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ABSTRACT
Subhalo abundance matching (SHAM) is a widely used method to connect galaxies with
dark matter structures in numerical simulations. SHAM predictions agree remarkably well
with observations, yet they still lack strong theoretical support. We examine the performance,
implementation, and assumptions of SHAM using the ‘Evolution and Assembly of Galaxies
and their Environment’ (EAGLE) project simulations. We find that Vrelax, the highest value
of the circular velocity attained by a subhalo while it satisfies a relaxation criterion, is the
subhalo property that correlates most strongly with galaxy stellar mass (Mstar). Using this
parameter in SHAM, we retrieve the real-space clustering of EAGLE to within our statistical
uncertainties on scales greater than 2 Mpc for galaxies with 8.77 < log10(Mstar[M�]) < 10.77.
Conversely, clustering is overestimated by 30 per cent on scales below 2 Mpc for galaxies with
8.77 < log10(Mstar[M�]) < 9.77 because SHAM slightly overpredicts the fraction of satellites
in massive haloes compared to EAGLE. The agreement is even better in redshift space, where
the clustering is recovered to within our statistical uncertainties for all masses and separations.
Additionally, we analyse the dependence of galaxy clustering on properties other than halo
mass, i.e. the assembly bias. We demonstrate assembly bias alters the clustering in EAGLE
by 20 per cent and Vrelax captures its effect to within 15 per cent. We trace small differences
in the clustering to the failure of SHAM as typically implemented, i.e. the Mstar assigned to a
subhalo does not depend on (i) its host halo mass, (ii) whether it is a central or a satellite. In
EAGLE, we find that these assumptions are not completely satisfied.

Key words: galaxies: evolution – galaxies: formation – galaxies: haloes – dark matter – large-
scale structure of Universe.

1 IN T RO D U C T I O N

The clustering of galaxies offers an excellent window to explore
galaxy formation processes and the fundamental properties of our
Universe. On small scales, correlation functions can inform us about
the way in which galaxies populate dark matter (DM) haloes and
thus about the efficiency of star formation and the importance of
environmental effects. On large scales, the clustering of galaxies
can be used to constrain cosmological parameters and the law of
gravity. On even larger scales, the observed distribution of galaxies
is sensitive to the physics of inflation and relativistic effects. By
using correlation functions of different orders and at distinct scales,
degeneracies among several parameters can be broken, providing
even tighter constrains on all the aforementioned quantities.

� E-mail: jchaves@cefca.es
†Royal Society University Research Fellow.

To extract the information encoded in the clustering of galaxies,
we need accurate predictions for a given cosmological scenario and
galaxy formation model. However, obtaining the correct galaxy dis-
tribution is a difficult task, especially at small scales where besides
highly non-linear dynamics, gravitational collapse, mergers, dy-
namical friction, and tidal stripping; baryonic processes such as star
formation, feedback, and ram pressure are at play. Consequently,
one needs to resort to numerical simulations to obtain accurate pre-
dictions for galaxy clustering (see Kuhlen, Vogelsberger & Angulo
2012, for a review).

Two types of approach can be followed. The first is to simulate
the joint evolution of DM and baryons by solving the Poisson and
Euler equations coupled with recipes for unresolved physical pro-
cesses (e.g. star and black hole formation). Although this approach
currently yields the most direct predictions for the distribution of
galaxies, it is computationally infeasible to simulate large cosmo-
logical volumes with adequate resolution for calculating accurately
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the galaxy clustering on scales of the order of 100 h−1 Mpc. In addi-
tion, simulations have only recently begun to produce populations
of realistic galaxies (Vogelsberger et al. 2014; Schaye et al. 2015).

The second approach is to simulate only gravitational interactions
and to predict the galaxy clustering a posteriori. This is justified by
leading theories of galaxy formation, where DM plays the domi-
nant role in determining the places where galaxies form and merge.
Gravity-only simulations (a.k.a. DM-only simulations) are com-
putationally less expensive and can thus follow sufficiently large
volumes to enable the correct interpretation of observational sur-
veys. This is an important advantage since, for instance, to model
galaxy clustering on scales beyond 100 h−1 Mpc, it is necessary to
perform N-body simulations of volumes in excess of 1 h−3 Gpc3

(Angulo et al. 2008). The disadvantage is that the predictions for
galaxy clustering are more uncertain because the relation between
galaxies and DM haloes is not straightforward.

Subhalo abundance matching (SHAM; e.g. Vale & Ostriker 2004;
Conroy, Wechsler & Kravtsov 2006; Shankar et al. 2006) is a widely
used method to populate gravity-only simulations with galaxies.
The original version of SHAM assumes an injective and monotonic
relation between galaxies and self-bound DM structures based on
a set of specified properties. SHAM usually links galaxies to DM
structures using stellar mass as galaxy property and a measure of
subhalo mass, such as circular velocity, as subhalo property. More
recent implementations introduce stochasticity into the relation to
make the model more realistic (e.g. Behroozi, Conroy & Wechsler
2010; Trujillo-Gomez et al. 2011; Reddick et al. 2013; Zentner,
Hearin & van den Bosch 2014). Then, SHAM places each galaxy
at the centre-of-potential (COP) of its corresponding subhalo and
assumes that each galaxy has the same velocity as the centre-of-
mass of its linked subhalo. SHAM thus makes predictions for the
clustering of galaxies, but not for any physical properties such as
stellar mass, star formation rate, metallicity, etc.

SHAM predictions have been shown to agree remarkably well
with observations (e.g. Conroy et al. 2006; Behroozi et al. 2010;
Guo et al. 2010; Moster et al. 2010; Wetzel & White 2010; Trujillo-
Gomez et al. 2011; Watson, Berlind & Zentner 2012; Nuza et al.
2013; Reddick et al. 2013). For instance, Conroy et al. (2006)
showed that SHAM reproduces the observed galaxy clustering over
a broad redshift interval (0 < z < 5). More recently, Reddick et al.
(2013) achieved a simultaneous fit to the clustering and the con-
ditional stellar mass function measured in the Sloan Digital Sky
Survey. Simha & Cole (2013) even used this model to constrain
cosmological parameters, finding values in good agreement with
those obtained from more established methods.

Despite these successes, the comparison with simulations of
galaxy formation has not been so encouraging. Weinberg et al.
(2008) found that the galaxy clustering predicted by SHAM only
agrees with that of a hydrodynamical simulation beyond 1 h−1 Mpc.
On smaller scales, the differences were of the order of a few. Simha
et al. (2012) extended the previous study using two hydrodynamic
simulations with different feedback models. They found that the
clustering predicted by SHAM exceeded that of their most realistic
simulation by more than a factor of 2 on scales below 0.5 h−1 Mpc.
Finally, in a direct comparison with two semi-analytic models of
galaxy formation, Contreras et al. (2015) found that SHAM per-
forms well at some galaxy number densities, but not at others.

It is therefore not clear whether SHAM is able to match the
observed galaxy clustering because it makes accurate assumptions
(i.e. the physical relation between subhaloes and galaxies) or be-
cause some implementations employ free parameters (e.g. a scatter
between subhalo and galaxy properties or a cut-off in the fraction

of satellite galaxies) that provide enough freedom to become insen-
sitive to them. The importance of the information being decoded,
added to the fact that the amount and accuracy of clustering data
will increase dramatically over the next decade due to the emer-
gence of wide-field galaxy surveys (e.g. DES, HETDEX, eBOSS,
JPAS, DESI, EUCLID, and LSST), makes it crucial to critically test
the assumptions underlying SHAM.

In this paper, we will employ the state-of-the-art hydrodynamical
simulations ‘Evolution and Assembly of Galaxies and their Envi-
ronment’ (EAGLE; Crain et al. 2015; Schaye et al. 2015) to study
the SHAM technique in detail. Our objectives are threefold, (i) to
seek the most accurate implementation of SHAM, (ii) to directly
test the underlying assumptions, and (iii) to assert how accurately
SHAM can predict galaxy clustering.

We will propose Vrelax, defined as the maximum of the circular
velocity of a DM structure along its entire history while it fulfils
a relaxation criterion, as the best subhalo property with which to
perform SHAM. We will show that this definition captures the best
qualities of previously proposed implementations while mitigating
their disadvantages and reducing the number of problematic cases.
As a consequence, Vrelax shows the strongest correlation with the
simulated stellar mass of EAGLE galaxies.

We will show that SHAM is able to reproduce the clustering
properties of stellar mass selected galaxies in the EAGLE simula-
tion (which successfully reproduces many properties of observed
low-z galaxies). For the stellar mass range investigated (108.77 <

Mstar[M�] < 1010.77), the agreement is better than 10 per cent on
scales greater than 2 Mpc, and better than 30 per cent on smaller
scales. The agreement is particularly good for massive galaxies and
in redshift space, for which we do not find statistically significant
difference between the clustering predicted by SHAM and EAGLE.
This is remarkable given that we explore almost two orders of mag-
nitude in spatial scale and four in clustering amplitude.

Additionally, we will pay attention to the so-called assembly
bias: the dependence of the clustering of DM haloes on properties
other than mass (Gao, Springel & White 2005; Wechsler et al. 2006;
Zhu et al. 2006; Croton, Gao & White 2007; Gao & White 2007;
Dalal et al. 2008; Li, Mo & Gao 2008; Zu et al. 2008; Lacerna
& Padilla 2011, 2012; Lacerna et al. 2014; Zentner et al. 2014;
Hearin, Watson & van den Bosch 2015). We will show that assem-
bly bias is present in both EAGLE and SHAM galaxies, increasing
the clustering amplitude by 20 per cent on scales from 2 to 11 Mpc.
To our knowledge, this is the first detection of assembly bias in a
hydrodynamical simulation. This result supports the idea that halo
occupation distribution (HOD) models (e.g. Peacock & Smith 2000;
Seljak 2000; Scoccimarro et al. 2001), which are a phenomenolog-
ical parametrization for the number of galaxies hosted by haloes of
a given mass, introduce bias in the calculation of galaxy clustering
when they assume that halo occupation is a function only of halo
mass.

Finally, we will track the small residual differences in the cluster-
ing of SHAM and EAGLE galaxies to the failure of a key assumption
of SHAM (as commonly implemented): for the same Vrelax, central
and satellite subhaloes host the same galaxies independently of their
host halo mass. We will find that this supposition is broken due to
the influence of the environment and the star formation that satellite
galaxies experience after having been accreted. Both effects cor-
relate with the mass of the DM host, which suggests that future
SHAM implementations that employ both host halo mass and Vrelax

could yield even more accurate predictions for the clustering signal.
Our paper is organized as follows. In Section 2 we describe the

simulations, halo and galaxy catalogues, and merger trees that we
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use. In Section 3 we discuss different implementations of SHAM
and introduce Vrelax, a new proxy for stellar mass. In Section 4
we analyse the accuracy with which SHAM can predict the galaxy
satellite fraction, host halo mass, clustering, and assembly bias. We
discuss the limitations of SHAM in Section 5. We conclude and
summarize our most important results in Section 6.

2 N U M E R I C A L S I M U L AT I O N S

In this section, we provide details of the main data sets that we
employ. This includes a brief description of the numerical simula-
tions, halo and galaxy catalogues, merger trees, and of a technique to
identify the same structures in our hydrodynamical and gravity-only
simulations.

2.1 The EAGLE suite

The simulations we analyse in this paper belong to the EAGLE
project (Crain et al. 2015; Schaye et al. 2015) conducted by the
Virgo consortium. EAGLE is a suite of high-resolution hydrody-
namical simulations aimed at understanding the formation of galax-
ies in a cosmological volume. The runs employed a pressure-entropy
variant (Hopkins 2013) of the Tree-PM smoothed particle hydro-
dynamics code GADGET3 (Springel 2005), the time step limiters of
Durier & Dalla Vecchia (2012), and implement state-of-the-art sub-
grid physics (as described by Schaye et al. 2015), including metal-
dependent radiative cooling and photoheating (Wiersma, Schaye &
Smith 2009a), chemodynamics (Wiersma et al. 2009b), gas accre-
tion on to supermassive black holes (Rosas-Guevara et al. 2013),
star formation (Schaye & Dalla Vecchia 2008), stellar feedback
(Dalla Vecchia & Schaye 2012), and AGN feedback.

The EAGLE suite includes runs with different physical prescrip-
tions, resolutions, and volumes. Here, we study the largest simula-
tion, which follows 15043 gas particles and the same number of DM
particles inside a periodic box with a side length of 100 Mpc. The
large volume and high resolution of this simulation are essential for
a careful analysis of SHAM. The cosmological parameters used in
EAGLE are those preferred by the analysis of Planck data (Table 1).
This implies a gas particle mass equal to 1.81 × 106 M� and a DM
particle mass equal to 9.70 × 106 M�. We highlight that EAGLE is

Table 1. EAGLE/DMO cosmological and numerical parameters.
The cosmological parameter values are taken from Planck Collabo-
ration I (2014) and Planck Collaboration XVI (2014).

Parameter EAGLE/DMO

�m 0.307
�� 0.693
�b 0.048 25
H0(km s−1 Mpc−1) 67.77
σ 8 0.8288
ns 0.9611
Max. proper softening (kpc) 0.70
Num. of baryonic particles 15043/–
Num. of DM particles 15043/15043

Initial baryonic particle mass (107 M�) 0.181/–
DM particle mass (107 M�) 0.970/1.150

Notes. �m, ��, and �b are the densities of matter, dark energy, and
baryonic matter in units of the critical density at redshift zero. H0 is
the present-day Hubble expansion rate, σ 8 is the linear fluctuation
amplitude at 8 h−1 Mpc, and ns is the scalar spectral index.

well suited to this study because it was calibrated to reproduce the
galaxy stellar mass function at z ∼ 0. The agreement with obser-
vations is especially good over the mass range that we will analyse
here (fig. 4 of Schaye et al. 2015).

The 100 Mpc box was resimulated including only gravitational
interactions and sampling the density field with 15043 particles of
mass 1.15 × 107 M�. Hereafter, we refer to this simulation and
its hydrodynamical counterpart as DMO and EAGLE, respectively.
The cosmological and some of the numerical parameters employed
in these simulations are provided in Table 1.

2.2 Catalogues and mergers trees

In each simulation, haloes were identified using only DM particles
and a standard friends-of-friends (FoF) group-finder with a linking
parameter b = 0.2 (Davis et al. 1985). Gas and star particles are
assigned to the same FoF halo as their closest DM particle. For each
FoF halo we compute a spherical-overdensity mass, M200, defined
as the mass inside a sphere with mean density equal to 200 times
the critical density of the Universe, ρcrit(z);

M200 = 4π

3
200 ρcritr

3
200, (1)

where r200 is the radius of the halo, ρcrit(z) = 3 H 2(z)
8πG

, G is the grav-
itational constant, and H(z) is the value of the Hubble parameter
H (z) = H0

√
�m(1 + z)3 + ��.

Self-bound structures inside FoF haloes, termed subhaloes,
were identified using all particle types and the SUBFIND algorithm
(Springel et al. 2001; Dolag et al. 2009). Hereafter, we will refer to
the subhalo located at the potential minimum of a given FoF halo as
the ‘central’, to any other structures as ‘satellites’, and to subhaloes
with more than one star particle as EAGLE ‘galaxies’.

The position of each galaxy is assumed to be that of the particle
situated at the minimum of the gravitational potential of the respec-
tive subhalo. The galaxy velocity is assumed to be that of the centre
of mass of the subhalo.1 The stellar mass, Mstar, is the total mass
of all star particles linked to a given EAGLE galaxy. The gas mass
(Mgas) and the DM mass (MDM) are computed in the same manner
but using gas particles or DM particles, respectively. We verified
that our results are insensitive to the exact definition of Mstar: we
repeated our analysis defining Mstar as the mass inside a sphere of
20, 30, 40, 50, 70, or 100 kpc radius. We found that different mass
definitions only produces sub-per cent differences in the galaxy
clustering.

We employ ‘merger trees’ to follow the evolution of haloes and
subhaloes, their mass growth, tidal stripping, mergers, as well as
transient effects in their properties. Our trees were built using the
algorithm described in Jiang et al. (2014), employing 201 snapshots
for DMO and 29 snapshots for EAGLE. In both simulations the
output times were approximately equally spaced in log (a) for a >

0.2, where a is the cosmic scalefactor.
Finally, we note that to avoid problems related to subhalo frag-

mentation and spurious structures, we remove from our analysis
satellites without resolved progenitors.

1 We checked that the mean difference between the bulk velocity of DM
particles and star particles in the inner 30 kpc for the subhaloes with 8.77 <

Mstar[M�] < 10.77 is smaller than 10 km s−1.
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Table 2. Number of central and satellite EAGLE galaxies for
four stellar mass bins. In parentheses we provide the percentage
of EAGLE galaxies with a counterpart in DMO.

EAGLE
log10(Mstar[M�]) Central Satellites

8.77–9.27 3954 (92 per cent) 3475 (68 per cent)
9.27–9.77 2550 (92 per cent) 2068 (74 per cent)
9.77–10.27 1551 (94 per cent) 1247 (76 per cent)
10.27–10.77 968 (92 per cent) 652 (80 per cent)

2.3 EAGLE and DMO cross-match

EAGLE and DMO share the same initial conditions, so we expect
roughly the same non-linear objects to form in both simulations.
This is a powerful feature: it enables us to identify the EAGLE
galaxy that a given DMO subhalo is expected to host, and thus, to
probe directly the assumptions of SHAM.

In practice, we link DMO subhaloes to EAGLE galaxies follow-
ing the process described by Schaller et al. (2015); see also Velliscig
et al. (2014). For every subhalo in EAGLE we select the 50 most-
bound DM particles. If we find a subhalo in DMO which shares at
least half of them, the link is made. We confirm the link if, repeat-
ing the same process starting from each DMO subhalo, we identify
the same pair. We only search the pairs with more than 174 DM
particles in each simulation, which corresponds to a minimum halo
mass of 2 × 109 M� in DMO. This procedure yields a catalogue of
13 687 galaxies with 108.77 < Mstar[M�] < 1010.77.

In Table 2 we list the fraction of successfully matched centrals and
satellites, for four stellar mass bins. Overall, the match is successful
for more than 90 per cent of centrals in EAGLE, independently of
their mass. The success rate drops to 68–80 per cent for satellites,
with low-mass satellites showing the lowest percentage. This is a
consequence of the finite mass resolution of the simulations (see
also Appendix A), the mass-loss due to interactions with the host
halo, small differences in the timing at which mergers happen, and
the high-density environment in which they reside.

3 SU B H A L O A BU N DA N C E M AT C H I N G

In this section, we discuss different SHAM flavours and their im-
plementation in DMO.

3.1 SHAM flavours

The main assumption of SHAM is that there is a one-to-one relation
between a property of a DM subhalo and a property of the galaxy
that it hosts. The galaxy property is usually taken to be the stellar
mass (or K-band luminosity), since this is expected to be tightly
correlated with the DM content of the host halo (contrary to e.g. the
star formation rate, which could be more stochastic). The subhalo
property should capture the time-integrated mass of gas available
to fuel star formation, but there is no consensus as to what the most
adequate subhalo property is.2

2 Properties used in the literature include MDM (Vale & Ostriker 2004;
Shankar et al. 2006), maximum circular velocity at present for centrals and
at infall for satellites (Conroy et al. 2006), virial mass for centrals and mass
at infall for satellites (Behroozi et al. 2010; Wetzel & White 2010), virial
mass for centrals and the highest mass along the merger history for satellites
(Moster et al. 2010), and highest circular velocity along the merger history

A commonly used property in SHAM is the maximum of the
radial circular velocity profile (which can be regarded as a measure
of the depth of the potential well of a subhalo) defined at a suitable
time:

Vcirc(z) ≡ max[
√

GM(z, < r)/r], (2)

where M(<r) is the mass enclosed inside a radius r.
There are several reasons to prefer circular velocity over halo

mass in SHAM: (i) it is typically reached at one-tenth of the halo
radius, so it is a better characterization of the scales that we ex-
pect to affect the galaxy most directly; (ii) it is less sensitive to
the mass stripping that a halo/subhalo experiences after it has been
accreted by a larger object (Hayashi et al. 2003; Kravtsov, Gnedin
& Klypin 2004; Nagai & Kravtsov 2005; Peñarrubia, McConnachie
& Navarro 2008); (iii) it does not depend on the definition of
halo/subhalo mass.

However, the Vcirc(z) of DM objects are complicated functions,
which can display non-monotonic behaviour in time, with transient
peaks and dips, and that are subject to environmental and numer-
ical effects. This is illustrated by Fig. 1, which shows examples
of the evolution of the circular velocity for two central (left-hand
panel) and two satellite (right-hand panel) subhaloes in DMO. These
subhaloes are selected to illustrate the evolution of the maximum
circular velocity in typical centrals and satellites. We can see that
there is no obvious time at which Vcirc(z) should be computed for
an accurate SHAM.

We will implement four ‘flavours’ of SHAM, each using Vcirc(z)
defined at a different time: Vmax, Vpeak, Vinfall, and Vrelax (each marked
by horizontal lines and arrows of a different colour in Fig. 1).
The first three flavours have been used previously in the literature,
whereas the fourth is first used in this work. We discuss the four
SHAM flavours next.

(1) Vmax is the maximum circular velocity of a subhalo at the
present time, Vcirc(z = 0).

(2) Vinfall is the maximum circular velocity at the last time a
subhalo was identified as a central.

(3) Vpeak is the maximum circular velocity that a subhalo has
reached.

(4) Vrelax is the maximum circular velocity that a subhalo has
reached during the periods in which it satisfied a relaxation criterion.
The criterion we use is �tform > tcross, following a similar approach
to Ludlow et al. (2012). The motivation is that after a major merger,
DM haloes typically need of the order of one crossing time (tcross

= 2 r200/V200 = 0.2/H(z)) to return to equilibrium. Thus, we define
�tform as the look-back time from a given redshift zi to the redshift
where the main progenitor of a subhalo reached 3/4 of the subhalo
mass at zi (we tested other definitions for the formation time, from
4/5 to 1/2, finding roughly the same results). The periods during
which this condition is satisfied are shown as blue shaded regions
in Fig. 1. We can compute Vrelax for more than the 99 per cent of
the subhaloes in DMO and we remove the subhaloes where Vrelax

cannot be calculated. We cannot compute Vrelax for the full sample
because this quantity is not defined for subhaloes younger than one
crossing time.

Although Vcirc should generally not be affected by the stripping
of the outer layers of a halo, in the right-hand panel of Fig. 1 we
can see that it does still evolve for satellites. The decrease in Vcirc(z)

(Trujillo-Gomez et al. 2011; Nuza et al. 2013, see Reddick et al. 2013 for a
detailed comparison between the previous properties).
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Figure 1. Evolution of the maximum circular velocity of two central (left-hand panel) and two satellite (right-hand panel) subhaloes in DMO. The black solid
lines show the circular velocity, the grey coloured areas the periods during which the subhaloes are satellites, and the blue coloured regions the intervals during
which the subhaloes satisfy our relaxation criterion. Horizontal lines highlight the circular velocity at z = 0 (Vmax, red dashed line), the circular velocity at the
last infall for satellites and Vmax for centrals (Vinfall, orange dotted line), the maximum circular velocity that a subhalo has had (Vpeak, green dot–dashed line),
and the maximum circular velocity that a subhalo has reached while it satisfied our relaxation criterion (Vrelax, blue long dashed line).

after infall is in large part due to tidal heating, a process which
reduces the density in the inner regions of the satellites (Gnedin
2003; Hayashi et al. 2003; Kravtsov et al. 2004). The tidal heating
is related to the position of a subhalo inside its host halo, being
maximum at pericentric passages. We can see an extreme case of
tidal interactions in the top-right panel, where this subhalo has
lost more than 99 per cent of its mass since it became a satellite.
After the last infall at 1 + z ∼ 2.3 (grey shaded region), the value
of Vcirc decreased by about 80 per cent in a series of steps (z ∼
1, 0.5, 0.3, 0.1, 0.05, and 0), which indeed coincide with pericentric
passages. This implies that satellite galaxies have lower values of
Vmax than central galaxies of the same stellar mass. Thus, a Vmax-
based SHAM will underestimate the fraction of satellites.

Tidal heating and stripping affect not only satellites but also
‘backsplash satellites’, i.e. centrals at z = 0 which were satellites
in the past, reducing their circular velocity while they were inside
a larger halo. An example of this process is shown in the bottom-
left panel of Fig. 1, where the circular velocity of this subhalo was
reduced by about 7 per cent in the period during which it was a
satellite (while the mass was reduced by 50 per cent).

Vinfall is less affected by these problems. Unfortunately, this pa-
rameter also underestimates Vcirc for satellites because tidal heating
starts to act even before a satellite is accreted by its future host halo
(Kravtsov et al. 2004; Wetzel et al. 2013, 2014). This can be seen in
the top (bottom) right-hand panel of Fig. 1, where the value of Vcirc

starts to decrease at 1 + z ∼ 3.4 (1 + z ∼ 4.4) while the subhalo is
accreted at 1 + z ∼ 2.4 (1 + z ∼ 1.2).

Additionally, there are new problems associated with Vinfall. The
first concerns satellite–satellite mergers (Angulo et al. 2009; Wetzel,
Cohn & White 2009), which should increase the mass of stars in a

satellite but this is not captured by Vinfall. The second is related to the
definition of Vinfall; it is not clear whether we should consider Vinfall

as the circular velocity at the last infall or at previous accretion
events. We can see in the bottom-right panel of Fig. 1 a satellite
which has undergone several alternating central/satellite periods,
decreasing in total its circular velocity by 20 per cent and its mass
by 70 per cent.

An alternative solution is provided by Vpeak since it can capture
all episodes during which the subhalo grows, and it is not affected
by a reduction of Vcirc due to environmental effects. However, this
definition similarly has its own problems. During periods of rapid
mass accretion, DM haloes are usually out of equilibrium (Neto
et al. 2007). In particular, during major mergers the concentration
can be artificially high (this is a maximum compression phase of
halo formation), which temporarily increases the value of Vcirc (e.g.
Ludlow et al. 2012; Behroozi et al. 2014). This effect is responsible
for the peaks seen in all four panels of Fig. 1. Although at any given
time it is rare to find a halo in this phase, the value of Vpeak will likely
be assigned during one of these phases, and will thus overestimate
the depth of the potential well. In addition, this effect makes the
predictions of Vpeak dependent on the number and intervals of the
output times of a given simulation.

Here we propose a new measure, Vrelax, designed to overcome
the problems of Vmax, Vinfall, and Vpeak. It is marked by arrows and
horizontal lines of blue colour in Fig. 1. Vrelax is insensitive to
tidal heating, transient peaks, and consistently defined for centrals,
satellites, and backsplash satellites. We emphasize that it is desirable
to eliminate the aforementioned problems because they represent
changes in Vcirc which are not expected to correlate with the growth
history of Mstar, and will thus add extra noise to SHAM.
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Testing SHAM with EAGLE 3105

Figure 2. Relation between Mstar of EAGLE galaxies and SHAM flavours
for the corresponding DMO subhaloes. The grey-scale represents the number
of subhaloes per pixel, which ranges from 1 (light grey) to 100 (black). Blue
and red contours mark the regions containing 68 and 95 per cent of the
distribution, respectively.

We now take a first look at the performance of each SHAM
flavour. Fig. 2 shows the relation between each of the four prop-
erties described above for DMO subhaloes, as indicated by the
legend, and Mstar of their galaxy counterpart in EAGLE (see Sec-
tion 2.3). All panels show a tight correlation, which supports the
main assumption of SHAM, that the relation between stellar mass
and SHAM parameters should be monotonic. However, the scatter
in the relation is different in each panel because of the effects dis-
cussed in this section: Vmax shows the largest and Vrelax the smallest
dispersion. In the next sections we will quantify the performance of
each SHAM flavour in detail.

3.2 Implementation

The first step to implement the four flavours of SHAM is to compute
P(log10Mstar|log10Vi): the probability that a subhalo hosts a galaxy
of mass Mstar given a certain value of the SHAM flavour Vi. We
compute this quantity as follows.

(1) We select subhalo–galaxy pairs from the matched catalogues
(see Section 2.3) with log10Mstar[M�] > 7 and divide them accord-
ing to log10Vi in bins of 0.05 dex. We discard bins with fewer than
100 objects.

(2) For each log10Vi bin, we compute the distribution of log10Mstar

and fit it by a Gaussian function, G ∼ exp (−0.5(log10Mstar −
μ)2/(σ )2), where μ is the mean and σ the dispersion.

(3) We fit a linear function, σ = a + b log10Vi, to σ (log10Vi) and
an arctangent, μ = a + b tan −1(c + d log10Vi), to μ(log10Vi). The
values of the best-fitting parameters are given in Table 3 and the
quality of the fit can be judged from Fig. 3.

(4) Using these functions, we model P(log10Mstar|log10Vi) as
G[μ(log10Vi), σ (log10Vi)].

Our second step is to assign a value of Mstar to every subhalo in
DMO (not only those with an EAGLE counterpart) by randomly
sampling P(log10Mstar|log10Vi). This creates a catalogue that cap-
tures the appropriate stochastic relation between Mstar and the pa-

Table 3. Parameters of the functions that fit the mean, μ, and standard
deviation, σ , of the model for P (log10 Mstar[M�]| log10 Vi [km s−1]). The
unit of Vi is km s−1.

σ = a + b log10Vi μ = a + b tan −1(c + d log10Vi)
a b a b c d

Vmax 0.60 −0.20 7.03 5.52 −1.84 1.12
Vinfall 0.53 −0.16 7.01 5.52 −1.84 1.12
Vpeak 0.55 −0.16 7.70 5.42 −1.89 1.05
Vrelax 0.59 −0.20 7.14 5.55 −1.86 1.10

Figure 3. Standard deviation (top panel) and mean (bottom panel) of the
Gaussians used to fit PDFs for log10 Mstar[M�]. For clarity, we have shifted
the σ (μ) of Vmax, Vinfall, and Vpeak by +0.3, +0.2, and +0.1 (+3, +2, and
+1), respectively. The best-fitting functions are shown by coloured lines,
and the values of the respective parameters are given in Table 3.

rameter Vi. If the relation for EAGLE galaxies were also stochastic
with respect to the underlying density field, then we would expect
these catalogues to have the same clustering properties as EAGLE.

We note we have verified that the resulting stellar mass function
agrees closely with that of the EAGLE simulation. However, to
ensure identical mass functions and thus to make subsequent com-
parisons more direct, we assign to each SHAM galaxy the value of
Mstar of the EAGLE galaxy at the same rank order position. Here-
after, we will refer generically to the galaxy catalogues created in
this way as ‘SHAM galaxies’ and specifically to the galaxy cata-
logues generated by a particular SHAM parameter as ‘Vi galaxies’.

We compute 100 realizations of SHAM for every flavour using
different random seeds. The results presented in the following sec-
tions are the mean of all the realizations and the errors the standard
deviation.
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4 R ESULTS

In this section, we test how well SHAM reproduces different proper-
ties of EAGLE galaxies. In particular, we will explore the predicted
stellar mass of individual subhaloes (Section 4.1), the HOD (Sec-
tion 4.2.1), the number density profiles inside haloes (Section 4.2.2),
the clustering in real and redshift space (Sections 4.3.1 and 4.3.2),
and the assembly bias (Section 4.3.3).

We present results for four bins in stellar mass, as indicated in
Table 2. This range was chosen to include only well-sampled and
well-resolved galaxies (comprised of more than 230 star particles)
and bins with enough galaxies to allow statistically significant anal-
yses (more than 1600 galaxies).

4.1 Correlation between Mstar and Vi

In Section 3 we discussed that in some cases Vmax, Vinfall, and
Vpeak are unintentionally affected by physical and numerical effects,
which degrades the performance of SHAM. We also argued that
Vrelax does not present any obvious problem and thus we expected
it to be the SHAM flavour that correlates most strongly with Mstar.
This was qualitatively supported by Fig. 2. We start this section by
quantifying these statements using the Spearman rank correlation
coefficient between the Mstar of EAGLE galaxies and the SHAM
flavours of DMO subhaloes.

The Spearman coefficient measures the statistical dependence
between two quantities and is defined as the Pearson correlation
coefficient between the ranks of sorted variables. A value of unity
implies a perfect correlation, which in our case means that the stellar
mass of a galaxy is completely determined by its SHAM parameter,
i.e. the relation is monotonic and thus without scatter. A value close
to zero means that the relation between the SHAM parameter and
Mstar is essentially random.

In Fig. 4, we show the Spearman coefficient for the correlation
between Mstar and each of our four SHAM parameters. We divide

our sample into three groups: (i) present-day central subhaloes that
have been centrals for their entire merger history except for at most
four snapshots (centrals, left-hand panel), (ii) present-day central
subhaloes that have been satellites more than four snapshots in
the past (backsplash satellites, central panel), and (iii) present-day
satellites (satellites, right-hand panel).

In general, we find that the correlation increases with Mstar, that
it is stronger for centrals than for satellites, and that Vrelax displays
the strongest correlation with Mstar. Regarding the different SHAM
flavours, we find that (i) for centrals Vpeak produces the weakest
correlation, (ii) for satellites Vmax shows the weakest correlations,
and (iii) Vinfall and Vrelax consistently display the best performance,
with Vrelax showing a slight improvement over Vinfall for satellites.

Our results can be understood from the discussion in Section 2.
For centrals, Vmax and Vinfall are identical by construction and they
are close to the value of Vrelax because Vcirc tends to increase with
decreasing redshift for centrals. On the other hand, Vpeak is usually
established while Vcirc is temporarily enhanced as a result of merger
events. For backsplash satellites, Vmax and Vinfall are also identical
by construction, but, unlike Vrelax, they are insensitive to their more
complicated history, which explains their weaker correlation with
Mstar.

Finally, satellites display the weakest correlations, with Vmax pre-
senting the lowest correlation coefficient. This is because Vcirc de-
creases soon after infall, whereas the stellar mass can still grow
until the gas is completely exhausted (although tidal forces may
strip stars). Vinfall alleviates this problem but the interaction be-
tween the satellites and their host haloes starts before the satellites
reach the virial radii of their host haloes (Hayashi et al. 2003; Bahé
et al. 2013). Because of this, Vrelax better captures the expected evo-
lution in Mstar. Lastly, Vpeak is still affected by the out-of-equilibrium
artefacts discussed above.

In sections Sections 4.2 and 4.3, we will investigate how the
different correlations impact the predictions for the clustering of
EAGLE galaxies.

Figure 4. The Spearman rank correlation coefficient between the Mstar of EAGLE galaxies and each of four parameters used to perform SHAM. The subhaloes
are divided into three categories: centrals (left-hand panel), backsplash satellites (central panel), and satellites (right-hand panel), see the main text for more
details. The fraction of objects in each category is given in the legend. The red (orange) points are displaced horizontally by −0.03 (+0.03) dex for clarity.
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Testing SHAM with EAGLE 3107

Figure 5. The distribution of host halo masses, M200, for SHAM and EAGLE galaxies in different Mstar bins. Histograms show the results for EAGLE galaxies
and coloured lines for different SHAM flavours, as detailed in Section 3.2. The left (right) curves display the number Ni of centrals (satellites) in haloes of
a given mass multiplied by the linear bias b and normalized by the total number of subhaloes Ntot. Therefore, the y-axis reflects the relative contribution of
galaxies in different host halo mass bins to the large-scale correlation function. Note that for EAGLE galaxies we employ the M200 of the DMO counterpart,
which makes our comparison less dependent on the baryonic processes which might alter the mass of the host halo.

4.2 The properties of SHAM galaxies

To predict the correct galaxy clustering, SHAM has to associate
galaxies with the correct subhaloes, to allocate the right proportion
of centrals and satellites, and to place galaxies following the correct
radial distribution. Therefore, before presenting our results regard-
ing the clustering, we will explore these ingredients separately.

4.2.1 Halo occupation distribution

The panels of Fig. 5 show the distribution of host halo masses for
centrals and satellites in different Mstar bins. The left (right) curves
display the number of centrals (satellites) in haloes of a given mass
multiplied by the linear bias3 expected for haloes of that mass and
normalized by the total number of subhaloes. The quantity plotted
can be interpreted as the relative contribution to the large-scale
clustering from galaxies hosted by haloes of different mass. In each
panel, the histogram presents the results for EAGLE galaxies and
the coloured lines the results of the SHAM implementations detailed
in Section 3.2. For EAGLE galaxies we employ the M200 of their
host halo DMO counterpart, which makes this plot less sensitive

3 We calculate the linear bias as b = 1 + ν2−1
δc

(Mo & White 1996), where
δc ≈ 1.69 is the critical linear overdensity at collapse and ν = δc/σ (M, z) is
the dimensionless amplitude of fluctuations which produces haloes of mass
M at redshift z.

to baryonic effects that might systematically change the mass of
DM haloes. For the 5.1 per cent of EAGLE galaxies hosted by a
halo without DMO counterpart, we multiply M200 by fDM = 1 −
(�b/�m) = 0.843. This is the average difference in M200 between the
hydrodynamic and gravity-only EAGLE simulations, as reported by
Schaller et al. (2015).

First, we see that using Vmax as SHAM parameter results in shifted
M200 distributions and an underprediction, of about 30 per cent, of
the number of satellites for all Mstar bins. This is a consequence
of the reduction of Vmax for satellites after being accreted, which
introduces centrals hosted by lower mass haloes into the SHAM
sample.

The distribution of EAGLE galaxies is closely reproduced by the
other SHAM implementations, for all stellar mass bins. The distri-
butions for central galaxies have almost identical shapes and peak
at roughly the same host halo mass. Note, however, that compared
to Vinfall and Vrelax, Vpeak yields systematically broader distributions
for centrals. This is consistent with the differences in the correlation
coefficient shown in the left-hand panel of Fig. 4.

Additionally, the Vinfall, Vpeak, and Vrelax satellite fractions agree
to within ∼5 per cent with those in EAGLE, although they are
systematically lower, as shown in Table 4. However, for the two
lowest stellar mass bins, there is a slight overestimate of the num-
ber of satellites in haloes of mass M200 > 1013 M�, and a some-
what larger underestimate for haloes of mass M200 < 1013 M�, as
Table 5 shows. Since the difference is greater for the high-mass
haloes, the overall satellite fraction is underestimated. We will
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Table 4. Satellite fraction for EAGLE and SHAM galaxies using Vmax,
Vinfall, Vpeak, and Vrelax.

log10(Mstar[M�]) Vmax Vinfall Vpeak Vrelax EAGLE
Satellite fraction

8.77–9.27 0.32 0.43 0.46 0.45 0.47
9.27–9.77 0.30 0.42 0.44 0.43 0.45
9.77–10.27 0.28 0.40 0.41 0.41 0.44
10.27–10.77 0.25 0.37 0.38 0.37 0.40

Table 5. Number of satellites as a function of Mstar and M200

for EAGLE and SHAM galaxies using Vrelax.

log10(Mstar[M�]) log10(M200[M�]) EAGLE Vrelax

N. of satellites

8.77–9.27 11.6–12.6 1060 780
12.6–13.6 1274 1328
13.6–14.6 945 1057

9.27–9.77 11.6–12.6 584 444
12.6–13.6 834 838
13.6–14.6 633 695

9.77–10.27 11.6–12.6 293 208
12.6–13.6 495 482
13.6–14.6 459 452

10.27–10.77 11.6–12.6 65 61
12.6–13.6 280 253
13.6–14.6 307 292

analyse the repercussion of these small differences in forthcoming
sections.

4.2.2 Radial distribution of satellites

Fig. 6 shows the spherically averaged number density profiles of
satellite galaxies with 8.77 < log10 Mstar[M�] < 10.77, normal-
ized to the mean number density within r200. We show results for
galaxies inside haloes in three DMO halo mass bins, as indicated
by the legend. The data points represent the profiles measured us-
ing EAGLE galaxies, whereas coloured lines display the stacked
results for SHAM galaxies. For comparison, we also plot the best-
fitting NFW profile to the EAGLE data, which appears to be a good
description over the range of scales probed.

Given the statistical uncertainties, the number density profiles
of EAGLE and SHAM galaxies agree reasonably well with the
exception of Vmax. For Vmax, the differences are greater, it predicts
shallower profiles and a lack of objects in the inner parts compared to
EAGLE. This is consistent with the effects described previously: the
inner parts of haloes experience large tides and are also populated
by the oldest subhaloes. In contrast, on scales r > 0.1 Mpc, the
Vpeak, Vinfall and Vrelax profiles are consistent with the measurements
from EAGLE for all three halo mass bins.

4.3 Galaxy clustering

We are now in the position to investigate the performance of SHAM
in predicting the clustering of galaxies. We first discuss the two-
point correlation function (2PCF) in real space (Section 4.3.1),
then the monopole of the redshift-space correlation function (Sec-
tion 4.3.2), and we end with an exploration of assembly bias in both
EAGLE and SHAM (Section 4.3.3).

Figure 6. The radial distribution of galaxies with 8.77 <

log10(Mstar[M�]) < 10.77, inside haloes of mass 1013.0–1013.5 M�,
1013.5–1014.0 M� (displaced by +1 dex), and more massive than
1014.0 M� (displaced by +2 dex). We present the spherically averaged
number density, normalized to the mean number density within the host
halo. Black symbols show the results for EAGLE galaxies, whereas
coloured lines show stacked results from 100 realizations of SHAM using
Vmax, Vinfall, Vpeak, and Vrelax. The error bars indicate the 1σ scatter for
EAGLE galaxies. The shaded region marks the standard deviation of 100
realizations of SHAM using Vrelax. We overplot the NFW profiles (with rs

= 0.81, 0.29, 0.21 Mpc from the most to the least massive halo sample) that
best fit the EAGLE data points shown.

We compute the 2PCF, ξ (r), by Fourier transforming the galaxy
number density field, which is a faster alternative to a direct pair
count. We provide details of the procedure in Appendix B. We es-
timate the statistical uncertainties in the 2PCF of EAGLE galaxies
using a spatial jackknife resampling (e.g. Zehavi et al. 2005). Sum-
marizing, we divide the simulation box in 64 smaller boxes and then
we compute 64 2PCFs removing one of the small boxes each time.
The statistical errors are the standard deviation of the 64 2PCFs.
On the other hand, we assign errors to the 2PCF of SHAM galaxies
by computing the standard deviation of 100 realizations for each
SHAM flavour.

4.3.1 Real-space correlation function

In Fig. 7, we compare the 2PCF for EAGLE galaxies (black solid
line) with results of stacking 100 realizations of SHAM for different
stellar mass bins. In the bottom panel of each subplot, we display
the relative difference of the 2PCFs of each Vi galaxy sample and
EAGLE (�ξ i = ξ i/ξEAGLE − 1).

Fig. 7 shows that Vmax clearly underestimates the clustering on
small scales, which is consistent with the underestimation of the
satellite fraction discussed earlier. A lower satellite fraction also
implies a lower mean host halo mass and a smaller bias, which
explains the underestimation of the correlation function on larger
scales.

On the other hand, Vinfall, Vpeak, and Vrelax galaxies agree very
closely with the EAGLE measurements. On scales greater than
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Testing SHAM with EAGLE 3109

Figure 7. Real-space 2PCF for galaxies in different stellar mass bins. The black solid line shows the clustering in EAGLE, with the grey shaded region
the jackknife statistical error. The coloured lines show the clustering predictions of SHAM using Vmax (red dashed), Vinfall (orange dotted), Vpeak (green
dot–dashed), and Vrelax (blue long dashed). The error bars indicate the standard deviation of 100 realizations of SHAM for each flavour. In the lower half of
each panel we display the relative difference of SHAM with respect to EAGLE (�ξ i = ξ i/ξEAGLE − 1). Note that the green and orange lines are slightly
displaced horizontally for clarity. Using Vrelax as SHAM parameter, we retrieve the clustering of EAGLE galaxies to within 10 per cent on scales greater than
2 Mpc.

2 Mpc, all three flavours are statistically compatible with the full
hydrodynamical results. We note that the small differences are of
the same order as the variance introduced by different samplings
of P(log10Mstar|log10Vi). For the two higher stellar mass bins, the
statistical agreement is extended down to 400 kpc.

For the two lower stellar mass bins, we measure statistically sig-
nificant differences on small scales, especially for Vpeak and Vrelax

galaxies. The SHAM clustering appears to be 20–30 per cent high,
which could originate from either more concentrated SHAM galaxy
distributions inside haloes, or from an excess of satellite galaxies.
At first sight, the latter explanation appears to contradict our previ-
ous finding that the satellite fraction is underpredicted by SHAM.
However, the small-scale clustering will be dominated by satellites
inside very massive haloes,4 whose number is indeed overpredicted
(cf. Table 5).

Additionally, Fig. 5 showed that Vinfall resulted in the same un-
derestimation of the overall satellite fraction as Vpeak and Vrelax but a
somewhat smaller satellite fraction in the high halo mass range. This
explains the weaker small-scale clustering seen in Fig. 7 and conse-

4 For instance, in the case of the small-scale clustering of galaxies in the
lowest stellar mass bin, the contribution of satellites inside haloes with M200

> 1013 M� is almost an order of magnitude larger than that of satellites in
haloes with M200 < 1013 M�.

quently the slightly better agreement with EAGLE. Note, however,
that the smaller number of satellites could be caused by the fact
that Vcirc decreases even before accretion, especially near very mas-
sive haloes. This suggests that the apparent improved performance
of Vinfall could be simply a coincidence. We will investigate these
hypotheses in Section 5.

4.3.2 Redshift-space correlation function

Fig. 8 is analogous to Fig. 7 but for the redshift-space 2PCFs. We
compute 2PCF in redshift space because they are more directly
comparable with observations than the 2PCF in real space. We
transform real- to redshift-space coordinates (r and s, respectively)
in the plane–parallel approximation: s = r + (1 + z)(v · k̂)/H (z),
where v the peculiar velocity, H(z) is the Hubble parameter at
redshift z, and k̂ is the unit vector along the z direction. On scales
greater than 6 Mpc, this transformation enhances the clustering
signal due to the Kaiser effect (Kaiser 1987). On smaller scales,
motions inside virialized structures produce the so-called finger-of-
god effect, smoothing the correlation function.

The differences between the SHAM flavours are qualitatively
similar in real and redshift space: Vmax underpredicts the clustering
on all scales and for all Mstar bins, the remaining SHAM flavours
are statistically compatible with EAGLE on scales �1 Mpc, and
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Figure 8. Same as Fig. 7 but for correlation functions computed in redshift space. The agreement between the clustering of EAGLE galaxies and Vpeak and
Vrelax galaxies is even better in redshift space than in real space for the two lowest stellar mass bins. The main reason of the improvement on small scales is
that most of the galaxies separated by those scales in redshift space are at larger distances in real space, where Vpeak and Vrelax galaxies accurately reproduce
the clustering of EAGLE galaxies.

the clustering amplitude of Vinfall is systematically below that of
Vrelax and Vpeak. On the other hand, compared with the real-space
2PCFs, there is better agreement between Vrelax, Vpeak and EAGLE
on small scales for the two lowest mass bins. This improvement is
likely a result of two effects. First, a considerable fraction of close
pairs in redshift space will be much further apart in real space, and
hence better modelled by SHAM. Secondly, the incorrect HOD that
SHAM galaxies show can be compensated by a stronger smoothing
of the 2PCF: a greater number of satellites in high-mass haloes
would increase the small-scale clustering, but these satellites would
also have a higher velocity dispersion.

If the agreement between SHAM and EAGLE galaxies were
reached because of the cancellation of different sources of error,
then this would impact other orthogonal statistics, for instance, the
strength of the so-called assembly bias (other examples are the
high-order multipoles of the redshift space 2PCF). We explore this
next.

4.3.3 Assembly bias

Assembly bias generically refers to the dependence of halo cluster-
ing on any halo property other than mass, such as formation time,
concentration, or spin (see e.g. Gao et al. 2005; Gao & White 2007).
It has been robustly detected in DM simulations, but it is not clear
what is the effect of assembly bias on galaxy clustering. This is
because a given galaxy sample will typically be a mix of haloes of

different masses and properties. Although the strength of the effect
depends on the assumptions of the underlying galaxy formation
model, semi-analytic galaxy formation models and SHAM both
suggest that assembly bias is indeed important (Croton et al. 2007;
Zentner et al. 2014; Hearin et al. 2015). To our knowledge, this issue
has not yet been investigated with hydrodynamical simulations.

In this section, we explore whether assembly bias is present in
EAGLE and whether the different SHAM flavours are able to predict
its amplitude. To quantify the effect, we will compare SHAM and
EAGLE 2PCFs to those measured in shuffled galaxy catalogues,
which are built following the approach of Croton et al. (2007):

(1) We compute the distance between each satellite galaxy and
the COP of its host halo. This distance is by definition zero for
central galaxies.

(2) We bin haloes according to M200 using a bin size of 0.04 dex.
We verified that our results are independent of small changes in the
bin widths.

(3) We randomly shuffle the entire galaxy population between
haloes in the same mass bin.

(4) Finally, we assign a new position to each galaxy by moving
the galaxy away from the COP of its new halo by the same distance
that we calculated in (1).

Fig. 9 shows the mean relative difference between 100 realiza-
tions of the shuffled catalogues and the original for different bins
of stellar mass. The black solid lines display the results for EAGLE
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Figure 9. The relative difference of the 2PCFs of galaxies to that of a catalogue where galaxies are shuffled among haloes of the same mass (�ξi =
ξ shuff
i /ξ

orig
i − 1, see Section 4.3.3 for more details). We adopt the same labelling as in Fig. 7. The grey shaded areas show the standard deviation after applying

the shuffling procedure 100 times for EAGLE galaxies.

galaxies and the coloured lines for SHAM galaxies. Since the posi-
tion of galaxies/subhaloes is independent of the environment in the
shuffled catalogues, their clustering should depend exclusively on
the host halo mass. Therefore, any deviations from zero in Fig. 9
can be attributed to the assembly bias. Note that on small scales the
ratio goes to zero by definition since the shuffling procedure does
not alter the clustering of galaxies inside the same halo.5

We can clearly see that all shuffled catalogues underestimate the
clustering amplitude for r � 1 Mpc. In the case of EAGLE galax-
ies, the differences are ∼20 per cent on scales greater than 2 Mpc,
roughly independent of stellar mass. This implies that assembly
bias increases the clustering amplitude expected from simple HOD
analyses by about 1/0.8 = 25 per cent.

For SHAM galaxies, the effect goes in the same direction but is
somewhat weaker for all stellar masses (although it is more statis-
tically significant for the lowest mass bins). This can be interpreted
as SHAM lacking some environmental dependence of the relation
between Mstar and Vi. Likely candidates are tidal stripping of stars,
and/or tidal stripping, harassment, and starvation happening before
a galaxy is accreted into a larger DM halo. These effects are im-
portant because the efficiency with which a given halo creates stars
will depend on the large-scale environment. We will return to these
issues in the next section.

5 Note that our findings would remain nearly the same if instead we shuffled
centrals and satellites separately following Zentner et al. (2014). This is
because centrals and satellites with the same Mstar rarely reside in the same
halo (see Fig. 5).

Before closing this section, it is interesting to note the particular
case of Vinfall, which was the SHAM flavour that agreed best with
the real-space 2PCF of EAGLE data. The fact that the strength of
the assembly bias is roughly a factor of 2 smaller than in EAGLE
supports the idea that the previous agreement was partly coinciden-
tal. Since Vinfall will be reduced near large haloes due to interactions
experimented by subhaloes before being accreted, the number of
satellites will decrease and the 2PCF will decrease on small scales.
However, this will likely occur for the wrong haloes, which will
result in a misestimated amplitude for the assembly bias.

5 T E S T I N G T H E A S S U M P T I O N S U N D E R LY I N G
S H A M

In the previous section we showed that SHAM reproduces the clus-
tering of EAGLE galaxies to within 10 per cent on scales greater
than 2 Mpc and the corresponding assembly bias reasonably well.
However, small differences remain, most notably the clustering on
small scales and the strength of assembly bias. In this section, we
will directly test four key assumptions behind SHAM with the aim
of identify the likely cause of the disagreement. Unless stated oth-
erwise, we will employ Vrelax.

5.1 Assumption I: the relation between Mstar

and Vi is independent of redshift

One of the main assumptions in our implementation of SHAM is
that Mstar depends on the value of Vrelax, but not on the redshift at
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Figure 10. Standard deviation (top panel) and mean (bottom panel) of the
Gaussian functions used to fit the dependence of the stellar mass PDF on
Vrelax at different redshifts. The symbols represent the measurements of the
widths and the centres and the lines show the fits. Neither the scatter nor
the mean of Mstar and Vrelax evolves significantly. The orange lines show the
results for galaxies at z = 0 that have reached Vrelax at z = 0–1.5 (solid),
z = 1.5–3.5 (dotted), and z = 3.5–6 (dashed).

which Vrelax was acquired. If this was not the case, we would expect
an additional dependence on, for instance, the formation time of DM
haloes. Such a redshift dependence would be particularly important
for satellites, since on average they reach their value of Vrelax at
higher redshifts than centrals.

To test this assumption, we cross-matched the DMO and EA-
GLE catalogues at redshifts z = [0, 0.1, 0.27, and 0.5]. We do
this by assuming that the link between a pair of EAGLE-DMO
structures matched at z = 0 carries over to their main progen-
itors at all higher z. Then, we construct P(log10Mstar|log10Vi) at
each redshift, which we fit by Gaussian functions with mean μ

and standard deviation σ . In Fig. 10 we show the results. We can
see that neither the mean nor the scatter in the relation show any
strong signs of redshift dependence. Nevertheless, to estimate the
impact on the clustering, we generated a new set of Vrelax galaxies
at z = 0 employing the scatter and mean derived at different red-
shifts. We find that the differences in the 2PCF are always below
1 per cent.

As a further test, we split the z = 0 catalogue into three bins
according to the redshift at which Vrelax was reached: [0–1.5], [1.5–
3.5], and [3.5–6]. We overplot the mean and variance of these sub-
samples in Fig. 10 as orange lines, from which we see no obvious
dependence on redshift.

Therefore, we conclude that subhaloes of a given Vrelax statisti-
cally host galaxies of the same Mstar at z = 0, independently of the
time at which their Vcirc reached Vrelax.

5.2 Assumption II: baryonic physics does not affect
the SHAM property of subhaloes

It is well known that baryons modify the properties of their DM
hosts (Navarro, Eke & Frenk 1996; Gnedin & Zhao 2002; Read &
Gilmore 2005; Oman et al. 2015). Notable examples are an increase
in the central density of DM haloes due to adiabatic contraction, or
the possible reduction due to feedback or episodic star formation
events. However, SHAM assumes that the relevant property is that
of the DM host in the absence of those baryonic effects.

We estimate the impact of this assumption by comparing the
2PCFs of central galaxies in our cross-matched catalogue, which
we then rank order and select using either Vmax from EAGLE or
Vmax from their DMO counterpart. We focus on central galaxies
since Vmax behaves well for those objects and should be directly
relevant for Vinfall satellites. In addition, the cross-matched catalogue
is highly complete, with less than 8 per cent of central galaxies
being excluded (see Table 2), thus we expect our results to be
representative of the full population.

In general, we find that the values of Vmax for EAGLE galaxies
are ∼5 per cent lower than for DMO galaxies, with a scatter of 0.08
dex. However, since the scatter is 27 per cent of that of Mstar at a
fixed Vmax, we expect this difference to have only a minor effect on
the clustering. This is indeed what we find. The orange dotted line
in Fig. 11 shows the relative difference of the 2PCFs. The curve is
compatible with zero. Note that the noise on scales below 0.5 Mpc
is caused by the small number of objects at those separations owing
to the absence of satellite galaxies in this analysis.

Therefore, we conclude that baryonic effects introduce only small
perturbations in Vi rank ordered catalogues and will thus only have
a minor effect on SHAM predictions. In any case, the noisiness of
the curves do not enable us to completely rule out small changes in
the galaxy clustering due to the presence of baryons.

5.3 Assumption III: baryonic physics
does not affect the position of subhaloes

Another potential consequence of the presence of baryons is the
modification of the positions of the subhaloes, caused by the slightly
different dynamics induced by the different structure of the host
halo. van Daalen et al. (2014) found this effect to be important on
scales below 1 Mpc (but negligible on larger scales).

We quantify this effect by comparing the 2PCF of EAGLE galax-
ies in two cases; (i) using their actual positions, and (ii) using the
position of their DMO counterparts. We show the relative differ-
ence between these two cases as a black solid line in Fig. 11. There
are no deviations from zero on large scales and the clustering is
underestimated by around 5 per cent on small scales. Therefore, the
assumption that the presence of baryons does not modify the orbits
of the subhaloes is justified for the range of scales explored here.

5.4 Assumption IV: for a given Vrelax, Mstar

does not depend on environment

We now address the assumption that deviations from the mean Mstar

at fixed Vrelax are independent of the environment. Specifically, in
this subsection we will investigate whether Mstar at fixed Vrelax is in-
deed uncorrelated with the host halo mass. This is a key assumption
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Figure 11. The impact on the 2PCF of different assumptions made by SHAM. Different lines compare the 2PCF of EAGLE with those of catalogues that
aim to isolate different physical effects not included in SHAM in order to quantify their importance for modelling galaxy clustering. Black solid lines show
the impact of baryonic effects on subhalo positions. Orange dotted lines show the impact of baryonic effects on Vcirc. Red dashed lines assess the importance
of star formation in satellites after accretion. Blue dot–dashed lines show the impact of the stripping of stars inside massive haloes. The error bars display the
jackknife statistical errors. See the main text for more details.

in SHAM, because it enables the modelling of galaxy clustering
with a single subhalo property. Naturally, the properties of galaxies
are complex functions of their merger and assembly histories, but
as long as these details are not correlated with large scales, they can
be treated as stochastic fluctuations within SHAM.

We start by displaying in Fig. 12 the median growth histories of
central and satellite EAGLE galaxies within a narrow Vrelax bin from
97 to 103 km s−1. We show the evolution of Vcirc, MDM, Mgas, and
Mstar for centrals (left-hand panel) and satellites (right-hand panel).
Different line styles indicate the results for galaxies inside three
disjoint host halo mass bins (note that the range of halo masses is
different for centrals and satellites). In the case of satellites, the grey
bands mark the time after these objects were accreted and brown
bands mark the period after the maximum value of Mstar(z) has been
reached.

Interestingly, for every parameter there is a clear distinction be-
tween subhaloes hosted by haloes of different masses. Central sub-
haloes in the higher host halo mass bin formed more recently, host
more massive galaxies, and have larger gas reservoirs than cen-
tral subhaloes hosted by less massive host haloes. Centrals hosted
by haloes in the most massive bin host a galaxy with a median
Mstar 33 per cent higher than the median value for all the subhaloes.
On the other hand, centrals hosted by the least massive haloes
have a median Mstar 18 per cent smaller. Therefore, the difference
in Mstar is 0.22 dex and it corresponds to 16 per cent of the scatter
in Mstar at a fixed Vrelax (cf. Fig. 2), which suggests that a non-

negligible fraction of the scatter can be explained by host halo
variations.

The evolution of satellites is also different in distinct host halo
mass bins. Subhaloes that reside in more massive haloes reduce
their MDM and Vcirc values more significantly, suffer from stronger
stripping of gas, and stop forming stars earlier than galaxies in less
massive haloes. Furthermore, these processes appear to start prior
to infall in all cases (this also serves as an example of the limitation
of Vinfall), but the earlier the higher the halo mass (see also Behroozi
et al. 2014; Bahé & McCarthy 2015). Nevertheless, and contrary to
the central galaxies, the final Mstar is nearly independent of the host
halo mass. It is also important to mention that the median Mstar for
satellites is 21 per cent higher than for centrals, which corresponds
to 0.08 dex. Thus satellite galaxies have statistically a greater Mstar

than central galaxies.
In general, the evolution of satellites is more complicated than

that of centrals due to processes like strangulation, harassment, ram-
pressure stripping, and tidal stripping (e.g. Wetzel & White 2010;
Watson et al. 2012). These effects alter the growth of satellites in a
non-trivial way, which is not accounted for in SHAM. On the other
hand, these processes are still not fully understood in detail, and it
is not clear how realistically current hydrodynamical simulations
like EAGLE capture them. For instance, a precise modelling of ram
pressure necessarily requires a precise modelling of the intracluster
and interstellar medium. Additionally, a precise modelling of tidal
stripping requires precise morphologies of the infalling galaxies.
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Figure 12. Evolution of the median of several subhalo properties along the merger history for centrals (left-hand panel) and satellites (right-hand panel) with
Vrelax between 97 and 103 km s−1. The coloured lines show the evolution of the Vcirc, MDM, Mgas, and Mstar, as indicated by the legend. For each component,
different line styles indicate different ranges of host halo mass. Black lines are surrounded with a grey coloured area after tinfall and brown lines with a brown
one after tMmax

star
. The centrals acquire Mmax

star at z = 0 and the ones that reside in more massive haloes end up with higher stellar masses. For satellites the
behaviour of Mstar is more complex. After infall, the satellites which contain gas continue forming stars until their gas is lost, but they can lose stellar mass due
to tidal stripping. The subhaloes in the right-hand panel which reside in haloes of 1011.6–1012.6, 1012.6–1013.6, 1013.6–1014.6 M� end up with, respectively,
99, 94, 91 per cent of their Mmax

star . The stripping of DM, gas, and stars is thus more efficient for satellites in more massive host haloes (see Table 6).

Table 6. Effect of the stripping of DM and stars from satellites, and of
star formation after infall. Each value corresponds to the median of the
distribution and its uncertainty computed as σ = 1.4826 MAD/

√
n, where

MAD is the median absolute deviation and n the number of elements.

M200[M�] MDM
Mmax

DM

Mstar
Mmax

star

Mstar
M infall

star

Mstar = 108.77–109.27M�
1011.6–1012.6 0.428 ± 0.011 1.000 ± 0.000 1.714 ± 0.030
1012.6–1013.6 0.314 ± 0.008 0.954 ± 0.002 1.828 ± 0.035
1013.6–1014.6 0.274 ± 0.008 0.904 ± 0.004 1.446 ± 0.024

Mstar = 109.27–109.77 M�
1011.6–1012.6 0.458 ± 0.015 1.000 ± 0.000 1.526 ± 0.028
1012.6–1013.6 0.329 ± 0.011 0.987 ± 0.001 1.752 ± 0.037
1013.6–1014.6 0.278 ± 0.011 0.935 ± 0.004 1.550 ± 0.034

Mstar = 109.77–1010.27 M�
1011.6–1012.6 0.489 ± 0.023 1.000 ± 0.000 1.360 ± 0.027
1012.6–1013.6 0.352 ± 0.014 0.998 ± 0.000 1.532 ± 0.033
1013.6–1014.6 0.263 ± 0.012 0.945 ± 0.004 1.433 ± 0.030

Mstar = 1010.27–1010.77 M�
1011.6–1012.6 0.670 ± 0.049 1.000 ± 0.000 1.187 ± 0.032
1012.6–1013.6 0.386 ± 0.020 0.993 ± 0.001 1.197 ± 0.018
1013.6–1014.6 0.238 ± 0.014 0.937 ± 0.005 1.246 ± 0.025

Hence, we choose to bracket their impact on SHAM clustering
predictions by considering two extreme situations.

We first consider a situation where satellite galaxies do not form
or lose any stars after infall, i.e. the value of Mstar is fixed at
infall. The last column in Table 6 compares Mstar at infall with
Mstar at z = 0 for galaxies hosted by haloes of different masses. The
corresponding relative difference in the 2PCF is displayed by a red

line in Fig. 11. In this case the satellites are less massive, which
causes SHAM to result in a 10–20 per cent (depending on the range
of Mstar considered) lower clustering signal on large scales. On small
scales, the deficiency is larger, reaching more than 50 per cent.

The second situation we consider is one where there is no tidal
stripping of stars in satellite galaxies, i.e. performing SHAM using
the maximum value of Mstar a galaxy has ever attained along its
history, Mmax

star . In Table 6, we compare the values of Mmax
star with Mstar

at z = 0 for different bins in stellar and host halo mass. On average,
we find that the Mstar reduction begins after satellites have lost about
2/3 of their MDM. We also find that this effect is stronger for low-
mass galaxies in higher mass haloes, which is indeed expected due
to the stronger tides. The reduction can be up to 10 per cent in haloes
with M200 > 1013.6 M�. On the other hand, this effect is essentially
zero in haloes with M200 < 1012.6 M�.

To quantify how the stripping of stars affects the SHAM clus-
tering predictions, we calculate the 2PCF after selecting galaxies
according to Mmax

star and compare it to our fiducial EAGLE cata-
logue. The result is shown by the blue dot–dashed lines in Fig. 11.
In this case, the clustering is enhanced by about 10 per cent on scales
greater than 1 Mpc and by up to 35 per cent on scales below 1 Mpc.
This can be understood from the fact that the satellites are more
massive, causing the satellite fraction and mean host halo mass
increase, which affects the 2PCF particularly on small scales.

The two effects considered here, stellar stripping and reduced gas
supply in satellites, affect the SHAM galaxy clustering to a similar
magnitude but with opposite sign. In particular, for all Mstar their im-
pact is larger than the differences between SHAM and EAGLE pre-
dictions. Thus, the final galaxy clustering is sensitive to how these
processes balance each other, which in turn depends sensitively
on baryonic processes not yet fully understood quantitatively. On
the one hand, this implies an intrinsic limitation of current SHAM
modelling that is reached when better than ∼20 per cent accuracy
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is required. On the other hand, this suggests that galaxy clustering
on small scales is a powerful test for the physics implemented in
hydrodynamical simulations. For instance, if SHAM results were to
be taken as the reality and confirmed by observations, then EAGLE
would implement too weak ram-pressure stripping of massive satel-
lite galaxies and excessive stellar stripping of low-mass galaxies in
haloes with M200 > 1012.6 M�.

6 C O N C L U S I O N S

We have used the Ref-L100N1504 EAGLE cosmological hydro-
dynamical simulation to perform a detailed analysis of SHAM for
galaxies with stellar mass ranging from 108.77 M� to 1010.77 M�.
We used a catalogue of paired EAGLE galaxies and subhaloes in
a corresponding DM-only simulation to search for an optimal im-
plementation of SHAM, to test its performance in terms of halo
occupation numbers, radial number density profiles, galaxy cluster-
ing, and assembly bias, and to investigate the validity of some of
the key assumptions underlying SHAM.

Our main findings can be summarized as follows.

(i) We argue that all current SHAM implementations use DM
properties that are affected by undesired physical or numerical arte-
facts. Thus, we propose a new measure: Vrelax, which is defined as
the maximum circular velocity that a subhalo has reached while
satisfying a relaxation criterion. We also studied SHAM using three
other subhalo properties: Vmax, the maximum circular velocity at z

= 0; Vinfall, the maximum circular velocity at the last time a sub-
halo was a central; and Vpeak, the maximum circular velocity that a
subhalo has reached. In Fig. 4 we show that out of the four SHAM
flavours we tested, Vrelax exhibits the strongest correlation with Mstar,
independently of the subhalo history.

(ii) Vinfall, Vpeak, and Vrelax reproduce the EAGLE predictions
reasonably well (with Vrelax performing slightly better than Vinfall

and Vpeak):

(a) Fig. 5 shows that the distributions of host halo masses between
EAGLE and SHAM flavours match closely. In particular, the total
satellite galaxy fraction agrees to within 5 per cent.

(b) Fig. 7 shows that galaxy clustering strength agrees to within
10 per cent on scales greater than 1 Mpc and within 30 per cent on
smaller scales. We highlight that this relation holds over four orders
of magnitude in amplitude and three in length scale.

(c) Fig. 8 shows that in redshift space the agreement improves to
the point that there is no statistically significant discrepancy.

(d) Assembly bias is present both in EAGLE and in its SHAM
catalogues. Fig. 9 shows that assembly bias increases the clustering
by about 20 per cent.

Although small, the differences between EAGLE and SHAM are
systematic and significant. We attribute these to SHAM slightly
overpredicting, compared to EAGLE galaxies, the fraction of low-
mass satellites in massive haloes.

(iii) Fig. 12 shows that there is a relation between Mstar and
halo mass at fixed Vrelax. Centrals hosted by more massive haloes
typically have higher Mstar, formed more recently, and contain more
gas than those hosted by smaller haloes. Satellites that reside in
more massive haloes typically reduce their MDM and Vcirc values
more significantly, suffer from stronger stripping of gas, and stop
forming stars before accretion and earlier than those in less massive
haloes. The Mstar of satellite galaxies at z = 0 is independent of the
host halo mass and it is ∼20 per cent greater than the Mstar of central
galaxies at fixed Vrelax.

(iv) Interactions between satellites and their host haloes are very
important for the amplitude of the correlation function, especially
on small scales. We show in Fig. 11 that the difference between two
extreme cases: where no stars are formed after accretion and where
galaxies suffer no stripping of stars, result in differences in the
amplitude of the 2PCF of ±20 per cent on large scales and almost a
factor of 2 on small scales.

We note that, although the box size of EAGLE (100 Mpc) is
among the largest for simulations of its type, it is not large enough to
ensure converged clustering properties. The lack of long wavemodes
produces a few per cent excess of haloes with M � 1014 M� and a
larger deficiency of more massive haloes. We expect this to reduce
the satellite fraction, which may affect the shape and amplitude of
overall correlation function, and might thus make our assessment
of SHAM slightly too optimistic.

Overall, our results confirm the usefulness of SHAM for interpret-
ing and modelling galaxy clustering. However, they also highlight
the limits of current SHAM implementations when an accuracy
better than ∼20 per cent is required. Beyond this point, details of
galaxy formation physics become important. For instance, SHAM
assumes that the relation between Vrelax and Mstar is independent
of the host halo mass. However, the validity of this assumption
depends on how efficiently the gas content of satellite galaxies is
depleted after accretion, on the importance of the stripping of stars
in different environments, and on the relation between MDM and
Mstar for centrals. EAGLE suggests that these effects depend on
the host halo mass (and thus possibly on cosmological parameters),
which would break the family of one-parameter SHAM models.

Fortunately, it seems possible that these physical processes can
be modelled, and marginalized over, within SHAM. An interesting
line of development would be the extension of SHAM to a two-
parameter model, for instance a function of Vrelax and Mhalo. This
would not only reduce the systematic biases in the correlation func-
tion, but would also increase the predictive power of SHAM for
centrals. We plan to explore this in the future.

Naturally, as hydrodynamical simulations improve their realism,
it should be possible to better model the evolution of galaxies hosted
by massive clusters, which will lead to more accurate SHAM imple-
mentations and a more accurate assessment of its performance. Ul-
timately, these developments will enable quick and precise predic-
tions for the clustering of galaxies in the highly non-linear regime.
In principle, this could be extended as a function of cosmology em-
ploying, e.g. cosmology-scaling methods (Angulo & White 2010;
Angulo & Hilbert 2015). This opens up many interesting possi-
bilities, such as the direct use of SHAM to optimally exploit the
overwhelmingly rich and accurate clustering measurements that are
expected to arrive over the next decade.
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APPENDI X A : R ESOLUTI ON

In this section, we will present two tests that suggest that our results
are not affected by the finite mass and force resolution of the EAGLE
and DMO simulations. Specifically, we will explore the number of
DM particles of the SHAM galaxies and compare simulations with
different resolutions.

In Fig. A1 we show the PDF of the number of DM particles asso-
ciated with central (top panel) and satellite (bottom panel) SHAM
galaxies. Coloured lines show the results for different Mstar bins
using Vrelax. The detection threshold of our SUBFIND catalogues (20
particles) is marked by a vertical dashed line. The top panel shows
that nearly all the central subhaloes are resolved more than 1000
DM particles. Satellites, on the other hand, are resolved with fewer
particles because some of them will be lost to tidal stripping. How-
ever, since the value of Vrelax will be acquired before the stripping
begins, we do not expect this to affect our results. The only effect
that might be important is that a subhalo can fall below the detection
threshold while its counterpart galaxy is still resolved. We see that
this might be the case for a very small fraction subhaloes in the
lowest Mstar bin. We quantify these effects next.

In Fig. A2, we show the number density of satellites (top panel)
and the satellite fraction (bottom panel) for three different EAGLE
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Figure A1. Number of DM particles in subhaloes of a given Mstar. The
coloured lines represent the mean PDFs of 100 realizations using Vrelax for
different stellar mass bins and the errors are the standard deviation of the
100 realizations. The top (bottom) panel shows the PDFs of centrals (satel-
lites). The black dashed line indicates the detection threshold of our SUBFIND

catalogues. The centrals are always resolved with more than 1000 particles.
However, the satellites have a tail in their distribution which reaches the
detection threshold.

simulations and their DMO counterparts. The black lines show the
results for the same simulation used in this paper (Ref-L100N1504),
the blue lines for a simulation with 25 Mpc on a side and the same
resolution as Ref-L100N1504 (Ref-L025N376), and the red lines
for a simulation with 25 Mpc on a side and eight times higher
mass resolution than Ref-L100N1504 (Ref-L025N752). To estimate
the cosmic variance, we divide Ref-L100N1504 into 64 boxes of
25 Mpc on a side; the grey shaded areas enclose the 68 per cent of
these boxes. The regions enclosed by vertical dotted lines in the
bottom panels indicate the bins employed in Section 4.

The left two panels show that galaxies according to Mstar or Vmax

produce almost identical satellite fractions in both (Ref-L025N752)
and (Ref-L025N386), despite the former having eight times better
mass resolution. The satellite fraction coincides with our main EA-
GLE run for high number densities, but underpredicts the satellite
fraction at low number densities. This, however, is plausibly ex-
plained by cosmic variance and the lack of long wave modes due
to the smaller volume (64 times). The rightmost panel shows the
DMO versions, for which the agreement between different resolu-
tions is even better. Thus, this suggests that the results presented
in this paper are not affected by the numerical resolution of our
simulations.

A P P E N D I X B : C O R R E L AT I O N F U N C T I O N
C A L C U L AT I O N

The 2PCF counts the number of pairs at different distances in re-
lation to the number of pairs that one would have expected from a
random distribution (see e.g. Davis et al. 1985; Peebles 2001):

dP = n2[1 + ξ (r12)]dV1dV2, (B1)

where n is the mean density and ξ (r12) the correlation function.
This equation describes the excess probability, compared with a
random sample, of finding a point in an element of volume dV2 at a
distance r12 from another point in dV1. The 2PCF is also the Fourier

Figure A2. Number density of satellites (top panels) and satellite fraction (bottom panels) versus total number density. In the left-hand, centre, and right-hand
panels subhaloes are ordered according to MRef

star , V Ref
max, and V DMO

max , respectively. Coloured lines show the results for different simulations. The grey shaded
areas enclose the 68 per cent of the results after dividing the simulation with the largest volume into 64 smaller boxes of 25 Mpc on a side. The regions enclosed
by dotted lines indicate the bins employed in Section 4.
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transform (FT) of the power spectrum P (k):

ξ (r) = 1

(2π)3

∫
dk3P (k)eik·x, (B2)

and the power spectrum is defined as〈
δ̂(k)δ̂(k′)

〉 = (2π)3δD(k − k′)P (k), (B3)

where δ̂(k) is the FT of the density contrast and δD(k) is the Dirac
delta function. We can use this property to quickly compute the
2PCF using the fast FT. To calculate the 2PCF, we follow the fol-
lowing steps.

(i) We divide the simulation cube into 10243 boxes of 97.6 kpc
on a side. We determine in each box the density contrast using a
cloud-in-cell scheme. The density contrast is defined as

δ(x) = N − 〈N〉
〈N〉 , (B4)

where N is the number of subhaloes inside one box and 〈N〉 is the
total number of subhaloes in the simulation cube.

(ii) The FT of the density field is

δ̂(k) =
∫

dx3e−ik·xδ(x), (B5)

we compute this FT using version 3.3.3 of the Fastest Fourier Trans-
form in the West (FFTW3; http://www.fftw.org/), a compilation of C

routines for computing the discrete FT.
(iii) We calculate P (k) using equation (B3) and then we subtract

the Poisson noise. The Poisson noise arises from sampling a con-
tinuous distribution with a discrete number of objects. It scales as
1/n, where n is the number density of objects.

(iv) The next step is to go back to real space by computing the
FT of P (k), yielding the 2PCF.

(v) Finally, we spherically average the correlation function ob-
taining the 3D 2PCF ξ (|r|).

By dividing the simulation cube into different number of cells,
we verified that using 10243 boxes represents the clustering beyond
0.3 Mpc faithfully.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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