
Kacsuk, P, Kecskemeti, G, Kertesz, A, Nemeth, Z, Kovács, J and Farkas, Z

 Infrastructure Aware Scientific Workflows and Infrastructure Aware Workflow
Managers in Science Gateways

http://researchonline.ljmu.ac.uk/id/eprint/4765/

Article

LJMU has developed LJMU Research Online for users to access the research output of the
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by
the individual authors and/or other copyright owners. Users may download and/or print one copy of
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or
any commercial gain.

The version presented here may differ from the published version or from the version of the record.
Please see the repository URL above for details on accessing the published version and note that
access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you
intend to cite from this work)

Kacsuk, P, Kecskemeti, G, Kertesz, A, Nemeth, Z, Kovács, J and Farkas, Z
(2016) Infrastructure Aware Scientific Workflows and Infrastructure Aware
Workflow Managers in Science Gateways. Journal of Grid Computing. ISSN
1570-7873

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk

Abstract—The workflow interoperability problem was

successfully solved by the SHIWA project if the workflows to be

integrated were running in the same grid infrastructure.

However, in the more generic case when the workflows were

running in different infrastructures the problem has not been

solved yet. In the current paper we show a solution for this

problem by introducing a new type of workflow called

infrastructure-aware workflow. These are scientific workflows

extended with new node types that enable the on-the-fly creation

and destruction of the required infrastructures in the clouds. The

paper shows the semantics of these new types of nodes and

workflows and also how they can solve the workflow

interoperability problem. The paper also describes how these

new type of workflows can be implemented by a new service

called Occopus, and how this service can be integrated with the

existing SHIWA Simulation Platform services like the WS-

PGRADE/gUSE portal to provide the required functionalities of

solving the workflow interoperability problem.
Keywords—workflow; cloud; virtual infrastructure; dynamic

deployment.

I. INTRODUCTION

Workflows are getting more and more popular in science
user communities in order to formulate complex simulation
and modeling activities. Unfortunately, too many different
workflow languages and workflow managersoften prevent user
communities from reusing workflows created by another user
community or sometimes even by the same community. The
situation is even worse because most of the workflow systems
are tightly connected to one particular distributed computing
infrastructure (DCI), i.e., the workflow developed in a certain
workflow system can be executed only in the DCI for which
the workflow system was designed. It means that if a user
community selects a certain workflow system, it is locked into
the DCI integrated with the workflow system. This causes
problems not only in reusing and sharing workflows among
different user communities, but also porting workflow
applications from one DCI to another.

This problem was addressed by the EU FP7 SHIWA
project [21] that offered two different approaches to solve the
problem. The so-called white box model enabled to transform
the workflow to be reused into the target workflow system used
by the new user community. Although this concept is very
flexible and enables any modification of the original workflow,
the transformation can be applied only for those workflow
structures that are commonly used in all the WF languages.
Workflow system specific structures usually prevent the
transformation. The other model, the so-called black box model
assumes that the workflow to be reused is a black box and must
be executed as it is without any internal modification or
reconfiguration of the workflow. It makes the reuse very easy
but it means that when the workflow is reused by another

community it should run in the same concrete DCI where it
was developed. However, this is a very hard condition since the
new community might not access the original DCI for which
the workflow was developed and hence cannot reuse the
workflow.

This problem was raised in the EU FP7 ER-Flow project
[9] where four different user communities (astrophysics,
biomedical, helio-physics and chemistry communities)
intensively investigated the usability of the black box concept.
As long as they wanted to share and reuse workflows in the
same concrete DCI it was working but when they could not
access the original concrete DCI they were not able to reuse the
workflows.

Fortunately, recently a new DCI type appeared called
clouds, where we can dynamically deploy even a complete
DCI. This approach can facilitate solving the problem
mentioned above. If the TOSCA [25] descriptor of the DCI in
which the workflow was developed is available, we can deploy
the required DCI in the cloud by means of a TOSCA-compliant
cloud orchestrator. After that, we can execute the reusable
workflow there. This way we replace the original physical DCI
with a virtual infrastructure (VI). The problem is that we need
such a TOSCA-compliant cloud orchestrator by which a DCI
can be deployed in all the most popular cloud systems like
Amazon, OpenStack, OpenNebula, etc. In SZTAKI we have
develop the Occopus cloud orchestrator service that enables the
required DCI deployment in all the major cloud systems.

There are two options for controlling the deployment
activity of the cloud orchestrator service inside a workflow
system. The first option is that the user places the required
control nodes into the workflow. We will call these kinds of
workflows that explicitly contain deployment control nodes as
infrastructureaware workflows. The minimum set of such
nodes contains two nodes: DEPLOY for deploying the required
VI in the cloud and UNDEPLOY to remove the VI from the
cloud.

The other option is that the workflow manager can
automatically recognize the situation when a new VI should be
deployed in the cloud and calls the cloud orchestrator service to
deploy the VI. Similarly, the workflow manager can detect that
there is no need to further maintain the VI and hence can call
the cloud orchestrator service to remove the VI. We will call
these kinds of workflow managers as infrastructure aware
workflow managers.

In the present paper we investigate both possible concepts
showing their possible logical representations and
implementations.

Infrastructure aware scientific workflows and

 infrastructure aware workflow managers

in science gateways

Peter Kacsuk, Gabor Kecskemeti, Attila Kertesz, Zsolt Nemeth, József Kovács, Zoltán Farkas

Laboratory of Parallel and Distributed Systems

MTA SZTAKI the Institute for Computer Science and Control of the Hungarian Academy of Sciences

Budapest, Hungary

{kacsuk.peter, kecskemeti.gabor, kertesz.attila, nemeth.zsolt, kovacs.jozsef, farkas.zoltan}@sztaki.mta.hu

The overall structure of the paper is as follows. In Section
II we give more details of the SHIWA black box concept and
its usage in the ER-Flow project. Then in Section III we
investigate the possibilities of creating infrastructure aware
workflows. In Section IV, we shortly describe the Occopus
service that enables the deployment of complete DCIs in the
major cloud systems. This section will also explain the
infrastructure aware workflow execution mechanism and how
it is integrated into the WS-PGRADE/gUSE gateway
framework based on which the SHIWA portal works. Section
V introduces the concept of infrastructure aware workflow
managers and shows a possible implementation mechanism for
them. Section VIgives an overview of related research and
finally, in the Conclusions we assess the two concepts and
show the status of the current research and its further
directions.

II. SHIWA BLACK BOX CONCEPT IN PRACTICE

A. SHIWA Simulation Platform

The SHIWA black box concept, realized by the SHIWA
Simulation Platform, consists of the following components:

 SHIWA Workflow Repository to store the published
reusable workflows (developed and operated by Univ.
of Westminster, UK)

 SHIWA Portal to enable the integration and execution
of the reusable workflows into the native workflows of
the SHIWA Portal (developed by MTA SZTAKI and
operated by Univ. of Westminster, UK)

 SHIWA Virtual Organization (VO) that provides a
DCI where SHIWA’sreusable workflows were
developed and run (services of the VO were run in four
countries)

B. SHIWA Workflow Repository

In order to publish the reusable workflows, the SHIWA
project developed the SHIWA Workflow Repository [21].
Workflows written in any workflow language can be uploaded
here by defining the so-called workflow bundle that contains
all the relevant information about the structure of the
workflow, the files used or produced by the workflow, version
and configuration of the workflow, etc. The workflow bundle
also contains details of the workflow implementation and
execution environment including the identifier of the concrete
DCIs where the workflow nodes can run. The detailed
description of the structure of the workflow bundle can be
found in [21].

There are two options to define the workflow bundle for a
particular workflow. Option 1, the preferred one is where the
developer of the workflow system creates an automatic
workflow bundle generator and uploader. In this case after
completing the workflow development the workflow developer
simply calls this tool and it will automatically generate the
required bundle and upload it into the SHIWA Workflow
Repository. Such tool was developed for ASKALON,
MOTEUR, WS-PGRADE and Triana workflow systems.
These examples provide a best practice description for the
developers of other workflow systems how to develop a similar
tool for their own workflow system.

The second option requires the workflow developer to
study the bundle and to manually create and upload it into the
repository. This is a quite difficult process and hence usually
workflow developers do not use it.

Once the workflow bundle is published in the repository,
other workflow developers and end-user scientists can search
for it and use it via the SHIWA Portal.

C. SHIWA Portal

The SHIWA portal is a generic purpose WS-
PGRADE/gUSE portal that is adapted for the SHIWA system
as follows:

1. It is directly connected to the SHIWA Workflow
Repository and enables the search inside the
repository.

2. Once candidate workflows are found they can be
selected and put into a pre-selection list.

3. When the WS-PGRADE workflow is configured any
node of the workflow can be configured to take a
reusable workflow from the pre-selection list and
create a so-called embedded workflow node.
(Workflows containing embedded workflow nodes are
called meta-workflows [22] since they integrate many
different workflows into a single workflow.) If a WS-
PGRADE workflow node is associated with a reusable
workflow (e.g. a MOTEUR workflow) from the pre-
selection list, the execution of this WS-PGRADE
workflow node means to invoke the (MOTEUR)
workflow enactor with the associated (MOTEUR)
workflow.

4. The WS-PGRADE workflow manager is extended
with the SHIWA Submission Service [21] which has
the capability of submitting the associated reusable
workflow to the corresponding workflow enactor that
works in the DCI where the reusable workflow was
developed. Of course, the user should give the required
authentication information before the WS-PGRADE
workflow system submits the reusable workflow to the
DCI specified in the bundle of the reusable workflow.

D. SHIWA Virtual Organization

The SHIWA Virtual Organization contained two types of
grid (gLite and Globus) computing and storage sites from four
countries. gLite sites were needed since MOTEUR was
developed for gLite and Globus was needed because
ASKALON was designed for Globus. WS-PGRADE
workflows can run both in gLite and Globus (and even in
ARC, UNICORE and BOINC). The SHIWA Virtual
Organization contained a VOMS and a myProxy server and a
pre-deployed MOTEUR and ASKALON workflow engine.
These are used to execute the reusable MOTEUR and
ASKALON workflows.

E. SHIWA Workflow Interoperability Practice in ER-Flow

As mentioned in the Introduction, the SHIWA workflow
interoperability concept was actively used by four user
communities in the ER-FLOW project [9]. The Helio-physics
community integrated Taverna workflows and WS-PGRADE
workflows. The BioMedical community combined MOTEUR
and WS-PGRADE workflows, while the astrophysics
community intended to integrate Kepler and WS-PGRADE
workflows. Finally, the chemistry community used UNICORE
and WS-PGRADE workflows [33].

The experience of these communities was that the black
box concept of SHIWA could be used in everyday practice
(they uploaded more than 200 workflows into the SHIWA
Workflow Repository) but in order to port them from the

SHIWA VO to other VOs some new approach was needed.
This new approach is based on the enabling of dynamic DCI
deployment possibility into clouds during workflow execution
as mentioned in the Introduction and described in detail in the
next sections.

III. INFRASTRUCTURE AWARE SCIENTIFIC WORKFLOWS

In order to solve the problem of creating meta-workflows
where embedded workflows can run in any kind of DCIs, we
proposeto extend the original meta-workflow with nodes
responsible for setting up the required infrastructure in clouds.
The aim of this workflow extension is to broaden workflow
usability, shareability and interoperability. This vision perfectly
fits in the previously introduced SHIWA black box concept
where reusable workflows are embedded into the actual
workflow. With this new concept we can also insert
deployment nodes responsible for deploying in a cloud the
infrastructure required for executing the embedded reusable
workflow. In such workflows besides the traditional
computation nodes, infrastructure managementnodes
(DEPLOY, UNDEPLOY)can also be placed. For the sake of
simplicity in this paper we deal only with DAG (Directed
Acyclic Graph) based workflows where arcs represent the data
dependency (and data transfer) among the computational nodes
and a node can be executed when all the input arcs hold the
required data. This semantics can naturally be extended with
the new infrastructure management nodes. In fact, it is not
obvious how infrastructure management nodes can fit into a
scientific workflow and there are many possibilities to define
the semantics of such an extended workflow. The most
important questions that can be raised on these new nodes are
the following:

1. Where to place the DEPLOY and UNDEPLOY
nodes in the workflow graph?

2. What is the expected lifetime (the so called scope)
of a VI created with a DEPLOY node?

3. How the scope is defined?

4. Should DEPLOY and UNDEPLOY nodes be used
in a structured way or can they be placed
anywhere without any restriction?

5. Who, when and with which parameters starts these
nodes?

Depending on the responses given to these questions there
are many options to place these nodes into a workflow graph.
To thoroughly discuss all the different possible options is
beyond the scope and ambitions of this paper. Here we give
only few alternative options that can easily be adopted for the
SHIWA environment described in Section II.For the sake of
simplicity, we assume that the host machine where the WFM
runs is connected to a certain cloud and the DEPLOY nodes
create the required VIs in this cloud. This assumption does not
influence the placement strategy of DEPLOY and
UNDEPLOY nodes but simplifies the number of parameters to
be passed them.

In order to show the possible options and their execution
mechanisms let’s consider a simple but not trivial workflow
example (Fig. 1) where the major problems of placing
DEPLOY and UNDEPLOY nodes can be highlighted.This
workflow consists of 5 nodes. (Notice thatwe use the WS-
PGRADE workflow notation during this paper but in principle
any other DAG based workflow language could be used as

example.) The Autodock node embeds a ready-to-use
Autodock workflow that is stored in the SHIWA Repository
and requires the usage of a particular BOINC infrastructure.
App2 and App3 another two nodes that can run in parallel with
Autodock, and they require exactly the same BOINC
infrastructure to run. Finally, SEQ1 does some data preparation
activities and SEQ2 processes the outputs of the Autodock and
App3 nodes. SEQ1 and SEQ2 has no special infrastructure
requirements, they can run for example on the same server
where the workflow manager runs.

Fig. 1.Workflow example for illustrating the issues of infrastructure aware

workflows

The first question is where to place the infrastructure
management nodes if the scope of DEPLOY is 1 node. Figure
2 shows a possible placement scheme of this kind of DEPLOY
nodes. The idea is that the three nodes requiring the new VI in
the cloud (BOINC in the example) are preceded by a DEPLOY
node.All the DEPLOY nodes get as parameter the TOSCA
descriptor of the BOINC VI and once they are activated by the
WFM they build the required BOINC VI in the cloud. Once
theirtarget workflow node (pointed by their output arc) is
finished the corresponding undeploy functionality is executed
automatically by the WFM and hence the user does not have to
place any UNDEPLOY node into the workflow graph. The
placement scheme of DEPLOY is very simple but there is a
significant problem with this concept. The three DEPLOY
nodes create redundantly three BOINC infrastructures although
the same BOINC VI could be used by Autodock, App2 and
App3.

Fig. 2.Workflow example for illustrating the placement of 1-node scope
DEPLOY nodes

A possible remedy for this problem is to allow the use of
DEPLOY nodes with N-node scope. In this case the scope of
the DEPLOY node could be defined by the number of output
arcs. Every output arc of the DEPLOY node would be
connected to a compute node requiringthe same VI and hence
works inside the scope of the DEPLOY node (see Fig. 3). The
execution of a pointed compute node inside the scope region

SEQ1
Autodo

ck
SEQ2

App2 App3

SEQ1
Autodo

ck
SEQ2

App2 App3

DEPLOY

DEPLOY

DEPLOY

could be executed when both its data input arcs and the input
arc coming from the preceding DEPLOY node contain the
required information. This information in the case of a
DEPLOY output arc is the identifier and access point of the
deployed VI. Notice that the compute nodes using the VI
should be connected toa scope-closing UNDEPLOY node.
Each compute node after finishing its work sends a VI
deactivation signal to the scope-closing UNDEPLOY node.
The VI deactivation information identifies the VI that should
be removed by the UNDEPLOY node. The WFM activates the
UNDEPLOY node when all its input arcs contains the VI
deactivation signal. This is completely in line with the original
node activation semantics of DAG workflows. Notice that this
solution eliminates the problem of the 1-node scope scheme
since it will create a single VI for all the three compute nodes
that need the same VI. The price for this efficiency is that the
workflow graph can contain too many arcs making difficult to
understand the workflow graph structure.

Fig. 3.Workflow example for illustrating the placement of N-node scope
DEPLOY nodes

One possible solution for this problem is if those nodes that
require the same VI are clustered and placed inside an
embedded workflow as shown in Figure 4. In such case a
single DEPLOY node is enough to precede the meta-node
(containing the clustered sub-graph) and hence this could be a
1-node scope DEPLOY which means that no UNDEPLOY
node is needed. It is important to emphasize that such a
clustering is not always possible (for example different VIs are
required, or node dependencies would make it inefficient) and
hence we still need N-node scope DEPLOY nodes and as a
consequence UNDEPLOY nodes when node clustering is not
possible.

Fig. 4.Workflow example for illustrating the placement of N-node scope
DEPLOY nodes

The discussion above gave answers for the first three
questions. The fourth question is about the structured way of
using DEPLOY and UNDEPLOY nodes. We can see that the
solutions discussed above always gave a structured solution of

using DEPLOY and UNDEPLOY node. In the case of 1-node
scope DEPLOY nodes implicitly we use a structured scheme
where the pair of the 1-node scope DEPLOY node is always
realized by an implicit UNDEPLOY node that is implemented
by the WFM. In the case of N-node scope DEPLOY nodes
they always should be used together with a symmetric
UNDEPLOY node whose existence can easily be checked at
workflow definition time before the workflow execution is
started. The simple structuring rule is that if a compute node
has an input arc originated from a DEPLOY node, then it
should have an output arc that is targeted to the UNDEPLOY
node that is the structured pair of the DEPLOY node. This is a
useful feature that makes manageable the creation of
infrastructure aware workflows. Notice that the unstructured
use of DEPLOY and UNDEPLOY nodes could cause many
errors that would turn out only at run time and would make the
development of infrastructure aware workflows very difficult.

The fifth question is very much related to the
implementation issues and hence it will be answered in Section
IV.

IV. IMPLEMENTATION OF INFRASTRUCTURE AWARE SCIENTIFIC

WORKFLOWS

As described in the previous section the introduction of the
two infrastructure deployment node types (DEPLOY and
UNDEPLOY) enables to solve the problem of integrating
various workflows taken from the SHIWA Workflow
Repository into a single but complex workflow that can
guarantee that the workflow taken from the SHIWA
Repository will be executed in the infrastructure specified for
it.

In this section we show how to implement the DEPLOY
and UNDEPLOY nodes in the WS-PGRADE/gUSE gateway
framework which is the portal of the SHIWA Simulation
Platform (SSP). It was already described in [22] how the
workflows taken from the SHIWA Repository are managed
and executed as embedded nodes in WS-PGRADE workflows
within the SHIWA Simulation Platform (SSP). Here we focus
on how to create the required infrastructure in the cloud before
the embedded workflow node is actually invoked by the WS-
PGRADE workflow enactor.

The key tool to implement the DEPLOY and UNDEPLOY
node types is a TOSCA compliant cloud orchestrator service.
Such a service called Occopus is under development in
SZTAKI, and its preliminary version was discussed in a
previous paper [13] (referred as One Click Cloud
Orchestrator). In that work it was introduced as a technique to
instantiate and maintain flexible and resilient virtual
infrastructures. Since then, Occopus has been released as open
source software under Apache v2 license [26]. Before we
describe how Occopus relates to the meta-workflows of the
WS-PGRADE/gUSE gateway framework, we give a short
overview of the Occopus components that allow the prompt
creation and fault tolerant maintenance of the virtual
infrastructures capable of hosting the various workflow
activities. In order to achieve its goals, Occopus uses two kinds
of components: ones that are oriented on the support of end
users, and ones that focus on the definition, inspection of
constantly developing virtual infrastructures.

First, let us focus on the end user oriented components: the
template store and the notification service. With the template
store, Occopus allows virtual infrastructure designers to create
such infrastructure descriptions that on one hand are easily

SEQ1
Autodo

ck
SEQ2

App2 App3

DEPLOY

UNDEPLOY

SEQ1
Autodo

ck
SEQ2

App2 App3

DEPLOY

customizable by end-users and on the other hand are capable to
describe the peculiarities of virtual infrastructures. With the
exception of the customization options, we will not discuss
further the details of the virtual infrastructure description as it
is out of scope. The customization options are specified in the
description as hints attached to the attributes that the user
should be able to change. These hints allow the automated
construction of the UI for infrastructure customization (this UI
will be further discussed in Section IV/A). The other user
oriented component of Occopus is the notification service, that
plays crucial role after the infrastructure is customized by the
user and its creation is requested from the virtual infrastructure
management related components (see in Section IV/A). The
notification service enables automated reactions to particular
infrastructure maintenance related activities (e.g., when the
infrastructure first becomes available or when it has scaled to
allow more throughput). This service plays a crucial role in the
integration of infrastructure management to workflows as it
allows determining when a particular virtual infrastructure
becomes available for future workflow activities.

Fig. 5.Occopus virtual infrastructure management components

Next, we turn our attention towards the components
actually managing the virtual infrastructures for the end-user
(see Fig. 5): (i) Automated Infrastructure Maintenance, (ii)
Infrastructure Processor, (iii) Cloud Handler, (iv) VM
Reshaper, and (v) Information Dispatcher. We have defined the
Automated Infrastructure Maintenance component as the one
responsible to understand the customized deployment
descriptors. But this component does not only provide the
descriptor processing capabilities but it also offers dependency
resolution (so the nodes of the particular instantiated
infrastructures are instantiated in a natural order), scalability
and error resilience rule evaluation and enactment (so the end
user does not have to intervene in its infrastructure’s internal
operations). The Infrastructure Processor component of
Occopus is used to ensure that the definitions of the
infrastructure nodes are propagated to the VM Reshaper
(which allows runtime reconfiguration of a virtual machine to
meet a particular node description). In addition, the
Infrastructure Processor sends virtual machine requests to the
Cloud Handler that ensures the intended role of the virtual
machines after their creation. Next, the Cloud Handler is
responsible of selecting a cloud infrastructure that will host a
particular virtual machine, and interfacing with the

infrastructure provider in a unified manner. Finally, the
Information Dispatcher component allows the Automated
Infrastructure Maintenance component to determine the current
state of the infrastructure to be used during the scaling and
error resolution rule evaluation process.

In the coming sub-sections, we will show how these
components are exploited when a user defines and executes a
meta-workflow in the SHIWA WS-PGRADE/gUSE gateway
to allow dynamic virtual infrastructure provisioning for the
embedded scientific workflows.

A. The behavior of the infrastructure creation node

Fig. 6.Definition and behavior of an infrastructure creation node

To allow on demand virtual infrastructure deployments in a
workflow environment, we introduced the concept of
infrastructure creation nodes (DEPLOY nodes). These nodes
are intended to directly interface with the Occopus system but
they allow the definition of infrastructure management
operations according to customary practices within the
workflow ecosystem. In the following, we first will show how
workflow creators could incorporate such DEPLOY nodes into
their workflows in order to increase their dynamic nature, and
then we will show how a workflow enactor can handle these
DEPLOY nodes.

Whenever a workflow creator inserts an embedded
workflow from the SHIWA Repository that needs a specific
kind of infrastructure that are not widely accessible to the user
community of the newly constructed workflow, he/she can
insert a DEPLOY node into the meta-workflow to be executed
before such infrastructure would be needed by the embedded
workflow’s activities. Fig. 6 represents this design time
operation with step d1 (create). Once the node is created, the
workflow system should offer the opportunity to select the kind
of infrastructure the workflow creator expects to be available
for the workflow after the DEPLOY node has been executed.
This operation is embodied in steps d2 and d3. As an example,
in the WS-PGRADE/gUSE portal, these two steps can be
achieved similarly to the SHIWA portal’s workflow browsing
and selection facilities. However, instead of turning to the
SHIWA repository, now the workflow editor is expected to

Cloud 2Cloud 1

Automated
Infrastructure
Maintenance

Infrastructure

Deployment

Descriptor

Information
Dispatcher

Infrastructure
Processor

Cloud
Handler

VM Reshaper
px

py

pz

Ix

DEPLOY

Notification
Service

Template
Store

Automated
Infrastructure
Maintenance

Workflow
Enactor

Autodock

bro
w
se

se
le

ct

create

custom
ize

Infrastructure

Deployment

Descriptor

g
e

n
e

ra
te

add inputs to
infrastructure

context

Request Infra

subscribe

M
o
n

ito
r

notify

Run activity
 on new infrastructure

Workflow
Creator

D
e

s
ig

n
 tim

e
R

u
n
 tim

e

D
e
s
ig

n
 t

im
e

Run time

d1

d2

d3d4

d5

r1 r2

r3

r4

r5

r6

interface with the Occopus template store. After the workflow
creator has selected the infrastructure template (Ix) needed for
his/her workflow, the workflow editor enters the infrastructure
customization mode (see step d4 in Fig. 6). In this mode, the
workflow creator will specify the parameterization (px, py, pz)
of the infrastructure Ix (e.g., when a BOINC infrastructure is
selected, then one will be able to customize the initial number
of worker nodes to be created alongside the BOINC server in
the cloud). Finally, when the workflow is saved after the
customization, the workflow editor will generate a custom
infrastructure deployment descriptor allowing the workflow
enactor to use this descriptor during the workflow’s runtime.
This final step is represented in step d5.

 Next, let us turn our attention to the runtime of the newly
edited workflow with a DEPLOY node in it. The top right part
of Fig. 6 shows this situation. The figure starts with the
workflow enactor’s realization that the next node to be
executed in the workflow is going to be a DEPLOY node. In
such case, first, the enactor will check whether the workflow
activities planned to be executed on the new infrastructure need
some input files. In such case, as seen in step r1, the previously
generated deployment descriptor is extended to let Occopus
know that the input files should be placed in the infrastructure
using the particular cloud’s virtual machine contextualization
technique. Of course, this step can be omitted if there is no
input needed, or if the upcoming activities are collecting their
input data on alternative ways. With the now completely
prepared deployment descriptor, the enactor will request
Occopus’s Automated Infrastructure Maintenance component
to construct the described infrastructure for the workflow (this
operation is shown as step r2 in the figure). The request returns
with the future infrastructure’s Occopus identifier. This
identifier is used in the following subscription step – r3 – in
which the enactor requests Occopus to let it know when the
requested infrastructure is constructed according to
customizations, definitions and rules found in the deployment
descriptor. Inside, Occopus will start monitoring (see step r4)
the infrastructure creation process to ensure the timely
notification of the workflow enactor in step r5. In the final
runtime steps, the enactor associates the just created
infrastructure to those activities that the workflow creator
designated for this specific kind of infrastructure. Then in step
r6, the activities (like the Autodock activity shown in the
figure) can start their execution on the new infrastructure just
as if the infrastructure has been there statically.

B. The behavior of the infrastructure destruction node

Naturally, if infrastructures can be created dynamically
during workflow runtime, their destruction should be also
managed dynamically. To this end, we propose the concept of
infrastructure destruction nodes (UNDEPLOY nodes).
Similarly to the infrastructure creation node, these nodes
couldbe also placed into the workflow (but as discussed before
it is only necessary to be placed as structured pairs of N-node
scope DEPLOY nodes). Compared to the complex definition of
the creation nodes, destruction nodes only need to refer to the
infrastructure no longer desired. This information is delivered
in the deactivation data on the input arc of UNDEPLOY.When
the deactivation data arrived on all input arcs of the
UNDEPLOY node the workflow manager sends the
destruction request to Occopus with the identifier of the VI to
be removed from the cloud.

V. INFRASTRUCTURE AWARE WORKFLOW MANAGERS

In Section III we have discussed the possibilities of
explicitly using DEPLOY and UNDEPLOY nodes in scientific
workflows and we called these workflows as infrastructure
aware workflows. These workflows enable users to initiate the
creation of a VI at any place of their workflow. Though the
proposed concept is structured and relatively simple to use the
ideal solution would be to make the creation of the required
VIs completely transparent for the users. In this section we
investigate how to organize workflows, workflow repositories
and workflow managers to make this concept feasible.

Since there is no need for DEPLOY and UNDEPLOY
nodes in this concept rather the workflow managers should be
able to recognize when a new VI should be deployed or a
previously created VI should be removed there is no language
aspect of this concept. We need a more intelligent WFM than
used so far and we will call this new type of more intelligent
WFMs as infrastructure aware workflow managers.

For a typical state-of-the-art WFM two kinds of
information is needed for every WF node in order to submit the
corresponding job into a concrete infrastructure:

<INF_type, concrete_INF_id>

Based on this information the WFM can create a JSDL
according to the BES standards [27] and can send the job
generated from the workflow node to the job submission
service together with this JSDL. The job submission service
tries to submit the job to the identified concrete infrastructure
(for example to GT5). If the submission fails then current
WFMs send back an error report to the user and are unable to
continue the execution of the workflow. Since for example grid
infrastructures are quite unreliable this problem frequently
happens.

The infrastructure aware WFM is able to overcome such a
problematic situation. If it encounters a job submission
problem it can automatically initiate deployment of the
concrete infrastructure as a VI in a cloud and once the VI is
created it can submit the job to the newly created VI.
Obviously, this approach requires that the TOSCA descriptor
of the required concrete infrastructure and a cloud orchestrator
service that can process the TOSCA descriptor should be
available for the WFM. Based on the available TOSCA
descriptor the WFM and the TOSCA compliant cloud
orchestrator can manage the creation and usage of the required
VI.Once the job submission and execution
successfullycompleted in the VI the WFM can invoke again the
cloud orchestrator to remove the VI from the cloud.

Notice that the described mechanism implements a1-node
scope DEPLOY node and hence the usage of explicitly placed
1-node scope DEPLOY nodes is not needed in this concept.

The next question is how to substitute the mechanism of N-
node scope DEPLOY nodes and their structured pair
UNDEPLOY node. The solution is very simple. After
successfully finishing a job submission and execution in a VI
the WFM does not request immediately the cloud orchestrator
to remove the VI from the cloud. Rather for every concrete
infrastructure that is used in the workflow the WFM creates a
Deploy Table that contains the following information:

<concrete_INF_id,TOSCA_Descriptor,VI_access,job_num
ber,VI_exists, time_to_remove>

The meaning of the items in this record is as follows:

 concrete_INF_id: identifies a concrete
infrastructure used in the workflow

 TOSCA_Descriptor: identifies the TOSCA
descriptor of the concrete infrastructure

 VI_access: information record needed to access
the VI in the cloud (initial value is EMPTY)

 job_number: shows the number of jobs actively
using the VI generated for this concrete
infrastructure (initial value is 0)

 VI_exists: a Boolean value indicating if the VI
exists in the cloud (initial value is FALSE)

 time_to_remove: a timer, if it reaches a
configurable predefined value, the VI should be
removed from the cloud (initial value is 0)

When a concrete infrastructure does not respond correctly
for job submission the WFM checks if the corresponding VI
already exists using the VI_exists boolean value. If the VI
exists then the WFM updates the concrete infrastructure access
information in the JSDL (using the stored VI_access
information) and the job submission service can submit the job
to the VI based on this access information. The WFM also
increments the job_number counter. If the value
time_to_remove is not zero, it sets this value to zero (see the
explanation later).

If the VI does not exist, then WFM calls the TOSCA
compliant cloud orchestrator service with the
TOSCA_Descriptor. Once the VI is deployed the cloud
orchestrator gives back the VI access information that is
written into VI_access information by the WFM. Then the
WFM updates the boolean value VI_exists to TRUE,
increments the job_number counter and updates the job JSDL
based on the VI access information and send the new JSDL to
the job submission service.

Once the job submission and execution is successfully
finished in the VI, the WFM checks the DEPLOY table record.
First decrements the job_number counter and then checks its
value. If it is more than 0 no more action is required. The VI
should still work since other jobs use it. If the value
job_number is 0, then the process of removing the VI can be
initiated. Could be done immediately but that would be not
optimal since it can happen that very quickly another node of
the workflow would require the same VI and then it would be
very costly to first remove the VI and then again deploy it.
Therefore before removing a VI it is better to wait a certain
amount of time (at least the required time of creating and
removing this VI). There could be many options to set up this
time threshold. The simplest one is if the WFM owner sets up
this time threshold as a parameter of the WFM. (More complex
and fine-tuned solutions can be applied but these techniques do
not influence the generic work of the infrastructure aware
WFM and hence we use in this paper this simplest
mechanism). According to the simplest option the initiation of
removing the VI means that the WFM sets the value
time_to_remove to the threshold given by the WFM owner.
Once the time_to_remove value reaches 0 the WFM calls the
cloud orchestration service to remove VI from the cloud.

Notice that the described mechanism automatically
recognizes when a DEPLOY node would be needed in the
graph and also automatically recognizes when the closing
UNDEPLOY node would be required. Therefore the user does

not have to deal with the placement and configuration of
DELOY and UNDEPLOY nodes.

In our experimental system the WFM is WS-
PGRADE/gUSE and the BES-compliant job submission
service is DCI Bridge [28]. The TOSCA-compliant cloud
orchestrator is Occopus. Currently we have no repository
where the TOSCA descriptors of the concrete infrastructures
could be stored. In ideal case the SHIWA Workflow
Repository would be this place storing a simplified Deploy
table with the following records:

<concrete_INF_id,TOSCA_Descriptor>

The advantage storing this Deploy table in the SHIWA
Workflow Repository is to store every workflow related
information in the same repository. When a user community
uses a certain concrete infrastructure and develops workflows
for such concrete infrastructure it is enough to create and store
once the required TOSCA_Descriptor for the substituting VI.
No matter how many workflows they develop and store in the
SHIWA Repository all these workflows can refer this common
TOSCA descriptor in the Deploy Table. Of course, if the
concrete infrastructure is changed then version numbering is
important and for every new version of the concrete
infrastructure a new TOSCA descriptor should be created and
stored in the Deploy table. The SHIWA Repository already
support versioning of the concrete infrastructures so this
versioning could be easily used in the Deploy table, too.

VI. RELATED WORK

The question of workflow interoperability has been
investigated in depth, see e.g. [8] where levels of possible
interoperation are specified. From a practical point of view
(simplifying [8]), approaches for workflow interoperability can
be divided into ones centered around workflow languages and
graph based ones. Language based interoperability solutions
tackle with translating from one workflow description language
to another or provide an intermediate common language [18].
This is a fine grained solution and the “white box” approach in
this paper corresponds to this option. Graph based approaches
try to embed graphs into one another [22][17] representing a
coarse grained concept and corresponds to the black box
approach presented in the paper. The work presented in this
paper is aimed at supporting the latter, graph based (black box)
type of interoperability solved by dynamic resource
orchestration. Dynamic resource orchestration – similar to the
Occopus concept presented in this paper – for on-demand
resource provisioning is a known technique, even in the context
of workflows nevertheless, to our best knowledge, not for
achieving interoperability. These resource orchestration
concepts are introduced in the followings.

One type of orchestration tools, such as Saltstack [20],
Puppet [19], Chef [1], Docker [5], Juju [23] and Cloudify [4],
covers the development and operations aspectsand are aimed at
automating development and system administration tasks such
as delivery, testing and maintenance to improve reliability,
security and so on. These can be considered as static ones in
comparison with Occopus presented in this paper. Beyond
these general-purpose utilities other orchestration tools are
aimed at specific goals, typically on-the-fly resource
provisioning, adaptation, load distribution, QoS and
maintaining SLA – but none of them is tied to workflow
interoperability.

Orchestrator [12] is aimed at resource provisioning in
sensor-rich mobile platforms where it enables multiple
simultaneous, context aware applications sharing highly scarce
and dynamic resources. Applications submit high-level context
specifications and comply with Orchestrator's resource
allocation. Resource selection and binding is postponed until
resources' availability is sufficiently explored.

Similarly, Merwe at al. define a Cloud Control Architecture
for a ubiquitous cloud computing infrastructure [16]where
orchestration is realized as a separate layer and interconnects
the Service Abstraction (presents service logic to the users) and
Intelligence (gathers information about the cloud
infrastructure) and derives abstract knowledge. The
Orchestration layer collects both the requests from Service
Abstraction and actual data from Intelligence and makes
decision about initial placements, resource allocation, resource
adjustment and movement of resources.

Lorincz et al. present a very different way or resource
orchestration in Pixie: resource tickets [14]. A ticket is an
abstraction for a certain part (capacity) of a resource and all
orchestration actions are mediated via the tickets. Tickets are
generated by resource allocators and managed by resource
brokers. A ticket provides information about the resource, the
allocated capacity and the timeframe. Resources can be
manipulated by operations on tickets such as join (increasing
resource capacity), split (sharing), revoke or redeem (collecting
specific tickets for a certain operation) just to mention a few.
This approach also decouples actual resources from resource
requests and gives a great flexibility in planning, advance
requests and adaptation.

Huang et al. [10] introduce an adaptive resource
orchestration scheme in order to find a balance between
performance, cost and energy consumption while maintaining
SLAs. Their technique aims at a sub-optimal allocation scheme
by predicting resource needs and planning resource re-
distribution. Each time a VM is demanded, a prediction may be
launched to evaluate future needs and possibly, a new
allocation is planned in order to optimize the efficiency of
global deployment.

Following this trend, Maurer et al. [15] investigate adaptive
resource configuration from a SLA/QoS point of view
according to the well known monitoring-analysis-planning-
execution (MAPE) cycle of adaptive systems. The possible
actions to fine tune the performance (and other parameters) of a
VM are categorized hierarchically as so called escalation levels
and asserted in a knowledge base. Generally, much finer
grained actions (e.g. memory configuration) are considered
than in our work.

Chen et al. [2] present Sulcata, an on-line virtual cluster
provisioning. They assume a pool of various physical resources
that act as VM containers. Upon a user's request the system
deploys a virtual cluster on-the-fly involving VM image
preparation, VM creation and configuration and VM reboot.
They clearly solve basic functionalities of dynamic
infrastructure provisioning; furthermore, the solution largely
focuses on minimizing the overhead of VM image handling
and deployment and proposes a resource mapping scheme.

Dörnemann et al. [7] address the issue of on-the-fly
infrastructure provisioning for workflow applications. In an
earlier work [6] they presented an on demand deployment
scheme to avoid peak loads but the solution showed some
shortcomings for workflows with respect to throughput and

cost. To find a trade-off between task based scheduling
(imprecise) and graph based scheduling (complex) of
workflows, [7] proposes a critical path based scheduling. The
graph is annotated with information on anticipated run times
and data transfers to calculate the makespan. Possible
allocations for critical paths are predicted by genetic algorithms
and the process is iterated until a mapping with minimal
estimated runtime is reached.

Vukojevic et al. [24] present a very similar solution to ours
in a service oriented scenario to support simulation workflows.
Their aim is to provide and redeem services on-demand
according to the progress of the workflow. The core of the
solution is dynamic binding with software stack provisioning.
Albeit the functionality is close to ours, the technical
realization is entirely different due to the service oriented
approach and ultimately, the solution is not aimed at supporting
interoperability.

A special case of the infrastructure aware workflow
concept has been implemented in University of Westminster
[30]. They have created three scripts: a Hadoop deployment
script, a Hadoop execution script and a Hadoop destroy script.
In their approach these scripts can be used as independent
workflow nodes called Deploy, Execute and Destroy,
respectively. These nodes can be placed anywhere in a
workflow and as a result, this workflow can be considered as a
special infrastructure aware workflow where the placement of
Deploy and Destroy nodes is unstructured and they support
only the creation and usage of Hadoop VIs.

VI. CONCLUSIONS

The extension of workflows with DEPLOY and
UNDEPLOY nodes enables workflow developers to create
workflows that can dynamically build the infrastructures they
need to run on. We showed that this new concept of
infrastructure aware workflows solves the problem of the
SHIWA black box workflow interoperability concept.
Moreover, this new concept will open a new horizon to create
extremely dynamic and flexible workflows that can easily
adapt themselves to the infrastructure where they run and if the
underlying infrastructure does not fit them they can easily
customize the infrastructure on-the-fly.

As was shown in Section III and V, infrastructureaware
workflows can be created in two ways: (1) as user defined
when the user defines and places the DEPLOY nodes or (2)
automatic when the WFM service decides when and which
infrastructure is to be used and hence we call this concept as
infrastructure aware workflow managers Both concepts have
advantages and drawbacks. The infrastructure aware workflow
concept enables users to directly tailor workflows to certain
VIs that already have got TOSCA-compliant descriptors. For
example, using Occopus we have already created BOINC
infrastructure descriptors where the number of BOINC clients
can be parameterized. Therefore DEPLOY nodes that require
BOINC VI descriptors can already be used and workflows
running on BOINC infrastructures (and stored in the SHIWA
Repository) can be placed in meta-workflows even if the
workflow manager service is not connected to any existing
BOINC system but at least to a cloud system.

The infrastructure aware workflow manager concept is a
very generic solution for running workflows even if their
original concrete infrastructure is not available. This solution is

perfectly transparent to the users. However, it requires that the
concrete infrastructures used in a workflow have their TOSCA-
compliant VI descriptors. Currently, it is not typical that user
communities create the required VI descriptors. However, if in
the future workflow managers are extended to be able to handle
VI descriptors as proposed in this paper many user
communities can find useful to put the effort and create the
required VI descriptors since it has many benefits for them:

 Workflows extended with VI descriptors of the
used concrete infrastructures can run on a very
reliable way even on non-reliable infrastructures.

 If a concrete infrastructure is not supported
anymore the existing workflows designed to run
on this infrastructure still can be used without
changing the workflows or porting them to new
infrastructures.

We also showed a tool (Occopus) that enables the
implementation of this new workflow creation concept. The
integration of Occopus and the WS-PGRADE/gUSE gateway
framework provide a full-fledged implementation of the
infrastructure-aware workflow concept and hence any
community interested in using the concept can get this
implementation. Certainly, the user communities of the
SHIWA Simulation Platform are good candidates to use this
technology but we can envisage other user communities with
similar requirements of building dynamically their required
infrastructure.

Both Occopus and WS-PGRADE/gUSE are already
released open source software systems. WS-PGRADE/gUSE
and the SHIWA Simulation Platform are used in production by
20-30 user communities who constantly give feedback on the
usability of these technologies. The integration work of
Occopus and WS-PGRADE/gUSE just started but it does not
raise more issues than the previous integration of WS-
PGRADE/gUSE with various cloud systems either directly or
via the CloudBroker Platform [31]. Since WS-PGRADE/gUSE
has already been integrated with clouds once the DEPLOY
node built up the required infrastructure in a cloud via Occopus
the WS-PGRADE workflow enactor can submit those
workflow nodes to the target cloud that require the dynamically
built infrastructure to run.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Community’s Seventh Framework
Programme FP7/2007-2013 under grant agreement no. 283481
(SCI-BUS), no. 312579 (ER-FLOW) and no. 608886
(CloudSME). This paper is a significantly revised and extended
version of the workshop paper [32].

REFERENCES

[1]Chef.http://www.getchef.com, 2014.

[2]Yang Chen, Tianyu Wo, and Jianxin Li. An efficient
resource management system for on-line virtual
clusterprovision. In IEEE CLOUD, pages 72-79, 2009.

[3] CloudBroker Platform. http://cloudbroker.com/, 2013.

[4]Cloudify.http://www.cloudifysource.org, 2014.

[5]Docker.https://www.docker.io, 2014.

[6]Tim Dörnemann, Ernst Juhnke, and Bernd
Freisleben.On-demand resource provisioning for bpel

workflows using amazon's elastic compute cloud. In
IEEE/ACM Int. Symp. on Cluster Computing and the
Grid(CCGrid), pages 140-147, 2009.

[7]Tim Dörnemann, Ernst Juhnke, Thomas Noll, Dominik
Seiler, and BerndFreisleben.Data flow driven scheduling of
bpel workflows using cloud resources. In IEEE CLOUD, pp.
196-203, 2010.

[8]Erik Elmroth, Francisco Hernández, Johan Tordsson:
Three fundamental dimensions of scientific workflow
interoperability: Model of computation, language, and
execution environment. Future Gen. Comp. Syst. 26(2): 245-
256 (2010)

[9] Building a European Research Community through
Interoperable Workflows and Data (ER-flow) Eu FP7 project.
Online: http://www.erflow.eu/, 2013.

[10]Chenn-Jung Huang, Chih-Tai Guan, Heng-Ming Chen,
Yu-Wu Wang, Shun-ChihChang,Ching-Yu Li, and Chuan-
Hsiang Weng. An adaptive resource management scheme in
cloud computing.Eng. Appl. of AI, 26(1):382-389, 2013.

[11] P Kacsuk, Z Farkas, M Kozlovszky, G Hermann, A
Balasko, K KaroczkaiWS-PGRADE/gUSE generic DCI
gateway framework for a large variety of user communities,
Journal of Grid Computing 10 (4), 601-630, 2012

[12]S. Kangetal. Orchestrator: An active resource
orchestration framework for mobile context monitoring in
sensor-rich mobile environments. In IEEE International
Conference on Pervasive Computing and Communications,
2010.

[13] Gabor Kecskemeti, Mark Gergely, Adam Visegradi,
Zsolt Nemeth, Jozsef Kovacs, Peter Kacsuk: One Click Cloud
Orchestrator: bringing Complex Applications Effortlessly to
the Clouds. In the 2ndInternationalDIHCWorkshop held in
conjunction with Euro-Par, Porto, Portugal, August, 2014.

[14]K.Lorincz, B.r.Chen, J.Waterman, G.Werner-Allen,
and M.Welsh. Resource aware programming in the pixie os. In
SenSys, pages 211-224, 2008.

[15] Michael Maurer, Ivona Brandic, and Rizos
Sakellariou. Adaptive resource configuration for cloud
infrastructure management. Future Generation Comp. Syst.,
29(2):472-487, 2013.

[16] J.Van der Merwe, K.Ramakrishnan, M.Fairchild,
A.Flavel, J.Houle, H.A. Lagar-Cavilla, and J.Mulligan.
Towards a ubiquitous cloud computing infrastructure. In
Proceedings of the IEEE LANMAN Workshop, 2010.

[17]Beth Plale, EranChinthaka Withana, Chathura Herath,
Kavitha Chandrasekar, Yuan Luo: Effectiveness of Hybrid
Workflow Systems for Computational Science. ICCS 2012:
508-517

[18]Plankensteiner, Kassian, et al. "Fine-Grain
Interoperability of Scientific Workflows in Distributed
Computing Infrastructures." Journal of grid computing 11.3
(2013): 429-455.

[19]Puppet.http://puppetlabs.com, 2014.

[20]SaltStack.http://www.saltstack.com, 2014.

[21] SHaring Interoperable Workflows for large-scale
scientific simulations on Available DCIs (SHIWA) Eu FP7
project. Online: http://www.shiwa-workflow.eu/, 2013.

[22]Gabor Terstyanszky, Tamas Kukla, Tamas Kiss, Peter
Kacsuk, Akos Balasko, Zoltan Farkas: Enabling scientific
workflow sharing through coarse-grained interoperability,
Future Generation Computer Systems, Volume 37, July 2014,
Pages 46-59

[23]Ubuntu Juju: http://juju.ubuntu.com, accessed in Dec.
2014.

[24]Karolina Vukojevic-Haupt, Dimka Karastoyanova,
Frank Leymann: On-demand Provisioning of Infrastructure,
Middleware and Services for Simulation Workflows. SOCA
2013: 91-98

[25]TOSCA:
https://en.wikipedia.org/wiki/OASIS_TOSCA, accessed in
Dec. 2015.

[26] Occopus: http://occopus.lpds.sztaki.hu/, accessed in
Dec. 2015.

[27] OGF BES standard: http://grid.pd.infn.it/NA5/bes-
wg.html, accessed in Dec. 2015.

[28] Miklos Kozlovszky, Krisztián Karóczkai, István
Márton, Péter Kacsuk, Tibor Gottdank:DCI Bridge: Executing
WS-PGRADE Workflows in Distributed Computing
Infrastructures. In Science Gateways for Distributed
Computing Infrastructures, Book Chapter, Springer Verlag,
2014.

[29] Zoltán Farkas, Ákos Hajnal, Péter Kacsuk. "WS-
PGRADE/gUSE and Clouds". In: Péter Kacsuk (ed.), Science
Gateways for Distributed Computing Infrastructures:
Development Framework and Exploitation by Scientific User
Communities, Springer, 2014. pp. 97-109.

[30] Gugnani S, Kiss, T. Extending Scientific Workflow
Systems to Support MapReduce Based Applications in the
Cloud, 7th International Workshop on Science Gateways,
IWSG 2015, 3-5 June, 2015, Budapest, Hungary, pp 16-21,
DOI 10.1109/IWSG.2015.15.

[31] CloudBroker Platform: http://cloudbroker.com/,
accessed in Dec. 2015.

[32] Kacsuk P, Kecskemeti G, Kertesz A, Nemeth Z,
Visegradi A, Gergely M: Infrastructure Aware Scientific
Workflows and Their Support by a Science Gateway. 7th
International Workshop on Science Gateways - IWSG 2015:
proceedings. 2015. pp. 22-27.

[33] J. Krüger et al., The MoSGrid Science Gateway – A
Complete Solution for Molecular Simulations. Journal of
Chemical Theory and Computation, 10 (6), pp. 2232-2245,
2014. DOI: 10.1021/ct500159h

