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Abstract 

In our modern society we are exposed to many natural and synthetic chemicals. The 

assessment of chemicals with regard to human safety is difficult but nevertheless of high 

importance. Beside clinical studies, which are restricted to potential pharmaceuticals only, 

most toxicity data relevant for regulatory decision-making are based on in vivo data. Due 

to the ban on animal testing of cosmetic ingredients in the European Union, alternative 

approaches, such as in vitro and in silico tests, have become more prevalent. 

In this thesis existing non-testing approaches (i.e. studies without additional experiments) 

have been extended, e.g. QSAR models, and new non-testing approaches, e.g. in vitro 

data supported structural alert systems, have been created. The main aspect of the thesis 

depends on the determination of data quality, improving modelling performance and 

supporting Adverse Outcome Pathways (AOPs) with definitions of structural alerts and 

physico-chemical properties. Furthermore, there was a clear focus on the transparency of 

models, i.e. approaches using algorithmic feature selection, machine learning etc. have 

been avoided. Furthermore structural alert systems have been written in an 

understandable and transparent manner. Beside the methodological aspects of this work, 

cosmetically relevant examples of models have been chosen, e.g. skin penetration and 

hepatic steatosis.  

Interpretations of models, as well as the possibility of adjustments and extensions, have 

been discussed thoroughly. As models usually do not depict reality flawlessly, consensus 

approaches of various non-testing approaches and in vitro tests should be used to support 

decision-making in the regulatory context. For example within read-across, it is feasible 

to use supporting information from QSAR models, docking, in vitro tests etc. By 

applying a variety of models, results should lead to conclusions being more 

usable/acceptable within toxicology. 
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Within this thesis (and associated publications) novel methodologies on how to assess 

and employ statistical data quality and how to screen for potential liver toxicants have 

been described. Furthermore computational tools, such as models for skin permeability 

and dermal absorption, have been created.  
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1. Introduction 

1.1. Safety assessment of chemicals 

As modern society demands a safer environment, the assessment of the harmful effects of 

chemicals has become a crucial element of today’s toxicology. The desire for the use of 

safe chemicals arises, in part, from a consumer perspective, which includes the 

requirement for safety of pesticides, foods, pharmaceuticals, cosmetics, industrial 

chemicals etc. It also arises within occupational health, i.e. for the assessment of workers 

who are exposed to chemicals in an industrial setting, or it may come from an 

environmental perspective, for example the effects of chemicals on flora, fauna, and 

ultimately humans, via the food chain. Advances in technology in the last century have 

led to an intensive production of drugs, cosmetics, food products, pesticides, munitions, 

synthetic fibres and industrial chemicals (Gallo, 2001; Cronin, 2013). There are many 

other, often less recognised, sources of chemicals to which we are exposed; substances 

may originate, for example, from fungi, botanicals or from the petro-chemical industry 

(including their combustion products). Chemicals exposure may be localised or might be 

long-range, for instance transportation via air pollution (Alam et al., 2013) or via the food 

chain (Cheng et al., 2015a). 

The number of potential organic chemical compounds is almost unimaginably large, and 

it is impossible to limit exposure of chemicals per se as we live in a world made of 

chemicals. Despite this, the toxicological/pharmacological effects are known for only a 

very small proportion of chemicals, even for commonly used compounds (Cronin, 2013). 

As a result it is difficult to ensure the safety of chemicals, or the absence of associated 

adverse effects. Exposure to many chemicals, pharmaceuticals and pesticides being the 

most active/extreme examples, is controlled through national regulations. It is the purpose 

of regulatory authorities, such as the US Food and Drug Administration (FDA), to assess 
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chemicals for their safety by gathering knowledge from experimentation (or non-test 

methods), feedback from human exposure and utilising human expertise to evaluate the 

data enabling risk assessment. Thus regulators use toxicological information on specific 

substances to define thresholds, which are thought to be safe to man and the environment 

for the intended use of the chemical (Merrill, 2001). It is important to distinguish between 

contaminants and compounds used deliberately in food or cosmetic products, e.g. 

preservatives. For the latter, there is usually more information available, for example how 

to detect them analytically or the principal effects they have on biological systems. 

Contaminants or impurities, on the other hand, vary widely in terms of chemistry and are 

often dependent from educts used and/or the manufacturing process (Gallo, 2001; Merrill, 

2001; Feigenbaum et al., 2015), they may also be as a result of compound degradation 

(biotic or abiotic). Despite the many substances created unknowingly within the 

manufacturing process, mostly in low concentrations or even traces, a great number of 

chemicals (and mixtures) are produced wittingly. These substances can be ingredients for 

consumer products or intermediates made for further chemical engineering (Faustman 

and Omenn, 2001). 

In the context of better risk assessment for the higher production volume chemicals, the 

Registration, Evaluation, Authorisation and restriction of CHemicals (REACH) 

regulation, which is enforced by the European Union and regulated by the European 

Chemicals Agency (EChA), has been an immense undertaking for over a decade. 

REACH addresses production quantity and use of chemicals and their potential impacts 

on human and environmental health. Here the focus lies on evaluating chemicals, and 

particularly those produced in large quantities, e.g. greater than ten tonnes per year (EC, 

2006). For the appropriate evaluation of chemicals, not only within the context of 

REACH, a sound understanding of toxicology and exposure is needed.  
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1.2. Toxicology and its application 

Toxicology is the science of poisons. It is a centuries old scientific discipline, with the 

thoughts of the Swiss physician/alchemist Paracelsus from the 16th century still relevant 

today. Paracelsus stated that any substance can be poisonous, only the dose differentiates 

the non-poisonous from the poisonous. This statement gives rise to our understanding that 

the intrinsic risk of a chemical is a function of its implicit hazard and the exposure 

scenario, as such toxicology reveals itself as a non-trivial task (Gallo, 2001). Historically 

toxicology is an experimental and observational science with the use of animals to 

identify hazard at the heart of most studies. Some of the more common, and relevant to 

this thesis, toxicological procedures that have been used for hazard identification are 

introduced below.  

1.2.1. Acute toxicity 

A standard way to measure acute toxicity (normally associated with lethality) is the LD50 

(the single dose of a substance that causes death in 50% of an animal population). These 

values, usually extracted from a dose-response-curve, allow for the differentiation of 

those chemicals with high acute toxicity from chemicals with low acute toxicity. 

However, acute toxicity may be influenced by many (non-chemically related) factors 

such as dosing regime and route, species, age, weight and sex. However lethality, as in 

LD50, is not the only endpoint of interest when performing acute toxicity animal testing. 

Doses and exposure patterns, where for example blood chemistry or kidney and liver 

histology is pathologically changed, can reveal potential risks of chemicals and form the 

basis of long-term studies (Barile, 2004).  

1.2.2. Chronic toxicity 

In addition to testing for acute toxicity (i.e. short-term, high dose exposure, with the aim 

of identifying a lethal dose), there is also a great interest in non-lethal effects and toxicity 
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caused by repeated dose exposure. Chronic or repeated dose toxicity is caused by long-

term, continuous or fluctuating sublethal exposure of a toxicant. Typical repeated dose 

exposure scenarios are subacute, subchronic or chronic, and definitions and exposure 

guidelines for these may vary. This may be particularly important for substances which 

have a long half-life and a tendency to be accumulated and reveal adverse effects after 

long-term exposure (Barile, 2004). In addition, identifying the relevant mechanistic 

pathways and kinetics associated with chronic toxicity is a complex, but increasingly 

important, task. Further, there are compounds which interfere at low doses with the 

human hormonal system, such as endocrine disruptors, which are likely to cause 

pathological changes when exposed chronically (Fuhrman et al., 2015). 

 

1.2.3. Other effects  

Further genotoxicity (e.g. due to mutagenicity) and immunotoxicological responses are of 

great interest for applied toxicology and risk assessment as these can be triggered by very 

low doses (Faustman and Omenn, 2001; Barile, 2004). These may be identified by 

specific, often mechanistically derived, tests such the Ames test for genotoxic 

mutagenicity. These effects are outside the scope of this thesis and are not considered 

further.  

 

1.2.4. Experimental considerations when testing 

When assessing the experimental determination of toxicity, the route of administration, 

e.g. topical, oral, inhalation or subcutaneous, intravenous and intramuscular injection, and 

the formulation of the drug/toxicant (i.e. particle size, excipients etc.) are important 

parameters. While an intravenous dose of a drug is usually systemically available, an oral 

dose is most often absorbed more slowly through the gastrointestinal tract and eventually 

metabolised, for example by the first-pass effect (and further metabolism by repeated 

passing through the liver). Further novel formulations can deliver drugs to specific target 
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tissues, e.g. drug-loaded nanoparticle systems. Hence, both route of administration and 

formulation play important roles for the absorption, distribution and finally the biological 

effects of a drug/toxicant. These lessons, which were mainly learnt in the field of 

pharmacology, are of great importance for understanding and applying modern 

toxicology (Rang et al., 2007a; Barile 2004). The correct dosing route is also essential to 

understand the effects of a particular exposure scenario, i.e. a pharmaceutical applied as 

an oral dosage form should be tested orally in an attempt to mimic (within reason) the 

kinetics of uptake, distribution and metabolism. 

 

1.2.5. Data availability  

It has historically been a great problem to obtain appropriate, high quality and relevant 

toxicity data for a variety of chemicals. It is assumed that many of the available toxicity 

data are in private hands, e.g. within pharmaceutical companies (Cases et al., 2013; 

Tralau et al., 2015). While there are often many data for acute toxicity, e.g. LD50 values 

for rodents, and local (adverse) reaction, such as skin and eye irritation, there is a lack of 

publically available data and hence a shortcoming in understanding of biological 

responses associated with chronic toxicity. The ever increasing number of chemicals 

produced and the introduction of expectations, such as reducing or replacing animal 

testing, is the setting for 21st Century Toxicology (Cronin, 2013; Groh et al., 2015; 

Vinardell, 2015). Within this thesis (e.g. Chapters 2 and 3) efforts to supplement the 

availability of chronic toxicity data, as well as understand the quality of data, are 

presented in response to this need.  

 

1.2.6. Application of toxicological information 

There are many applications of toxicological information, but for the purposes of this 

thesis risk assessment, relating to regulatory acceptance of a chemical, is considered in 
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more focus, as introduced in Section 1.3. A further application of toxicological 

information is the requirement to find ethical, cost-effective and scientifically valid 

alternatives to animal testing that has been a driving force behind the research reported in 

this thesis; more details on this are given in Section 1.4. 

 

1.3. Regulatory toxicology 

Regulatory toxicology is a discipline which is intended to ensure that the world, in 

chemical terms, becomes a safer place. It combines toxicological expertise, i.e. 

knowledge of exposure, kinetics and mechanisms, with risk assessment approaches to 

create regulations. Regulatory toxicological activities take place partially in industry, e.g. 

companies launching new consumer products, and partially in governmental institutions. 

Taking the US as an example, the FDA is the responsible governmental institution for 

licensing food and medical products, such as drugs. Cosmetics do not need a license per 

se, but still they need to be regarded as safe before launching a product, i.e. potentially 

hazardous chemicals have to be excluded by regulatory toxicologists. With regard to 

human and environmental health, the US Environmental Protection Agency (EPA) is 

responsible for the assessment of the impact of pesticides or industrial chemicals and 

their exposure to man and environmental species (Merrill, 2001). In Europe there are 

institutions, such as the European Medicines Agency (EMA) and the European 

Environment Agency (EEA), with similar responsibilities as FDA and EPA respectively. 

National regulations of EU member states still may vary, for example due to 

recommendations from domestic institutes, e.g. the German Federal Institute for Risk 

Assessment (Bundesinstitut für Risikobewertung; BfR). 
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1.3.1. Safety and legislation 

When assessing safety for different types of products, it is important to consider 

individual risk-benefit ratios. Drug safety for example, often dictated by therapeutic 

necessities, has a quite unique and complex way of considering the risk-benefit ratio for 

potential patients. This consideration is inevitably associated with the process of 

regulatory approval of pharmaceutical drugs. Generally, pharmaceutical drugs have to 

pass many stages before being launched for therapeutic purposes. After many years of 

drug development and preclinical testing (based on animal trails), only a few drug 

candidates will enter the clinical phases. All three clinical phases need to be passed 

consecutively, whereupon the last phase (clinical phase III) would be a multi-centred trial 

with 1,000 to 3,000 patients. Only after that, can a drug be submitted to regulatory 

authorities for licensing. Following the launch of a new drug post-market surveillance 

(often referred to as pharmacovigilance or phase IV) is the responsibility of the 

pharmaceutical company; this means monitoring the drug for adverse drug reactions and 

side effects, and withdrawing a drug from the market, should the need arise (Merrill, et al. 

2001; Barile, 2004; Rang et al., 2007b). 

Legal requirements for non-pharmaceutical products, such as biocidal and plant 

protection products (e.g. pesticides), food products and diverse consumer products (e.g. 

toys, textile products) can be quite different. In food safety, for example, food additives, 

flavouring substances, novel ingredients, genetically modified organism-based products 

and contaminants need to be assessed as being safe before bringing them onto the market. 

The legal responsibility for consumer goods usually lies with the producing company. 

With regard to the safety assessment of biocidal and plant protection products, the legal 

focus lies on metabolites in food, feed and groundwater, and the assessment of 

cumulative effects in organism and soils (Tralau et al., 2015). 



Introduction 

8 
 

1.3.2. The cosmetics legislation 

According to the European Cosmetics Regulation, a cosmetic product made available on 

the market has to be safe for humans when used normally and reasonably. Hence, the 

Cosmetic Directive places the responsibility for product safety clearly on the company. 

Nevertheless, the Scientific Committee on Consumer Safety (SCCS) provides the 

European Commission (EC) with scientific advice on the safety of cosmetic products (EC 

2009; Vinardell, 2015). 

Generally cosmetic ingredients should be inert, i.e. they should not have any significant 

pharmacological or toxicological properties. Of course, there are exceptions such as, for 

example zinc pyrithione, a fungi-/bacteriostatic substance used in antidandruff shampoo 

(Marks et al., 1985), or hair dyes, such as aromatic azo dyes, which can act as 

mitochondrial toxins (Nelms et al., 2015). Compounds of concern are often found in the 

functional classes associated with colourants, preservatives and UV filters. However, 

exposure, i.e. dose and type of application, plays an important role for the risk assessment 

of a cosmetic ingredient. In other words, considering the quantity and type of usage is 

also the responsibility of industry and regulatory authorities (e.g. through the SCCS in the 

EU) (Vinardell, 2015). 

Since March 2013, European legislation has banned animal testing for any cosmetic 

ingredient marketed within the EU (EC, 2009). Proposed alternative testing methods 

include in vitro tests (e.g. mechanistically based mutagenicity assays) and in silico 

approaches (such as computational methods, often based on historical in vivo toxicity 

data). Current challenges revolve around the need for alternatives, especially for chronic 

and reproductive toxicity (Adler et al., 2011). Examples where successfully validated 

alternatives are present are the local lymph node assay (LLNA) used for skin sensitisation 

and diverse alternatives for the Draize rabbit eye test to evaluate of eye irritation. 
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However, current alternative methods still have potential for optimisation, particularly as 

some of the methods are ex vivo assays (i.e. using tissues of animals) and hence animals 

are still used for testing (AltTox, 2015; Roberts, 2015; Vinardell, 2015). 

Whilst modern animal welfare is often considered to be driven by companies, such as 

Lush (Lush, 2015) and organisations, such as the People for the Ethical Treatment of 

Animals (PETA, 2015), there have been attempts to reduce the number of animals used 

and to generally increase animal welfare standards for more than fifty years. For example 

Russell and Burch’s “3Rs”, which refers to the replacement, reduction and refinement of 

animal tests, is a paradigm, which has existed since the late 1950s (Russell and Burch, 

1959). Considerable success regarding the 3Rs has already been seen within the 

approaches adopted by institutions such as the Organisation for Economic Co-operation 

and Development (OECD). The OECD aims to stimulate economic progress and world 

trade within a democratic and capitalistic framework, coined by its European and 

American member states. They play an important role by providing international 

guidelines, not only in the field of toxicology. For instance, included within the OECD 

test guideline for acute eye irritation/corrosion (OECD, 2012), the usage of topical 

anaesthetics and systemic analgesics is described with the aim to decrease animal 

suffering. Furthermore, tests such as reduced LLNA (rLLNA), which uses fewer 

experimental animals as compared to the conventional LLNA (itself a less invasive test 

using fewer animals than the guinea pig maximisation tests), are promoted (Roberts, 

2015). However, despite the importance of assessment of skin sensitisation for dermally 

applied products, it must be pointed out that the rLLNA is an in vivo assay, i.e. novel 

cosmetic ingredients tested with the rLLNA would not be allowed for sale in the EU 

according to the EC’s Cosmetics Directive (EC, 2009). 
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1.3.3. The European Commission’s role 

The EC plays an important role in the advance of alternative testing methods, most 

notably with the SEURAT-1 “Safety Evaluation Ultimately Replacing Animal Testing” 

cluster. SEURAT-1 is a 50 million euro project funded by EC’s Seventh Framework 

Programme (FP7) and Cosmetics Europe, the European trade association for cosmetic, 

toiletry and perfumery industry. Within SEURAT-1, for five years (2011-2015), research 

facilities from industry and over 70 European universities and SMEs have been 

developing non-animal test methods for systemic toxicity following repeated exposure 

etc. The SEURAT-1 cluster is divided into seven distinct projects (Gocht and Schwarz, 

2014; SEURAT-1, 2015): 

 SCR&Tox, “Stem Cells for Relevant efficient extended and normalised 

Toxicology” 

 HeMiBio, “Hepatic Microfluidic Bioreactor” 

 DETECTIVE, “Detection of endpoints and biomarkers of repeated dose toxicity 

using in vitro systems” 

 COSMOS, “Integrated in silico models for the prediction of human repeated dose 

toxicity of COSMetics to Optimise Safety” 

 NOTOX, “Predicting long-term toxic effects using computer models based on 

systems characterisation of organotypic cultures” 

 ToxBank, “Supporting integrated data analysis and servicing of alternative testing 

methods in toxicology” 

 COACH, “COordination of projects on new Approaches to replace current 

repeated dose systemic toxicity testing of cosmetics and CHemicals” 
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One of the research projects within the SEURAT-1 cluster is the COSMOS Project. As 

the full title and semi-acronym, “Integrated in silico models for the prediction of human 

repeated dose toxicity of COSMetics to Optimise Safety” indicates, the project aims to 

develop computational methods. Computational methods demand sufficient data, the 

requirement for which is often neglected, but is actually a crucial part for any data-driven, 

scientific approach. Therefore, building a database relevant for cosmetics was one of the 

major objectives of COSMOS. The so-called “COSMOS DB” was released online as a 

freely available resource in December 2013. This database can be regarded as the 

backbone for modelling and read-across approaches used to assess cosmetic ingredients 

within COSMOS (Richarz et al., 2014). 

In addition, the refinement of the Toxicological Threshold of Concern (TTC) approach 

and its extension to cosmetics ingredients is a major aim of the COSMOS project. As 

humans are likely to be exposed to thousands of chemicals in their life-time, and it is 

impossible to test every compound against every possible endpoint, feasible and 

pragmatic approaches for risk assessment are necessary. Originally deriving from the 

food industry, the TTC approach applies margins of safety based on no-observed-effect 

levels (NOELs), i.e. the highest concentration of a substance not causing any toxic effects 

in vivo. The so calculated acceptable daily intake (ADI) should ensure consumer safety 

(Munro et al., 1996; Richarz et al., 2014; Feigenbaum et al., 2015). 

Many challenges of the COSMOS project lie within the field of kinetics, i.e. predicting 

dermal absorption and modelling the distribution of chemicals (refer to physiologically-

based pharmacokinetic models). The distribution of a chemical within tissues is of 

particular interest regarding potential target organ toxicity. Besides kinetic aspects, 

specific mechanisms of toxicity were also investigated within COSMOS (Richarz et al., 

2014). For example, many mechanisms of toxicity have been identified lately within the 
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Adverse Outcome Pathway (AOP – described in Section 1.4.2) framework (Vinken et al., 

2013).  AOP-related QSAR models, for example for compounds causing fatty liver 

(hepatosteatosis) via agonism of the liver X receptor (LXR; a nuclear receptor 

responsible for lipid regulation amongst others), are under development (Fioravanzo et al., 

2013; Richarz et al., 2014). Further screening tools for hepatotoxicity based on structural 

alerts and/or physico-chemical properties have been developed within the COSMOS 

project (e.g. Nelms et al., 2015, Steinmetz et al., 2015a). 

 

1.4.  21st Century Toxicology 

There are many international endeavours, including projects within the Horizon2020 

funding programme in Europe and Tox21 in the US, to elucidate toxicity pathways at a 

molecular, cellular and histological level. By employing systems biology, i.e. genomics, 

proteomics and metabolomics, and robot-supported quantitative high-throughput 

screening (qHTS), a large amount of data are, and will be, generated (Attene-Ramos et al., 

2013; Gaspar et al., 2012). Tox21, for example, screens chemicals using over 75 

biochemical and cell-based assays resulting in information for different perturbations of 

signalling pathways, inflammatory response induction, DNA damage, general 

cytotoxicity etc. If these, and the associated existing in vivo / clinical, data are interpreted 

well, a significant wealth of knowledge could be created and exploited for 

pharmacological research and toxicological risk assessment. One such example is the 

work of Attene-Ramos and colleagues regarding mitochondrial toxicity; they defined 

chemical (sub)structures responsible for decreasing mitochondrial membrane potential 

(Attene-Ramos et al., 2015). 

Overall the pharmacological and toxicological knowledge obtained from research 

projects, such as Tox21, will lead to new biomarkers, safer drugs and, in general, a 
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deeper understanding of biochemical interactions in vivo, which would benefit many life-

science disciplines and regulatory bodies (Gaspar et al., 2012; Attene-Ramos et al., 2013). 

  

1.4.1. Alternatives to animal testing 

Animal testing is usually a means to obtain information regarding the safety (or specific 

effects) of chemicals relevant to humans. Human trials, which per se would provide more 

relevant data, are generally regarded as unethical and limited to clinical trials, patch tests 

etc., where mostly non-toxic doses are administered. Within 21st Century Toxicology 

animal testing is becoming regarded as unethical, and even lacking scientific credibility, 

leading to alternative methods being investigated (Russell and Burch, 1959). SEURAT-1 

is a good example how toxicological research can be conducted without animal testing, 

i.e. batteries of different in vitro tests on the one hand and computational modelling on 

the other. 

Similar to species differences in susceptibility towards different chemicals, in vitro to in 

vivo extrapolation is a difficult challenge. Approaches for alternative test methods 

principally come from in vitro studies, e.g. the hepatic microfluidic bioreactor – a 

simulation of the human liver, and in silico studies, mainly in the form of 

physiologically-based pharmacokinetic (PBPK) models predicting target organ 

concentrations of chemicals (Gocht and Schwarz, 2014; SEURAT-1, 2015). Furthermore 

there are non-testing approaches aiming to make predictions of toxicity directly from 

chemical structure and property, mainly based on QSAR, read-across and expert opinions, 

which are sometimes summarised under the banner of predictive toxicology. 
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1.4.2. Predictive toxicology 

Predicting the toxicity of an untested chemical is of great interest for many different 

reasons, such as animal welfare, or simply to save the costs of testing and resources 

involved. Whatever the motivation is, similar methods are applied. Better known methods 

include Quantitative Structure-Activity Relationship (QSAR) models and the read-across 

(also known as the category formation) approach. While QSAR models are usually based 

on one or more mathematical equation(s) exploiting physico-chemical and other 

descriptors to predict toxic effects, read-across, as the name suggests, is a direct 

extrapolation of toxicological effects from structurally similar compounds, usually 

performed by experts (Cronin, 2004; Cronin, 2013a; Schultz et al., 2015). Further the 

concept of the Adverse Outcome Pathway (AOP), i.e. describing a sequence of causally 

linked events at different biological levels, is increasingly used to predict toxicity 

(Vinken et al., 2013; Vinken, 2015). An AOP is shown schematically in Figure 1.1; the 

first key event of an AOP, the molecular initiating event (MIE) is followed by cellular 

and tissue responses, which may ultimately result in an adverse effect to an organ, 

organism or population (Ankley et al., 2010). The MIE represents the initial interaction 

between molecule and the target and hence represents a significant source of information 

to develop structure-activity relationships (SARs) as part of mechanistically based 

computational profilers for toxicity. Examples of MIEs include covalent binding to DNA 

and receptor binding (Gutsell and Russell, 2013; Allen et al., 2014). The AOP framework 

is, for example, used in Chapter 5 and 6 to predict potentially toxic compounds. 
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Figure 1.1: Schematic view of the Adverse Outcome Pathway framework (adapted from   

Ankley et al., 2010) 

 

Computational approaches, sometimes referred to as in silico testing or virtual screening, 

are often based on QSAR models, which incorporate physico-chemical and structural 

features in a mathematical context towards an endpoint. Endpoints which have been 

successfully modelled by predictive QSAR models include acute aquatic toxicity 

(Könemann, 1981; Verhaar et al. 1996), hERG (human Ether-à-go-go-Related Gene)-

related toxicity (Gavaghan et al., 2007), mutagenicity (Benigni and Giuliani, 1994), skin 

permeability (Potts and Guy, 1992) and skin sensitisation (Roberts and Williams, 1982). 

Naturally QSAR models have been applied to numerous other endpoints and in many 

other disciplines too, e.g. receptor binding within drug development. However what 

makes the models developed for aquatic toxicology, hERG-related binding, mutagenicity, 

skin sensitisation and permeability so significant, is that the models are robust and 

applicable to a large variety of chemical compounds. QSAR models within a specific 

class of compounds, i.e. having a narrow applicability domain, are often referred to as 

local QSARs.  

The logarithm of the octanol-water partition coefficient (log P) plays an important role in 

many QSAR models, such as in aquatic toxicology and skin permeability, (refer to Potts 

and Guy, 1992; Verhaar et al., 1996). Log P, also known as log KOW (particularly in 

environmental sciences), is a measure of lipophilicity and hence is assumed to be an 
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excellent surrogate for the partitioning and uptake of a compound through a biological 

membrane. As well as experimentally measuring log P, it is well predicted from 

topological descriptors or structural fragments (Ognichenko et al., 2012). 

As recognised in the late 19th Century by Charles Richet who stated “plus ils sont 

solubles, moins ils sont toxiques” (the more soluble they are, the less toxic they are), the 

relationship of biological effects and water-insolubility of chemical compounds is very 

well established (Richet, 1893). With regard to pharmacology and what characterises an 

orally bioavailable drug, log P is an often mentioned parameter. The rationale is mostly 

based on simple kinetics, such as passive diffusion, e.g. log P is used to describe the 

ability of a compound to pass through a biological membrane (Lipinski et al., 2001), but 

there are mechanistic rationales too, such as the binding affinity towards receptors and 

transporters (refer to hydrophobic binding pockets) (Caron and Ermondi, 2008). QSAR 

approaches, particularly involving log P, are used, for example, in Chapters 2 and 3. 

Predictive toxicology does not have limitations regarding the techniques applied in order 

to obtain the predictions of toxicity. That is why a wide range of methods, from machine 

learning to local QSARs and expert systems, is applied and investigated (nota bene: 

many approaches are combinations of different methods). 

 

1.5. Aims of this work 

Two worlds often collide in modern society; the commercial and the consumer world. 

Here the commercial world, predominantly backed by large global industries, is 

supplying the consumer’s demand for innovative, safe and affordable consumer products. 

This includes products such as pharmaceuticals, cosmetics, clothing, toys and food. 

Within a capitalistic competitive environment it is important to deliver a product with an 

acceptable safety profile without compromising costs and/or quality. From a chemical 
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perspective, new compounds, ideally cheap to produce and functional, need to be 

assessed regarding their safety. As explained above, this is no easy task. To add a further 

challenge to this task; animal tests are banned for new cosmetic ingredients marketed 

within the European Union. In a nutshell, there is a high demand for in vitro and in silico 

methods applicable for safety and risk assessment. Regarding in silico methods, the work 

presented in this thesis is a contribution to the current state-of-the-art. The following 

topics are addressed within this thesis. 

- Data quality: Data are often erroneous for many reasons. However, having the 

appropriate quality of data is crucial for modelling and read-across. In particular,  

biological data (in comparison to physical or chemical data) are often associated 

with considerable error due to the complexity of assays and the difficulty of 

assigning endpoints. For example, a pharmacological dose-response relationship 

involves the formulation, dosing and administration of a substance to a group of 

animals, measuring a biological endpoint and applying statistical analysis to 

obtain an ED50 value. To overcome these potential pitfalls, large datasets have 

been investigated by statistical means to build tools for an unbiased way to assess 

data quality (refer to Chapter 2 and 3). 

- Kinetics: Pharmaco- and toxicokinetics, which by definition encompass 

absorption, distribution, metabolism and elimination of a xenobiotic substance, 

are of great importance for the assessment of safety of chemical compounds. For 

cosmetics, in particular, skin permeability and dermal absorption are of great 

interest as many products are applied dermally, e.g. shampoo, skin cream, make-

up. Approaches, such as those proposed by Lipinski et al. (2001) for oral drug 

absorption and Potts and Guy (1992) for skin permeability, have been refined and 
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adjusted towards 21st Century Regulatory Toxicology challenges, to support 

regulatory decision-making (refer to Chapters 3 and 4). 

- Mechanistically based modelling: There is a myriad of different modes of action 

in the area of toxicology. For example genotoxicity, including mechanisms such 

as DNA adduct formation, and different enzyme- and receptor-mediated toxicities, 

very often extensions of pharmacological research, have been investigated in the 

last century. Highly relevant to cosmetics is hepatotoxicity caused by chronic 

exposure. Different mechanisms of toxicity have been studied in this thesis, 

especially nuclear receptor interaction associated with hepatosteatosis. Ligands 

for these receptors can lead to adverse effects even if absorbed in small quantities 

– particularly if absorbed over an extended time period. Therefore large in vitro 

datasets have been investigated additionally to in vivo and clinical data to develop 

screening tools for potential hepatotoxicants (refer to Chapters 5, 6 and 7). 

Beyond the models and tools built, an overall aim is to propose ideas how to build 

and interpret new models, and of course how to use them in combination to support 

safety assessment in the consumer care industry. This research has been undertaken 

within the COSMOS project and hence, it is funded by the European Commission and 

Cosmetics Europe. 
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2. Methods for assigning confidence to toxicity data with multiple 

values – identifying experimental outliers* 

2.1. Introduction 

High quality data are preferred for model development in predictive toxicology. They are 

also required as a benchmark in the assessment of alternative assays and to enable 

analysis of toxicological pathways. Recently, further toxicity data have become available 

through sources such as the OECD QSAR Toolbox, release of information from dossiers 

submitted to the ECHA, the OECD eChemPortal and many other sources (Cronin and 

Schultz, 2003; Fourches et al., 2010; Przybylak et al., 2012; Péry et al., 2013).  

When using these expanding resources of toxicity data for risk assessment purposes and 

modelling, the quality and reliability of the data must be assessed. For instance, a given 

dataset could be too “poor” in terms of quality for QSAR modelling but still satisfactory 

for the prioritisation of chemicals for testing or regulatory classification and labelling. 

Whilst QSAR modelling is dependent on a sensitive statistical analysis, e.g. multivariate 

regression, to define reasonable descriptors, regulatory use of toxicity data may only need 

a rough estimation of hazard as a worst-case assumption, with extrapolation factors being 

applied (Nendza et al., 2010). 

Reliability is the measure of the extent of repeatability and reproducibility of a toxicity 

test for a particular chemical (OECD, 2003). As repeatability and reproducibility are not 

known for most data, a variety of approaches to assign reliability and confidence are used. 

Assessing data quality in predictive and computational toxicology is, however, a difficult 

task (Klimisch et al., 1996; Przybylak et al., 2012; Yang et al., 2013). There are a number  

 

* This chapter is based on a published article (Steinmetz et al., 2014) 
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of established criteria to ascertain the reliability of toxicity data. The most commonly 

applied are those proposed by Klimisch et al. (1996). These authors discussed data 

attributes such as reliability, relevance and adequacy and provided a scoring system to 

categorise data into reliability classes: 

 
1. reliable without restriction 

2. reliable with restrictions 

3. not reliable 

4. not assignable 

 

Przybylak et al. (2012) applied the Klimisch scheme and an updated scoring approach, 

based on ECHA guidance on information requirements and chemical safety assessment, 

to “real life” problems of toxicity data harvesting. In this work, the focus was on 

availability of information, consistency of study design, adherence to Good Laboratory 

Practice (GLP), test chemical identity and toxicological data. 

Whilst reliability (the backbone of an experiment and the resulting toxicity data), and 

relevance (the usefulness of the resulting data for the desired purpose such as risk 

assessment) in principle require interpretation by experts, the determination of the 

reliability of data can be as well supported by methods of “weighting” the data (Klimisch 

et al., 1996; Przybylak et al., 2012; Yang et al., 2013). When dealing with large sets of 

toxicity data, from multiple sources, there is often more than a single data entry for each 

compound. In this investigation these data entries are referred to as “conflicting data”. 

Even for a well-defined assay such as the acute fish toxicity test, considerable variability 

in potency is seen within the results for the same compound (Hrovat et al., 2009). If 

toxicity data are to be extracted for modelling from the increasing number of databases 

then criteria to identify reliable values are required. In particular, it would be helpful to be 
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able to score data for reliability. In this way, it may be possible to rationally combine 

what may be considered to be low quality data to obtain a more reliable score. 

Another interesting aspect of the quality control and assurance of toxicity data was 

investigated by Ruusmann and Maran (2013) who undertook an extended data harvest for 

the Tetrahymena pyriformis inhibition of growth assay (the Tetratox assay). They 

analysed the “timelines” associated with the reporting of chemical structures and 

experimental data and so examined when, and how, certain data were reported in the 

scientific literature over time. These authors came to the conclusion that mathematical 

manipulation (rounding, building averages etc.) and, of course, human error has led to 

differences in the data reported. For some compounds, there are many toxicity data from 

the same test; there is, however, no unified strategy to select which of the data to use, or 

how to use them. Often these toxicity data for the same compound have a normal 

distribution that makes it relatively easy to define a representative value via the median or 

arithmetic mean. Data which fall outside the normal distribution may be termed “data 

outliers”, i.e. they may be subject to considerable experimental error. Figure 2.1 

illustrates the issues of the presence of a data outlier in reducing certainty in the 

calculation of the mean or median.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Normal bell-shaped distribution bell for a sample dataset (representative EC50 values 

for different sources for one compound) with an “optimal” normal distribution (A) and with a 

dataset containing an outlier in the upper range (B) demonstrating the skew it may bring to the 

distribution in addition to the elevated Standard Deviation (StDev) 
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In principle, the arithmetic mean is a good way to consolidate associated data points to a 

single value. Here, every data point is taken into consideration, in equal parts, to build a 

new value – the arithmetic mean. In contrast the median is the middle value of a 

distribution. When dealing with high individual spreads, the median is the more stable 

approach (Rowe, 2007).  

Confidence scoring is based on the number and variability of conflicting data. In this 

context, the relative standard deviation (RSD; sometimes referred as coefficient of 

variation), as a quotient of standard deviation and arithmetic mean, expresses the 

variability of a dataset of toxicity values for one compound (Rowe, 2007). Thus a high 

number of entries per compound and a low RSD lead to high confidence and vice versa. 

In order to investigate the role of variability in toxicity databases and explore the 

possibility of applying statistical approaches to identify reliable toxicity data, historical 

toxicity data, measured in the Microtox assay (and its precursors), were considered. Such 

data have been published since the early 1980s (e.g. Dutka and Kwan, 1981; Chang et al., 

1981; Bulich et al., 1981; King and Painter, 1981; Curtis et al., 1982; Yates and Porter 

1982; DeZwart and Slooff, 1983; Ribo and Kaiser, 1984) and by the company Beckman 

Instruments, Inc. (now Beckman Coulter, Inc.). The Aliivibrio fischeri toxicity assay 

(Microtox) is a standardised aquatic toxicity test based on the marine bacterium A. 

fischeri (also known as Photobacterium fischeri and Vibrio fischeri). The photo-

luminescent bacteria are exposed to a chemical at different concentrations with the 

reduction of light emitted being regarded as the effect. The results from the Microtox 

assay include the concentration of a compound where light intensity is reduced by 50% 

(EC50). The pT value is the negative logarithm of the EC50, for the purposes of this 

chapter the units are in mmol L-1, and the measurement has historically been taken at 

different exposure times (5, 15 and 30 minutes) (Kaiser and Palabrica, 1991). As the A. 
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fischeri toxicity assay is a well-standardised study, little experimental variability is 

assumed. However, there are some data, which can be regarded as low quality, which 

may be attributed to inter-laboratory variation and experimental error. Cronin and Schultz 

(1997) furthermore suggested that there is no significant influence of exposure times (5, 

15 and 30 minutes) on the toxicity of compounds, which act by non-polar narcosis. In this 

study non-polar narcosis is taken to be a non-specific mechanism of acute toxicity 

brought about by membrane perturbation (van Wezel and Opperhuizen, 1995; Ellison et 

al., 2008). As such, in aquatic toxicology, it is well established that the logarithm of the 

octanol-water partition coefficient (log P) is strongly related to the toxic potency of such 

compounds (Verhaar et al., 1992; Cronin et al., 1998; Zhao et al., 1998). 

The aim of this investigation was to develop methods and criteria to quantify the 

reliability of toxicity data when multiple values from different experimental 

determinations are available for the same chemical. To achieve this, historical literature 

data, measured in the A. fischeri assay were used. The effect of data quality was assessed 

by analysing log P-based QSARs for non-polar narcosis. Specifically, this involved: 

updating the Microtox data compilation of Kaiser and Palabrica (1991); identifying the 

non-polar narcotics within those data; developing statistical criteria for determining data 

reliability and; the development of log P-based QSARs for non-polar narcosis with 

different levels of quality / confidence score. 

 

2.2. Methods 

2.2.1. Toxicity data 

A literature search was conducted to obtain a large A. fischeri toxicity dataset (refer to 

Appendix A.1). The toxicity data of the compilation published by Kaiser and Palabrica 

(1991), consisting of 1350 A. fischeri EC50 entries, were supplemented with more 
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recently published A. fischeri assay data. Subsequently salts, mixtures, polymers, 

organometals and duplicates (data from the same study) were removed from the dataset. 

In the literature where different values for different exposure times were given, the result 

for the longest exposure time within the interval of 30 min ≥ t ≥ 5 min) was taken. 

Toxicity data corresponding to shorter or longer exposure times (t < 5 min; t > 30 min) 

were not considered. All EC50 values were converted to the negative logarithm of the 

EC50 in mmol L-1. In common with the original terminology of Kaiser and Palabrica 

(1991), this was termed “pT”.  

 

2.2.2. Chemical structures 

Simplified Molecular Input Line Entry Specification (SMILES) strings for all compounds 

from the A. fischeri toxicity dataset were retrieved from the ChemSpider and 

ChemIDplus online chemical databases. Furthermore InChIKeys were created with the 

OpenBabel software (OpenBabel, 2013) using SMILES strings as input to identify 

identical compounds. Subsequently the dataset was cleaned, i.e. salts, polymers, 

inorganics and redundant data (data already identified in other literature) were omitted 

from the dataset, so that only organic compounds with at least one unique toxicity value 

per compound remained. 

 

2.2.3. Assignment to mechanism of action for acute aquatic toxicity 

To obtain information about the mechanism of action, the SMILES strings of the toxicity 

data were entered into the Toxtree software v2.5.0 (IDEAconsult, 2013). Toxtree holds a 

variety of toxicologically relevant decision trees used either for classification of 

chemicals or the elucidation of potential MoAs. The main purpose of the software is the 

classification of chemicals in the area of human and aquatic toxicology (IDEAconsult, 

2014a). In this context the modified Verhaar algorithm (Verhaar et al., 1992; Verhaar et 
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al., 2000; Enoch et al., 2008) was applied to identify compounds acting as non-polar 

narcotics (Class 1). These compounds were subsequently extracted from the A. fischeri 

dataset.  

 

2.2.4. Exposure times 

The influence of exposure times (5, 15 and 30 minutes) on the toxicity value obtained 

was compared for the compounds identified as acting by non-polar narcosis. According to 

Cronin and Schultz (1997), there was little or no influence of exposure time on the 

toxicity value, such that it is justified to merge A. fischeri toxicity data from 5, 15 and 30 

minute time points. To verify this, triplets of data, i.e. A. fischeri toxicity values for each 

compound at 5, 15 and 30 minutes were identified and compared via linear regression 

(refer to Appendix A.1).  

 

2.2.5. Calculation of physico-chemical properties 

Calculated log P values were obtained from KOWWIN v.1.68 from the freely available 

EPI Suite 4.11 (EPA, 2013) software. Molecular weights were calculated from the MOE 

2011.10 software (MOE, 2013). 

 

2.2.6. QSAR analysis 

The relationships between pT and log P for non-polar narcotics were examined using 

linear regression analysis in Minitab (Minitab, 2013). The data were plotted and a linear 

equation including n (number of data points), S (standard error), R2
adj (coefficient of 

determination, adjusted for the number of degrees of freedom) and F and t statistics were 

generated (Livingstone, 2004). 
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2.2.7. Statistical analysis of toxicity data 

2.2.7.1.Omission of toxicity data outliers 

If the total number of different EC50 values for one compound was greater than five 

(n > 5), and single entries were outside of the range of ±50% of the median, then 

these so-called “data outliers” were omitted from the dataset. A truncated mean was 

calculated from the remaining EC50 values and the hence pT value was re-calculated 

(as shown in Figure 2.3). If n ≤ 5 for one compound, the arithmetic mean of all EC50 

values was used to calculate the final pT value for a compound. As a result, there is a 

single pT value per compound which was used for QSAR modelling. 

 

2.2.7.2.Confidence scoring 

A confidence score (CS) was assigned to the pT value for each compound. A 

compound with a single entry (n = 1) was assigned a confidence score of one (CS = 1). 

For n > 1 the confidence scores were calculated from the number of entries per 

compound (n) divided by the relative standard deviation (RSD), where RSD is the 

ratio of the standard deviation (SD) and arithmetic mean (x̅): 

 𝑅𝑆𝐷 =
𝑆𝐷

𝑥̅
            (Eq. 2.1) 

   𝐶𝑆 =
𝑛

𝑅𝑆𝐷
             (Eq. 2.2) 

For the toxicity data, two confidence score (CS) thresholds were investigated here, i.e. 

where CS(1) > 5 and CS(2) > 15 respectively. 

 

2.3. Results 

The outcome of the retrieval and the cleaning of the A. fischeri toxicity data and 

subsequent identification of non-polar narcotics are described below. Furthermore, 

analysis of toxicity values with respect to exposure time, to investigate the significance of 



Methods for assigning confidence to toxicity data with multiple values 

27 
 

the duration of the assay, as well as the analysis with respect to data quality from 

statistical assessment, is reported. 

 

2.3.1. Retrieval and cleaning of A. fischeri toxicity data 

A literature review revealed many sources of toxicity data from the A. fischeri assay. 

These supplemented the compilation of Kaiser and Palabrica (1991), which provided 

references to 28 papers and approximately 1350 data. A further 600 data were obtained 

giving a total of 1944 A. fischeri toxicity entries for over 1300 compounds. After cleaning 

the data to remove toxicity values for ambiguous structures, salts, polymers etc. a total of 

1813 entries for 1227 compounds were obtained. This complete dataset is available as an 

Excel table in Appendix A.1. 

 

2.3.2. Identification of non-polar narcotics 

Of the cleaned 1813 A. fischeri toxicity data for the 1227 different chemical compounds, 

203 of these compounds were identified as having a very strong probability of acting by 

the non-polar narcosis mechanisms of action. The initial assignment was performed using 

the modified Verhaar rules, which provide a robust starting point (Verhaar et al., 1992; 

IDEAConsult, 2013). It is appreciated that this may be a conservative approach and that 

more compounds in the dataset may fall within the non-polar narcosis domain, however, 

the Verhaar rules were utilised to provide a defensible and repeatable method for the 

selection of non-polar narcotics. 

 

2.3.3. Analysis of A. fischeri toxicity data with respect to exposure time 

For the purposes of considering data quality it would be highly beneficial to be able to 

combine data from the different time points. In order to assess the feasibility of this, 99 of 

the non-polar narcotic triplets, i.e. compounds identified as being non-polar narcotic, with 
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data for all three exposure times, were considered. Figure 2.2 and Equations 2.3 to 2.5 

show the relationships between toxicity data from all three time points. There are no 

significant differences between the toxicity data as illustrated by an intercept approaching 

zero and a slope of unity for the regression equations between the exposure times. As a 

result of this analysis, confirming insignificant differences between the toxicity data for 

different exposure times, the data for different time points were combined, with the 

longest exposure being used by preference: 

pT(30min) = - 0.04 + 0.97 pT(5min)           (Eq. 2.3) 

   n = 99, R2
adj = 0.99, S = 0.14, t = 90.0, F = 8020 

 

pT(15min) = - 0.02 + 0.99 pT(5min)           (Eq. 2.4) 

   n = 99, R2
adj = 1.00, S = 0.09, t = 133, F = 17700 

 

pT(30min) = - 0.02 + 0.98 pT(15min)          (Eq. 2.5) 

   n = 99, R2
adj = 1.00, S = 0.08, t = 154, F = 23600 

 

 

Figure 2.2: Comparison of the effect of exposure times (5, 15 and 30 min) of the pT values for 99 

non-polar narcotics (refer to Appendix A.1) 

 

2.3.4. Analysis of A. fischeri toxicity data with respect to data quality 

Many compounds had more than a single toxicity value. In order to investigate the 

concept of data reliability and quality, the (truncated) mean was calculated for these 

compounds. Taking methanol as an example, toxicity test data are available from ten 
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separate publications. The full set of test results and data are shown in Figure 2.3. 

Consideration of all ten data points gives a mean of 8.61 x 104 ppm and SD of 8.45 x 104 

ppm. When data outliers were omitted, with a tolerance of ± 50% of the median (Min, 

Max), this resulted in only six mid-range entries with a mean of 5.02 x 104 ppm and SD 

of 1.61 x 104 ppm remaining for methanol (refer to Figure 3). As a consequence of the 

removal of the “data outliers” there is a predictable reduction in (relative) standard 

deviation and increase in the confidence score (CS). The ID numbers in Figure 3 are 

identifiers used during the data collection (refer to Appendix A.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
       Figure 2.3: Microtox toxicity data for methanol and analysis to identify 

       “data outliers” and calculate the confidence score 

 

 

2.3.5. Investigation of the effect of data quality on QSARs 

The same principle of data outlier omission and confidence scoring, as undertaken for 

methanol, was applied to the whole A. fischeri dataset. Therefore, for compounds with 
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more than five data points (n > 5), truncated means with a reduced influence of outliers 

and higher confidence scores (CS) were created where such outliers were identified.  

Figure 2.4 shows the relationship of toxicity and log P for non-polar narcotics, where the 

effect of data outlier omission and confidence scoring, have been applied: In the left 

column (Figure 2.4A, 2.4C and 2.4E) no data outlier omission was applied and in the 

right column (Figure 2.4B, 2.4D and 2.4F) data outlier omission was applied. In first row 

(Figure 2.4A and 2.4B) no confidence score threshold was applied, in the second row 

(Figure 2.4C and 2.4D) a confidence score threshold of CS(1) > 5 was applied and in the 

third row (Figure 2.4E and 2.4F) a confidence score threshold of CS(2) > 15 was applied. 

The linear correlations between pT and log P in the first row of Figure 2.4A and 2.4B are 

weak (R2
adj of 0.50 and 0.51 respectively). The confidence score thresholds for the second 

and the third row (C, D and E, F) allowed only “high quality” data to be plotted. Figures 

2.4C and 2.4D (CS(1) > 5) and Figures 4E and 4F (CS(2) > 15) show stronger linear 

correlations (R2
adj > 0.79) than Figures 2.4A and 2.4B. As the confidence score threshold 

of CS(2) is stricter than CS(1), the second row (Figure 2.4C and 2.4D) contains more 

compounds (n = 40 and n = 43 respectively) than the third row (Figure 2.4E and 2.4F) 

with n = 12 and n = 17 respectively. Overall the following six QSAR equations (2.6 to 

2.11), referring to Figure 2.4A to 2.4F, were developed: 

 

 A:   pT = 0.68 log P - 1.14                      (Eq. 2.6) 

n = 203, R2
adj = 0.50, S = 0.95, t = 14.3, F = 204.0 

 

 B:   pT = 0.68 log P - 1.11                      (Eq. 2.7) 

n = 203, R2
adj = 0.51, S = 0.93, t = 14.5, F = 211.0 

   

 C:   pT = 1.08 log P - 2.21                      (Eq. 2.8) 

n = 40, R2
adj = 0.81, S = 0.65, t = 13.0, F = 168.0 
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 D:   pT = 1.08 log P - 2.20                 (Eq. 2.9) 

n = 43, R2
adj = 0.81, S = 0.63, t = 13.6, F = 185.0 

 

E:   pT = 1.12 log P - 1.92                (Eq. 2.10) 

n = 12, R2
adj = 0.79, S = 0.80, t = 6.5, F = 42.8 

 

 F:   pT = 1.23 log P - 2.31                (Eq. 2.11) 

n = 17, R2
adj = 0.83, S = 0.75, t = 9.0, F = 81.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Relationship between A. fischeri toxicity (pT) and log P: Figure 2.4A containing pT 

arithmetic means (n = 203); Figure 2.4B containing pT arithmetic means after an median-based 

data outlier omission (n = 203); Figure 2.4C containing pT arithmetic means with a confidence 

filter (CS(1) > 5; n = 40), Figure 2.4D containing pT arithmetic means with a confidence filter 

(CS(1) > 5; n = 43) after an median-based data outlier omission; Figure 2.4E containing pT 

arithmetic means with a confidence filter (CS(2) > 15; n = 12); Figure 2.4F containing pT 

arithmetic means with a confidence filter (CS(2) > 15; n = 17) after median-based data outlier 

omission 
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2.4. Discussion 

There is an increasing availability of toxicity data from various relatively standardised 

assays, which have been brought together in REACH submissions, the OECD QSAR 

Toolbox, eChemPortal and a variety of other freely available and accessible resources etc. 

An often asked question is which value is representative when multiple data points are 

available for the same compound from the same test. This analysis has provided a means 

to evaluate multiple data entries and thus, in part at least, begins to answer that question 

as well as supporting regulatory decisions and the creation of robust datasets for model 

building and read-across. The A. fischeri assay is a well-standardised technique; it is 

essentially a simplistic cytotoxicity assay, meaning variability of measurements within 

and between laboratories should be low. Within the compiled dataset, the non-polar 

narcosis-associated toxicity data from the A. fischeri assay were chosen due to the 

number of available data. 

For compounds with multiple toxicity data points, statistical analysis was undertaken 

(refer to Figure 2.3). The purpose of this was to identify, and hence remove, data outliers. 

These outliers were selected on an empirical and statistical basis. It was not possible to 

determine if there were experimental anomalies as the original “study reports” were not 

available, as is common for online databases of toxicity values. Figure 2.3 illustrates this 

concept; the approach of removing statistical outliers is transparent and clear. It provides 

a useful analysis of the data, especially when combined with the confidence score (CS) 

discussed below. In this analysis an arbitrary cut-off of 50% of SD was applied. This was 

identified following a process of trial and error (results not shown in this analysis) but 

could be adapted e.g. if more or less variability was considered acceptable for a test.  

The relationship between toxicity (pT) and lipophilicity (log P) for non-polar narcotics is 

shown in Figure 2.4. The resulting QSAR equations are not significantly different from 
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those published previously (Cronin and Schultz, 1997; Vighi et al., 2009). When no data 

restrictions are selected (Figures 2.4A and 2.4B) the resultant QSARs are less precise in 

terms of statistical fit and robustness as compared to those developed using certain data 

selections (from Figure 2.4C, 2.4D, 2.4E and 2.4F). Therefore an assessment and 

quantification of data quality will assist in the development of more robust QSARs and 

computational models. To select the data in an objective manner, arbitrary confidence 

scores (CS(1) > 5 and CS(2) > 15) were taken as thresholds. Principally, the higher the 

CS the more evidence, in terms of similar results for one compound is available, i.e. the 

result is regarded as more trustworthy than a compound with a low CS. Even with low 

numbers of data (n) and high relative standard deviation (RSD), it is impossible for CS to 

fall below one (CS < 1). Usually CS = 1 means that there is only one data point per 

compound. This can be regarded as the lowest (statistical) confidence that can be attached 

to a datum point. At this point it must be stressed that confidence does not necessarily 

relate to reliability. For many compounds the results of a single toxicity test may be 

highly reliable, it is simply that there is lower confidence as the value has not been 

replicated. As such, the plots in Figure 4C to 4F show a smaller number of data points (n 

= 40, 43, 12 and 17 respectively) due to a filtration process based on confidence scoring. 

In Figures 2.4C and 2.4E only data with high confidence scores (CS > 5 and > 15 

respectively) were considered. Both show the strong linear relationship that is 

fundamental to non-polar narcosis (Ellison et al., 2008). The inclusion of data with the 

lower confidence threshold (refer to Figure 2.4D) allows more data points (compounds) 

to be considered in the QSAR.  

The data outlier omission on its own leads to more centralised (closer to the median) 

values, it also reduces the variability/spread of an associated dataset and so increases the 

corresponding CS value. This leads to more confidence being associated with the data 
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points in Figures 2.4D and 2.4F compared to Figures 2.4C and 2.4E respectively. It is 

open for discussion which of Figures 2.4D (equation 2.9) or 2.4F (equation 2.11) is the 

better model for non-polar narcosis: on the one hand Figure 4F has a better statistical fit 

( R2
adj = 0.83), in contrast Figure 2.4D incorporates more contributing data points. 

The effect of the data outlier omission between Figures 2.4A and 2.4B is only marginal 

(R2
adj 0.50 and 0.51 respectively). Both Figures contain 203 data points, but in Figure 

2.4B fewer data points are orientated towards the line of best fit than in Figure 2.4A, 

based on the stabilising effects of the data outlier omission and truncated mean 

respectively. The effect is negligible as most compounds have only one data point, i.e. 

one single EC50 entry. The strength of the QSARs reported in Figures 2.4D and 2.4F is 

that data outlier omission incorporates more data points (than Figures 2.4C and 2.4E). 

The greater the number of data points contributing to a correlation or QSAR, the greater 

the weight of evidence for a correlation and QSAR respectively. This confirms that data 

outlier omission is a useful tool, particularly in combination with CS thresholds. 

The confidence scoring, particularly when combined with the median-based data outlier 

omission, is a mathematical method to assess reliability of toxicity data where there are 

multiple entries for a single value. The metric confidence scores provided by this method 

can be used as thresholds or as pre-factors for weighting as described by Przybylak et al. 

(2012) or Yang et al. (2013). The statistical tools used, i.e. data outlier omission and 

confidence scoring, show an improvement of the model by defining “reproduced” 

(multiple and similar) data to be more reliable than single or non-reproducible data. 

 

 

 

 

http://www.dict.cc/englisch-deutsch/negligible.html
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Figure 2.5: Detailed examination of Figures 2.4C and 2.4D showing compounds with excess     

toxicity 

 

 

The investigation of Figures 2.4C and 2.4D (refer to Figure 2.5) revealed three data 

points with a high pT to log P ratio, indicating excess toxicity above non-polar narcosis.  

 

 

 

 

 

Figure 2.6: Chemical structures of aflatoxin B1 (A), acetylacetone (B) 

and pentachloroethane (C) 

 

These three compounds are aflatoxin B1, acetylacetone and pentachloroethane which are 

known to have toxicity-related modes of action other than non-polar narcosis (refer to Fig. 

2.6). Aflatoxins are well known for their mutagenic, teratogenic, carcinogenic and in 

higher doses hepatotoxic effects. Typically aflatoxin is activated by enzymes of the 

cytochrome P450 family to an epoxide, which reacts with macromolecules including 

DNA, RNA and proteins. This mechanism is relevant not only for cancer and liver 

disease but also for direct cytotoxic effects (Wehner et al., 1978; McLean an Dutton, 

1995; Frisvad et al., 2006). In 2004, acetylacetone (pentane-2,4-dione) was identified as 

genotoxic and subsequently banned by the EC as a food additive (EC, 2005). According 

to the mechanistic studies of Enoch et al. (2011) it is likely to act as a Schiff base and 
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protein binder. Pentachloroethane on the other hand showed no protein binding potential 

or any other related toxicity according to Enoch et al. (2011) but nevertheless most safety 

sheets label this substance as toxic. Pentachloroethane and hexachloroethane 

administered orally showed adverse effects, such as renal inflammation, hepatocellular 

carcinoma and increased lethality, in rats (Mennear et al., 1982). Classifying these 

compounds as non-polar narcotics (Class 1) might not be an adequate decision by the 

Toxtree software and this provides some indication as to how to improve/modify the 

Verhaar rules in the Toxtree software. The excess toxicity, compared to the non-polar 

narcosis-associated toxicity, could be explained by these mechanisms (Lipnick et al., 

1987). 

 

2.5. Conclusions 

A transparent method to identify reliable toxicity data and values for modelling, as well 

as providing confidence for the use of multiple entries has been developed. This will 

assist in the harvesting of reliable toxicity values from what may be considered as 

variable quality data. The ability to assess conflicting toxicity data is important not only 

for developing models in computational toxicology, but also for the use of the increasing 

number of toxicity databases available. It should be remembered that even toxicity data 

with a low confidence score may be highly reliable (as a single, measured data point can 

be accurate per se), however the approaches proposed in this study will be beneficial to 

analysing some of the larger datasets that are increasingly becoming available. The 

analysis confirms that data with higher confidence, as defined in this study, produce more 

robust QSARs. 

The results from Chapter 2 show that a novel method to assess data quality from a 

statistical perspective has been developed (and published as Steinmetz et al. 2014). This 
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provides a means to evaluate the information from the increasing number of databases 

with multiple data for the same compound. This study has been extended in Chapter 3 by 

the use of CS-weighted regression to build QSAR models. Additionally a second dataset 

with high relevance to the assessment of cosmetic ingredients, i.e. a compilation of skin 

permeability coefficient data, has been investigated. 
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3. Using statistical confidence scoring to improve QSAR/QSPR 

modelling* 

3.1. Introduction 

As already explained in detail in Chapter 2, the assessment of biological/toxicological, 

data quality is crucial for many disciplines, e.g. QSARs, grouping and read-across 

(Nendza et al., 2010; Przybylak et al., 2012; Péry et al., 2013). There are two general 

approaches to assess the quality of biological/toxicological data; based on the assessment 

of the reported testing information (GLP etc.) and based on statistical data quality (CS 

etc.) if multiple and comparable data are available (Steinmetz et al., 2014).  

As the assignment of CS values to toxicological data is not a common method to date, 

some theoretical examples are given to facilitate interpretation. Examples of calculations 

of CS values are provided in Table 3.1, illustratively representing scenarios of increasing 

CS values. Compound A is the default scenario (the most common occurrence whereby a 

compound has only a single experimental value), the CS is 1. Compound B has two 

relatively divergent data values, differing by an order of magnitude. Clearly there will be 

greater confidence for the toxicity value than for compound A, but the significant 

difference in the values introduces some uncertainty, raising CS marginally to 1.73 – in 

this way there is slightly greater confidence associated with two relatively different 

values than a single value. More data points are considered for compounds C and D, with 

increasing precision of the data values. Whilst compound C (n = 4) has more data than 

compound D (n = 3), the values are more divergent for C (represented by a higher RSD), 

thus the highest CS is calculated for compound D for which there are three data points, all 

relatively consistent in the light of the experimental error that might be associated with an 

experimental test. As such, compound D has the highest CS value. 

*This chapter is based on a published article (Steinmetz et al., 2015b) 
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Table 3.1: Four examples of compounds with multiple data in the same toxicity test (EC50), along 

with statistical criteria and CS (refer to Appendix A.2) 

Compound EC50 (mol/L) x̅ ± SDa RSDb nc CSd 

A 10 10 ± n/a n/a 1 1e 

B 
1 

5.50 ± 6.36 1.16 2 1.73 
10 

C 

1 

57.75 ± 43.05 0.75 4 5.37 
80 

50 

100 

D 

1 

1.47 ± 0.50 0.34 3 8.74 2 

1.4 

amean and standard deviation  

brelative standard deviation  

cnumber of data 

dconfidence score  

eCS of a compound with n = 1 is defined as 1 is the minimum value 

 

As there is growing interest in techniques such as read-across to fill data gaps for 

regulatory purposes, and there is increasing accessibility to toxicity data through 

resources such as the OECD QSAR Toolbox to perform read-across, there are more 

possibilities to apply approaches such as the confidence scoring to improve the 

robustness of modelling. In this study the relevance of the CS approach has been assessed 

with regard to established QSARs for two endpoints, namely skin permeability 

coefficients and cytotoxicity for which large compilations of historical data are available. 
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3.1.1. Skin permeability 

There have been many efforts to develop Quantitative Structure-Permeability 

Relationship (QSPR) models to predict various measures of dermal absorption 

(Scheuplein and Blank, 1971; Potts and Guy; 1992; Abraham et al., 1997; Magnusson et 

al., 2004; Dancik et al., 2013; Khajeha and Modarress, 2014). The most recognised and 

applied QSPR to predict the skin permeability coefficient (kp) is that developed by Potts 

and Guy in 1992 (Eq. 3.1). They used the molecular weight (MW), to account for the size 

of a permeant and log P, as a descriptor for lipophilicity, as parameters to model kp 

following an analysis based on the Flynn data compilation (Flynn, 1990). The 

mechanistic explanation is that small, lipophilic compounds pass through the stratum 

corneum, the outermost layer of the skin, more easily than larger, more hydrophilic 

compounds. As shown in Figure 3.1, the transport termed diffusion occurs within the 

lipophilic phase between keratinocytes (Potts and Guy, 1992; Mitragotri et al., 2011). 

 

log kp (cm/h) = -2.7 + 0.71 log P - 0.0061 MW          (Eq. 3.1) 

 
Figure 3.1: Diagrammatic representation of the skin showing the inter- 

cellular transport of xenobiotics through the stratum corneum (black arrow) 

 

Despite the significance of Eq. 3.1, the quality of data compiled from the literature by 

Flynn, and hence the robustness of the Potts and Guy QSPR, has been the subject of 
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considerable debate (Moss and Cronin, 2002; Johnson et al., 1995). More human in vitro 

kp data have inevitably become available in the two and half decades since Flynn’s 

seminal publication (Moss and Cronin, 2002; Chauhan and Shakya, 2010; Chen et al., 

2013; ten Berge, 2014), thus the QSPR can be reassessed and rebuilt with a greater 

consideration and understanding of data quality.  

 

3.1.2. Aquatic toxicology 

As described more in detail in Chapter 2, there is a myriad of publically available eco-

toxicological data, accessible for example via EPA’s ECOTOX database (EPA, 2015b). 

The multitude of published A. fischeri data (as compiled in Steinmetz et al. (2014) and 

Chapter 2 respectively) was used within this study.   

These two examples are illustrative of the possibilities of applying confidence scoring 

metrics to historical compilations of toxicity information. There are many open-access 

resources such as ChEMBL (2015), PDSP (2015), ACToR (EPA, 2015a), eChemPortal 

(OECD, 2015), TOXNET (NIH, 2015), so the life sciences, and in particular toxicology, 

has to deal increasingly with large and complex datasets (Zhu et al., 2014). However, the 

task of assessing the toxicity data for quality, particularly when contradicting data are 

present, has not yet been accomplished. Any indication of the quality of data would be 

very helpful for purposes such as risk assessment, but more crucially for modelling 

including QSARs and read-across prediction (Przybylak et al., 2012; Steinmetz et al., 

2014).  

Therefore, the aim of this study was to investigate how using approaches for statistical 

data quality, i.e. CS, improves the development of QSAR/QSPR models. Specifically, the 

effect of directly incorporating the CS into the training and testing of the models was 

considered. To achieve this, the two endpoints described above were chosen for analysis, 
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namely human in vitro skin permeability coefficients and the acute toxicity of compounds 

acting by a non-polar narcotic mechanism of action to A. fischeri. The reasons for 

choosing these endpoints included the fact that there were many historical data of 

variable and unknown quality, many compounds had been tested multiple times (a pre-

requisite of applying the CS) and that there were simple, robust and mechanistically 

interpretable QSAR models for them. Thus, for both datasets, QSARs were constructed 

with and without reference to the CS.  

 

3.2. Methods 

3.2.1. Data harvest 

In vitro skin permeability coefficients (kp) were collected from the literature by compiling 

and subsequently merging four of the most comprehensive datasets of human skin kp 

values (Moss and Cronin, 2002; Chauhan and Shakya, 2010; Chen et al., 2013; ten Berge, 

2014). All kp values were converted to a standard unit (cm/h). Duplicate log kp values 

(and those within ± 0.01 cm/h) were removed as they are most likely to be derived from 

the same source. SMILES and InChIKey strings were obtained for each compound from 

the ChemSpider website (RSC, 2014). The Flynn (1990) dataset contained kp values for 

94 compounds, however, 11 compounds (all substituted steroids) could not be identified 

by ChemSpider (RSC, 2014) or ChemIDplus (US NIH, 2014) and hence no SMILES 

were available to calculate descriptors. Since the structure of these compounds could not 

be completely verified they were excluded from subsequent analysis. 

The A. fischeri data compilation from Chapter 2 (Steinmetz et al., 2014) was used as the 

resource for the aquatic toxicology dataset. The chemical structures (as SMILES strings) 

of the comprised 1227 compounds were run through IDEAconsult’s Toxtree v2.6.6 
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(modified Verhaar) and non-polar narcotics were identified as being Class 1 according to 

the Verhaar scheme (Verhaar et al., 1992; IDEAconsult, 2014a). 

 

3.2.2. Descriptor generation 

Log P and molecular weight (MW) were calculated for compounds in both datasets. The 

SMILES strings were used as the input format for all calculations. Log P was calculated 

with KOWWIN v1.68 within EPI Suite 4.11 (estimated values exclusively) (EPA, 2014). 

MW was calculated with the CDK node “molecular properties” within KNIME 2.9 

(KNIME, 2014). 

 

3.2.3. Calculation of confidence score (CS) 

Confidence scores were calculated for the compounds in both datasets with regard to their 

kp and EC50 values respectively. For compounds with more than a single experimental 

value, the arithmetic mean (x̅), number of data points (n), SD and RSD were calculated 

with reference to data in the units stated in Section 3.2.1 and before logarithmic 

transformation. A CS was assigned to the arithmetic mean of the experimental values for 

each compound. Compounds with a single entry (n = 1) were assigned a confidence score 

of one (CS = 1). For compounds with n > 1, the CS was calculated as in Eq. 2.2. 

 

3.2.4. Development of QSARs/QSPRs 

Uni- and multivariate linear regression was performed on the datasets using R Studio 

0.98.501.19 (R, 2014). Linear equations were generated and the following statistical, and 

other, criteria recorded: n (number of data points), S (standard error), R2
adj (coefficient of 

determination, adjusted for the number of degrees of freedom), t statistics for the 

descriptors and F statistics for the equation. Regression analysis was performed to 

develop the QSARs for both datasets with and without weighting. Non-weighted 
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regression analysis and weighted regression analysis was performed by applying CS 

values as weights in R using the default package lm {stats}. Weighting in linear 

regression means that each datum point is associated with a weight. A high weight 

strengthens, and a low value weakens, the impact of the data point towards the linear 

regression. In this manner, data for compounds associated with a high confidence score 

would be more heavily weighted in the regression analysis than compounds with a lower 

confidence score. Comparison of the statistics of the weighted and unweighted regression 

analysis provides an indication of whether CS is able to improve the robustness of 

models.    

 

3.2.5. Evaluation of the predictivity of the QSARs/QSPRs 

Statistical evaluation of the predictive capability of the CS-weighted QSAR and the CS-

weighted QSPR was performed using 10-fold cross-validation, i.e. the compounds were 

ordered by kp and pT respectively and every 10th compound was removed in turn leading 

to 10 training and validation sets. After applying the CS-weighted linear regression, the 

10 datasets were investigated by the root mean square error (RMSE); predicted (fi) versus 

experimental (yi) values. Additionally the root mean square error adjusted for CS 

(RMSECS) was calculated (Eq. 3.2). It is expected that during the validation process, the 

RMSECS, which incorporates CS-weighting, will be lower than the standard RMSE. As 

the residuals (fi - yi) of the compounds with low CS values are weakened and the 

residuals of high CS compounds are strengthened, the sum of (squared) errors of the 

RMSECS should be reduced in comparison to the conventional RMSE. The R script for 

RMSECS cross-validation and the equations are available in Appendix C.2. 

RMSECS =  √
∑ CSi(fi−yi)2

i

∑ CSii
        (Eq. 3.2) 

 



Using statistical confidence scoring to improve QSAR/QSPR modelling 

 

45 
 

3.3. Results 

Names of compounds, their InChIKeys and SMILES strings along with all kp and pT 

values including references are available for the two datasets in Appendix A.2. 

Furthermore a glossary of relevant statistical equations is attached. In addition the R 

script for RMSECS cross-validation is available in Appendix C.2. 

 

3.3.1. Data harvest 

The compilation of human in vitro kp data resulted in 342 values for 226 different 

compounds. 55 of these compounds have more than a single kp value. The log kp values 

covered a broad range from -6.10 to 0.16. The structures included in the dataset were 

diverse in terms of physico-chemical properties and structure, e.g. solvents, alkaloids, 

steroids, sugars, nonsteroidal anti-inflammatory drugs etc. The solvents, sugars and 

steroids in particular, had many multiple data points. Water, with 13 different data points, 

had the most kp values. The range of CS values is from 1 (for single entries) to 76.8 for 

chlorphenamine (based on two data points). Illustrating the capability of the CS approach, 

two compounds have moderately high CS values: the synthetic opioid sufentanyl with a 

CS value of 9.97 (based on two data points) and the cytostatic drug 5-fluorouracil with a 

CS value of 5.00 (based on four data points). 

From the complete dataset of acute toxicity values to A. fischeri, comprising 1227 

compounds, 203 were identified as potentially acting as non-polar narcotics according to 

the Verhaar scheme as implemented in Toxtree v2.6.6 (IDEAconsult, 2014a).  A total of 

418 different pT values were available for these compounds, with 71 of the 203 

compounds having more than a single experimental value. pT values covered a broad 

range from -4.00 to 4.12. The structures included in the dataset were conservative in their 

structural diversity as they had been selected to represent the non-polar narcosis domain, 

including mainly solvents and medium- and long-chained alkanes, partly branched and 
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halogenated, with only a few functional groups, such as hydroxyl- and amino-groups. The 

compounds investigated have a moderate spread of MW and log P and can generally be 

regarded as lipophilic (refer to Table 3.2). The CS spread shows the diversity between 

high confidence compounds, such as methyl isobutyl ketone (CS of 205 with 3 data 

points) and acetone (CS of 43.7 with 14 entries) and the single entry low confidence 

compounds (defined as CS = 1). 

 

Table 3.2: Ranges of properties and CS for the two datasets considered in the analysis 

 Human in vitro skin permeability coefficients pT of non-polar narcotics to A. fischeri 

MW (Da) 18.01 to 764.44 32.04 to 342.43 

Log P -6.76 to 8.39 -1.34 to 6.43 

CS 1 to 76.8 1 to 205 

 

 

3.3.2. Development of QSARs/QSPRs 

QSAR/QSPR models were developed using linear regression with the experimental log kp 

and pT as the dependent variables and log P and MW (for kp only) as descriptors. Linear 

regression analysis was performed on both datasets, the resultant QSPRs for skin 

permeability coefficients based on the Potts and Guy approach (Eq. 3.3 (unweighted), Eq. 

3.4 (weighted), Fig. 3.2) and the log P-based QSARs for the acute toxicity of non-polar 

narcotics to A. fischeri (Eq. 3.5 (unweighted), Eq. 3.6 (weighted), Fig. 3.3) are reported 

below. 

 

3.3.2.1.QSPR: Modelling of the skin permeability coefficient 

The unweighted QSPR for the dataset of skin permeability coefficients, using the 

Potts and Guy approach, was: 

      log kp = -2.45 + 0.40 log P - 0.0045 MW           (Eq. 3.3) 

 n = 226, R2
adj = 0.48, S = 0.82, tlogP = 13.3, tMW = -8.97, F = 105 
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The reanalysis using CS-weighted kp provided the following, similar, equation with 

improved statistical fit: 

     log kp = -2.51 + 0.50 log P - 0.0051 MW           (Eq. 3.4) 

n = 226, R2
adj = 0.61, S = 1.39, tlogP = 18.7, tMW = -9.25, F = 177 

Experimental kp values are plotted against predicted values from Eq. 3.4 in Figure 3.2, 

demonstrating good overall predictivity. In particular, there is a good fit about the line 

of unity, with a significant trend for compounds with the highest CS (represented by 

larger circles) to be well predicted, and the significant outliers tending to be 

compounds with low CS, i.e. single data points.  

 

Figure 3.2: Experimental log kp versus predicted log kp from Eq. 3.4; the 

area of circles corresponding to the CS value; the larger the CS, the greater 

the area of the circle; the solid line indicating a slope of unity and an intercept 

of zero 
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The QSPR model represented by Eq. 3.4 was tested using 10-fold cross-validation. The 

statistical summary is presented in Table 3.3. Notably the RMSECS is lower than the 

RMSE. 

 

  Table 3.3: Statistical summary of 10-fold cross-validation based on Eq. 3.4 (skin permeability) 

Training  Test 

Intercept  Log P   MW  R2
adj  RMSE RMSECS 

 -2.51 

± 0.09 

 0.497 

± 0.026 

-0.0051 

± 0.0004 

 0.61 

± 0.02 
 

 0.83 

± 0.21 

 0.79 

± 0.21 

 

 

3.3.2.2.QSAR: Modelling of A. fischeri non-polar narcosis 

The unweighted QSAR for the non-polar narcotics in the Microtox dataset, using a 

log P-based linear regression was: 

pT = -1.14 + 0.68 log P            (Eq. 3.5) 

n = 203, R2
adj = 0.50, S = 0.95, tlogP = 14.3, F = 204 

The reanalysis using CS-weighted pT provided the following equation with improved 

statistical fit: 

pT = -1.67 + 0.92 log P            (Eq. 3.6) 

n = 203, R2
adj = 0.68, S = 1.77, tlogP = 20.9, F = 478 

 

Figure 3.3 demonstrates the relative predictivity of Equation 3.6. There is a good fit 

about the line of unity, with a significant trend for compounds with the highest CS 

(represented by larger circles) to be well predicted, and the significant outliers tending 

to be compounds with low CS, i.e. single values (similar to kp modelling). 
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Figure 3.3: Measured pT versus predicted pT from Eq. 3.6; the area of 

circles corresponding to CS value; the larger the CS, the greater the area 

of the circle; the solid line indicating a slope of unity and an intercept of 

zero 

 

The QSAR model Eq. 3.6 was assessed with 10-fold cross-validation. The summary of 

the statistics for Eq. 3.6 is presented in Table 3.4. The RMSECS is lower than the 

RMSE. 

 

  Table 3.4: Statistical summary of 10-fold cross-validation based on Eq. 3.6 (aquatic toxicity) 

Training    Test  

Intercept  Log P  Radj
2  RMSE RMSECS 

 -1.67 

± 0.14 

  0.92 

± 0.04 

 0.68 

± 0.03 
 

 0.99 

± 0.12 

 0.87 

± 0.13 

 

3.4. Discussion 

There are many future challenges in human and environmental health sciences which 

require the use of adequate and reliable data, these include toxicological risk assessment 

for occupational health and consumer goods. As the quality of toxicological data is 
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variable and often not stated, practical and feasible methods to overcome this issue are 

crucial to many scientific and regulatory fields. Beside approaches such as Klimisch 

scoring (Klimisch et al., 1997), a purely statistics-based method to support modelling 

approaches was proposed in Chapter 2 and expanded within this Chapter. It is difficult to 

determine the extent to which such a statistically-driven approach could be used for 

regulatory purposes, but neglecting the information multiple data hold for the same 

substance is not recommended if such data are available.  

The aim of this work was not to build new QSAR/QSPR models, but to make two 

existing models more robust using independent, heterogeneous datasets. The two QSARs 

and associated datasets chosen are well established. In this study the datasets have been 

extended by further data harvesting and collection. As part of the data collection activity, 

multiple data were compiled for the same chemical, thus allowing for the application of 

the CS approach to determine the reliability of the data. This approach has not been 

applied formally in the development of QSARs and there are no clear guidelines on how 

to develop QSARs when multiple data are available for the same chemicals (i.e. use of 

the mean, most conservative value etc.). In addition, there appear to be few, if any, 

attempts to include information such as data quality as a metric or criterion for QSAR 

development, this being despite it being logical and acknowledged that data quality will 

affect the robustness of a QSAR (Wenlock and Carlsson, 2015). It should also be noted 

that current means of documenting QSARs provide little opportunity for assessing the 

quality of data. Therefore approaches that allow us to identify data quality quantitatively 

and without subjective bias are of value in the development of in silico models.   

Skin permeability is often assessed by in vitro experimentation, but also some in vivo 

work is undertaken. In silico models are increasingly desirable in areas such as risk 

assessment where there is dermal exposure (e.g. for cosmetics) and for assessing adverse 
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effects to the skin, e.g. skin sensitisation. Since the publication of the Flynn dataset 

(1990), there have been a number of QSPR analyses of skin permeability coefficients 

including refinements and extensions to the database (Mitragotri et al., 2011). The Potts 

and Guy (1992) approach, based on fundamental and mechanistically comprehensible 

descriptors, is one of the more commonly utilised QSPR modelling methodologies. This 

study has derived a Potts and Guy equation for a larger dataset not only increasing the 

coverage of the model (i.e. greater chemical space) but also incorporating multiple data 

points for the same chemical and allowing for an assessment of quality through CS. It is 

noted that published skin permeability coefficients are highly variable, due in no small 

part to high experimental error arising from the variable nature of the (human) skin 

utilised and test protocols, e.g. use of solvents, enhancers, finite doses, vehicles, solvents 

etc. (Moss and Cronin, 2002; Johnson et al., 1995). As such, it is to be expected that 

models will not have a very significant statistical fit (i.e. a high R2) and this is borne out 

by many of the published models (Potts and Guy, 1992; Moss and Cronin, 2002), indeed 

models with significant fit should be treated with some caution as they may be overfitted.  

Whilst high statistical fit was not achieved for the skin permeability QSPRs, the results 

show a significant relationship between log kp and log P and MW with both variables 

having high t-values. The new QSPR has moderately improved statistical fit as compared 

to that of Potts and Guy (1992). It should be noted that some values within the Flynn 

dataset were subsequently shown to be incorrect and would have increased the error in 

the Potts and Guy QSPR (Johnson et al., 1995). The novel QSPR model (refer to Eq. 3.4 

and Fig. 3.2) derived from the skin permeability data has some advantages over the 

original Potts and Guy model. First of all increased robustness, due to model 

development incorporating statistical data quality (refer to Table 3.3); secondly a greater 

applicability domain due to implementing a dataset with greater chemical diversity (in 
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terms of properties and structure) than Flynn (1990); and thirdly due to the usage of 

calculated log P (whereas the original model used measured values which are more 

difficult to obtain consistently). Nevertheless the differences between Potts and Guy’s Eq. 

3.1 and Eq. 3.4 are only marginal. It is recognised that there are many limitations to this 

use of this model. For example it does not predict the effects of mixtures and 

formulations on the penetration of single compounds, which could be of great importance 

for risk assessment of products and dermal drug delivery (Samaras et al., 2012). 

However, the QSPR approach allows for a “relative” estimation of skin permeability 

which may be useful to rank compounds, or identify compounds with a high probability 

of dermal absorption and hence prioritise such compounds in the risk assessment process 

(e.g. for skin sensitisation).  

Non-polar narcosis in the context of the A. fischeri assay was discussed in Chapter 2 

(Cronin et al., 1991; Steinmetz et al., 2014). Even if the QSAR models of Chapter 2 and 

3 are slightly different, they show the same strong relationship between hydrophobicity 

(log P) and toxicity as described for many species (Könemann, 1981; Verhaar et al., 

1991). In both cases CS, used as a threshold (Chapter 2) and as used here (weighted 

regression), improved the aquatic toxicology QSAR. 

Consideration of the QSAR/QSPR models developed in this study shows an 

improvement in the models when CS-weighted regression was utilised. The improvement 

is in both the statistical fit as well as the slope for log P which approaches one when 

employing CS-weighting, i.e. from 0.68 to 0.90 (refer to Eq. 3.5 to 3.6). A slope of one is 

the theoretical optimum, which is commonly associated with models for simple 

unicellular organisms, i.e. the absorption of the compound alone directly into the cellular 

membrane is responsible for narcosis, whereas in higher organisms other factors such as 

distribution and clearance become important. The improvements following the 
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application of CS are consistent with the notion that some historical data are of poor 

quality (Cronin and Schultz, 1996) and demonstrate the utility of an approach such as 

this, where generalistic QSARs are being developed for datasets from various sources and 

of unknown quality. The importance of the compounds with high CS values can be seen 

in Fig. 3.3, when considering that all large CS-circles (representing compounds with 

higher CS) are close to the line of best prediction. The quantity of data and the 

incorporation of statistical data quality make a robust equation with an extensive 

applicability domain – for non-polar narcotics. Clearly this approach could be extended to 

other data compilations for aquatic acute toxicity (Martin et al., 2015).   

The identification of compounds acting by the non-polar narcotic mechanism of action is 

essential to the development of models. Various approaches have been applied to identify 

mechanisms of action including analysis of molecular descriptor space (Schultz et al., 

1997), multivariate analysis of mode and mechanism of action space (Aptula et al., 

2002), definition of molecular fragments (Ellison et al., 2008) as well as the Verhaar 

classification scheme that was applied in this study due to its ease of use following 

coding in the Toxtree software. However, there appear to be a number of anomalies in the 

definition of the non-polar narcosis domain in the Toxtree software. For example, 

aflatoxins (cf. Chapter 2; Fig. 2.5 and 2.6) are identified by the Toxtree software as being 

Verhaar Class 1 compounds (non-polar narcotic) but, in reality, they are potent, 

specifically acting, toxins and therefore do not act as non-polar narcotics, e.g. aflatoxin 

B2 has pTexperimental = 1.17 (CS = 15.4) whereas Equation 3.7 calculates pTpredicted = 0.54 

(Steinmetz et al., 2014). This emphasises that continual development is required of 

decision criteria presented in approaches such as the Verhaar scheme as new knowledge 

and understanding becomes apparent.  
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Overall for both datasets, applying CS as a weighting tool improves the training and 

validation of the QSAR/QSPR models. The improvements are demonstrated as increases 

in R2 (Eq. 3.3 to 3.4 and Eq. 3.5 to 3.6) as a direct result of CS-weighting. Whereas 

increasing t and F values show improvements in the models as a result of weighting by 

CS, the S value does not incorporate weights and so only indicates absolute, unweighted 

error thus it actually increases when the non-weighted regression is compared to the 

weighted regression. Generally the higher the CS for the data associated with a 

compound, the greater the evidence is, in terms of similar results for that compound (refer 

to Fig. 3.2 and 3.3). In the validation process, the RMSECS, which incorporates CS-

weighting, is lower than the standard RMSE. As residuals (fi - yi) of low CS compounds 

are weakened and residuals of high CS compounds are strengthened, the sum of (squared) 

errors of the RMSECS becomes lower than in the conventional RMSE. Therefore this 

approach could be used even for the validation of models where any metric could be 

applied to imply confidence, i.e. without calculating CS. For example a reversed 

Klimisch score (4 as the most reliable; 1 the least) could be used as a weight similar to 

the fuzzy logic approach of Yang et al. (2013). In the context of validation these weights 

then determine to what extent residuals should have impact on the RMSE.  

The CS-weighting approach, whether in model development or validation, is limited by 

the presence of multiple entries for one compound. Thus, if multiple values are available 

for the dataset, more robust models may potentially be built (Steinmetz et al., 2014). This 

robustness and the associated confidence are helpful in reducing uncertainty and hence 

increasing acceptance for regulatory decisions. For example in the context of REACH, 

there is a demand for robust QSAR models to support the toxicological assessment of 

chemicals. The approach described herein could thus be used to support read-across- and 

QSAR-based predictions (Cronin, 2013; Patlewicz et al., 2014). 
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3.5. Conclusions 

The assessment of data quality is not trivial. This study has shown that CS provides a 

means of assessing confidence in data when there are more than a single datum point. 

The CS scores can be applied to develop QSAR models through the use of weighted 

regression, as demonstrated in this study for historical data compilations with known 

variability in the quality of the data. Additionally cross-validation with RMSECS provides 

a measure of the robustness of an equation utilising metrics (here CS) for weighting. 

The results from Chapter 3 show that a novel method, which is applying statistical data 

quality within modelling, leads to robust QSAR/QSPR models (as published in Steinmetz 

et al. 2015b). Beside the methodological value, particularly the QSPR model is very 

useful in the context of risk assessment of cosmetic ingredient – hence the relevance for 

the COSMOS project. Chapter 4, which deals with dermal absorption, applies similar 

principles of physico-chemical properties. The two main differences are Chapter 4 deals 

with a set of rules (similar to an expert systems) and only specific applicability domain of 

substances (i.e. hair dyes and associated compounds). Even if the data and the applied 

methods are different, both chapters share the same biochemical principles of skin 

permeation. 
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4. Classifying dermal absorption of cosmetic ingredients based on 

physico-chemical properties to facilitate safety assessment* 

4.1. Introduction 

As described in Chapter 1, the European Cosmetic Regulation (EC 1223/2009) requires 

that the ingredients in cosmetic products, as well as the formulation itself, need to be safe 

for human usage and it is the responsibility of the manufacturer to ensure this. The safety 

assessment of a product is generally based on individual safety assessments of the 

product’s ingredients. This requires knowledge of individual ingredients (particularly 

those in significant concentration) in a product as well as knowledge about toxicological 

profiling. Furthermore use scenarios and hence exposure patterns of the product are 

required to allow safety evaluation / risk assessment. This information can subsequently 

be used for the calculation of the margin of safety (MoS). The MoS is the ratio of the no-

observed-adverse-effect level (NOAEL) and the systemic exposure dosage (SED), which 

can, for example, be dermal absorption per skin surface and time according to use 

patterns (refer to Equation 4.1). Whereas the NOAEL is typically obtained from repeated 

dose / reproductive toxicity animal trials, the SED can be obtained from in vivo or in vitro 

tests (SCCS/1501/12). 

 

     𝑀𝑜𝑆 =
𝑁𝑂𝐴𝐸𝐿

𝑆𝐸𝐷
           (Eq. 4.1) 

Due to the ban on animal testing in the European cosmetic legislation (refer to Chapter 1) 

and the absence of validated in vitro alternatives, it is no longer possible to obtain 

NOAEL values from in vivo experimentation to calculate the MoS for newly developed 

cosmetic ingredients.  However, considerations of exposure  may be  relevant for instance  

 

*This chapter is based on my contribution to Ates et al. (2015) 
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cosmetic ingredients with negligible dermal absorption may not require systemic 

toxicological assessment. Hence there is great interest in identifying compounds with low 

dermal absorption. If this is the case, then systemic toxicological assessment can 

effectively be waived and safety assessment may be based on local toxicity, e.g. skin 

irritation, corrosion and sensitisation as well as mutagenicity/genotoxicity. 

Dermal absorption means the uptake of chemical substances via the skin, sometimes also 

referred to as percutaneous absorption.  This includes skin permeation as described in 

Chapter 3. However, the main difference in the context of this thesis is that dermal 

absorption data encompasses data on the absorbed quantities of dermally applied 

substances, whereas skin permeability (refer to Chapter 3) exclusively describes the 

permeation through the stratum corneum (Rang et al., 2007a). 

The dermal absorption dataset investigated in this study is based on information 

harvested from the expert opinions of the European Commission’s Scientific Committee 

on Consumer Safety (SCCS). It has a clear focus on hair dyes and associated compounds 

due to their potential toxicity, e.g. adverse effects on mitochondria (Nelms et al., 2015). 

SCCS opinions are publically available and contain summaries of studies on different 

toxicological endpoints, as well as information on dermal absorption and physico-

chemical properties. The information is intended to support product development, 

including internal safety assessment, and regulatory decision-making in the field of 

personal care products. 

The aim of this study was to classify the dermal absorption of cosmetic ingredients. 

Hence rule sets are proposed, which have the potential to support regulatory safety/risk 

assessment. Therefore physico-chemical properties which may affect dermal absorption, 

such as the logarithm of the octanol-water partition coefficient (log P), molecular weight  
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(MW), topological polar surface area (TPSA) and the melting point (MP) were 

investigated. Through many studies in the field of skin permeability, e.g. Potts and Guy 

(1992), Magnusson et al. (2004), and oral absorption/bioavailability, e.g. Lipinski et al. 

(2001), Newby et al. (2015), the relationship between physico-chemical properties and 

permeation through relevant biological barriers has been investigated and discussed 

thoroughly. There is a strong consensus that large, hydrophilic and ionic molecules 

permeate membranes to a lesser extent than small, (moderately) lipophilic and uncharged 

molecules – similar to the skin permeability QSPR in Chapter 2. Regarding the additional 

descriptors; TPSA expresses the polar surface of a molecule, i.e. it correlates with 

hydrogen bonding ability and water solubility, and furthermore MP holds additional 

information on thermodynamical stability (solid-liquid phase change) of a substance. This 

information, which is easily measured (MP) and calculated (TPSA) respectively, might 

support the prediction of in vivo permeation and absorption (Pugh et al., 2000; 

Magnusson et al., 2004). 

 

4.2. Methods 

The dermal absorption data from the SCCS opinions, based on reports from 2000 to 2014, 

were provided by the In Vitro Toxicology and Dermato-Cosmetology research group of 

the Vrije Universiteit Brussel (Ates et al., 2015) as part of a co-operative study in the 

SEURAT-1 Cluster. Two datasets were constructed as follows: dataset A summarises all 

the data without any information on MP and dataset B summarises the data, which 

include measured MP values within the reports. Regarding the classification of dermal 

absorption, i.e. defining the absorption threshold for potential adverse effect, the 

empirically derived values of 1.3% and 2% respectively were chosen (private 

communication with Prof. Rogiers from the Vrije Universiteit Brussel). The dataset is 

attached in Appendix A.3. 
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4.2.1. Data treatment and descriptor calculation/retrieval 

The SCCS dermal absorption data are derived from various methods, e.g. different 

species, varying exposure scenarios etc. Measurements using rat skin were discarded 

from the dataset because of the relatively high uptake when compared to human or 

porcine skin (Ravenzwaay and Leibold, 2004). For compounds with more than one 

measurement per compound arithmetic means were calculated. Descriptors were 

calculated for the parent form of the compound, therefore SMILES strings were first 

neutralised and desalted within MOE (MOE, 2013). Subsequently TPSA and MW were 

calculated using CDK’s molecular properties node within KNIME (KNIME, 2015) and 

log P was calculated using KOWWIN v1.68 within EPI Suite (EPA, 2013). MP was 

extracted from SCCS opinions if available.  

 

4.2.2. Decision trees, clustering and modifying rules 

For each dataset a set of rules, similar to Lipinski's rule of five, has been created in order 

to classify compounds as being associated with a toxicologically significant level dermal 

absorption, i.e. above or lower than the thresholds of 1.3% and 2%. Beside empirically 

derived approximations based on the literature (Potts and Guy, 1992; Magnusson et al., 

2004; Lipinski et al., 2001; Newby et al., 2015; Pugh et al., 2000), the KNIME's decision 

tree learner (KNIME, 2015) employing log P, MW, TPSA and MP (only in dataset B) 

was used to determine relevant combinations of descriptor cut-offs. The decision tree 

learner splits classes in a binary manner by minimising differences towards split points. 

However, to avoid overfitting, final rule sets were defined manually by adjusting rules 

iteratively. Granularity and statistical performance were analysed according to Cooper et 

al. (1979), i.e. comparing sensitivity and specificity. 
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4.3. Results and discussion 

The dermal absorption dataset has been enriched by physico-chemical descriptors. 

Furthermore the data have been split in dataset A (encompassing 116 compounds without 

MP) and dataset B (encompassing 70 compounds including MP). 

 

4.3.1. Results dataset A 

The following physico-chemical cut-offs (based on the KNIME decision tree learner and 

empirical refinement) were defined and applied. These cut-offs represent thresholds for 

increased permeability, hence they are referred to as ‘alerts’ within the context of the 

following rule-based models. 

 MW < 180 Da 

 log P ≥ 0.3 

This implies that compounds with MW < 180 Da and/or log P ≥ 0.3 are more likely to be 

dermally absorbed in a greater magnitude. The results are illustrated in Figure 4.1, which 

shows that as the number of alerts increases the dermal absorption increases.  

 

 

 

 

 

 

 

 

Figure 4.1: Boxplot of log (%) dermal absorption versus number of physico-chemical 

alerts for dataset A (n = 116); the *-symbol describing outliers 
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If any violation of the rules, i.e. MW < 180 Da or log P is ≥ 0.3, is found, the compound 

will be predicted as potentially highly absorbed (≥1.3%). Table 4.1 shows the results of 

applying the rules to dataset A. The calculation of Spearman's rank correlation led to ρ = 

0.38 (S = 162320, p < 0.001), which indicates a weak (but statistically significant) 

correlation between number of alerts and logarithm of dermal absorption. 

 

Table 4.1: Performance of the rules set for dataset A  

Dataset A Predicted highly absorption Predicted low absorption  Total 

High absorption (≥1.3%) 30 (25.9%) 0 (0%) 30 (25.9%) 

Low absorption (<1.3%) 68 (58.6%) 18 (15.5%) 86 (74.1%) 

Total 98 (84.5%) 18 (15.5%) 116 (100%) 

Sensitivity = 100%  Specificity = 20.9% 

 

On the one hand, the rule set shows high sensitivity, i.e. all 30 compounds with true high 

absorption have been identified, on the other hand specificity is poor; 68 compounds with 

low absorption are predicted incorrectly to have high absorption. However, the design of 

the rule set is beneficial for regulatory purposes due to its cautious/restrictive design. 

 

4.3.2. Results dataset B 

The following physicochemical alerts were defined and applied: 

 MW < 180 Da 

 log P ≥ 0.3 

 MP < 100°C 

 TPSA < 40 Å2 

This implies that compounds with MW < 180 Da and/or log P ≥ 0.3 and/or MP < 100°C 

and/or TPSA < 40 Å2 are more likely to be dermally absorbed. The results are illustrated 

in Figure 4.2, which shows that as the number of alerts increases the dermal absorption 

increases.  
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Figure 4.2: Boxplot of log (%) dermal absorption versus number of physico-chemical 

alerts for dataset B  (n = 70); the *-symbol describing outliers 

 

In contrast to the rule set of dataset A, there are two different ways to use the rule set for 

dataset B. In the first scenario, the conservative approach, if any violation of the rules, i.e. 

MW < 180 Da, log P ≥ 0.3, MP < 100°C or TPSA < 40 Å2, is identified, the compound 

will be predicted as having potentially high absorption (≥1.3%). Table 4.2 shows the 

results of applying the rules to dataset B. The calculation of Spearman's rank correlation 

led to ρ = 0.60 (S = 23111, p < 0.001), which indicates a moderate, statistically 

significant correlation between number of alerts and logarithm of dermal absorption. 

 

Table 4.2: Performance of the rules set for dataset B (scenario 1; “conservative”)  

Dataset B Predicted high absorption Predicted low absorption  Total 

High absorption (≥1.3%) 23 (32.9%) 0 (0%) 23 (32.9%) 

Low absorption (<1.3%) 38 (54.3%) 9 (12.9%) 47 (67.1%) 

Total 61 (87.1%) 9 (12.9%)  70 (100%) 

Sensitivity = 100%  Specificity = 19.1% 

 

In the second scenario, the realistic approach, violation of none or only one rule is 

allowed, meaning that more than one violation of the rule leads to the prediction of high 
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absorption for a compound. The statistical performance of scenario two is expressed in 

Table 4.3. 

 
Table 4.3: Performance of the rules set for dataset B (scenario 2; “realistic”)  

Dataset B Predicted high absorption Predicted low absorption  Total 

High absorption (≥1.3%) 19 (27.1%) 4 (5.7%) 23 (32.9%) 

Low absorption (<1.3%) 18 (25.7%) 29 (41.4%) 47 (67.1%) 

Total 37 (52.9%) 33 (47.1%) 70 (100%) 

Sensitivity = 82.6%  Specificity = 61.7% 

 

Scenario 1 and 2 can be directly compared as they use the same dermal absorption cut-off. 

On the one hand the model based on scenario 2 is a better overall prediction with 

moderate sensitivity (82.6%) and specificity (61.7%) respectively (refer to Table 4.3), on 

the other hand the model based on scenario 1 is very conservative with a maximum 

sensitivity (100%) but poor specificity (19.1%) (refer to Table 4.2). Therefore the 

“conservative” model might be more favourable for regulatory decision-making, due to 

high certainty of practically no dermal absorption when “low absorption” is predicted. 

However, in the third scenario, the flexible approach, a different threshold for dermal 

absorption was taken (2%). The 2% threshold is empirically more favourable than 1.3% 

threshold to classify the dataset B. The violation of one or more rules leads to the 

prediction of a compound having high absorption. All other compounds are classified as 

having low absorption. The performance of the rule set in this scenario is shown in Table 

4.4. 

Table 4.4: Performance of the rules set for dataset B (scenario 3; “flexible”)  

Dataset B Predicted high absorption Predicted low absorption  Total 

High absorption (≥2%) 13 (18.6%) 0 (0%) 13 (18.6%) 

Low absorption (<2%) 24 (34.3%) 33 (47.1%) 57 (81.4%) 

Total 37 (52.9%) 33 (47.1%) 70 (100%) 

Sensitivity = 100%  Specificity = 57.9% 
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When shifting the dermal absorption cut-off to 2%, it is possible to achieve maximum 

sensitivity (100%) while still having moderate specificity (57.9%) (refer to Table 4.4). 

While the assignment of the new dermal absorption cut-off seems to be favourable for the 

model, it is questionable if 2% in vivo dermal absorption is within an acceptable margin 

regarding regulatory assessment (nota bene: the initially suggested cut-off, before 

modelling, was 1.3% based on private communication with Prof. Rogiers). 

Effects of physico-chemical properties on dermal absorption have been confirmed with 

similar concepts as the literature proposes, i.e. that small, uncharged and (moderately) 

lipophilic compounds pass easier through the skin (Potts and Guy, 1992; Magnusson et 

al., 2004; Lipinski et al., 2001; Newby et al., 2015; Pugh et al., 2000). Furthermore 

similar physico-chemical relationships on passing through the stratum corneum were 

confirmed by the QSPR models presented in Chapter 3. The official opinions of the 

SCCS do offer only limited descriptions of the testing protocols, i.e. it would be nearly 

impossible to differentiate high and low data quality based on testing protocols. However, 

differences in the dermal absorption testing methodology are likely to have an impact on 

the potentially poor data quality of some data. Therefore the focus of this study lies, as 

often in applied sciences, on the overall picture by accepting the potential low quality 

associated with the data (refer to Chapter 2 and 3). 

Most cosmetic products are applied topically, which makes dermal absorption the main 

route of exposure. Of course, dermal absorption is only one factor within safety and risk 

assessment, however it is relevant for the calculation of the MoS (as described in Eq. 4.1). 

For compounds with marginally low dermal absorption values (e.g. <0.01%), SED values 

are very low, what may increase the MoS quite dramatically. When additionally 

considering the usage of the uncertainty factor, for example for the animal to human 

extrapolation, an experimental NOAEL value might not contribute as much as expected 
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to the final safety evaluation. Furthermore it must be noted that rodent data, from which 

NOAEL values are based on, are not always of that precise. When Gottmann and 

colleagues investigated two datasets with experimental rodent carcinogenicity data, they 

only found a concordance of 57% between duplicates from different resources (Gottmann 

et al., 2001). Keeping this mind, read-across and local QSARs (e.g. within one 

functional/chemical class of cosmetic ingredients) may be excellent tools to allow for the 

assessment of NOAELs – particularly as experimental testing to establish a NOAEL is no 

longer feasible for cosmetic ingredients.  

 

4.4. Conclusions and perspectives 

In this study an in silico approach to predict (or to better classify) dermal absorption of 

chemicals was developed. Several models were developed with differing sensitivity and 

specificity depending on the dermal absorption thresholds defined for classification and 

the availability of melting point data. It must be pointed out that, as shown by the 

performance of the models (Tables 4.2 and 4.3), high sensitivity usually compromises 

specificity and vice versa. It is common practice in risk assessment and regulatory affairs 

to consider, or plan for, worst-case scenarios by assuming “conservative” numbers in 

cases of doubt, for example when few or no adequate data are available. However, a 

conservative approach at multiple levels can cumulatively add up to an overly cautious 

number, e.g. a very low MoS value. Generally, from a scientific point of view, the most 

realistic equation, model or even “educated guess” should be used at every step (exposure, 

absorption, MoA etc.) within any risk assessment approach. Rounding up/off to a 

conservative, regulatory acceptable value should be done exclusively at the end of the 

approach. It is more transparent to increase the uncertainty factor at the end of the 

mathematical part of the risk assessment than using skewed equations and models, for 

example with 100% sensitivity and poor specificity (refer to Tables 4.1 and 4.2). 
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Nevertheless, all tools presented in this study have the potential to support risk 

assessment, at least on the SED side of the equation. According to the challenge, i.e. 

dealing with hair dyes etc. and splitting the data at 1.3% dermal absorption, models are 

presented with attributes such as “conservative”, “realistic” and “flexible” (threshold at 

2%).  

Beyond the concrete dermal absorption classification models of hair dyes etc., this study 

serves as well as a demonstration of how to create simple classification models for 

dermal absorption to support non-testing approaches in the consumer and personal care 

industry. Both of these interpretations of this study, as a model and as a blueprint for 

other classification models, are relevant for the assessment of cosmetic ingredients, and 

hence relevant for the COSMOS project. However as dermal absorption is only one pillar 

of the assessment of cosmetic ingredients, toxicity-driving mechanisms need to be 

investigated as well. Therefore Chapter 5, 6 and 7 deal with mechanistically-based 

modelling with a specific focus on liver toxicity (as a relevant example for cosmetic 

ingredients). 
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5. Screening chemicals for receptor-mediated toxicological and 

pharmacological endpoints: Using public data to build screening 

tools within a KNIME workflow* 

5.1. Introduction 

The assessment of potential toxicants is a multidisciplinary task. Whilst the previous 

chapters dealt with issues, such as data quality (Chapters 2 and 3) and kinetics (Chapters 

3 and 4), the following Chapters (5 to 7) deal with mechanistically based modelling and 

the identification of the molecular initiating events of untested compounds. Hence the 

following chapters provide innovative tools and methodologies for hazard identification.  

Generally speaking, predicting and understanding the properties of new chemical entities 

is not trivial, whether in the development of novel pharmaceuticals or in assessing 

potential toxicity. However, in silico, QSAR and read-across approaches provide a means 

of rapidly obtaining information (Blackburn and Stuard, 2014; Cronin et al., 2013; 

Patlewicz et al., 2013). Such models can be supported by, or developed from, 

mechanistic understanding (Zhu et al., 2014). Additionally the concept of the AOP, i.e. 

describing a sequence of causally linked events at different biological levels, is 

increasingly being applied to investigate adverse effects (Vinken et al., 2013). As 

described more in detail in Chapter 1 (Section 1.4.2), models may be developed from 

knowledge of the first key event of an AOP, the molecular initiating event (MIE). In AOP 

terminology the MIE is followed by cellular and organ responses, which may ultimately 

result in an adverse effect to an organ, organism or population (Ankley et al., 2010). The 

MIE represents the initial interaction between a molecule and a target. Examples of MIEs 

include  covalent  binding  to  DNA  and,  of  relevance  for  this  study,  receptor binding 

* This chapter is based on a published article (Steinmetz et al., 2015a) 
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(Gutsell and Russell, 2013; Allen et al., 2014). In pharmacology the mode of action, 

similar to an AOP, incorporates a MIE which describes how a compound interacts with 

specific proteins, e.g. receptors, carriers and enzymes. However, rather than providing the 

framework for describing the processes behind an adverse effect, the aim in 

pharmacology is to achieve a beneficial effect, such as the prevention or treatment of a 

disease (OECD, 2012; FDA, 2013). 

Analogous to pharmacology, toxicity may also be brought about by interactions with 

specific proteins, such as receptors. Endocrine disruptors, for example, are a class of 

toxicants known to cause their effects by receptor-mediated mechanisms. As such, 

models for endocrine disruption are usually built around knowledge of receptor 

interactions, e.g. binding to the oestrogen receptor. For instance, one approach to 

modelling these effects has been proposed recently by Kolšek and colleagues (2014) who 

developed a tool to identify nuclear receptor ligands based on AutoDock Vina; a freeware 

to investigate ligand-protein-interactions (Molecular Graphics Laboratory, 2014). 

Limitations of this type of approach are associated with several of the typical issues of 

docking. First, nuclear receptors, particularly the non-steroid receptors, are considered to 

be flexible (Nettles et al., 2007). An inflexible docking model, such as AutoDock Vina, is 

unlikely to cope with the diversity of ligands including, for instance, full and partial 

binding modes as well as inverse agonists and antagonists. The second limitation, when 

docking is applied on its own, is that kinetics (on a cellular level) are systemically 

ignored, which might be vital for in vivo biological activity. The physico-chemical 

properties of the ligand play an important role, particularly for absorption and distribution 

at a histological and cellular level, which may all eventually contribute to, or define, 

target-organ-toxicity (Campbell, 1983; Davis and Riley, 2004). 
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The current study focuses on the retinoic acid receptor (RAR), a target relevant for 

pharmacology and toxicology in equal measure. The RAR is a nuclear receptor which can 

be divided into three subtypes, RAR-α, RAR-β and RAR-γ. Bound together with the 

retinoid X receptor (RXR) as a heterodimer, RAR regulates genetic expression. All three 

subtypes of the RAR are activated by all-trans retinoic acid and 9-cis retinoic acid, which 

are derivatives of vitamin A (Liu et al., 2014). Ligands are used in the treatment of 

dermal diseases, e.g. Acne vulgaris, Psoriasis vulgaris, Keratosis pilaris and specific 

types of cancer, such as acute promyelocytic leukaemia (Alizadeh et al., 2014; Allen and 

Bloxham, 1989; Dicken, 1984; Leyden et al., 2005). 

The toxicological effects of RAR agonists include changes in lipid metabolism, which 

may cause hepatosteatosis leading to liver inflammation, fibrosis and eventually liver 

failure. Teratogenic effects and neural disorders, such as nausea and headache, have been 

also reported from retinoids (Adams, 1993; Biesalski, 1989; Moya et al., 2010; Shalita, 

1988). There is, therefore, a great need to develop tools to identify compounds which 

show these effects. 

There are many open source software applications and open access databases supporting 

modern life sciences and informatics. A number of these open access/source technologies 

can be utilised to develop tools and approaches for predictive and/or computational 

toxicology. Some technologies relevant to this study are described below. 

The KoNstanz Information MinEr (KNIME) technology is a freely available software to 

analyse and mine data, as well as to build and evaluate predictive models. The software is 

based on a graphical user interface utilising so called “nodes” as key units to alter and 

process data in a “workflow”. The basic KNIME workflow technology, as well as many 

nodes and add-ons for chemo-informatics, is available from www.knime.org. Many types  
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of data can be handled, including chemical formats, such as the Simplified Molecular 

Input Line Entry System (SMILES) and SMiles ARbitrary Target Specification 

(SMARTS) (Daylight, 2014). KNIME has a strong community of developers building 

additional nodes for chemo-informatics applications (amongst others), to edit data, 

calculate physico-chemical properties, analyse structural features etc. It has been shown 

to be useful in developing workflows for screening tools in the context of predictive 

toxicology (Saubern et al., 2011; KNIME, 2013). Furthermore, many other programming 

languages, such as R, Python or Perl, can be used within a KNIME workflow (Berthold et 

al., 2007; KNIME, 2014; Richarz et al., 2013). 

With regard to biological activity, there are an increasing number of resources available 

to retrieve information. For instance, ChEMBL is a database of bioactive molecules 

comprising over 1.5 million compounds and over 9,000 biological targets. Activity values 

are reported for a variety of endpoints including Ki, Kd, AC50, IC50, and EC50. The 

database is curated manually and maintained by the European Molecular Biology 

Laboratory (ChEMBL, 2014). A good example of the application of ChEMBL and the 

utilisation of its resources was published by Czodrowski (2013). In that study, a detailed 

analysis of ChEMBL hERG assay data was used to build classification models relevant 

for drug development and demonstrated the applicability of these data for modelling and 

the value that may result from data mining. 

Another valuable resource is the Protein Data Bank (PDB, 2014) which contains over 

100,000 crystallographic structures of proteins such as receptors, transporters and 

enzymes. A quarter of these protein structures are of human origin, the other structures 

are from other mammals (mainly rodents) and bacteria. For some proteins, such as the 

RAR, there are data for several subtypes, species and ligands (Berman et al., 1999). 

Besides the linked publications for every entry, ligand-protein-interactions can be 
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investigated with specific software, for example PyMOL (2014). Visualisation of protein 

structures of targets, such as receptors, transporters and enzymes, and their corresponding 

ligands, helps to understand ligand-protein-interactions, e.g. hydrogen bonds between the 

ligand and the ligand-binding-domain of the protein. 

Whilst there is a growing number of computational resources, some of which have been 

developed for computational toxicology, up until now there has been little effort, and few 

publications, demonstrating the utility of combining these disparate sources of 

information. The aim of this investigation, therefore, was to present a hands-on approach 

to develop screening tools applicable for many pharmacological and toxicological 

challenges. The methods applied are based firstly on gathering publically available data 

on RAR ligands (from ChEMBL and PDB) and secondly extracting information on 

physico-chemical space and structural features that are relevant to activity. Thirdly, this 

information was used to build a rule-based screening tool within KNIME. The purpose of 

the screening tool in this study was to identify potential RAR ligands. RAR is only one 

example target, i.e. this approach was designed to provide a framework that can, in 

principle, be used to create screening tools for other receptors should sufficient data be 

available. 

 

5.2. Methods 

The RAR and its ligands were investigated solely using freeware (nota bene: PyMOL is 

free for academic users only) and open access databases. 

 

5.2.1. Analysis of RAR ligands using the PDB 

The PDB 3.3 was searched for human RAR structures, i.e. RAR-α, RAR-β and RAR-γ 

(PDB, 2014). The structures obtained were investigated visually with regard to their 

ligand-protein-interaction within PyMOL 1.3 (PyMOL, 2014). Common structural 



Screening chemicals for receptor-mediated endpoints 

72 
 

features of the ligands, particularly when apparently responsible for similar ligand-

protein-interactions, were extracted manually. The extracted structural features combined 

information about molecular distances and molecular electronic forces, which may be 

responsible for hydrogen bonding or the occupation of lipophilic pockets. Subsequently 

the structural features were coded manually into SMARTS strings. These SMARTS 

strings were later used in the rule-based workflow to predict potential RAR ligands. 

 

5.2.2. Extracting data from ChEMBL 

The ChEMBL_19 database was searched for the target “RAR” (ChEMBL, 2014). Human 

data from compounds with Ki (binding affinity), Kd (dissociation constant), AC50 (50% 

activity in molar units) and EC50 (50% effect concentration in molar units) values towards 

RAR-α, RAR-β and RAR-γ were downloaded, combined and sorted by the pChEMBL 

value. The pChEMBL value is an approach to standardise different types of activity 

values (Bento et al., 2013). Every compound with a value of five or greater was regarded 

as being active due to binding towards RAR. This is consistent with the activity 

interpretations of the ChEMBL database. 

 

5.2.3. Physico-chemical property calculation 

The physico-chemical properties of RAR ligands were calculated using the CDK node for 

molecular properties within KNIME 2.9.4 (including community contributions) (KNIME, 

2014). Ranges (i.e. minimum and maximum values) for different types of calculated 

descriptors for the active ligands were studied including: vertex adjacency information 

magnitude (VAIM) for structural complexity, number of rotational bonds (RB) for 

flexibility, molecular weight (MW) for molecular size and the logarithm of the octanol-

water partition coefficient (XLogP; CDK’s version of the log P) for lipophilicity. These 

four descriptors and their calculated property ranges were utilised to give an insight into 
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the physico-chemical applicability domain (or chemical property space) of active RAR 

ligands. 

 

5.2.4. Building rules for the screening workflow 

The analysis of the PDB has provided structural features coded as SMARTS strings; 

whilst the analysis of the ChEMBL dataset provided physico-chemical property ranges. 

Both describe the necessary features for compounds to be active RAR ligands. These 

features can be interpreted as rules, where compliance and violation will distinguish 

between RAR ligands and non-ligands respectively. These rules, characterising the 

physico-chemical space (CDK node for molecular properties) and structural features 

(Indigo substructure matcher), were written into a KNIME workflow. When executed, 

this KNIME “screening workflow” can identify potential RAR ligands. 

 

5.2.5. Testing the screening workflow 

The RAR ligands, identified from the ChEMBL dataset, were used to test if all active 

compounds were identified by the “screening workflow”. Since no external validation 

dataset was available, the dataset of hepatotoxicants provided by Fourches and colleagues 

was screened. The Fourches dataset is a large, chemically diverse dataset (951 

compounds), which contains hepatotoxic and non-hepatotoxic drug molecules, including 

several RAR ligands (Fourches et al., 2010). As the number of RAR ligands is unknown, 

the performance statistics (sensitivity, specificity etc.) of the screening workflow cannot 

be calculated; thus the predictions for the Fourches dataset are for illustration only. This 

approach cannot be considered a full validation as the Fourches data could include liver 

damage by a number of mechanisms not restricted to RAR binding. 
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5.3. Results 

This study utilised a number of data sources, such as the PDB for ligand-protein-

interactions and the ChEMBL database for chemical structures of active compounds 

against RAR. 

 

5.3.1. Ligand-protein-interaction in RAR  

20 human RAR protein structures bound to different ligands were retrieved from the PDB. 

These were 4JYG, 4JYH, 4JYI, 4DQM, 4DM6, 4DM8, 3KMR, 3KMZ, 1XAP, 1FD0, 

1FCX, 1FCY, 1FCZ, 1DSZ, 1EXA, 1EXX, 3LBD, 4LBD, 2LBD and 1HRA (PDB, 

2014). Independent of receptor subtype and ligand, as proposed by Klaholz and 

colleagues (2000), the hydrogen bond between an oxygen (most often from a carboxylic 

group) and the arginine (here: R278) was found to be of great importance for the ligand-

protein-interaction. Figure 5.1, for example, indicates the carboxylic acid of retinoic acid 

binding to amino acid R278. 

 

 
Figure 5.1: Retinoic acid binding to human RAR gamma (3LBD), highlighting the distance of 

2.1 Å between R278 and an oxygen of the carboxylic group of retinoic acid (investigated with 

PyMOL 1.3) 



Screening chemicals for receptor-mediated endpoints 

75 
 

5.3.2. Substructures extracted from the ChEMBL database  

251 active RAR ligands (pChEMBL ≥ 5) were identified from the ChEMBL database and 

these are recorded in Appendix A.4. Common structural features to the ligands, as 

identified from analysis of the chemical properties and visual appearance, were flexibility, 

a lipophilic scaffold and a terminal hydrogen acceptor (e.g. the carbonyl of a carboxylic 

group). This information about essential molecular substructures and properties was 

coded as SMARTS strings, as shown in Table 5.1. The first rule is for a carboxylic group, 

an amide or a ring structure derived from these structures, e.g. 1,2,4-oxadiazol-5-one, 

which is required to be at the end of a predominantely aliphatic chain. Specific aromatic-

containing scaffolds are possible too (refer to Fig. 5.2), and these are also recognised by 

the substructures identified in Table 5.1. Regarding the second rule, the ring structure, e.g. 

cyclohexene in retinoic acid, can be methylated or halogenated, as the ChEMBL dataset 

of active RAR ligands revealed. 

Table 5.1: Structural features of ligands converted to rules for the KNIME workflow 

Rule SMARTS string  Structural feature 

 
Arginine (R278) 
Binder 
 
 
 
 
 
and 
 
 
Methylated or 
halogenated ring-
system 

 

*~*~*~*~*~*~*~*~*~*~*~[#6](=O)~[#8] 

or 

*~*~*~*~*~*~*~*~*~*~*~[#6](=O)~[#7] 

 

 
 
*1~*([F,Cl,Br,I,C])~*~*~*~*~1 

 

 

 “A” or “*” is a wild card, i.e. it could represent any heavy atom 
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Figure 5.2: Structures of 4-{[(4-bromo-3-hydroxy-5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-2- 

naphthalenyl)carbonyl]amino}-2,6-difluorobenzoic acid (A) and 4-({5,5-dimethyl-8-[4-(tri-

fluoromethyl)phenyl]-5,6-dihydro-2-naphthalenyl}ethynyl)benzoic acid (B) illustrating the 

flexible nature, lipophilic character and terminal hydrogen bonding group of two chemically 

diverse potent RAR ligands 

 

 

5.3.3. Physico-chemical properties  

The ranges of the physico-chemical properties calculated for the 251 ChEMBL-derived 

RAR ligands are shown in Table 5.2. The ranges were converted into rules which can be 

used as exclusion critera, i.e. if a compound has a MW of greater than or equal to 500 Da, 

then it is, according to the retrieved data, unlikely to be a RAR ligand. The rules have 

some structural basis, i.e. VAIM and MW express the complexity and the size of the 

molecule respectively, and XLogP describes overall molecular lipophilicity. Besides this 

basic information, RB indicates the required flexibility of the (lipophilic) chain. 

Generally speaking, the chemical space covers small, lipophilic molecules with certain 

degrees of flexibility within the lipophilic scaffold. This is consistent with our 

understanding of the properties of the ligands and their impact on receptor binding. When 

dealing with continuous data, margins of error have been applied manually to the rules, 

e.g. a lower limit for XLogP being 2.00 instead of 2.03 (refer to Table 5.2) was chosen. 

Whilst these are arbitrary, they provide a usable buffer. 
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Table 5.2: Physico-chemical property ranges of the RAR ligands and derived rules 

Descriptor Min  Max  Rule  

RB:  4 23      → ≥ 4 

VAIM:  5.46 6.40      → 5 to 6.5 

MW:  278.13 488.25      → < 500 

XLogP: 2.03 10.18      → ≥ 2.00 

 

 

5.3.4. Building the KNIME workflow  

A KNIME workflow, which can be downloaded from Appendix C.1, was created 

combining structural features based on the information from PDB and physico-chemical 

rules based on the ChEMBL dataset. The workflow is shown diagrammatically in Figure 

5.3. The workflow takes the compound of interest through molecular input, 

implementation of physico-chemical and structural rules in turn, resulting in an output of 

whether the compound is in or out of “binding space”. In more detail, the chemical 

structure of interest is imported as a SMILES string. Subsequently, physico-chemical 

properties are calculated and the exclusion criteria (refer to Table 5.2) are applied. 

Following this, the structural rules from Table 5.1 are applied. In this part of the 

workflow, the input SMILES strings, which have already passed the physico-chemical 

rules, are run against a set of SMARTS strings, looking for matches regarding rule 1, the 

arginine binder, and rule 2, the methylated/halogenated ring-system (refer to Table 5.1). 

If a compound’s calculated physico-chemical properties are within the defined ranges 

(refer to Table 5.2), i.e. it lies within the applicability domain, and contains the relevant 

structural features (refer to Table 5.1), then the compound is classed as having the 

possibility of being an active RAR ligand. If a compound is outside the calculated 

physico-chemical ranges of Table 5.2 or does not contain the structural features (refer to 

Table 5.1), it is classified as being inactive towards RAR. Finally the workflow, as it is 

built in Figure 5.3, exports a csv-file gathering the potential RAR ligands. 
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Figure 5.3: KNIME workflow to screen for potential RAR ligands 

 

 

5.3.5. Evaluating the workflow: Screening two datasets 

The workflow was used to screen the 251 active compounds identified from the 

ChEMBL dataset with all compounds being identified as RAR ligands. 109 of 951 

compounds in the Fourches dataset (Fourches et al., 2010) were identified as being RAR 

ligands. Beside retinoids and retinoid-similar structures, some steroids and structurally 

diverse drugs, such as amineptine (tricyclic antidepressant) and cocaine (tropane alkaloid) 

were identified as potential RAR binders. The Fourches dataset does not contain 

information on RAR activity, so performance statistics, such as Cooper statistics (Cooper 

et al., 1979), i.e. false positive ratio, sensitivity etc., are not meaningful in this context. 

 

5.4. Discussion 

Extrapolating from chemistry to pharmacology/toxicology is a non-trivial, often even 

impossible, task. However, it is recognised that assessing chemicals for their 

pharmacological and toxicological properties is of great importance for industry and 
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regulatory agencies. The AOP framework is increasingly seen as providing usable 

information for modelling as it describes the linkage between the (bio)chemistry of the 

MIE and the potential adverse effect on individuals and populations (Gutsell and Russell, 

2013). A key challenge remains in the prediction of chronic toxicity, particularly modes 

of action relating to organ level toxicity. New technologies have the potential to exploit 

the wealth of data that will be delivered from modern database approaches such as 

ChEMBL and increasing reporting of information from molecular biology. To exploit 

these data, tools and strategies, such as data mining, knowledge extraction techniques and 

(chemo-)informatics tools, are required. Particularly in risk assessment, the identification, 

characterisation and application of chemistry from the MIE of an AOP is an increasingly 

commonly used method to “group” or form categories of similar compounds (Vinken et 

al., 2013; Ankley et al., 2010).  

Grouping is a crucial element in the further use of predictive toxicology approaches, such 

as read-across or QSAR and is best undertaken from a mechanistic standpoint (Blackburn 

and Stuard, 2014; Patlewicz et al., 2013; Cronin et al., 2013; OECD, 2012). One of the 

key challenges for grouping compounds is the definition of similarity. The mechanistic 

framework provided by the AOP paradigm gives a rational basis to developing chemistry 

based alerts (from the MIE) for grouping and ultimately confirming group membership 

using data from assays representing key event(s).  

This study has applied innovative methods to obtain structural information relating to an 

important MIE. This has been achieved by investigating protein-ligand binding data and 

physico-chemical properties. Thus, screening a toxicity dataset with the RAR ligand 

workflow may help to identify compounds acting by the same mechanism and therefore 

belonging in the same group. For such a group of compounds there is a greater likelihood 

of developping mechanistically valid, robust QSARs (OECD, 2014; OECD, 2012; Enoch 
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et al., 2011; Patlewicz et al., 2013). In drug design, there is an interest in identifying 

potent RAR agonists to address several types of cancer and skin diseases (Alizadeh et al., 

2014; Leyden et al., 2005; Allen and Bloxham, 1989; Dicken, 1984). The interest may lie 

in advances towards the receptor-specificity (Vaz and de Lera, 2012; Schinke et al., 

2010), i.e. significant activity for certain receptor subtypes, or pharmacokinetics (el 

Mansouri et al., 1995), e.g. targeted drug localisation. Both strategies may lead to RAR 

agonists with fewer side effects or better risk-benefit ratios. 

In this study information from a set of 251 active RAR ligands from ChEMBL and 20 

crystal structures of ligand-protein-interactions from the PDB was extracted and 

investigated to build a screening workflow predicting potential RAR ligands. The set of 

active RAR ligands is based on Ki, Kd, AC50 and EC50 values, which means beside 

agonists, the dataset is also likely to contain antagonists. However, structural and 

physico-chemical information on antagonists is regarded as beneficial to predict agonists, 

as both share many chemical features. The disadvantage of this procedure is a higher 

likelihood of predicting false positives, i.e. predicting antagonists as being active. 

However as a result of the precautionary nature of this approach, potential drug 

candidates in drug discovery and potential toxicants should be identified by the screening 

workflow. 

As proposed by Klaholz and colleagues (2000) and confirmed by this study, all ligands 

are small, flexible compounds with lipophilic (mostly aliphatic) scaffolds and a (more or 

less) terminal polar functional group, for example, an amide or a carboxylic acid, which 

creates a hydrogen bond with arginine, e.g. R278 (PDB, 2014; Klaholz et al., 2000). 

Potent ligands contain at least one ring structure in the aliphatic scaffold. Furthermore, 

ring structures may be halogenated, as this does not decrease lipophilicity, such as the 
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compounds illustrated in Figure 5.2, which are highly potent RAR-α binders (Beard et al., 

2002; Johnson et al., 1999). 

Figure 5.2 also illustrates the lipophilic (mostly aliphatic) scaffold. As long as flexibility 

and lipophilicity are not greatly impaired, compounds with aromatic rings and amides 

within their scaffold are potential ligands. This explains the large number of wild cards 

within the SMARTS strings (refer to Table 5.1). These wild cards, which are expressed 

with a “*”, represent any heavy atom and the wild card bond expressed with a “~” 

represents any type of bond. On its own the SMARTS strings developed seem not to be 

very specific, however due to the rule-based combination of SMARTS strings and the 

applicability domains defined by physico-chemical attributes, the RAR ligands can be 

identified with a certain degree of specificity. The exact degree of specificity cannot be 

calculated, but when observing the predictions for the Fourches dataset (Fourches et al., 

2010), where 109 potential RAR ligands out of 951 drug-like compounds were predicted, 

the outcome implies a certain degree of specificity – or better, selectivity. According to 

the analysis of the Fourches dataset, 85 compounds of the 109 predicted RAR ligands are 

hepatotoxic. The RAR actives from the ChEMBL dataset were all correctly predicted, 

which again confirms the indication of high sensitivity. 

A screening workflow, as designed as in this study, is assumed to be more sensitive than 

specific, according to the terminology of Cooper and co-workers (1979). However, as 

“conservativeness” is relative, it should be pointed out that KNIME allows for the easy 

adjustment of workflows – without mastering computer language; parameters, thresholds 

and alerts can be changed intuitively. Furthermore it should be observed that the purpose 

of these kind of screening tools is not to replace in vitro assays or any other in silico 

investigation. The main application lies in tasks, such as prioritisation, or as a valuable 

part of an elaborated consensus model (refer to an integrated testing strategy) and it can 
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also assist in the rational grouping of compounds assisting in read-across to predict 

activity and fill data gaps. It is noted that placing this knowledge in the context of the 

AOP framework allows for grouping and read-across to be supported with evidence from 

assay for other key events (Tollefsen et al., 2014). 

 

5.5. Conclusions 

A novel approach to build screening tools solely with freeware (at least for academia) and 

open access databases has been described. The flexible design within KNIME allows for 

adjustment and combination of workflows individually regarding their purpose and their 

specific endpoints. Furthermore a prediction tool for RAR ligands, as an example for 

toxicology and pharmacology in equal measure, is presented, which may help to identify 

potential new drugs and toxicants. This study has also provided new, transparent, 

knowledge regarding the binding of ligands to RAR which may be useful in a number of 

contexts. 

This study of a novel methodology to identify ligands has been published (Steinmetz et 

al., 2015a). The Appendix contains the dataset (A.4), the rule set (B.2) and the KNIME 

workflow (C.1). Of course, in terms of risk assessment and the identification of potential 

toxicants RAR ligands are only one of a myriad of chemical groups. To include some 

further relevant groups, an extension of this approach towards further NRs is presented in 

Chapter 6. While the methods of Chapter 5 and 6 are very similar, a different method 

(using a different type of data) has been used in Chapter 7 – there, structural alerts for 

liver toxicity have been created. 
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6. Identification of nuclear receptor ligands associated with 

hepatotoxicity* 

6.1. Introduction 

Chapter 5 provided an illustration of how innovative methods could be applied to develop 

workflows to predict potential RAR binders. The work in Chapter 6 extends this 

approach to further nuclear receptors (NRs). NRs belong to a large group of ligand-

inducible transcription factors highly relevant to toxicology. The expression of target 

genes is mediated and inhibited by the presence or absence of endogenous ligands 

respectively. The regulated genes are associated with a variety of physiological processes, 

such as metabolism, development and reproduction (Wang and LeCluyse, 2003). NRs are 

well characterised with regard to their protein structure; at the N-terminal there is a DNA-

binding domain (DBD), and at the C-terminal there is a ligand binding domain (LBD). 

NRs exist as monomers and (hetero- and homo-)dimers, for example the liver X receptor 

(LXR) is bound to the retinoid X receptor (RXR) (Maglich et al., 2001; Wang and 

LeCluyse, 2003).  

There are two main types of NRs: Type I receptors are usually found in the cytoplasm 

and are linked to the heat shock protein 90 (HSP90) which assists in the folding of the 

NR and protects it from heat stress. Type I ligands travel to their specific NR target 

through the bloodstream bound to a steroid binding globulin. Ligand binding occurs 

within the cytoplasm before entering the nucleus. After dissociation of HSP90, 

homodimerisation and binding to the hormone response element is initiated, which finally 

promotes the target gene expression via TATA (5’-TATAAA-3’) binding protein, 

transcription  factor II B,  RNA  polymerase II  etc.  (Kersten et al., 2000;  Maglich et al., 

 
* This chapter is based on my contribution to Mellor et al. (2015) 
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2001). Type II ligands bind to the NR complex within the nucleus. Ligand binding causes 

dissociation of co-repressors and association of co-activators, for example to inhibit 

histone deacetylases whose enzymatic activity is responsible for coiling DNA – which is 

unfavourable for protein expression (Sonoda et al., 2008). On a molecular level, the DBD 

consists of two zinc fingers that recognise specific DNA sequences and the LBD contains 

the ligand-dependent activation function - responsible for ligand-protein-interactions 

similar to other pharmacologically relevant receptors. NR ligands are usually small, 

moderately lipophilic compounds, e.g. steroids, retinoids, fatty acids (Maglich et al., 

2001; Moya et al., 2010). Many NR ligands are associated with liver toxicity, in 

particular fatty liver (hepatosteatosis) and the pathways responsible have been 

demonstrated for many NRs (refer to Table 6.1) (Moya et al., 2010; Vinken, 2013; Sahini 

and Borlak, 2014). In this study there is a focus on ligands of the RAR (refer to Chapter 

5), the peroxisome proliferator-activated receptor (PPAR), the liver X receptor (LXR) 

and the retinoid X receptor (RXR) which are associated with genetic expression towards 

hepatic lipid accumulation and de novo fatty acid synthesis (Moya et al., 2010; Vinken, 

2013; Sahini and Borlak, 2014). Beside the significant hepatosteatotic effects of many 

NRs, the farnesoid X receptor (FXR) is also investigated in this study. The exact role of 

FXR within lipid homeostasis is not clear yet, but due to its cholestasis promoting effects, 

it is relevant for hepatotoxicity as well (Vinken, 2015). Similar to the approach described 

for RAR ligands in Chapter 5 (Steinmetz et al., 2015a), it is possible to build KNIME 

workflows for other NR targets relevant for hepatosteatosis (Moya et al., 2010; Sahini 

and Borlak, 2014). 
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Table 6.1: Summary of studied NRs and relevance to hepatosteatosis and hepatotoxicity 

NR name NR subtypes Relevance for hepatosteatosis References 
 

Retinoic acid 

receptor (RAR) 

 

 

Peroxisome 

proliferator-

activated receptor 

(PPAR) 

 

 

Liver X receptor 

(LXR) 
 

 

 

Retinoid X 

receptor (RXR) 

 

 

Farnesoid X 

receptor 

(FXR) 

NR1B1 (α-RAR) 

NR1B2 (β-RAR) 

NR1B3 (γ-RAR) 
 

 

NR1C1 (α-PPAR) 

NR1C2 (β/δ-PPAR) 

NR1C3 (γ-PPAR) 
 

 

 

NR1H3 (α-LXR) 

NR1H2 (β-LXR) 
 

 

NR2B1 (α-RXR) 

NR2B2 (β-RXR) 

NR2B3 (γ-RXR) 
 

 

NR1H4 (α-FXR) 

NR1H5 (β -FXR)* 

All three subtypes are present in 

the liver. There are multiple 

theories for hepatic lipid 

accumulation. 
 

α-PPAR is most present in the 

liver. Increased hepatic 

peroxisome expression is 

associated with lipid 

accumulation. 

 

Both subtypes present in the 

liver; increasing cholesterol/ 

lipid synthesis. 
 

 

Heterodimerisation with RAR, 

PPAR and LXR, i.e. ligands 

support above described NR 

mechanisms. 
 

Mostly present in liver and 

adrenal cortex, FXR activation 

is not associated with 

hepatosteatosis, but associated 

with jaundice and cholestasis.  

 

BioGPS, 2015; 

Moya et al., 2010; 

Hewitt et al., 2013 
 

 

BioGPS, 2015; 

Wang et al., 2002 
 

 

 

 

BioGPS, 2015;  

Schultz et al., 2000 
 

 

Pérez et al., 2012; 

Sahini and Borlak, 

2014 
 

 

BioGPS, 2015; 

Vinken, 2015 

*No data on β-FXR found; α-FXR and FXR often used as synonyms 

 

It must be pointed out that the different NR subtypes (refer to Table 6.1) are structurally 

very close to each other and therefore often bind to the same ligands with similar affinity 

(Steinmetz et al., 2015a). RAR and RXR share the same ligands, whereas RXR appears 

to be more ligand-specific (Minucci et al., 1997). Furthermore, it must emphasised that 

the role of RAR/RXR agonists regarding their hepatosteatotic mechanisms is not fully 

understood and has promoted a much, sometimes controversial, discussion in the 

scientific literature (Moya et al., 2010; Sahini and Borlak, 2014).  

Hepatosteatosis is a multifactorial condition, which is usually triggered by a combination 

of drugs and (fatty) diet. Depending on the degree of lipid accumulation, the condition 

may lead to a non-alcoholic steatohepatitis (NASH), a chronic liver inflammation which 
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may lead to fibrosis and eventually liver failure. Prevalence in the European population is 

about 30% for hepatosteatosis with 10% to 20% developing NASH, i.e. there is public 

interest in identifying substances contributing to hepatosteatosis (Schattenberg and 

Schuppan, 2011; Sahini and Borlak, 2014). Hence the aim of this chapter was to build a 

tool which enables the identification of potential ligands for NR-associated hepatotoxicity 

ligands based on the ligands’ inherent chemical information. 

 

6.2. Methods 

Due to the functional similarity of NR-subtypes and the opportunity to compile large 

datasets from ChEMBL and PDB, four NR-workflows have been developed: 

 RAR/RXR 

 PPAR 

 LXR 

 FXR (only α-FXR) 

 

6.2.1. Analysis of ligand-protein interaction 

The PDB 3.3 was searched for human NR structures for all relevant subtypes. The 

structures obtained were investigated visually with regard to their ligand-protein-

interaction within PyMOL 1.3 (PyMOL, 2014). Structural features of the ligands, 

particularly when apparently responsible for similar ligand-protein-interactions, were 

extracted. These structural features were coded manually into SMARTS strings. 

Subsequently the SMARTS strings were used within a rule-based workflow to test the 

predictive potential toward NR ligands. 
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6.2.2. Analysis of physico-chemical properties 

Similar to Chapter 5, ligands for all subtypes of LXR, PPAR, RAR/RXR and FXR were 

compiled from the ChEMBL database (ChEMBL, 2014). Their pChEMBL values were 

used as a means to order activity. Only chemicals with a pChEMBL values > 5 were 

considered as being active. CDK's molecular properties node was used to calculate all 

relevant descriptors within KNIME (KNIME, 2014): MW for molecular size, VAIM and 

eccentric connectivity index (ECI) for structural complexity, RB for molecular flexibility 

and topological polar surface area (TPSA) and XLogP for hydro- and lipophilicity 

respectively. 

  

6.3. Results 

The investigation of physico-chemical properties of the ChEMBL ligands and the 

analysis of the protein-ligand interaction of the PDB data resulted in the information 

presented below. Further details, such as activity data, SMARTS strings and the rules for 

the incorporation of SMARTS strings and property ranges within a screening tool 

(relevant for writing codes / rebuilding the workflow) are presented in appendix A.5 and 

B.3. 

 

6.3.1. RAR/RXR 

After observing the RAR and RXR receptors separately it was noted that their actives had 

very similar binding patterns and it was decided to combine them into one workflow. A 

total of 958 RAR actives and 1188 RXR actives were extracted from the ChEMBL 

database. 20 human RAR structures bound to different ligands were retrieved from the 

PDB. The RXR had a further 64 different human protein structures within the PDB. 
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Figure 6.1: Ligand-protein-interaction of the γ-RAR (2LBD) indicating hydrogen bonds of       

retinoic acid within the receptor pocket (PDB, 2015) 

 

The information obtained from observing RAR/RXR ligand-protein-interactions, as well 

as common substructures and physico-chemical properties were combined to form a rule-

based screening workflow. The physico-chemical properties of the RAR/RXR actives 

were observed and the ranges that chemicals must fall within to be active were defined. 

The physico-chemical properties selected were MW, VAIM, RB and XLogP. It can be 

concluded that RAR/RXR ligands have a generally flexible, lipophilic and mostly 

aliphatic scaffold in common, as described in Table 6.2. 

 

Table 6.2: Physico-chemical property ranges for RAR/RXR actives 

Physico-chemical property Value 

MW ≤ 550 

VAIM 5 - 7 

RB 3 - 30 

XLogP 2.2* - 20 

* with 3 outliers < 2.2 (refer to RAR/RXR rules in Appendix B.3)  

 

The rules in Table 6.2 can be similarly interpreted to Chapter 5’s Table 5.2. In other 

words, the values and ranges of Table 6.2 can be seen as single and double cut-offs for 
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each property. Generally RAR/RXR ligands are lipophilic, however there are a small 

number of compounds which are active without being lipophilic (XLogP < 2.2), e.g. n-

phosphono-L-phenylalanyl-L alanylglycinamide with an XLogP of -2.4. As these 

compounds have peptide-like bonds, XLogP exception rules were created. To narrow 

down the compounds passing through this physico-chemical filter, such as inactive amino 

sugars, a further filter was used. As shown in Figure 6.1, there are certain groups in the 

ligand (in particular double-bond oxygens), binding to one or two arginine residuals of 

the receptor, e.g. the hydrogen bond between arginine R278 and an oxygen of a ligand’s 

carboxylic group within the RAR domain. In addition, serine S289 seems to support this 

functional group with another hydrogen bond (refer to Fig. 6.1). The responsible 

structural features are described in a structural alert system. Furthermore, RAR/RXR 

ligands contain at least one ring structure, which could be aromatic or aliphatic, e.g. 

cyclohexene of retinoic acid, as expressed in the structural alert system (refer to 

Appendix B.3) (PDB, 2015; Klaholz et al., 2000; Steinmetz et al., 2015a). 

 

6.3.2. PPAR 

A total of 8548 PPAR actives were extracted from the ChEMBL database. The following 

summarises the ligand-binding interactions of the PPAR actives observed within the PDB. 

In total 175 human PPAR structures were found. 
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Figure 6.2: Ligand-protein-interaction of the γ-PPAR (4O8F) indicating hydrogen bonds with the 

polar ring system of a ligand and amino acid residues (PDB, 2015) 

 

 

The information obtained from observing PPAR ligand-protein-interactions, common 

substructures and physico-chemical properties were combined to form a rule-based 

screening workflow. The physico-chemical properties of the PPAR actives were observed 

and ranges that chemicals must fall within to be active were defined (Table 6.3). The 

physico-chemical properties chosen as filters were MW, VAIM, TPSA and XLogP. 

 

Table 6.3: Physico-chemical property ranges for PPAR actives 

Physico-chemical property Value 

MW ≤ 800 

VAIM 5 - 7 

TPSA 20 - 300 

XLogP 1.2 - 20 

 

PPAR actives were studied and the substructural features relevant to activity were coded 

into SMARTS (as described in Appendix B.3). As none of the 8548 actives has a steroid-

typical tricyclic backbone, which is in itself rather unusual for most NR ligands, an 
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exclusion filter was created, i.e. the chemical of interest must not contain a steroid 

backbone to be classified as active. Further, the compound must contain one of the 

specific “diaromatic” scaffolds and one of the specific functional groups, which arise 

from hydrogen bonds to relevant amino acid residues (mainly from tyrosine, serine or 

histidine), in order to be classified as an active (refer to Fig. 6.2). An additional alert 

system describing fatty acid- and retinoid-like compounds (similar to RAR/RXR), 

indicates moderate PPAR affinity so triggers an alert (refer to Appendix B.3). This 

extension of the PPAR workflow is similar to the RAR/RXR workflow, i.e. it is searching 

for an identifying for mostly aliphatic, flexible chains with terminal polar groups 

(preferably carboxylic groups). Only one PPAR ligand from ChEMBL with a low activity 

(pChEMBL = 6.09) was not identified. 

6.3.3. LXR 

A total of 1721 LXR actives were extracted from the ChEMBL database. The following 

summarises the ligand-binding interactions of the LXR actives observed within the 16 

human structures found within the PDB (PDB, 2015).  
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Figure 6.3: Ligand-protein-interaction of the β-LXR (4NQA) indicating hydrogen bonds and π-

system-interactions as relevant for receptor binding (PDB, 2015) 

 

The information obtained from observing LXR ligand-protein-interactions, common 

substructures and physico-chemical properties were combined to form a rule-based 

screening workflow. The physico-chemical properties of the LXR actives were observed 

and ranges that chemicals must fall within to be active were defined (Table 6.4). The 

physico-chemical properties chosen as filters were MW, VAIM and XLogP and TSPA. 

 

Table 6.4: Physico-chemical property ranges for LXR actives 

Physico-chemical property Range 

MW ≤ 750 

VAIM 4.7 - 7 

TPSA 5 - 150 

XLogP ≥ 2 

 

LXR actives were studied and the substructural features were coded into SMARTS (refer 

to Appendix B.3). A potential ligand contains ring backbones, which have certain 

interactions with arginine residues or secondary amine of leucine, particularly with a 
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carboxylic group, aromatic methoxy groups and other “terminal” oxygens (refer to PDB, 

2015: 3LOE, 4NQA, 4DK7). On the halogenated, particularly fluorinated, side of the 

ligand there might be interactions with histidine as well as shown in protein-ligand-

structure 3FAL (H419). Additionally, π-stacking and similar interactions of the ligand’s 

aromatic rings to phenylalanine and tryptophan residues may be relevant for the ligand-

receptor-binding. An example ligand, mostly known as GW-3965, binding to β-LXR is 

presented in Figure 6.3. 

 

6.3.4. FXR 

Although FXR agonists are not associated with NASH directly, their contribution 

towards cholestasis etc. makes them worth identifying. Hence, a total of 26 human FXR 

structures were found in the PDB and further 715 active ligands where retrieved from 

ChEMBL.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4: Ligand-protein-interaction of the FXR (3HC5) indicating hydrogen bonds on two 

ends of a lipophilic “tunnel” (PDB, 2015) 
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The information obtained from observing FXR ligand-protein-interactions, common 

substructures and physico-chemical properties were combined to form a rule-based 

screening workflow. The physico-chemical properties of the FXR actives were observed 

and ranges that chemicals must fall within to be active were defined (Table 6.5). The 

physico-chemical properties chosen as filters were MW, ECI, RB and TPSA. 

 

Table 6.5: Physico-chemical property ranges for FXR actives 

Physico-chemical property Range 

MW ≤ 900 

ECI 150 - 2400 

RB ≥ 2 

TPSA 15 - 200 

 

Different active ligands of the FXR were investigated (refer to PDB, 2015: 4WVD 

(former 4II6), 3HC5, 4QE6) and structural features relevant regarding shape and 

functionality, in particular formation of hydrogen bonds, were coded in SMARTS (refer 

to Appendix B.3). Beside the fit of the molecule within the lipophilic “tunnel”, which is 

determined by residues of leucine, isoleucine etc., hydrogen bonds to polar residues of 

amino acids, such as serine, tyrosine, histidine and arginine, seem to be important for 

binding. Both interactions are depicted in Figure 6.5, where a synthetic ligand binds 

within the receptor pocket. Natural ligands are often steroid compounds, e.g. 

chenodeoxycholic acid (refer to bile salts). 11 of the 715 compounds from ChEMBL did 

not pass the identification criteria of the FXR-workflow. However, these outliers had 

only low activity (pChEMBL ≤ 5.56), such as clotrimazole, an antifungal pharmaceutical, 

and JHW-015, a synthetic cannabinoid – both with a pChEMBL value of 5.49. 
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6.4. Discussion 

The results from within Chapter 6, i.e. the classification rules for each NR, can be used to 

build a workflow to identify potential receptor binders (as achieved in Chapter 5). The 

information/codes necessary for this type of workflow are gathered in Appendix B.3. The 

workflow based on these rules is then able to identify compounds potentially acting as 

NR ligands, i.e. RAR/RXR, PPAR, LXR and FXR ligands respectively. As potential NR 

ligands are likely to trigger a MIE associated with toxic effects, such as hepatosteatosis or 

cholesatasis, this information is highly relevant for risk assessment within an AOP or 

read-across concept (Vinken, 2013; Schultz et al., 2015; Patlewicz et al., 2014). 

The predictive power of the workflow is difficult to measure as there are no 

test/validation data available. As the SMARTS strings and rules are created manually all 

data need to be considered as “training data”. Without approaches such as cross-

validation or bootstrapping, it is impossible to express statistical performance. However, 

what can be observed is that the training data, the ChEMBL datasets, were all identified 

by the rules, except one PPAR and eleven FXR ligands with low activity (pChEMBL ≤ 

6.09). In other words, only twelve out of 13130 actives were not assigned correctly. This 

indicates a certain degree of sensitivity, but it is likely that specificity is only moderate to 

low, i.e. false positives are likely. To confirm suggested activity, it is recommended to 

support the NR-workflow results with additional in vitro assays and/or further in silico 

tests, e.g. docking, QSAR models. 

The concept described here (and in Chapter 5) can be extended to many other receptor-

mediated toxicity endpoints and so support regulatory toxicology and, thus, tasks such as 

risk and safety assessment. Of course, specificity of such a model is always dependent on 

the actual content of databases, e.g. ChEMBL and PDB. Further it must be noted that 

other hepatosteatosis and cholestasis pathways exist, for example via mitochondrial 
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toxicity (Patel and Sanyal, 2013), i.e. this concept cannot to be extended to cover all 

relevant MIEs for hepatosteatosis and cholestasis. On the other hand “ligands for NRs” is 

an important class of toxicants.  

Regarding the FXR, a recent illustration of an AOP for the bile salt export pump (BSEP) 

has been described which states how FXR agonists may significantly induce cholestasis 

and jaundice (Vinken, 2015). However, with regard to FXR’s role in lipid homeostasis, it 

is still unclear whether FXR ligands promote hepatosteatosis (refer to Moya et al., 2010). 

Liu et al. (2014b) have actually postulated that the agonist may counteract hepatosteatotic 

effects. This leads to the question of whether FXR antagonists may trigger 

hepatosteatosis. In particular, as the screening workflows developed within this thesis are 

not likely to differentiate between competitive agonists and antagonists (refer to Chapter 

5). Nevertheless it could be worth screening for FXR ligands with regard to 

hepatosteatosis. It must also be pointed out that adverse effects which expand onto a 

histopathological level, e.g. fibrosis, steatosis, cholestasis, may contribute to similar 

clinical symptoms and manifestations. 

Even if this thesis is more focussed on deriving knowledge from hepatotoxic AOPs, it 

should be emphasised that adverse effects of NR ligands are not only restricted to 

hepatotoxicity. Beside clinical pharmacology and toxicology, the identification of NR 

ligands and prediction of their potential targets is of great interest for ecotoxicology and 

environmental health as well, e.g. the identification of endocrine disruptors in wastewater. 

In modern risk assessment, particularly when avoiding animal testing, it is important to 

use synergies from these different disciplines. 
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6.5. Conclusions 

Identification of AOPs and MIEs is a growing topic in many sub-disciplines of 

toxicology, e.g. regulatory toxicology and risk assessment. NR ligands trigger 

toxicological effects such as hepatosteatosis and NASH respectively. A workflow 

predicting NR-associated hepatotoxicity (predominately hepatosteatosis) has been 

developed. Combined with further NR-workflows (e.g. glucocorticoid, oestrogen and 

vitamin D receptor) the workflow is available in COSMOS Space, a user interface hosted 

by the COSMOS project (Mellor et al., 2015; COSMOS, 2015). A screenshot of the 

principle design of a screening KNIME workflow is shown in Chapter 5 (Fig 5.3) and a 

summary of rules (including SMARTS strings) is presented in Appendix B.3. 

This chapter extends the results of Chapter 5, but it is also an excerpt of Mellor et al. 

(2015), which deals with additional NRs. While many computational toxicology tools 

focus on reactivity (e.g. Enoch et al., 2011), receptor-mediated toxicity is an essential 

addition in the greater picture of toxicology and risk assessment. This shows the 

relevance of this work for the COSMOS project and for non-testing approaches (e.g. 

read-across) in the regulatory context. 
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7. In silico prediction of liver toxicity: The development of novel 

structural alerts* 

7.1. Introduction 

Liver toxicity is an important endpoint for human toxicology in general. The liver plays 

an important role in many metabolic pathways, for example, in the digestion of food or 

the clearing and transforming of xenobiotics. The organ is well perfused, with arterial and 

(portal) venous blood. Damage of the liver can result to liver failure and even cause death 

(Chen et al., 2011). There are different types of pathologies of the liver that can be 

promoted by chemical insult, such as inflammation, fibrosis, steatosis, cholestasis and 

cancer (Fourches et al., 2010; Hewitt et al., 2013; Przybylak and Cronin, 2012). MIEs 

relevant for hepatosteatosis and cholestasis are discussed in Chapter 6. Particularly 

relevant for hepatotoxicity are compounds taken orally (e.g. via food, drugs etc.) that may 

enter the liver after passing through the gastro-intestinal tract. If compounds, so absorbed, 

are potentially toxic, e.g. inducing mitochondrial toxicity, the liver is often the first organ 

to suffer from their potential adversity (Mennecozzi et al., 2012). Furthermore metabolic 

activation of compounds to more toxic forms might take place in the liver that leading to 

subsequent toxic effects, particularly occurring in adjacent organelles, cells and tissues 

(Barile, 2004; Rang et al., 2007a). Systemically available compounds which have not 

been altered metabolically (for example by the first-pass effect) can also damage the liver. 

They will pass through the liver at high volume and may continuously harm the liver via 

the systemic circulation. Chronic exposure of toxicants may also manifest in a substance-

induced liver injury. As cosmetic ingredients are often intended to be applied regularly, 

safety assessment must encompass hepatotoxicity as well. This is the rationale behind 

SEURAT-1’s focus on finding alternative testing methods to identify hepatotoxicity,  that 

* This chapter is an extension of the work of Hewitt et al. (2013) 
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could otherwise only be identified in animal intensive (sub)chronic assays (Yamada et al., 

2013; Tralau et al., 2015). 

Besides in vitro and in vivo data dealing with mechanisms and pathologies of liver 

toxicants, human liver toxicity data are rare and of poor quality respectively. In particular 

chronic hepatotoxicity studies are mostly based on pharmacovigilance and other 

epidemiological studies, for example the harvesting of clinical literature data by Fourches 

et al. (2010) and Chen et al. (2011). Regarding pharmacovigilance data, it must be 

stressed, that adverse effects to the liver are a leading cause of pharmaceuticals failing 

during clinical trials and being withdrawn from the market. These adverse effects may 

vary in severity and type of liver injury, e.g. steatosis, cholestasis or acute liver failure 

(Chen et al., 2011). As liver injury is not exclusively relevant to pharmaceuticals, 

methods to identify liver toxicants (e.g. structural alerts) may be used for the risk 

assessment of other classes of compounds, for example, cosmetics, food additives. 

Prediction of liver toxicity may be interpreted differently according to the respective field. 

For example in the clinical environment biomarkers, such as elevated aminotransferases 

or bilirubin (refer to jaundice) or the decrease of specific proteins (e.g. kallistatin), are 

used as indicators for liver toxicity (Cheng et al., 2015b; Przybylak and Cronin, 2012). 

However, these biomarkers are associated with existing liver injury; hence they play an 

important role in clinical liver function tests. The question rises to what extent these 

biomarkers can be used in in vitro assays and if they could be applied to the entirety of 

hepatotoxic mechanisms. In practice, there is no single in vitro hepatotoxicity assay, but 

there are assays for different modes of action / mechanisms, e.g. mitochondrial 

dysfunction, protein adduct formation (Mennecozzi et al., 2012). This scenario is similar 

for in silico approaches for hepatotoxicity in the context of predictive toxicology (refer to 

Chapter 1). Generalised computational hepatotoxicity models do not work sufficiently 
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and further they do not differentiate mechanisms in a transparent way. Nevertheless, there 

are promising models within mechanistic categories (i.e. groups of similarly acting 

compounds). This is a strong argument for the development of tools to identify 

mechanisms and MIEs respectively (as undertaken in Chapter 5 and 6). Additionally it 

should be pointed out that there are further factors, such as polymorphism and 

environmental factors, which impede the creation of computational models (Przybylak 

and Cronin, 2012). 

Hewitt and colleagues (2013) defined structural alerts for liver toxicity based on 

structural similarity of pharmaceutical liver toxicants of the Fourches et al. (2010) 

database. They defined 16 structural alerts (glucocorticoid steroids, nitrogen mustards, 

catechols etc.) and investigated the mechanisms through an intensive literature research. 

In this study additional structural alerts were created from the investigation of the Chen 

database (Chen et al., 2011). A comparison of the Fourches and Chen databases is shown 

in Table 7.1. Here it must be noted that a binary system (hepatotoxic and non-hepatotoxic) 

was used by Fourches, however a ternary system of classification was used by Chen. 

Hence, this does not allow for an exact comparison of the statistics. However, compounds 

of both datasets can be compared and investigated on a structural level. Structural alerts, 

for example, are a way to capture substructures (and related structural information) and 

further to screen compounds of interest for these substructural features. The structural 

alerts were coded in SMARTS strings (Daylight, 2014; Sushko et al., 2012). The aim of 

this chapter was to create new structural alerts for liver toxicity (complementing the 

already existing Hewitt alerts) and so build a “finer mesh” to screen compounds for the 

potential substance-induced liver injury. Furthermore this work suggests a way to 

progress with structural alerts in general, i.e. first using already identified structural alerts 
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on a new database to check validity and second, identifying new structures for potential 

adverse effects. 

Table 7.1: Comparison of the liver toxicity databases of Fourches and Chen 

 Fourches et al. (2010) Chen et al. (2011) 

Origin of data Literature research Literature research 

Applicability Human, pharmaceutical Human, pharmaceutical 

Number of 

compounds 
951 287 

Hepatotoxic 

categories 

2 (0,1) 

0 being no hepatotoxic concern 

1 being high hepatotoxic concern 

 

3 (0,1,2) 

0 being no hepatotoxic concern 

1 being low hepatotoxic concern 

2 being high hepatotoxic concern 

1 (n = 650) 0 (n = 301) 2 (n = 137) 1 (n = 85) 0 (n = 65) 

 

7.2. Methods 

7.2.1. Data collection and curation 

The Chen et al. (2011) dataset contains information on 278 pharmaceuticals including 

descriptions of potential hepatotoxicity (refer to Table 7.1). This information describes on 

the severity based on the actual adverse effects, and in addition to the concern based on 

pharmacovigilance data, i.e. incorporating statistical evidence and severity – similar to 

the work of Fourches et al. (2010), it is derived from the scientific literature. SMILES 

strings for each compound were taken from Chemspider (RSC, 2014). After screening all 

278 structures with the 16 structural alerts of Hewitt et al. (2013) with KNIME (refer to 

section 7.2.4), the hepatotoxic compounds, which have not been classified as such (i.e. 

false negatives), were investigated for molecular similarity. 
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7.2.2. Molecular similarity 

To identify new categories of structurally similar compounds of the false negative 

hepatotoxicant from section 7.2.1, the freeware Toxmatch v1.07 (IDEAconsult, 2014b) 

was used. While the compounds have been tested against each other for atom 

environment similarity, the similarity matches were defined as being greater than or equal 

60%. Compounds with multiple matches have been extracted from the dataset to 

investigate common substructures and scaffolds. 

7.2.3. Creating structural alerts for liver toxicity  

After the structures were investigated regarding their similarity, they were 

visually/manually grouped based on common structural features. After the grouping 

process, novel structural alerts were created by embedding relevant structural information 

into code. The novel structural alerts were coded in SMARTS strings, so they can be used 

to identify unknown compounds of the same category. The purpose of the new structural 

alerts is to complement the Hewitt et al. (2013) alerts, as the correctly identified 

hepatotoxic compounds (true positives) were not considered. In other words, this study 

focusses on the hepatotoxicants, which cannot be identified by Hewitt et al. (2013) alerts 

alone. 

7.2.4. Screening and validation of structural alerts  

The screening itself (employing the respective structural alerts) was done within KNIME 

2.7.2 (KNIME, 2014) using the Indigo substructure matcher. The screening performance 

of the Hewitt et al. (2013) alerts and of a combination of the Hewitt et al. (2013) and the 

novel alerts was investigated using the Chen et al. (2011) and the Fourches et al. (2010) 

datasets. For the novel structural alerts, the Chen et al. (2011) dataset can regarded as 

training dataset and the Fourches et al. (2010) dataset can be regarded as validation 
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dataset. However it must be stressed that there is a large overlap of compounds in both 

datasets and even some with conflicting information on hepatotoxicity. 

7.3. Results and discussion 

The Chen et al. (2011) dataset holds 196 compounds of moderate to high 

hepatotoxicological concern, which were not identified by the Hewitt et al. (2013) alerts. 

Based on the outcome of the structural similarity analysis with Toxmatch, ten novel 

structural alerts (presented as SMARTS strings in Table 7.2). Each of the substructures 

describes a group of compounds with a potential for hepatotoxicicity. 

 
Table 7.2: Ten novel structural alerts for liver toxicityx 

1 *[N*,nH,NH]S(*)(=O)=O 

 

2 [*]C(=O)Nc1ccccn1 

 

3 [*]c1oc2ccccc2c1C([*])=O 

  

4 [N,C][N,C]1c2ccccc2CCc2ccccc12 
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5 C[NH1][NH2,NH1] 

 

6 c1ccc2[n,c]cccc2c1 

 

7 Nc1nc2n(CO*)cnc2c(=O)[nH]1 

 

8 O=C1CC2CCC3C4CCCC4CCC3C2C[O,C]1 

 

9 O=C1NC=NN1CCCN1CCN(CC1)c1ccccc1 

 

10 S=C1N=CNc2[n]cnc12 

  

xa complete list of the combined 26 hepatotoxicity alerts (Hewitt et al. and Steinmetz) is attached 

to Appendix B.1  
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The principle idea of the creation of the novel structural alerts from this analysis (refer to 

Table 7.2) was to combine them with the 16 structural alerts of Hewitt et al. (2013). In 

the Chen et al. (2011) database the Hewitt et al. (2013) structural alerts identified 14 of 

137 compounds with high hepatotoxic concern, 12 of 85 compounds with low 

hepatotoxic concern and 4 of 65 compounds with no hepatotoxic potential. Combining 

the Hewitt et al. (2013) alerts with the novel alerts of Table 7.2 led to the identification of 

43 of 137 compounds with high hepatotoxic potential, 27 of 58 low hepatotoxic concern 

and 5 of 60 no hepatotoxic concern. So while increasing the identification of compounds 

with high hepatotoxic potential by 21.2%, the incidence of false positives (no hepatotoxic 

concern) has only been increased by 1.5 % (refer to Table 7.3). 

When applying the same comparison to the Fourches database as a test set, similar 

differences can be seen. The combined 26 alerts identified 169 of 650 compounds with 

high hepatotoxic potential, whereas the Hewitt et al. (2010) alerts on their own only 

identified 108 of 650 compounds with high hepatotoxic potential. This means nearly 9.4% 

more potentially hepatotoxic compounds have been identified with the combined 26 

alerts. On the other hand, the number of false positives increased from 41 to 56 from a 

total of 301 non-hepatotoxic compounds. This is an increase of false positives of 5.0% 

(refer to Table 7.4). 

 

Table 7.3: 16 and 26 structural alerts tested on Chen et al. (2011) database 

Using 16 Alerts (Hewitt et al., 2013) 
 

 Using 26 Alerts (combined) 

Hepatotoxic 

category 
Match No match Total 

 Hepatotoxic 

category 
Match No match Total 

2 14 123 137  2 43 94 137 

1 12 73 85  1 27 58 85 

0 4 61 65  0 5 60 65 

Total 30 257 287  Total 75 212 287 
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Table 7.4: 16 and 26 structural alerts tested on Fourches et al. (2010) database 

Using 16 Alerts (Hewitt et al., 2013) 
 

 Using 26 Alerts (combined) 

Hepatotoxic 

category 
Match No match Total 

 Hepatotoxic 

category 
Match No match Total 

1 108 542 650  1 169 481 650 

0 41 260 301  0 56 245 301 

Total 149 802 951  Total 225 726 951 

 

The hepatotoxic categories from Table 7.1 express hepatotoxic concern, i.e. there are the 

binary Fourches (0,1) and the ternary Chen (0,1,2) dataset. The Fourches and the Chen 

datasets have an overlap of 107 compounds. The majority of the compounds defined as 

hepatotoxic by Chen (1,2) are hepatotoxic by Fourches as well (1) and vice versa. One 

exception would be the vasodilator benziodarone (Chen: 2), which was classified by 

Fourches as non-hepatotoxic (0). Conversely there are exceptions, such as the 

anticonvulsant pyrimidinedione primidone (Chen: 0) or the sugar alcohol D-(-)-mannitol 

(Chen: 0), which are both classified as hepatotoxic by Fourches (1). 

As hepatotoxicity is such a complex, multifactorial phenomenon, it is difficult to improve 

performance of screening models based on structural alerts. Different pathways relevant 

for metabolic activation or deactivation, different genetic heritages leading to enzymatic 

polymorphism and different environmental factors, such as beverages, foods, drugs etc., 

play an important role in the manifestation of liver toxicity. Of course a screening tool 

raising alerts might be useful for drug development, but gaining knowledge of the exact 

mechanisms and kinetics relevant for histopathologies associated with hepatotoxicity is 

of greater importance (Przybylak and Cronin, 2012; Chen et al., 2011).  

 

7.4. Conclusions and perspectives 

Identifying compounds which are likely to be liver toxicants is crucial in drug design but 

also convenient in other areas such as safety and risk assessment. Defining more 

structural alerts for liver toxicity could be beneficial for many areas; from occupational 
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health to assessing consumer products, e.g. cosmetics. The development of the novel 

structural alerts within this work led to the identification of 61 more potential liver 

toxicants from the databases, with only a very small increase in false positives (15), 

within the Fourches dataset (refer to Table 7.4). 

Principally the approach of this work is that it can be repeated with every new 

pharmacovigilance liver toxicity dataset, and every time new structural alerts would be 

created. Over time this could lead to a “finer mesh” of alerts (or a “tighter sieve”) 

enabling the screening of a wide range of chemical compounds for substance-induced 

liver injury. Future work may also include the refinement of alerts, for example the 

steroid alerts of Hewitt et al. (2013), which do not identify all hepatotoxic steroids of 

Chen et al. (2011). As this work proposes another steroid alert (refer to SMARTS string 

no. 8 in Table 7.2), it is an interesting question if a simpler, broader steroid alert might be 

of more value, particular for the alerts’ predictive power.  

As liver toxicity is a complex phenomenon, which can be triggered by many different 

mechanisms (Mennecozzi et al., 2012), it is unlikely that liver toxicity could be 

determined by structural alerts alone – at least not as an accurate predictive tool. 

Particularly as the absence of an alert does not make a compound non-toxic (Przybylak 

and Cronin, 2012), there would be a danger of combining structural alerts to increase 

sensitivity until specificity is lost (and false positives become rather rule than exception).  

Beside the refined methodology, the current structural alerts combined with the 16 liver 

toxicity alerts of Hewitt et al. (2013), as summarised in Appendix B.1, are a tool able to 

support current non-testing approaches and in silico risk assessment. However, it must be 

pointed out that they represent only a small excerpt of potential hepatotoxicants. The 

approach, even while using highly relevant data, is less mechanistically driven than the  
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approach in Chapter 5 and 6. However, in the context of the AOP framework and the 

usage of the methods suggested in Chapter 5 and 6, results could become more refined – 

particularly when considering the relevance of clinical/pharmacovigilance data to today’s 

risk assessment approaches.  
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8. Discussion 

8.1. Summary of work 

The assessment of the risk following exposure to any chemical, and hence its safety, is a 

non-trivial task and dependent on various types of information such as exposure, 

toxicokinetics and mode of action (MoA). When dealing with untested compounds, 

predictions based on data for tested compounds have to be made. This is usually 

performed with predictive toxicology tools, e.g. QSAR models or read-across. One 

problem with these approaches is that they are highly dependent on the data quality of 

already tested compounds. In Chapters 2 and 3 it has been demonstrated that existing, 

historical biological data are often of poor or unknown quality. Confidence in the use of 

such data can only be achieved by repetition of tests by independent researchers, with 

examples provided from the areas of skin penetration and aquatic toxicology where many 

historical data are available (Steinmetz et al., 2014; Steinmetz et al., 2015b). Similar 

problems regarding irreproducibility were investigated by Gottmann and colleagues 

(2001) who, following an investigation of carcinogenicity data, concluded that two large 

rodent datasets were only 57% concordant. The differences in bioassay results were not 

explainable by sex, species, strain or target organ. The problems with data quality raises 

the question of how many predictive toxicology models and expert systems are based on 

reliable data and assumptions of data, and how they might change when only high quality 

data are used. One reason for this lack of knowledge is that it is difficult to determine the 

impact on existing models since there are few duplicate experimental data; this is because 

it is usually considered as a waste of money and resources, in addition to the issues 

relating to ethics, to re-test substances. It should also be recognised that further technical 

replicates are not likely to be the key to solve this problem, as most sources of error 

cannot  be  excluded  by  immediately/simultaneously repeating  an assay  with  the  same  
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sample, reagent, apparatus, staff etc. (Madden et al., 2012). Generally accuracy and 

precision of experimental values are important factors associated with repeatability and 

experimental error. On the one hand, consistency in the execution of experiments, for 

example by the usage of standard operating procedures (SOPs), can lower experimental 

errors. On the other hand, biological data are dependent of too many variables to address 

issues with accuracy and precision properly. These circumstances lead to a general 

uncertainty of biological data. One solution is to apply the confidence score (CS) within 

QSAR modelling, development of structural alerts, read-across or validation approaches 

to improve predictive toxicology. Even if the rebuilding and renewing of well used 

models incorporating more reliable data and/or confidence (as presented in this thesis) 

improves models only slightly, ultimately they provide a more realistic (weight of) 

evidence-based approach, as demanded by the users of predictive toxicology tools. In the 

long run, being able to assess the uncertainty of data could enable a measure of 

confidence to be assigned to predictions from QSAR models etc. For instance, greater 

confidence could be achieved by focusing model development and validation on the most 

reliable data points (for example applying the methods described in Chapters 2 and 3). 

The assessment of data quality is obviously vital for their use in risk assessment and 

modelling. However, data quality is not the only criterion required to perform risk 

assessment; it is essential to obtain information on exposure, kinetics and, if available, 

MoA as well. With regard to cosmetic ingredients in particular, knowledge of skin 

permeability and dermal absorption is crucial. Whilst skin permeability only describes the 

passage of a molecule through the uppermost skin layers, such as the stratum corneum, 

dermal absorption data describe the complete process from the dermal administration of a 

compound to its detection in the blood. Whereas data for skin permeability have the 

advantage that they can be generated using an in vitro assay (using, for instance, human 
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skin), the investigation of dermal absorption is typically dependent on in vivo tests. It 

must be remembered that dermal metabolic activity is neglected in skin permeability tests 

as opposed to dermal absorption tests, as in rare cases results and conclusions may differ. 

In addition the dermal absorption of chemicals by rodents is likely to be higher than for 

humans due to their higher pore density (simply due to rodents having fur) compared to 

human skin. Even if animal tests on cosmetic ingredients are not allowed anymore, this 

must be factored into in silico predictions employing in vivo data (Mitragotri et al., 2011; 

Ravenzwaay and Leibold, 2004; Hughes and Edwards, 2010). 

Regardless of the data type indicating dermal absorption, without systemic availability it 

is unlikely for a substance to reveal systemic toxic effects. The skin permeability of a 

compound is determined by many factors such as its concentration, volatility, effect of 

the formulation or delivery vehicle and the substance-specific kp value. This kp value is 

one of the key (physico-)chemistry-dependent properties reliant on molecular size and 

lipophilicity (Potts and Guy, 1992; Mitragotri et al., 2011). A validated, robust QSPR 

model to predict the kp value of an untested compound is reported in Chapter 3 (Eq. 3.5). 

Dermal absorption, similar to oral bioavailability, is dependent on a compound’s physico-

chemical properties. The principle concept is that small, moderately lipophilic (i.e. 

uncharged) compounds pass through relevant membranes more easily than ionic or large 

compounds (Lipinski et al., 2001; Mitragotri et al., 2011). Based on the same scientific 

background, a rule-based prediction system has been built to classify dermal absorption 

of hair dyes (refer to Chapter 4). The rules are based on the same idea of small, 

moderately lipophilic compounds passing through relevant membranes. Beside MW and 

log P, information on MP and TPSA improved the performance of the rule-based 

prediction models. Many hair dyes are known for being toxic, for example due to protein 

and DNA binding. This indicates a principle hazard for mutagenicity and eventually 
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carcinogenicity (Vinardell et al, 2015; Nelms et al., 2015). It is important for consumers 

not to absorb these compounds in quantities where they might cause systemic toxicity, e.g. 

geno-, hepato- or nephrotoxicity. Regarding risk assessment, it is assumed that low 

dermal availability is a key factor for safety. Both methods, the QSPR model (refer to 

Chapter 3) and the rule-based prediction system (refer to Chapter 4), can support risk 

assessment of cosmetic ingredient regarding their dermal and systemic availability. 

Whilst the QSPR is designed for a broad applicability domain of organic chemicals, the 

rule-based prediction system is designed for hair-dyes and associated substances. Another 

big difference is that the QSPR model calculates continuous data points, i.e. absolute kp 

values, the rule-based prediction system orders compounds into two classes according to 

an internally decided safety threshold for hair dyes and associated substances. 

As well as kinetics, MoA and, in particular, MIEs are of great interest for predictive 

toxicologists. As MIEs represent the initial chemical interaction of a chemical compound 

with a biological target (e.g. protein), every toxicological effect is based on at least one 

MIE. Predictive toxicology tries to associate chemical information with adverse effects, 

hence the prediction of initial chemical interactions is probably the most obvious 

approach to this field. This thesis (and also the COSMOS Project and indeed the 

SEURAT-1 Cluster) has had a clear focus on hepatotoxicity. As a typical pathology 

caused by chronic, systemic toxicity, adverse effects to the liver are relevant for 

consumer goods including cosmetic products (Tralau et al., 2015; Vinardell, 2015). Many 

different mechanisms are known to cause hepatotoxicity however, with regard to 

cosmetic ingredients, there is great interest, and indeed need, to identify compounds with 

the ability to cause adverse effects at low doses and following repeated exposure. 

Amongst other mechanisms, NR ligands play an important role in liver toxicity. Since 

many NR ligands have the potential to trigger cholestasis and hepatosteatosis (Vinken, 
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2015; Mellor et al., 2015). An in silico method to screen for potential agonists has been 

developed and described in Chapter 5 (Steinmetz et al., 2015a). This methodology, which 

employs calculated physico-chemical properties and combinations of structural features, 

was extended in Chapter 6 to be applicable to more NRs (Mellor et al., 2015). The in 

silico screening tools described in Chapters 5 and 6 are developed by using in vitro 

datasets, i.e. clinical relevance for every prediction cannot be assured to the same extent 

as for models exclusively based on in vivo data. It must be noted that in vitro and in vivo 

data always embody limitations towards the prediction of clinical outcomes, and that 

even clinical data are not always suitable (refer to polymorphism). Nevertheless, the in 

silico screening tools built within this thesis can be used for the generation of new leads 

in drug design and as a tool in risk assessment (e.g. for category formation) due to their 

conservative and generalistic nature of the model. Additionally prioritisation, for example 

in ecotoxicology, to identify hazardous agents would be another application for the 

screening tool. 

The results described in Chapter 7 are more clinically relevant as they address clinical 

(pharmacovigilance) data from Fourches et al. (2010) and Chen et al. (2011). It must be 

pointed out that cosmetic ingredients should generally (with a few exceptions) not have 

any clinical relevance, i.e. pharmacological/toxicological effects. The liver toxicity data 

have been used to create structural alerts to identify potential hepatotoxicants. The work 

described in Chapter 7 is principally an extension of the approach taken by Hewitt et al. 

(2013), who presented a comprehensive review on mechanisms of liver toxicity and 

assigned a small number of structural alerts to these mechanisms. The focus of this study 

was not to extend the review but develop further structural alerts for hepatotoxicity. The 

structural alerts defined in Chapter 7 represent substructures associated with 

hepatotoxicity under chronic administration; ten new alerts have been added to the 
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existing sixteen of Hewitt et al. (2013). Since the in silico screening tools (refer to 

Chapters 5 and 6) predict only the potential to elicit a MIE, they do not predict 

toxicological effect directly. Whereas the structural alerts of Chapter 7 predict clinical 

toxicity directly. Even if the answers of the structural alerts model seem to be more 

relevant, it must be noted that the data were very limited regarding structural diversity 

and data quality. Practically this means, that the combined structural alerts of Steinmetz 

and Hewitt together do not capture the entirety of hepatotoxicants. However, as shown in 

Chapter 7, the extension enables to identify many more hepatotoxicants without 

compromising integrity. All workflows and codes needed to build the described screening 

tools are attached in Appendices. 

This thesis provides a number of different approaches relevant to risk assessment, e.g. 

models for hazard identification and exposure, so consideration is required as to how this 

body of work contributes to the toxicological assessment of novel cosmetic ingredients. 

The integration of data quality, kinetics and mechanistic modelling is a challenge, of 

course, and, furthermore, the precise manner in which this is carried out will depend 

strongly on individual scenarios. In general, the aim of predictive toxicology strategies is 

to combine all available knowledge to obtain the most plausible prediction for the 

relevant compound, so issues such as toxicity, safety, risk and exposure can be addressed 

properly, e.g. bans/limits of chemicals for certain applications. Risk assessment uses a 

variety of data from hazard and exposure, as well as use case, to make a decision. 

Traditionally these data include information from animal tests (e.g. NOAEL). As this 

type of testing is not acceptable anymore, at least not for novel cosmetic ingredients, new 

strategies will need to be applied. The development of a model predicting NOAEL values 

for all relevant biological endpoints and all types of organic chemicals in a near future is 

rather unlikely. Nevertheless, when going more into detail, plenty of useful tools and 
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strategies have been proposed – not only within this thesis. Since statistical and 

individual assessment of data quality contributes to higher certainty, more robust models 

and read-across approaches can be built and employed. This benefits the confidence in 

the obtained prediction. Furthermore, predictive models within a specific applicability 

domain of interest, e.g. a chemical family and their relation towards biological effects, 

can be expressed in a mechanistically more transparent fashion. Added to this, expert 

knowledge and computational tools dealing with ADME properties will predict uptake 

(e.g. dermal absorption), distribution, potential metabolites and elimination rates. Last, 

but not least, category formation, supported by screening tools, docking etc., may help to 

build local QSARs or binary data systems (e.g. toxic, non-toxic). Whilst consensus 

approaches employing different prediction tools (for example as demonstrated in Norlen 

et al. (2014)) can be used to predict the same endpoint, integration in the context of this 

discussion rather means the combination of different endpoints or effects, such as dermal 

absorption, mitochondrial toxicity, NR affinity etc., to support or reject a complete 

toxicological hypothesis, e.g. low doses of the compound administered dermally may 

trigger lipid accumulation in hepatocytes. The integration of multiple datasets and 

methods and the interpretation of the predictions are complex endeavours, which still 

demand toxicological expertise. Therefore the integration, as it is discussed in this thesis, 

is far from an automated predictive toxicology tool, which just needs to be fed with data 

and provides results ready for the use of regulatory authorities. 

 

8.2. Future of risk assessment 

Due to the complex chemical exposure scenarios of modern humans, risk and safety 

assessment is – and most likely will stay – a challenging task. Consumer goods of all 

kinds are designed and marketed worldwide. Beside a general lack of (high quality) 

toxicological and pharmacological data, it is difficult to consider individual contributing 
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factors, such as potential adverse effects due to polymorphisms or due to synergy of 

different ingredients. With the new legislation, the lack of traditional toxicology data is 

becoming greater, which creates a big challenge for regulatory toxicologists. What 

initially appears to be a setback for regulators, the ban of animal tests for cosmetics and 

cosmetics ingredients in the European market, appears to be an advantage on further 

consideration. Whilst NOAEL and LOEL data are used to determine toxicity (with huge 

variability according to Gottmann et al., 2001), mechanistic knowledge is often not 

incorporated. Furthermore Lewis et al. (2002) described many potential flaws in the way 

toxicity data, such as NOAEL values, are generated. These flaws are, for example, a lack 

of definitions of toxicology terms and inconsistent interpretations of such. Even 

histopathological data, if retrieved at all, are often not enough to identify or comprehend 

toxicity-driving MoAs. Since the information historically obtained by in vivo testing must 

be replaced somehow, it is necessary to focus on the advances of in vitro and in silico 

technologies. 

Of course in this thesis the focus lies on computational, non-testing strategies. Modern in 

silico tools often directly, or indirectly, employ, or can be used to gain, insights into 

mechanistic knowledge, i.e. information regarding enzymatic inhibition, receptor binding, 

electrophilic attack of DNA or proteins etc. Whereas local QSARs, docking, structural 

alerts and other screening tools often have direct associations with a single mechanism, 

machine learning approaches may be used to gain insights into mechanisms of action if 

their predictions can be interpreted in terms of the contributions of individual molecular 

features, as described by Palczewska et al. (2013). Furthermore, ADME- and PBPK-

modelling provides answers regarding the localisation and enrichment of compounds 

(refer to target organ toxicity) and the nature of the chemical species reaching the site of 

biological action (which may be affected by metabolism of the original chemical). Hence, 
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integration of kinetic and mechanistic modelling may benefit regulatory toxicology, 

which has been up until now dominated by in vivo testing. In non-testing strategies, 

regulatory toxicology is dominated by read-across approaches, at least for systemic 

toxicity. In addition to the purely computational tools described, in vitro assays may 

benefit predictions and hence toxicological assessments. By integration of multiple in 

vitro and in silico tests (refer to Integrated Testing Strategies) the joined information may 

support kinetic or mechanistic hypotheses. On the one hand it is a philosophical question 

to what extent tests need to be conducted to obtain satisfactory information, on the other 

hand it is a quite practical question as well. However, without neglecting the limitations 

of in vitro assays as compared to in vivo tests, it should be pointed out that the similar 

considerations are applicable to in vivo testing, for example when deciding on species, 

sex, dose pattern etc., and, as just as importantly, what analysis and histopathological 

investigations to perform (Hartung et al., 2013). Driven by the costs of testing and the 

plethora of chemicals and mixtures, the philosophical question has to turn into a 

pragmatic question to obtain a pragmatic answer regarding potential risks. 

Beyond setting the scene of the current, the alleged turning point of risk and safety 

assessment influenced by 21st Century Toxicology and the increase of ethical concerns, it 

is not clear to what extent risk and safety assessment will change and if the new paradigm 

will be sustainable. However, given the ever increasing number of new chemicals 

submitted to regulators for market approval, even if risk assessment processes have a 

very low error rate, it seems inevitable that some high risk chemicals may still make it 

onto the market. Particularly under capitalism, which urges the launch of novel products, 

it may be only a question of time when the next “chemical catastrophe” happens. 

Insufficiently assessed drugs, such as thalidomide (Dally, 1998) or 

fenfluramine/phentermine (Surapaneni et al., 2011), or food adulterants, such as 
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melamine in milk (Wu and Zhang, 2013) or tricresyl phosphate in ginger extract (Morgan 

and Penovich, 1978), may change the attitude of the public (and hence politicians), which 

may lead to more toxicological vigilance regarding risk and fewer ethical concerns 

regarding animal trials. Whatever will happen in 21st century regarding regulatory 

toxicology is difficult to predict. Of course politics play an important role regarding 

toxicological decision-making. However, it us up to scientists, particulary young 

scientists from the “digital native” generation, to face current challenges and influence 

policy makers and public opinion towards careful, but also feasible and sensible, 

assessment of chemicals, such as cosmetic ingredients. Technological development is 

moving on a fast pace – many tools we use nowadays naturally have been advanced 

technologies, with limited access, a few decades ago. The trend of freeware, open-access 

databases and transparent programming is contributing in silico toxicology massively. 

21st Century Toxicology has already brought many new insights, not only to me, but to 

the whole scientific community, and there are still some years to come. 

 

8.3. Conclusions 

The work presented in this thesis on statistical data quality, kinetics, i.e. skin permeability 

and dermal absorption, and mechanistically based modelling (hepatotoxicity alerts and 

prediction of NR-associated hepatosteatosis) are pieces designed to be integrated into 

modern toxicological risk and safety assessment. In particular, the work in this thesis 

should support risk assessment in the field of cosmetic ingredients. As opposed to many 

current achievements in predictive toxicology, transparency and flexibility of models and 

tools are strengths of this thesis as compared to statistical performance. Tools, methods 

and strategies are published and proposed respectively within this thesis and the 

associated scientific articles (refer to Appendix D). Beyond cosmetics, beneficial usage 

within other disciplines, for example pharmacology, is discussed in many chapters. The 
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overall aim was to propose ideas regarding how to build and interpret new models, and of 

course how to use them in combination (refer to consensus approach) with a focus on 

safety assessment in the consumer care industry. More specifically, a method for 

calculating statistical data quality (to improve QSAR modelling and other computational 

approaches), new models for skin permeability / dermal absorption, screening tools for 

NR-binding and hepatotoxicity structural alerts have been created. All these models and 

tools have the potential to support toxicological evaluations and regulatory decision-

making directly. However, the methodologies used in development of the tools and 

models might support regulatory toxicology even more indirectly. The transparent design 

of workflows (mostly within KNIME) and statistics, the usage of freeware (e.g. R, 

Toxmatch) and the usage of open-access data (e.g. ChEMBL, PDB) will give 

toxicologists and regulators the opportunity to adjust tools and models towards their 

relevant problems. In a nutshell, the aim of novel but transparent in silico tools and 

models to support the assessment of cosmetics ingredients can be regarded as 

accomplished on multiple levels. 

 

8.4. Future work 

As described earlier (refer to Chapter 1), toxicology is a great field with far too many 

chemicals, endpoints etc. to ever fully elucidate this discipline. Even restricting ourselves 

to particular aspects of this field, such as the topics investigated within this thesis, it 

seems to be an almost endless story. From protein interactions to pathological pathways, 

a lot of things are not currently as clear and understandable as they should be. Biological 

data are often not of the necessary data quality (refer to Chapters 2 and 3), probably due 

to the complexity of biomolecular assays, which makes toxicological interpretation rather 

difficult. Tendencies as described in skin permeability / dermal absorption (Chapters 3 

and 4) or in NR-related mechanistic modelling (Chapters 5, 6 and 7) are used for 
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predictions. When considering all those possible influences, such as metabolism or active 

transport, predictions led purely by toxicologically relevant properties cannot always be 

correct. So, there is still plenty room to improve, but this is difficult due to a lack of data 

and hence a lack of understanding. Nevertheless, predictive toxicology is of great 

importance for many different areas, although there are limiting factors, such as the many 

unknown mechanisms and, of course, the limited availability of data. The most limiting 

factor probably is, and always will be, the complexity of the human body. However, even 

if not perfectly, it is likely that QSARs and AOPs will join to quantitative AOPs ready for 

endpoint- and MoA-specific predictions in the near future. They will have the great 

advantage of transparency compared to global, endpoint-specific QSAR models, which 

do not account for mechanistic information. 

As mentioned earlier, it is unlikely that automated model development will deal with 

toxicological issues in the near future. The development of a predictive toxicology tool, 

which just needs to be fed with data and spits out results ready for use, is not foreseeable. 

But, that is not all bad news. The good news is that many computational toxicologists can 

follow up in this interesting field, probably for many decades, or even centuries, to come. 

Particularly as data, descriptors and knowledge constantly increase (and even sometimes 

change), there could be many full-time jobs created for computational toxicologists, just 

for updating and refining already existing models. Despite this endeavour, there is still 

the potential for real novelties which might be based on new 

pharmacological/toxicological insights (e.g. new AOPs) or the combination of different 

technologies (e.g. combining QSPRs with PBPK-models). However, all these approaches 

have the potential to create game-changing models and affect the way regulatory 

toxicologists approach the challenges of tomorrow.  



References 

121 
 

9. References 

Abraham M.H. et al. (1997) Algorithms for skin permeability using hydrogen bond 

descriptors: the problem of steroids. J. Pharm. Pharmacol. 49: 858-865 

 

Adams J. (1993) Structure-activity and dose-response relationships in the neural and 

behavioral teratogenesis of retinoids. Neurotoxicol. Teratol. 15: 193-202 

 

Adler S. et al. (2011) Alternative (non-animal) methods for cosmetics testing: current 

status and future prospects-2010. Arch. Toxicol. 85: 367-485 

 

Alam M.S. et al. (2013) Application of 2D-GCMS reveals many industrial chemicals in 

airborne particulate matter. Atmos. Environ. 65: 101-111 

 

Alizadeh F. et al. (2014) Retinoids and their biological effects against cancer. Int. 

Immunopharmacol. 18: 43-49 

 

Allen J.G. and Bloxham D.P. (1989) The pharmacology and pharmacokinetics of the 

retinoids. Pharmac. Ther. 40: 1-27 

 

Allen T.E.H. et al. (2014) Defining molecular initiating events in the adverse outcome 

pathway framework for risk assessment. Chem. Res. Toxicol. 27: 2100-2112 

 

AltTox (2015) Table of validated and accepted alternative methods. http://alttox.org/ 

mapp/table-of-validated-and-accepted-alternative-methods/ (accessed 24.08.2015) 

 

Ankley G.T. et al. (2010) Adverse outcome pathways: a conceptual framework to support 

ecotoxicology research and risk assessment. Environ. Toxicol. Chem. 29: 30-41 

 

Aptula A.O. et al. (2002) Multivariate discrimination between modes of toxic action of 

phenols. Quant. Struct. Act. Rel. 21: 12-22 

 

Aruoja V. et al. (2011) Toxicity of 58 substituted anilines and phenols to algae 

Pseudokirchneriella subcapitata and bacteria Vibrio fischeri: comparison with published 

data and QSARs. Chemosphere 84: 1310-1320 

 

Ates G. et al. (2015) Linking existing in vitro dermal absorption data to physicochemical 

properties: contribution to the design of a weight-of-evidence approach for the safety 

evaluation of cosmetic ingredients with low dermal bioavailability. Submitted to Regul. 

Toxicol. Pharm. 

 

Attene-Ramos M.S. et al. (2013) The Tox21 robotic platform for the assessment of 

environmental chemicals - from vision to reality. Drug Discov. Today 18: 15-16 

 



References 

122 
 

Attene-Ramos M.S. et al. (2015) Profiling of the Tox21 chemical collection for 

mitochondrial function to identify compounds that acutely decrease mitochondrial 

membrane potential. Environ. Health Perspect. 123: 49-56 

 

Backhaus T. et al. (1997) Toxicity testing with Vibrio fischeri: a comparison between 

long term (24 h) and the short term (30 min) bioassay. Chemosphere 35: 2925-2938 

 

Barile F.A. (2004) Clinical toxicology - principles and mechanisms. CRC Press, Boca 

Raton, Florida, USA, pp. 35-75 

 

Beard R.L. et al. (2002) Synthesis and biological activity of retinoic acid receptor-

specific amides. Bioorg. Med. Chem. Lett. 12: 3145-3148 

 

Benigni R. and Giuliani A. (1994) Quantiative structure-activity relationship (QSAR) 

studies in genetic toxicology: mathematical models and the “biological activity” term of 

the relationship. Mutat. Res. 306: 181-186 

 

Bento A.P. et al. (2013) The ChEMBL bioactivity database: an update. Nucleic Acids Res. 

42: 1-8 

 

Berman H.M. et al. (1999) The Protein Data Bank. Nucleic Acids Res. 28: 235-242 

 

Berthold M. et al. (2007) Knime: the Konstanz Information Miner, studies in 

classification, data analysis, and knowledge organization (GfKL), Springer-Verlag, 

Freiburg, Germany, pp. 1-8 

 

Biesalski H.K. (1989) Comparative assessment of the toxicology of vitamin A and 

retinoids in man. Toxicology 57: 117-161 

 

BioGPS (2015) http://www.biogps.org (accessed 17.07.2015) 

 

Blackburn K. and Stuard S.B. (2014) A framework to facilitate consistent 

characterization of read across uncertainty. Regul. Toxicol. Pharmacol. 68: 353-362 

 

Bláha L. et al. (1998) QSAR for acute toxicity of saturated and unsaturated halogenated 

aliphatic compounds. Chemosphere 36: 1345-1365 

 

Bulich A.A. et al. (1981) Reliability of the bacterial luminescence assay for 

determination of the toxicity of pure compounds and complex effluents. Aquatic 

Toxicology and Hazard Assessment, ASTM STP 737: 338-47 

 

Burden N. et al. (2015) Aligning the 3Rs with new paradigms in the safety assessment of 

chemicals. Toxicology 330: 62-66 

 



References 

123 
 

Calleja M.C. et al. (1994) Human acute toxicity prediction of the 50 MEIC chemicals by 

a battery of ecotoxicological tests and physicochemical properties. Food Chem. Toxicol. 

32: 173-187 

 

Campbell T.J. (1983) Importance of physico-chemical properties in determining the 

kinetics of the effects of Class I antiarrhythmic drugs on maximum rate of depolarization 

in guinea-pig ventricle. Br. J. Pharmac. 80: 33-40 

 

Caron G. and Ermondi G. (2008) Lipophilicity: chemical nature and biological relevance. 

In: Mannhold R. (editor). Molecular drug properties - measurement and prediction. 

Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp. 326-327 

 

Cases M. et al. (2013) The eTOX library of public resources for in silico toxicity 

prediction. Mol. Inform. 32: 24-35 

 

Chang J.C. et al. (1981) Use of Microtox assay system for environmental samples. Bull. 

Environ. Contam. Toxicol. 26: 150-156 

 

Chauhan P. and Shakya M. (2010) Role of physicochemical properties in the estimation 

of skin permeability: in vitro data assessment by Partial Least-Squares regression. SAR 

QSAR Environ. Res. 21: 481-494 

 

ChEMBL (2014) Database version 19. http://www.ebi.ac.uk/chembl  (accessed 

07.07.2014) 

 

ChEMBL (2015) Database version 19, http://www.ebi.ac.uk/chembl/ (accessed 

11.02.2015) 

 

Chen M. et al., (2011) FDA-approved drug labelling for the study of drug-induced liver 

injury. Drug Discov. Today 16: 697-703 

 

Chen L. et al. (2013) Recent advances in predicting skin permeability of hydrophilic 

solutes. Adv. Drug Deliv. Rev. 65: 295-305 

 

Cheng Z. et al. (2015a) Replacing fish meal by food waste to produce lower trophic level 

fish containing acceptable levels of polycyclic aromatic hydrocarbons: health risk 

assessments. Sci. Total Environ. 523: 253-261 

 

Cheng Z. et al. (2015b) Kallistatin, a new and reliable biomarker for the diagnosis of 

liver cirrhosis. Acta Pharm. Sin. B 5: 194-200 

 

Cooper J.A. et al. (1979) Describing the validity of carcinogen screening tests. Br. J. 

Cancer 39: 87-89 

 



References 

124 
 

COSMOS (2015) COSMOS Space, cosmosspace.cosmostox.eu/app/home (accessed 

22.07.2015) 

 

Couling D.J. et al. (2006) Assessing the factors responsible for ionic liquid toxicity to 

aquatic organisms via quantitative structureÐproperty relationship modelling. Green 

Chem. 8: 82-90 

 

Cronin M.T.D. and Schultz T.W. (1996) Structure-toxicity relationships for phenols to 

Tetrahymena pyriformis. Chemosphere 32: 1453-1468 

 

Cronin M.T.D. and Schultz T.W. (1997) Validation of Vibrio fischeri acute toxicity data: 

mechanism of action-based QSARs for non-polar narcotics and polar narcotic phenols. 

Sci. Total Environ. 204: 75-88 

 

Cronin M.T.D. and Schultz T.W. (1998) Structure-toxicity relationships for three 

mechanisms of action of toxicity to Vibrio fischeri. Ecotox. Environ. Saf. 39: 65-69  

 

Cronin M.T.D. and Schultz T.W. (2003) Pitfalls in QSAR. J. Mol. Struct. (Theochem) 

622: 39-51 

 

Cronin M.T.D. et al. (1991) QSAR studies of comparative toxicity in aquatic organisms. 

Sci. Total Environ. 109/110: 431-439 

 

Cronin M.T.D. et al. (2013) Applying read-across for quantitative chronic toxicity 

prediction. Abstract of 49th congress of the European Societies of Toxicology 

(EUROTOX), Toxicol. Lett. 221, pp. 52 

 

Cronin M.T.D. (2004) Predicting chemical toxicity and fate - an introduction. In: Cronin 

M.T.D. and Livingstone D.J.  (editors). Predicting chemical toxicity and fate (1st edition). 

CRC Press, Boca Raton, Florida, USA, pp. 3-12 

 

Cronin M.T.D. (2013a) An introduction to chemical grouping, categories and read-across 

to predict toxicity. In: Cronin M.T.D. et al. (editors). Chemical toxicity prediction - 

category formation and read-across (1st edition). RSC Publishing, Cambridge, UK, pp. 1-

2 

 

Cronin M.T.D. (2013b) Evaluation of categories and read-across for toxicity prediction 

allowing for regulatory acceptance. In: Cronin M.T.D. et al. (editors). Chemical toxicity 

prediction - category formation and read-across (1st edition). RSC Publishing, Cambridge, 

UK, pp. 155-167 

 

Curtis C. et al. (1982) Evaluation of a bacterial bioassay as a method for predicting acute 

toxicity of organic chemicals to fish. Aquatic Toxicology and Hazard Assessment: ASTM 

STP 766: 170-178 



References 

125 
 

Czodrowski P. (2013) hERG Me Out. J. Chem. Inf. Model. 53: 2240-2251 

 

Dally A. (1998) Thalidomide: was the tragedy preventable? Lancet 351: 1197-1199 

 

Dancik Y. et al. (2013) Design and performance of a spreadsheet-based model for 

estimating bioavailability of chemicals from dermal exposure. Adv. Drug Deliv. Rev. 65: 

221-236 

 

Davis A.M. and Riley R.J. (2004) Predictive ADMET studies, the challenges and the 

opportunities. Curr. Opin. in Chem. Biol. 8: 378-386 

 

Dawson D.A. et al. (2006) Chemical mixture toxicity testing with Vibrio fischeri: 

combined effects of binary mixtures for ten soft electrophiles. Ecotox. Environ. Saf. 65: 

171-180 

 

Daylight (2014) http://www.daylight.com (accessed 07.07.2014) 

 

DeZwart D. and Slooff W. (1983) The Microtox as an alternative assay in the acute 

toxicity assessment of water pollutants. Aquat. Toxicol. 3: 129-138 

 

Dicken C.H. (1984) Retinoids: a review. J. Am. Acad. Dermatol. 11: 541-552 

 

Docherty K.M. and Kulpa C.F. (2005) Toxicity and antimicrobial activity of imidazolium 

and pyridinium ionic liquids. Green Chem. 7: 185-189 

 

Dutka B.J. and Kwan K.K. (1981) Comparison of three microbial toxicity screening tests 

with the Microtox test. Bull. Environ. Contam. Toxicol. 27 (1981), 753-757 

 

EC (2005) European Commission, regulation no. 389/2005 of the European Parliament 

and the council of 18 May 2005 (accessed 23.04.2014) 

 

EC (2006) European Commission, regulation no. 1907/2006 of the European Parliament 

and the council of 18 December 2006 (accessed 23.04.2014) 

 

EC (2009) European Commission, regulation no. 1223/2009 of the European Parliament 

and the council of 30 November 2009 (accessed 23.04.2014) 

 

el Mansouri S. et al. (1995) Time- and dose-dependent kinetics of all-trans-retinoic acid 

in rats after oral or intravenous administration(s).  Drug Metab. Dispos. 23: 227-231 

 

Ellison C.M. et al. (2008) Definition of the structural domain of the baseline non-polar 

narcosis model for Tetrahymena pyriformis. SAR QSAR Environ. Res. 19: 751-783 

 



References 

126 
 

Enoch S.J. et al. (2011) A review of the electrophilic reaction chemistry involved in 

covalent protein binding relevant to toxicity. Crit. Rev. Toxicol. 41: 783-802 

 

Enoch S.J. et al. (2008) Classification of chemicals according to mechanism of aquatic 

toxicity: an evaluation of the implementation of the Verhaar scheme in Toxtree. 

Chemosphere 73: 243-248 

 

EPA (2013) US Environmental Protection Agency. EPI Suite 4.1 software. http://www. 

epa.gov/oppt/exposure/pubs/episuite.htm  (accessed 17.01.2013)  

 

EPA (2014) EPI Suite 4.11, US Environmental Protection Agency. http://www.epa.gov/ 

opptintr/exposure/pubs/episuite.htm (accessed 20.08.2014) 

 

EPA (2015a) ACToR, US Environmental Protection Agency. http://www.epa.gov/actor/ 

(accessed 20.02.2015) 

 

EPA (2015b) ECOTOX Database, US Environmental Protection Agency. http://cfpub. 

epa.gov/ecotox/ (accessed 20.02.2015) 

 

Faustman G.M. and Omenn G.S. (2001) Risk assessment. In: Klaassen C.D. (editor). 

Casarett and Doull’s toxicology - the basic science of poisons (6th edition). McGraw-Hill, 

New York, USA, pp. 69-95 

 

FDA (2013) US Food and Drug Administration, code of federal regulations title 21, April 

2013. http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=3.2 

(accessed 03.08.2013) 

 

Feigenbaum A. et al. (2015) Reliability of the TTC approach: learning from inclusion of 

pesticide active substances in the supporting database. Fd. Chem. Toxicol. 75: 24-38 

 

Fioravanzo E. et al. (2013) Molecular modelling of LXR binding to evaluate the potential 

for liver steatosis, Abstract of 49th congress of the European Societies of Toxicology 

(EUROTOX), Toxicol. Lett. 221, pp. 83 

 

Flynn G.L. (1990) Physicochemical determinants of skin absorption. In: Gerrity T.R. and 

Henry C.J. (editors). Principles of route-to-route extrapolation for risk assessment (1st 

edition). Elsevier New York, USA (1990), pp. 93-127 

 

Fourches D. et al. (2010) Cheminformatics analysis of assertions mined from literature 

that describe drug-induced liver injury in different species. Chem. Res. Toxicol. 23: 171-

183 

 

Frank R.A. et al. (2010) Use of a (quantitative) structure-activity relationship [(Q)SAR] 

model to predict the toxicity of naphthenic acids. J. Tox. Env. Health A 73: 319-329 



References 

127 
 

Freitag D. et al. (1994) Structural configuration and toxicity of chlorinated alkanes. 

Chemosphere 28: 253-259 

 

Frisvad J.C. et al. (2006) Important mycotoxins and the fungi which produce them. Adv. 

Exp. Med. Biol. 571: 3-31 

 

Froehner K. et al. (2000) Bioassays with Vibrio fischeri for the assessment of delayed 

toxicity. Chemosphere 40: 821-828 

 

Futran Fuhrman V. et al. (2015) Why endocrine disrupting chemicals (EDCs) challenge 

traditional risk assessment and how to respond. J. Hazard Mater. 286: 589-611 

 

Gälli R. et al. (1994) Toxicity of organophosphate insecticides and their metabolites to 

the water flea Daphnia magna, the Microtox test and an acetylcholinesterase inhibition 

test. Aquat. Toxicol. 30: 259-269 

 

Gallo M.A. (2001) History and scope of toxicology. In: Klaassen C.D. (editor). Casarett 

and Doull’s toxicology - the basic science of poisons (6th edition). McGraw-Hill, New 

York, USA, pp. 15-20 

 

Garcia M.T. et al. (2001) Fate and effect of monoalkyl quaternary ammonium surfactants 

in the aquatic environment. Environ. Pollut. 111: 169-175 

 

Garcia M.T. et al. (2005) Biodegradable ionic liquids (Part II). Effect of the anion and 

toxicology. Green Chem. 7: 9-14 

 

Garcia M.T. et al. (2008) Fate and effects of amphoteric surfactants in the aquatic 

environment. Environ. Int. 34: 1001-1005 

 

Gaspar R. et al. (2012) Towards a European strategy for medicines research (2014-2020): 

the EUFEPS position paper on Horizon 2020. Eur. J. Pharm. Sci. 47: 979-987 

 

Gavaghan C.L. et al. (2007) Development, interpretation and temporal evaluation of a 

global QSAR of hERG electrophysiology screening data. J. Comput.-Aided Mol. Des. 21: 

189-206 

 

Gocht T. and Schwarz M. (2014) Introduction. In: Gocht T. and Schwarz M. (editors). 

SEURAT-1: towards the replacement of in vivo repeated dose systemic toxicity testing, 

Vol. 4. European Commission for Research & Innovation, Imprimerie Mouzet, France, 

Paris, pp. 23-30 

 

Gottmann E. et al. (2001) Data quality in predictive toxicology: reproducibility of rodent 

carcinogenicity experiments. Environ. Health Perspect. 109: 509-514 

 



References 

128 
 

Groh K.J. et al. (2015) Development and application of the adverse outcome pathway 

framework for understanding and predicting chronic toxicity: I. Challenges and research 

needs in ecotoxicology. Chemosphere 120: 764-777 

 

Gutsell S. and Russell P. (2013) The role of chemistry in developing understanding of 

adverse outcome pathways and their application in risk assessment. Toxicol. Res. 2: 299-

307 

 

Hartung T. et al. (2013) Food for thought … integrated testing strategies for safety 

assessments. Altex 30: 3-18 

 

Hermens J. et al. (2005) Quantitative structure-activity relationships and mixture toxicity 

or organic chemicals in Photobacterium phosphoreum: the Microtox test. Ecotoxicol. 

Environ. Saf. 9: 17-25 

 

Hewitt M. et al. (2013) In silico prediction of liver toxicity: chemical category formation, 

structural alert development and mechanism of action elucidation. Crit. Rev. Toxicol. 43: 

537-58 

 

Holdway D.A. et al. (1991) The acute toxicity of pulse-dosed, para-substituted phenols to 

larval American flagfish (Jordanella floridae): a comparison with toxicity to 

photoluminescent bacteria and predicted toxicity using log KOW. Sci. Total Environ. 104: 

229-237 

 

Hrovat M. et al. (2009) Variability of in vivo fish acute toxicity data. Regul. Toxicol. 

Pharm. 54: 294-300 

 

Hughes M.F. and Edwards B.C. (2010) In vitro dermal absorption of pyrethroid 

pesticides in human and rat skin. Toxicol. Appl. Pharm. 246: 29-37 

 

IDEAconsult (2013) Toxtree v.2.5.0, http://www.ideaconsult.net/web/ngn/blogs/-/blogs/ 

new-toxtree-2-5-0-release (accessed 13.06.2013) 

 

IDEAconsult (2014a) Toxtree v2.6.6. http://toxtree.sourceforge.net/ (accessed 03.12.2014) 

 

IDEAconsult (2014b) Toxmatch v1.07 https://eurl-ecvam.jrc.ec.europa.eu/laboratories-

research/predictive_toxicology/qsar_tools/toxmatch / (accessed 11.07.2014) 

 

Jennings V.L.K. et al. (2001) Assessing chemical toxicity with the bioluminescent 

photobacterium (Vibrio fischeri): A comparison of three commercial systems. Water Res. 

35: 3448-3456 

 

Johnson M.E. et al. (1995) Permeation of steroids through human skin. J. Pharm. Sci. 84: 

1144-1146 



References 

129 
 

Johnson A.T. et al. (1999) Chandraratna. High affinity retinoic acid receptor antagonists: 

analogs of AGN 193109. Bioorg. Med. Chem. Lett. 9: 573-576 

 

Kahru A. (1993) In vitro toxicity testing using marine luminescent bacteria 

Photobacterium phosphoreum: the BiotoxTM test. ATLA-Altern. Lab. Anim. 21: 210-215 

 

Kaiser K.L.E. and Palabrica V.S. (1991) Photobacterium phosphoreum toxicity data 

index. Water Poll. Res. J. Can. 21: 361-431 

 

Kersten S. et al. (2000) Roles of PPARs in health and disease. Nature 405 (2000), 421-

424 

 

Khajeha A. and Modarress H. (2014) Linear and nonlinear quantitative structure-property 

relationship modelling of skin permeability. SAR QSAR Environ. Res. 25: 35-50 

 

King E.F. and Painter A.H. (1981) Assessment of toxicity of chemicals to activated 

sludge microorganisms. Acute Aquatic Ecotoxicological Tests, INSERM 10, 143-153 

 

Klaholz B.P. et al. (2000) Structural basis for isotype selecitivity of the human retinoic 

acid nuclear receptor. J. Mol. Biol. 302: 155-170 

 

Klimisch H.-J. et al. (1997) A systematic approach for evaluating the quality of 

experimental toxicological and ecotoxicological data. Regul. Toxicol. Pharmcol. 25: 1-5 

 

KNIME (2013) Newsletter, September 2013. http://www.knime.com/files/knime 

newsletter_vol3no3_2013.pdf  (accessed 08.08.2014) 

 

KNIME (2014) Version 2.7. http://www.knime.org/ (accessed 13.01.2014) 

 

KNIME (2015) Version 2.10. http://www.knime.org/ (accessed 27.01.2015) 

 

Kolšek K. et al. (2014) Endocrine disruptome - an open source prediction tool for 

assessing endocrine disruption potential through nuclear receptor binding. J. Chem. Inf. 

Model. 54: 1254-1267 

 

Könemann H. (1981) Quantitative structure-activity relationships in fish toxicity studies. 

Part 1: relationship for 50 industrial pollutants. Toxicology 19: 209-221 

 

Lewis R.W. et al. (2002) Recognition of adverse and nonadverse effects in toxicity 

studies. Toxicol. Pathol. 30: 66–74 

 

Leyden J.J. et al. (2005) Topical retinoids in inflammatory acne: a retrospective, 

investigator-blinded, vehicle-controlled, photographic assessment. Clin. Ther. 27: 216-

224 



References 

130 
 

Lin Z. et al. (2005) A simple hydrophobicity-based approach to predict the toxicity of 

unknown organic micropollutant mixtures in marine water. Mar. Pollut. Bull. 50 (2005), 

617-623 

 

Lipinski C.A. et al. (2001) Experimental and computational approaches to estimate 

solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. 

Rev. 46:  3-26 

 

Lipnick R.L. et al. (1987) A QSAR study of the acute toxicity of some industrial organic 

chemicals to goldfish. Narcosis, electrophile and proelectrophile mechanisms. 

Xenobiotica 17: 1011-1025 

 

Liu Z. et al. (2014a) Complexity of the RAR-mediated transcriptional regulatory 

programs. Subcell. Biochem. 70: 203-225 

 

Liu X. et al. (2014b) Activation of farnesoid X receptor (FXR) protects against fructose-

induced liver steatosis via inflammatory inhibition and ADRP reduction. Biochem. 

Biophys. Res. Commun. 450: 117-123 

 

Livingstone D.J. (2004) Building QSAR models: a practical guide. In: Cronin M.T.D. 

and Livingstone D.J. (editors). Predicting chemical toxicity and environmental fate. CRC 

Press, Boca Raton, Florida, USA, pp. 161-164 

 

Lush (2015) http://www.lushprize.org/ (accessed 19.03.2015) 

 

Madden J.C. et al. (2012) Strategies for the optimisation of in vivo experiments in 

accordance with the 3Rs philosophy. Regul. Toxicol. Pharmacol. 63: 140-154 

 

Maglich J.M. et al. (2001) Comparison of complete nuclear receptor sets from the human, 

Caenorhabditis elegans and Drosophila genomes. Genome Biol. 2: research0029.1-

0029.7 

 

Magnusson B.M et al. (2004) Molecular size as the main determinant of solute maximum 

flux across the skin. J. Invest. Dermatol. 122: 993-999 

 

Marks R. et al. (1985) The effects of a shampoo containing zinc pyrithione on the control 

of dandruff. Br. J. Dermatol. 112: 415-22 

 

Martin T.M. et al. (2015) Comparison of global and mode of action-based models for 

aquatic toxicity. SAR QSAR Environ. Res. 26: 245-262 

 

McFeters G.A. et al. (1983) A comparison of microbial bioassays for the detection of 

aquatic toxicants. Water Res. 17: 1757-1762 

 



References 

131 
 

McLean M. and Dutton M.F. (1995) Cellular interactions and metabolism of aflatoxin: an 

update. Pharmac. Ther. 65: 163-192 

 

Mellor C.L. et al. (2015) The identification of nuclear receptors associated with hepatic 

steatosis to develop and extend Adverse Outcome Pathways. Crit. Rev. Toxicol. (early 

online: 1-15) 

 

Mennear J.H. et al. (1982) Studies on the carcinogenicity of pentachloroethane in rats and 

mice. Fund. Appl. Toxicol. 2: 82-87 

 

Mennecozzi M. et al. (2012) Hepatotoxicity screening taking a mode-of-action approach 

using HepaRG cells and HCA. Altex Proc. 1: 193-204 

 

Merrill R.A. (2001) Regulatory toxicology. In: Klaassen C.D. (editor). Casarett and 

Doull’s toxicology - the basic science of poisons (6th edition). McGraw-Hill, New York, 

USA, pp. 759-767 

 

Minitab (2013) Version 16.2.2.0. http://www.minitab.com 

 

Minucci S. et al. (1997) Retinoid X receptor (RXR) within the RXR-retinoic acid 

receptor heterodimer binds its ligand and enhances retinoid-dependent gene expression. 

Mol. Cell. Biol. 17: 644-655 

 

Mitragotri S. et al. (2011) Mathematical models of skin permeability: an overview. Int. J. 

Pharm. 418: 115-129 

 

MOE (2013) Version 2011.10, http://www.chemcomp.com/MOE-Molecular_Modeling_ 

and_Simulations.htm (accessed 27.09.2013) 

 

Molecular Graphics Laboratory (2014) http://www.autodock.scripps.edu (accessed 

07.07.2014) 

 

Morgan J.P. and Penovich P. (1978) Jamaica ginger paralysis. Forty-seven-year follow-

up. Arch. Neurol. 35: 530-532 

 

Mortimer M. et al. (2008) High throughput kinetic Vibrio fischeri bioluminescence 

inhibition assay for study of toxic effects of nanoparticles. Toxicol. In Vitro 22: 1412-

1417 

 

Moss G.P. and Cronin M.T.D. (2002) Quantitative structure-permeability relationships 

for percutaneous absorption: re-analysis of steroid data. Int. J. Pharm. 238: 105-109  

 



References 

132 
 

Moya M. et al. (2010) Enhanced steatosis by nuclear receptor ligands: a study in cultured 

human hepatocytes and hepatoma cells with a characterized nuclear receptor expression 

profile. Chem. Biol. Interact. 184: 376-387 

 

Munro I.C. et al. (1996) Correlation of structural class with No-Observed-Effect Levels: 

a proposal for establishing a threshold of concern. Fd. Chem. Toxicol. 34: 829-867 

 

Nacci D. et al. (1986) Comparative evaluation of three rapid marine toxicity tests: sea 

urchin early embryo growth test, sea urchin sperm cell toxicity test and Microtox. 

Environ. Toxicol. Chem. 5: 521-525 

 

Nelms M.D. et al. (2015) Proposal of an in silico profiler for categorisation of repeat dose 

toxicity of hair dyes. Arch. Toxicol. 89: 733-741 

 

Nendza M. et al. (2010) Data quality assessment for in silico methods: A survey of 

approaches and needs. In: Cronin M.T.D. and Madden J.C. (editors). In silico toxicology: 

Principles and applications (1st edition). RSC Publishing, Cambridge, UK, pp. 59-69 

 

Nettles K.W. et al. (2007) Structure plasticity in the oestrogen receptor ligand-binding 

domain. EMBO reports 8: 563-568 

 

Newby D. et al. (2015) Decision trees to characterise the roles of permeability and 

solubility on the prediction of oral absorption. Eur. J. Med. Chem. 90: 751-765 

 

NIH (2014) ChemIDplus, US National Institutes of Health. http://chem.sis.nlm.nih.gov/ 

chemidplus (accessed 01.09.2014) 

 

NIH (2015) TOXNET, US National Institutes of Health. http://toxnet.nlm.nih.gov/ 

(accessed 20.02.2015) 

 

Norlen H. et al. (2014) A tutorial for analysing the cost-effectiveness of alternative 

methods for assessing chemical toxicity: the case of acute oral toxicity prediction. Altern. 

Lab. Anim. 42: 115-127 

 

OECD (2003) Organisation for Economic Co-operation and Development, description of 

selected key generic terms used in chemical hazard/risk assessment. http://www.oecd-

ilibrary.org/environment/descriptions-of-selected-key-generic-terms-used-in-chemical-

hazard-risk-assessment_9789264079120-en (accessed 17.05.2013) 

 

OECD (2012a) Organisation for Economic Co-operation and Development, guideline for 

the testing of chemicals - acute eye irritation/corrosion 405. http://iccvam.niehs. 

nih.gov/SuppDocs/FedDocs/OECD/OECD-TG405-2012-508.pdf (accessed 06.06.2015) 

 



References 

133 
 

OECD (2012b) Organisation for Economic Co-operation and Development, collection of 

working definitions, appendix 1. http://www.oecd.org/chemicalsafety/testing/4996 

3576.pdf (accessed 03.08.2014) 

 

OECD (2014) Organisation for Economic Co-operation and Development, guidance on 

grouping of chemicals, 2nd edition. http://www.oecd.org/officialdocuments/publicdisplay 

documentpdf/?cote=env/jm/mono%282014%294&doclanguage=en (accessed 03.08.2014) 

 

OECD (2015) Organisation for Economic Co-operation and Development, eChemPortal. 

http://www.echemportal.org/ (accessed 20.02.2015) 

 

Ognichenko L.N. et al. (2012) QSPR prediction of lipophilicity for organic compounds 

using random forest technique on the basis of simplex representation of molecular 

structure. Mol. Inform. 31: 273-280 

 

OpenBabel (2013) Version 2.3.2. http://openbabel.org/wiki/Main_Page (accessed 

16.04.2013) 

 

Palczewska A. et al. (2013) Interpreting random forest models using a feature 

contribution method. Information Reuse and Integration (IRI), IEEE 14th International 

Conference: 112-119 

 

Parvez S. et al. (2008) Toxicity assessment of organic pollutants: reliability of 

bioluminescence inhibition assay and univariate QSAR models using freshly prepared 

Vibrio fischeri. Toxicol. Vitro 22: 1806-1813 

 

Patel V. and Sanyal A.J. (2013) Drug-induced steatohepatitis. Clin. Liver Dis. 17: 533-

546 

 

Patlewicz G. et al. (2013) Use of category approaches, read-across and (Q)SAR: General 

considerations. Regul. Toxicol. Pharmacol. 67: 1-12 

 

Patlewicz G. et al. (2014) Read-across approaches - misconceptions, promises and 

challenges ahead. Altex 31: 387-396 

 

PDB (2014) Protein Data Bank. http://www.rcsb.org/pdb/home/home.do (accessed 

07.07.2014) 

 

PDB (2015) Protein Data Bank. http://www.rcsb.org/pdb/home/home.do (accessed 

13.8.2015) 

 

PDSP (2015) Psychoactive Drug Screening Program. http://pdsp.med.unc.edu/pdsp.php 

(accessed 11.02.2015) 

 



References 

134 
 

Pérez E. et al. (2012) Modulation of RXR function through ligand design. Biochim. 

Biophys. Acta 1821: 57-69 

 

Péry A.R.R. et al. (2013) Perspectives for integrating human and environmental risk 

assessment and synergies with socio-economic analysis. Sci. Total Environ. 456-457: 

307-316 

 

PETA (2015) People for the Ethical Treatment of Animals. http://www.peta.org.uk/ 

features/new-cosmetics-law/ (accessed 19.03.2015) 

 

Potts R.O. and Guy R.H. (1992) Predicting skin permeability. Pharm. Res. 9 (1992), 663-

669 

 

Przybylak K.R. and Cronin M.T.D. (2012) In silico models for drug-induced liver injury 

– current status. Expert Opin. Drug Metab. Toxicol. 8: 201–217 

 

Przybylak K.R. et al. (2012) Assessing toxicological data quality: Basic principles, 

existing schemes and current limitations. SAR QSAR Environ. Res. 23: 435-459 

 

Pugh W.J. et al. (2000) Epidermal permeability-penetrant structure relationships: 4, 

QSAR of permeant diffusion across human stratum corneum in terms of molecular 

weight, H-bonding and electronic charge. Int. J. Pharm. 197: 203-211 

 

PyMOL (2014) Version 1.3. http://www.pymol.org (accessed 07.07.2014) 

 

R (2014) The R Project, R Studio 0.98.501.19. http://www.r-project.org/ (accessed 

20.08.2014) 

 

Rang H.P. et al. (2007a) Rang and Dales’s pharmacology (6th edition). Churchill 

Livingstone, Edinburgh, UK, pp. 98-112 

 

Rang H.P. et al. (2007b) Rang and Dales’s pharmacology (6th edition). Churchill 

Livingstone, Edinburgh, UK, pp. 781-786 

 

Ravenzwaay B. van and Leibold E. (2004) A comparison between in vitro rat and human 

and in vivo rat skin absorption studies. Hum. Exp. Toxicol. 23: 421-430 

 

Ribo J.M. and Kaiser K.L.E. (1984) Toxicities of aniline derivatives to Photobacterium 

phosphoreum and their correlations with effects to other organisms and structural 

parameters. In: Kaiser K.L.E. (editor). QSAR in environmental toxicology (1st edition). D. 

Reidel Publishing Company, Dordrecht, Netherlands, pp. 319-336 

 



References 

135 
 

Richarz A.-N. et al. (2013) In silico workflows for toxicity prediction implemented into 

KNIME. Abstract of the 49th congress of the European Societies of Toxicology 

(EUROTOX), Toxicol. Lett. 221, pp. 81 

 

Richarz A.-N. et al. (2014) COSMOS: integrated in silico models for the prediction of 

human repeated dose toxicity of COSMetics to Optimise Safety. In: Gocht T. and 

Schwarz M. (editors). SEURAT-1: towards the replacement of in vivo repeated dose 

systemic toxicity testing, Vol. 4. European Commission for Research & Innovation, 

Imprimerie Mouzet, Paris, France, pp. 186-209 

 

Richet C.M. (1893) Note sur le rapport entre la toxicité et les propriétés physiques des 

corps. Compt. Rend. Soc. Biol. 45: 775-776 

 

Roberts D.W. and Williams D.L. (1982) The derivation of quantitative correlations 

between skin sensitisation and physico-chemical parameters for alkylating agents and 

their application to experimental data for sultones. J. Theor. Biol. 99: 807-825 

 

Roberts D.W. (2015) Estimating skin sensitization potency from a single dose LLNA. 

Regul. Toxicol. Pharm. 71: 437-443 

 

Rowe P.H. (2007) Essential statistics for the pharmaceutical sciences. John Wiley & Sons, 

Chichester, UK, pp. 13-20 

 

RSC (2014) Royal Society of Chemistry, ChemSpider. http//:www.chemspider.com/ 

(accessed 08.08.2014) 

 

Russell W.M.S. and Burch R.L. (1959) The Principles of humane experimental technique. 

Methuen, London, UK, pp. 1-238 

 

Ruusmann V. and Maran U. (2013) From data point timelines to a well curated data set, 

data mining of experimental data and chemical structure data from scientific articles, 

problems and possible solutions. J. Comput. Aided Mol. Des. 27: 583-603 

 

Sahini N. and Borlak J. (2014) Recent insights into the molecular pathophysiology of 

lipid droplet formation in hepatocytes. Prog. Lipid Res. 54: 86-112 

 

Samaras E.G. et al. (2012) The effect of formulations and experimental conditions on in 

vitro human skin permeation - data from updated EDETOX database. Int. J. Pharm. 434: 

280-291 

 

Saubern S. et al. (2011) KNIME Workflow to assess PAINS filters in SMARTS format. 

Comparison of RDKit and Indigo cheminformatics libraries. Mol. Inform. 30: 847-850 

 



References 

136 
 

SCCS, 2012. The SCCS’s notes of guidance for the testing of cosmetic substances and 

their safety evaluation - 8th revision (SCCS/1501/12), http//:ec.europa.eu/health/ 

scientific_committees/consumer_safety/docs/sccs_s_006.pdf (accessed 27.07.2015) 

 

Schattenberg J.M. and Schuppan D. (2011) Nonalcoholic steatohepatitis: the therapeutic 

challenge of a global epidemic. Curr. Opin. Lipidol. 22: 479-488 

 

Scheuplein R.J. and Blank I.H. (1971) Permeability of the skin. Physiol. Rev. 51: 702-747 

 

Schiewe M.H. et al. (1985) Use of a bacterial bioluminescence assay to assess toxicity of 

contaminated marine sediments. Can. J. Fish Aquat. Sci. 42: 1244-1248 

 

Schinke C. et al. (2010) Design and synthesis of novel derivatives of all-trans retinoic 

acid demonstrate the combined importance of acid moiety and conjugated double bonds 

in its binding to PML-RAR-α oncogene in acute promyelocytic leukemia. Leuk. 

Lymphoma 51: 1108-1114 

 

Schultz T.W. et al. (1997) Identification of mechanisms of toxic action of phenols to 

Tetrahymena pyriformis from molecular descriptors. In: Chen F. and Schüürmann G. 

(editors). Quantitative structure-activity relationships in environmental sciences - VII (1st 

edition).  SETAC Press, Pensacola, USA, pp. 329.342 

 

Schultz T.W. et al. (2000) Role of LXRs in control of lipogenesis. Genes Dev. 14: 2831-

2838 

 

Schultz T.W. et al. (2015) A strategy for structuring and reporting read-across prediction 

of toxicity. Regul. Toxicol. Pharmacol. 72: 586-601 

 

SEURAT-1 (2015) Safety Evaluation Ultimately Replacing Animal Testing. http//:www. 

seurat-1.eu/ (accessed 20.03.2015) 

 

Shalita A.R. (1988) Lipid and teratogenic effects of retinoids. J. Am. Acad. Dermatol. 19: 

197-198 

 

Sonoda J. et al. (2008) Nuclear receptors: decoding metabolic disease. FEBS Lett. 582: 2-

9 

 

Speece R. (1987) Drexel University, Pittsburgh, PA, private communication (refer to 

Kaiser and Palabrica, 1991) 

 

Steinmetz F.P. et al. (2014) Methods for assigning confidence to toxicity data with 

multiple values - identifying experimental outliers. Sci. Total Environ. 482-483: 358-365 

 



References 

137 
 

Steinmetz F.P. et al. (2015a) Screening chemicals for receptor-mediated toxicological 

and pharmacological endpoints: using public data to build screening tools within a 

KNIME workflow. Mol. Inf. 34: 171-178 

 

Steinmetz F.P. et al. (2015b) Data quality in the human and environmental health 

sciences: using statistical confidence scoring to improve QSAR/QSPR modeling. J. Chem. 

Inf. Model. 55: 1739-1746 

 

Surapaneni P. et al. (2011) Valvular heart disease with the use of fenfluramine-

phentermine. Tex. Heart. Inst. J. 38: 581-583 

 

Sushko I. et al. (2012) ToxAlerts: a web server of structural alerts for toxic chemicals and 

compounds with potential adverse reactions. J. Chem. Inf. Model. 52: 2310-2316 

 

Sütterlin H. et al. (2008) The toxicity of the quaternary ammonium compound 

benzalkonium chloride alone and in mixtures with other anionic compounds to bacteria in 

test systems with Vibrio fischeri and Pseudomonas putida. Ecotox. Environ. Saf. 71: 498-

505 

 

ten Berge W. (2014) Homepage of Wil ten Berge. http://home.wxs.nl/~wtberge/skin 

perm2013a.zip (accessed 01.03.2014) 

 

Thumm W. et al. (1992) Toxicity tests with luminescent photobacterium and quantitative 

structure activity relationships for nitroparaffins. Chemosphere 24: 1835-1843 

 

Tollefsen K.E. et al. (2014) Applying Adverse Outcome Pathways (AOPs) to support 

Integrated Approaches to Testing and Assessment (IATA). Regul. Toxicol. Pharmacol. 

70: 629-640 

 

Tralau T. et al. (2015) Regulatory toxicology in the twenty-first century: challenges, 

perspectives and possible solutions. Arch. Toxicol. 89: 823-850 

 

van Wezel A.P. and Opperhuizen H. (1995) Narcosis due to environmental pollutants in 

aquatic organisms: residue-based toxicity, mechanisms, and membrane burdens. Crit. Rev. 

Toxicol. 25: 255-279 

 

Vaz B. and de Lera Á.R. (2012) Advances in drug design with RXR modulators. Expert 

Opin. Drug Discov. 7: 1003-1016 

 

Verhaar H.J.M. et al. (1992) Classifying environmental pollutants. 1: structure-activity 

relationships for prediction of aquatic toxicity. Chemosphere 25: 471-491 

 



References 

138 
 

Verhaar H.J.M. et al. (1996) Classifying environmental pollutants 2: Separation of class 1 

(baseline toxicity) and class 2 (polar narcosis) based on chemical descriptors. J. 

Chemometr. 10: 149-162 

 

Verhaar H.J.M. et al. (2000) Classifying environmental pollutants: Part 3. External 

validation of the classification system. Chemosphere 40: 875-883 

 

Vighi M. et al. (2009) Toxicity on the luminescent bacterium Vibrio fischeri (Beijerinck). 

I: QSAR equation for narcotics and polar narcotics. Ecotox. Environ. Saf. 72: 154-161 

 

Vinardell M.P. (2015) The use of non-animal alternatives in the safety evaluations of 

cosmetics ingredients by the Scientific Committee on Consumer Safety (SCCS). Regul. 

Toxicol. Pharmacol. 71: 198-204 

 

Vinken M. et al. (2013) Development of an adverse outcome pathway from drug-

mediated bile salt export pump inhibition to cholestatic liver injury. Toxicol. Sci. 136: 97-

106 

 

Vinken M. (2013) The adverse outcome pathway concept: a pragmatic tool in toxicology. 

Toxicology 312: 158-165 

 

Vinken M. (2015) Adverse Outcome Pathways and Drug-Induced Liver Injury testing. 

Chem. Res. Toxicol. 28: 1391-1397 

 

Wang H. and LeCluyse E.L. (2003) Role of Orphan nuclear receptors in the regulation of 

drug metabolising enzymes. Clin. Pharmacokinet. 42: 1331-1357 

 

Wang N. et al. (2002) Constitutive activation of peroxisome proliferator-activated 

receptor-gamma suppresses pro-inflammatory adhesion molecules in human vascular 

endothelial cells. J. Biol. Chem. 277: 34176-34181 

 

Wehner F.C. et al. (1978) Mutagenicity to Salmonella typhimurium of some Aspergillus 

and Penicillium mycotoxins. Mutat. Res. 58 (1978), 193-203 

 

Wenlock M.C. and Carlsson L.A. (2015) How experimental errors influence drug 

metabolism and pharmacokinetic QSAR/QSPR models. J. Chem. Inf. Model. 55: 125-134 

 

Wu Y. and Zhang Y. (2013) Analytical chemistry, toxicology, epidemiology and health 

impact assessment of melamine in infant formula: recent progress and developments. Fd. 

Chem. Toxicol. 56: 325-335 

 

Yamada T. et al. (2013) A category approach to predicting the repeated-dose 

hepatotoxicity of allyl esters. Regul. Toxicol. Pharmacol. 65: 189-195 

 



References 

139 
 

Yang L. et al. (2013) Towards a fuzzy expert system on toxicological data quality 

assessment. Mol. Inform. 32: 65-78 

 

Yates I.E. and Porter J.K. (1982) Bacterial bioluminescence as a bioassy for mycotoxins. 

Appl. Environ. Microbiol. 44: 1072-1075 

 

Zhao Y.H. et al. (1998a) QSAR study of the toxicity of benzoic acids to Vibrio fischeri, 

Daphnia magna and carp. Sci. Total Environ. 216: 205-215 

 

Zhao Y.H. et al. (1998b) Quantitative structure-activity relationships of chemicals acting 

by non-polar narcosis - theoretical considerations. Quant. Struct.-Act. Relat. 17: 131-138 

 

Zhu H. et al. (2014) Big data in chemical toxicity research: the use of High-Throughput 

Screening assays to identify potential toxicants. Chem. Res. Toxicol. 27: 1643-1651 

 

Ziehl T.A. and A. Schmitt (2000) Sediment quality assessment of flowing waters in 

South-West Germany using acute and chronic bioassays. Aquat. Ecosys. Health Manage. 

3: 347-357 



Appendices 

140 
 

10. Appendices 

The appendices contain data tables (A), rules and SMARTS patterns (B), codes and 

workflows (C) and published works (D). Except the published works, i.e. relevant 

authored and co-authored articles and abstracts in appendix D, the appendix is not paper-

based. However, all appendices can be found in the attached USB card.  

 

A    Data tables 

All datasets used in these studies are available on the USB card attached to this thesis. 

 

A.1 Microtox dataset (including exposure comparison) 

(refer to attached USB card) 

 

A.2 Microtox and skin permeability dataset (including statistical equations) 

(refer to attached USB card) 

 

A.3 Dermal absorption dataset 

(refer to attached USB card) 

 

A.4 RAR ligand dataset 

(refer to attached USB card) 

 

A.5 NR ligand dataset (including RAR/RXR, PPAR, LXR and FXR) 

(refer to attached USB card) 
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B    Rules and SMARTS patterns 

All rules and SMARTS patterns used in these studies are available electronicallly. 

 

B.1 Hepatotoxicity structural alerts “Hewitt & Steinmetz” 

(refer to attached USB card) 

 

B.2 Rules for RAR ligand screening 

(refer to attached USB card) 

 

B.3 Rules for NR ligand screening (RAR/RXR, PPAR, LXR and FXR) 

(refer to attached USB card) 
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C    Codes and workflows 

All codes and workflows used in these studies are available electronically. 

 

C.1  KNIME workflow for RAR ligand screening 

(refer to attached USB card) 

 

C.2  R-code for RMSECS (10-fold crossvalidation for CS-weighted multivariate 

linear regression) 

(refer to attached USB card) 
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D    Published Works 

All relevant articles and conference abstracts published within this PhD as main author 

(or co-author with significant contribution) are presented on the following pages. 

 

D.1  Steinmetz et al. Sci. Total Environ. 482 (2014), 358-365 

 

D.2  Steinmetz et al. Mol. Inform. 34 (2015), 171-178 

 

D.3  Steinmetz et al. J. Chem. Inf. Model. 55 (2015), 1739-1746 

 

D.4  Mellor et al. Toxicology Letters 229 (2014), 162 

 

D.5  Cronin et al. Altex Proceedings 1/14 (2014), 69 

 

D.6  Cronin et al. Toxicology Letters S238 (2015), 166 

 

D.7  Steinmetz et al. Toxicology Letters S238 (2015), 166 

 

D.8  Richarz et al. Toxicology Letters S238 (2015), 166 

 

D.9  Richarz et al. Toxicology Letters S238 (2015), 170 

 

D.10 Tsakovska et al. Toxicology Letters S238 (2015), 173 

 

D.11 Mellor et al. (2015) Crit. Rev. Toxicol. (early online: 1-15)  

 

 

 


