

ii

ABSTRACT

In recent years, the field of Digital Interactive Storytelling (DIS) has become very

popular both in academic circles, as well as in the gaming industry, in which stories are

becoming a unique selling point. Academic research on DIS focuses in the search for

techniques that allow the creation of systems that can generate dynamically

interesting stories which are not linear and can change dynamically at runtime as a

ŎƻƴǎŜǉǳŜƴŎŜ ƻŦ ŀ ǇƭŀȅŜǊΩǎ ŀŎǘƛƻƴǎΣ therefore leading to different story endings.

To reach this goal, DIS systems usually employ Artificial Intelligence planning and re-

planning algorithms as part of their solution. There is a lack of algorithms created

specifically for DIS purposes since most DIS systems use generic algorithms, and they

do not usually assess if and why a given algorithm is the best solution for their

purposes. Additionally, there is no unified way (e.g. in the form of a selection of

metrics) to evaluate such systems and algorithms.

To address these issues and to provide new solutions to the DIS field, we performed a

review of related DIS systems and algorithms, and based on the critical analysis of that

work we designed and implemented a novel multi-agent DIS framework called

DIEGESIS, which includes ςamong other novel aspects- two new DIS-focused planning

and re-planning algorithms.

To ensure that our framework and its algorithms have met the specifications we set,

we created a large scale evaluation scenario which models the story of Troy, derived

fǊƻƳ IƻƳŜǊΩǎ ŜǇƛŎ ǇƻŜƳΣ άLƭƛŀŘέΣ which we used to perform a number of evaluations

based on metrics that we chose and we consider valuable for the DIS field. This

collection of requirements and evaluations could be used in the future from other DIS

systems as a unified test-bed for analysis and evaluation of such systems.

iii

ACKNOWLEDGEMENTS

This work is dedicated to my twin daughters, Evdokia and Myranda, who were born a

few months before I completed my research.

Firstly, I would like to thank my primary supervisor Professor Abdennour El Rhalibi for

his continuous support, guidance, encouragement, and inspiration throughout my

research which were crucial for the completion of it, as well as my second and third

supervisors, Professor Madjid Merabti and Professor A. Taleb-Bendiab.

I would also like to thank my parents, Christos and Evdokia, my partner, Filian, as well

as the rest of my family (with a special mention to my grandmother Eftichia and my

uncle Vasilis who passed away last summer and were always proud of me pursuing a

PhD) for the support, patience, and encouragement that they showed me both during

the course of my research, and during my whole life.

Finally, I would like to thank Liverpool John Moores University for the scholarship that

made this research possible and, last but not least, all my friends (whose list of names

is lengthy to mention here) for their support and companionship.

iv

DECLARATION

I declare that as the sole author of this doctoral thesis, the work contained herein is

my own, unless explicitly stated otherwise. During the course of my research, the

following research publications were produced to disseminate my work. Certain

material and concepts from these publications will, by necessity, be presented within

the context of this thesis.

¶ Goudoulakis, E., El Rhalibi, A., Merabti, M., and Taleb-Bendiab, A. 2011.

Evaluation of Planning Algorithms for Digital Interactive Storytelling. The 12th

Annual Post Graduate Symposium on the Convergence of Telecommunications,

Networking and Broadcasting (PGNet2011).

¶ El Rhalibi, A., Goudoulakis, E., and Merabti, M. 2012. DIS Planning Algorithms

Evaluation. 4th IEEE International Workshop on Digital Entertainment,

Networked Virtual Environments, and Creative Technology.

¶ Goudoulakis, E., El Rhalibi, A., Merabti, M., and Taleb-Bendiab, A. 2012.

Framework for multi-agent planning and coordination in DIS. Proceedings of the

²ƻǊƪǎƘƻǇ ŀǘ {LDDw!tI !ǎƛŀ ό²!{! Ωмнύ.

¶ Goudoulakis, E., El Rhalibi, A., Merabti, M., and Taleb-Bendiab, A. 2012.

Opportunistic Multi-Agent Digital Interactive Storytelling System. The 13th

Annual Post Graduate Symposium on the Convergence of Telecommunications,

Networking and Broadcasting (PGNet2012).

¶ Duarte, R., Goudoulakis, E., El Rhalibi, A., and Merabti, M. 2013. A

Conversational Avatar Framework of Digital Interactive Storytelling. The 14th

Annual Post Graduate Symposium on the Convergence of Telecommunications,

Networking and Broadcasting (PGNet2013).

¶ Goudoulakis, E., El Rhalibi, A., Merabti, M., and Taleb-Bendiab, A. 2013. Re-

planning in Digital Interactive Storytelling. The 14th Annual Post Graduate

Symposium on the Convergence of Telecommunications, Networking and

Broadcasting (PGNet2013).

¶ Goudoulakis, E., El Rhalibi, A., Merabti, M., and Taleb-Bendiab, A. 2014.

DIEGESIS ς A Novel Multi-Agent Planning System for Digital Interactive

v

Storytelling. ACM Journal Computers in Entertainment, Issue 12, Vol. 3,

September 2014 (in print).

vi

TABLE OF CONTENTS

Abstract ... ii

1 Introduction ... 1

1.1. Motivation .. 1

1.2. Aim & Objectives .. 2

1.3. Research Methodology .. 3

1.3.1. Literature Survey and Critical Analysis .. 3

1.3.2. Problem Analysis and Design .. 3

1.3.3. Framework Implementation ... 4

1.3.4. Evaluation Assessment .. 4

1.4. Contributions to Knowledge... 5

1.4.1. Critical Analysis Consolidation .. 5

1.4.2. Design of a Novel DIS Framework ... 5

1.4.3. Implementation of a Novel DIS Framework ... 8

1.4.4. A New Planning Solution for DIS Frameworks .. 8

1.4.5. A New Re-planning Solution for DIS .. 9

1.4.6. Evaluation of DIS Systems ... 10

1.4.7. Proposal of Possible Applications ... 11

1.4.8. Dissemination of Our Findings .. 11

1.5. Structure of Thesis .. 12

2 Background & Related Work ... 13

2.1. Digital Interactive Storytelling .. 13

2.2. Planning .. 15

2.3. Planning Using Constraints ... 17

2.4. Multi-agent Systems ... 17

2.5. Multi-agent Planning .. 20

vii

2.6. Agent Architectures .. 21

2.7. Re-planning ... 23

2.8. Planning Algorithms Used in DIS .. 24

2.8.1. FF (Fast-Forward) .. 24

2.8.2. Graphplan .. 25

2.8.3. Heuristic Search Planner (HSP) ... 26

2.8.4. Hierarchical Task Network (HTN) Planning ... 27

2.9. Representation Languages ... 27

2.9.1. Stanford Research Institute Problem Solver (STRIPS)............................... 27

2.9.2. Action Description Language (ADL) ... 28

2.9.3. Planning Domain Definition Language (PDDL) .. 28

2.9.4. Hierarchical Task Network (HTN) .. 29

2.10. Review and Critical Analysis of Existing DIS Systems.................................... 30

2.10.1. Fabulator ... 30

2.10.2. CŀœŀŘŜ .. 31

2.10.3. GADIN .. 32

2.10.4. I-Storytelling .. 35

2.10.5. LOGTELL ... 37

2.10.6. Mimesis ... 38

2.10.7. MIST ... 40

2.10.8. Othello ... 43

2.10.9. PaSSAGE ... 44

2.11. DIS Systems Comparison .. 45

2.12. Re-planning outside of the DIS field ... 54

3 DIEGESIS DIS Framework ... 56

3.1. User Types and Characteristics .. 56

3.2. General Specifications .. 57

viii

3.3. Choice of Base Representation Language .. 58

3.4. Choice of Base Planning Algorithm .. 62

3.5. Multi-agent Needs .. 64

4 Design of the Framework .. 66

4.1. Game World Architecture .. 71

4.2. Parser .. 74

4.3. Knowledge Base ... 75

4.4. Level Manager .. 76

4.5. World Manager .. 78

4.6. Choices Manager .. 87

4.7. Transitioning Manager ... 90

4.8. Goal Injection Manager .. 98

4.9. Futile Goals Manager ... 102

4.10. Oracle .. 105

4.11. Uncertain Actions Manager .. 106

4.12. Vantage Point Manager .. 108

4.13. User Manager ... 111

4.14. Planner .. 113

4.15. Agent ... 129

4.16. Battle Manager ... 133

4.17. Evaluation Monitor ... 140

4.18. Tools for Story Modelling ... 142

5 Implementation ... 144

5.1. Choice of implementation platform ... 144

5.2. Parsing Component .. 145

5.3. Knowledge Base Component ... 146

5.4. Level Manager .. 149

ix

5.5. World Manager .. 150

5.6. Choices Manager .. 156

5.7. Transitioning Manager ... 157

5.8. Goal Injection Manager .. 158

5.9. Futile Goals Manager ... 161

5.10. Oracle .. 162

5.11. Uncertain Actions Manager .. 162

5.12. Vantage Point Manager .. 163

5.13. User Manager ... 164

5.14. Planner .. 168

5.15. Agent ... 175

5.16. Battle Manager ... 177

5.17. Evaluation Monitor ... 178

6 Evaluation .. 180

6.1. Evaluation Scenarios... 180

6.2. Potential Storylines .. 181

6.3. Story Mechanics ... 188

6.4. Evaluation Metrics .. 194

6.5. Evaluations ... 196

6.5.1. Planning Algorithms Evaluation .. 196

6.5.2. DIEGESIS Scalability Evaluation ... 199

6.5.3. Planning Algorithm Performance Evaluation .. 203

6.5.4. Re-planning Algorithm Evaluation .. 208

6.5.5. Summarisation evaluation .. 213

7 Conclusion & Future Work ... 228

7.1. Research Summary ... 228

7.2. Thesis Summary .. 230

x

7.3. Possible Applications .. 231

7.3.1. 3D Visualisation of Stories .. 232

7.3.2. Virtual Storyteller .. 234

7.4. Future Work ... 237

7.4.1. Authoring Tools ... 237

7.4.2. Emotions Manager Component .. 237

7.4.3. LƳǇǊƻǾŜƳŜƴǘ ƻŦ tƭŀƴƴƛƴƎ !ƭƎƻǊƛǘƘƳΩǎ tǊŜ-processing 238

7.4.4. Durative Actions .. 238

7.4.5. Possible Applications ... 239

7.4.6. Application Programming Interface (API) ... 239

7.4.7. Further Framework Evaluations .. 239

7.4.8. Story Modelling ... 240

References ... 241

Appendices .. 247

Appendix A: Use of UML in the Thesis .. 247

xi

LIST OF FIGURES

Figure 1: Blackboard architecture ... 18

Figure 2: Message passing architecture .. 19

Figure 3: Deliberative agent architecture ... 22

Figure 4: Reactive agent architecture ... 22

Figure 5: BDI agent architecture ... 23

Figure 6: User types use case diagram .. 57

Figure 7: PDDL domain definition example .. 59

Figure 8: PDDL problem definition example ... 61

CƛƎǳǊŜ фΥ 5L9D9{L{Ω ƛƴƛǘƛŀƭ ŀǊŎƘƛǘŜŎǘǳǊŜ ... 67

 Figure 10: DIEGESIS architecture ... 70

Figure 11: Game world architecture ... 71

Figure 12: Example of a PDDL representation .. 73

Figure 13: Parser activity diagram .. 74

Figure 14: Preliminary database schema .. 75

Figure 15: Semantics of XML level nodes ... 77

Figure 16: Level Manager sequence diagram ... 78

Figure 17: World Manager high-level activity diagram .. 79

Figure 18: Level initialisation sequence diagram .. 80

Figure 19: Initialisation of agents activity diagram ... 80

Figure 20: An XML Character node ... 81

Figure 21: Activity diagram of the process of executing a turn 83

Figure 22: Sequence diagram of dealing with messages .. 86

Figure 23: A set of XML Choice nodes ... 87

Figure 24: Sequence diagram of loading a new level's choices 88

Figure 25: Sequence diagram of dealing with choices .. 89

Figure 26: Transitioning information in XML .. 91

Figure 27: A group of mutually exclusive levels modelled in XML 92

Figure 28: Activity diagram of the transitioning process .. 93

Figure 29: Transitioning sequence diagram .. 94

Figure 30: Example of transitioning layers .. 96

xii

Figure 31: Transitioning layers containing mutually exclusive levels 97

Figure 32: Transitioning layers after the mutually exclusive levels are removed 98

Figure 33: A set of XML Goal Injection rule nodes .. 100

Figure 34: Loading of new goal injection rules sequence diagram 101

Figure 35: Sequence diagram of dealing with goal injections 102

Figure 36: A set of XML futile goal and illegal location nodes 103

Figure 37: Loading of new futile goals sequence diagram.. 104

Figure 38: Sequence diagram of requesting a futile goal ... 105

Figure 39: Calculating a random outcome activity diagram ... 106

Figure 40: A set of XML uncertain actions nodes ... 107

Figure 41: Loading of new uncertain actions sequence diagram 107

Figure 42: Sequence diagram of checking if an action is uncertain.............................. 108

Figure 43: Vantage point generation sequence diagram ... 110

Figure 44: Checking if an action will be displayed sequence diagram 111

Figure 45: Initial GUI mock-up .. 112

Figure 46: Intermediate GUI mock-up .. 112

Figure 47: Final GUI mock-up .. 113

Figure 48: Modal box GUI mock-up .. 113

Figure 49: Planner initialisation sequence diagram .. 114

Figure 50: A set of XML action nodes ... 115

Figure 51: Activity diagram of the initialisation (pre-processing) of planning domain 116

Figure 52: A PDDL action example .. 117

Figure 53: Activity diagram of the planning process .. 119

Figure 54: A PDDL planning domain and problem .. 120

Figure 55: A simple planning graph example .. 120

Figure 56: An expanded PDDL planning domain and problem 123

Figure 57: The expanded planning graph ... 124

Figure 58: The new simplified planning graph .. 125

Figure 59: Activity diagram of the re-planning process .. 127

Figure 60: An abstract re-planning example ... 128

Figure 61: Sequence diagram of the initialisation of agents .. 130

Figure 62: Activity diagram of the agent goal selection process 131

Figure 63: Activity diagram of agent plan request process .. 132

xiii

Figure 64: A set of XML battle details ... 134

Figure 65: A set of XML battle groups ... 135

Figure 66: Battle Manager initialisation sequence diagram ... 135

Figure 67: Alliances' initialisation activity diagram ... 136

Figure 68: Activity diagram of checking for an alliance retreat 138

Figure 69: Activity diagram of performing a battle... 139

Figure 70: Battle configuration XML nodes .. 140

Figure 71: Screenshot of (Cooper, 2011)'s PDDL editor ... 142

Figure 72: DIEGESIS Software Architecture .. 144

Figure 73: Parser class diagram... 145

Figure 74: Knowledge Base class diagram .. 147

Figure 75: Knowledge Base database schema .. 148

Figure 76: Level Manager class diagram ... 150

Figure 77: World Manager class diagram ... 151

Figure 78: Choices Manager class diagram ... 156

Figure 79: Transitioning Manager class diagram .. 158

Figure 80: Goal Injection Manager class diagram ... 160

Figure 81: Futile Goals Manager class diagram .. 161

Figure 82: Oracle class diagram .. 162

Figure 83: Uncertain Actions Manager class diagram .. 163

Figure 84: Vantage Point Manager class diagram .. 164

Figure 85: The initial User Interface of the system ... 165

Figure 86: First version of DIEGESIS' GUI .. 165

Figure 87: Intermediate version of DIEGESIS' GUI .. 166

Figure 88: Finalised version of DIEGESIS' GUI ... 167

Figure 89: A pop-up modal box ... 167

Figure 90: User Manager class diagram .. 168

Figure 91: Planner class diagram .. 169

Figure 92: Planning graph expansion visualisation ... 171

Figure 93: Information about a specific action in the visualisation of the planning graph

 ... 171

Figure 94: Agent class diagram ... 176

Figure 95: Battle Manager class diagram .. 178

xiv

Figure 96: Evaluation Monitor class diagram.. 179

Figure 97: Troy scenario levels and potential transitions ... 187

Figure 98: Levels affected if Achilles decides not to join the war 189

Figure 99: Levels affected if Helen decides not to flee with Paris 191

CƛƎǳǊŜ мллΥ !ŎƘƛƭƭŜǎΩ ŎƻƳōƛƴŜŘ Ǉƭŀƴ ... 193

Figure 101: Troy characters coordination ... 194

Figure 102: The generated valid plan ... 199

Figure 103: Total times vs number of agents ... 201

Figure 104: The generated valid plan ... 201

Figure 105: Total times vs number of agents ... 203

CƛƎǳǊŜ млсΥ IŜŎǘƻǊΩǎ Ǉƭŀƴ .. 204

CƛƎǳǊŜ млтΥ tŀǊƛǎΩ Ǉƭŀƴ ... 205

Figure 108: Total and average planning times .. 206

Figure 109: Total and average number of nodes in planning graph 206

Figure 110: Successful and failed actions, times instructed to wait, and numbers of

total generated plans .. 207

CƛƎǳǊŜ мммΥ tŀǊƛǎΩ ŎƻƳǇƭŜǘŜ Ǉƭŀƴ ... 208

Figure 112: Re-planning process and action execution of the new re-planning solution

 ... 209

Figure 113: Number of re-planning tasks ... 210

Figure 114: Total and average re-planning times ... 211

Figure 115: Individual planning time for each re-planning task 212

Figure 116: Total and average number of nodes .. 212

Figure 117: Individual number of nodes for each re-planning task 213

Figure 118: Execution order of levels in Story 1 ... 214

Figure 119: Execution order of levels in Story 2 ... 215

Figure 120: Execution order of levels in Story 3 ... 216

Figure 121: Execution order of levels in Story 4 ... 217

Figure 122: Pre-processing nodes ... 219

Figure 123: Total story duration ... 223

Figure 124: Levels of Achilles' vantage point .. 225

Figure 125: Levels of Helen's vantage point ... 226

Figure 126: Spartan warrior .. 232

xv

Figure 127: Parthenon of Greek Goddess Athena .. 233

Figure 128: Achilles Watching Ships Preparing for War ... 233

Figure 129: Achilles meeting Greek Goddess Athena ... 234

Figure 130: The Charisma interface .. 234

Figure 131: Framework layers for facial animation and DIS ... 235

Figure 132: The flow of a story used as input ... 235

CƛƎǳǊŜ мооΥ !ŎƘƛƭƭŜǎΩ combined plan ... 236

Figure 134: Information flow to create a narrative in the framework 237

xvi

LIST OF TABLES

Table 1: Feature sets of Digital Interactive Storytelling systems 48

¢ŀōƭŜ нΥ !ƭƎƻǊƛǘƘƳǎΩ ŦŜŀǘǳǊŜ ǎŜǘǎ .. 196

Table 3: Algorithms' execution time comparison ... 198

Table 4: Pre-processing and planning times vs number of agents 200

Table 5: Pre-processing and planning times vs number of agents 202

Table 6: Planning evaluation results ... 205

Table 7: Successful and failed actions, times instructed to wait, and numbers of total

generated plans... 207

Table 8: Planning times and number of nodes ... 210

Table 9: Planning tasks results .. 211

Table 10: Generic story data results ... 218

Table 11: Pre-processing nodes .. 219

Table 12: Planning data results ... 220

Table 13: Performance data results .. 221

Table 14: Transitioning data results .. 221

Table 15: Interactivity performance data ... 222

Table 16: Maximum waiting durations ... 222

Table 17: Vantage points data results .. 224

xvii

LIST OF ABBREVIATIONS

AI ς Artificial Intelligence

AM ς !ƎŜƴǘǎΩ aŀƴŀƎŜǊ

BM ς Battle Manager

CM ς Choices Manager

DIS ς Digital Interactive Storytelling

FGM ς Futile Goals Manager

GIM ς Goal Injection Manager

GUI ς Graphical User Interface

HTN ς Hierarchical Task Network

KB ς Knowledge Base

LM ς Level Manager

MAS ς Multi-Agent System

NPC ς Non-Player Character

OG ς Output Generator

PDDL ς Planning Domain Definition Language

STRIPS ς Stanford Research Institute Problem Solver

TiM ς Time Manager

TM ς Transitioning Manager

UAM ς Uncertain Actions Manager

UM ς User Manager

VPM ς Vantage Point Manager

WM ς World Manager

1

1 INTRODUCTION

1.1. MOTIVATION

In recent years, the field of Digital Interactive Storytelling (DIS) has become very

popular both in academic circles and in the gaming industry. The latter is a prosperous

industry, since it has surpassed in revenue the music and movies industries. Stories

and storytelling are becoming more important in games (for example in Role Playing

Games) and are transforming into a unique selling point of them.

DIS systems can also be used in education and also in other entertainment areas (apart

from games) such as in TV, movies, series, etc. For example, in the future the viewer

may be able to interact and change the outcome of a story presented to her via

animation. Such systems can also generate scripts for movies/series to help writers

with ideas.

DIS is a very flourishing research area in academia and is a platform which allows us to

do a multi-disciplinary research containing interesting and exciting areas to work on,

such as multi-agent systems, planning, re-planning, etc., solving difficult problems (for

example regarding real-time performance).

Also, we get the chance to combine all these disciplines and apply and use them in a

different area from where they were traditionally used. For example, there is extensive

research for planning algorithms with a focus on industrial themes, but not much in

the DIS field.

Academic research on DIS focuses in the search for techniques that allow the creation

of systems that can generate dynamically interesting stories which are not linear and

that can change dynamically during runtime as a coƴǎŜǉǳŜƴŎŜ ƻŦ ŀ ǇƭŀȅŜǊΩǎ ŀŎǘƛƻƴǎΣ

therefore leading to different story endings.

2

There have been numerous approaches attempting to reach this goal by employing

Artificial Intelligence (AI) planning algorithms as part of the solution, but they typically

do not discuss in detail or assess if and why a given planning algorithm was used and if

that algorithm is the best solution for the story scenarios used or if it is suitable for

other DIS scenarios. Also, there is a gap in the development and use of re-planning

methods in existing systems, as no specific re-planning algorithm has been proposed to

deal specifically with DIS. In this research we propose to contribute to the assessment

of existing AI planning solutions for DIS, to create a novel multi-agent framework that

provides new solutions for DIS, and to design new AI planning re-planning algorithms

which will have been evaluated to be the most suitable for DIS characteristics.

1.2. AIM & OBJECTIVES

The proposed research aims at investigating AI planning and re-planning algorithms

and exploiting their potential for the field of DIS, to evaluate their suitability for such

systems and to develop new algorithms to improve them. To this end and to also

provide more solutions to DIS research, a multi-agent DIS framework using planning

and re-planning techniques will be specified, designed, implemented, and evaluated

using appropriate DIS scenarios.

The objectives of this research work will be to consolidate the knowledge related to

existing planning and re-planning algorithms for DIS, and develop a more generic

multi-agent DIS framework providing a more robust, flexible and performant solution

for a large class of DIS. In particular we will:

¶ Review the related work in DIS systems, as well as planning and re-planning

algorithms related to DIS;

¶ specify the requirements of a multi-agent DIS framework which uses planning

and re-planning techniques;

¶ design and implement a novel multi-agent DIS framework which utilises

planning and re-planning techniques to generate a narrative;

¶ introduce mechanisms to generate different story outcomes and perspectives,

for example using choices, goal injections, levels transitioning, and vantage

points;

3

¶ design and implement a new planning algorithm for DIS, taking into account its

performance and impact on the storyline quality;

¶ design and implement a new re-planning algorithm for DIS, taking into account

its performance, minimal disruption to the original plan, and impact on the

storyline quality;

¶ define the evaluation criteria, create evaluation scenarios, and evaluate the

implemented framework and algorithms;

¶ exploit the research outcomes for generalisation and dissemination purposes.

1.3. RESEARCH METHODOLOGY

In order to achieve the research objectives that we outlined previously, the research

methodology that we used during the course of our research follows an incremental

and iterative model. In each iteration, starting with an initial idea, we performed a

(never-ending) literature survey on the related work to identify problems in one (or

more) of our fields of research. By analysing the data derived from this survey, we

designed new and/or modified existing components of our framework, which we

implemented and evaluated (when was required). The following sections discuss these

steps in more details.

1.3.1. LITERATURE SURVEY AND CRITICAL ANALYSIS

In order to develop a deep and varied understanding in the fields related to our

research, we performed a comprehensive survey on existing DIS systems, multi-agent

systems, as well as planning and re-planning algorithms with the DIS field in mind,

which we documented in chapter 2.

1.3.2. PROBLEM ANALYSIS AND DESIGN

Based on the critical analysis of our literature review, we specified the requirements

and specifications of a scalable, abstract, interactive, and decoupled multi-agent DIS

framework which includes dynamic story generation and narration, as well as different

points of view.

4

To achieve these requirements and specifications we designed DIEGESIS, a multi-agent

DIS framework using planning and re-planning techniques. DIEGESIS consists of several

different components, each responsible for one or more features of the framework,

such as the planner which includes a planning and a re-planning algorithm.

Although we used an incremental and iterative approach during the design or our

framework and its components, for the sake of simplicity and clarity of the thesis we

are documenting everything showing DIEGESIS as a final product. The requirements

and specifications of our framework are documented in chapter 3, and its design in

chapter 4.

1.3.3. FRAMEWORK IMPLEMENTATION

While implementing our designed multi-agent DIS framework, including our planning

and re-planning algorithms, we took an iterative prototyping approach. As soon as a

part of a design was complete (e.g. a new component) we implemented it and then,

when it was required, we designed and created an evaluation case to test and evaluate

it. As soon as this process was complete, changes and refinements were made to the

design (and therefore to the implementation) of our framework before starting this

iterative process again. The implementation of our framework is documented in

chapter 5.

1.3.4. EVALUATION ASSESSMENT

As we mentioned in the previous section, during the course of our design and

implementation phases, we performed a number of evaluations to evaluate several

aspects of our framework, expose any limitations that it has, and ensure we were in

course with the requirements and specifications we had set.

To aid us in these evaluations, we either used parts or the whole of the large-scale

evaluation scenario we modelled, which includes several characters with rich relations

between them, and a high number of possible actions and choices, that can provide

different outcomes. This scenario along with other related information and our

evaluations are documented in chapter 6.

5

1.4. CONTRIBUTIONS TO KNOWLEDGE

This thesis makes the following contributions to knowledge, in relation to the field of

Digital Interactive Storytelling (DIS):

1.4.1. CRITICAL ANALYSIS CONSOLIDATION

Consolidating the knowledge of previous related work in the field of DIS, can help to

identify techniques that provide good results and also to identify areas in the field

which have not been thoroughly explored yet and in which we could provide a novel

perspective.

Planning and re-planning techniques used in DIS systems are such an area, therefore

we are presenting the results of our critical analysis and evaluation mostly focused on

that, identifying (among other data) the types of planning and the planning algorithms

the state of the art of related DIS systems use, as well as if they consider re-planning.

Parts of our literature survey have been published in the following papers: (Duarte et

al., 2013, El Rhalibi et al., 2012, Goudoulakis et al., 2011, Goudoulakis et al., 2012b,

Goudoulakis et al., 2013, Goudoulakis et al., 2012a, Goudoulakis et al., 2014)

1.4.2. DESIGN OF A NOVEL DIS FRAMEWORK

DIEGESIS is a scalable, interactive, and modular DIS multi-agent framework, which

includes dynamic story generation and narration, as well as different points of view.

Most DIS systems use generic Artificial Intelligence (AI) planning algorithms which

were not created specifically with DIS requirements in mind, and very few of them

consider re-planning as part of their planners. DIEGESIS includes a new planner which

consists of a planning and a re-planning algorithm created with the needs of DIS

systems in mind.

Most DIS systems perform either centralised or decentralised planning; DIEGESIS

follows a hybrid approach. On the plan generation level, it performs decentralised

planning in which each character in a story is represented by an autonomous agent

able to opportunistically generate plans based on its own goals. In the same manner,

each agent tries to execute its own plans autonomously. We believe that this provides

6

a more flexible and realistic approach to the generation of a story, since each agent

acts as a self-sufficient agent, generating an autonomous plan considering its own

needs.

In the case of plans execution though, our approach borrows the control and

coordination concepts from the centralised planning approach. Although the plans are

indƛǾƛŘǳŀƭΣ ǿŜ ǿŀƴǘ 5L9D9{L{ ǘƻ ŘƛŎǘŀǘŜ ǘƘŜ ŜȄŜŎǳǘƛƻƴ ǇƘŀǎŜ ƻŦ ǘƘŜ ŀƎŜƴǘΩǎ Ǉƭŀƴǎ

(therefore the generation of the story) so the system can have a better control and

understanding of what happens during the generation/execution of the story, and to

be able to interfere if needed.

5L9D9{L{Ω agent architecture, follows a hybrid approach; it includes elements of

reactive agents (the agent receives input, processes it, and produces an output),

elements of deliberative agents (the agent keeps an internal view of its environment),

and elements of BDI agents (Beliefs ς ǘƘŜ ŀƎŜƴǘΩǎ ǾƛŜǿ ƻŦ ǘƘŜ ǿƻǊƭŘΣ 5ŜǎƛǊŜǎ ς the

ŀƎŜƴǘΩǎ ƎƻŀƭǎΣ LƴǘŜƴǘƛƻƴǎ ς ǘƘŜ ŀƎŜƴǘΩǎ ǇƭŀƴǎύΦ

In terms of interactivity, while many DIS systems allow the end-user to control only

one character in the story (i.e. the protagonist), in DIEGESIS, there is not a main

character (i.e. agent) that the player controls/observes; instead, the player can make

choices (defined by the person who creates the story, i.e. the storyteller) for actions

that can affect every character in the active story.

Apart from choices which can have a huge impact on the outcome of the generated

narrative, DIEGESIS implements other mechanics which can have an impact on the

story as well: A goal injection mechanism can inject new goals to the agents based on

situations that occur during the generation of the story; a battle mechanism is able to

calculate the outcome of both duels between agents and/or non-player characters

(NPCs), and large-scale battles between large armies of NPCs; a futile goals module is

able to assign goals to agents which are idle; and the concept of uncertain actions

(actions which have a chance of succeeding or failing) have the potential to delay

ŀƎŜƴǘǎΩ plans from being successfully executed, or even invalidate them.

Traditionally, related DIS systems use either a first-person or a third-person

perspective to present their stories to the player. In its default mode, DIEGESIS

7

presents the generated story as a whole, allowing the player to observe and interact

(when is required) with any of the agents present in the story. These abilities

constitute a third-person perspective, but since we want to provide the player with a

first-person perspective as well, we created the concept of vantage points. If the player

selects to view the story from the vantage point of an agent she will view only the

story outcome which is related to the chosen agent, and will be available to interact

with the story (i.e. make choices) only when an action is related to the story agent. The

rest of the story (which is unrelated to the selected agent) will continue normally in

the background. The player is able to choose between different vantage points or

return to a full story view freely during run-time. All these mechanics are allowing

linear storyline with differing endings, interleaved storylines, and even flashbacks.

Finally, DIEGESIS uses a hybrid story modelling approach, combining both plot-based

and character-based elements. The game world is organised in multiple relatively

abstract levels which can represent possible parts of a story. DIEGESIS is able to

transfer knowledge between levels (acquired by previously executed levels), and

judiciously choose which level needs to be executed next to form a valid and

interesting story, based on a level transitioning system. Using this plot-based

approach, DIEGESIS always has a high-level control over the overall structure of the

story, being able to transition the story between levels which make sense, producing a

coherent narrative.

But, when a level is loaded to be executed, we move closely to a character-based

model; each agent may have some initial intentions/desires, but is able to operate

autonomously and opportunistically to achieve its goals. The framework wƻƴΩǘ

interfere with the decisions of an agent even if they mean that the story cannot

progress any further. The authoring process in DIEGESIS provides enough freedom to

the storyteller to operate whichever way she wants; either to create a relatively rigid

storyline without much room for highly diverse narratives, or to model a story in a way

that everything is fluid; a lot of player choices, several potential goal injections based

on actions that may occur, and several uncertain actions; all of these features can

contribute to unexpected situations and more emergent narratives.

8

Parts of the 5L9D9{L{Ω ŀǊŎƘƛǘŜŎǘǳǊŜ ƘŀǾŜ ōŜŜƴ ŘŜǎŎǊƛōŜŘ ƛƴ ǘƘŜ ŦƻƭƭƻǿƛƴƎ ǇǳōƭƛǎƘŜŘ

papers: (Duarte et al., 2013, Goudoulakis et al., 2012b, Goudoulakis et al., 2013,

Goudoulakis et al., 2012a, Goudoulakis et al., 2014)

1.4.3. IMPLEMENTATION OF A NOVEL DIS FRAMEWORK

The aforementioned design of DIEGESIS is fully implemented into a full working multi-

agent DIS framework. This implementation provides us with a framework for the

creation and evaluation of our new planning and re-planning algorithms, as well as

enabling us to provide an accurate evaluation of them. That also gives us the

opportunity to use the framework in conjunction with other systems in the future,

creating new expanded DIS solutions.

1.4.4. A NEW PLANNING SOLUTION FOR DIS FRAMEWORKS

Most DIS systems use generic AI planning algorithms which were not created

specifically with DIS requirements in mind. A few DIS systems have created

adaptations of planning algoriǘƘƳǎ ŦƻǊ ǘƘŜƛǊ ƴŜŜŘǎΣ ōǳǘ ǘƘŜȅ ŘƻƴΩǘ ǇǊƻǾƛŘŜ Ƴŀƴȅ ŘŜǘŀƛƭǎ

about their mechanics.

DIEGESIS includes a new planning solution created based on the needs of the DIS field,

ŀōƭŜ ǘƻ ƎŜƴŜǊŀǘŜ Ǉƭŀƴǎ ƻŦ ŀŎǘƛƻƴǎ ōŀǎŜŘ ƻƴ ŜŀŎƘ ŀƎŜƴǘΩǎ ǎǘŀǘŜ ŀƴŘ ŎƻƴǘŜȄǘΣ ŎƻƴǎƛŘŜǊƛƴƎ

both the current world state and the available resources.

The planning algorithm is based on Graphplan (expanded to include support for several

language requirements that we consider valuable for DIS) for solutions expansion, and

a backtracking heuristic search for plan extraction, enriched with constraints

satisfaction and dynamic opportunistic restart when required. The planning algorithm

is also aware of the available time (duration) an agent/character has for a plan when it

is asked to generate one.

The expansion stage allows the generation of all the sub-goals compatible with the

current constraints, while the plan extraction involves a search technique using

appropriate heuristics to link the goal(s) to the initial state and generate a valid plan.

9

Details about our planning solution have been published in the following papers:

(Goudoulakis et al., 2012b, Goudoulakis et al., 2012a, Goudoulakis et al., 2014)

1.4.5. A NEW RE-PLANNING SOLUTION FOR DIS

When we consider classical AI planning for DIS, one of the premises is that the

environment is static, which means that the planner is the only agent that can make

changes in the story environment. However, a more realistic proposal is that the

environment is dynamic; that is, there are other agents in the story and the actions

generated by the planner may fail due to the actions of these agents.

We believe that a key aspect in the use of planning formalisms in DIS consists in their

ability to support re-planning and to offer representations embedding the potential for

failure. However, research for re-planning in DIS is sporadic. There are some DIS

systems that claim to use re-planning approaches, but the information they provide is

scarce. Most planners solve each planning task from scratch, which is time consuming.

5L9D9{L{ ŘŜŀƭǎ ǿƛǘƘ ǘƘŜ ŜȄŜŎǳǘƛƻƴ ƻŦ ǘƘŜ ŀƎŜƴǘǎΩ Ǉƭŀƴǎ ƛƴ ŀ ƘƛƎƘŜǊ ƭŜǾŜƭΣ ŀƴŘ ǿƘŜƴ ŀ

part of a plan fails, instructs the agent to re-plan based on its current knowledge of the

state of the world. Considering that we modelled each agent to act as a real person in

the way they generate and try to execute a plan, it does not make sense (in our

context) to predict and prevent plan failures as some related DIS systems do, since a

plan can fail either due to user intervention (which cannot be predicted), or

intervention by other characters, or ςin some casesς pure chance. In any case, failed

Ǉƭŀƴǎ ŘǳŜ ǘƻ άǳƴǇǊŜŘƛŎǘŜŘέ ǊŜŀǎƻƴǎ ŀǊŜ ǊŜŀƭƛǎǘƛŎ ŀƴŘ ƘŀǾŜ ǘƘŜ ǇƻǘŜƴǘƛŀƭ ǘƻ ŜƴǊƛŎƘ ŀ

generated narrative.

In our re-planning solution, as we interleave plan generation and plan execution, when

a plan fails, we discard the already completed actions and we only re-plan for the

failed (and some of the pending) actions of the plan, merging the new partial plan with

the unexecuted portion of the original plan.

Details about our re-planning solution have been published in the following papers:

(Goudoulakis et al., 2013, Goudoulakis et al., 2014)

10

1.4.6. EVALUATION OF DIS SYSTEMS

DIEGESIS has to be evaluated with experiments that provide evidence in support of our

thesis and emphasise either the proof-of-concept (i.e. demonstrating the validity of a

technique) or efficiency (i.e. demonstrating that a technique provides better

performance than those that existύΣ ŘŜǇŜƴŘƛƴƎ ƻƴ ǘƘŜ ŜǾŀƭǳŀǘŜŘ ŎƻƳǇƻƴŜƴǘΩǎ ǊƻƭŜ ƛƴ

the overall framework.

There are no widely accepted metrics to evaluate DIS systems that we could use, so we

had to specify some of them, based on what we consider valuable for the DIS field.

This collection of requirements and evaluations could be used in the future from other

DIS systems as a unified test-bed for analysis and evaluation of such systems.

The outcome of our work is evaluated for the following requirements that we consider

important for DIS frameworks:

¶ Performance of planning and re-planning solutions: Many related DIS systems

reported that their planning and re-planning solutions suffered from

performance issues, making the planning and re-planning expensive in any

sizable domain. Our planner needs to have a good performance in order to

generate (and regenerate) plans in real-time. To this end, we designed and

performed a number of evaluations to identify potential bottlenecks of our

planning and re-planning solutions, and explore their suitability for our DIS

needs.

¶ {ǳƛǘŀōƛƭƛǘȅ ƻŦ ǇƭŀƴƴƛƴƎ ŀƭƎƻǊƛǘƘƳǎΩ ŦŜŀǘǳǊŜǎ ŦƻǊ 5L{: Apart from performance, a

planning algorithm should possess a number of features that we consider

valuable for the DIS field. We performed an evaluation to identify which of the

existing planning algorithms are suitable to be used in the DIS field, to be used

as a base algorithm of our planning solution.

¶ Performance-based interactivity of the framework: Any DIS system and

framework should support some kind of interactivity. To this end, the

ŦǊŀƳŜǿƻǊƪΩǎ ǇŜǊŦƻǊƳŀƴŎŜ ǎƘƻǳƭŘ ōŜ ŀŘŜǉǳŀǘŜ ŜƴƻǳƎƘ ǎƻ ǘƘŜ ǇƭŀȅŜǊ ǿƛƭƭ ƴƻǘ

suffer from delays causing the framework to be potentially unusable and

possibly frustrating to use. To evaluate the performance-based interactivity of

11

DIEGESIS, we designed and performed an evaluation measuring the

ŦǊŀƳŜǿƻǊƪΩǎ ƭŜǾŜƭ ƭƻŀŘƛƴƎ ŀƴŘ ǘǳǊƴ ŜȄŜŎǳǘƛƻƴ ǘƛƳŜǎ ŘǳǊƛƴƎ ǘƘŜ ƎŜƴŜǊŀǘƛƻƴ ŀƴŘ

execution of a large-scale scenario.

¶ Summarisation metrics: Although their types can vary in different DIS systems

and frameworks, in most there should be some data which can quantify the

complexity of a generated story. We performed an evaluation measuring

several metrics of some storylines generated by DIEGESIS, such as the volume

of levels, characters, turns, actions, potential nodes, etc.

To perform the aforementioned evaluations, we created a large scale evaluation

scenario which models the story of Troy, derived fǊƻƳ IƻƳŜǊΩǎ ŜǇƛŎ ǇƻŜƳΣ άLƭƛŀŘέΣ

which will be presented in section 6.1.

We have published evaluations of our framework and of relevant planning algorithms

in the following papers: (El Rhalibi et al., 2012, Goudoulakis et al., 2011, Goudoulakis et

al., 2012b, Goudoulakis et al., 2013, Goudoulakis et al., 2012a, Goudoulakis et al.,

2014).

1.4.7. PROPOSAL OF POSSIBLE APPLICATIONS

Apart of operating on its own, we are proposing two different possible applications

which use DIEGESIS as a relying framework: an application which uses a 3D engine that

will enable us to visualise the generated stories and improve the interactivity with the

end-user; and a virtual storyteller application which interfaces our framework with a

3D character animation framework which will act as a narrator for the stories which

our framework produces, using a natural language generation system as an

intermediate, an application which we proposed in (Duarte et al., 2013).

1.4.8. DISSEMINATION OF OUR FINDINGS

The outcomes of our research have been disseminated via publishing a number of

papers (Duarte et al., 2013, El Rhalibi et al., 2012, Goudoulakis et al., 2011,

Goudoulakis et al., 2012b, Goudoulakis et al., 2013, Goudoulakis et al., 2012a,

Goudoulakis et al., 2014), and our work has been presented at international

conferences.

12

1.5. STRUCTURE OF THESIS

The rest of the thesis is structured in the following way:

¶ In Chapter 2 (Background & Related work), we present the background of our

research area. More specifically, we discuss about the field of Digital Interactive

Storytelling, about multi-agent systems presenting some agent architectures,

and about DIS-related as well as multi-agent-related planning and re-planning.

We also present some of the planning algorithms which are typically used in

DIS systems along with some of the representation languages used by them, we

present some examples of re-planning outside of the DIS field, and we survey

and critically assess a number of DIS systems, stating their relation to our own

work.

¶ In Chapter 3 (DIEGESIS DIS Framework), we document the requirements and

specifications of our multi-agent DIS framework.

¶ In Chapter 4 (Design of the Framework), we discuss in detail the design aspect

of every component of our framework.

¶ In Chapter 5 (Implementation), we document all the details about the

implementation of the multi-agent DIS framework we discussed in the previous

chapter.

¶ In Chapter 6 (Evaluation), we provide detailed information about the evaluation

scenario that we modelled, showing its potential storylines, we discuss some of

the mechanics that can have an impact on the generated story, and we specify

the metrics used in our evaluations. We are also documenting a number of

evaluations for the different components of our framework, using the

evaluation scenario we presented earlier in the chapter.

¶ Finally, in Chapter 7 (Conclusion & Future Work), we conclude this thesis and

we document some future work ideas for our framework. We also describe

some potential routes for our framework, utilising its capabilities via connecting

it to other components and engines to allow us to create new DIS applications.

13

2 BACKGROUND & RELATED WORK

In this chapter we present the background of our research areas, which are the fields

of Digital Interactive Storytelling (DIS), planning, re-planning, and multi-agent systems

(MAS). Afterwards, we present some of the planning algorithms which are typically

used in Digital Interactive Storytelling (DIS) systems along with some of the

representation languages used by them, then some examples of re-planning outside

the DIS field, and finally we survey and critically assess a number of DIS systems,

stating their relation to our own work.

2.1. DIGITAL INTERACTIVE STORYTELLING

Video games for computers and consoles are established as the leading form of

interactive digital entertainment (Barros and Musse, 2007a), are becoming more

complex, and so their use as a storytelling medium is growing in importance and

popularity. The unique interactive nature of games means that stories and characters

can become more personal and involving.

Until now, stories in contemporary games are typically implemented using one or

more standardised methods such as linear, branched or layered narrative (Paul et al.,

2009). DIS is a relatively new field of interactive computer entertainment (Barros and

Musse, 2005) that aims to create interactive applications capable to generate

consistent narratives.

Traditionally, a story is considered to be a sequence of actions that leads to a sequence

of events (Spierling, 2009). As defined in (Thue et al., 2007)Σ 5L{ ƛǎ άŀ ǎǘƻǊȅ-based

experience in which the sequence of events that unfolds is determined while the

ǇƭŀȅŜǊ ǇƭŀȅǎέΦ ! ǎǘƻǊȅǘŜƭƭƛƴƎ ǎȅǎǘŜƳ Ŏŀƴ ŜƛǘƘŜǊ ŀŎǘǳŀƭƭȅ ŎǊŜŀǘŜ ǎǘƻǊƛŜǎ ƻǊ ŜƴŀōƭŜ ǘƘŜ ǳǎŜǊ

just to tell different stories based on previously computed sequences of actions

(Karlsson et al., 2007). As mentioned in (Thue et al., 2007)Σ άŘŜŦŜǊring storytelling

decisions to run-time can greatly improve the flexibility and replay value of a

ǎǘƻǊȅǘŜƭƭƛƴƎ ƎŀƳŜέΦ

14

In fact, computer game stories can be implemented in different ways (Merabti et al.,

2008): either linear, branching, parallel, or threaded. Most games typically follow a

linear storyline, where the events of the story are presented in a predefined sequence.

It can be argued that making a player follow a defined story can diminish the

interactivity level of a game; the player is, after all, following a pre-set path already laid

out for him/her by the author. In order to still convey a story and allow the player to

feel a high degree of interactivity, the concept of interactive or non-linear storytelling

has to be introduced. Simply put, interactive storytelling presents the opportunity for

players to have an input on what is happening in the game world in which they are

placed, to be the ones who dictate how certain events may come to pass within the

constraints set by the story author.

Similar to other entertainment media, stories in games play a big role in increasing

immersion, building tension and adding interest to the player. However, one main

difference from the games to those other media is that games are interactive; they

expect participation from the player and in turn, players expect to participate and get

involved in the events the game is presenting and the outcomes of those events.

As thoroughly described in (Karlsson et al., 2007), a story model can be focused either

on characters or on plots:

¶ In a character-based model, the storyline results from the real-time interaction

among virtual autonomous agents. The main advantage of this model is the

ability of anytime user intervention, meaning that the user may alter the plot as

it unfolds by interfering with any character in the story. On the other hand,

such an extreme interference level may lead the plot to unexpected situations

or even to miss essential predefined events. Also, there is no guarantee that

the narratives that emerge from the interaction of the above mentioned

autonomous agents will be complex enough to create an interesting drama.

¶ In a plot-based model, characters should follow more rigid rules, specifying the

intended plot structures. In a pure plot-based model, user intervention is more

limited than in a character-based model but it is usually easier to guarantee

coherence and a measure of dramatic power.

15

Another consideration is whether stories should be told using a first-person or a third-

person perspective. As discussed in (Karlsson et al., 2007), a first person perspective

tends to be particularly suitable for applications closer to digital games, whereas a

third-person perspective is more appropriate for those involving film making.

Apart from its application in computer gaming, DIS has applications in several other

areas like military training and interactive drama (Paul et al., 2009).

As discussed in (Charles et al., 2003), with the exception of emergent storytelling, DIS

systems rely on various Artificial Intelligence (AI) techniques to support their behaviour

including Assumption-based Truth Maintenance Systems (ATMS), Reasoning

Maintenance Systems (RMS), logic programming and planning systems.

2.2. PLANNING

Planning is a combination of search and logic, two major areas of AI (Russell and

Norvig, 2010)Φ tƭŀƴƴƛƴƎ ƛƴǾƻƭǾŜǎ ƪƴƻǿƛƴƎ ǘƘŜ ǎǘŀǘŜ ǘƘŀǘ ȅƻǳΩǊŜ ƛƴΣ ǘƘŜ ǎǘŀǘŜ ȅƻǳ ǿŀƴǘ ǘƻ

be in and then finding the sequence of operators that will get you from the current

state to the final state. According to (Russell and Norvig, 2010), a planner can be

considered as either a program that performs a search for a solution or as one that

proves the existence of a solution.

To generate a storyline in DIS, planning systems are the most widely used techniques.

They are considered extremely appropriate for DIS applications since plans are

composed of discrete operations and stories can be easily converted to computer

graphics-based output (Barros and Musse, 2007a). Apart from DIS systems, even AAA

game titles such as the 2005 first-person shooter F.E.A.R. (Orkin, 2006) have employed

successfully planning methods.

As stated in (Barros and Musse, 2005), the use of planning algorithms in DIS has two

advantages:

1. Plans are a sequence of actions that can be used to achieve a given goal. They

have an inherent notion of cause and effect that maps naturally to the concept

of story.

2. Plans consist of discrete actions that can be individually assigned to and

executed by characters.

16

However, there are fundamental differences between the goals of AI and DIS that

should not be ignored (Barros and Musse, 2007a, Barros and Musse, 2005). In one

ƘŀƴŘ !L ŀƭƎƻǊƛǘƘƳǎ ŀǊŜ ǘȅǇƛŎŀƭƭȅ ŎƻƴŎŜǊƴŜŘ ǿƛǘƘ άƘŀǊŘέ ŀƴŘ ǇǊŜŎƛǎŜ Ǝƻŀƭǎ such as

optimality (e.g. finding the shortest path to a given place) whilst, on the other hand,

the narrative goals in DIS are more subtle and not easily defined formally. That can be

improved by using languages that use predicate logic, such as PDDL (Planning Domain

Definition Language; discussed later in this section). Therefore, when applying AI

algorithms in DIS problems these differences must be taken into account so narrative

consistency of the generated stories will not be compromised.

Some of the problems with the current research in DIS, as discussed in (Spierling,

2009), are:

¶ AI engines appear obscure for authors from non-computer-science areas, and

approaches in automatic planning are hard to grasp.

¶ Due to a lack of available playable prototypes, practical experience is missing.

¶ bŀƠǾŜ ŀǳǘƘƻǊƛƴƎ ŀǇǇǊƻŀŎƘŜǎ ŀǊŜ Ǝenerally too linear to suffice for highly

interactive storytelling, which means granting end-users participation in the

story.

There are many different description languages for representing planning problems.

The most widely used is called PDDL (Planning Domain Definition Language) (Fox and

Long, 2003). PDDL was derived from the original Stanford Research Institute Problem

Solver (STRIPS) planning language which is slightly more restricted than PDDL since for

example, STRIPS preconditions and goals cannot contain negative literals. STRIPS uses

first-order predicate logic, and a world state is represented as a conjunction of

predicates. There have been several versions of PDDL, consecutively extending the

language expressiveness and features. Its first version was released on 1998 and the

last version (i.e. 3.1) in 2008. Another planning language is ADL (Action Description

Language) which is included as a PDDL extension (Fox and Long, 2003). ADL relaxed

some of the STRIPS restrictions and made it possible to encode more realistic

problems. Another major difference between these planning languages is that, in

contrast to STRIPS, which use a closed-world model, the open world assumption

applies to ADL. (Russell and Norvig, 2010)

17

Although planning systems have been used intensively in DIS systems, there have not

been much novel solutions for DIS research with respect to planning algorithms. No

DIS dedicated planning algorithm has been proposed as yet, and the justification of the

choice of a planning algorithm for a DIS prototype is usually inadequate. In particular, a

discussion of the specific requirements necessary for planning is often missing, and

authors just propose comparisons of alternative existing planning algorithms in order

to find the most appropriate one for a specific ad-hoc DIS problem domain.

2.3. PLANNING USING CONSTRAINTS

Interest in using constraint techniques in planning problems has grown in recent years

and has proven successful for many domains (Nareyek et al., 2005). As described in

(Nareyek et al., 2005), the basic units of constraint-based problems are the constraints

and the variables, where the constraints are entities that restrict the values that can be

assigned to the variables. As further explained in (.ŀǊǘłƪ Ŝǘ ŀƭΦΣ нлмл), constraints are

just relations while a Constraint Satisfaction Problem (CSP) indicates which relations

(constrains) should hold among the given decision variables.

An interesting application of CSPs is in scheduling which shares some similarity with

planning, but focuses essentially on actions, resources and time optimisation

techniques. As explained in (.ŀǊǘłƪ Ŝǘ ŀƭΦΣ нлмл), scheduling concerns with the

allocation of resources (such as time, machines etc.) to activities (actions) with the

objective of optimising some performance measures. For example in time scheduling,

the duration of a number of actions can be modelled as a CSP so they will not overlap

while selected, or the final plan will not exceed the available time.

2.4. MULTI-AGENT SYSTEMS

A definition of an agent in our context is that an agent is an entity which is part of an

environment, perceives it with the help of sensors, and is able to act intelligently on it

via a set of action mechanisms available to it (Vlachavas et al., 2005). Extending the

above definition, we can add that an agent should be able to operate autonomously,

persist over a prolonged time period, adapt to change, and create and pursue goals

(Russell and Norvig, 2010).

18

A multi-agent system (MAS) is a system designed and implemented as a group of

agents interacting with each other (i.e. communicating, competing, cooperating,

coordinating, negotiating, and so forth). In such systems, the agents either work

individually exchanging information and/or services with other agents trying to

succeed to their individual goals or work together solving sub-problems so the

combination of their solutions become the final solution. (Vlachavas et al., 2005)

According to (Vlachavas et al., 2005), there are two basic categories of interconnection

models, i.e. ways for the agents to communicate with each other or with other

systems; the blackboard systems, and the message passing systems.

In blackboard systems, there is a common working space (i.e. the blackboard) to be

used by ŀƭƭ ƻŦ ǘƘŜ ǎȅǎǘŜƳΩǎ ŀƎŜƴǘǎΣ ǿƘŜǊŜōȅ ǘƘŜȅ ŜƛǘƘŜǊ ǎƘŀǊŜ results, or they share

tasks. When something is shared in this common area is accessible by all of the agents

participating in the system. A blackboard system architecture is illustrated in Figure 1,

adapted from (Vlachavas et al., 2005).

Figure 1: Blackboard architecture

On the other hand, in message passing systems the agents communicate directly with

each other, sharing information via messages written in a communication language

commonly accepted by alƭ ǘƘŜ ǎȅǎǘŜƳΩǎ ŀƎŜƴǘǎΦ ! ƳŜǎǎŀƎŜ ǇŀǎǎƛƴƎ ǎȅǎǘŜƳ ŀǊŎƘƛǘŜŎǘǳǊŜ

is illustrated in Figure 2, adapted from (Vlachavas et al., 2005).

19

Figure 2: Message passing architecture

In any of the aforementioned interconnection models, there can be two types of

communication: Either synchronous, meaning that an agent which asks a question to

the system or to another agent inhibits its operation until an answer has been

received, or asynchronous, meaning that the answer can be received at any point

ǿƛǘƘƻǳǘ ŀ ŘƛǎǊǳǇǘƛƻƴ ƛƴ ǘƘŜ ŀƎŜƴǘΩǎ ƻǇŜǊŀǘƛƻƴ (Vlachavas et al., 2005).

An intelligent agent may implement some the following abilities (Vlachavas et al.,

2005):

¶ Autonomy: The agents can operate without a direct intervention by a user or

other agents, and they have (total or partial) control over their internal state,

meaning that the agents are able to pursue their goals without constantly

receiving user input.

¶ Social ability: The agents can communicate with other agents (or the user)

using any kind of language that all of them can understand ŀƴŘ άŀƎǊŜŜŘέ ǘƻ ǳǎŜ

for the purpose of communication. Therefore, they are able for cooperation,

coordination, and negotiation between them.

¶ Reactiveness: The agents are able to perceive the environment they exist in,

and react to it based on the changes that are happening in it.

¶ Pro-activeness: The agents are not only able to react to the environment

changes, but to act pro-actively as well, meaning that they can have goals and

create plans to be able to achieve them.

¶ Mobility: The agents are not only static, but are also able to move in the

environment they exist in.

¶ Adaptivity: The agents can constantly adjust to the environment or the choices

of a user, meaning that they have an ability to learn.

¶ Veracity: The agents do not send wrong information on purpose.

20

¶ Benevolence: The agents are always trying to achieve their given goals.

¶ Rationality: The agents always act to achieve their goals, meaning that they

ŘƻƴΩǘ Řƻ ŦǳǘƛƭŜ ŀŎǘƛƻƴǎ ǿƛǘƘƻǳǘ ōŜƛƴƎ ǘƻƭŘ ǘƻΣ ŀƴŘ ǘƘŜȅ ŘƻƴΩǘ ŀŎǘ ŀƎŀƛƴǎǘ

achieving their goals.

In any definition of an agent, it is part of an environment, which can be categorised

based on the characteristics they possess, as follows (Russell and Norvig, 2010,

Vlachavas et al., 2005):

¶ Fully observable vs. partially observableΥ ²ƘŜǘƘŜǊ ŀƴ ŀƎŜƴǘΩǎ ǎŜƴǎƻǊǎ ƎƛǾŜ ƛǘ

access to the complete state of the environment at each point in time or not.

¶ Deterministic vs. stochastic: If the next state of the environment is completely

determined by the current state and the effects of the action executed by the

agent, then the environment is deterministic; otherwise, it is stochastic.

¶ Episodic vs. sequential: Lƴ ŀƴ ŜǇƛǎƻŘƛŎ ǘŀǎƪ ŜƴǾƛǊƻƴƳŜƴǘΣ ǘƘŜ ŀƎŜƴǘΩǎ ŜȄǇŜǊƛŜƴŎŜ

is divided into atomic episodes. In each of these episodes, the agent receives a

percept and then performs a single action. Crucially, the effects of the actions

taken in previous episodes do not affect at all the next episode.

¶ Static vs. dynamic: If the environment can change while an agent is

deliberating, then the environment is considered dynamic for that agent,

otherwise is considered static.

¶ Discrete vs. continuous: The discrete/continuous distinction applies to the state

of the environment, to the way time is handled, and to the percepts and

actions of the agent.

2.5. MULTI-AGENT PLANNING

A common characteristic of the agents that work together in a multi-agent system is

the capability of coordination via a communication language so they can communicate

agreements and solve possible conflicts. A definition of coordination is that it is the

attribute of a multi-agent system to solve problems in a common environment. Agents

may coordinate their actions either to succeed a common goal (cooperation) or to

succeed their individual goals (negotiation) (Vlachavas et al., 2005).

21

As explained in (Russell and Norvig, 2010), when there are multiple agents in the

environment, each agent faces a multi-agent planning problem in which it tries to

achieve its own goals with the help (or not) of the others. As discussed in (Vlachavas et

al., 2005), in multi-agent planning, agents are generating a plan of actions and they will

solve the problem based on that plan. During the execution, the plan is revised based

on the new details and results.

Based on (Vlachavas et al., 2005), there are two types of multi-agent planning:

¶ Centralised multi-agent planning, in which a central agent is responsible to

collect the partial or local plans of the other agents, to combine them in one

plan and solve any conflicts that may occur.

¶ Distributed (a.k.a. decentralised) multi-agent planning, in which all the agents

communicate with each other to generate their plans and to negotiate any

possible conflicts.

2.6. AGENT ARCHITECTURES

¢ƘŜǊŜ ŀǊŜ ǎŜǾŜǊŀƭ ƛƴǘŜƭƭƛƎŜƴǘ ŀƎŜƴǘǎΩ architectures that are used in multi-agent systems,

such as the reactive agents, the deliberative agents, and the belief-desire-intention

(BDI) agents (Vlachavas et al., 2005). But, depending on the needs of the system, it is

very common to see hybrid agent architectures, which combine elements from several

architectures (Russell and Norvig, 2010).

The deliberative agents (Figure 3, adapted from (Vlachavas et al., 2005)) include an

internal representation of the environment they exist in, and have knowledge of the

set of rules that they must obey to, as well as of the set of actions they are able to

execute. Therefore, they store a state which represents the evolution of their

environment, as well as the current action they are executing, so they can decide for

their next action (Vlachavas et al., 2005).

22

Figure 3: Deliberative agent architecture

The reactive agents (Figure 4, adapted from (Vlachavas et al., 2005)) on the other

hand, do not store a representation of the environment that they base their reasoning

on, and they implement a stimulus/response type behaviour based on the current

state of the environment they exist in. These agents are receiving data information

from their environment (perception) and, based on the rules they operate by, they

decide on the action they will choose as a reaction to their perception. Finally, these

agents do not have an internal memory, meaning that they do not calculate their next

actions based on previous states of the world (Vlachavas et al., 2005).

Figure 4: Reactive agent architecture

The belief-desire-intention (BDI) (Figure 5, adapted from (Vlachavas et al., 2005))

agents have a more complicated representation of their environment and they plan to

achieve their goals. Their internal state consists of beliefs, desires, and intentions (i.e.

ǘƘŜ ŀƎŜƴǘΩǎ Ǉƭŀƴǎ) (Vlachavas et al., 2005).

¶ Beliefs ŀǊŜ ǘƘŜ ŀƎŜƴǘΩǎ ǾƛŜǿ ŀƴŘ ƪƴƻǿƭŜŘƎŜ ƻŦ ǘƘŜ ŜƴǾƛǊƻƴment that exists in.

¶ Desires are related with the judgment that an agent will make for the future

states of its environment, for example if a future state is desirable or not. In the

ŘŜǎƛǊŜ ƭŜǾŜƭΣ ǘƘŜ ŀƎŜƴǘ ŘƻŜǎƴΩǘ ŜȄŀƳƛƴŜ ƛŦ ŀ ŘŜǎƛǊŜŘ ǎǘŀǘŜ ƛǎ ǇƻǎǎƛōƭŜΣ ŀƴŘ ǘƘŜǊŜ

23

is also the possibility that some of the desired states are in conflict with each

other.

¶ Goals are a subset of desires, and this is what the agent acts for. They should

be achievable, and not in conflict with each other.

¶ Intentions are a subset of goals, which an agent tries to achieve at a given

moment in time. In most cases, it is not possible to achieve all goals at once,

therefore the agent selects a subset of them, which forms the intentions set,

based on some hierarchy criteria.

¶ Plans are the set of actions that the agent can execute to achieve its intentions.

Figure 5: BDI agent architecture

2.7. RE-PLANNING

As discussed in (Doyle, 1996), planning is necessary for the organisation of large-scale

activities since decisions about actions to be taken in the future have direct impact on

what should be done in the shorter term. But even if a plan is thoroughly tested and

well-constructed, its value decays as changing circumstances, resources, information,

or objectives render the original course of action inappropriate. When changes occur

before or during the execution of a plan, it may be necessary for a new plan to be

constructed by either starting from scratch or by revising a previously generated plan.

Agents acting in complex and dynamic environments must often adjust their plans at

runtime to avoid potential conflicts with other agents or using resources that are not

available anymore. According to (Bartold and Durfee, 2003), such conflicts can be

ŘŜǘŜŎǘŜŘ ōȅ ǎŜƭŜŎǘƛǾŜƭȅ ŜȄŎƘŀƴƎƛƴƎ ŀƴŘ ŎƻƳǇŀǊƛƴƎ ǇƻǊǘƛƻƴǎ ƻŦ ŀƎŜƴǘǎΩ ƛƴŘƛǾƛŘǳŀƭ ǇƭŀƴǎΣ

24

identifying inconsistent expectations, and adding synchronisation actions and/or

blocking some action choices to ensure conflicts cannot arise.

Most planners solve each planning task from scratch by solving a series of similar

planning tasks. Planning is time-consuming and severely limits the responsiveness

and/or the number of what-if analyses that the planners can perform. To enhance

their performance, (Koenig et al, 2002) states that re-planning methods that reuse

information from previous planning episodes to solve a series of similar planning tasks

are much faster than the approach of solving each planning task from scratch. (Doyle,

1996) ǎǘŀǘŜǎ ǘƘŀǘ άǘƻ ǊŜ-plan effectively in demanding situations, re-planning must be

incremental, so that it modifies only the portions of the plan actually affected by the

ŎƘŀƴƎŜǎέΦ

As discussed in (Charles et al., 2003), a key aspect in the use of planning formalisms in

storytelling consists in their ability to support re-planning and to offer representations

embedding the potential for failure, however no solution have been proposed since for

re-planning in DIS. There is an important gap in the use of re-planning methods in

existing DIS systems and the proposed research will attempt to fill it.

2.8. PLANNING ALGORITHMS USED IN DIS

The following are some of the planning algorithms that have been used in DIS systems,

listed alphabetically.

2.8.1. FF (FAST-FORWARD)

FF (Hoffmann, 2001) is a forward state-space searcher that uses the ignore-delete-lists

heuristic, estimating the heuristic with the help of a planning graph. It then uses

enforced hill-climbing search (modified to keep track of the plan) with the heuristic to

find a solution. When it hits a plateau or local maximum ς i.e. when no action leads to

a state with better heuristic score- then FF uses iterative deepening search until it finds

a state which is better, or it gives up and restarts hill-climbing (Russell and Norvig,

2010). FF was created by mixing some novel ideas with features of Graphplan and HSP

(discussed in sections 2.8.2 and 2.8.3 accordingly) among others (Barros and Musse,

2007a).

25

Facing a search state S, a relaxed (ignoring delete lists) version of Graphplan is used to

generate output for heuristic evaluation (the length of the solution plan) and the

generation of helpful actions. Then, an enforced version of hill-climbing method

considering only the helpful actions are used to find a solution plan. That is, all the

direct successors of a state S are evaluated. If none of them has a better heuristic value

ǘƘŀƴ {Σ ǘƘŜ ǎǳŎŎŜǎǎƻǊǎΩ ǎǳŎŎŜǎǎƻǊǎ ŀǊŜ ŜǾŀƭǳŀǘŜŘΣ ŀƴŘ ǎƻ ƻƴΣ ǳƴǘƛƭ ŀ ǎǘŀǘŜ {Ω ǿƛǘh better

heuristic value than S is found. When such a state is found, the path to it is added to

the current plan aƴŘ ǘƘŜ ǎŜŀǊŎƘ ŎƻƴǘƛƴǳŜǎ ǿƛǘƘ {Ω ŀǎ ŀ ǎǘŀǊǘƛƴƎ ǇƻƛƴǘΦ

In summary, each iteration performs a complete breadth-first search for a state with

strictly better evaluation. If enforced hill-climbing with helpful actions fails, then a

best-first search considering all the applicable actions is performed to find a solution.

2.8.2. GRAPHPLAN

Graphplan (Blum and Furst, 1997) was the first planning algorithm that converted the

planning problem into an intermediary data structure called a planning graph.

Graphplan have moved the field of planning forward by obtaining impressive gains in

performance compared to previous planning approaches, based on the experimental

results documented in (Blum and Furst, 1997)Φ DǊŀǇƘǇƭŀƴΩǎ Ƴŀƛƴ ŘǊŀǿōŀŎƪ ƛǎ ǘƘŀǘ

although it is an optimal partial-order planner, its input language is quite limited

(Russell and Norvig, 2010).

In Graphplan a plan is extracted from a graph. The graph consists of levels of literals

which could be either true or false, and levels of actions of which the preconditions

could be also either true or false. The graph is constructed starting at level zero (0)

where all literals that are currently true are represented; these are true or false

depending on the initial state and there are no other possibilities. Then, a level of

actions for which the preconditions hold in the first level is added. This is followed by

another level of literals that could hold if an action makes it true. Each level of literals

gives the literals that could possibly be made true at that level depending on choices

made earlier. Each level of actions gives all actions that could be used at that level

depending on earlier choices.

26

The Graphplan algorithm creates the graph in steps; if at the current level of literals all

literals from the goal are present without mutex relations between them, a solution

plan may exist in the current graph. Otherwise, the graph is expanded by adding a new

level of actions and a resulting literals level. If the graph possibly contains a solution,

the algorithm tries to find it.

2.8.3. HEURISTIC SEARCH PLANNER (HSP)

Heuristic Search Planner (HSP) (Bonet and Geffner, 2001) uses a STRIPS-based

representation for problem description and searches the space of states from the

initial state, using a traditional heuristic search algorithm and a heuristic automatically

extracted from the STRIPS formulation (Charles et al., 2003).

HSP is a state space planning approach that can run either forward or backward and is

much like path-finding. A state space search planner searches for a path along world

states to the goals state. A world state can be reached by using an action. A forward

searching planner starts with the initial state of the world and constructs a list of all

reachable world states. These possible world states are nodes in the search tree. It will

then choose one and repeat the process until it reaches a goal state. It will usually

have a heuristic that gives rules for which node to expand, which world state to try

first. A good heuristic function is important to make the planning fast.

The search can also start at the goal state. This is backward or regression planning.

Regression planning may have a smaller space to search through. A state space planner

will return a single plan. Actions in the plan are sometimes motivated by the next

action in the plan but we cannot be sure of this. And sometimes actions are motivated

by actions that are further along the plan. This is because actions that are in the plan

are placed in a sequence that will make the preconditions of the actions be satisfied at

the time they are executed.

According to (Russell and Norvig, 2010), HSP was the first state-space searcher that

made state-space search practical for large planning problems.

27

2.8.4. HIERARCHICAL TASK NETWORK (HTN) PLANNING

Hierarchical Task Network (HTN) based planning (Cavazza et al., 2002), which is also

known as task-decomposition planning, is among the oldest approaches for providing

domain-specific knowledge to a planning system.

An HTN planner solves problems by decomposition. The initial problem statement, the

initial state and goal are viewed as a single action that must be decomposed into lower

level actions. On the lower levels, actions are decomposed further until only primitive

actions remain. There will often be choices available to the planner when choosing

decomposition for an action. Action decomposition specifies a way to turn an action

into a plan.

HTN is based on forward search, and thus can be searched to extract a task

decomposition corresponding to a solution plan. It is also goal-directed at the same

time, since the top-level task is the main goal. This brings the unique property that

during planning itself the state of the world is known at all times (Charles et al., 2003).

2.9. REPRESENTATION LANGUAGES

There are different description languages for representing planning problems. The

following sections contain overviews of some of the representation languages which

are typically used in planning algorithms.

2.9.1. STANFORD RESEARCH INSTITUTE PROBLEM SOLVER (STRIPS)

According to (Russell and Norvig, 2010), the Stanford Research Institute Problem

Solver (STRIPS) (Nilsson and Files, 1971) was the first major planning system. The

representation language used by STRIPS was way more influential than its algorithmic

aǇǇǊƻŀŎƘΦ ²Ƙŀǘ ǿŜ ǘƻŘŀȅ Ŏŀƭƭ ǘƘŜ άŎƭŀǎǎƛŎŀƭέ ǊŜǇǊŜǎŜƴǘŀǘƛƻƴ ƭŀƴƎǳŀƎŜΣ ƛǎ ŎƭƻǎŜ ǘƻ ǿƘŀǘ

STRIPS used. STRIPS use first-order predicate logic, and a world state is represented as

a conjunction of predicates.

To describe a planning problem in STRIPS we need an initial state of the world, a set of

goals that should be achieved, and a set of actions that can be executed to achieve any

28

goals. According to (Vlachavas et al., 2005), the STRIPS model makes the following

admissions:

¶ Indivisible actions: The actions of the planning problems are indivisible,

meaning that the state of the world during the execution of an action is

irrelevant; it is relevant only at the beginning and at the end of the action. Also,

the execution of an action cannot be interrupted.

¶ Deterministic effects: There is no uncertainty for the effects of an action, since

they are known beforehand.

¶ Omniscience: The planning system has complete knowledge of the current state

of the world, as well as its options (based on the available actions).

¶ Closed world assumption: There is no possibility to include new or remove

ŜȄƛǎǘƛƴƎ ƻōƧŜŎǘǎ ŦǊƻƳ ǘƘŜ ǎȅǎǘŜƳΩǎ ǿƻǊƭŘΦ

¶ Static world: The world is modified only as a result of the actions executed by

the planning system, and not by itself or by the actions of another entity.

2.9.2. ACTION DESCRIPTION LANGUAGE (ADL)

The Action Description Language or ADL (Pednault, 1989) relaxed some of the STRIPS

restrictions and made it possible to represent more realistic problems. Another major

difference between these planning languages is that, in contrast to STRIPS which uses

a closed-world model, the open world assumption applies to ADL. ADL also allows

negative literals, as well as disjunctions. (Russell and Norvig, 2010)

2.9.3. PLANNING DOMAIN DEFINITION LANGUAGE (PDDL)

The Planning Domain Definition Language (PDDL) (Ghallab et al., 1998) is the most

widely used among planning algorithms. PDDL is an action-centred modular language

and was derived from the original STRIPS planning language which is more restrictive

than PDDL since, for example, STRIPS preconditions and goals cannot contain negative

literals (Russell and Norvig, 2010).

Apart from its relation to STRIPS, PDDL is descended from several forebears (Ghallab et

al., 1998): ADL (which is included as a PDDL extension), the SIPE-2 formalism, the

29

Prodigy-4.0 formalism, the UMCP formalism, the Unpop formalism, and, most directly,

the UCPOP formalism.

As discussed in (Ghallab et al., 1998), PDDL is intended to express thŜ άǇƘȅǎƛŎǎέ ƻŦ ǘƘŜ

domain, i.e. which predicates exist and which actions are possible along with the

ŀŎǘƛƻƴΩǎ ǎǘǊǳŎǘǳǊŜ ŀƴŘ ŜŦŦŜŎǘǎΦ t55[ƛǎ ƴŜǳǘǊŀƭ ƛƴ ŀ ǿŀȅ ǘƘŀǘ ƛǘ ŘƻŜǎƴΩǘ ǇǊƻǾƛŘŜ ŀƴȅ ƪƛƴŘ

ƻŦ άŀŘǾƛŎŜέ (e.g. which actions to choose to achieve a goal) to the planners using it,

and as a result of this neutrality, almost all planners will require extending the notation

in different way. To this end, the language is factored into subsets of features

(modules) called requirements, so each planner can choose to implement a subset of

them.

There have been several versions of PDDL, consecutively extending the language

expressiveness and features, for example expressing temporal planning domains in

PDDL 2.1 (Fox and Long, 2003). Its first version was released in 1998 and the latest

version (i.e. 3.1) in 2008.

2.9.4. HIERARCHICAL TASK NETWORK (HTN)

Apart from the planners which are using STRIPS-like languages, there are also

Hierarchical Task Network (HTN) based planners, which ςaccording to (Lekavy and

Navrat, 2007)ς are based on hand-made hierarchical decomposition of the problem

domain. The planner is provided with domain knowledge, expressed as the possible

decompositions of tasks into subtasks. Tasks are categorised to primitive (i.e. directly

executable) and non-primitive, which have to be decomposed into other tasks.

Each non-primitive task includes one or more lists of tasks it can be decomposed into,

and these lists of tasks along with any other restrictions (e.g. precedence of tasks,

variable binding, mutual exclusions, etc.) comprise a task network. (Lekavy and Navrat,

2007)

According to (Lekavy and Navrat, 2007), although the theoretical model of HTN is

strictly more expressive than STRIPS, both approaches are ςin practiceς identically

expressive and can solve all domains solvable by a Turing machine with finite tape.

30

2.10. REVIEW AND CRITICAL ANALYSIS OF EXISTING DIS SYSTEMS

The following are most of the existing DIS systems that we researched, listed

alphabetically.

2.10.1. FABULATOR

In Fabulator (Barros and Musse, 2005), a planning algorithm is used to generate a

sequence of actions (an actual story) performed by characters, that is capable to

ǘǊŀƴǎŦƻǊƳ ǘƘŜ ǎȅǎǘŜƳΩǎ ǿƻǊƭŘΦ

The player controls one character (the protagonist) and every other character is a Non-

Player /ƘŀǊŀŎǘŜǊ όbt/ύΦ !ƭƭ bt/Ωǎ ŀŎǘƛƻƴǎ ŀǊŜ ŘŜǘŜǊƳƛƴŜŘ ōȅ ǘƘŜ ǎȅǎǘŜƳΦ

In DIEGESIS, there is not a main character that the player controls/observes; instead,

the player can make choices (defined by the storyteller) for actions that can affect

every character in the active story. Also, the player is allowed to select and view the

story from the perspective of any of the characters (in the default view mode, the

story is presented as a whole), and to be able to switch between them without any

limitations, during the generation of the narrative.

CŀōǳƭŀǘƻǊ ǳǎŜǎ ŀ άǊŜ-ǇƭŀƴƴƛƴƎ ŦǊƻƳ ǎŎǊŀǘŎƘέ ŀǇǇǊƻŀŎƘΤ ƛf an action of the player

renders the current plan invalid, the system uses the planning algorithm to create a

new plan. ¢Ƙƛǎ ǿŀȅΣ ǘƘŜ ǎǘƻǊȅ ƛǎ ŀŘŀǇǘŜŘ ǘƻ ǘƘŜ ǇƭŀȅŜǊΩǎ ŀŎǘƛƻƴǎΦ

In DIEGESIS, we have designed and implemented a new re-planning approach, aiming

to make a minimal disruption to the original plan. We evaluated this approach against

the approach of planning from scratch, concluding that the new approach has a better

performance and has no difference in the outcome of the generated story compared

to the other approach.

CŀōǳƭŀǘƻǊΩǎ implementation άtreats the planning problem as a state space search

problem and uses the A* algorithm to solve itέ. The creators of Fabulator state that

there are several planning algorithms specific for STRIPS-like domains that can achieve

better performance than A*, but for small storyworlds (the result of authoring process

in DIS) like the one the current implementation uses, performance is not an issue. They

31

also state that the most important shortcoming of their work was its reliance on

predicate logic to represent the world state.

In a latter implementation of the system, the Metric-FF planning algorithm is being

used (Barros and Musse, 2007a). In this implementation, the notion of tension arc is

beiƴƎ ƛƴǘǊƻŘǳŎŜŘ όάǘƘŜ ƭŜǾŜƭ ƻŦ ǘŜƴǎƛƻƴ ƛƴ ŀ ǎǘƻǊȅ ƛƴ ŦǳƴŎǘƛƻƴ ƻŦ ǘƛƳŜ ǊŜǎǳƭǘǎ ƛƴ ŀ ŎǳǊǾŜ

ŎŀƭƭŜŘ ǘŜƴǎƛƻƴ ŀǊŎέύ ŀƭƻƴƎ ǿƛǘƘ ŀ ƳŜŎƘŀƴƛǎƳ ǘƘŀǘ ƳŀƪŜǎ ǘƘŜ ƎŜƴŜǊŀǘŜŘ ǎǘƻǊƛŜǎ Ŧƻƭƭƻǿ

an author-defined tension arc.

2.10.2. F!K!$%

CŀœŀŘŜ (Mateas and Stern, 2003) is a 20 minute interactive drama which can be played

multiple times, where the player has to interact with a couple of NPCs that are

experiencing marriage issues. According to (Karlsson et al., 2007), it integrates

characteristics of both plot-based and character-based approaches.

CŀœŀŘŜ consists of a 3D world, believable agents, a broad and shallow natural language

processing system, and a drama manager. CŀœŀŘŜ ƛƳǇƭŜƳŜƴǘǎ ŀ ǊŜŀŎǘƛǾŜ ōŜƘŀǾƛƻǳǊ

planner that selects, orders, and executes fine-grain plot elements called beats that

describe action/reaction behaviours that story world characters will perform. The

drama manager uses this planner to manage the story resulting from the simulation.

A beat is the smallest unit of dramatic action that moves a story forward. Beats are

authored by a human author and are given preconditions and effects. The

preconditions specify when the beat can be applied and the effects specify what the

result will be in the story state. The set of beats together implicitly defines a narrative

graph.

According to (Arinbjarnar et al., 2009)Σ ǘƘŜ ōŜŀǘǎ ŀǊŜ άŜȄǇƭƛŎƛǘƭȅ ǇǊŜ-authored, with all

actions within the beat being fully defined, and the actions of all roles being assigned

to allow for multi-ŀƎŜƴǘ ŎƻƻǊŘƛƴŀǘƛƻƴέΦ

By traversing the beats in some sequence, which depends on the interaction of the

human player, the story is moved forward by the drama manager. Because the number

of different ways in which beats can be sequenced is large the player can experience a

lot of freedom in what story is experienced. The way the drama manager changes the

32

simulation is by modifying the behaviour of the characters; it adds and removes

ōŜƘŀǾƛƻǳǊǎ ǿƘƛƭŜ ǘƘŜ ǎƛƳǳƭŀǘƛƻƴ ǊǳƴǎΦ Lƴ CŀœŀŘŜ ǘƘŜ ƴǳƳōŜǊ ƻŦ ōŜŀǘǎ ƛǎ ŀǇǇǊƻȄƛƳŀǘŜƭȅ

200 and they are used in the rate of once every minute.

As discussed in (Roberts and Isbell, 2008), due to the level of granularity required to

author beats and their interactions, a beat-based drama manager seems ideally suited

to small-ǿƻǊƭŘ ǾŀǊƛŜǘȅ ŘǊŀƳŀǎ όƭƛƪŜ ǘƘŜ ƻƴŜ ǳǎŜŘ ƛƴ CŀœŀŘŜύΦ άIƻǿŜǾŜǊΣ ǘƘŜ ŦǊŜŜŘƻƳ ƻŦ

replayability and authorial control may come at the price of ease of authoring, at least

ŦƻǊ ƭŀǊƎŜ ǎȅǎǘŜƳǎΦέ

¢ƘŜ ŎƘŀǊŀŎǘŜǊǎ ŀǊŜ ǇǊƻƎǊŀƳƳŜŘ ǳǎƛƴƎ ! .ŜƘŀǾƛƻǳǊ [ŀƴƎǳŀƎŜ ό!.[ύΦ ά!.[ƛǎ ŀ ǊŜŀŎǘƛǾŜ

planning language, based on the Oz Project language Hap, designed specifically for

authoring believable agents - characters which express rich personality, and which, in

[this] case, play roles in an interactive, dramatic story worldέ. (Cooper, 2011)

CŀœŀŘŜ ƛǎ ǘƘŜ ŦƛǊǎǘ ŎƻƳǇƭŜǘŜ DIS system published. According to (TeessideUniversity,

2010), its global agency is limited and user's actions (which mainly consist of typed

text) have little explicit consequence on future developments of the story.

2.10.3. GADIN

The Generator of Adaptive Dilemma-based Interactive Narratives (GADIN) (Barber and

Kudenko, 2009) dynamically generates interactive narratives which are focused on

dilemmas to create dramatic tension. Its authors claim that the system addresses two

open challenges: maintaining the dramatic interest of the narrative over a longer

period and (story) domain independence.

As described in (Roberts and Isbell, 2008), to construct the narrative, GADIN selects

among the set of available dilemmas based on an appropriateness estimate, as well as

based on the frequency with which each particular type of dilemma has been

employed already.

Its planner (which is based on the Graphplan algorithm) creates sequences of actions

ǘƘŀǘ ŀƭƭ ƭŜŀŘ ǘƻ ŀ ŘƛƭŜƳƳŀ ŦƻǊ ŀ ŎƘŀǊŀŎǘŜǊ όǿƘƻ Ŏŀƴ ōŜ ǘƘŜ ǳǎŜǊύΦ ά¢ƘŜ ǳǎŜǊ ƛƴǘŜǊŀŎǘǎ

with the storyworld by making decisions on relevant dilemmas and by freely choosing

33

their own actions. Using this input, the system chooses and adapts future storylines

ŀŎŎƻǊŘƛƴƎ ǘƻ ǘƘŜ ǳǎŜǊΩǎ Ǉŀǎǘ ōŜƘŀǾƛƻǳǊΦέ

5L9D9{L{ ƛƴŎƭǳŘŜǎ ŀ ŎƻƴŎŜǇǘ ǎƛƳƛƭŀǊ ǘƻ ŘƛƭŜƳƳŀǎΣ ƛƴ ǘƘŜ ŦƻǊƳ ƻŦ άŎƘƻƛŎŜǎέΦ ¢ƘŜ

storyteller (i.e. the person who models the story which is generated and executed by

DIEGESIS) can mark any kind of action as a choice. When such an action is about to

occur, DIEGESIS either makes a choice itself, or asks the player to make a choice

whether the action will happen or not. The idea behind choices in DIEGESIS is that

important decisions throughout the story should be marked as choices so they can

potentially alter the outcome of the generated narrative.

According to (TeessideUniversity, 2010)Σ D!5Lb άcontinuously presents the user with

dilemmas to keep the narrative goingάΦ While in GADIN the generation of dilemmas is

necessary ǘƻ ƪŜŜǇ ǘƘŜ ƴŀǊǊŀǘƛǾŜ ƛƴǘŜǊŜǎǘƛƴƎ ŀƴŘ ƎƻƛƴƎΣ 5L9D9{L{Ω ǎǘƻǊƛŜǎ Ŏŀƴ ōŜ

generated even without any choices, although ςas we already mentioned- the

storyteller is encouraged to use them since they can potentially have a significant

impact on the outcome of the generated narrative.

Although the authors consider other application domains ςin (Barber and Kudenko,

2009) ǘƘŜȅ ƛƳǇƭŜƳŜƴǘŜŘ ŀ ŦƛƴƛǘŜ ŎƘƛƭŘǊŜƴΩs short storyς, as discussed in (Barber and

Kudenko, 2007), GADIN is best suited for genres which places a particular emphasis on

ǎǘŜǊŜƻǘȅǇŜǎ ŀƴŘ ŎƭƛŎƘŞǎΣ ǎǳŎƘ ŀǎ ǎƻŀǇ ƻǇŜǊŀǎ ǿƘƛŎƘ ƛǎ ǘƘŜ ŘƻƳŀin the system was

evaluated on. Comparing the above to our framework, we believe that DIEGESIS is

both suited for movie-like experiences including relatively long-length finite stories, as

well as shorter stories, since it provides to the storyteller the flexibility required to

experiment with multiple genres and lengths of stories.

(Roberts and Isbell, 2008) argues that authoring a story in GADIN is not easy, since it

requires STRIPS-like specification of the domain and character specific information,

which necessitates AI competence. DIEGESIS uses a combination of modelling

approaches: The storyteller needs to model the game world both in PDDL and in XML.

To make the authoring process easier, we are using a PDDL editor created by (Cooper,

2011), and although the authoring process in XML is quite easier compared to PDDL,

we have designed an XML editor as an extension to the PDDL one.

34

D!5LbΩǎ ŀǳǘƘƻǊǎ ƘŀǾŜ ƛŘŜƴǘƛŦƛŜŘ ǘƘŀǘ the main problem of D!5LbΩǎ planner is that as

more characters and actions are included, the time spent planning becomes

unreasonably long; the time increases exponentially with the number of characters

and the number of actions. On the other hand, neither the number of locations nor the

number of dilemmas has an impact on the speed. According to (Arinbjarnar et al.,

2009)Σ άǿƛǘƘ ŀƴ ƛƴŎǊŜŀǎŜŘ ƴǳƳōŜǊ ƻŦ ŀŎǘƛƻƴǎΣ ŘƛƭŜƳƳŀǎ ŀƴŘ ŎƘŀǊŀcters, the planning

becomes too slow for a real-tiƳŜ ŜȄǇŜǊƛŜƴŎŜ ƻŦ ǘƘŜ ƴŀǊǊŀǘƛǾŜέΤ (Roberts and Isbell,

2008) ŀƎǊŜŜǎΣ ǎǘŀǘƛƴƎ ǘƘŀǘ άƻƴƭƛƴŜ ǇƭŀƴƴƛƴƎ ŀǇǇǊƻŀŎƘ Ŏŀƴ ōŜ ǎƭƻǿ ƛƴ ŀƴȅ ǎƛȊŀōƭŜ

ŘƻƳŀƛƴέ The authors claim that a potential solution would be the use of a form of

hierarchical planning.

During the implementation phase of our research, we have identified that the

ōƻǘǘƭŜƴŜŎƪ ƻŦ 5L9D9{L{Ω ǇƭŀƴƴŜǊ ƛǎ its pre-processing process, i.e. the time needed by

the planner to pre-generate nodes that are later used in the actual planning and re-

planning process. Our planner only needs to pre-process the information of a level

once and then the pre-processed information can be reused in any planning and re-

planning episode of that level. Therefore, any delay due to the pre-processing will only

affect the loading time of the level, and not the experience of the player while

executing the level.

The results of the evaluation we document in section 6.5.5 show that DIEGESIS is

capable of generating and executing a large and complex story containing several

characters in a very short amount of time, making the framework suitable to be used

for the purpose of DIS.

As it is mentioned by its authors, GADIN is performing re-planning, but there are not a

lot of details for its mechanics. According to (Paul et al., 2010, Paul et al., 2011), if the

ǇƭŀȅŜǊΩǎ ŀŎǘƛƻƴǎ ƳƻǾŜ ǘƻƻ ŦŀǊ ŀǿŀȅ ŦǊƻƳ ǘƘŜ Ǝƻŀƭ ǎǘŀǘŜ ƻǊ ǘƘŜȅ ƳŀƪŜ ǘƘŜ ǎǘƻǊȅ Ǝƻŀƭ

improbable, GADIN randomly selects a new story goal and reveals it to the player. This

new story goal does not involve any further player actions; all further actions are

carried out by NPCs.

The system performs continuous planning in a thread using a global planning graph, so

the re-planning can be faster, and performs a centralised planning for all the agents

operating in the system.

35

In contrast, DIEGESIS performs a decentralised planning; each agent is generating a

plan based on its own goals, and then tries to execute it. The framework deals with the

execution of the agents in a higher level, and when a part of the plan fails, instructs the

agent to re-plan based on its current knowledge of the state of the world. We believe

that this provides a more realistic approach to the generation of a story, since each

agent acts as a real person, generating an autonomous plan considering its own needs.

2.10.4. I-STORYTELLING

The Interactive Storytelling approach described in (Cavazza et al., 2002) and (Charles et

al., 2003) is character-based supporting user interventions at any time. The graphic

ŜƴǾƛǊƻƴƳŜƴǘ ƻŦ ǘƘŜ ǎȅǎǘŜƳ ǿŀǎ ōŀǎŜŘ ƻƴ ǘƘŜ ¦ƴǊŜŀƭϰ ƎŀƳŜ ŜƴƎƛƴŜ ŀƴŘ ǘƘŜ ǎŎŜƴŀǊƛƻ

ǳǎŜŘ ƛǎ ƛƴǎǇƛǊŜŘ ŦǊƻƳ ǘƘŜ ǇƻǇǳƭŀǊ ǎƛǘŎƻƳ CǊƛŜƴŘǎϰΦ

The first prototype of the system (Cavazza et al., 2002) includes four autonomous

agents/characters, and is able to generate short stories up to three minutes in

ŘǳǊŀǘƛƻƴΣ ǿƛǘƘ ŀǇǇǊƻȄƛƳŀǘŜƭȅ ƻƴŜ άōŜŀǘέ (Mateas and Stern, 2003) per minute.

According to (Barber and Kudenko, 2009), a longer narrative is not easy to accomplish

due to the large amount of content and ordering predefinition required. As further

discussed in (Paul et al., 2009), each character has a number of context-specific

ǎǳōǘŀǎƪǎΣ ǘƘŜǊŜŦƻǊŜ ŎŀǊŜŦǳƭ ŀǳǘƘƻǊƛƴƎ ƻŦ ŜŀŎƘ ŎƘŀǊŀŎǘŜǊΩǎ ǘŀǎƪ ƴŜǘǿƻǊƪ ƛǎ ƴŜŜŘŜŘ ǘƻ

ensure that an interesting narrative will occur. The character roles are designed a priori

for the story, therefore the actions that a character can take are scripted for a

ǇŀǊǘƛŎǳƭŀǊ ǊƻƭŜΤ ŎƘŀǊŀŎǘŜǊΩǎ ǊƻƭŜǎ ŀǊŜ ǇǊŜ-selected at design time for a particular story.

As discussed in (Karlsson et al., 2007)Σ άǘƘŜ main doubt about pure character-based

approached is to what extent dramatic and engaging narratives may actually result.

The task seems to be easier with genres like sitcoms, wherein the climax of a story is

not so clearly diǎǘƛƴƎǳƛǎƘŀōƭŜΦέ

The user of the system can wander in the 3D world as an invisible avatar and interact

with key objects, and can make suggestions (using a speech recognition interface) to

NPCs, which may or may not be followed (Arinbjarnar et al., 2009). According to (Paul

et al., 2010)Σ άǇƭƻǘ ŎƻƘŜǊŜƴŎŜ ƛǎ ŜƴǎǳǊŜŘ ōȅ ŀƭƭƻǿƛƴƎ ƻƴƭȅ bt/ ŀŎǘƛƻƴǎ ǊŜƭŀǘŜŘ ǘƻ ǘƘŜ

on-going ǎǘƻǊȅέΦ

36

Hierarchical Task Networkǎ όI¢bǎύ ŀǊŜ ōŜƛƴƎ ǳǎŜŘ ǎƛƴŎŜ ǘƘŜ ŎƘŀǊŀŎǘŜǊǎΩ ǊƻƭŜǎ Ŏŀƴ ōŜ

represented in a consistent fashion as such. A single HTN corresponds to several

possible decompositions for the main task therefore an HTN can be seen as an implicit

representation for the set of possible solutions.

The search algorithm that produces a suitable plan from the HTN searches the HTN

depth-first left-to-right and executes (or at least attempts to execute) any primitive

action that is generated. Backtracking is allowed when these actions fail. In addition,

heuristic values (which are used to represent narrative concepts as well) are attached

to the various sub-tasks, so forward search can make use of these values for selecting a

sub-task decomposition.

!ƴȅ ŀƎŜƴǘΩǎ ŀŎǘƛƻƴ ǿƛƭƭ ƛƴ ǘǳǊƴ ǘǊƛƎger re-planning. This is implemented using the search

mechanism of the HTN planner by back-propagating the failure of the action to the

corresponding sub-goal, so search will backtrack and produce an alternative solution.

Another planning formalism that was used in a second implementation (Charles et al.,

2003) of the same scenario (for comparison reasons) was HSP. Compared to the HTN

implementation, HSP offers greater flexibility in the definition of action and more

variability in the stories generated while HTN offers clear authoring principles and a

global vision of the baseline plot.

According to (TeessideUniversity, 2010)Σ ǘƘŜ ǎȅǎǘŜƳΩǎ ǎǘǊƻƴƎ Ǉƻƛƴǘǎ ŀǊŜ ǘƘŜ ƎŜƴŜǊŀƭ

nature of the HTN-based planning system, the dramatization of narrative situations

and the user interactions' influences on the unfolding of the narrative in real-time,

while its limitation is the lack of control over the quality of the narrative generated.

In (Charles et al., 2003), the authors mention that HTN is not a good solution when it

comes to re-planning, and they switched to the HSP algorithm, claiming that it

provides a better re-planning solution. The actual mechanics of re-planning are not

described though. Based on the provided examples, the factors which can trigger re-

planning are usually user interference or the availability of a resource.

In our framework, user interference is just one of the options which can trigger re-

planning. Since each agent operates as an individual, generating its own plans as we

explained before, it is vŜǊȅ ŎƻƳƳƻƴ ŦƻǊ ŀƴ ŀƎŜƴǘΩǎ Ǉƭŀƴ ǘƻ ƛƴǘŜǊŦŜǊŜ ǿƛǘƘ ŀ Ǉƭŀƴ ƻŦ

37

another agent, causing the latter to re-plan. The interference can be something simple

such as the availability of a resource, or even something more complicated, like the

death of a character (represented by an agent), which can potentially have a huge

ƛƳǇŀŎǘ ǘƻ ǘƘŜ ǿƘƻƭŜ ǎǘƻǊȅΣ ŀƭǘŜǊƛƴƎ ǎƛƎƴƛŦƛŎŀƴǘƭȅ ǘƘŜ ŀƎŜƴǘΩǎ ƎƻŀƭǎΣ ǘƘŜǊŜŦƻǊŜ ǘƘŜƛǊ ǇƭŀƴǎΦ

2.10.5. LOGTELL

LOGTELL (Karlsson et al., 2007) is a storytelling system based on modelling and

simulation. Its model includes typical events and goal-inference rules and tries to

conciliate both plot-based and character-based modelling. Successive cycles of goal-

inference, planning, plan recognition and user intervention are used to generate plots.

Typical events are described by parameterised operations with pre-conditions and

post-conditions so that planning algorithms can be used for plot generation while, on

the other hand, the goal-inference rules model the behaviour of the various actors

providing some character-based features. The rules specify how situations can bring

about new goals for each character.

In LOGTELL, the stories are told with a third-person view-point, and user intervention is

always indirect. That means that during the simulation the user can either let the

partially-generated plots that seem interesting to be continued, or try to enforce the

occurrence of situations and events. But, these interventions might be rejected by the

system whenever it finds no valid way to change the story to accommodate the

intervention. According to (Barber and Kudenko, 2007), the resulting story is

graphically presented at a lower level, without any possible user interaction.

In DIEGESIS, as we already mentioned, the storyteller (i.e. the person who models the

story) can mark any kind of action as a choice, which is the way the player can interfere

with the story. User interferences are always accepted by DIEGESIS and they affect the

generation and execution of the story in real time so the user will be able to form the

story in the way she wants, no matter how much impact they have on the generated

narrative.

38

The planning tool used is a non-linear planner implemented in Prolog, adapted from

ƻǘƘŜǊǎΩ ǿƻǊƪ ǿƛǘƘ ŜȄǘŜƴǎƛƻns. The use of a non-linear planner is justified as it seems

more suitable because it uses a least-commitment strategy.

The generation of a plot starts by inferring goals of characters from their initial

configuration. Then, the system uses the planner that inserts events in the plot in

order to allow the characters to try and fulfil their goals. When the planner detects

that all goals have been either achieved or abandoned, the partial plot is generated

and presented to the user and can be optionally dramatized. If the user does not like

the partial plot, an alternative can be generated. If the plot is accepted, the process

continues by inferring new goals from the generated situations. If new goals are

inferred, the planner is activated again to fulfil them. The process alternates goal-

inference, plan generation/recognition and user interference until the moment the

user decides to stop, or no new goal is inferred. In the goal-inference phase, forward

reasoning is being used, where in the planning phase, an event inserted in the plot for

the achievement of a goal might have unsatisfied preconditions, so they are checked

via backward reasoning.

The authors argue that combining goal inference, plan generation/recognition and

user participation constitutes a promising strategy towards the production of

entertaining and coherent plots, but on the negative side, plan generation is limited by

computational complexity considerations. ¢ƘŜȅ ŀƭǎƻ ƳŜƴǘƛƻƴ ǘƘŀǘ άƳƻŘŜǊƴ ŀƴŘ Ǉƻǎǘ-

modern genres with their emphasis on a more radical transgression of any conventions

ǎƘƻǳƭŘ ƴƻǘ ōŜ ǎƻ Ŝŀǎȅ ǘƻ ŦƻǊƳŀƭƛǎŜ ƛƴ ŀ ǎȅǎǘŜƳŀǘƛŎ ǿŀȅέΦ

2.10.6. MIMESIS

The Mimesis (Riedl et al., 2003, Young and Riedl, 2003) system defines an architecture

for building and coordinating interactive adaptive narratives. According to (Arinbjarnar

et al., 2009), it is designed as a general architecture, therefore it should work with any

game engine.

Mimesis uses two planners; the narrative planner, which is responsible both for

determining the actions that will occur within the virtual environment as the story

ǳƴŦƻƭŘǎ ŀƴŘ ŦƻǊ ƳƻŘƛŦȅƛƴƎ ǘƘŜ Ǉƭŀƴ ŘǳǊƛƴƎ ǘƘŜ ǎǘƻǊȅΩǎ ŜȄŜŎǳǘƛƻƴ ǿƘŜƴ ǘƘŜ playerΩǎ

39

actions deviate substantially from the stoǊȅΩǎ intended structure; and the discourse

planner, which is responsible for selecting the communicative techniques that will be

used to convey the unfolding action to the player. Both planners use the Longbow

planning system, a hierarchical partial-order causal link planner that can produce plans

both for physical actions as well as communicative ones.

The narrative planner takes as input a declarative representation of all the actions that

are applicable in the virtual world as well as a specification of the goals for the end of

the story. The narrative planner searches for a story plan, which is a sequence of

actions which will be carried out by the characters in the story (including the character

controlled by the player) and will both satisfy the goals of the story and provide an

engaging narrative arc.

The discourse planner takes as input the story plan generated by the narrative planner

and a library of communicative actions that can be used by the game engine to convey

the unfolding action of the story. Then, the discourse planner creates an action

sequence containing directives to be carried out not by characters in the story world

but by the game ŜƴƎƛƴŜΩǎ ƛƴǘŜǊŦŀŎŜ ǊŜǎƻǳǊŎŜǎ ŀƴŘ ƛƴǘŜƴŘŜŘ ǘƻ ōŜ ŜȄŜŎǳǘŜŘ

concurrently with the story plan itself.

Mimesis deals with re-planning in the following way (Mateas and Stern, 2003): It

monitors the story world for potential player actions that might threaten causal links in

the current story plan. When threat is detected, the system either generates a new

Ǉƭŀƴ ǿƘƛŎƘ ŀŎŎƻƳƳƻŘŀǘŜǎ ǘƘŜ ǇƭŀȅŜǊΩǎ ǇƻǘŜƴǘƛŀƭ ŀŎǘƛƻƴ ǿƘƛƭŜ ǎǘƛƭƭ ŀŎŎƻƳǇƭƛǎƘƛƴg the

story objectives, or intervenes by causing the player action to fail and thus protect the

threatened causal link. According to (Paul et al., 2011)Σ ƛŦ aƛƳŜǎƛǎ Ŧŀƛƭǎ ŀ ǇƭŀȅŜǊΩǎ

action, she will be given a pre-authored reason for the failure (e.g. a gun jamming

preventing the player from killing an important character).

(Roberts and Isbell, 2008) claim that re-planning in Mimesis is expensive in any sizable

domain. Because of that, Mimesis builds re-planning policies in an opportunistic

fashion; when processing demands are low, the system pro-actively computes policies

for plans other than the one that is currently executing.

40

In contrast, DIEGESIS interleaves plan generation and plan execution, therefore re-

planning is happening in real time during execution for each individual agent when is

required. Furthermore, based on our evaluations, the re-planning solution we created

does not suffer from performance issues.

2.10.7. MIST

Multiplayer Interactive StoryTelling (MIST) (Paul et al., 2009, Paul et al., 2010, Paul et

al., 2011) ƛǎ άŀ ǎȅǎǘŜƳ ŦƻǊ ƛƴǘŜǊŀŎǘƛǾŜ ǎǘƻǊȅǘelling in a dynamic virtual world where

NPCs can perform tasks autonomously to satisfy their internal motivations, as well as

ƛƴǘŜǊŀŎǘƛƴƎ ǿƛǘƘ ŜŀŎƘ ƻǘƘŜǊ ƛƴ ǾŀǊƛƻǳǎ ǿŀȅǎέΦ Lǘ uses AI planning methods for story

creation and revision and character role selecǘƛƻƴΦ ¢ƘŜ ǎȅǎǘŜƳΩǎ ǇǊƻǇƻǎŜŘ ŀǊŎƘƛǘŜŎǘǳǊŜ

has two main components: a game engine and a drama manager.

The game engine handles the display and update of game world objects and also

interacts with characters and the drama manager. Each character in the game

operates under a Belief-Desire-Intention (BDI) framework and has its own HTN planner

in order to facilitate the creation of a dynamic game world where characters can

interact with each other in a non-deterministic way.

Generally, characters use their planners to decide how to perform tasks or achieve

goals assigned to them by either the drama manager or the game engine. Characters

also convert their local knowledge (acquired by sensors) into a partial game state

representation for use by its planner. The planner uses this information to guide the

decomposition of an assigned task into primitive tasks whose preconditions are known

to be satisfied. All possible plans generated by the planner are ranked in order of

decreasing plan cost; in case there is more than one possible plan, the planner returns

one that minimises the total cost of all primitive tasks in the plan.

The drama manager has a hierarchical network of story elements, which can be pieced

together in different ways to form a story. The current state of the game world is

passed to the drama manager periodically from the game engine. Then, the drama

manager attempts to create a story that fits the current state of the world via its HTN

planner, and the network of story elements. The authors argue that using an HTN

planner in this way (i.e. as part of the drama management subsystem) could

41

potentially enable the creation of many story variants based on the state of the world

at a particular time.

In MIST, NPCs that have been assigned roles in a story plan are prevented from

disrupting the story by being prevented to attempt to achieve their internal desires

while the story is in progress. When it detects an invalid plan step resulting from the

actions of non-story characters in the story plan, the drama manager attempts to

repair the on-going story. The repaired plan is required to be consistent with the steps

that have already been completed in the original plan.

The authors have considered two different approaches to detecting invalid plan steps

while a story is in progress: The first is to look one step ahead to check that the

preconditions of the next plan step are satisfied. An important limitation of this

approach is that because of commitments made by characters close to the point of

(potential) failure, a consistent plan repair may not be possible.

The second approach is that the drama manager continuously checking the

preconditions of all future plan steps. This kind of detection increases the chance of

finding a consistent plan repair because it enables the drama manager to avoid

commitments being made by story characters close to the point of failure; therefore it

is more likely to find a consistent plan repair that bypasses the invalid step. This

approach applies though only to situations where a plan step is made invalid by the

deletion of a precondition that was true in the initial state from which the story was

generated; it does not apply to situations where a plan step is made invalid by the

deletion of a precondition achieved by an earlier plan step.

The approach that they ended up using removes the unsatisfied precondition from the

initial state and uses the HTN planner to search for an alternative story plan that

begins with the same steps as the original plan, up to (and including) the most recent

step that has already been completed. The new story plan is both consistent with the

original plan and generated from the same (correctly authored) HTN, thus ensuring

that plot coherence is maintained.

In DIEGESIS, we have modelled our agents (representing characters in the story) to be

autonomous and opportunistic, generating and trying to execute plans considering

42

only their own needs, as we believe that this provides a more realistic approach to the

generation of a story, since each agent acts as a real person. Therefore, in our context

it does not make sense to predict and prevent plan failures since a plan can fail either

due to user intervention (which cannot be predicted), or intervention by other

characters, or ςin some casesς pure chance (discussed in section 4.10). In any case,

ŦŀƛƭŜŘ Ǉƭŀƴǎ ŘǳŜ ǘƻ άǳƴǇǊŜŘƛŎǘŜŘέ ǊŜŀǎƻƴǎ ŀǊŜ ǊŜŀƭƛǎǘƛŎ ŀƴŘ ƘŀǾŜ ǘƘŜ ǇƻǘŜƴǘƛŀƭ ǘƻ ŜƴǊƛŎƘ

a generated narrative.

Another difference between MIST and DIEGESIS is in the way we deal with plan repair.

In our re-planning solution, as we interleave plan generation and plan execution, when

a plan fails, we discard the already completed actions and we only re-plan for the

failed (and some of the pending ς discussed in detail in section 4.14) actions of the

plan, merging the new partial plan with the unexecuted portion of the original plan.

FinaƭƭȅΣ ǎƛǘǳŀǘƛƻƴǎ ƭƛƪŜ ǘƘŜǎŜ ŘŜǎŎǊƛōŜŘ ōȅ aL{¢ ƛƴ ǿƘƛŎƘ άŀ Ǉƭŀƴ ǎǘŜǇ ƛǎ ƳŀŘŜ ƛƴǾŀƭƛŘ ōȅ

ǘƘŜ ŘŜƭŜǘƛƻƴ ƻŦ ŀ ǇǊŜŎƻƴŘƛǘƛƻƴ ŀŎƘƛŜǾŜŘ ōȅ ŀƴ ŜŀǊƭƛŜǊ Ǉƭŀƴ ǎǘŜǇέ ŀǊŜ ƴƻǘ ŀǇǇƭƛŎŀōƭŜ in

DIEGESIS, since it is not possible to generate a valid plan where the effects of a

previous action renders a future action (in the same plan) invalid.

Although the system was designed to use a set of HTN planners, in the initial

implementation of the system (Paul et al., 2009) the authors used JPlan, a Java

implementation of Graphplan, as the planning component of the system. As they

explain, they needed a Java implementation of an algorithm for their first prototype,

and JSHOP2 which is the most popular Java-based HTN planner had limitations when it

comes to real-time planning that was needed in the system.

Although that the algorithm is efficient and optimal, it has been identified by the

creators of the system to have limited features for the purposes of their research. It

ǿŀǎ ŀƭǎƻ ǎǘŀǘŜŘ ǘƘŀǘ άǘƘŜ ƭŀŎƪ ƻŦ ŜȄǇǊŜǎǎƛǾƛǘȅ ƛƴ ǘƘŜ ƻǇŜǊŀǘƻǊ ƛƴǇǳǘ ƭŀƴƎǳŀƎŜ ǊŜǎǘǊƛŎǘŜŘ

ǎŎŀƭŀōƛƭƛǘȅέΦ The creators decided that, given the limitations of the graph planning

algorithm, the most flexible solution would be the creation of a HTN planner in a

subsequent implementation of the system, which they did in (Paul et al., 2010),

implementing an HTN planner written in Prolog.

43

2.10.8. OTHELLO

Othello (Chang and Soo, 2009, Chang and Soo, 2008) is a multi-agent simulation game

environment where narratives arise on the fly from spontaneous interactions among

characters during the game.

An agent-based and plan-based storytelling approach has been used and assumes that

plans serve as a proper representation of narratives and that a narrative is the result of

plan execution by individual AI characters. A simulation session is considered to

contain multiple autonomous planning agents who are given mental states, personality

traits and social relations. Narratives are expected to be the total sequence of actions

in the plans that the agents make and execute.

hǘƘŜƭƭƻΩǎ ŎƘŀǊŀŎǘŜǊ Ǉƭŀƴǎ ŜƳōƻŘȅ ǘƘŜ ǎƻŎƛŀƭƛǘȅ ƻŦ ƴŀǊǊŀǘƛǾŜǎΣ ŀƴŘ ŀǊŜ ŎŀƭƭŜŘ ǎƻŎƛŀƭ

plans. A social plan realises a common narrative idiom that a character works to bring

change to another character. Although a persistent game universe can develop

intertwining narrative units where multiple characters exist (with all of them having

their own social plans), Othello limits the focus on generating separate narrative units,

each of which have a main character who is the builder of the social plan. A narrative

unit is considered to be the result of the execution of a social plan.

As an example of the size of a social plan, the authors mention that the simplified plot

ƻŦ {ƘŀƪŜǎǇŜŀǊŜΩǎ hǘƘŜƭƭƻ όƛΦŜΦ ǘƘŜ ƳŀƴƛǇǳƭŀǘƛǾŜ ǎŎƘŜƳŜ ƻŦ LŀƎƻ ŀƎŀƛƴǎǘ hǘƘŜƭƭƻύ ǘƘŀǘ

they used in their simulations can be viewed as one social plan.

To generate these social plans and allow NPC agents to engage in story-like activities

by influencing others during a game session, Othello uses HSSP (the authors mention

that in a previous version of the system they were using the Optop planner), a

planning tool which interleaves social reasoning with state-space forward-search

planning, guided by an adapted version of the HSP heuristic. As the authors explain,

άŀǇŀǊǘ ŦǊƻƳ ǘƘŜ ƘŜǳǊƛǎǘƛŎǎ ǇŀǊǘΣ ǘƘŜ ǇƭŀƴƴƛƴƎ ǇǊƻŎŜǎǎ ƛǘǎŜƭŦ ƛǎ ŀ ƴƻǊƳŀƭ ŦƻǊǿŀǊŘ ǎŜŀǊŎƘ

ƛƴǘƻ ǘƘŜ ǎǘŀǘŜ ǎǇŀŎŜέΦ

Finally, the authors discuss that although the scalability of the total narrative length is

not within the scope of their research, their findings suggest a negative

44

correspondence between the number of actions and the social plan length using a

classical planning approach like HSSP.

2.10.9. PASSAGE

PaSSAGE (Player-Specific Stories via Automatically Generated Events) (Thue et al.,

2007) is an interactive storytelling system that άuses player modelling to automatically

ƭŜŀǊƴ ŀ ƳƻŘŜƭ ƻŦ ǘƘŜ ǇƭŀȅŜǊΩǎ ǇǊŜŦŜǊǊŜŘ ǎǘȅƭŜ ƻŦ Ǉƭŀȅ ŀƴŘ ǘƘŜƴ ǳǎŜǎ ǘƘŀǘ ƳƻŘŜƭ ǘƻ

ŘȅƴŀƳƛŎŀƭƭȅ ǎŜƭŜŎǘ ǘƘŜ ŎƻƴǘŜƴǘ ƻŦ ŀƴ ƛƴǘŜǊŀŎǘƛǾŜ ǎǘƻǊȅέΦ PaSSAGE uses a plot-based

approach, including personalisation of the narrative experiences in the form of

selection of events which matches the player preferences.

According to (Roberts and Isbell, 2008), the system uses a three level hierarchy for

ŘŜŦƛƴƛƴƎ ŀ ƴŀǊǊŀǘƛǾŜ ǎƛƳƛƭŀǊ ǘƻ ǘƘŜ ƛŘŜŀ ƻŦ CŀœŀŘŜΩǎ narrative seqǳŜƴŎƛƴƎΥ άǘƘŜ ŜǾŜƴǘ

sequence level where the components of the story are selected; the structure level

where the details concerning the time and place of story events are determined; and

lastly, the behaviour level where the actions of individual characterǎ ŀǊŜ ŘŜǘŜǊƳƛƴŜŘέΦ

PaSSAGE uses some pre-defined player types (Fighter, Method Actor, Power Gamer,

Storyteller, and Tactician) and during gameplay, it learns a player model expressed as

weights for each of the above player types. PaSSAGE generates its stories using a

library of possible events, called encounters, each of which has been pre-filled by an

author with a number of possible events that would be suitable for each player type.

Each encounter has one or more branches (i.e. potential courses of action for the

player to take in that situation). The encounters follow a particular order depending on

their type (Arinbjarnar et al., 2009). As it is mentioned in (Roberts and Isbell, 2008),

this approach makes the stories hard to author, since it requires exhaustive and rich

annotations of many sub-plots.

While searching for an encounter to run, the system examines each ŜƴŎƻǳƴǘŜǊΩǎ ǎŜǘ ƻŦ

branches, and chooses the encounter whose branch fits the player model the best, via

an inner-product calculation. Also, to help maintain a strong sense of story, encounters

are grouped into sets.

45

The system is independent of time, place, and actor identity since the encounters are

scripted generically and their details (e.g. when and where an encounter should occur)

are determined at runtime.

!ǎ ŀƴ ŜȄǇŜǊƛƳŜƴǘΣ ǘƘŜ ŀǳǘƘƻǊǎ ƳƻŘŜƭƭŜŘ ŀ ƳƻŘƛŦƛŜŘ ǾŜǊǎƛƻƴ ƻŦ ǘƘŜ ŦŀƛǊȅ ǘŀƭŜ άƭƛǘǘƭŜ ǊŜŘ

ridƛƴƎ ƘƻƻŘέ and visualised using the toolset provided by the role playing game

Neverwinter Nights. Their finalised model consists of 20 possible lines of gameplay

called paths, with five different endings.

According to (Barber and Kudenko, 2009), the player model used in PaSSAGE is less

likely to be applicable in less computer game-oriented domains, since it is based

specifically on computer game players.

2.11. DIS SYSTEMS COMPARISON

The following table (1) provides an overview of the features of the related DIS systems

discussed in the previous section. The presented features are the following:

¶ Story Model: The story model of the system, which (as discussed in section 2.1)

can be either character-based, or plot-based, or a combination of both.

¶ Type of Planning: Either ŎŜƴǘǊŀƭƛǎŜŘΣ ƳŜŀƴƛƴƎ ǘƘŀǘ ǘƘŜ ǎȅǎǘŜƳΩǎ ǇƭŀƴƴŜǊ

generates a combined plan for all of the involved agents, either decentralised,

meaning that each of the agents generate its own plan.

¶ Re-planning: Whether the system performs re-planning or not.

¶ Planning Algorithm: The planning algorithm used to generate plans of actions.

¶ Representation Language: The representation language used to model the

story world.

¶ Perspective: Whether the stories are presented via a first-person perspective,

i.e. the player experiences parts of the story which are related to one character,

or via a third-person perspective, i.e. the player can experience the story

irrelevant of a main character.

¶ Interactivity: How the end-user can interact with the system.

¶ Extendibility: If the system provides tools to connect it with other systems, or

generate new stories.

¶ Audience: The types of audience the system is designed for.

46

DIS System Story Model
Type of
Planning

Planning
Algorithm

Representation
Language

Re-planning Perspective Interactivity Extendibility Audience

Fabulator Plot-based Centralised
Initially A*,

then Metric-
FF

Initially STRIPS
& ADL, then

PDDL

Yes, from
scratch

First-
person

Player controls
only

protagonist;
the rest are

NPCs

No
authoring
tools; the
PDDL files

can be
modified

General

CŀœŀŘŜ

Plot-based
with some
character-

based
elements

No
information

Reactive
behaviour
planner

ABL
No

information
First-

person

Player controls
only

protagonist;
the rest are

NPCs

No tools for
extendibility

Adults

GADIN
Character-

based
Continuous
centralised

Adaptation
of

Graphplan
STRIPS-like

Yes, without
information

about its
mechanics

Third-
person

Player input to
resolve

dilemmas

No tools,
new stories
are possible

but they
need to be
hard coded

Soap opera
fans and
children

I-
Storytelling

Character-
based

Initially
decentralised,

then no
information

Initially HTN
(depth-first
left-to-right
search with
heuristics),
then HSP

Initially HTN,
then STRIPS-

based

Yes, initially

by
backtracking
in the HTN,

then
without

information
about its

mechanics

Third-
person

Player can
wander in the
3D world as an
invisible avatar

and interact
with objects;

speech input to
provide advice

to NPCs

No
information

Sitcom fans

47

LOGTELL

Plot-based
with some
character-

based
elements

Centralised
Non-linear
planner in

Prolog
Prolog

No
information

Third-
person

Indirect/passive
interaction

No tools
available

Anyone
(depending
on story)

Mimesis Plot-based Centralised
Longbow
planning
system

No information

Yes,
monitors

game world
for threats
and builds
solutions

pro-actively

First-
person

Player controls
only

protagonist;
the rest are

NPCs

No
information

No
information

MIST
Character-

based
Decentralised

Initially
Graphplan,
then HTN
written in

Prolog

Initially STRIPS,
then Prolog

Yes, by
trying to

predict and
repair in

advance a
potentially
invalid plan

Third-
person

No information
No

information

Computer
game

players

Othello
Character-

based
Decentralised

HSSP (state-

space
forward-
search

planning,
guided by

an
adaptation

of HSP)

PDDL No
No

information
No information

No
information

No
information

48

PaSSAGE Plot-based
No

information
No

information
No information

No
information

First-
person

Player controls
only

protagonist;
the rest are

NPCs

No
information

Computer
game

players

DIEGESIS Hybrid Hybrid

New
planner

based on
Graphplan

PDDL and XML

Yes,
interleaving

plan
generation
and plan
execution

Both first
and third-
person,

including
vantage
points

Player can
make choices

for any
character or

event

PDDL and
XML editors

Anyone
(depending
on story)

Table 1: Feature sets of Digital Interactive Storytelling systems

49

In the previous section we reviewed and critically analysed 9 state-of-the-art DIS

systems and in Table 1 we combined and presented a set of their features (analysed at

the beginning of this section) for comparison purposes.

Regarding story models, 4 of the systems (GADIN, I-Storytelling, MIST, and Othello) are

using a pure character-based approach and 3 of them (Fabulator, Mimesis, and

PaSSAGE) a pure plot-based approach. The remaining 2 systems (CŀœŀŘŜ ŀƴŘ [hD¢9[[ύ

claim that they are using a plot-based approach combined with some character-based

elements.

DIEGESIS uses a hybrid approach, combining both plot-based and character-based

elements. More specifically, as we will discuss in section 4.1, the game world (created

by a storyteller) is organised in multiple levels which can represent possible parts of a

story. Typically, a level represents a broad area where a number of events in a story

may occur. The levels are organised in a hierarchical manner; each level may include

potential successor levels which have a logical connection with it. As soon as a level is

complete, the framework makes an informed decision and based on what happened

previously during the generation and execution of the story, either loads a new level or

ends the story (the detailed process is discussed in section 4.7). Using this plot-based

approach, DIEGESIS always has a high-level control over the overall structure of the

story, being able to transition the story between levels which make sense, producing a

coherent narrative.

The authors of (Carmichael and Mould, 2014) designed a framework focusing on

ŘŜŎƛŘƛƴƎ ǿƘƛŎƘ ǎŎŜƴŜǎ όŀ ŎƻƴŎŜǇǘ ǎƛƳƛƭŀǊ ǘƻ 5L9D9{L{Ω ƭŜǾŜƭǎύ ǘƻ ƻŦŦŜǊ ǘƻ ǇƭŀȅŜǊǎ ƴŜȄt.

They use a similar plot-ōŀǎŜŘ ŀǇǇǊƻŀŎƘ ŀƴŘ ǘƘŜƛǊ ŦǊŀƳŜǿƻǊƪ άǳǎŜǎ ǎƛƳǇƭŜ ŎŀƭŎǳƭŀǘƛƻƴǎ

ǘƻ ǇǊƛƻǊƛǘƛǎŜ ǎŎŜƴŜ ƴƻŘŜǎέΦ ¢ƘŜƛǊ ǎŎŜƴŜǎ όǿƘƛŎƘ ŀǊŜ ŘŜǎƛƎƴŜŘ ōŜŦƻǊŜƘŀƴŘ ōȅ ŀ

storyteller) are loosely connected to each other and they include values that can be

modified during runtime to prioritise them over others, as well as preconditions that

need to be met so the scene can be applicable.

¢ƘŜ Ƴŀƛƴ ŘƛŦŦŜǊŜƴŎŜ ōŜǘǿŜŜƴ ǘƘŀǘ ŦǊŀƳŜǿƻǊƪ ŀƴŘ 5L9D9{L{Ω ǘǊŀƴǎƛǘƛƻƴƛƴƎ component

is that in (Carmichael and Mould, 2014)Ωǎ framework, when a scene is complete the

player is presented with the potential scenes and is asked to select which one she

wants to execute next, knowing beforehand the content of each scene, a concept

50

ǎƛƳƛƭŀǊ ǘƻ ǘƘŜ ǉǳŜǎǘǎ ƛƴŎƭǳŘŜŘ ƛƴ ǊƻƭŜ ǇƭŀȅƛƴƎ ƎŀƳŜǎΦ Lƴ ŎƻƴǘǊŀǎǘΣ 5L9D9{L{Ω ǘǊŀƴǎƛǘƛƻƴƛƴƎ

component makes the choice of which level to execute next itself based only on what

happened previously in the story and the preconditions set by the storyteller for each

level, something that we believe it adds both to the generation of a coherent narrative

and to the emotion of unexpected of the player since she does not know what will

happen next based on choices she made during the execution of the story.

Continuing with the story model discussion, in DIEGESIS, when a level is loaded to be

executed, we move closely to a character-based model; each agent may have some

initial intentions, but is able to operate autonomously and opportunistically to achieve

ƛǘǎ ƎƻŀƭǎΦ ¢ƘŜ ŦǊŀƳŜǿƻǊƪ ǿƻƴΩǘ ƛƴǘŜǊŦŜǊŜ ǿƛǘƘ ǘƘŜ ŘŜŎƛǎƛƻƴǎ ƻŦ ŀƴ ŀƎŜƴǘ όeven if they

are imposed by the player or the Oracle ς discussed in section 4.10) even if they mean

that the story cannot progress any further, although ςin the bottom lineς that is based

on the story modelling performed by the storyteller. The authoring process in DIEGESIS

provides enough freedom to the storyteller to operate whichever way she wants;

either to create a relatively rigid storyline without much room for highly diverse

narratives, or to model a story in a way that everything is fluid; a lot of player/oracle

choices, several potential goal injections based on actions that may occur, and several

uncertain actions; all of these features can contribute to unexpected situations and

more emergent narratives.

Moving to types of planning, 4 systems (Fabulator, GADIN, LOGTELL, and Mimesis) are

performing a centralised planning, 3 systems (I-Storytelling, MIST, and Othello) a

decentralised planning, and the rest 2 systems (CŀœŀŘŜ and PaSSAGE) do not provide

any information about it.

DIEGESIS follows a hybrid approach. On the plan generation level, it performs a

decentralised planning; each agent (represents a character in the story) is modelled to

be autonomous, opportunistically generating and executing plans based on its own

goals. We believe that this provides a more realistic approach to the generation of a

story, since each agent acts as a real person, generating an autonomous plan

considering its own needs.

In the case of plans execution though, our approach borrows the control and

coordination concepts from the centralised planning approach. Although the plans are

51

ƛƴŘƛǾƛŘǳŀƭΣ ǿŜ ǿŀƴǘ 5L9D9{L{ ǘƻ ŘƛŎǘŀǘŜ ǘƘŜ ŜȄŜŎǳǘƛƻƴ ǇƘŀǎŜ ƻŦ ǘƘŜ ŀƎŜƴǘΩǎ Ǉƭŀƴǎ

(therefore the generation of the story) so the system can have a better control and

understanding of what happens during the generation/execution of the story, and to

be able to interfere if needed.

The systems use a variety of planning algorithms. CŀōǳƭŀǘƻǊΩǎ ƛƴƛǘƛŀƭ ƛƳǇƭŜƳŜƴǘŀǘƛƻƴ

was using A*, but then moved to Metric-FF. GADIN uses an adaptation of Graphplan.

aL{¢Ωǎ ƛƴƛǘƛŀƭ ƛƳǇƭŜƳŜƴǘŀǘƛƻƴΣ ŀƭǘƘƻǳƎƘ ƛǘ ǿŀǎ ŘŜǎƛƎƴŜŘ ŦƻǊ I¢bΣ ǳǎŜŘ ŀƭǎƻ ŀ WŀǾŀ

implementation of Graphplan, but afterwards its authors created an HTN planner

written in Prolog. LOGTELL uses a non-linear planner written in Prolog as well, and

Mimesis the Longbow planning system. I-{ǘƻǊȅǘŜƭƭƛƴƎΩǎ ƛƴƛǘƛŀƭ ƛƳǇƭŜƳŜƴǘŀǘƛƻƴ ǿŀǎ

using an HTN planner (using depth-first left-to-right search with heuristics), but since

moved to HSP. Othello uses HSSP, which is a state-space forward-search planning

system, guided by an adaptation of HSP. CŀœŀŘŜ ǳǎŜǎ ŀ Ǌeactive behaviour planner, and

finally, PaSSAGE does not provide information about its algorithm.

For DIEGESIS, we have created a planner which consists of a planning and a re-planning

algorithm, ŀōƭŜ ǘƻ ƎŜƴŜǊŀǘŜ Ǉƭŀƴǎ ƻŦ ŀŎǘƛƻƴǎ ōŀǎŜŘ ƻƴ ŜŀŎƘ ŀƎŜƴǘΩǎ ǎǘŀǘŜ ŀƴŘ ŎƻƴǘŜȄǘΣ

considering both the current world state and the available resources. The planner is

aware of the available time (duration) an agent/character has for a plan when it is

asked to generate one. Our planning algorithm is based on Graphplan for solutions

expansion, and backtracking heuristic search for plan extraction, enriched with

constraints satisfaction and dynamic opportunistic restart when required. The Planner

is discussed in detail in section 4.14.

Regarding representation languages, most of the systems (Fabulator, GADIN, I-

Storytelling, MIST, and Othello) use ςor used in some of their versionsς either the

STRIPS language or adaptations of it, or languages derived from it like ADL and PDDL. A

couple of systems (LOGTELL and the second version of MIST) represent their

storyworlds in Prolog, the same language their planner is implemented with. Finally,

the first version of I-Storytelling was modelled using ŀƴ I¢b ǊŜǇǊŜǎŜƴǘŀǘƛƻƴΣ CŀœŀŘŜ

uses ABL, and a couple of systems (Mimesis and PaSSAGE) do not provide such

information.

52

DIEGESIS uses a combination of modelling approaches: The basic information for every

level of a story is modelled using PDDL and further information such as information for

each character, goal injection rules, choices and their fall-backs, etc. in XML. All the

representation information including examples is documented in chapter 4.

In terms of re-planning, 3 systems (CŀœŀŘŜΣ [hD¢9[[Σ ŀƴŘ tŀ{{!D9) provide no

information whether they support re-planning or not, hǘƘŜƭƭƻ ŘƻŜǎƴΩǘ ǎǳǇǇƻǊǘ re-

planning, and GADIN mentions re-planning without giving much information about its

mechanics. The rest implement different re-planning approaches: Fabulator re-plans

from scratch; I-Storytelling by backtracking in the HTN; and both Mimesis and MIST

pro-actively, trying to predict and repair faulty plans in advance.

5L9D9{L{ ŘŜŀƭǎ ǿƛǘƘ ǘƘŜ ŜȄŜŎǳǘƛƻƴ ƻŦ ǘƘŜ ŀƎŜƴǘǎΩ Ǉƭŀƴǎ ƛƴ ŀ ƘƛƎƘŜǊ ƭŜǾŜƭΣ ŀƴŘ ǿƘŜƴ ŀ

part of a plan fails, instructs the agent to re-plan based on its current knowledge of the

state of the world. Considering that we modelled each agent to act as a real person in

the way they generate and try to execute plans, it does not make sense (in our

context) to predict and prevent plan failures, since a plan can fail either due to user

intervention (which cannot be predicted), or intervention by other characters, or ςin

some casesς pure chance (discussed in section 4.10). In any case, failed plans due to

άǳƴǇǊŜŘƛŎǘŜŘέ ǊŜŀǎƻƴǎ ŀǊŜ ǊŜŀƭƛǎǘƛŎ ŀƴŘ ƘŀǾŜ ǘƘŜ ǇƻǘŜƴǘƛŀƭ ǘƻ ŜƴǊƛŎƘ ŀ ƎŜƴŜǊŀǘŜŘ

narrative.

In our re-planning solution, as we interleave plan generation and plan execution, when

a plan fails, we discard the already completed actions and we only re-plan for the

failed (and some of the pending ς discussed in detail in section 4.14) actions of the

plan, merging the new partial plan with the unexecuted portion of the original plan.

Regarding perspectives, Othello does not provide information about it, half of the

ǊŜƳŀƛƴƛƴƎ ǎȅǎǘŜƳǎ όCŀōǳƭŀǘƻǊΣ CŀœŀŘŜΣ aƛƳŜǎƛǎΣ ŀƴŘ tŀ{{!D9ύ ǳǎŜ ŀ ŦƛǊǎǘ-person

perspective to present their stories to the player, while the other half (GADIN, I-

Storytelling, LOGTELL, and MIST) use a third-person perspective.

In its default mode, DIEGESIS presents the generated story as a whole. At any point

during the generation of the story the player is able to view any action that a character

53

is executing, make choices related to any character, as well as view details about them

(i.e. their current goals and plan). These abilities constitute a third-person perspective.

But, apart from the default mode, we want to provide the player with a first-person

ǇŜǊǎǇŜŎǘƛǾŜ ŀǎ ǿŜƭƭΣ ǘƘŀǘΩǎ ǿƘȅ ǿŜ ŎǊŜŀǘŜŘ ǘƘŜ ŎƻƴŎŜǇǘ ƻŦ ǾŀƴǘŀƎŜ Ǉƻƛƴǘǎ όŘƛǎŎǳǎǎŜŘ ƛƴ

detail in section 4.12). If the player selects to view the story from the vantage point of

a character she will view only the story outcome which is related to the chosen

character, and will be available to interact with the story (i.e. make choices) only when

an action is related to the story character. The generation of the rest of the story

(which is unrelated to the selected character) will continue normally in the background

(with the exception that any choices concerning other characters supposed to be made

by the player will be made by the Oracle instead), yet invisible to the player. The player

is able to choose between different vantage points or return to a full story view freely

during run-time, allowing linear storyline with differing endings, interleaved storylines,

and even flashbacks.

In terms of interactivityΣ ƛƴ Ƴƻǎǘ ƻŦ ǘƘŜ ǎȅǎǘŜƳǎ όCŀōǳƭŀǘƻǊΣ CŀœŀŘŜΣ aƛƳŜǎƛǎΣ ŀƴŘ

PaSSAGE) the player is able to control only the protagonist; the rest of the characters

are NPCs. In GADIN, the only player input is to resolve dilemmas. In LOGTELL there is

only indirect/passive interaction during the generation of a narrative; in the

dramatization phase there is no user interaction. In I-Storytelling, the player is able to

wander in the 3D world as an invisible avatar and interact with objects, as well as to

provide advice to NPCs via speech input. Finally, MIST and Othello does not provide

any information on interactivity.

In DIEGESIS, there is not a main character that the player controls/observes; instead,

the player can make choices (defined by the storyteller) for actions that can affect

every character in the active story. Also, as we already explained before, the player is

allowed to select and view the story from the perspective of any of the characters (in

the default view mode, the story is presented as a whole), and to be able to switch

between them without any limitations, during the generation of the narrative.

As we just mentioned, DIEGESIS includes a concept simƛƭŀǊ ǘƻ D!5LbΩǎ ŘƛƭŜƳƳŀǎΣ ƛƴ ǘƘŜ

ŦƻǊƳ ƻŦ άŎƘƻƛŎŜǎέΦ ¢ƘŜ ǎǘƻǊȅǘŜƭƭŜǊ Ŏŀƴ ƳŀǊƪ ŀƴȅ ƪƛƴŘ ƻŦ ŀŎǘƛƻƴ ŀǎ ŀ ŎƘƻƛŎŜΦ ²ƘŜƴ ǎǳŎƘ

an action is about to occur, DIEGESIS either makes a choice itself, or asks the player to

54

make a choice whether the action will happen or not. The idea behind choices in

DIEGESIS is that important decisions throughout the story should be marked as choices

so they can potentially alter the outcome of the generated narrative. User

interferences are always accepted by DIEGESIS and they affect the generation and

execution of the story in real time so the player will be able to form the story in the

way she wants, no matter how much impact they have on the generated narrative.

Regarding the extendibility of the systems, the information provided by the systems

themselves is scarce. According to (Cooper, 2011), Fabulator has source files for the

planner which can be modified but no editoǊǎ ƻǊ ǎƻǳǊŎŜ ŎƻŘŜ ŘƛǎǘǊƛōǳǘƛƻƴΣ CŀœŀŘŜ ƛǎ

not designed to be modified therefore there are no tools available, GADIN provides no

tools but new stories are possible if hard coded, and LOGTELL has no tools available.

The rest of the systems (I-Storytelling, Mimesis, MIST, Othello, and PaSSAGE) do not

provide such information.

To make the authoring process easier for DIEGESIS, we are using a PDDL editor created

by (Cooper, 2011), and although the authoring process in XML is quite easier

compared to PDDL, we have designed an XML editor as an extension to the PDDL one.

Finally, regarding audienceΥ CŀōǳƭŀǘƻǊ Ƙŀǎ ŀ ƎŜƴŜǊŀƭ ŀǳŘƛŜƴŎŜΤ CŀœŀŘŜΩǎ ŀǳŘƛŜƴŎŜ ƛǎ

adults; GADIN fits best soap opera fans (and possible children based on a children story

they modelled); I-{ǘƻǊȅǘŜƭƭƛƴƎΩǎ ŀǳŘƛŜƴŎŜ ƛǎ ǎƛǘŎƻƳ Ŧŀƴǎ όǎƛƴŎŜ ǘƘŜȅ ƳƻŘŜƭƭŜŘ ǎƛǘǳŀǘƛƻƴǎ

based on the famous sitcom Friendsϰ)Τ [hD¢9[[Ωǎ ŀǳŘƛŜƴŎŜ Ŏŀƴ ōŜ ŀƴȅƻƴŜ ŘŜǇŜƴŘƛƴƎ

on the sǘƻǊȅΤ aL{¢Ωǎ ŀƴŘ tŀ{{!D9Ωǎ ŀǳŘƛŜƴŎŜ ƛǎ ŎƻƳǇǳǘŜǊ ƎŀƳŜ ǇƭŀȅŜǊǎΤ aƛƳŜǎƛǎ ŀƴŘ

Othello does not provide enough information to categorise them.

We believe that DIEGESIS is both suited for movie-like experiences including relatively

long-length finite stories, as well as shorter stories, since it provides to the storyteller

the flexibility required to experiment with multiple genres and lengths of stories.

¢ƘŜǊŜŦƻǊŜΣ 5L9D9{L{Ω ŀǳŘƛŜƴŎŜ ŎƻǳƭŘ ōŜ ŀƴȅƻƴŜΣ ŘŜǇŜƴŘƛƴƎ ƻƴ ǘƘŜ ǎǘƻǊȅΦ

2.12. RE-PLANNING OUTSIDE OF THE DIS FIELD

Moving away from the DIS field, there is research dealing with re-planning in several

different fields, using multiple approaches.

55

For example, in (Zhang et al., 2007) a distributed graph planning algorithm is used by

the agents to generate a plan collectively in a distributed manner, and re-plan

accordingly. As we previously mentioned, DIEGESIS instructs each agent to generate

and execute a plan individually. If at any point during execution the plan fails, re-

planning occurs only for an individual agent.

A hybrid FastForward and HTN re-planning approach is explained in (Klusch et al.,

2005, Klusch and Renner, 2006), in which the re-planning is being performed off-line.

In (Van Der Krogt and De Weerdt, 2005), the re-planning approach is to generate a

number of sub-plans (by removing actions from the initial plan), and then calculate

heuristic values for each one of them to decide which is the best candidate to expand,

so a new valid plan can be constructed.

In (Fox et al., 2006), the authors use a solution based on LPG algorithm and investigate

the efficiency of repairing a plan versus re-planning from scratch. The approach

considers plans which have their initial state and goals modified, and do not focus on

re-planning during the execution of a plan.

As we already mentioned, our solution is focused on re-planning during the execution

of a plan in real time. The re-planning is being performed using the planner we have

created and is based on Graphplan for solutions expansion, and backtracking heuristic

search enriched with constraints satisfaction and dynamic opportunistic restart when

required.

In this chapter we presented the background and the related work of our research

area. More specifically, we discussed about the field of DIS, about multi-agent systems

and presented some of the relevant agent architectures, and about DIS-related as well

as multi-agent-related planning and re-planning. We also presented some of the

planning algorithms which are typically used in DIS systems, along with some of the

representation languages used by them. Finally, we presented some examples of re-

planning outside of the DIS field, and we surveyed and critically assessed a number of

DIS systems, stating their relation to our own work. In the next chapter, we will discuss

the requirements and specifications of our DIS framework.

56

3 DIEGESIS DIS FRAMEWORK

In this chapter, we document the requirements and specifications of our multi-agent

Digital Interactive Storytelling (DIS) framework, called DIEGESIS. The functionality of

ǘƘŜ ŦǊŀƳŜǿƻǊƪΩǎ ŎƻƳǇƻƴŜƴǘǎ ǿƛƭƭ ōŜ ŘŜǎŎǊƛōŜŘ ƛƴ ǘƘŜ ƴŜȄǘ ŎƘŀǇǘŜǊΦ

In the three chapters where we describe our framework in detail (i.e. chapters 3, 4,

and 5), we used a number of UML diagrams, using the notation and recommendations

made by (Fowler, 2003). More information about the use of UML in this thesis can be

found in Appendix A.

To properly design our framework, we need to think about who will use it and what

would be helpful to them, who will create the story, which are the needs of the stories

that our system will be able to manage, and which are going to be the key

requirements of our framework.

3.1. USER TYPES AND CHARACTERISTICS

There will be two types of users associated with DIEGESIS. Firstly, the person who

creates the structure of a story to be used by our framework, and secondly, the person

who is going to use our framework to interact with the already created story structure

and view the outcome of it.

For the rest of this thesis, wŜΩƭƭ Ŏŀƭƭ ǘƘŜ ŦƛǊǎǘ ǇŜǊǎƻƴ ǘƘŜ άstorytellerέΣ ŀƴŘ ǘƘŜ ǎŜŎƻƴŘ

ƻƴŜ ǘƘŜ άplayerέΦ ! ǎǘƻǊȅǘŜƭƭŜǊΣ ǘƻ ōŜ ŀōƭŜ ǘƻ ŘŜǎƛƎƴ ŀƴŘ ƳƻŘŜƭ ǘƘŜ ǎǘǊǳŎǘǳǊŜ ƻŦ ŀ ǎǘƻǊȅ

that will be used in our framework, needs to have knowledge of the PDDL and XML

languages. As we will discuss in section 4.18, to make it easier for the storyteller to

generate the story data we will design and use a PDDL and an XML editor.

On the other hand, the characteristics of the player are more relaxed, since the only

requirement is the ability to use a computer so he can interact with DIEGESIS via a

Graphical User Interface (GUI).

57

As it is illustrated in Figure 6, a use case for a storyteller is to use any available editors

to create a story to be used in DIEGESIS, and also play the story she created in

DIEGESIS, usually for testing purposes, a use case which they share with the player.

Figure 6: User types use case diagram

3.2. GENERAL SPECIFICATIONS

We want to build a scalable, abstract, DIS framework, which includes dynamic

narration and story generation.

¶ Scalable: The framework needs to be able to accommodate multiple characters

and levels. Therefore, during the implementation of our framework, we will

have to constantly evaluate its performance, to ensure that the framework

stays responsive and usable even when using large stories.

¶ Abstract: We intent to design the framework in the most abstract way we can,

to be able to be used with any kind of story, instead of being highly coupled

with one. That will enable the framework to be used in the future as a testing

framework for planning and re-planning algorithms used in DIS.

¶ Dynamic story generation and narration: The storyteller has to model the

elements of the story. Such elements can include characters, locations, items,

actions, goals of the characters, etc. Our framework should generate the

outcome of the story in a dynamic way (i.e. not predefined). To this end, we

will create and use a planning and re-planning solution, which fits the needs of

such a framework.

58

¶ Interactive: Since we are creating a Digital Interactive Storytelling framework,

the resulting framework needs to be interactive. We intent to include a way for

the player to be able to interact with the framework, altering the outcome of

the story based on any choices made, as well as a way to allow the player to

view and interact with the story from different vantage points.

¶ Different points of view: A different point of view (or vantage point) can

dramatically alter the experience for a spectator or a participant, since it can

change the context of a story. We want the player to be able to experience the

generated story in different ways: both viewing and participating in the story as

ŀ ǿƘƻƭŜΣ ŀƴŘ ǾƛŜǿƛƴƎ όŀƴŘ ƛƴǘŜǊŀŎǘƛƴƎ ǿƛǘƘύ ǘƘŜ ǎǘƻǊȅ Ǿƛŀ ǘƘŜ άŜȅŜǎέ ƻŦ ŀ ǎǇŜŎƛŦƛŎ

character, while the story progresses as usual. The framework should be able to

alter these vantage points during runtime.

¶ Decoupled: The components of our framework should be created in a

decoupled way when possible, to allow it to be embeddable to other systems.

We need to be able to replace some of our components with others. For

example, we want our framework to be able to be connected to a 3D virtual

world representation that will deal with a visual representation of the

generated story.

3.3. CHOICE OF BASE REPRESENTATION LANGUAGE

As we already discussed in chapter 2, there are many different description languages

for representing planning problems. We decided to use PDDL (Planning Domain

Definition Language) (Ghallab et al., 1998), which belongs to the STRIPS family, which

is extensively used among planning algorithms.

To model a story into a planning task for PDDL, the following components are required

as a minimum: a domain consisting of language requirements, types, predicates, and

actions; and a problem consisting of objects, and initial state, and a set of goals. Figure

7 contains a simple example of a domain and Figure 8 an example of a problem

definition.

59

(:requirements

 :typing :conditional - effects :equality :disjunctive - preconditions

)

(:types

 character location item object

)

(:predicates

 (at ?x - (either character item) ?y - location)

 (has ?x - character ?y - item)

)

(:action walk - to

 :parameters (?who - character ?from - location ?to - location)

 :precondition (and

 (at ? who ?from)

 (not (= ?from ?to))

)

 :effect (and

 (at ? who ?to)

 (not (at ? who ?from))

)

)

(:action pick - up

 :parameters (?who - character ?what - item ?where - location)

 :precondition (and

 (at ?who ?where)

 (at ?what ?where)

)

 :effect (and

 (has ?who ?what)

 (not (at ?what ?where))

)

)

(:action drop

 :parameters (?who - character ? what - item ?where - location)

 :precondition (and

 (at ?who ? where)

 (has ?who ?what)

)

 :effect (and

 (at ? what ?where)

 (not (has ?who ?what))

)

)
Figure 7: PDDL domain definition example

60

PDDL is a modular language. Each set of features are packed in a module, and can be

included and used in a domain if they are declared in the requirements declaration. If a

domain does not contain any requirements declaration, then the basic set of STRIPS

requirements is assumed. The version 3.0 of PDDL (which we will use in our

framework) includes the following requirements (Gerevini and Long, 2005):

¶ :strips ς Basic STRIPS-style adds and deletes.

¶ :typing ς To allow type names in declaration of variables.

¶ :negative-preconditions ς ¢ƻ ŀƭƭƻǿ άƴƻǘέ ƛƴ ǇǊŜŎƻƴŘƛǘƛƻƴ ŀƴŘ Ǝƻŀƭ ŘŜǎŎǊƛǇǘƛƻƴǎΦ

¶ :disjunctive-preconditions ς ¢ƻ ŀƭƭƻǿ άƻǊέ ƛƴ Ǝƻŀƭ ŘŜǎŎǊƛǇǘƛƻƴǎΦ

¶ :equality ς To ǎǳǇǇƻǊǘ άҐέ ŀǎ ōǳƛƭǘ-in predicate.

¶ :existential-preconditions ς ¢ƻ ŀƭƭƻǿ άŜȄƛǎǘǎέ ƛƴ Ǝƻŀƭ ŘŜǎŎǊƛǇǘƛƻƴǎΦΦ

¶ :universal-preconditions ς ¢ƻ ŀƭƭƻǿ άŦƻǊŀƭƭέ ƛƴ Ǝƻŀƭ ŘŜǎŎǊƛǇǘƛƻƴǎΦ

¶ :quantified-preconditions ς Combined declaration of existential and universal

preconditions.

¶ :conditional-effects ς To allow άǿƘŜƴέ ƛƴ ŀŎǘƛƻƴ ŜŦŦŜŎǘǎΦ

¶ :fluents ς To allow function definitions and use of effects using assignment

operators and arithmetic preconditions.

¶ :adl ς Combined declaration of strips, typing, negative preconditions,

disjunctive preconditions, equality, quantified preconditions, and conditional

effects.

¶ :durative-actions ς To allow durative actions.

¶ :derived-predicates ς To allow predicates whose truth value is defined by a

formula.

¶ :timed-initial-literals ς To allow the initial state to specify literals that will

become true at a specified time point (implies durative-actions).

¶ :preferences ς To allow the use of preferences in action preconditions and

goals.

¶ :constraints ς To allow the use of constraints fields in domain and problem files.

These may contain modal operators supporting trajectory constraints.

Based on our needs, we have specified three base types of objects (i.e. characters,

items, and locations) that can exist in a domain, which can be extended if required; for

61

example, there can be different kinds of items. Predicates are expressions that

describe simple or complex states of the world in relation to the types we specified,

which can be either true or false. In our example, a character or an item can be located

at a specific location, and a character may have an item.

Actions are usually made up of three parts: parameters, preconditions, and effects.

Parameters are variables which define the objects which need to exist for an action to

be executed, as well as their types. The preconditions are the predicates related to the

parameters which need to be either true or false for an action to be executed, and

finally the effects are the predicates which are going to be true or false after an action

is executed successfully.

(:objects

 tom character

 mary character

 living - room location

 kitchen location

 glass - of - water item

 tv - remote- control item

)

(:init

 (at tom living - room)

 (at mary living - room)

 (at glass - of - water kitchen)

 (at tv - remote- control living - room)

)

(: goal

 (and

 (has mary glass - of - water)

)

)
Figure 8: PDDL problem definition example

In the problem file, we define the actual objects (based on the types we defined

before) that exist in the story that we are modelling. We also define an initial state for

all of the objects present, in the form of predicates. Goals are also predicates of a

desired outcome for our story, and the job of the planner is to find a valid plan using

the available actions to reach this outcome.

62

In the example we are using, the goal is that Mary has the glass of water. Since Mary is

located in the living room, and the glass of water is located in the kitchen, the most

likely outcome that the planner will produce will be that Mary will have to execute the

άǿŀƭƪ-ǘƻέ ŀŎǘƛƻƴ ǘƻ ƳƻǾŜ ǘƻ ǘƘŜ ǎŀƳŜ ƭƻŎŀǘƛƻƴ ŀǎ ǘƘŜ ƛǘŜƳ ǎƘŜ ǿŀƴǘǎ ǘƻ ŀŎǉǳƛǊŜΣ ŀƴŘ ς

as soon as this happens- ǘƘŜ άǇƛŎƪ-ǳǇέ ŀŎǘƛƻƴΣ ǘƻ ƘŀǾŜ ǘƘŜ Ǝƭŀǎǎ ƻŦ ǿŀǘŜǊ ƛƴ ƘŜǊ

possession.

3.4. CHOICE OF BASE PLANNING ALGORITHM

To aid us to decide which planning algorithm to use as a base for our solution, we

performed an evaluation of planning algorithms with a DIS perspective in mind. In

section 2.8 we documented the planning solutions some of the relevant DIS systems

utilise.

When we had to make the choice of a base planning algorithm, there was only one

paper available in the literature that investigated the suitability of general-purpose

planning algorithms for DIS systems (Barros and Musse, 2007b), describing an

approach to perform such an evaluation, so we decided to use this approach as well.

The approach was to benchmark different planning algorithms testing their

performance to solve a specific problem in a specific domain and to compare their

feature sets with DIS applications in mind. The feature sets considered valuable to DIS

applications are the following: Support for extra language requirements; capability to

generate partial-order plans; optimality; support for actions with costs; support for

numeric variables.

Support for extra language requirements: As we have already mentioned, most of the

planning algorithms have adopted PDDL as their input language and it is our choice as

well. PDDL is a modular language, therefore planning algorithms are only required to

implement a very basic set of its features. Every extra feature (requirement) supported

by a planning algorithm adds expressive power to its input language (and enables the

creation of more interesting actions from a storytelling point of view) or just eases the

task of describing certain actions.

The five language constructs which are considered important are the following: Type

hierarchies (:typing requirement); Built-in equality operator (:equality requirement),

63

Negative preconditions (:negative-preconditions requirement), Conditional effects

(:conditional-effects requirement), and Existential preconditions (:existential-

preconditions requirement.

Capability to generate partial-order plans: Total-order plans are sequence of actions

without any sort of parallelism. In a DIS context, these actions represent story events.

To be able to have actions occurring simultaneously in a story, partial ordered plans

are needed.

Optimality: Optimal planning algorithms are guaranteed to produce the best possible

plan in a given problem. We must keep in mind however that optimality can be

misleading (e.g. a partial-order plan including unnecessary actions will be considered

ƻǇǘƛƳŀƭ ƛŦ ǘƘŜ ƳŜǘǊƛŎ ƻŦ άǇŀǊŀƭƭŜƭ ǎǘŜǇǎέ ƛǎ ǳǎŜŘύΦ

Support for actions with costs: Many planners have a fixed metric that can be used to

evaluate the value of the plan generated: the number of actions executed.

Support for numeric variables: Classic planning systems represent the world state as a

conjunction of Boolean predicates which can be a limiting factor in the Interactive

Storytelling (IS) field since almost nothing is (rigidly) black or white in real-life stories

that an IS system is trying to generate. The use of numeric variables (in addition to

Boolean variables) can be used in IS to go beyond this limitation.

The details of this evaluation are discussed in section 6.5.1. There, we discovered that

there is no planning algorithm that combines all the characteristics described before.

Therefore, we concluded that no planning algorithm can be considered ideal for DIS

applications, and based on the available planning algorithms and considering that each

DIS system has its own goals, the final choice of algorithm must be done based on the

unique requirements of each DIS system.

We believe that a new planning algorithm (combining some features from existing

algorithms with novel ideas) needs to be created specifically with DIS systems in mind.

Extra attention to the expressiveness of its language must be given since it will help

authors and researchers easily create better stories, the fundamental principle of

every DIS system. Also, support for numeric variables, actions with costs and, possibly,

capability to create partial-order plans would be desirable.

64

We published the evaluation (Goudoulakis et al., 2011) with the idea that the family of

the FF planners (FF, Marvin, and Metric-FF) seem to possess a number of these

capabilities (especially the latter) along with a good performance (they had some of

the quickest times in solving the test problem) so they could be used as a starting point

to our planner.

After we continued the design of our system though, we finally decided that our base

planning algorithm would be Graphplan, since we wanted to be able to have more

flexibility in the design of our planner and Graphplan provided that (several of

DǊŀǇƘǇƭŀƴΩǎ ŦŜŀǘǳǊŜǎ ŀǊŜ ǳǎŜŘ ōȅ ǘƘŜ CC ŦŀƳƛƭȅ ŀƭƎƻǊƛǘƘƳǎ anyway). Since its major lack

of features comparing to the other solutions was the lack of support for the extra

language requirements, we decided to extend the algorithm and include any

requirements that we need while progressing with the implementation of our system.

3.5. MULTI-AGENT NEEDS

¢ƘŜ ǎǘƻǊƛŜǎ ǘƘŀǘ 5L9D9{L{ ǿƛƭƭ ƎŜƴŜǊŀǘŜ ōŀǎŜŘ ƻƴ ǘƘŜ ǎǘƻǊȅǘŜƭƭŜǊΩǎ ƳƻŘŜƭƭƛƴƎΣ ǿƛƭƭ Ƴƻǎǘ

likely include multiple characters. Each of these characters should be able to act as a

real person, even if they play a very small part in the whole story. To elaborate on that,

a character should have its own will (i.e. try to achieve his own goals), be able to

generate plans to achieve his goals and act independently from another -if required- to

do so, have knowledge of the world that he exists in, and be able to take decisions if

needed.

All the above makes it clear that each character should be represented by an agent,

which will make DIEGESIS a multi-agent system.

Each agent in the game world will use an instance of the Planner (i.e. the planning and

re-planning algorithms of our framework; discussed in the next chapter) to be able to

generate plans of actions and regenerate them if needed. The framework should be

able to dictate ǘƘŜ ŜȄŜŎǳǘƛƻƴ ƻŦ ǘƘŜ ŀƎŜƴǘǎΩ ǇƭŀƴǎΣ ǘƘŜǊŜŦƻǊŜ ǘƘŜ ƎŜƴŜǊŀǘƛƻƴ ƻŦ ǘƘŜ

story, and should be able to coordinate them during the execution phase. Finally, to

allow the framework to be as flexible as possible, there is not going to be a main

character that the player controls/observes; instead, the player will be able to make

65

choices for actions that can affect every character in the active story, and -in extend-

the outcome of the story.

As we already discussed in section 2.5, there are two types of multi-agent planning:

centralised planning, in which a central agent is responsible to collect the partial or

local plans of the other agents, to combine them in one plan and solve any conflicts

that may occur, and distributed (a.k.a. decentralised), in which all the agents

communicate with each other to generate their plans and to negotiate any possible

conflicts.

In DIEGESIS, as we already mentioned at the beginning of this section, we want each

agent (i.e. character) to operate as a real person. Relating that to the planning process,

we want each agent to be able to generate its own plans based on each own goals and

try to execute them individually and opportunistically. We believe that this provides a

more realistic approach to the generation of a story, since by this way each agent can

act as a real person, generating an autonomous plan considering only its own needs.

This approach is similar to the description of decentralised planning.

Decentralised planning involved that agents communicate only with each other to

negotiate conflicts, ŜǘŎΦ ²Ŝ ŘƻƴΩǘ ǳǎŜ ǘƘŀǘ ŀǇǇǊƻŀŎƘΦ LƴǎǘŜŀŘΣ ŀƭǘƘƻǳƎƘ ǘƘŜ Ǉƭŀƴǎ ŀǊŜ

individual, we want DIEGESIS to dictate the execution phase of the aƎŜƴǘΩǎ Ǉƭŀƴǎ

(therefore the generation of the story) so the system can have a better control and

understanding of what happens during the generation/execution of the story, and to

be able to interfere if needed. Therefore, in the case of plans execution, our approach

borrows the control and coordination concepts from the centralised planning

approach.

In this chapter, we documented the requirements and specifications of our multi-agent

DIS framework. In the next chapter, we will document and discuss in detail the design

aspect of every component of our framework.

66

4 DESIGN OF THE FRAMEWORK

In this chapter, we discuss in detail the design aspect of every component of our multi-

agent Digital Interactive Storytelling (DIS) framework. As described in section 1.3, while

designing and implementing the framework we used an incremental and iterative

process. The work reported in the design and implementation chapters is the result of

the aforementioned process.

To achieve our needs, we designed DIEGESIS as a multi-agent Digital Interactive

Storytelling (DIS) framework using planning and re-planning techniques. DIEGESIS

consists of several different components, each responsible for one or more features of

the framework. The design of the framework and its components evolved while

progressing with the implementation and the evaluation of the system, to keep up and

ŎƻƳǇƭȅ ǿƛǘƘ ǘƘŜ ŜǾƻƭǾƛƴƎ ƴŀǘǳǊŜ ƻŦ ŀ ǊŜǎŜŀǊŎƘ ǇǊƻƧŜŎǘΩǎ ǊŜǉǳƛǊŜments and

specifications.

Figure 9 depicts 5L9D9{L{Ω high level architecture that we used in some of our

publications, and illustrates ǘƘŜ ŦǊŀƳŜǿƻǊƪΩǎ main components at the time. There have

been some changes since then since some of the sub-components of the main

components grew and became main components themselves, as well as new

components were added, but most the processes of the system remain the same, so

we will briefly discuss how the system initially operated.

As we discussed in section 3.1, there are two types of users; the storyteller and the

player. The Storyteller models the story in a set of XML & PDDL files, and the Parser

component is responsible of translating them into a representation the framework

understands and feed them to the World Manager (WM), which is the main

component of the system and coordinates the rest. The WM stores this information to

the Knowledge Base component, and uses it to update the environment which is

perceived by the multiple instances of the Agent component (each Agent represents a

character in the story).

67

Figure 9Υ 5L9D9{L{Ω ƛƴƛǘƛŀƭ ŀǊŎƘƛǘŜŎǘǳǊŜ

68

The planner consists of a planning and a re-planning algorithm able to generate plans

ƻŦ ŀŎǘƛƻƴǎ ōŀǎŜŘ ƻƴ ŜŀŎƘ ŀƎŜƴǘΩǎ Ǝƻŀƭǎ ŎƻƴǎƛŘŜǊƛƴƎ ǘƘŜ ŎǳǊǊŜƴǘ ǎǘŀǘŜ ƻŦ ǘƘŜ

environment as the agent perceives it.

The User manager is responsible of communicating with the player to either receive

ǘƘŜ ǇƭŀȅŜǊΩǎ ƛƴǘŜǊŀŎǘƛƻƴΣ ƻǊ ǘƻ ǎƘƻǿ ƘƛƳ ǘƘŜ ƻǳǘŎƻƳŜ ƻŦ ǘƘŜ ƎŜƴŜǊŀǘŜŘ ǎǘƻǊȅΦ !ǎ we

already mentioned and is illustrated in Figure 9 as well, the WM component included at

the time several other sub-components. Eventually, as the framework grew and extra

functionality was designed and implemented, most of these sub-components grew

enough to become components by themselves, something which also promotes the

modularity of the framework.

Figure 10 illustrates the final architecture of the DIEGESIS DIS framework. The finalised

components are the following:

¶ Parser: It is responsible for parsing and processing the storyteller-created files.

¶ Knowledge Base: A centralised repository of information, including a relational

database and information stored in memory. The Knowledge Base component

stores information about the currently active story.

¶ Level Manager: It is responsible of keeping track of most of the information

about each possible level (i.e. scene) of the story, and distributing this

information to other components when required.

¶ World Manager: It is the main component which coordinates the whole system

so the stories can be generated and executed. Its sub-components include the

!ƎŜƴǘǎΩ aŀƴŀƎŜǊΣ ǘƘŜ .ƭŀŎƪōƻŀǊŘ {ȅǎǘŜƳ όǘƻ ŎƻƳƳǳƴƛŎŀǘŜ ǿƛǘƘ ǘƘŜ ŀƎŜƴǘǎύΣ

the Time Manager, and the Output Generator. It also keeps an up-to-date

representation of the world and is responsible for distributing it to the agents

when required.

¶ Choices Manager: Based on the modelling of the story by the storyteller, the

player may be able to make choices about important circumstances occurring

while the story is being generated and executed. This component is responsible

for dealing with them.

69

¶ Transitioning Manager: The component is responsible for performing a

transition from a level which was just concluded to a new one which makes

sense in the context of the story.

¶ Goal Injection Manager: It is responsible for injecting goals to the agents based

on specific conditions specified by the storyteller.

¶ Futile Goals Manager: A component responsible of providing futile goals to the

agents which are idle.

¶ Oracle: In certain situations during the generation and execution of a story, a

relatively random outcome needs to be calculated. This component is

responsible for doing that.

¶ Uncertain Actions Manager: There are some actions that make sense that they

should have a percentage that will succeed (or fail) due to pure chance. This

component deals with them.

¶ Vantage Point Manager: During the execution/generation of a story, the player

ƛǎ ŀōƭŜ ǘƻ ŎƘƻƻǎŜ ŦǊŜŜƭȅ ōŜǘǿŜŜƴ ŘƛŦŦŜǊŜƴǘ ŎƘŀǊŀŎǘŜǊǎΩ ǾŀƴǘŀƎŜ Ǉƻƛƴǘǎ όƛΦŜΦ ǘƻ

view the story from the perspective of a specific character) and a full story

view, and this component deals with these vantage points.

¶ User Manager: It contains a graphical user interface to communicate the story

outcome and other relevant information to the player, and receive user input

when is required.

¶ Planner: As we already mentioned, it consists of a planning and a re-planning

ŀƭƎƻǊƛǘƘƳ ŀōƭŜ ǘƻ ƎŜƴŜǊŀǘŜ Ǉƭŀƴǎ ƻŦ ŀŎǘƛƻƴǎ ōŀǎŜŘ ƻƴ ŜŀŎƘ ŀƎŜƴǘΩǎ Ǝƻŀƭǎ

considering the current state of the environment as an agent perceives it.

¶ Agent: 9ǾŜǊȅ ŎƘŀǊŀŎǘŜǊ ƛƴ ŀ ǎǘƻǊȅ ƛǎ ǊŜǇǊŜǎŜƴǘŜŘ ōȅ ŀƴ ŀƎŜƴǘΦ ¢ƘŜ ŎƻƳǇƻƴŜƴǘΩǎ

architecture follows a hybrid approach including elements of reactive,

deliberative, and BDI agent architectures.

¶ Battle Manager: There are cases in the evaluation scenario that we built

(discussed in chapter 6), in which we need large-scale battles to occur;

therefore, we built a component which deals with them.

70

Figure 10: DIEGESIS architecture

71

In the following sections, we will discuss all the components of the, explaining in detail

their processes and how they are operating together with other components.

4.1. GAME WORLD ARCHITECTURE

The game world is created before the execution of a story, by a storyteller. The world

is organised in multiple levels which can represent possible parts of a story. Typically, a

level represents a broad area where a number of events in a story may occur. The

levels are organised in a hierarchical manner; each level may have some potential

successor levels which have a logical connection with it. An example of a game world is

illustrated in Figure 11.

Figure 11: Game world architecture

A level ςand in extend the game world which will produce a storyς consists of the

following elements:

¶ Locations which can be either small such as rooms or large such as whole

countries.

¶ Characters along with their individual information which will be discussed in

detail in section 4.15, such as their list of goals.

¶ Items which can be anything.

¶ Actions which are applicable in a level and can be executed by the characters

based on certain conditions.

72

¶ Information about the level (such as its title, etc.), which will be discussed in

section 4.4.

¶ A set of choices which are potential decision making moments for either the

player or the framework and are based on rules specified by the storyteller,

which will be discussed in section 4.6.

¶ A set of transitioning data such as potential successor levels, milestones, etc.

(will be discussed in detail in section 4.7) which will be used to perform a

transition to a new level as soon as a level comes to an end.

¶ Goal injection rules which will be discussed in section 4.8.

¶ A set of futile goals which can be assigned to a character if is idle, which will be

discussed in section 4.9.

¶ A set of uncertain actions which will be discussed in section 4.11.

¶ Information about a large-scale battle which may occur in a level, which will be

discussed in section 4.16.

The minimum mandatory elements that must exist in a level so DIEGESIS can process it

consist of a set of locations, characters, and actions; everything else is optional.

As we mentioned in section 3.3, each levelΩǎ main representation is modelled in PPDL.

That includes the locations, characters who are present in a level (specifying in which

location they are initially located), items present in a level (associated either with

locations or with characters), and a set of applicable actions for a level.

An example of a PDDL representation of a part of the story we are using (discussed in

detail in section 6.1) is displayed in Figure 12, where we omitted some information to

ensure readability. An initial (default) state of all the characters and items in a level

needs to be defined by the storyteller, but it can be dynamically altered based on

events that occurred in previously executed domains.

(:objects

 helen - character

 menelaos - character

 paris character

 hector character

 throne - room room

 private - room room

 guest- room room

73

 docks room

 troy location

 gift item

 troy - ship - transportation - method

)

(:predicates

 (at ?x - (either character transportation - method) ?y - location)

 (has ?x - character ?y - item)

 (in - discussion ?x - character ?y - character)

 (emotion- loves ?who - character ?whom - character)

)

(:init

 (at menelaos throne - room)

 (at helen private - room)

 (at hector docks)

 (at paris docks)

 (at troy - ship docks)

 (has hector gift)

 (emotion- loves paris helen)

)

(:action talk - to

 :parameters (?x - character ?y - character ?z - room)

 :precondition (and

 (at ?x ?z)

 (at ?y ?z)

 (not (= ?x ?y))

)

 :effect (and

 (in - discussion ?x ?y)

)

)

(:action seduce

 :parameters (?who - character ?whom - character ?where - location)

 :precondition (and

 (at ?who ?where)

 (at ?whom ?where)

 (in - discussion ?who ?whom)

 (emotion- loves ?who ?whom

 (not (= ?who ?whom))

)

 :effect (and

 (emotion- loves ?whom ?who)

)

)

Figure 12: Example of a PDDL representation

74

Apart from the main representation of each level which is modelled in PDDL, the rest

of the elements are further modelled in XML and we will discuss them in detail in the

following sections.

4.2. PARSER

As we already mentioned, each story is written and modelled by the person who is

creating the story, i.e. the storyteller. The modelling of the story world including levels,

characters, locations, items, goals, milestones, available actions, etc. is stored in a

number of files, available to the system. There are two types of files: PDDL and XML.

The Parser Component can be instructed by the World Manager (the component

which coordinates the whole system and will be discussed later) or any other

component to parse and analyse a set of files corresponding to a specific level, create a

representation of them in the format needed, and communicate them back to the

World Manager or the component which requested them to be used appropriately.

This process is illustrated in Figure 13.

The files are parsed in an iterative manner. After each file is parsed, analysed, and the

information it contains is passed to the component which requested them, the Parser

checks if there are still files left in the queue to be parsed. If there are no files left, the

process ends.

Figure 13: Parser activity diagram

75

4.3. KNOWLEDGE BASE

Lƴ ƻǳǊ ǎȅǎǘŜƳΩǎ ŎƻƴǘŜȄǘΣ ŀ YƴƻǿƭŜŘƎŜ .ŀǎŜ όY.ύ ƛǎ ŀ ƳŀŎƘƛƴŜ-readable centralised

repository of information. DIEGESIS includes two types of KB; a relational database,

and information stored in memory.

The memory-based part of the KB is responsible to keep information about the

currently active level of the game world. The relational database includes tables about

characters and their options, levels (and mutual exclusions between them),

milestones, story actions, transitions, and information about the characters and any

battle groups. A preliminary schema is illustrated in Figure 14.

The KB is populated during runtime by the framework, using data both from the

information contained in the files created by the storyteller and parsed by the Parser

as described in the previous section, as well as from information produced during the

generation and execution of the story.

Figure 14: Preliminary database schema

Characters table include information about individual characters, such as a unique id, a

ƴŀƳŜΣ ŀƴŘ ƛŦ ǘƘŜ ŎƘŀǊŀŎǘŜǊ ƛǎ ǎǘƛƭƭ ŀƭƛǾŜ ŀƴŘ ǇŀǊǘ ƻŦ ǘƘŜ ǎǘƻǊȅΦ /ƘŀǊŀŎǘŜǊǎΩ ƻǇǘƛƻƴǎ ǘŀōƭŜ

ƛǎ ŀōƭŜ ǘƻ ǎǘƻǊŜ ŎƘŀǊŀŎǘŜǊǎΩ ƻǇǘƛƻƴǎΦ ¢ƘŜ ǘŀōƭŜ ƛǎ ŘŜǎƛƎƴŜŘ ƛƴ ŀn abstract way, to allow

the storyteller to represent any types of options. For example, a character based on his

76

previous actions, might need to be present at a certain point in the future of a story.

The storyteller can create and store an option to keep this information.

Levels table contain information about the different possible levels which are present

in the story, such as a unique id for each level, its title, and if it was executed. Any

mutual exclusion between levels is stored in the mutually exclusive levels table.

The milestones table is related to the levels table, and is used to store the milestones

of each level, and their state (i.e. are complete or not). Transitions table holds

information about all the transitions, past and future, which occurred or will occur

during the execution of the story, so the transitioning between levels, can be

instructed.

The story actions table is used to store and keep track of all the actions that occurred

during the execution of the story, along with information about them (i.e. the

characters related to them; when and where the action occurred).

Finally, the battle groups table is used to store information about any battle groups

ǇǊŜǎŜƴǘ ƛƴ ǘƘŜ ǎǘƻǊȅΣ ǎǳŎƘ ŀǎ ǘƘŜ ƎǊƻǳǇΩǎ ǘƛǘƭŜΣ ƭŜŀŘŜǊ (represented by a character),

fighting ability, and total volume.

4.4. LEVEL MANAGER

As we discussed in section 4.1, the game world is organised in multiple levels which

can represent possible parts of a story. The Level Manager (LM) component is

responsible of keeping track of most of the information about each possible level of

the story.

Apart from the PDDL representation of each level which we explained in section 4.1,

we intentionally omitted to explain in detail the list of centralised information about

each level. It is a list of all the possible levels which may be executed during the

generation of the story, containing important information about them. This

information is modelled by the storyteller in an XML file, using the semantics

presented in Figure 15.

77

<levels>

 <level>

 <title>level - title</title>

 <filename>level - base- filename </filename>

אַ סּאּ זּꜞ וֹꜞ אאַꜞ אּ

 <info>A small description about the level.</info>

 <milestones>

 <milestone>(a - pddl- fact - may- be- a milestone)</milestone>

 </milestones>

 <is_battle_l evel>false</is_battle_level>

 </level>

</levels>

Figure 15: Semantics of XML level nodes

The mandatory ƛƴŦƻǊƳŀǘƛƻƴ ŦƻǊ ŜŀŎƘ ƭŜǾŜƭ ƛƴŎƭǳŘŜǎ ǘƘŜ ƭŜǾŜƭΩǎ ǘƛǘƭŜΣ ƛǘǎ ōŀǎŜ ŦƛƭŜƴŀƳŜ

(so the rest of the level information mentioned in section 4.1 can be retrieved), a

human-readable title and description of the level, and a flag informing the system if

the level is a battle level or not. If it is a battle level, then further information about the

battle is included which is discussed in detail in section 4.16.

Finally, each level includes three sets of triggers, a set of milestones, a set of potential

successor levels, and a set of character options. All this information is optional and is

used in the level transitioning phase. It is omitted in Figure 15 since it is further

discussed in section 4.7.

When initialised by the World Manager (WM), LM uses an instance of the Parser to

load all the information related to each level, translates them into a system-readable

representation and stores whatever is needed to the Knowledge Base. It also has direct

communication with the Battle Manager component to request any information

needed which is related to a battle which may occur in a level. This process is

illustrated in Figure 16.

Only one level of the whole story can be active at a time. LM is responsible to keep

track of which level is active at a given moment in time, and keep it in memory so it

can be easily accessible to the other components (such as the WM and the

Transitioning Manager) when is required.

78

Figure 16: Level Manager sequence diagram

4.5. WORLD MANAGER

The World Manager (WM) is the main component which coordinates the whole

system. It has direct access to all the other components of the system, and (among

other responsibilities) is responsible for keeping track of and updating the current

state of the world, i.e. the environment the agents are aware of.

Figure 17 illustrates the high level functionality of the component. As soon as DIEGESIS

launches, it initialises the system, by initialising most of the components which are

going to be used during the generation and execution of the story, which are the

following: Knowledge Base (KB), Battle Manager (BM), Level Manager (LM), Futile

Goals Manager (FGM), Planner, Goal Injection Manager (GIM), Transitioning Manager

(TM), Choices Manager (CM), Uncertain Actions Manager (UAM), User Manager (UM),

79

Vantage Point Manager (VPM), Time Manager (TiM), Parser, Output Generator (OG),

and !ƎŜƴǘǎΩ aŀƴŀƎŜǊ (AM).

When the initialisation of each component includes further processes other than a

simple enabling of the component, the explanation of each process is included in the

sub-section in which each component is documented.

Figure 17: World Manager high-level activity diagram

The next step after the initialisation of the system is to initialise the currently active

level. This process is depicted in Figure 18. Initially, the WM requests the information

of the currently active level from the LM. Then, it sends the relevant information to the

Planner, instructing it to perform an initialisation of the level based on the PDDL model

of the level, and after this initialisation is complete, the WM requests the current state

of the world, as well as the generated PDDL representation of the level which was

constructed by the Planner.

Afterwards, the WM instructs a number of components to load a new set of

information for the new level: the BM to load the battle details, the FGM to load the

futile goals, the GIM to load the goal injection rules, the CM to load the choices, and

the UAM to load the uncertain actions. Finally, the WM instructs the AM to initialise

the agents of the new level, requests the lists of agents, and passes it to the UM.

80

Figure 18: Level initialisation sequence diagram

The AM is a sub-component of the WM, which is responsible of managing the agents.

It also keeps a list of the activated agents along with any information relevant to them,

so they can be easily accessible when is required.

The initialisation of the agents that the WM requested is illustrated in Figure 19, and

operates in the following way: Initially, the AM finds which characters are present in

the currently active level by using the PDDL representation of the level which was

previously created by the Parser. In the same manner, it identifies in which location

each of the characters is initially located in.

Figure 19: Initialisation of agents activity diagram

81

Afterwards, using the Parser, it parses all the character information for each one of the

characters, and creates an instance of the Agent component for each individual

character, feeding it with the parsed information. Finally, it instructs each created

agent to generate an initial plan based on its current set of goals (if there are any).

The character information is created by the storyteller and is written in XML. A

character node is required for every character present in each level. It is illustrated in

Figure 20 and includes the PDDL name of the character that is related to, including the

following information related to him/her:

¶ The available time to complete the specified goals and the PDDL goals list;

¶ LŦ ǘƘŜ ŎƘŀǊŀŎǘŜǊ ǿƛƭƭ ōŜ ŀƭƭƻŎŀǘŜŘ ǿƛǘƘ ŀ ŦǳǘƛƭŜ Ǝƻŀƭ ǿƘŜƴ ƛǘǎ ƎƻŀƭǎΩ ƭƛǎǘ ƛǎ ŜƳǇǘȅΤ

¶ ¢ƘŜ ŎƘŀǊŀŎǘŜǊΩǎ ŦƛƎƘǘƛƴƎ ŀōƛƭƛǘȅ ǿƘƛŎƘ ǿƛƭƭ ōŜ ǳǎŜŘ ƛŦ ǘƘŜ ŎƘŀǊŀŎǘŜǊ ŜƴƎŀƎŜǎ ƛƴ

battle during the execution of the level, along with the alliance in which the

character belongs to;

¶ And a set of initial goals (which can change during runtime). Each goal node

includes a name of a PDDL fact, (optionally) the importance value of the goal,

and (optionally as well) one or more PDDL facts as preconditions.

<character>

 <name>paris</name>

 <futile_goals>disabled</futile_goals>

 <available_time>3600</available_time>

 <alliance>troy</alliance>

 <fighting_ability>70</fighting_ability>

 <goals>

 <goal>

 <name>(will - follow helen paris troy) </name>

 <importance>50</importance>

 <precondition></precondition>

 </goal>

 <goal>

 <name>(at paris troy)</name>

 <importance>100</importance>

 <precondition>(will - follow helen paris troy)</precondition>

 </goal>

 </goals>

</character>

Figure 20: An XML Character node

For the agents to communicate with the framework, DIEGESIS implements a

blackboard system as an interconnection model. In our implementation of a

82

blackboard system, every agent communicates synchronously with the WM to access

and update the shared knowledge base and coordination information, and not directly

ǿƛǘƘ ŜŀŎƘ ƻǘƘŜǊΦ ¢ƘŜ ²a Ŏƻƴǘƛƴǳƻǳǎƭȅ ŀƴŘ ƛƴ ǘǳǊƴǎΣ ǳǇŘŀǘŜǎ ŜŀŎƘ ŀƎŜƴǘΩǎ ƪƴƻǿƭŜŘƎŜ

of the current state of the world ŦƻǊ ŀƴȅ ǳǇŘŀǘŜǎΣ ŀƴŘ ǘƘŜƴ άŀǎƪǎέ ǘƘŜƳ ƛŦ ǘƘŜǊŜ ƛǎ ŀƴ

action to execute. Other communication (which will be discussed in detail in the

remainder of the section) includes checking if an agent is busy, to instruct an agent to

plan/re-plan, or wait, and to inject a new goal based on executed actions.

After the initialisation of the level, the WM begins the generation and execution of the

story. The story is executed in turns. The execution process is illustrated in Figure 21.

Initially, the WM informs the UM that the execution of a turn started so the UM can

disable the next turn button. Afterwards, the WM checks if a battle is in progress with

the help of the BM. If it is, then the next step is to check if an alliance needs to retreat.

If the battle ended due to a retreat, then the current state of the world is updated with

the retreat information. If not, a battle is performed. All of the battle-related processes

are discussed in detail in section 4.16.

Then, for each individual agent the WM informs the agent of any changes in the

current state of the world and checks if the agent is dead or busy (i.e. was either part

of an action of another character or already involved in a battle). If it is, then the agent

does nothing in this turn.

The WM then makes an inquiry to the agent, asking if the agent has a plan to execute.

If ǘƘŜ ŀƎŜƴǘ ŘƻŜǎƴΩǘΣ ǘƘŜƴ it is instructed to generate one before asked again if it has a

ǇƭŀƴΦ LŦ ƛǘ ǎǘƛƭƭ ŘƻŜǎƴΩǘΣ ǘƘŜƴ ǘƘŜ ²a ŎƘŜŎƪǎ ƛŦ ǘƘŜ ŀƎŜƴǘ ƛǎ ŎƭŜŀǊŜŘ ǘƻ ŦƛƎƘǘ όƛΦŜΦ ƛŦ ǘƘŜǊŜ ƛǎ

a battle going on, and if the agent is in a battlefield location). If it does, then a battle

versus a soldier of the opposite alliance is performed and the turn of the agent comes

to an end.

If the agent has a plan to execute, then the WM requests the next set of actions from

the agent. The generation and structure of a plan is discussed in detail in section 4.14.

CƻǊ ŜŀŎƘ ƻŦ ǘƘŜ ŀƎŜƴǘΩǎ ŀŎǘƛƻƴǎΣ ǘƘŜ ²a ŦƛǊǎǘ ƛŘŜƴǘƛŦƛŜǎ ŀƭƭ ǘƘŜ ŀƎŜƴǘǎ ǿƘƻ ŀǊŜ ƛƴǾƻƭǾŜŘ

in the action and checks if they are available (i.e. still alive and not busy) and if the

action is interruptive. An interruptive action (set by the storyteller) will ignore the fact

83

that an involved agent (other than the one who executes the action) might be busy,

and will be executed anyway.

Figure 21: Activity diagram of the process of executing a turn

84

If any of the agents is not available (and the action is not interruptive), then the WM

checks if at least one of them is dead. If not, then the action is not executed in this

turn, but will be pending for execution at the next one. But, if an agent is dead, the

action fails, and the agent is instructed to re-plan.

When the involved agents are available (or there are no involved agents in the action

except from ǘƘŜ ŀƎŜƴǘ ǿƘƻ ŜȄŜŎǳǘŜǎ ǘƘŜ ŀŎǘƛƻƴύΣ ǘƘŜ ŀŎǘƛƻƴΩǎ ǇǊŜŎƻƴŘƛǘƛƻƴǎ ŀǊŜ

checked by the WM against the current state of the world, to identify if they are met.

If even one of them is not met, then the action fails, and the agent is instructed to re-

plan.

In the case that the preconditions are all met, the next step for the WM is to contact

the CM and identify if the action is marked as a choice. Again, all the choices processes

are discussed in more detail in section 4.6. If the action is marked as a choice, the WM

(with the help of CM) deal with the choice. When the outcome of the choice is the

action not to be executed, the WM updates the current world state with the fallback(s)

of the choice, sends it to the agent, and instructs the agent to re-plan.

On the other hand, when the outcome of the choice is that the action will be executed

όƻǊ ƛǘ ǿŀǎƴΩǘ ƳŀǊƪŜŘ ŀǎ ŀ ŎƘƻƛŎŜ ƛƴ ǘƘŜ ŦƛǊǎǘ ǇƭŀŎŜύΣ ǘƘŜ ²a ŎƘŜŎƪǎ ǿƛǘƘ ǘƘŜ ƘŜƭǇ ƻŦ .a

if the agent can fight, i.e. if the agent is located in a battlefield location and there is a

battle in progress. If ǘƘŜǎŜ ŎƻƴŘƛǘƛƻƴǎ ŀǊŜ ǘǊǳŜΣ ǘƘŜƴ ǘƘŜǊŜ ƛǎ ŀ ŎƘŀƴŎŜ ǘƘŀǘ ǘƘŜ ŀƎŜƴǘΩǎ

action will be interrupted by a battle. The WM makes a decision with the help of the

Oracle (discussed in section 4.10) whether the action will be interrupted or not (using

an interruption percentage provided by the BM), and if it does, a battle is performed

between the agent and a soldier of the enemy alliance.

If the action is still ok to be executed, the last check involves if an action is clear to be

executed due to doubt. The WM makes the appropriate checks with the UAM (the

details are discussed in section 4.11), and if the action cannot be executed in this turn

ƛǘ ƛǎ ƛƎƴƻǊŜŘΦ .ǳǘΣ ƛŦ ƛǘ ŘƻŜǎƴΩǘ ǘƘŜƴ ƛǘ ƛǎ Ŧƛƴŀƭƭȅ ŜȄŜŎǳǘŜŘΣ ŀƴŘ ǘƘŜ Ŧƻƭƭƻǿƛƴg happen: The

current state of the world is updated with the effects of the action, the action is

marked as complete, and the involved characters are set to busy.

85

There is also a chance that the action is a duel. In the event that it is, the WM

calculates the outcome of the duel (with the help of the Oracle) and updates the

current state of the world with its outcome (i.e. who won and who lost the duel). The

Ŧƛƴŀƭ ǎǘŜǇ ƛǎ ǘƻ ŘŜŀƭ ǿƛǘƘ ŀƴȅ ŘŜŀŘ ŀƎŜƴǘǎΣ ǘƻ ǎǘƻǊŜ ǘƘŜ ŀŎǘƛƻƴΩǎ ŘŜǘŀƛƭǎ ǘƻ ǘƘŜ Y.Σ ŀƴŘ ǘƻ

deal with any goal injections.

It is also important to mention that even if an agent is in a position to execute multiple

actions in a single turn, it can only fight once, and if an action fails and the agent is

instructed to re-plan, then the agent cannot try and execute any other actions during

the same turn.

After the execution of actions is finished, the WM checks if at least an action was

executed. If it did, then the WM informs the agent which of the actions were executed,

and updates the current world state that the agent is aware of.

As soon as all of the agents finished their turn, the WM informs the UM that the turn

execution is complete, it increments the time (with the help of the TiM), and

completes the execution of the turn.

The TiM is a small sub-component of the WM, whose only responsibility is to keep

track of the time steps (i.e. turns) in which the story is at any point, and feed this

ƛƴŦƻǊƳŀǘƛƻƴ ǘƻ ǘƘŜ ²a ǿƘŜƴ ƛǘΩǎ ǊŜǉǳƛǊŜŘΦ

After the end of a turn, the WM checks if at least one action was executed by an agent

during that turn, if there is an active battle going on, and if any of the agents have a

valid plan which is still pending completion and does not consist of futile goals. When

none of the above conditions are met, the WM understands that the execution of a

level is finished, and instructs the TM to calculate and perform a transition. If there

ƛǎƴΩǘ ŀ ǎǳƛǘŀōƭŜ ǎǳŎŎŜǎǎƻǊ ƭŜǾŜƭΣ ǘƘŜ ǎǘƻǊȅ ŜƴŘǎ ŀƴŘ ǘƘŜ ǎȅǎǘŜƳ ǎƘǳǘs down. The details

for the transitions are discussed in section 4.7.

The player who uses DIEGESIS to execute and interact with a story created by a

storyteller needs to be able to view the outcome of the generated story, as well as

other information relevant to the story. Therefore, we need a component which

responsibility is to generate all these messages in a human-readable form. During all of

the WM processes, the WM όŀǎ ǿŜƭƭ ŀǎ ƻǘƘŜǊ ŎƻƳǇƻƴŜƴǘǎ ƛŦ ƛǘΩǎ ǊŜǉǳƛǊŜŘύ uses the OG

86

to generate and display (with the help of the UM) appropriate messages to the player,

as well as to the console for debugging purposes.

The OG includes some pre-defined templates to visually represent a different variety

of messages. The templates include headers, sub-headers, alerts, and plain messages.

An example of requests for printing messages in the console as well as displaying them

to the player can be found in Figure 22.

There, the WM requests from the OG to print and display an alert message. The OG

prepares the final message passing it through the alert template, and prints it to the

console itself, as well as sending it to the UM so it can be displayed to the player.

Afterwards, an Agent requests from the OG to print a plain message to the console,

and display another message to the player. The OG prints the message in the console,

and sends the other message to the UM requesting it to be displayed to the player.

Figure 22: Sequence diagram of dealing with messages

87

Finally, before sending a request to display a message, the OG also checks if there is a

ǾŀƴǘŀƎŜ Ǉƻƛƴǘ ŜƴŀōƭŜŘ ǘƻ ŘŜǘŜǊƳƛƴŜ ƛŦ ƛǘΩǎ ŀǇǇǊƻǇǊƛŀǘŜ ǘƻ ŘƛǎǇƭŀȅ ǘƘŜ ƳŜǎǎŀƎŜ ƻǊ ƴƻǘΦ

This process is described in section 4.12.

4.6. CHOICES MANAGER

The storyteller has the ability to mark actions as choices, and the Choices Manager

(CM) is responsible of keeping the relevant information. A choice node (illustrated in

Figure 23) contains the name of a PPDL action that needs to be flagged as a choice. The

choice can be made either by the player, or by the framework. If the action succeeds

(chosen either by the framework or the player), then the normal effect of the PDDL

action is executed.

<choices>

 <choice>

 <action_name> decide- if - will - plunder - temple</action_name>

 <who_decides>player </who_decides>

 <fallbacks>

 <fallback>

 <equals index="1">achilles</equals>

 <predicate_to_become_true>(decided- if - will - plunder -

temple)</predicate_to_become_true>

 <predicate_to_become_true>(will - not- plunder -

temple)</predicate_to_become_true>

 </fallback>

 </fallbacks>

 </choice>

 <choice>

 <action_name> decide- if - will - capture</action_name>

 <who_decides>player </who_decides>

 <fallbacks>

 <fallback>

 <equals index="1">achilles</equals>

 <equals index="2">briseis</equals>

 <predicate_to_become_true>(decided- if - will - capture

briseis)</predicate_to_become_true>

 <predicate_to_become_true>(will - not- capture

briseis)< /predicate_to_become_true>

 </fallback>

 </fallbacks>

 </choice>

<choices>
Figure 23: A set of XML Choice nodes

88

.ǳǘ ǎƛƴŎŜ t55[ŘƻŜǎƴΩǘ ƻŦŦŜǊ ǘƘŜ ƻǇǘƛƻƴ ƻŦ ŜŦŦŜŎǘǎ ǘƘŀǘ ŀǊŜ ǘǊƛƎƎŜǊŜŘ ƛŦ ŀƴ ŀŎǘƛƻƴ ƛǎ

about to be executed but failed (for any reason), we specify a set of fallback predicates

(effects) which will be enabled if the choice is negative.

The fallback can be applied in any form of the selected action, or it can be applied only

if there are specific conditions in an action, if for example the action is executed by a

specific character. For example, in the second choice node of Figure 23, the fallback

predicate will be enabled ƻƴƭȅ ƛŦ ǘƘŜ ŦƛǊǎǘ ƛƴŘŜȄ όƛΦŜΦ ǾŀǊƛŀōƭŜύ ƻŦ ǘƘŜ άdecide-if-will-

captureέ ŀŎǘƛƻƴ ƛǎ άachillesέ ŀƴŘ ǘƘŜ ǎŜŎƻƴŘ ƻƴŜ ƛǎ άbriseisέΦ

Every time that a new level is loaded, the World Manager (WM) instructs the CM to

load the choices information for the new level (i.e. all the choice nodes which are

relevant to the new level). The CM makes an inquiry to the Level Manager to receive

the choices information about the currently active level, and using that it asks the

Parser to parse and return the set of choices, which is stored in memory. This process

is illustrated in Figure 24.

Figure 24: Sequence diagram of loading a new level's choices

While the story is generated and executed, every time that an action is about to be

executed the WM checks with the CM to identify if the action is marked by the

storyteller as a choice action.

When such an action is set to be executed, a decision needs to be made; either the

ŀŎǘƛƻƴ ƛǎ ƎƻƛƴƎ ǘƻ ōŜ ŜȄŜŎǳǘŜŘ ƻǊ ƴƻǘΦ .ŀǎŜŘ ƻƴ ǘƘŜ ǎǘƻǊȅǘŜƭƭŜǊΩǎ ǎŜƭŜŎǘƛƻƴΣ ŜƛǘƘŜǊ ǘƘŜ

framework will make a positive or negative decision, or the User Manager will be

89

instructed to stop the execution of the story and ask the player to make this decision.

Based on the outcome of the decision, the action is either going to be executed, or not.

LŦ ǘƘŜ ŎƘƻƛŎŜ ƛǎ ƴŜƎŀǘƛǾŜΣ ǘƘŜƴ ǘƘŜ ²a ǊŜǉǳŜǎǘǎ ǘƘŜ ŀŎǘƛƻƴΩǎ ŦŀƭƭōŀŎƪ ŦǊƻƳ ǘƘŜ /aΣ ŀƴŘ

deals with it. This process is illustrated in Figure 25.

Figure 25: Sequence diagram of dealing with choices

If a decision is set to be made by the player but the player has chosen to view the story

via the vantage point (discussed in section 4.12) of a character who is not involved in

the specific decision, the framework will have to make the decision instead of the

player.

90

4.7. TRANSITIONING MANAGER

As we discussed in section 4.5, every time a turn ends while the story is executed, the

World Manager (WM) component constantly monitors the current state of the active

level to identify if nothing significant is left (and is still able) to happen in the currently

active level, or it can be terminated, and a next level can be loaded. When a level ends,

ƛǘ ƛǎ ŀ ǘƛƳŜ ŦƻǊ ŀ ƴŜǿ ƭŜǾŜƭ ǘƻ ōŜ ǎŜƭŜŎǘŜŘ ŀƴŘ ŜƴŀōƭŜŘΣ ŀƴŘ ǘƘŀǘΩǎ ǿƘŀǘ ǘƘŜ

Transitioning Manager (TM) component is responsible of.

As we already mentioned in sections 4.1 and 4.4, the story levels are organised in a

hierarchical manner; each level may include some potential successor levels which

have a logical connection with it. Each level may also include three sets of triggers, a

set of milestones, and a set of character options. All this information is optional, is

used in the transitioning phase, and an example of it is included in Figure 26.

A connection between two levels is being made by specifying a level as a άsuccessorέ

of another one (using the specified title of a level). A level may include multiple

potentially successor levels. άMilestonesέ ŀǊŜ t55[ŦŀŎǘǎΤ when a level ends, their

status (either true or false) is checked and the outcome is stored in the Knowledge

Base (KB) component.

ά/ƘŀǊŀŎǘŜǊ ƻǇǘƛƻƴǎέ ŀǊŜ ŀƭǎƻ ŎƘŜŎƪŜŘ ŀǎ ǎƻƻƴ ŀ ƭŜǾŜƭ ŜƴŘǎΣ ōǳǘ ǘƘŜȅ ŀǊŜ ŀ ƭƛǘǘƭŜ more

ŎƻƳǇƭƛŎŀǘŜŘ ǘƘŀƴ ŀ ƳƛƭŜǎǘƻƴŜΦ ¢ƘŜȅ ƛƴŎƭǳŘŜ ǘƘŜ ƻǇǘƛƻƴΩǎ ǘƛǘƭŜΣ ǘƘŜ ŎƘŀǊŀŎǘŜǊ ǿƘƻ ǊŜŦŜǊǎ

ǘƻ όŀƭǘƘƻǳƎƘ ƛǘ Ŏŀƴ ōŜ ōƭŀƴƪ ƛŦ ǘƘŜȅ ŀǊŜ ƎŜƴŜǊŀƭ ƻǇǘƛƻƴǎύΣ ŀ ǎŜǘ ƻŦ ƻǇǘƛƻƴǎΣ ŀ άǘƘŜƴέ ǾŀƭǳŜ

ŀƴŘ ŀƴ άŜƭǎŜέ ǾŀƭǳŜΦ 9ŀŎƘ ƻǇǘƛƻƴ ƛƴŎƭǳŘŜǎ ŀ t55[ŦŀŎǘ ŀƴŘ ǘƘŜ ŎƻƴŘƛǘƛƻn the system will

ŎƘŜŎƪ ƛŦ ƛǘ ŜȄƛǎǘǎΦ LŦ ŀƭƭ ǘƘŜ ŦŀŎǘǎΩ ŎƻƴŘƛǘƛƻƴǎ ŀǊŜ ƳŜǘΣ ǘƘŜƴ ǘƘŜ ƻǇǘƛƻƴ ƛǎ ǎǘƻǊŜŘ ƛƴ ǘƘŜ Y.

ǿƛǘƘ ǘƘŜ άǘƘŜƴέ ǾŀƭǳŜΤ ƛŦ ƴƻǘΣ ǘƘŜ ƻǇǘƛƻƴ ƛǎ ǎǘƻǊŜŘ ǿƛǘƘ ǘƘŜ άŜƭǎŜέ ǾŀƭǳŜΦ

Lƴ Ǉƭŀƛƴ ǿƻǊŘǎΣ ǘƘŜ άǘǊƛƎƎŜǊǎέ ŀǊŜ ǳǎŜŘ ǘƻ ƛŘŜƴǘƛŦȅ ƛŦ ŀ ƭŜǾŜƭ ƳŀƪŜǎ sense to be executed.

They are preconditions, which need to be met for a level to be a successful candidate

to be loaded into the system for execution. They can be milestones of another level, or

ŎƘŀǊŀŎǘŜǊ ƻǇǘƛƻƴǎΣ ŀƴŘ ǘƘŜȅ ƛƴŎƭǳŘŜ ŀƴ άŜȄǇŜŎǘŜŘέ ǾŀƭǳŜ ǘƻ ōe checked against. They

can also be marked as important.

¢ƘŜ άǘǊƛƎƎŜǊǎ ǘȅǇŜέ ǾŀǊƛŀōƭŜ Ŏŀƴ ǘŀƪŜ ǘƘǊŜŜ ŘƛŦŦŜǊŜƴǘ ǾŀƭǳŜǎΣ ǿƘƛŎƘ ǊŜƭŀǘŜ ǘƻ ǘƘŜ Ƴŀƛƴ

ǘǊƛƎƎŜǊǎΥ άŀƭƭέΣ άŀƴȅέΣ ŀƴŘ άƛƳǇƻǊǘŀƴǘέΦ ¢ƘŜ ŘŜŦŀǳƭǘ ǾŀƭǳŜ ƛǎ άŀƴȅέΣ ƳŜŀƴƛƴƎ ǘƘŀǘ ǘƘŜ

91

level is a successful candƛŘŀǘŜ ƛŦ ŀƴȅ ƻŦ ǘƘŜ ǘǊƛƎƎŜǊǎ ƛǎ ŦƛǊŜŘΦ ¢ƘŜ άŀƭƭέ ǾŀƭǳŜ ƳŜŀƴǎ ǘƘŀǘ

ŀƭƭ ƻŦ ǘƘŜ ǘǊƛƎƎŜǊǎ Ƴǳǎǘ ōŜ ŦƛǊŜŘΣ ŀƴŘ ǘƘŜ άƛƳǇƻǊǘŀƴǘέ ǾŀƭǳŜ ƳŜŀƴǎ ǘƘŀǘ ƻƴƭȅ ǘƘŜ ǘǊƛƎƎŜǊǎ

marked as important need to be fired for a level to be executed.

<levels>

 <level>

 ꞌ fi

 <successors>

 <successor>title - of - a- potentially - successor- level</successor>

 </successors>

 <milestones>

 <milestone>(a - milestone - is - a- pddl- fact)</milestone>

 </milestones>

 <character_option s>

 <option_group>

 <title>option - title</title>

 <character_name>mary</character_name>

 <then_value>true</then_value>

 <else_value>false</else_value>

 <options>

 <option fact_condition="true" fact="(pddl fact)" />

 </options>

 </option_group>

 </character_options>

 <triggers_type>all<triggers_type>

 <triggers>

 <trigger expected="true" from_level="another - level - title">(another

ꜞ fiַאא אּ

 </triggers>

 <knowledge_transfer>

 <character_triggers>

 <character_trigger char_name="mary" from_level="another -

level - title" char_exists_if="true">

 ꞌ ꜞ ꜞ fi

 </character_trigger>

 </character_triggers>

 <fact_triggers>

 <fact_trigger fact_to_enable="(pddl fact)" from_level="

another- level - title " enable_if="true">

 ꞌ ꜞ ꜞ fi

 </fact_trigger>

 </fact_triggers>

 </knowledge_transfer>

 </level>

</levels>

Figure 26: Transitioning information in XML

92

¢ƘŜǊŜ ŀǊŜ ǘǿƻ ƳƻǊŜ ǘȅǇŜǎ ƻŦ ǘǊƛƎƎŜǊǎΣ ǘƘŜ άŎƘŀǊŀŎǘŜǊ ǘǊƛƎƎŜǊǎέ ŀƴŘ ǘƘŜ άŦŀŎǘ ǘǊƛƎƎŜǊǎέΣ

which are checked when a level is selected as the next transition and is about to be

executed. Character triggers work in a similar way to the main triggers, but they refer

to characters. If they are fired, then a character exists in the level. Fact triggers (as

their name suggests) refer to PDDL facts. If the milestone or the character option is

ƳŜǘΣ ǘƘŜƴ ǘƘŜ ǘǊƛƎƎŜǊ ƛǎ ŦƛǊŜŘ ŀƴŘ ǘƘŜ άŦŀŎǘ ǘƻ ŜƴŀōƭŜέ ǿƛƭƭ ōŜ ǎŜǘ ǘƻ ǘǊǳŜ ǿƘŜƴ ǘƘŜ ƭŜǾŜƭ

is loaded and ready for execution.

There are certain situations where a number of levels are mutually exclusive with

others. The storyteller can specify them using the semantics presented in Figure 27.

The mutual exclusions are grouped (each group needs a unique title), and each level

has a priority value to identify which of the levels should be selected for execution in

the event that a mutual exclusion situation appears.

<mutually_exclusive_groups>

 <group title="landing">

 <level priority="15">war - prevented</level>

 <level priority="10"> troy - beach- landing</level>

 <level priority="5">troy - beach- landing - fallback</level>

 </group>

</mutually_exclusive_groups>

Figure 27: A group of mutually exclusive levels modelled in XML

As we already mentioned in section 4.5, as soon as the WM identifies that a level

finished, it instructs the TM to calculate the next transition. This process is illustrated

in Figure 28.

The first step of the process is to get the information of the current level from the

Level Manager (LM) and the current state of the world from the WM. Then, for each of

the milestones, the TM checks the state of the milestone against the current state of

the world and stores the relevant information in the KB. The interaction between the

different components is illustrated in Figure 29.

As soon as the checking of all the milestones is finished, the TM performs the same

checks for the character options, and stores all the relevant information in the KB.

Then, it creates a list of all the successor levels, getting the relevant information from

the LM component.

93

Figure 28: Activity diagram of the transitioning process

