwards, an Agent requests from the OG to print a plain message to the console,
and display another message to tpyer. The OG prints the message in the console,

and sends the other message to the UM requestirig be displayed to th@layer.

Dealing with merssagey

World Output
Manager Generator

i

User Manager Agent

Request to print & display

alert message
oo

Prepare message |
using alert template

I |
Print message |

Request to display message |

LN |

Display meszage

| —

Request to display plain message
!

T
Request to display message
e

Display message

Reguest to print another plain message
|

Print amother message |

5 |

| =

L

Figure22: Sequence diagram ofeshling with messages

86

Finally, before sending a request to display a message, the OG also checks if there is a
GFryidlr3asS LRAYyG SylFroftSR G2 RSGSNNYAYS AT Al

Ths process is described in sectibi2

4.6. CHOICESMANAGER

The storyteller has the ability to mark actions as chojcasd the Choices Manager
(CM) is responsible ofekping the relevant informationA choice node (illustrated in
Figure23) contains the name of a PPDL action that needs to be flagged as a choice. The
choice can be @ade either by theplayer, or by theframework If the action succeeds
(chosen either by thdramework or the playel), then the normal effect of the PDDL

action is executed.

<choices>
<choice>
<action_name> decide-if -will -plunder-temple</action_name>
<who_decidesplayer </who_decides>
<fallbacks>
<fallback>
<equals index="1">achilles</equals>
<predicate_to_become_true>(decided-if -will -plunder-
temple)</predicate_to_become_true>
<predicate_to_become_true>(will -not- plunder-
temple)</predicate_to_become_true>
</fallback>
</fallbacks>
</choice>
<choice>
<action_name> decide-if -will -capture</action_name>
<who_decidesplayer </who_decides>
<fallbacks>
<fallback>
<eguals index="1">achilles</equals>
<equals index="2">briseis</equals>
<predicate_to _become_true>(decided-if -will -capture
briseis)</predicate_to_become_true>
<predicate_to_become_true>(will - not-capture
briseis)< /predicate_to_become_true>
</fallback>
</fallbacks>
</choice>
<choices>

Figure23: A set of XML Choice nodes

87

.dzi aAyOS t55[] R2SayQi 2FFSNI 6KS 2LIA2y
about to be executd but failed (for any reason), we specify a set of fallback predicates

(effects) which will be enabled if the choice is negative.

The fallback can be applied in any form of the selected action, or it can be applied only

if there are specific conditions &n action, if for example the action is executed by a
specific character. For example, in the second choice nodagufre23, the fallback
predicate will be enable@ yt @ AT GKS FANRG HefieBwl- 6A S
capturéé | Olactllgg Alay Rt G KS &Ba¥2y R 2yS Aa «a

Every time that a new level is loaded, the World Manager (WM) instructs the CM to
load the choices information for the new levele(all the choice nodes which are
relevant to the new level). The CM makes an inquiry to the Level Manager to receive
the choices information about the currently active level, and using that it asks the
Parser to parse and return the set of choices, Whgstored in memory. This process

is illustrated inFigure24.

Loading of new Level's chuloey

World Choices Level
Manager Manager Manager

Ij Load new cholces 1 |
e

Reguest current level |

e

Beturn current level

| e —————————
| Request choices of level
| e
| Retum chalces of level
{% ____________________
| . N

Figure24: Sequence diagram obhding a new level's choices

While thestory is generated and executed, every time that an action is about to be
executed the WM checks with the CM to identify if the action is marked by the

storyteller as a choice action.

When such an action is set to be executed, a decision needs to be mitiner;, the
I OdAz2zy Aa 3J2Ay3 (2 065 SESOdziSR 2N y2io

framework will make apositive or negative decisioror the Wser Managerwill be

88

instructed to stop the execution of the story and ask filayerto make ths decision.
Based on the outcomef the decision, the action is either going to be executed, or not.
LF G0KS OK2AOS Aa yS3araA@gS: GKSy GKS 2a N

deals with it. This process is illustratedrigure25.

Dealing with l:hoices)
World Choices User
Manager Manager Manager

e

J— Check if action Is choice J-‘ |

T
alt [If action s marked as choice]

Feturn choice info
== —————

T
alt [If user is set to make a chalce]

T
I
Ask user to make a cholce
T ——
Return user cholce
T
T

Make chaice |

_

alt [If choice is negative]

Request choice fallback
e

Return choice fallback

kb —————————

Dreal with choice result

|
|
|
T |

Figure25: Sequence diagram ofehling with choices

If a decision is set to be made by thiayerbut the playerhas chosen to view the story
via the vantage point (discussed in sectt?) of a character who is not involved in
the specific decision, théramework will haveto make the decision instead of the

player.

89

4.7. TRANSITIONNGMANAGER

As we discussed in sectidrb, every time a turn ends e the story is executed, the

World Manager (WMomponentconstantly monitors the current statef the active

level to identify if nothing significant is left (and is still able) to happen in the currently
active level, or it can be terminated, and a next level can be loadéxsbn a ével ends,

AG A& I GAYS F2NJ I ySg tS@oSt G2 o6S as

Transitioning Manager (TM) component is responsible of.

As we already mentioned in sectiodsl and 4.4, the story levels are organisad a
hierarchical mannereach levelmay include some potential successor levels which
have a logicalannection with it. Each level may also include three sets of triggers, a
set of milestones, and a set of character options. All this information is opti@al

used in the transitioning phasand an example of it is includedkigure26.

A connection between two levels is being made by specifying a levefsageessar

of another one (using the specified title of a level). A level may include multiple
potentially siccessor levelsiMilestoneg I NB t Swhidn a TeveDdhds Ttheir
status either true or false) is checked and the outcome is stored in the Knowledge

Base (KB) component.

G/ KFEFNFOGSNI 2LIGA2yaéeg FNB | fa2 OKSOh®BeR | &
O2YLX AOIFGSR (KFy | YAfSadz2ySe ¢KSe& AyOf dz
G2 6FrfGK2dAK A0 OFy o6S oflyl AF (GKS& | NB
YR Iy aSfasSé¢ @FftdzSed 91 OK 2 LIinke gystdm/mdlf dzR S
OKSOl AT AG SEA&ddGasd LT Iff GKS FTFHOGaQ O2
GAUK GKS GUKSYyé¢ @FtdzST AT y203 GKS 2LIA 2
Ly LI FAY 62NRazX (KS &N 33 Sshdseto He bidBcutddd S R
They are preconditions, which need to be met for a level to be a successful candidate

to be loaded into the system for execution. They can be milestones of another level, or
OKF NI OGSNI 2LJ0A2Yy &z | YR (K ®&hedked @daidzk Sheyt y @
can also be marked as important.

¢KS GUNAIISNB GeLlS¢ GFENARAIotS Oy GF1S (K
GNAIIASNAY Glftés alyeéeés FYR AGAYLRNIFy(éd

90

level is a successfulcahdRk 1S AF Fyeé 2F GKS GNARIISNE
Fff 2F GKS GNARIISNBR Ydzald 6S FTANBRI IYyR

marked as important need to be fired for a level to be executed.

<levels>
<level>
i
<successors>
<successor>title -of-a-potentially - successor- level</successor>
</successors>
<milestones>
<milestone>(a- milestone - is - a- pddl- fact)</milestone>
</milestones>
<character_option s>
<option_group>
<title>option - title<Aitle>
<character_name>mary</character_name>
<then_value>true</then_value>
<else_value>false</else_value>
<options>
<option fact_condition="true" fact="(pddl fact)" />
</options>
</option_group>
</character_options>
<triggers_type>all<triggers_type>

<triggers>
<trigger expected="true" from_level="another -level -title">(another
Y A YN ,.i,v\v,.,..,,vﬁRN,,,-....v,N
</triggers>

<knowledge_transfer>
<character_triggers>
<character_trigger char_name="mary" from_level="another -
level -title" char_exists_if="true">

B

</character_trigger>
</character_triggers>
<fact_triggers>
<fact_trigger fact_to_enable="(pddl fact)" from_level="
another- level -title " enable_if="true">

'R A TN U SN ~|,'\"~~,,"ﬁ

<[fact_trigger>
<[/fact_triggers>
</knowledge_transfer>
</level>
</levels>

Figure26: Transitioning information in XML

91

¢CKSNE INB (¢2 Y2NB (GeéLSa 2F UNAIISNBRI (K
which are checked when a level is selected as the next transition arizbig 80 be
executed. Character triggers work in a similar way to the main triggers, but they refer

to characters. If they are fired, then a character exists in the level. Fact triggers (as
their name suggests) refer to PDDL facts. If the milestone or llaeacter option is

YSiszs GKSy (GKS GNRIISNI Aa FANBR YR (GKS a

is loaded and ready for execution.

There are certain situations where a number of levels are mutually exclusive with
others. The storyteller canpscify them using the semantics presentedFigure?27.

The mutual exclusions are grouped (each group needs a unique title), and each level
has a priority value to ehtify which of the levels should be selected for execution in

the event that a mutual exclusion situation appears.

<mutually_exclusive_groups>
<group title="landing">
<level priority="15">war - prevented</level>
<level priority="10"> troy - beach landing</level>
<level priority="5">troy - beach landing - fallback</level>
</group>
</mutually_exclusive_groups>
Figure27: A group of mutually exclusive levels modelled in XML

As we already mentioned igection4.5, as soon as the WM identifies that a level
finished, it instructs the TM to calculate the next transition. This process is illustrated

in Figure28.

The first step of the process is to get the information of the current level from the
Level Manager (LM) and the current state of the world from the WM. Then, for@&ach
the milestones, the TM checks the state of the milestone against the current state of
the world and stores the relevant information in the KB. The interaction between the

different components is illustrated iRigure29.

As soon as the checking of all the milestones is finished, the TM performs the same
checks for the character options, and stores all the relevant informatiothe KB.
Then, it creates a list oflahe successor levels, getting the relevant information from

the LM component.

92

Figure28: Activity diagram of he transitioning process

93

