
ALGORITHM ENGINEERING: STRING PROCESSING

Thomas Berry

A DISSERTATION

in

COMPUTING AND MATHEMATICAL SCIENCES

Presented to the Faculties of Liverpool John Moores University in Partial

Fulfillment of the Requirements for the Degree of Doctor of Philosophy

2002

Dr. S. Ravindran

Supervisor of Dissertation

Prof. M. Merabti

Graduate Group Chairperson

COPYRIGHT

Thomas Berry

2002

DEDICATION

To Mum and Dad

iii

ACKNOWLEDGEMENTS

I would like to express thanks to my principal supervisor Dr. S. Ravindran for

his help and advice throughout my research. I would also like to thank my second

supervisor Dr. C. Bamford for his help and support. I would also like to thank my

third supervisor Prof. M. Merabti for his encouragement and support throughout my

research. Nick Huxley and Marc Siegar for talking me into doing a Ph. D. in the first

place.

I would like to thank my colleagues in the school of Computing and Mathematical

Sciences for their continued support, especially those of my fellow researchers who

have made it more fun than it would otherwise been, Bob Askwith, Mike Baskett,

Chris Bewick, Henry Forsyth, Damian Gregory, David Gresty, John Haggerty, Ste

Keller, Toni Reyes Moro and Ewan Smith.

Away from the office I would like to thank my friends and family who have suffered

my rants about my research. Special thanks must be made to the 'M17 quiz team'

Allen Dunn, Chris Gill, Paul Lynam, Matt Pickles and Marc Siegar. The cinema

buffs Dave Barnes, Kathryn Holmes, Nick Huxley, Jo Redmond and Neil Stafford.

I would also like to thank the 2000/2001 Liverpool Squad for winning the treble

and giving me many nights of footballing ecstasy.

iv

Abstract

The string matching problem has attracted a lot of interest throughout the history of
computer science, and is crucial to the computing industry. The theoretical community
in Computer Science has a developed a rich literature in the design and analysis of string
matching algorithms. To date, most of this work has been based on the asymptotic
analysis of the algorithms. This analysis rarely tell us how the algorithm will perform
in practice and considerable experimentation and fine-tuning is typically required to
get the most out of a theoretical idea.

In this thesis, promising string matching algorithms discovered by the theoretical com-
munity are implemented, tested and refined to the point where they can be usefully
applied in practice. In the course of this work we have presented the following new
algorithms. We prove that the time complexity of the new algorithms, for the average
case is linear. We also compared the new algorithms with the existing algorithms by
experimentation.

" We implemented the existing one dimensional string matching algorithms for En-

glish texts. From the findings of the experimental results we identified the best two
algorithms. We combined these two algorithms and introduce a new algorithm.

" We developed a new two dimensional string matching algorithm. This algorithm
uses the structure of the pattern to reduce the number of comparisons required to
search for the pattern.

" We described a method for efficiently storing text. Although this reduces the size
of the storage space, it is not a compression method as in the literature. Our aim
is to improve both space and time taken by a string matching algorithm. Our new
algorithm searches for patterns in the efficiently stored text without decompressing
the text.

" We illustrated that by pre-processing the text we can improve the speed of the
string matching algorithm when we search for a large number of patterns in a
given text.

" We proposed a hardware solution for searching in an efficiently stored DNA text.

Contents

1 Introduction 1

1.1 Novel aspects of the thesis
8

2 Analysis of Algorithms 11

2.1 Introduction
11

2.2 Asymptotic Analysis of algorithms 12

2.3 Big-Oh notation
14

2.4 Theoretical Versus Practical evaluation of algorithms 16

3 String matching algorithms 21

3.1 Introduction
21

3.1.1 Knuth, Morris and Pratt algorithm and its derivatives
22

3.1.2 Boyer-Moore algorithm and its derivatives
24

3.1.3 Other one dimensional string matching algorithms
30

3.1.4 Approximate string matching algorithms
32

vi

vii

4A new string matching algorithm 34

4.1 Introduction
................................ 34

4.2 Experimental results of the existing algorithms 34

4.3 The new algorithm (BR)
...... 38

4.4 Average case analysis of the BR algorithm 43

4.5 Experimental results and comparisons with the BR algorithm 45

4.6 Conclusions 55

s Two dimensional string matching algorithms 56

5.1 Introduction
................................

56

5.2 Existing two-dimensional string matching algorithms 56

5.3 The New Algorithm (2D-BR)
...................... 58

5.4 Average case analysis of the 2D-BR algorithm 61

5.5 Practical evaluation of the algorithms
66

5.6 Conclusions 70

s Compression algorithms 71

6.1 Introduction 71

6.2 Hufiman Encoding 73

6.3 Lempel-Ziv encoding and its derivatives
.................

81

6.4 Byte pair encoding
90

VI"

7 String matching in an efficiently stored DNA text 91

7.1 Introduction
................................ 91

7.2 Efficient storage of a DNA text 92

7.3 Comparison with existing compression algorithms 93

7.4 Searching in the efficiently stored file - the DS algorithm 94

7.5 The average running time of the DS algorithm 99

7.6 Comparison with existing string matching algorithms 108

7.7 Conclusions
................................ 114

8A linear time string matching algorithm on average with

efficient text storage 115

8.1 Introduction 115

8.2 Efficient storage of a text 116

8.3 Comparison with existing compression algorithms 117

8.4 Searching in a text with efficient storage 118

8.5 The average running time 123

8.6 Comparison with existing string matching algorithms 131

8.7 Conclusions
................................ 134

9 String matching via pre-processing the text 136

9.1 Introduction
................................ 136

ix

9.2 The algorithm 137

9.3 Average case analysis 141

9.4 Recording the positions of more than one character
142

9.4.1 Comparing the pre-processing algorithm with x=1 and x=2 143

9.5 Comparing the new algorithm with the existing algorithms 146

9.6 Pre-processing DNA using a mapping function 149

9.7 Conclusions
................................

154

10 Searching in an Efficiently Stored DNA Text Using a

Hardware Solution 156

10.1 Introduction 156

10.2 Investigation into a hardware only solution to the string matching prob-

lem
156

10.3 Searching for multiple strings 161

10.4 Hardware acceleration 164

10.5 Hardware Implementation of string Matching
.............

166

10.6 Conclusions
................................

169

i1 Conclusions and Further Work 171

11.1 Applications of Algorithm Engineering
.................

171

11.2 Algorithm Engineering and String processing
173

X

11.3 Memory Management
........................... 179

11.4 Hardware implementation of string processing algorithms 182

List of Figures

2.1 Algorithm to sum n numbers 13

2.2 Algorithm to find an entry in a list 14

3.1 Shift in the Knuth-Morris-Pratt algorithm (v border of u and d 54 c) . 23

3.2 Boyer-Moore good-suffix shift, u reappears preceded by a character dif-

ferent from 'b'
............................... 26

3.3 Boyer-Moore good-suffix shift, only a prefix of u reappears in P.... 26

3.4 Boyer-Moore bad-character shift, a appears in P............ 27

3.5 Boyer-Moore bad-character shift, a does not appear in P....... 27

4.1 Values for a shift using the BR algorithm 38

4.2 The shift values for the pattern 'onion' using the BR algorithm
39

4.3 The structure of the CON table for the pattern 'onion' 40

5.1 Each X denotes a sample point (T[(i + 1)m][(j + 1)m] in the matrix

that is compared with the Frequency array where T is a6x6 matrix

and P is a2x2 matrix 59

xi

xii

5.2 Shaded area is compared with the first row of the pattern using the BR

algorithm 60

6.1 END and F added to the Huffman tree 75

6.2 E added to the Huffman tree 75

6.3 D added to the Huffman tree 76

6.4 C and B are added but not connected to the main tree 76

6.5 C and B subtree connected to the Huffman tree 77

6.6 A added to the Huffman tree and the tree is complete 78

7.1 The expressions for the pattern CGGTAGA
........ 96

7.2 The expressions generated for a general pattern 96

7.3 The expressions generated for the pattern ACAC
........... 98

7.4 The pattern blocks that would be chosen for the pattern ACAC
....

98

7.5 The expressions generated for the pattern ACGTAT 100

7.6 The number of wildcards in pattern-blocks, for m=6......... 100

7.7 The number of wildcards in pattern-blocks, for m= 16 101

7.8 The number of wildcards in pattern-blocks, for m= 15
102

7.9 The number of wildcards in pattern-blocks, for m' =4......... 103

7.10 The probability of the algorithm making at least 1 or 2 comparisons at

an attempt 103

7.11 The number of wildcards in pattern blocks, for m' =4......... 105

X111

7.12 The 62 patterns that don't contain a wildcard 107

7.13 The 42 patterns that contain one or more wildcards 107

8.1 Expressions for a pattern P1P2.. Pm when m mod 8=0....... 119

8.2 The number of wildcards in pattern-blocks for m= 34 124

8.3 The number of wildcards in pattern-blocks for m= 23 125

8.4 The number of wildcards in pattern-blocks for m= 10 126

8.5 The number of wildcards in pattern-blocks, for m' = 10 128

9.1 The initial values for Next, Freq and First
............... 138

9.2 The values for Next, Freq and First after considering the A at position 4138

9.3 The values for Next, Freq and First after considering the B at position 3139

9.4 The values for Next, Freq and First after considering the A at position 2139

9.5 The values for Next, Freq and First after considering the A at position 1139

9.6 The values for Next, Freq and First after considering the B at position 0140

10.1 The C code for searching for occurrences of a single pattern in a given

text 157

10.2 Comparison of input stream against target
158

10.3 The use of the mask to reduce the number of bits compared
160

10.4 The steps required to determine whether the target matches the current

data
.................................... 161

xlv

10.5 An algorithm to search for multiple patterns in a single text 162

10.6 Illustration of Figure 10.5
163

10.7 Simplified version of the components to be implemented in hardware . 168

List of Tables

2.1 The size of input for a number of problems 13

2.2 Common time complexities for algorithms and their informal names . 16

2.3 Time in seconds to sort a randomised list 19

2.4 Time in seconds for sorting ordered lists for n= 2500 19

4.1 The number of comparisons in 1000's for searching a text of 200,000

words (1670005 characters) 36

4.2 The Shift Table for the pattern 'onion'
................ . 41

4.3 mismatch shift on ST(CON[n], CON[ti) = ST(1,0) =1...... . 42

4.4 mismatch shift on ST(Con [tJ], CON[]) = ST(0,0) =7...... . 42

4.5 mismatch shift on ST(CON[s], CON[ti) = ST(0,0) =7...... . 42

4.6 mismatch shift on ST(CON[], CON[o]) = ST(0,2) =6...... . 42

4.7 So the pattern 'onion' has been matched and the text is exhausted . . 43

4.8 The number of comparisons in 1000's for searching Text A of 10,000

words (83360 characters) 46

xv

XVl

4.9 The number of comparisons in 1000's for searching Text B of 10,000

words (8345 characters) 47

4.10 The number of comparisons in 1000's for searching a text of 50,000

words (417923 characters) 48

4.11 The number of comparisons in 1000's for searching a text of 100,000

words (834381 characters) 49

4.12 The average (of Tables 4.8- 4.11) percentage difference in the number

of comparisons between existing algorithms and the BR algorithm .. 51

4.13 The average shift and the user time in seconds 53

4.14 User times in seconds for the eight chosen texts 54

4.15 The number of words and characters of the texts used in Table 4.14 . 54

5.1 Estimated number of comparisons taken 65

5.2 Actual number of comparisons taken 66

5.3 Time in seconds to search for 50 matrices when a= 256 67

5.4 Time in seconds to search for 50 matrices when o, = 128 67

5.5 Time in seconds to search for 50 matrices when a= 64 68

5.6 Time in seconds to search for 50 matrices when o, = 32 68

5.7 Time in seconds to search for 50 matrices when o, = 16 68

5.8 Time in seconds to search for 50 matrices when o, =8...... ... 69

5.9 Time in seconds to search for 50 matrices when o, =4...... ... 69

xvii

5.10 Time in seconds to search for 50 matrices when o=2......... 69

6.1 The frequency of each of the characters in the text. 74

6.2 The bit patterns and their lengths for an Huffman encoding of the fre-

quencies in Table 6.1 78

6.3 Position of the characters in the string 'AAGTCTGTCA'
...... 82

6.4 LZ77 encoding of the string 'AAGTCTGTCA' 83

6.5 The positions of the characters in the string 'AAGTCTGTCTCA'. . 84

6.6 The LZ78 encoding of the string 'AAGTCTGTCTCA' 85

6.7 The LZW encoding of the string 'AAGTCTGTCTCA' 87

7.1 The size of the compressed generated when using compress and gzip . 94

7.2 The number of comparisons performed by the DS algorithm for each of

the 10 efficiently stored DNA texts 108

7.3 Time in seconds to search for all the patterns without wildcards in the

given texts 109

7.4 Time in seconds to search for all the patterns without wildcards in the

given texts 110

7.5 Time in seconds to search for all the patterns with wildcards using bit

masking in the given texts 110

7.6 Time in seconds to search for all the patterns with wildcards using bit

masking in the given texts
111

xviii

7.7 Time in seconds to search for all the patterns with wildcards in the

given texts 113

7.8 Time in seconds to search for all the patterns with wildcards in the

given texts
................................. 113

8.1 Compressed text sizes for a random text of 500,000 bytes 118

8.2 The expressions considered at each comparison 122

8.3 The associated probabilities for a and 3 for each base case 128

8.4 Estimated versus actual number of comparisons of our BRS algorithm 131

8.5 Estimated versus actual number of comparisons of our BRS algorithm 131

8.6 Times in seconds to search for 100 random patterns in each given text

with o, =2................................. 132

8.7 Times in seconds to search for 100 random patterns in each given text

with a=4 133

8.8 Times in seconds to search for 100 random patterns in each given text

with or =8................................. 133

8.9 Times in seconds to search for 100 random patterns in each given text

witha= 16 133

8.10 Times in seconds to search for 100 random patterns in each given text

with a= 32 134

xix

9.1 Time taken (in seconds) to search for the UNIX dictionary in the given

texts 144

9.2 The number of attempts and comparisons taken when searching for the

UNIX dictionary in the given texts 145

9.3 Time taken (in seconds) to search for the UNIX dictionary in the given

texts using the HOR and BR algorithms 146

9.4 Time taken to build Next, First and Freq 147

9.5 Number of patterns that are required to be searched for, for the x=2

method to be the fastest 149

9.6 Time taken in seconds to search for the 256 possible DNA patterns of

length 4 including any pre-processing time 152

9.7 Time taken in seconds to search for the 4096 possible DNA patterns of

length 6 including any pre-processing time 152

9.8 Time taken to search for 5000 DNA patterns of length 10 including any

pre-processing time 153

9.9 Time taken in seconds for pre-processing 154

Table of acronyms

2D-BR Two Dimensional Berry-Ravindran algorithm

AG Apostolico-Giancarlo algorithm

BF Brute Force algorithm

BM Boyer-Moore algorithm

BR Berry-Ravindran algorithm

BRS Berry-Ravindran Search algorithm

BY Baeza Yates algorithm

COL Colussi algorithm

DFA Deterministic Finite Automata

DS DNA Search algorithm

GG Galil-Giancarlo algorithm

HOR Horspool algorithm

KMP Knuth-Morris-Pratt algorithm

LDI Liu, Du and Ishi algorithm

MS Maximal Shift algorithm

NR Navarro Raffinot algorithm

NSN Not So Naive algorithm

QS Quicksearch algorithm

RAI Raita algorithm

RF Reverse Factor algorithm

SMI Smith algorithm

TBM Turbo Boyer-Moore algorithm

ZT Zhu-Takaoka algorithm

xx

Chapter 1

Introduction

Theory and theoreticians have played a major role in the development of the field of

computer science. Theoreticians have developed a set of basic concepts and method-

ologies that transcend application domains. These contributions include automata

and natural language theoretic models, data structures and algorithms, methodolo-

gies for evaluating algorithm performance, the theory of NP completeness [64], logics

of programs and correctness proofs and methods of public-key cryptography [56,114].

Within theoretical computer science algorithms are usually evaluated by metrics

such as their asymptotic worst case running time or average case running time or

their competitive ratio. Many groundbreaking results have been proved according to

the worst and/or average case running time of the algorithm. These metrics rarely

tell us how well the algorithm will perform in practice. This is because the metrics

are not sufficiently accurate to predict actual performance. The situation can be im-

proved using models that take into account more details of the system architecture

1

2

and factors such as data movement and interprocessor communication, but even then

considerable experimentation and fine-tuning is typically required to get the most out

of a theoretical idea. An effort must be made to ensure that promising algorithms

discovered by the theory community are implemented, tested and refined to the point

where they can be usefully applied in practice [69,77,131]. During the practical eval-

uation of the algorithm it is possible to learn what affects the speed of the algorithm.

It is possible to then modify the algorithm and remove any features that are slowing

the algorithm down. This experimental testing and tuning of algorithms is known as

Algorithm Engineering.

If an algorithm has a better theoretical evaluation than another algorithm we

would expect that the algorithm would be faster in practice. Until we compare both

algorithms in practice we can claim nothing. Although practical evaluation would

seem dependant upon the environment, comparing algorithms in one environment is

a good indication of how the algorithm may perform in other practical environments.

The method used for the theoretical evaluation of algorithms is known as the

asymptotic analysis of algorithms using Big-Oh notation and is described in Chap-

ter 2. When we theoretically analyse algorithms we consider the amount of time taken

for the algorithm to complete its task and the amount of space or memory required

for the task. Big-Oh notation gives a guideline of how the algorithm should perform.

There are three main types of analysis used in the evaluation of algorithms. They are

3

the best case, worst case and average case analysis of the algorithm.

The best case is the optimal performance of an algorithm for a given data set.

The best case is rarely used and does not show how the algorithm would perform on

other input. We would expect the average case analysis of an algorithm to show the

average performance of an algorithm over a range of input. A worst-case analysis of

the algorithm gives the upper bound of the number of steps taken by the algorithm.

For example consider the sorting algorithms Quicksort and Mergesort, the worst-

case analysis shows that the Mergesort algorithm is better than the Quicksort algo-

rithm. When they are evaluated practically the Quicksort algorithm is faster than

the Mergesort algorithm. The time taken for the algorithms to sort randomly or-

dered lists of different sizes are taken from [120] and from these results we would

chose the Quicksort algorithm as it is up to eight times faster than the Mergesort

algorithm. For sorted lists the Quicksort algorithm suffers a drop in performance.

This is due to the worst-case for the Quicksort algorithm being used. For the sorted

lists the Mergesort algorithm is up to five times faster than the Quicksort algorithm.

If we were to choose an algorithm to sort a list we would want to use the Quicksort

algorithm for unordered lists, and the Mergesort algorithm for ordered lists. This

example clearly shows that an evaluation of algorithms in both theory and practice is

required before choosing an algorithm for a specific task. These results are described

in Chapter 2.

4

The worst-case for an algorithm may never occur or occur rarely for an algorithm

in practice. By implementing the algorithms and evaluating them it is possible to

see what features affect the time taken by the algorithm. It is then possible to fine

tune the algorithms to produce faster algorithms using the knowledge gained from a

practical evaluation.

String matching is the searching for a pattern P of length m in a Text T of length

n. The pattern is aligned with the beginning of the text and the pattern characters are

compared with the corresponding text characters. This is called an attempt. After a

mismatch or match the pattern is shifted to the right and comparisons are again made

between the pattern and text characters. A number of string matching algorithms

have been developed [36,84,47]. The main difference among the algorithms is in the

order the comparisons are made and how far the pattern is shifted to right after a

mismatch or match. When searching for a pattern in a text we have to search through

all of the text. Full descriptions of one-dimensional string matching algorithms used

in this thesis are given in Chapter 3.

The string matching algorithms are practically evaluated in Chapter 4 using two

different methods. We count the number of comparisons taken by each algorithm

record the real time taken by the algorithms on the chosen data sets. The texts are

written in English and the patterns are English words. From these tests we choose

the best two algorithms. Using the features of these algorithms we designed a new

5

algorithm, the BR algorithm.

The average case analysis of the BR algorithm is given and is proven to be linear.

The new algorithm is then compared to the nine fastest existing algorithms and the

KMP algorithm by experimentation. Both the number of comparisons taken and the

time taken by the BR algorithm are compared with the existing algorithms.

String matching can be two-dimensional as well as one-dimensional.

Two-dimensional string matching usually involves searching for a pattern matrix P of

dimensions ml x m2 in a text matrix T of dimensions nl x n2. In Chapter 5 we discuss

two-dimensional string matching algorithms and describe a new algorithm for the

task. We prove that the new algorithm has a linear average case time complexity. The

algorithms are both theoretically and practically evaluated. The practical evaluation

again records the number of comparisons taken and the time taken for the algorithms

to perform specific searches on chosen data sets. We include results for alphabets

and pattern of different sizes. The new algorithm is the fastest algorithm when the

alphabet set is large (> 64).

We can decrease the length of the text by compressing it. Text compression is

the re-representation of the characters in a text so that they take less space. There

are many different text compressions algorithms available and we describe the most

widely used algorithms in Chapter 6. They are Huffman encoding [73], Lempel-Ziv 77

[140], Lempel-Ziv 78 [141] and Lempel-Ziv-Welch [134]. The time taken to compress

6

the text can be a factor when choosing a text compression algorithm but generally

the algorithm that offers the greatest amount of compression is used. Searching in

the compressed file is called Compressed string matching. By performing compressed

string matching we would expect to decrease the amount time taken to search for a

pattern in a file.

We consider searching in the 'compressed' DNA text in Chapter 7. The DNA

alphabet consists of four characters A, C, G and T. A common search using string

matching in DNA texts is for boundary or cutting locations. These boundaries or

cutting locations are strings of DNA characters and strings may contain wildcard

characters, which can represent two or more of the DNA characters. Most DNA texts

use eight bits to store each of the DNA characters. As there are only four characters

we can represent each of the characters using only two bits. This efficient storage

method would guarantee to reduce the size of the original DNA text by 75%.

We compare our new efficient storage method with existing compression algo-

rithms and find that our method is competitive with the existing methods. We

describe a new algorithm for searching in the efficiently stored DNA text. We prove

that the average case time complexity of our new algorithm is linear. The new algo-

rithm is compared practically with the existing string matching algorithms and the

results show that our new algorithm is roughly more than three times faster than the

existing string matching algorithms. This is mainly due to the use of the efficient

7

storage method.

The new algorithm can search for patterns with or without wildcards. The existing

algorithms have to be modified to handle wildcards. The modified algorithms are

compared to the new algorithm and new algorithm is still roughly three times faster

than the existing algorithms.

We expand our idea of efficiently storing DNA texts to include storing texts with

an alphabet of any size in Chapter 8. We give a method for efficiently storing texts

with an alphabet of < 128 characters. This new method will reduce the text to

[1092
8a of its original size, where o is the size of the alphabet set. We describe a

new string matching algorithm that will search for patterns in the efficiently stored

text. We prove that the new algorithm has a linear average case time complexity.

We compare our new string matching algorithm with the existing string matching

algorithms and find that as the alphabet increases the performance of the new string

matching algorithm degrades. This is due to the amount of space that is saved by

using the efficient storage method being reduced as the size of the alphabet increases.

The algorithms described in Chapters 3 and 4 require pre-processing of the pattern

that they are searching. More over, these algorithms require the reading of the text

into an array before searching for the pattern. In Chapter 9 we describe a new string

matching algorithm which requires the pre-processing of the text. This means that

we record the positions of characters or strings of characters in the text. Using this

8

method we are able to reduce the number of attempts required to search a text. This

results in fewer comparisons and faster searches. Although this algorithm spends

time on pre-processing the text, the running time of this algorithm is comparable to

the other existing algorithms as they require the reading of the text into a text array

before searching for the pattern. We prove the new algorithm has a linear average

case time complexity. The new algorithm is compared to the existing string matching

algorithms by recording the time taken to search for patterns in texts using the same

data sets as in Chapter 4.

In Chapter 10 we develop a hardware solution for searching the efficiently stored

DNA text. We outline the new algorithm, the BK algorithm, we show how we can

build a new hardware solution for this algorithm. We give a modification to the basic

BK algorithm, which will search a stream of DNA text for multiple sub-strings in

a single pass of the text. Attention is paid to the inadequacies of modern micro-

processors and the advantages which so-called 'hardware compilation techniques' can

offer as a means of accelerating the execution of algorithms. We compare our BK

algorithm with five of the fastest existing algorithms by experimentation.

1.1 Novel aspects of the thesis

We have devised a number of new algorithms for solving different string matching

problems. The new algorithms have been compared with the existing algorithms to

9

show that the new algorithms are competitive with the existing algorithms.

" The BR algorithm, a one dimensional string matching algorithm described in

Chapter 4, is the first algorithm to consider using the next two characters outside

of the pattern and the text alignment window to calculate how far to shift the

pattern to the right after a match or mismatch. This algorithm is also described

in [31].

" We have developed a two-dimensional algorithm (2D-BR), described in Chap-

ter 5, that uses the structure of the pattern to reduce the number of comparisons

required to search for the pattern. We found that the algorithm is best when

the size of the alphabet set being used is large.

9 The DS algorithm is a one dimensional string matching algorithm that searches

in an efficiently stored DNA text and is described in Chapter 7. The efficient

storage method is not novel and has been documented by [91]. Using the efficient

storage method a DNA text can be stored in 25% of the space required for the

original text. The DS algorithm searches in the efficiently stored text and can

search for patterns with and without wildcard characters. The DS algorithm

was found to be the fastest algorithm for the task of searching for DNA patterns.

The algorithm is also described in [321.

9 We have extended our work from Chapter 7 to form a new algorithm that

10

searches in an efficiently stored text for any alphabet set of size < 128. This

new method will reduce the text to
P092

8a of its original size, where o, is the size

of the alphabet set. The new algorithm will search for patterns in the efficiently

stored text. The algorithm is also described in [34].

" In Chapter 9 we describe a new algorithm that searches for a pattern by pre-

processing the text. This new algorithm reduces the number of comparisons

required to search for the pattern. The string matching via pre-processing

algorithm is many times faster than the existing algorithms when searching for

a large number of patterns in the same text.

" In Chapter 10 we describe a hardware solution to searching in the efficiently

stored DNA text. Although the algorithm has not been fully implemented in

hardware we expect the algorithm to be faster than the DS algorithm. The

hardware solution is also described in [33].

Chapter 2

Analysis of Algorithms

2.1 Introduction

Algorithms can be evaluated in a number of different ways. We need to be able

to demonstrate that one algorithm is superior to another algorithm. For a given

application we have to be able to decide which algorithm is the superior without

relying on formal arguments, without being misled by special cases and without being

influenced by the efficiency of the programming language used or the hardware used

to run the algorithm.

To solve this problem we use a theoretical evaluation of the algorithms, which is

independent of the environment used to implement the algorithm. To evaluate each

algorithm we use an asymptotic analysis of the algorithm.

11

12

2.2 Asymptotic Analysis of algorithms

The most obvious way to evaluate the efficiency of an algorithm would be to measure

the amount of processor time and memory space required to run the algorithm to ob-

tain a correct solution using a specific data set. This process is called benchmarking.

However this only gives a measure of efficiency for one data set. If we changed the

data set then the algorithm may no longer be superior to the other available algo-

rithms. For example, searching a telephone directory for a name in sequential order

from A to Z may be acceptable if the directory only contains 40 entries but if we

increase the number of entries to 400,000 then this algorithm would be unaccept-

able. Benchmarking is a good way of seeing if a finished program runs to the timing

specifications desired for this algorithm. We need an appropriate method to evaluate

algorithms before we start coding them.

A single number cannot describe the amount of work done because the number

of steps performed is not the same for all inputs. We observe first that the amount

of work done usually depends on the size of the input. For example, computing the

sum of ten numbers usually requires less operations than computing the sum of 100

numbers. Suppose we have an array A of n integers, then the following algorithm

computes the sum of the n integers.

13

for j=1 to n do

sum=sum+Ab]

Figure 2.1: Algorithm to sum n numbers

It is convenient to use T(n) to represent the time complexity of an algorithm on

any input size n. For example, T(n) = cn for Figure 2.1, where c is a constant.

The first observation indicates that we need a measure of the size of the input for a

problem. It is usually easy to choose a reasonable measure of size. In Table 2.1 we

give some examples:

Problem Size of input

Find x in a list of names The number of names in the list

Sort a list of numbers The number of entries in the list

Multiply two matrices The dimensions of the matrices

Table 2.1: The size of input for a number of problems

Even if the input is fixed at, say n, the number of operations performed may

depend on the particular input. Most often we describe the behaviour of an algorithm

by stating its worst-case time complexity, which is the maximum number of basic

operations performed by the algorithm on any input of size n.

If we have an array L of n distinct entries and wish to find the location of x in

L. The following algorithm described in Figure 2.2 compares x to each entry in turn

14

until a match is found or the list is exhausted. If x is in the list, the algorithm returns

the index of the array entry containing x, and index equal to 0 otherwise.

index=l

while (index < ra) and (L[index] x) do

begin

index = index +1

end
if index >n then index =0

print (index)

Figure 2.2: Algorithm to find an entry in a list

Clearly the worst-case time complexity T(n) is equal to cn, where c is a constant.

The worst cases occur when x appears only in the last position in the list or when x

is not in the list at all. In both cases x is compared to all n entries.

2.3 Big-Oh notation

Suppose one algorithm for a problem does 2n basic operations, hence roughly 2cln

operations in total, for some constant cl and another algorithm does 3n basic oper-

ations, or 3c2n in total. We don't know which algorithm will run faster. The first

algorithm may do many more overhead operations, i. e. its constant of proportionality

may be a lot higher. Thus if functions describing the behaviour of two algorithms

differ by a constant factor, it may be pointless to try to distinguish between them.

We consider such algorithms to be in the same complexity class.

15

Suppose one algorithm for a problem does
2 n2 basic operations and another algo-

rithm does 5n. For small values of n< 10 the first does fewer basic operations but for

large values of n> 10 the second is better. In fact whatever had been the coefficients

of n2 and of n in these expressions, the second would be faster than the first for all

n greater than some value, no say. The rate of growth of a quadratic function is so

much greater than a linear function that the coefficients don't matter when n is large.

For these reasons we usually express the time complexity of an algorithm using

Big-Oh notation, which is designed to let us hide constant factors. For example,

instead of saying the time complexity T(n) of the algorithm described in Figure 2.1

is cn we would say T(n) = 0(n), which is read "big-oh of n" which informally means

"some constant times n".

Now let f (n) be some function defined on the non negative integers n. We say

that T(n) is O(f (n)) if there exists an integer no and a constant c>0 such that

for all integers n> no we have T(n) 5 cf (n). For example if we have an algorithm

whose time complexity T(n) = 6n + 3. We can say that T(n) = O(n) because:

T (n) = 6n +3

T (n) < 6n + 3n

T (n) < 9n

We can let c=9 and no =1 in the definition above.

Suppose T(n) is a polynomial of the form akn' + ak-ink-1 +"""+ a2n2 + aln,

16

where leading coefficient ak is positive. Then we can remove all the terms but the

first and the constant ak replacing it by 1. That is we can conclude T(n) = O(nk).

Table 2.2 shows some of the more common time complexities for algorithms and

their informal names.

Big-Oh Informal Name

0(1) constant

O(log n) logarithmic

O(n) linear

O(n log n) n log n

0(n2) quadratic

O(n3) cubic

0(2") exponential

Table 2.2: Common time complexities for algorithms and their informal names

2.4 Theoretical Versus Practical evaluation of algorithms

In 1984, Narendra Karmarkar [79] took the key step (not common among theoreti-

cians) of implementing his new linear programming algorithm. In doing so, he discov-

ered that it typically ran much more quickly than its worst-case guarantee indicated.

His initial claims proved controversial, as other researchers could not at first duplicate

17

his results. The reason for this was that Karmarkar, coming from a computer science

background, had implemented the algorithm using modern data structure techniques,

something that was not yet common in the mathematical programming community.

The ferment caused by Karmarkar's results and claims has been immensely beneficial

for the field of mathematical programming. The packages have improved dramatically

by adapting modern data structures and programming techniques.

Many algorithms have been proven to be efficient according to their worst-case or

average case evaluations. The worst-case and average case results rarely tell us how

an algorithm will work in practice. A practical evaluation of an algorithm requires

information about the application area of the algorithm. Using a practical evaluation

we can focus on the typical problems that will be solved by the algorithm.

The worst-case complexity describes an upper bound on the worst-case time we

would see when running an algorithm. The average case complexity presents an upper

bound on the average time taken when running the algorithm many times on various

inputs. If the algorithm is to be run a hundred or a thousand times it is pessimistic

that the worst-case time will occur each time. In this situation the cumulative time

of thousands of different runs should show some averaging out of the worst case

behaviour. An average case analysis may give a more realistic picture of the time

taken by the algorithm. A practical analysis is still required to guarantee the speed

of an algorithm.

18

A practical evaluation may involve no more than running a few tests to see what

happens. After a while one develops an informed opinion about what is likely to

affect performance. If we know what factors speed-up or slow-down an algorithm,

we can try to apply the speed-ups to other algorithms and remove the slow-downs to

improve the algorithm.

Two algorithms may have the same worst-case time complexity or one may have

a better worst case time complexity than another. This does not mean that the algo-

rithm with the lower order worst-case time complexity will be the fastest algorithm

for all sizes of input. For example, in parallel computing the fastest algorithm known

for permutation routing on the hypercube is by Cypher and Plaxton [42] and runs in

O(log n(log log n)2) time with a substantial amount of offline computation. Although

asymptotically this is an improvement over the O(log2 n) algorithm, because of the

large constants hidden by the Big-Oh notation Cypher and Plaxton's algorithm only

becomes competitive for hypercubes of dimension greater than 20.

Algorithms may have similar time complexities. For example, Mergesort and

Quicksort have a worst-case time complexities of O(n log n) and 0(n2) respectively

and both algorithms have an average case time complexity of O(n log n). To determine

which algorithm is the best for the task of sorting a list of n numbers we must code

both algorithms and time them to see which actually does run faster. (The values in

Tables 2.3 and 2.4 were taken from [120]). In Table 2.3, we show the time taken in

19

seconds to sort a randomised list of numbers with n= 500,2500 and 10000.

List size 500 2,500 10,000

Mergesort 0.8 8.1 39.8

Quicksort 0.3 1.3 5.3

Table 2.3: Time in seconds to sort a randomised list

From Table 2.3 we would choose the Quicksort algorithm to sort lists. However,

the Quicksort algorithm suffers a rapid degrade in performance if the list is ordered

as can be seen in Table 2.4.

List size Random In Order Reverse Order

Mergesort 8.1 7.8 7.9

Quicksort 1.3 35.1 37.1

Table 2.4: Time in seconds for sorting ordered lists for n= 2500

When the list is ordered the Quicksort algorithm performs in its worst-case of

O(n2). If we were to sort a number of lists we would choose to use the Quicksort

algorithm as long as the lists were in a random order. If the lists were partially

sorted or fully sorted we would want to use the Mergesort algorithm. We wouldn't

expect the worst-case of the list being sorted already to occur very often in real

world applications of sorting algorithms. We wouldn't know which algorithm was

best for sorting until we implement them and test them over a number of lists. The

average-case and worst-case analysis of an algorithm are only indicative of how fast

20

the algorithm should be and do not guarantee any speed over other algorithms in

practice. This example clearly shows that an evaluation of algorithms both in theory

and practice is required before selecting an algorithm for a specific task.

In Chapters 4,5,7,8,9 and 10 we present and discuss a new algorithm and

analyse the speed of the new algorithm. We perform a theoretical analysis of the new

algorithm and calculate the worst-case and average case analyses of the algorithms.

The worst-case analysis gives the upper bound number of steps taken by the algo-

rithm. The average case analysis presents an upper bound on the average time we

would expect when running the algorithm many times on various inputs. This shows

that theoretically the new algorithms are competitive with the existing algorithms.

To show the actual performance of the algorithms we implement them and compare

them with the existing algorithms. The time taken by the new algorithms is shown

to be competitive with the existing algorithms.

Chapter 3

String matching algorithms

3.1 Introduction

A number of different tasks are performed on strings [47,63,127]. String matching

is finding an occurrence of a pattern string in a larger string of text. String matching

can be one dimensional, for example the comparison of a word with a text or can be

two dimensional, the comparison of one matrix with another matrix. In this chapter

we will consider one dimensional string matching and its applications.

The string matching problem has attracted a lot of interest throughout the history

of computer science, and is crucial to the computing industry. This problem arises in

many computer packages in the form of spell checkers, search engines on the Internet,

find utilities on various machines, matching of DNA strands and so on.

String matching algorithms [47,127] work as follows. First the pattern of length

in, P[l.. m], is aligned with the extreme left of the text of length n, T [l.. n]. Then the

pattern characters are compared with the text characters. The algorithms can vary in

21

22

the order in which the comparisons are made. After a mismatch is found the pattern

is shifted to the right and the distance the pattern can be shifted is determined by

the algorithm that is being used. This shifting procedure and the speed at which a

mismatch is found are the main difference between the string matching algorithms.

In the Naive or Brute Force (BF) algorithm, the pattern is aligned with the

extreme left of the text characters and corresponding pairs of characters are compared

from left to right. This process continues until either the pattern is exhausted or a

mismatch is found. Then the pattern is shifted one place to the right and the pattern

characters are again compared with the corresponding text characters from left to

right until either the text is exhausted or a full match is obtained. This algorithm can

be very slow. Consider the worst case when both pattern and text are all a's followed

by a b. The total number of comparisons in the worst case is O(nm). However, this

worst case example is not one that occurs often in natural language text.

3.1.1 Knuth, Morris and Pratt algorithm and its derivatives

The number of comparisons performed by the BF algorithm can be reduced by moving

the pattern to the right by more than one position when a mismatch is found. This is

the idea behind the Knuth-Morris-Pratt (KMP) algorithm [84]. The KMP algorithm

starts and compares the characters from left to right the same as the BF algorithm.

When a mismatch occurs the KMP algorithm moves the pattern to the right by

23

maintaining the longest border of a prefix (the beginning) of the pattern with a suffix

(the end) of the part of the text that has matched the pattern so far (See Figure 3.1).

A border is a repeated substring in the pattern with the repeated substring starting

with the first character of the pattern. The border of 'babdcbabcadb' is 'bab'. If a

border does exist then we shift the pattern so as to preserve any characters that

have already matched. So for the example 'babdcbabcadb' u= 'babdcbab', v= 'bab' in

Figure 3.1.

T

P

P

i+j

Figure 3.1: Shift in the Knuth-Morris-Pratt algorithm (v border of u and d 54 c)

As can be seen v is not compared again and the comparisons start at the character

after the string v. In general the shift is calculated so that each character in the text

is compared at most twice. Then the comparisons begin again at the character that

mismatched in the text and the corresponding pattern character. If a border does not

exist then the comparisons continue from the first character in the pattern. There

are not many English words, on average, with a border bigger than 1. The KMP

algorithm takes at most 2n character comparisons. Although when using English

text it behaves very closely to the BF algorithm. The KMP algorithm does O(m + n)

operations in the worst case. The reason for this is that if we consider the worst

24

case again of a text of all a's and a pattern of all a's followed by a b. Then we have

an overlap of m-1 (the length of the longest repeated substring). So the pattern

is shifted by one position after a mismatch and begins the comparisons at the last

character in the pattern as it already knows the previous m -1 characters will match.

So the algorithm will take n+m operations. A coding of the KMP algorithm in the

programming language JAVA is shown in [110].

The Colussi (COL) algorithm [44,45] is an improvement of the KMP algorithm.

The number of character comparisons is 1.5n in the worst case. The set of pattern

positions is divided into two disjoint subsets. First the comparisons are performed

from left to right for the characters at positions in the first set. If there is no mismatch,

the characters at positions in the second set are compared from right to left. This

strategy reduces the number of comparisons.

Galil and Giancarlo (GG) [60] improved the COL algorithm by reducing the num-

her of character comparisons in the worst case to 3n. In these algorithms the prepro-

cessing takes O(m) time.

3.1.2 Boyer-Moore algorithm and its derivatives

The Boyer-Moore (BM) algorithm [36] differs in one main feature from the algorithms

already discussed. Instead of the characters being compared from left to right, in

the BM algorithm the characters are compared from right to left, starting with the

25

rightmost character of the pattern. In a case of mismatch it uses two functions, good

suffix function (see Figures 3.2 and 3.3) and last occurrence function (see Figures

3.4 and 3.5) and shifts the pattern by the maximum number of positions computed

by these functions. The good suffix function returns the number of positions for

moving the pattern to the right by the least amount, so as to align the already

matched characters with any other substring in the pattern that are identical. The

last occurrence function moves the pattern to the last occurrence of the text character

in the pattern (from the left) that mismatches at the current pattern position. If the

character is not in the pattern then the pattern is shifted by m places to the right.

It is the last occurrence shift that gives the BM its speed and is used in many of its

derivatives. The worst case running time of the BM algorithm is 0(nm). This is

because as in the BF algorithm characters can be compared m times to give a worst

case run time of O(nm).

In Figure 3.2 a portion of the text and pattern has matched up to the character

'a' in the text and 'b' in the pattern. The already matched portion of the text occurs

again in the pattern at a position to the right of the current match. This other

occurrence of u in the pattern is aligned with the characters in the text that matched

u. This is not done if the character in the pattern that precedes the second occurrence

of u is the same as the first occurrence. Comparisons resume at the rightmost position

and continue from right to left.

26

T a u
x shift

p b u

m

p

Figure 3.2: Boyer-Moore good-suffix shift, u reappears preceded by a character different
from 'b'

In Figure 3.3 the portion of the pattern that matched the text u has a portion v

that is a prefix (leftmost portion) of u. The pattern is shifted so that v is aligned

with the text characters that matched with it. Comparisons resume at the rightmost

position and continue from right to left.

T

P

P

Figure 3.3: Boyer-Moore good-suffix shift, only a prefix of u reappears in P

In Figure 3.4 the pattern is shifted so that the character in the text that mis-

matched is aligned with the rightmost occurrence of that character in the pattern.

27

T ta
shift

pb

Pa contains no a

Figure 3.4: Boyer-Moore bad-character shift, a appears in P

In Figure 3.5 the pattern is shifted past the character that mismatch as it does

not occur in the pattern.

T la U,

shift
Pbu

p contains no a

Figure 3.5: Boyer-Moore bad-character shift, a does not appear in P

The Turbo Boyer-Moore (TBM) algorithm [48] and the Apostolico-Giancarlo (AG)

algorithm [8] are amelioration's of the BM algorithm. When a partial match is made

between the pattern and the text these algorithms remember the characters that

matched and do not compare them again with the text. The TBM algorithm and the

Apostolico-Giancarlo algorithm perform in the worst case at most 2n and 1.5n [52]

character comparisons respectively.

The Horspool (HOR) algorithm [70] is a simplification of the BM algorithm. It

does not use the good suffix function, but uses a modified version of the last occurrence

function. The modified last occurrence function determines the right most occurrence

of the k+ mth text character, T [k + m] in the pattern, if a mismatch occurs when a

pattern is aligned with T[k.. k + m]. The comparison order is not described in [70].

28

We assumed that the order is from right to left as in the BM algorithm. The average

case running time of the HOR algorithm is proven to be linear in [23]. The HOR

heuristic is analysed in [92].

The Raita (RAI) algorithm [109] uses variables to represent the first, middle and

last characters of the pattern. The process used is to compare the rightmost character

of the pattern, then the leftmost character, then the middle character and then the

rest of the characters from the second to the m- lth position. Using variables is more

efficient than looking up the characters in the pattern array. The use of variables to

represent characters in the array is known as 'Raita's trick'. This optimisation trick

is only used in the RAI algorithm. If at any time during the procedure a mismatch

occurs then it performs the shift as in the HOR algorithm.

The Quicksearch (QS) algorithm [129,74] is similar to the HOR algorithm and

the RAI algorithm. It does not use the good suffix function to compute the shifts.

It uses a modified version of the last occurrence function. Assume that a pattern is

aligned with the text characters T[k.. k + m]. After a mismatch the length of the shift

is at least one. So, the character at the next position in the text after the alignment

(T[k+m+1]) is necessarily involved in the next attempt. The last occurrence function

determines the right most occurrence of T[k +m+ 1] in the pattern. If T[k +m+ 1]

is not in the pattern the pattern can be shifted by m+1 positions. The comparisons

between text and pattern characters during each attempt can be done in any order.

29

The Maximal Shift (MS) algorithm [129] is another variant of the QS algorithm.

The algorithm is designed in such a way that the pattern characters are compared in

the order which will give the maximum shift if a mismatch occurs.

The Liu, Du and Ishi (LDI) algorithm [90] is a variant of the QS algorithm. The

algorithm uses the same shifting function as the QS but changes the order in which

the pattern characters are compared to the text. The characters are compared in

a circular method starting at the first character in the pattern and finishing at the

last. If a mismatch occurs then the pattern is shifted and searching restarts with the

pattern character that mismatched. For example, if the pattern was 'string' and the

pattern mismatched the text at the 'r' then we would search in the order 'ringst'.

The Smith (SMI) algorithm [125] uses HOR and Quick Search last occurrence

functions. When a mismatch occurs, it takes the maximum values between these

functions. The characters are compared from left to right.

The Zhu and Takaoka (ZT) algorithm [138] is another variant of the BM algorithm.

The comparisons are done in the same way as BM (i. e. from right to left) and it uses

the good suffix function. If a mismatch occurs at T[i], the last occurrence function

determines the right most occurrence of T[i - 1.. i] in the pattern. If the substring

is in the pattern, the pattern and text are aligned at these two characters for the

next attempt. If the two character substring is not in the pattern then we shift by m

positions. The shift table is a two dimensional array of size alphabet size by alphabet

30

size.

The Baeza-Yates (BY) algorithm [12] is similar to the ZT algorithm. It calculates

the shift according to the last k characters of the pattern aligned with the text.

When k=2 the shifts are the same as ZT but without the good suffix function. The

main differences are constructing and storing the shift table. The shift table is a one

dimensional array of length Q2, where a is the size of the alphabet. The table is

constructed by bit shifting the two characters to form a 16 bit number and storing

the value of the shift at this location in the array.

The HOR algorithm can be improved by using a transformation that increases

the size of the alphabet being used [22]. As the size of the alphabet is increased the

probability of a larger shift increases. The transformation concatenates a substring to

form a new character. For example, the ith character is composed by the concatenation

of the ith, .. i+k+ 111 characters of the original string for any k>1. This reduces

the length of the string to m- (k + 1) and the size of the alphabet is increased to ck

where c is the size of the original alphabet.

3.1.3 Other one dimensional string matching algorithms

The Karp-Rabin algorithm [80] uses a hashing function instead of comparing each

character individually. The algorithm checks to see if a portion of the text aligned with

the pattern is similar to the pattern. The pattern is hashed and then compared with

31

hashed portions until either a match is found or until the end of the text is reached.

Upon a match of the hashed text portion and the hashed pattern the characters that

are aligned are compared character by character to see if a true match is present

at this position. The algorithm has a worst case time complexity of O(nm) and an

expected running time of O(n + m)

The Not So Naive algorithm (NSN) is based on the BF algorithm. The NSN is

the BF with a constant time and space pre-processing phase added. The pattern

is aligned with the text[i, i+ m]. The pattern can be shifted by two positions to

the right if one of two conditions are true: pattern[O] # pattern[1] and pattern[1] =

text[i + 1] or pattern[O] = pattern[1] and pattern[1] 54 text[i + 1]. The order in which

the comparisons are performed is modified. The characters are compared in order

from pattern[1] to pattern[m - 1] and then pattern[O] is compared to text[i]. The

NSN algorithm has a worst case time complexity of 0(nm).

Searching can be done in O(n) time using a minimal Deterministic Finite Au-

tomaton (DFA) [20,68,46,97]. This algorithm uses O(Qm) space and O(m + o)

pre-processing time. Where a is the size of the alphabet being used.

The Simon algorithm [122,123] gives a more economical implementation of a

DFA. Simon noticed that there are only a few significant edges in the a DFA. There

are at most 2m significant edges in a DFA. Removing the least significant edges we

can improve the preprocessing time to O(m). Upon a search at most 2n -1 text

32

comparisons are performed during a search for a pattern. A Boyer-Moore automaton

is constructed and analysed in [19].

A pre-processing function is needed for all the algorithms to calculate the relevant

shifts upon a mismatch or match except for the BF algorithm, which has no pre-

processing. The pre-processing cost of the algorithms is an important factor in the

speed of the algorithm with regard to the number of operations required and the

amount of memory required. This will be most noticeable when we are searching in

smaller texts.

Animations of string matching algorithms can be found at [39] and more informa-

tion about the above string matching algorithms can be found in [38,40].

3.1.4 Approximate string matching algorithms

Approximate string matching allows the erroneous matching of a user defined number

of erroneous matches, k, between the pattern and text. An error or difference can be

one of the following three types:

Substitution: A character of the pattern corresponds to a different character of the

text

Deletion: A character of the pattern corresponds to no character in the text.

Insertion: A character of the text corresponds to no character in the pattern.

A number of solutions exist to solve this problem [3,9,15,16,17,55,135]. Approxi-

33

mate string matching is used for many applications including aiding in the security of

passwords [94], spell checkers and bibliographic search. Approximate string matching

has recently been applied to approximate searching on hypertext [104] and compressed

texts [99].

Chapter 4

A new string matching algorithm

4.1 Introduction

The algorithms described in chapter 3 are implemented and the results are given in

this chapter. From the findings of the experimental results we identify the best two

algorithms. We combine these two algorithms and introduce a new algorithm. We

compare the new algorithm with the existing algorithms by experimentation.

4.2 Experimental results of the existing algorithms

Monitoring the number of comparisons performed by each algorithm was chosen as

a way to compare the algorithms. All the algorithms were coded in C, which are

taken from [38], animations of the algorithms can be found in [39]. This collection

of string matching algorithms were easy to implement as functions into our main

control program. The algorithms were coded as their authors had devised them in

their papers. The main control program was the same for each algorithm and so did

34

35

not affect the performance of the algorithms. Each algorithm had an integer counter

inserted into it, to count the number of comparisons made between the pattern and

the text. The counter was incremented by one each time a comparison was made.

A random text of 200,000 words from the UNIX English dictionary was used

for the first set of experiments. We decided to number each of the words in UNIX

dictionary from 1 to 25,000. Then we used a pseudo random number generator to pick

words from the UNIX dictionary and place them in the random text. Each word was

separated by a space character. Punctuation was also removed as we were concerned

with finding words and the punctuation would not affect the results obtained. We

selected a word (pattern) from the UNIX dictionary and searched the text for the

first occurrence of the word.

The text was searched for each word in the UNIX dictionary and the results are

given in Table 4.1. The first column in Table 4.1 is the length of the pattern. The

second column is the number of words of that length in the UNIX English dictionary.

The abbreviations at the top of the remaining columns related to abbreviations de-

fined in Chapter 3. For example, for a pattern length of 7,4042 test cases were carried

out and the average number of character comparisons made by the KMP algorithm

was 197,000 (to the nearest 1000). The average was calculated by taking the total

number of comparisons performed to find all 4042 cases and dividing this number

by 4042. The figure given in the table is the total number of comparisons taken di-

36

vided by the number of words for the pattern length and then divided by 1000. These

columns are arranged in descending order of the average of the total number of com-

parisons of the algorithms. An interesting observation is that for (almost) each row

the values are in descending order except for the last two columns.

Ion um. F MP FA Y M G OR RAI BM S Dl S T MI

133

Bb 38 8 7 19 13 13 13 13 13 11 10 10 13 10

178 2 2 0 8 3 3 3 3 2 19 19 19 2 8

146 151 150 145 9 34 4 4 4 4 30 0 0 2 8

852 186 185 79 38 36 6 8 36 8 3 3 2 3 0

042 198 197 191 34 34 4 4 4 4 32 1 1 0 8

807 05 04 197 30 32 2 1 2 1 0 9 9 7 6

088 12 11 04 8 0 0 0 0 0 9 8 8 5 4

10 1971 20 19 12 6 9 9 9 9 9 18 7 7 4 3

11 1120 09 07 01 2 8 8 8 6 5 5 4 4 1 1

12 93 18 17 10 1 b 5 b 5 5 4 4 4 1 0

13 79 24 22 15 0 4 4 4 4 4 3 4 3 19 19

14 116 28 27 20 19 3 3 3 3 3 3 3 3 19 19

15 4 151 150 144 11 15 15 15 15 14 14 14 14 11 12

16 17 27 25 17 16 0 1 1 1 0 0 1 0 18 16

17 33 31 22 16 0 0 0 0 19 19 0 0 15 16

18 36 34 25 15 19 0 0 0 19 19 0 0 14 16

19

0 1 132 131 122 10 10 10 10 10 10 10 10 7 8

1 11 09 95 16 4 4 5 5 3 3 4 4 15 18

2 91 86 55 3 3 3 3 3 3 1 34
g

"
4

ota l 4988 180 179 174 1 0 0 8 8 8 7 5

Table 4.1: The number of comparisons in 1000's for searching a text of 200,000 words
(1670005 characters).

The algorithm with the largest number of comparisons is the BF algorithm. This

is because the algorithm shifts the pattern by one place to the right when a mismatch

37

occurs, no matter how much of a partial or full match has been made. This algorithm

has a quadratic worst case time complexity. However, the KMP algorithm, which has

a linear worst case time complexity, does roughly the same number of comparisons

as the BF algorithm. The reason for this is that in a natural language a multiple

occurrence of a substring in a word is not common. Other linear time algorithms,

DFA, also have roughly the same number of comparisons as the BF algorithm. We

will see below that the other quadratic worst case time complexity algorithms perform

much better than these linear worst case time algorithms. This is a good example

showing that asymptotic worst case running time analysis can be indicative of how

algorithms are likely to perform in practice, but they are not sufficiently accurate to

predict actual performance.

The BM algorithm uses the good suffix function to calculate the shift which de-

pends on a reoccurrence of a substring in a word. But, it also uses the last occurrence

function. It is this last occurrence function that reduces the number of comparisons

significantly. In practice, on an English text, the BM algorithm is three or more times

faster than the KMP algorithm [124]. From Table 4.1, one can see that the KMP

algorithm takes six times as many comparisons than the BM algorithm on average.

The other algorithms, BY, TBM, AG, HOR, RAI, LDI, QS, MS, SMI and ZT, are

variants of the BM algorithm. The number of comparisons for these algorithms is

roughly the same number as in the BM algorithm.

38

The SMI algorithm and the ZT algorithm do the least number of comparisons for

pattern lengths less than or equal to twelve and greater than twelve respectively.

4.3 The new algorithm (BR)

From the findings of the experimental results discussed in section 3, it is clear that

the SMI and ZT algorithms have the lowest number of comparisons among the others.

We combined the calculations of a valid shift in QS and ZT algorithms to produce

a more efficient algorithm, the BR algorithm [31]. If a mismatch occurs when the

pattern P[1 .. m] is aligned with the text T[k.. k +m- 1], the shift is calculated by

the rightmost occurrence of the substring T [k +m+L. k+m+ 2] in the pattern. If

the substring is in the pattern then the pattern and text are aligned at this substring

for the next attempt. This can be done shifting the pattern as shown in the table

below.

T[k+m+1] T[k+m+2] Shift

* P[1] m+1

P[i] P[i+1] m-i+1,1 <i<m-1

P[m] * 1

Otherwise m+2

Figure 4.1: Values for a shift using the BR algorithm

Let * be a wildcard character that is any character in the ASCII set. Note that if

T [k +m+L. k+m+ 2] is not in the pattern, the pattern is shifted by m+2 positions.

39

For example, the following shifts would be associated with the pattern, 'onion'.

T(k+m+ 1) T(k+m+ 2) Shift

+0 6

0n 5

ni 4

i0 3

0n 2

n* 1

Otherwise 7

Figure 4.2: The shift values for the pattern 'onion' using the BR algorithm

After a mismatch the calculation of a shift in our new algorithm takes 0(1) time.

Note that for the substrings 'ni' and 'n*' have a value of 4 and 1 respectively. This

ambiguity can be solved by the higher shift value being overwritten with the lower

value. We will explain this later in this section. For a given pattern P[1 .. m] the

preprocessing is done as follows, and it takes O(m2+0) time, where o, is the size of the

alphabet. The two dimensional array, ST (Shift Table), of size at most m+1xm+1

will store the shift values for all pairs of characters. The ST will be initialised as

m+2. As the index of the ST is of type integer, we need to convert the pairs of

characters into pairs of integers. This is done by defining an array of ASCII character

set size called CON with each entry initialised to 0. For each character in the pattern

the right most position (numbering from the right, starting with 1) is entered in the

corresponding location in CON. For example, the relative position of the character

40

'a' in the ASCII set is 97. Assume that the character 'a' is in the pattern. The right

most position of 'a' in the pattern is entered in CON[97].

If the pattern was the word 'onion' then the rightmost positions of n, o and i are

1,2 and 3 respectively. The CON for 'onion' would look like this:

Character: ... ab ... h i j ... n o p

ASCII value:... 97 98 ... 104 105 106 ... 110 111 112 ...

CON: ... 00030120

Figure 4.3: The structure of the CON table for the pattern 'onion'

The value of a shift for the pair T [k +m+ 1] and T [k +m+ 2] is ST(CON[T[k +

m+ 1]], CON[T [k +m+ 2]]).

All the entries in the ST will be initialised as 7, and the above shift values will be

entered as follows:

[wildcard] [o] =6

[o] [n] =5

[n] [i] =4

[i] [o] =3

[o] [n] =2

[n] [wildcard] =1

The ST for the pattern 'onion' would look like this after the complete insertion of

41

all the values. The rows represent the T[k +m+ 1]th character and the columns are

the T [k +m+ 2]th character.

0 1 2 3

0 7 7 6 7

1 1 1 1 1

2 7 2 6 7

3 7 7 3 7

Table 4.2: The Shift Table for the pattern 'onion'

The order of performing the steps is important in ensuring the correct values

appear in ST. Note that the higher values have been over written by the lower values.

We search for the pattern starting at P[m] and searching from right to left and finish

at P[1]. To find a shift value we look up in the CON table the first two characters

after the pattern and the text alignment window. We use these values to the find the

correct shift value in the ST.

We now give an example of our new algorithm in action to find the pattern 'onion'.

The tables above, ST and CON for the pattern 'onion' were used to calculate the shift

after a mismatch. In Tables 4.3 to 4.7, the first row shows the text and the third row

shows the position of the pattern. The second row shows whether the aligned pattern

and text characters match (=) or mismatch (#) as the comparisons are made.

42

w e w a n t t o t e
Is It

w i t h o
In

i o n

0 n i o n

Table 4.3: mismatch shift on ST(CON[n], CON[t]) = ST(1,0) =1

w e w a n t t o t e s t w i t h o n i o n

o n i o n

Table 4.4: mismatch shift on ST(Con [t]J, CON[]) = ST(0,0) =7

w e w a n t t o t e s t w i t h o n i o n

o n i oI n

Table 4.5: mismatch shift on ST(CON[s], CON[t]) = ST(O, 0) =7

w e w a n
It It

o t e
Is It

w i t h o n i o
In

o n i o n

Table 4.6: mismatch shift on ST(CON[], CON[o]) = ST(O, 2) =6

43

v e w a
In

t
I
t o t e

It, It
w i t h o n i o n

o n i o n

Table 4.7: So the pattern 'onion' has been matched and the test is exhausted

So the word onion is found in 10 comparisons in a text of length 26.

4.4 Average case analysis of the BR algorithm

The average case time complexity of the BR algorithm is the upper bound number of

comparisons taken by the BR algorithm given the average case input. Let a be the

size of the alphabet, E, where E is the set of alphabets used by the text. We assume

that the characters in the text all have an equal frequency and so the probability of a

match between a character of the pattern and text is ö. The number of comparisons

taken at an attempt can be 1 to m inclusive.

Lemma 4.1: The upper bound number of comparisons at an attempt is ým Q1(ä,)

for an average case text.

Proof: The probability of i pattern and text characters matching is ä,
.

After

a match we must make at least one more comparison unless we have a full match.

Therefore the probability of at least i comparisons being made is
o,
l

1. The probability

that exactly i comparisons are made is (the probability of at least i comparisons are

made) - (probability of at least i+1 comparisons are made). The probability of exactly

44

i comparisons being made is
a,
l

,-ä for all i<m. When i= in (the probability

of the mth comparison), the equation becomes r" To find the total number of

comparisons made we multiply each of the probabilities by i and sum the results. So

the total number of comparisons made at an attempt is (Em' il ((ý4 -
öý)

x i) +

If we expand the equation we get:

(U ä)X1+(ä
-ö

)X2}...
_}(-Q 'E)Xm-2+(7- j;; x 1+a, R_fxm)

-1122
m-2 m-2 m-1 m-1 m

1 +01 } +ol+
o

+a-

m-1 1
-ýi-0 Q"

We assume that u>1 and therefore the above is maximised when v=2. As m

increases the equation approaches the limit for this equation which is 2. So we expect

to make 2 comparisons at each attempt for a text where all the characters have equal

frequency.

Lemma 4.2: The lower bound for a shift in an average case text is 7
.

Proof: To find the average shift we have to consider what values are in the shift

table. There are a2 entries in the table. The entries are entered in order of size of

shift from the smallest to the largest until the table is complete.

The size of the shift is minimised when a=2 and there are Q2 = 22 =4 entries

in the shift table. Using Figure 4.1 to calculate the shifts and assuming that the first

two pairs of characters in the pattern don't match. Then there will be two entries

45

with a value of one and one entry for each of the values two and three. We multiply

each shift value by its frequency in the shift table and total the results. This result is

divided by Q2 to give the average shift. The average shift is (2 x 1) + (1 x 2) + (1 x 3)

divided by 22 =4Q

Theorem: The BR algorithm has a linear average case running time of O(n+m).

Proof: The lowest average shift value for a text with equally frequent characters

is 4. We would expect to make n= 47 attempts and expect to make 2 comparisons 4

at each attempt. We expect to make 2x 47 = 87 comparisons. Therefore the BR

algorithm has a linear average case running time of 0(n + m). Note that the in term

in O(n + m) comes from the time taken for the pre-processing. Q

4.5 Experimental results and comparisons with the BR algorithm

We select the best eight algorithms from the results in Table 4.1, the BM algorithm

and the KMP algorithm, and compare with our BR algorithm. Experiments were

carried out for different random texts as described in Section 4.3. There were 2

different texts of 10,000 words (Texts A and B), a text of 50,000 words and a text of

100,000 words. The results are described in Tables 4.8 to 4.11 respectively. Tables 4.8

to 4.11 show the average number of comparisons required for a search for the given

pattern length. They are based on taking the total number of comparisons for the

search for all the patterns of a length and dividing the number by the number of

46

patterns of that size to give the average and then they are divided by 1000. So for

example, in Table 4.8 the BM algorithm takes 12,000 comparisons (to the nearest

thousand) on average if the pattern length is seven.

p len num KMP BM HOR RAI TBM MS LDI QS ZT SMI BR

2 133 6 3 3 3 3 2 2 2 3 2 2

3 765 20 7 7 7 7 6 6 6 7 5 4

4 2178 41 11 11 11 11 10 10 10 11 9 7

5 3146 60 14 13 13 13 12 12 12 12 11 9

6 3852 67 13 13 13 13 12 12 12 12 11 9

7 4042 68 12 12 12 12 11 11 11 10 10 8

8 3607 69 11 11 11 11 10 10 10 9 9 7

9 3088 70 10 10 10 10 9 9 9 8 8 7

10 1971 71 9 9 9 9 9 9 9 8 8 6

11 1120 70 9 9 9 9 8 8 8 7 7 6

12 593 70 8 8 8 8 8 8 8 6 7 5

13 279 72 8 8 8 8 8 8 8 6 6 5

14 116 69 7 7 7 7 7 7 7 5 6 5

15 44 72 7 7 7 7 7 7 7 5 6 5

16 17 70 6 6 6 6 6 6 6 5 5 4

17 7 75 7 7 7 6 6 6 6 5 5 4

18 4 87 7 7 7 7 7 7 7 5 6 5

19 0 0 0 0 0 0 0 0 0 0 0 0

20 1 89 7 7 7 7 7 7 7 4 5 4

21 2 88 7 7 7 7 6 7 7 4 5 4

22 1 89 6 6 6 6 6 6 6 4 5 4

Total 24966 64 11 11 11 11 10 10 10 10 9 7

Table 4.8: The number of comparisons in 1000's for searching Text A of 10,000 words
(83360 characters)

47

p len Num KMP BM HOR RAI TBM MS LDI QS ZT SMI BR

2 133 6 3 3 3 3 2 2 2 3 2 2

3 765 21 7 7 7 7 6 6 6 7 6 4

4 2178 42 12 12 12 12 10 10 10 11 9 7

5 3146 59 13 13 13 13 12 12 12 12 11 9

6 3852 66 13 13 13 13 12 12 12 11 11 9

7 4042 68 12 12 12 12 11 11 11 10 10 8

8 3607 69 11 11 11 11 10 10 10 9 9 7

9 3088 70 10 10 10 10 9 9 9 8 B 7

10 1971 71 9 9 9 9 9 9 9 8 8 6

11 1120 70 9 9 9 9 8 8 8 7 7 6

12 593 71 8 8 8 8 8 8 8 6 7 5

13 279 71 8 8 8 8 8 8 7 6 8 5

14 116 70 7 7 7 7 7 7 7 6 6 5

15 44 64 6 6 6 6 6 6 6 5 5 4

16 17 74 7 7 7 7 7 7 7 5 5 4

17 7 64 6 6 6 6 5 6 6 4 4 4

18 4 87 7 7 7 7 7 7 7 5 6 5

19 0 0 0 0 0 0 0 0 0 0 0 0

20 1 41 3 3 3 3 3 3 3 2 3 2

21 2 72 5 6 6 5 5 6 5 4 4 3

22 1 89 6 6 6 6 6 6 6 4 5 4

Total 24966 63 11 11 11 11 10 10 10 10 9 7

Table 4.9: The number of comparisons in 1000's for searching Text B of 10,000 words
(83425 characters)

48

p len num KMP BM HOR RAI TBM MS LDI QS ZT SMI BR

2 133 9 6 6 6 6 4 4 4 6 4 3

3 765 37 13 13 13 13 10 10 10 13 10 8

4 2178 77 21 21 21 21 18 18 18 20 17 14

5 3146 133 30 30 30 30 27 28 26 28 25 21

6 3852 159 31 31 31 31 29 28 28 28 26 22

7 4042 170 29 29 29 29 27 27 27 26 24 21

8 3607 176 27 27 27 27 26 25 25 24 22 19

9 3088 181 26 26 26 26 25 24 24 22 21 18

10 1971 185 24 24 24 24 23 23 23 20 20 17

11 1120 184 23 23 23 23 22 22 22 18 18 16

12 593 186 21 21 21 21 21 21 20 17 17 15

13 279 183 20 20 20 20 19 19 19 15 16 14

14 116 194 20 20 20 20 19 20 19 15 16 14

15 44 164 16 16 16 16 16 16 16 12 13 11

16 17 217 20 20 20 20 20 20 20 17 16 13

17 7 172 16 15 15 14 14 15 15 11 12 10

18 4 147 12 13 13 12 12 13 13 9 10 8

19 0 0 0 0 0 0 0 0 0 0 0 0

20 1 41 3 3 3 3 3 3 3 2 3 2

21 2 221 17 18 18 17 17 17 17 11 13 10

22 1 397 27 27 27 27 26 28 28 18 22 18

Total 24966 155 27 26 28 26 24 24 24 23 22 18

Table 4.10: The number of comparisons in 1000's for searching a text of 50,000 words
(417923 characters)

49

P len num KMP BM HOR RAI TBM MS LDI QS ZT SMI BR

2 133 13 7 7 7 7 5 5 5 7 5 3

3 765 37 13 13 13 13 10 10 10 13 10 8

4 2178 80 22 22 22 22 19 18 18 21 17 14

5 3146 149 34 34 34 34 30 30 29 31 28 22

6 3852 182 36 36 36 36 33 32 32 33 29 24

7 4042 193 33 33 33 33 31 30 30 29 27 23

8 3607 201 31 31 31 31 29 29 29 27 26 21

9 3088 198 28 28 28 28 27 26 26 24 23 19

10 1971 198 26 26 26 26 25 25 25 22 21 18

11 1120 199 25 25 24 24 24 23 23 20 20 17

712 593 217 25 25 25 25 24 24 24 20 20 17

13 279 207 23 23 23 22 22 22 22 18 18 15

14 118 180 19 19 19 19 18 18 18 14 15 12

15 44 218 22 22 22 21 21 21 21 17 17 14

16 17 162 15 15 15 15 15 15 15 12 12 10

17 7 220 20 20 20 19 19 19 19 14 15 13

18 4 208 17 17 17 17 17 18 18 12 14 11

19 0 0 0 0 0 0 0 0 0 0 0 0

20 1 157 12 12 12 12 12 13 13 8 10 7

21 2 89 7 7 7 7 7 7 7 11 5

22 1 315 21 21 21 22 22 14 18

J

Total 24966 173 30 30 30

Ei Bd

27 27 26 24 2O

Table 4.11: The number of comparisons in 1000's for searching a text of 100,000

words (834381 characters)

50

From these tables one can observe that the relative order of their performance is

the same as in Table 4.1. The main observation is that the BR algorithm performs

better than the other algorithms for all pattern lengths and for all texts used in the

experiments.

Table 4.12 summarises the results of Tables 4.8 to 4.11. The entries in Table 4.12

are in percentage form and describe how many more comparisons existing algorithms

did than our BR algorithm. The figures are an average of the four different texts

used. To calculate the difference as a percentage between our BR algorithm and the

existing algorithms we used the following formula. The average number of compar-

isons was taken from the relevant cell in Tables 4.8 to 4.11 and divided by the value

for that pattern length for our BR algorithm. This value was then deducted by 1

and multiplied by 100 to give the percentage difference between the two algorithms.

An interesting observation of the existing algorithms when compared with the BR

algorithm, is that for each individual text the percentages were within 1% for each

specific algorithm. Each value in Table 4.12 is calculated by taking the difference as

a percentage between each algorithm and our BR algorithm for each pattern length,

adding them together and dividing by 4. For example, for a pattern length of 4 the

BM algorithm takes on average 51.11% more comparisons than our BR algorithm.

Note that the figures only include direct comparisons between the text and the pattern

and not any text comparisons made during the calculation of a shift.

51

The result of a full search for the dictionary over all four texts is given in the

last row of Table 4.12. From this we can see that the BM algorithm took on average

43.54% more comparisons than our BR algorithm (see 5th column, last row) for a

complete search for all the words in the dictionary.

pat. len num. KMP BM HO RAI TH MS LDI QS ZT SMI

2 133 199.98 93. 94. 93. 93.81 35.9 37.2 32.9 93.9 31.4

3 765 366.02 64.1 64.2 64.1 63.7 28.7 32.9 28.2 60.0 24.9

4 2178 449.02 51.1 50.8 50. 50.7 28.2 31.0 25.7 43.1 19.7

5 3146 540.11 45.0 44.5 44.4 44.7 28.3 31.5 26.4' 33.91 18.1

6 3852 626.30 42.4 41.8 41.6 41.91 30.0 32.3 27.3: 27.7 16.4

7 4042 719.01 41. 40.9 41. 40.7 31.4 33.5 28.8 24.9 16.0

8 3607 807.61 40.5 40.2 40.3 39.9 32.2 34.9 30.1 21.6 15.4

9 3088 896.18 41.5: 40.9 40.8 40.8 34.7 37.1 32.1 19.2 15.4

10 1971 982.63 42.11 41.6 41.7 41.1 36.6 39.3 34.3 17.7 15.6

11 1120 1067.8 44.1 43.6 43.7 42.9 38.5 42.1 37.1 17. 16.3

12 593 1164.1 45.2 44.5 44.6 44.2 40. 44.3 39.2 16.1 17.3

13 279 1245.5 47.8 47.2 47.3 46.3 42.2 46.6 41.8 12.6 17.5

14 116 1322.7 46.7 46.4 46.6 45.1 42.6 48.6 42.2 11.3 17.0

15 44 1426.0 51.2 51.5 51.5 49.2 44.7 52.8 45.2 8.72 19.0

16 17 1527.2 49.3 50.4 50.6 47.3 46.8 52.911 49.0 24.8 20.0

17 7 1598.5 45.21 44.5 44.5 43.4 40.2 50.2 45.01 6.72 16.9

18 4 1700.8 50.5 53.9 54.0 48.5 50.1 59.0 53.5 6.09 22.21

19 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

20 1 1948.7 58.3 58.1 58.0 58.3 52.2 72.6 63.5 3.01 29.4

21 2 1947.9 57.3 63.9 63.9 56.3 57.5 64.0 57.5 2.22 21.8

22 1 2129.1 50.9 49.8 49.8 50.9 45.0 66.5 55.4 1.04 25.0

Total 2499 737.56 43.2 42.8 42.8 42.65
.

32.0 34.5 29.7 26.0 16.6

Table 4.12: The average (of Tables 4.8- 4.11) percentage difference in the number of
comparisons between existing algorithms and the BR algorithm

We also measure the user time for these algorithms as the saving in the number of

comparisons may be paid for by some extra overhead operations. We timed the search

52

of book1 of for all occurrences of 500 words from the UNIX dictionary. The words

are of length 2 to 11 and there are 50 words of each length. The words were chosen at

random from the UNIX dictionary. We show the average length of a shift performed

by each algorithm in the second column. The percentage difference between the

existing algorithms and the BR algorithm is shown in the third column. We used a

486-DX66 with 32 megabytes of RAM and a 100 megabyte hard drive running SUSE

5.2. The user time includes the time taken for any pre-processing and the reading of

the text into memory. Each algorithm was evaluated ten times and the average time

taken is given in Table 4.13. The timing was accurate to löo of a second but was

rounded to the nearest second. The difference between the slowest and fastest time

for each test for an algorithm was less than 0.2 of a second. The last column shows

the percentage difference of the user time between existing algorithms and the BR

algorithm.

If we list the algorithms in order of the average shift that they take from the

highest to the lowest starting at the BM, we will get: BM, LDI, ZT, QS, MS, SMI

and the BR. But, if we do the same for the timings we get BM, MS, SMI, LDI,

QS, HOR, BY, RAI and the BR. The reason for the difference in the lists is due to

overheads in traversing the data structures which are present in the algorithms for

the calculation of the correct shift value. Therefore, we can not assume that because

an algorithm has a higher average shift that it will be more efficient than another.

53

Algorithm average shift % difference time in secs. % difference

BF 1.00 708.00 3402 315.89

KMP 1.00 708.00 4727 477.87

DFA 1.00 708.00 3057 273.72

BY 5.61 44.03 987 20.66

BM 5.76 40.28 1518 85.57

AG 5.65 43.01 4396 437.41

HOR 5.72 41.26 1042 27.38

RAI 5.72 41.26 865 5.75

MS 6.40 26.25 1237 51.22

LDI 6.34 27.44 1115 36.31

QS 6.49 24.50 1094 33.74

ZT 6.38 26.65 1874 129.10

TBM 5.57 45.06 2240 173.84

SMI 7.11 13.64 1186 44.99

BR 8.08 N/A 818 N/A

Table 4.13: The average shift and the user time in seconds

We then considered eight other texts, 'Book2', 'news' and the six papers from the

Calgary corpus [37]. The number of words and the number of characters of these texts

are shown in Table 4.15. We searched for the same 500 random words from the UNIX

dictionary for the BM, BR, BY, HOR, LDI, QS, RAI, and SMI algorithms. The

reason for using different texts of different sizes was to check that the pre-processing

of the BR didn't become too expensive as the text became smaller in size. We also

needed to check that the distribution of the characters in the text didn't affect the

speed of the BR algorithm.

54

BM BR BY HOR LDI QS RAI SMI ZHU

Paper 1 103.7 56.0 68.2 71.3 76.6 74.7 59.3 81.3 169.9

Paper 2 161.8 86.8 106.2 111.2 120.1 116.9 92.4 126.5 247.1

Paper 3 93.2 50.1 61.2 64.0 69.2 67.4 53.3 72.8 164.9

Paper 4 26.7 15.5 17.6 18.2 19.8 19.2 15.1 20.9 85.5

Paper 5 23.3 13.9 15.7 16.2 17.8 17.1 13.5 18.7 82.2

Paper 6 74.2 40.2 48.7 51.0 54.5 53.2 42.4 58.2 143.3

Book 2 1195.0 639.0 784.0 820.0 884.0 862.0 681.0 934.0 1485.0

News 727.0 391.0 476.0 498.0 533.0 520.0 414.0 570.5 862.0

Table 4.14: User times in seconds for the eight chosen texts

number of words number of characters

Paperl 8512 53162

Paper2 13830 82205

Paper3 7220 47139

Paper4 2167 13292

Paper5 2100 11960

Paper6 6754 38111

Bookl 139994 773635

Book2 101221 610856

News 53940 37711

Table 4.15: The number of words and characters of the texts used in Table 4.14

55

The results documented in Table 4.14 show that the BR algorithm is faster than

the existing algorithms when the text is large. The RAI algorithm is the fastest

algorithm for texts 'paper 4' and 'paper 5'. This is due to the time for the pre-

processing in BR which is not as dominant in the RAI algorithm. The tests were

carried out for a wide range of text sizes as shown in Table 4.15. The main reason

for the speed of our BR algorithm is the improved maximum shift of m+2.

4.6 Conclusions

The experimental results show that the BR algorithm is more efficient than the ex-

isting algorithms in practice for most of the data sets from the Calgary Corpus [37].

Over our 4 random texts and 9 real texts where the BR algorithm is compared to the

existing algorithms, our algorithm is more efficient for all but two of the texts. With

the addition of punctuation and capital letters it does not affect the BR algorithm. So

in the real world we would expect our savings to remain and make our BR algorithm

competitive with the existing algorithms. It is also possible to apply some of our

findings to what makes a fast algorithm to the existing algorithms. This may make

them faster but we were concerned with the original algorithms that were devised by

their authors.

Chapter 5

Two dimensional string matching algorithms

5.1 Introduction

Two dimensional string matching algorithms [5,6,49,50,13,14] perform as follows.

Given a text T [1.. n1][1.. n2] find all occurrences of a pattern P [1.. m1][1.. m2] in T.

Note that in this chapter we use square matrices for our tests and so n= nl = n2 and

M: -- ml = m2. We describe the existing two dimensional string matching algorithms

and describe a new two dimensional algorithm (2D-BR). We prove that the new

algorithm has a linear average-case time complexity. We compare the new algorithm

with the existing algorithms by experimentation.

5.2 Existing two-dimensional string matching algorithms

The most basic of the two dimensional string matching algorithms is the naive or brute

force (BF) algorithm. The BF algorithm for two dimensional pattern matching works

in a similar way to the BF algorithm for one dimensional string matching. The pattern

56

57

and text are aligned so that P[1][1] is aligned with T[1][1]. The comparisons are done

from left to right. If the first row of the pattern P[1][1.. m] matches T[a][k + 1.. k + m]

then the second row of the pattern is compared to the text starting at T [a + 1] [k + 1].

This continues until a complete match of the pattern and the text or a mismatch

occurs then as before in the one dimensional case the pattern matrix is moved one

position to the right. The BF algorithm has a worst-case time complexity of O(n2m2).

This worst-case was improved by Bird [35] and Baker [27] to O(n2 + m2). The

algorithm combines the Aho-Corasick multiple pattern matching algorithm [2] and the

KMP algorithm [84] to form a two dimensional algorithm. The algorithm processes

the text and identifies all occurrences of all pattern rows. Each row in the pattern is

represented by a new symbol and the symbol replaces each occurrence of the pattern

row in the text. The problem is now finding all occurrences of the string composed

of new symbols in the text in the correct order.

The KMP algorithm itself can be adapted to two dimensional string matching. In

one dimensional matching the algorithm compares the text and pattern character by

character until either a mismatch or complete match is found. Upon a mismatch the

pattern is shifted to the right by the greatest overlap with the old pattern position. In

the two dimensional case this can be adapted by starting in the leftmost column and

comparing a pattern row with a text subrow of length m. Proceeding in this fashion

until a mismatch or match occurs. Upon a mismatch or match the pattern is shifted

58

to the right for the greatest overlap with the old pattern position and comparisons

are resumed from this new location. The worst-case running time of the modified

KMP algorithm is O(n2m).

The Zhu and Takaoka (ZT) algorithm [139] uses hashing to search for a pattern.

The text is hashed into numeric values to form a one dimensional text. The pattern

is hashed in the same way and a one dimensional pattern matching algorithm is used

to search for the pattern. The worst-case running time is O(n2m2).

5.3 The New Algorithm (2D-BR)

The new algorithm (2D-BR) reduces the number of comparisons required to search

for a pattern. In one comparison we can check whether the entire pattern matrix isn't

present in an area of the text [61]. We create an array of length o, where o is the

size of the alphabet set called the Frequency array. In the Frequency array we record

the frequency of each of the characters in the pattern. We look up the character at

positions T[(i + 1)m] [(j + 1)m] for all 0<i, j<m called the sample point in the

Frequency array.

Note that when one entry in the matrix is examined we are only considering a

2m -1x 2m -1 square centred around the sample point X.

59

X X X

X x X

X x X

Figure 5.1: Each X denotes a sample point (71(i + 1)m][(j + 1)m] in the matrix that
is compared with the Frequency array where T is a6x6 matrix and P is a2x2
matrix.

There are three cases that arise from a comparison of the sample point and the

Frequency array (T[(i + 1)m][(j + 1)m]) with the pattern:

" Case 0: The character at the sample point has a frequency of 0 in the Frequency

array and therefore doesn't occur in the pattern. We then move to the next

sample point in the text to be considered.

" Case 1: The character at the sample point has a frequency of 1 in the Frequency

array. This means that there is only one occurrence of the character in the

pattern. The pattern and text are aligned so that the occurrence of the sample

point in the pattern is aligned with the sample point. The pattern and text are

examined with the BF algorithm and after a partial or full match we move to

the next sample point to be considered.

60

" Case 2: The character at the sample point has a frequency greater than one in

the Frequency array. If case 2 occurred at T[(i+1)m][(j+1)m] then we continue

checking the sample points until either case 0 or case 1 occurs, while j<m. For

the distance from the first occurrence of case 2 to the last occurrence of case 2

we use a one dimensional algorithm, the BR algorithm, to search for the first

row of the pattern in the text. We begin the search at T [(i + 1)m - (m - 1)] [(j +

1)m - (m - 1)] for the i, j that give the location of the first occurrence of case

2. The search ends at T[(i+ 1)m][(j +1)m] for the i, j that give the location of

the last occurrence of case 2. For example, we consider a pattern of size 3x3

and a text of size 5x 30 in Figure 5.2. For each of the sample points we give

which case that has occurred. The shaded area represents the area that would

need to be searched by the BR algorithm for the first row of the pattern. Upon

a full match of the first row of the pattern with the text the remaining pattern

characters are compared with the corresponding text characters. Upon a full

or partial match of the pattern and the text, the pattern is moved according to

the shift value calculated by the BR algorithm.

Figure 5.2: Shaded area is compared with the first row of the pattern using the BR

algorithm

61

The new algorithm is called the two dimensional BR (2D-BR) algorithm. The

worst case running time of the 2D-BR algorithm is O(n2m2).

5.4 Average case analysis of the 2D-BR algorithm

Let a be the size of the alphabet set, E. We assume that the characters in the text

all have an equal frequency and so the probability of a match between a character of

the pattern and text is ö.

The frequency of the character at the sample point in the pattern will tell us which

case is used. For each case we need to know

9 The number of patterns with no occurrences of the character at the sample

point (case 0).

" The number of patterns with one occurrence of the character at the sample

point (case 1).

9 The number of patterns with one or more occurrences of the character at the

sample point (case 2).

Note that we only need to calculate the number of matrices for a character of the

alphabet as each character has the same number of matrices for each of the cases.

Lemma 5.1: The number of matrices that don't contain a specific character of

the alphabet is (a - 1)M2

62

Proof: The number of possible matrices for an alphabet of size a is a' 2
.

We want

to know the number of matrices where a character in the alphabet doesn't occur in

the pattern matrix. This is the same as how many matrices are possible with one

character of the alphabet set removed (Q - 1) to give (Q - 1)m2 O.

Lemma 5.2: The number of matrices that contain one occurrence of a specific

character of the alphabet is m2 x (Q - 1)M2-1

Proof: If the matrix contains only one of a specific character then the other

m2 -1 positions in the matrix contain any number of the remaining characters in

the alphabet. The number of combinations that the remaining characters can take is

(Q - 1)m2-1. The character that must occur only once in the matrix can be placed in

any of the m2 positions in the matrix. Therefore there are m2 x (a - 1)M2-1 possible

matrices.

The number of matrices that contain more than one occurrence of a specific char-

acter is equal to the total number of possible matrices minus the number of matrices

that contain one or no occurrences of the specific character. To give om2 - (a - 1)M2

-7112X
(or

-1)m2-1 0

9 The probability of case 0 is the number of matrices that don't contain a specific

character divided by the total number of possible matrices, m mz
0

" The probability of case 1 is the number of matrices that contain one occur-

rence of the specific character divided by the total number of possible matrices,

63

m2X o-1 mz -1

Qm

" The probability of case 2 is the number of matrices that contain one or more

of the specific character divided by the total number of possible matrices,
222

v

Case 2 is dominant when a is small i. e. a< 32. When case 2 is dominant the

algorithm then behaves as the BR plus ([ni/mi]) x ([n2/m2]) extra comparisons. As

the pattern size increases ([ni/mi]) x ([n2/m2]) decreases.

The average case time complexity of the 2D-BR algorithm is the upper bound

total number of comparisons taken for the average case text.

Lemma 5.3: The upper bound total number of comparisons taken by the 2D-BR

algorithm ismz + 87z

Proof: The upper bound total number of comparisons taken is the upper bound

number of comparisons taken at an attempt multiplied by the upper bound number

of attempts made plus the number of sample points considered. The highest amount

of comparisons are made when case 2 is found at all of the sample points. When

this happens we use the BR one dimensional string matching algorithm to search the

entire text for the first row of the pattern. Upon a match of the first row of the

pattern with the text we compare the remaining characters in the pattern with the

corresponding text characters until we have a mismatch or a full match. The distance

the pattern is shifted is calculated by the BR algorithm. O

64

From Lemma 4.1 in Chapter 4 we know the upper bound number of comparisons

at an attempt for a one dimensional pattern is ;_ j=0 as
). The number of entries in a

two dimensional pattern is m2 and therefore we replace m with m2. The upper bound

number of comparisons taken at an attempt for a two dimensional text is j=0 1(ä,

If we assume that o>1, then the above equation is maximised when u=2. To

give Emz-1 1 As m tends to infinity the equation tends to its limit of 2. The upper i_o T

bound number of comparisons taken at an attempt is 2 comparisons.

The upper bound number of attempts made is calculated by dividing the size of

the text by the lower bound shift. From Lemma 4.2 in Chapter 4 the lower bound

for a shift is 4 for the BR algorithm. This is also the lower bound shift for the two

dimensional text as we are using the BR algorithm to shift the pattern. The upper

bound number of attempts made is = 472 attempts.
4

The upper bound total number of comparisons is the upper bound number of

comparisons made at an attempt multiplied by the upper bound number of attempts

made plus the number of sample points considered. This gives 2x 47' + n2 - -v- +

n2
m2

Theorem: The 2D-BR has a linear average case running time of 0 (N+M) where

N and M are the sizes of the text and pattern respectively.

Proof: For the pattern to be two dimensional m has to be greater than or equal

to 2. The equation a7 2+
jr 2 is maximised when m=2. To give 87 s+4a

=

65

39n2 Therefore the 2D-BR algorithm has a linear average case time complexity of 28

O(N + M) where N and M are the sizes of the text and pattern respectively. Q

alphabet 2x2 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10

2 68987 75849 75300 73928 73165 72704 72405 72200 72054

4 31775 25687 23696 21168 19046 17535 16480 15753 15277

8 23221 15193 13642 12967 11941 10744 9652 8748 8010

16 19441 10928 8637 8185 8160 8017 7651 7141 6662

32 17552 8913 6134 5187 4993 5094 5248 5331 5302

64 16594 7924 4962 3712 3183 3019 3048 3174 3329

128 16111 7434 4416 3055 2366 2011 1846 1798 1826

256 15869 7189 4156 2762 2019 1590 1333 1182 1100

Table 5.1: Estimated number of comparisons taken

For the stated o,, m and a text of 62500 characters the estimated number of com-

parisons are given in Table 5.1. We then tested 2D-BR to see how many comparisons

the algorithm takes in practice. The results are given in Table 5.2.

So for larger alphabets when case 2 becomes dominant ([nl/m1]) x ([n2/m2])

is quite small. So for larger alphabets the difference between the 2D-BR algorithm

and the BR algorithm would be very small. As or increases the number of actual

comparisons is less than the estimated number of comparisons.

66

alphabet 2x2 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10

2 89168 82389 75782 75008 72949 70455 67217 63843 65892

4 31905 33265 27961 24635 21491 19267 17588 16039 15173

8 19082 15657 15890 14824 13117 11580 10357 9267 8489

16 16510 9223 8605 8941 9163 8642 8010 7251 6684

32 15865 7581 5391 4821 4997 5278 5542 5508 5404

64 15686 7101 4296 3266 2879 2845 2935 3156 3333

128 15640 6945 3975 2704 2052 1807 1657 1721 1695

256 15628 6904 3875 2554 1783 1394 1181 1074 976

Table 5.2: Actual number of comparisons taken

5.5 Practical evaluation of the algorithms

From the theoretical evaluation of the algorithms we can see that the best algorithm is

the Bird and Baker algorithm. We wanted to know how the algorithms performed in

practice. We already know that the Bird-Baker and Zhu-Takaoka algorithms required

a lot of space and preprocessing [27,35,139] which would take more time than the

other algorithms and so these algorithms were omitted.

For our experiments we used alphabets of size 2,4,8,16,32,64,128 and 256. For

each algorithm we randomly generated 100 matrices for each pattern size from 2x2

to 10 x 10 and generated a text of size 500 x 500.

We used a 486-DX66 with 32 megabytes of RAM and a 100 megabyte hard drive

running SUSE 5.2. Each algorithm was evaluated ten times and the average user time

taken is given in Tables 5.3 to 5.10. The timing was accurate to 1/100 of a second.

67

The difference between the slowest and fastest time for each test for an algorithm was

less than 0.2 of a second.

2x2 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10

BF 10.36 9.77 9.35 8.49 10.82 10.66 10.40 9.76 9.06

BM 13.66 9.45 8.52 8.82 7.56 4.91 4.27 4.39 6.16

BR 8.21 6.88 6.63 7.49 6.49 4.53 3.78 4.34 3.72

KMP 4.11 4.38 14.54 14.34 13.90 14.01 14.22 16.28 16.82

D-BR 4.24 3.53 1.15 2.55 0.77 0.43 1.89 0.52 1.67

SMI 2.90 8.03 8.15 6.60 5.15 5.64 4.91 5.02 4.47

Table 5.3: Time in seconds to search for 50 matrices when or = 256

2x2 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10

BF 11.28 11.54 12.34 11.24 1.49 11.47 12.17 11.48 11.98

BM 3.51 13.51 10.12 8.19 9.80 6.83 6.89 7.00 6.42

BR 10.93 8.35 8.40 7.80 8.61 6.59 6.14 6.89 6.18

KMP 16.35 16.12 15.81 15.39 16.32 17.28 16.49 16.63 16.09

D-BR 6.65 7.41 4.06 3.70 3.95 4.23 4.35 6.40 5.81

SMI 1.72 10.46 9.35 9.00 8.52 7.91 8.20 7.41 7.16

Table 5.4: Time in seconds to search for 50 matrices when a= 128

From Tables 5.3 and 5.4 we can see that the 2D-BR algorithm is the fastest

algorithm for the tests conducted. In these tests the alphabet is large and so the

probability of case 2 is low. As cases 0 and 1 occur more frequently we get large

shifts of m2 more often. In Table 5.5 the performance of the 2D-BR algorithm starts

to suffer as the pattern size increases. This is due to case 2 becoming dominant. This

observation is also true in Tables 5.6 to 5.10.

68

2x2 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10

BF 8.99 8.75 10 10.19 . 75 9.21 9.56 . 73 10.24

BM 12.26 9.63 . 21 8.45 . 25 5.33 4.98 . 27 7.79

BR 9.37 6.94 . 96 6.02 . 19 4.53 4.95 . 93 4.41

KMP 13.79 14.08 14.2 14.26 14.1 16.14 16.36 16.2 16.64

D-BR 4.49 3.89 . 38 4.11 . 23 5.43 6.78 7.5 7.17
I

SMI 10.26 8.4 7.5 6.99 . 12 5.45 5.84 . 86 4.59

Table 5.5: Time in seconds to search for 50 matrices when a= 64

2x2 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10

BF 9.14 9.05 8.80 9.19 8.81 9.67 9.52 12.49 9.43

BM 11.29 2.07 8.19 6.19 5.45 5.34 4.77 5.96 3.03

BR 7.03 6.89 5.37 5.34 4.48 4.62 4.40 3.62 3.63

KMP 2.28 13.53 4.27 13.47 4.87 4.33 13.94 14.39 14.16

2D-BR 5.26 4.22 6.05 11.96 10.40 9.68 9.14 6.51 7.10

SMI 9.55 9.40 6.85 6.60 7.20 6.84 4.58 4.97 6.14

Table 5.6: Time in seconds to search for 50 matrices when a= 32

2x2 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10

BF 9.88 0.76 9.96 10.06 9.75 9.47 8.92 10.80 10.04

BM 11.96 10.06 8.96 8.52 7.72 6.28 5.48 7.20 5.80

BR 8.72 7.83 7.59 5.90 5.99 5.88 3.76 5.66 4.59

KMP 4.34 14.76 14.64 16.24 14.86 14.90 13.37 14.55 14.70

2D-BR 9.59 13.02 18.68 1.78 14.77 12.02 6.93 6.21 5.28

SMI 12.61 10.58 7.96 9.13 7.56 6.43 7.98 5.20 6.01

Table 5.7: Time in seconds to search for 50 matrices when a= 16

69

2x2 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10

BF 10.23 9.62 9.30 8.87 10.46 10.70 11.49 10.38 9.62

BM 2.11 10.28 7.95 10.59 7.52 7.43 6.54 6.36 6.28

BR 8.73 8.72 7.27 6.03 6.05 6.30 5.65 5.27 5.44

KMP 14.64 13.55 14.50 14.87 13.86 14.24 14.42 14.42 14.94

D-BR 3.84 4.71 7.90 15.13 7.42 6.58 6.64 4.89 4.96

SMI 11.62 8.86 9.05 8.51 6.28 7.08 8.03 5.99 6.56

Table 5.8: Time in seconds to search for 50 matrices when a=8

2x2 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10

BF 14.03 11.62 1.95 11.76 11.18 12.67 11.51 12.28 12.81

BM 15.54 12.08 10.51 10.70 10.26 9.04 8.77 8.32 9.43

BR 11.72 10.96 10.45 8.41 8.31 8.51 8.41 7.45 7.91

KMP 16.24 16.31 15.40 16.12 17.19 16.91 15.82 17.77 17.01

D-BR 8.21 4.16 15.91 9.92 7.80 8.40 7.69 7.65 8.17

SMI 14.97 12.43 1.26 10.28 10.38 8.93 10.55 9.48 9.59

Table 5.9: Time in seconds to search for 50 matrices when v=4

2x2 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10

BF 15.58 15.41 15.40 14.52 14.24 13.79 13.90 14.93 13.80

BM 17.18 16.54 15.21 13.50 11.20 10.89 8.48 8.14 7.81

BR 0.35 19.56 16.83 16.52 15.02 14.73 13.70 15.18 15.45

KMP 19.14 1.49 14.03 15.42 15.79 15.53 15.07 15.44 18.00

D-BR 0.58 2.86 18.48 17.22 15.67 15.80 14.57 15.49 15.91

SMI 0.88 18.41 16.81
116.86

17.22 14.12 13.54 14.60 14.8 7

Table 5.10: Time in seconds to search for 50 matrices when or =2

70

The probability of case 2 occurring is approximately 1 when o=2. This is when

the 2D-BR became one of the slowest algorithms. As the pattern size increases the

algorithm performs as the BR algorithm but with some extra time taken checking the

extra comparisons.

The 2D-BR is the best algorithm to use when v is large. This is the case when

searching in image files.

5.6 Conclusions

The reason for the speed of the 2D-BR algorithm is due to the fact that the algorithm

exploits the characteristics of the matrices. The only disadvantage of our 2D-BR

algorithm is that it requires a large alphabet due to its complex searching procedure.

The large alphabet ensures that cases 0 and 1 are used for the searching phase of the

algorithm more frequently. The 2D-BR algorithm performs best with larger alphabets

due to the probability of case 2 being reduced.

In our tests we used square matrices. If the pattern was a rectangle or an irregular

shape as in [59,75] we could extend the 2D-BR algorithm to search in these texts.

Chapter 6

Compression algorithms

6.1 Introduction

The dictionary definition of compression is: "to squeeze together or compact into less

space" [43]. Text compression [29] is exactly that, taking a file and compacting it

so that it takes less space. How the compacting is performed and how much com-

patting is done is the difference between the various algorithms available. Although

the times to encode and decode texts are considered, normally we are interested in

maximizing the factor (ratio) by which the text has been compressed. The aim of a

text compression algorithm is to decrease the number of bits required to represent a

piece of text.

The compression ratio of a text is the amount of space saved by compressing the

text. The compression ratio is calculated using the following equation:

71

72

compression ratio = originalsize-encodedsize
originalsize

When comparing compression algorithms [89] to see which gives the greater amount

of compression we use the compression ratio. Although an algorithm may have a

higher compression ratio than another it may take a long time to compress the text.

Therefore compression algorithms are evaluated on their compression ratio and the

time taken to compress a text.

There are two types of compression algorithm, lossless compression and lossy com-

pression. Lossless meaning that none of the information in the source file is lost when

the file is decompressed. The file is compressed and when it is decompressed it is

identical to the file that was compressed. In lossy compression some of the informa-

tion may be lost during the compression. Lossy compression attempts to eliminate

redundant or unnecessary information. Most music compression technologies, such

as MP3, use a lossy technique. For text compression we use lossless compression

algorithms as we need to compress the source file and decompress it to recover the

original source file. There are many compression algorithms for text compression.

Text compression algorithms use the statistical data and structure of the text file to

compress the file. There are two famous compression algorithms that are used in text

compression, Huffman Coding [73] and Lempel-Ziv encoding [134,140,141].

73

6.2 Huffman Encoding

Huffman encoding [73] can be used to compress data such as text or images [72].

Text files contains characters and formatting commands. Most text files use the 128

characters in the ASCII character set. They are numbered from 0 to 127. Numbers

0 to 31 and 127 are used to represent control or formatting characters and 32 to

126 represents the alphanumeric characters in the text. Each of the characters is

represented in the file by eight bits or one byte. Although we only need 7 bits

to represent the numbers from 0 to 127. Numbers 128 to 255 are used for some

characters in the text that may be from the extended ASCII character set such as

Greek letters, math symbols and various geometric patterns.

In Morse code [98] the more frequently used letters have shorter patterns asso-

ciated with them. This is so that a message can be passed quickly and accurately.

Although both the sender and recipient must know Morse code to use this form of

signalling. This is the idea behind Huffman encoding. More frequent characters can

be assigned shorter bit patterns and less frequent characters can be assigned longer

bit patterns. Huffman encoding can be dynamic or static. First, we will consider

static Huffman encoding and give an example of how the algorithm compresses a

text. A visualisation of Huffman encoding can be found at [121].

To use static Huffman encoding we must first evaluate the frequencies of the

characters in the text. To do this we must read the text character by character

74

updating the relevant frequencies from the start to the end. Consider the following

frequency table:

Character Frequency

A 70

B 33

C 27

D 21

E 12

F 7

END 1

Table 6.1: The frequency of each of the characters in the text.

To construct the bit pattern for each character we build a Huffman tree (binary

tree) and then reading the Huffman tree gives the relevant bit pattern. Let each of

the characters in the text be a leaf in the Huffman tree. To build the tree we perform

the following steps.

Step 1: Pick the nodes nl and n2 that have the smallest weights.

Step 2: Replace them with a new node whose children are nl and n2 and whose

weight is the sum of the weights of nl and n2.

Each time we perform these steps we will replace two nodes in the alphabet with one.

Until only one single node remains and this node is the root of the Huffman tree.

The two nodes with the smallest frequencies are END and F in Table 6.1. We

make these the children of a parent node and replace them in the frequency table

75

with END, F = 8.

[END) [f)
Figure 6.1: END and F added to the Huffman tree

Listing the frequencies in order we now get A=70, B=33, C=27, D=21, E=12

and END, F=8. The two nodes with the smallest frequencies are END, F and E. We

make these the children of a root node and replace them in the frequency table with

END, F, E = 20. Note that the E and the root of END, F are on the same level of the

tree.

Figure 6.2: E added to the Huffman tree

Listing the frequencies in order we now get A=70, B=33, C=27, D=21 and

END, F, E=20. The two nodes with the smallest frequencies are END, F, E and D.

We make these the children of a root node and replace them in the frequency table

with END, F, E, D = 41. Note that the D and the root of E are on the same level of

the tree

Listing the frequencies in order we now get A=70, END, F, E, D=41, B=33 and

76

Figure 6.3: D added to the Huffman tree

C=27. The two nodes with the smallest frequencies are C and B. We make these the

children of a root node and replace them in the frequency table with C, B = 60. Note

that the subtree containing C, B is not connected to the main tree.

D LB C

E

END F

Figure 6.4: C and B are added but not connected to the main tree

Listing the frequencies in order we now get A=70, C, B=60 and END, F, E, D=41.

The two nodes with the smallest frequencies are C, B and END, F, E, D. We make

these the children of a root node and replace them in the frequency table with

END, F, E, D, C, B = 101. Note that the C, B and D are on the same level of the

tree

77

Figure 6.5: C and B subtree connected to the Huffman tree

Listing the frequencies in order we now get A=70 and END, F, E, D, C, B=101.

The two nodes with the smallest frequencies are A and END, F, E, D, C, B. We make

these the children of a root node and replace them in the frequency table with

END, F, E, D, C, B = 101.

The tree is now complete and we can now read the bit patterns related to each

character. The level which each character is on is the length of the bit pattern

associated with it. For example E will have a bit pattern of length 4. Note that the

root of the tree is level 0. To get the bit pattern we traverse the tree to each of the

characters. If we traverse a left path we record a0 and if we traverse a right path

we record a 1. If we traverse left, right and then left and we are at B. So B has a bit

pattern of 010. Using the same method for each character we get the following bit

patterns as shown in Table 6.2.

78

Figure 6.6: A added to the Huffman tree and the tree is complete

Character Frequency Bit Pattern Bit Pattern Length Freq x BPL

A 70 1 1 70

B 33 011 3 99

C 27 010 3 81

D 21 001 3 63

E 12 0001 4 48

F 7 00001 5 35

END 1 00000 5 5

Table 6.2: The bit patterns and their lengths for an Huffman encoding of the frequen-

cies in Table 6.1

79

In Table 6.2 the fourth column shows the length of each bit pattern. Multiplying

this figure with the frequency of a character gives the number of bits required to

represent that character using Huffman encoding. So the total number of bits required

is 401 bits. The original file took 171 x8= 1368.

The set of distinct characters in the text is known as the dictionary. The dictionary

is stored as a binary sequence that allows us to reconstructed our encoding tree. If

we let 0 represent an internal node and 1 represent a leaf then we can use a binary

string to represent the tree. We start with a fixed 6 bit string which indicates how

many bits each character in the original text requires to represent it. In the above

example we are storing ASCII characters which have a value between 0 and 127. So

we will need 7 bits to represent each character. So we will output 7 which is 000111

to our encoded file.

There are 7 leaves and 6 nodes in our tree in Figure 6.6. We traverse the tree in

preorder: visit the root, traverse the left subtree, traverse the right subtree. So for the

tree in Figure 6.6 we would get 0000011110111. Note that this does not include the

data required to represent the characters at each of the leaves. At each of the leaves

we have the value of the character at that position in the tree. When encoding the tree

each time we output a1 to indicate a leaf we record the character at that leaf. In this

example each character in the text requires 7 bits to represent it. So the 7 bits of data

after a1 indicate the character at that leaf. The binary representations of each of the

80

ASCII characters in the dictionary are A= 1000001, B= 1000010, C= 1000011, D=

1000100, E= 1000101, F= 1000110 and END = 0000100. So the full encoding of the

dictionary is 00000100001001100011011000101110001000110000101100001111000001.

To reconstruct the tree we would use a preorder traversal mapping the nodes and

leaves, and decoding the character at the leaf each time we add a new leaf.

So we represent the above tree using 13 bits and we use 49 bits to show the

information stored at each of the leaves. So we used 6+ 13 + 49 = 68 bits to represent

the dictionary. So the total number of bits required is 469 bits. The original file took

1368 bits. So the compression ration is 1368
8=0.65716. So we have a compression 136

ratio of 65.72%.

Adaptive or dynamic Huffman encoding [85,132,133] works in a similar way to

static Huffman encoding only the Huffman tree is constantly updated. The tree is

first populated with only the first character of the text. As the characters are read

from the text then the tree is built and modified so that the characters that appear

with the highest frequency have the smallest bit patterns.

Although Huffman encoding has a good compression ratio there are a few problems

associated with it. For example if one of the bits in the text is changed then this

can cause the entire text to be changed or cause the wrong character to be printed.

These errors that can occur mean that the decompressed file may not be an exact

copy of the original. Standish [126] shows that Huffman codes should recover from

81

errors with only a partial loss of data. This recovery from errors is known as self

synchronisation. A difficulty of self-synchronisation is that it provides no indication

that an error has occurred. In [128] it is proven that a code is never self-synchronising

if and only if none of the proper suffixes of the codewords are themselves codewords.

An algorithm is introduced for constructing an optimal Huffman code for a

weighted alphabet in [86]. An optimal Huffman code yields the best possible code

for a collection of symbols and frequencies. The algorithm has a worst case time

complexity of O(nL) where n is the size of the weighted alphabet and each code

string must have a length no greater than L.

6.3 Lempel-Ziv encoding and its derivatives

Lempel and Ziv decided to use the structure of the text to compress it. Most texts

contain repeated patterns, be they repeated phrases, words, suffixes, prefixs or char-

acters. Lempel and Ziv devised three algorithms all based around a similar idea. The

first of which was LZ77 [140) which was first documented in 1977. The algorithm

replaced reoccurring strings of characters with pointers to earlier occurences of that

string.

In the LZ77 compression of a text the coding position is the position of the char-

acter that is currently being coded. A window of size w that contains w characters

from the coding position backwards, where the characters in the window are the last

82

w characters processed. A look ahead buffer which is the character sequence from the

coding position to the end of the input. The algorithm searches for the longest match

with the beginning of the look ahead buffer. Upon a match between the window

and the look ahead buffer, a pointer is output giving the position and length of the

match. The position is given as the distance away from the current coding position.

It is possible that not even one character of the window will match with the character

at the coding position. If there is no match then a null pointer and the character at

the coding position is the output. Otherwise, after each pointer it outputs the first

character in the look ahead buffer after the match.

In Table 6.3 we show the positions of the characters in 'AAGTCTGTCA' and we

show the full encoding in Table 6.4

Pos. 1 2 3 4 5 6 7 8 9 10

Char. A A G T C T G T C A

Table 6.3: Position of the characters in the string 'AAGTCTGTCA'

In Table 6.4, step is the number of times the algorithm has iterated. The position

indicates the current coding position. Match shows the longest match with the char-

acters in the window. Char shows the first character after the match. If there is no

match then Char is the character at the coding position. Output shows the output in

the form (D, L)C where D is the distance to the matching characters in the window,

L is the length of the match and C is the character after the match or the character

83

Step Pos. Match Char Output

1 1 NONE A (0,0)A

2 2 A G (1,1)G

3 4 NONE T (0,0)T

4 5 NONE C (0,0)C

5 6 T G (2,1)G

6 8 TC A (4,2)A

Table 6.4: LZ77 encoding of the string 'AAGTCTGTCA'

at the coding position if no match exists.

We firstly set the coding position to the beginning of the text string. We then

search for the longest match in the window to left. As the window is empty there is

no match and the null pointer (0,0) is output and the character at the coding position

is 'A'. We then move to the next coding position which is the next character in the

text string to the right that hasn't been output. In this case the second W. The 'A'

matches with the 'A' in the window and so we output a pointer and the character

that is after the character that matched, namely 'G'. The pointer would be (1,1) as

the distance from the coding position to the matching character is 1 and the length

of the match is 1. At the sixth and final step we output (4,2)A. This means that

there is a match in the window of length 2 that is 4 positions away from the current

coding position. The current coding position is 8 and TC is repeated 4 positions to

the left starting at 4. The 'A' is the first character in the text string after the match.

The window usually contains between 4,000 and 64,000 characters. Once the

84

window is full it is shifted to the right to keep it one position to the left of the

coding position. The characters that are not in the window are not considered when

searching for a match. This process of searching for matches can be time consuming,

but decoding the compressed file is simple and fast. The pointers can easily be

converted back to the characters that are represented by them. The LZ77 algorithm

offers a very good compression ratio but the amount of time taken for the compression

is a major drawback.

The second Lempel-Ziv algorithm is the LZ78 [141] which uses a dictionary to

create the pointers rather using a window. As the text string is compressed a dictio-

nary is built containing already scanned characters and strings. We output the codes

or pointers to the compressed file in the following format (I, C), where I is the index

of the dictionary string that has matched with the characters at the coding position

and C is the first character after the matching characters in the text string. If there

is no match between the dictionary and the character at the coding position then

we output (0, C), where C is the character at the coding position. In Table 6.6 we

show the full encoding of the characters in 'AAGTCTGTCTCA' using LZ78. The

positions of the characters are shown in Table 6.5

Pos. 1 2 3 4 5 6 7 8 9 10 11 12

Char. A A G T C T G T C T C A

Table 6.5: The positions of the characters in the string 'AAGTCTGTCTCA'

85

Step Pos. Dictionary Index output

1 1 A 1 (0, A)

2 2 AG 2 (1, G)

3 4 T 3 (0, T)

4 5 C 4 (0, C)

5 6 TG 5 (3, G)

6 8 TC 6 (3, C)

7 10 TCA 7 (6, A)

Table 6.6: The LZ78 encoding of the string 'AAGTCTGTCTCA'

In Table 6.6, step is the current iteration of the algorithm. Position is the current

coding position. Dictionary shows what string has been added to the dictionary. The

index for each entry in the dictionary is the step number.

To compress 'AAGTCTGTCTCA' we start with an empty dictionary and start

at position 1 in the text string. We search the dictionary for the character at the

coding position, 'A', but the dictionary is empty and so we don't find a match. We

put 'A' in the dictionary and it has an index of 1 which is the step number. We

output (0, A) to the compressed file. We then move to position 2 and search for 'A' in

the dictionary. We find a match and try to extend the match. The string 'AG' is not

in the dictionary and so the longest possible match is 'A'. We output (1, G) as the

index of the dictionary entry 'A' is 1 and the first character after the match is 'G'.

We also enter 'G' into the dictionary and it has an index of 2. The next two coding

positions are not in the dictionary and both single characters are entered into the

86

dictionary with 'T' and 'C' having indexes of 3 and 4 respectively. We output (0, T)

and (0, C) to the compressed file. When we check for a match with the next coding

position 6 equal to 'T' and the dictionary we get a match. We try to extend the

match but 'TG' is not in the dictionary and so we enter 'TG' into the dictionary and

give it an index of 5. We output (3, G) to the compressed file as 3 is the dictionary

index for 'T'. We continue this process on to the end of the string. Note that for step

7 we search the dictionary for 'T' and get a match and then try to extend the match

to 'TC' which also matches. We then search for TCA' which is not in the dictionary.

We enter 'TCA' into the dictionary and give it an index of 7 and output (6, A) to the

compressed file as 6 is the index for TC.

The decoding process is simple and the dictionary is rebuilt in a similar way to

that used to encode the text string. The compression ratio is very good.

The third Lempel-Ziv algorithm is a modified version of the LZ78 algorithm. The

LZW algorithm [105,134] was devised by Lempel, Ziv and Welch. The algorithm

removed the need for characters in the compressed file. The compressed file is a string

of numbers related to the entries in the dictionary and their indexes. As there are no

characters in the compressed file then the dictionary cannot be empty at the beginning

of the compression process. The dictionary contains each character in the alphabet

being used in the text string and each entry is indexed in the dictionary from 1 to

the alphabet size. As in LZ78 we build a dictionary of strings that have already been

87

scanned. As before we try to find the longest possible match from the coding position

in the dictionary. When we get a mismatch we output the index of the last string

to match the characters in the dictionary. The string that didn't match is entered

into the dictionary and is indexed with (the alphabet size + current iteration/step

number). Unlike in LZ78 the next coding position is the character that caused the

mismatch between the characters in the text string and the dictionary. This process

continues until there are no more characters to be compressed. In Table 6.7 we

show how 'AAGTCTGTCTCA' would be compressed using LZW. The positions of

the characters is the same as in Table 6.5. Note that there are 4 characters in the

alphabet and so they would be assigned the numbers 1 to 4 as follows: A=1, C=

2, G=3andT=4.

Step Pos. Dictionary Index Output

1 1 AA 5 1

2 2 AG 6 1

3 3 GT 7 3

4 4 TC 8 4

5 5 CT 9 2

6 6 TG 10 4

7 7 GTC 11 7

8 9 CTC 12 9

9 11 CA 13 2

10 12 n/a n/a 1

Table 6.7: The LZW encoding of the string 'AAGTCTGTCTCA'

88

In Table 6.7 step is the number of iterations that the algorithm has performed.

Position is the current coding position. Dictionary is the strings that have been

entered into the dictionary and index is the number that has been assigned to them.

Output is what is written to the compressed file.

When compressing 'AAGTCTGTCTCA' we start with a dictionary containing

the four characters A, C, G and T numbered as above. We then scan in 'AA' which

is not in the dictionary and so we enter it in the dictionary with index equal to 5. We

output the value of 'A' (1) to the compressed file. We then move to position 2 and

search for 'AG' in the dictionary. It isn't there so we enter it into the dictionary with

an index of 6. We output the value of 'A' (1) to the compressed file. We then move

to position 3 and search for 'GT' which is not in the dictionary. We enter it into the

dictionary with an index of 7. This process is repeated to the end of the text string.

Note that for step 7 we search for 'GT' and we find a match. We try to extend the

match by searching for 'GTC' but that is not in the dictionary. We enter 'GTC' in

the dictionary with an index of 11. We output the index of 'GT' to the compressed

file which is equal to 7.

So we have compressed 'AAGTCTGTCTCA' to the numbers 1,1,3,4,2,4,

7,9,2 and 1. Each of the numbers are represent by a 12 bit binary string in the

compressed file. So our compressed file would take 10 x 12 =120 bits to store the

compressed file. The original file took 12 x8= 96 bits to store it. Although the

89

compressed file from this example is larger than the original file for larger texts we

achieve much improved compression ratios.

An improvement to LZW encoding is shown in [71] which improves the compres-

sion ratio without a significant loss in speed. In [30] a method is described that

decreases the amount of time required to build the encoding dictionary. This is done

by comparing the available data structures and introducing two new data structures

designed specifically for the task of Lempel-Ziv compression.

Once a text has been compressed we still need to be able to access the data

contained in the text. This has led to the development of compressed string matching

algorithms. These algorithms allow the user to search for a pattern in a text without

the need to decompress the text [7,100,96,118]. As the compressed text is smaller

than the original text this can increase the speed of the search. Compressed string

matching has been performed in a number of compressed texts and is not limited to

one type of compression.

A theoretical analysis of searching in the Lempel-Ziv compressed files is given in

[58,65,66,67,78]. A practical evaluation of string matching in the Lempel-Ziv file

is given in [83,102,116]. The problem of multiple matching in the LZW compressed

text is discussed in [81]. Multiple pattern matching [47,101,136] is searching for

multiple patterns in one pass of the text. Existing string matching algorithms have

also been adapted to search in the compressed Lempel-Ziv compressed file. The Shift-

90

AND algorithm is adapted and used in [82]. The Boyer-Moore algorithm is adapted

and used in [103,119].

6.4 Byte pair encoding

Byte pair encoding compresses two characters in the text in one byte. In English

texts the characters in the special ASCII set (numbers 128-255) are normally not

used. This means that for each character in the text 8 bits are being used to store

information that can be stored using 7 bits. This means we have 128 characters that

are unused. The frequency of pairs of characters or digrams are taken and the most

frequent pairs or digrams are assigned to use ASCII values (128 to 255). Optimal

compression would produce a compressed file that would be 50% of the size of the

original. This method is used in [93,117] and a method is explained for searching in

the compressed file.

Chapter 7

String matching in an efficiently stored DNA text

7.1 Introduction

String matching and Compression are two widely studied areas in computer science

[47]. String matching is detecting a pattern P of length m in a larger text T of length

n. Compression involves transforming a string into a new string which contains the

same information but whose length is as small as possible. These two areas naturally

lead to Compressed String Matching, i. e. searching for a pattern in a compressed

text. This method will save both space and time.

In this chapter we describe a String Matching algorithm to search for a pattern

in an efficiently stored text. A DNA text (or molecule) encodes information, which

by convention is represented as a string over the DNA alphabet, {A, C, G, T}.

String Matching in an efficiently stored DNA text is useful for the following reasons.

Although the cost of memory is reducing, the sizes of DNA databases are growing ex-

ponentially. A typical question in molecular biology is whether a pattern (boundary)

91

92

occurs in a DNA text, i. e. we don't need to view the text.

Optimal efficient storage will devote two bits to represent each DNA character, if

each character is drawn uniformly at random from the DNA alphabet and that all

positions in the text are independent [91).

7.2 Efficient storage of a DNA text

In the DNA alphabet, E, there are four characters, namely A, C, G and T. As there

are only 4 possible characters in a DNA text we can represent the characters with

the function, f: E -+ [0 .. 3], such that f(A) = 0, f (C) = 1, f (G) = 2, and f (T) = 3.

After we replace the characters in a text with 2 bits per character, it is possible

to replace eight consecutive bits in the binary text with its corresponding ASCII

character. These eight consecutive bits are called a block. The decimal value of a

block is the code of the block given by the following function g.

g: ExExExE-*[0.. 255],

g(a, 3-y6) = (f(a) x43) + (f(, ß) x 42) + (f(ry) x 41) + (f(6) x 4°)

A DNA text-block will be represented by 32-bits in the original DNA text, as each

character needs 8-bits. Using the function g we can represent a text-block with 8-bits.

As the function g is a bijective function, we can efficiently store any text block into

8-bits and it is possible to reconstruct the original DNA text exactly.

This efficient storage method will guarantee to efficiently store the DNA text in

93

25% of the space required for the original text.

7.3 Comparison with existing compression algorithms

In this section we compare the well known text compression methods, Lempel-Ziv

encoding [134] and Huffman encoding [73] with our efficient storage method. Note

that our method requires 2 bits per DNA character.

In Lempel-Ziv (LZ) encoding [140,141] the file may be compressed to less than

2 bits per character but requires re-occurring strings of length at least 6. This is

because each of the strings that are output to the compressed file are of 12 bits in

length. Also the strings length less than 6 that have been written to the compressed

file have to be offset. The experiments in [91] show that LZ encoding compresses a

DNA text to 2.14 bits per character for their chosen text, which is worse than our

method

The LZ encoding and its derivative LZW encoding [134] are used in UNIX utilities,

compress and gzip. We selected DNA texts of different sizes from a database in [57]

and compressed the texts using these utilities. Table 7.1 shows that our compression

method is comparable to these methods. The third and fourth columns show the size

of the compressed file as a percentage of its original size.

94

DNA text Original size (bytes) gzip % compress %

Text 1 100000 28.523 27.264

Text 2 100000 28.758 27.347

Text 3 100000 28.886 27.348

Text 4 100000 28.659 27.283

Text 5 172000 29.167 27.335

Text 6 217000 28.992 27.143

Text 7 253505 29.098 27.193

Text 8 287000 29.065 27.217

Text 9 319000 29.141 27.183

Text 10 995000 28.994 26.911

Table 7.1: The size of the compressed generated when using compress and gzip

The Huffman encoding determines the length of the bit representation of the

characters according to their frequency. The Huffman encoding compressed the texts

used in Table 7.1 to 25% of their original size. Although Huffman encoding gives a

figure that is the same as ours, the Huffman encoding requires the dictionary from

the encoding for the decoding process. Our method is also simpler than the Huffman

encoding, as our method does not require any pre-computation to compress a DNA

text

7.4 Searching in the efficiently stored file - the DS algorithm

In this section we describe an algorithm to find all exact occurrences of a pattern in an

efficiently stored DNA text. The original DNA text contains four DNA characters,

95

namely A, C, G and T. The pattern may be composed of more than these four

characters. These extra characters are wildcards, which can represent two or more

DNA characters. For example [4],

B=C, GorT D=A, GorT

H=A, CorT

M =A or C

R=AorG

K=GorT
N= A, C, G or T
S=CorG

V=A, CorG W=AorT
Y=CorT

A substring of the pattern may overlap between consecutive text-blocks and a

pattern may start in a text-block at any one of four positions. For example, efficient

storage of a DNA text ACCGGTAGAGGC will divide the text into blocks, ACCG,

GTAG and AGGC. The pattern CGGTAGA occurs in the consecutive blocks as

shown in bold fonts and the pattern starts at the third position in the first text-block.

During the search we need to look whether a substring of the pattern matches a

text-block, and whether a prefix (or suffix) of a pattern is a suffix (or prefix) of a

text-block. Due to this problem we have to look for four different expressions in the

efficiently stored text. For example, the pattern CGGTAGA will have the following

expressions, where N can be any DNA character, A, C, G or T.

96

Expression 0: NNNC (0) GGTA (4) GANN (8)
Expression 1: NNCG (1) GTAG (5) ANNN (9)
Expression 2: NCGG (2) TAGA (6)

Expression 3: CGGT (3) AGAN (7)

Figure 7.1: The expressions for the pattern CGGTAGA

Each expression is made up of pattern-blocks of length four. There will be m+3

pattern-blocks (see Figure 7.2), where m is the length of a pattern. We number the

pattern blocks as above (shown in brackets) starting from 0 at the top left to 9 in the

bottom right.

For a pattern P1P2.. P,,, we can construct the expressions as follows, where m

mod 4=0. The pattern-block numbers are shown in brackets.

Expression 0: NNNP1 (0)
""""""". "

Pm-ePm-6Pm-4Pm-3 (m - 4) Pm-7Pm-1PmN (m)

Expression 1: NNP1P2 (1)
"""""""""

Pm-6Pm-4Pm-3Pm-Z (m -3) Pm_IPmNN (m + 1)

Expression 2: NP1P2P3 (2) """"""""" Pm-4Pm-3Pm-2Pm-1 (+n - 2) PmNNN (m + 2)

Expression 3: P1P2P3P4 (3)
"""""""""

Pm-3Pm-2Pm-1Pm (m - 1)

Figure 7.2: The expressions generated for a general pattern

The naive algorithm will compare a text-block with the first pattern-blocks in

each expression. If any of these pattern-blocks matched with the text-block, we need

to compare the consecutive text-blocks with the rest of the pattern-blocks in the

expression. If a pattern-block contains a wildcard, we need to compare a text-block

with all the possible pattern-blocks by considering the DNA characters represented

by the wildcard.

97

The DNA Search (DS) algorithm first constructs a table called the Block Table.

The Block Table has 256 columns and m+3 rows as there are 256 possible blocks in a

DNA text and m+3 is the number of pattern-blocks. The table is initialised to 0. The

(i, j)th entry in the table is defined as follows, where i, 0<i<m+2, is the pattern-

block number and j, 0<j< 255, is the code for a block of DNA characters. Block

Table(i, j) =1 if j matches the value for pattern-block i, otherwise Block Table(i, j)

= 0. Suppose that the pattern-block does not have a wildcard character, the (i, j) th

entry is 1, if the code for pattern-block i is equal to j. If there is one or more wild

cards in the pattern-block, we consider all the possible blocks by considering the

DNA characters represented by the wildcard. For example, if the ith pattern-block is

NAWT, the (i, j)th entry is equal to 1 for all j, where j is the code for AAAT, AATT,

CAAT, CATT, GAAT, GATT, TAAT or TATT.

For each expression we only have to compare one pattern-block with a text block,

and if these two match then we compare the rest of the pattern-blocks in the ex-

pression with the corresponding text-blocks. We choose a pattern block (from each

expression) which has the minimum number of possibilities of matching with a text-

block. For each pattern-block the number of possibilities of matching a text-block

can be found by adding the values in the row of the pattern-block in the Block Table.

For example, the pattern ACAC will have the following expressions.

98

Expression 0:

Expression 1:
Expression 2:

Expression 3:

NNNA (0) - 64
NNAC (1) - 16
NACA (2) -4
ACAC (3) -1

CACN (4) -4
ACNN (5) - 16
CNNN (6) - 64

Figure 7.3: The expressions generated for the pattern ACAC

The pattern-block numbers and the number of possibilities are stated with the

pattern-block. The pattern-block numbers are in brackets. The pattern-blocks will

be chosen as follows,

Expression 0:

Expression 1:

Expression 2:

Expression 3:

CACN (4) -4
NNAC (1) - 16

NACA (2) -4
ACAC (3) -1

Figure 7.4: The pattern blocks that would be chosen for the pattern ACAC

From these we construct a Search Table of dimensions 4x 256, and it is initialised

to -1. In the first row of the Search Table, we enter the chosen pattern-block numbers

at the jth column, for all j, 0<j< 255, if j is the code for these pattern-blocks. A

column number may be the code for more than one of the chosen pattern-blocks. In

this situation we enter only one pattern block number in each row of that column.

As there are only four expressions we need a maximum of four rows. In the above

example, the chosen pattern-blocks from Expression 0 and 2, CACN and NACA,

will both match the block CACA. We enter the pattern-blocks (CACN and NACA)

numbers 4 and 2 in the first and second rows respectively of the column k, where k

99

is the code for CACA.

We begin the search at the beginning of the efficiently stored DNA text and

compare the text-blocks with chosen pattern-blocks in the Search Table. We check

the jth column in the Search Table, where j is the code of the text block. If the

entry is -1 then we check the next text-block. Otherwise we know that the text-block

is in the pattern. We compare the rest of the pattern-blocks in the expression with

the corresponding text-blocks until either full match or mismatch is found using the

Block Table. Adding or subtracting 4 from the pattern-block numbers can easily

identify the rest of the pattern-blocks of that expression. Before we move to the next

text-block, we check if the entry in the next row of the Search Table is -1. We repeat

this process if the entry is not -1, otherwise we check the next text-block.

7.5 The average running time of the DS algorithm

The pre-processing of the DS algorithm takes O(m) time, as the Block table and

the Search Table can be constructed in O(m) time and 0(1) time respectively. The

worst case for the search will take O(mn) time. In this section we will show that the

algorithm does on average O(n) comparisons. From this we can say that the average

running time of the algorithm is O(n + m). We also justify this with experiments.

A block is a string of four characters. If the size of the alphabet set is 4, then we

have only 256 different blocks. If we assume that each of the 256 blocks occurs in the

100

text with equal frequency, then we have Lemma 7.1.

Let I'PB (j) be the probability of a pattern-block j matches a text-block.

Lemma 7.1: If a character in pattern-block i is either A, C, G, T or N (the wildcard

character N represents A, C, G and T), then FPB (j) =4, where w is the number

of wildcard character N in the pattern-block.

Recall that when we compare a text-block with a pattern-block, we choose a

pattern-block (from each expression) which has the minimum number of possibilities

of matching with a text-block (i. e. the pattern-block with minimum number of wild-

card character N). For example, consider the expressions for the pattern ACGTAT

(shown below with pattern-block numbers in brackets).

Expression 0: NNNA (0) CGTA (4) TNNN (8)
Expression 1: NNAC (1) GTAT (5)

Expression 2: NACG (2) TATN (6)

Expression 3: ACGT (3) ATNN (7)

Figure 7.5: The expressions generated for the pattern ACGTAT

The following shows the value of w in the above pattern-blocks.

Expression 0: 3 (0) 0 (4) 3 (8)
Expression 1: 2 (1) 0 (5)

Expression 2: 1 (2) 1 (6)
Expression 3: 0 (3) 2 (7)

Figure 7.6: The number of wildcards in pattern-blocks, for m=6

101

The pattern-blocks 4,5,2 and 3 have minimum values of w in expressions 0,1,2

and 3 respectively. We would choose these pattern-blocks for the first comparison. If

any of these pattern-blocks matches with the text-block, then we choose the pattern-

block with the minimum number of wild cards among the remaining pattern-blocks

in the expression. In an attempt, for each expression we repeat this step until either

a full match or mismatch is found.

Suppose m= 16, the following shows the values of w in a pattern-block for each

expression (pattern-block numbers are in brackets).

Expression 0: 3 (0) 0 (4) 0 (8) 0 (12) 1 (16)

Expression 1: 2 (1) 0 (5) 0 (9) 0 (13) 2 (17)

Expression 2: 1 (2) 0 (6) 0 (10) 0 (14) 3 (18)

Expression 3: 0 (3) 0 (7) 0 (11) 0 (15)

Figure 7.7: The number of wildcards in pattern-blocks, for m= 16

There are three columns having all zeros. In general, for all m, if m mod 4 54 3,

there are A= L'4 3i number of columns will have all zeros. If m mod 4=3, we will

have A-1 columns with all zeros, and the last one with three zeros in a column and

the fourth zero in another column. For example, if m= 15 (i. e. m mod 4= 3) we

will have 2 (i. e. A- 1) columns with all zeros, and the last one with three zeros in a

column and the fourth zero in another column (shown in bold font):

102

Expression 0: 3 (0) 0 (4) 0 (8) 0 (12) 2 (16)

Expression 1: 2 (1) 0 (5) 0 (9) 0 (13) 3 (17)
Expression 2: 1 (2) 0 (6) 0 (10) 0 (14)

Expression 3: 0 (3) 0 (7) 0 (11) 1 (15)

Figure 7.8: The number of wildcards in pattern-blocks, for m= 15

From this observation we have Lemma 7.2.

Let c= be the probability of i number of pattern-blocks matching with the text-

blocks in an expression at an attempt. In other words ci is the probability of the

algorithm making at least i+1 comparisons at an attempt.

Lemma 7.2: For all m and for all i, 1<i<A, (D_ =4x 256, , where A= [m 43

Proof: For all m, each expression has A number of pattern-blocks with w=0. At an

attempt, we can choose pattern-blocks with w=0 from each of the four expressions

for the first A comparisons. From Lemma 7.1 we have I'PB(j) = 1/256 if w=0. In

a comparison we compare a text-block with the four pattern-blocks (one from each

expression). Probability of any of these pattern-blocks (i. e. with w= 0) matching in

a comparison is 4/256 which is c1. In an attempt we will have the ith comparison only

if i number of pattern-blocks matches the corresponding text-blocks. The probability

of i matches for an expression is 256, and there are four expressions and so (Di is 256,

for all i. Q

In an attempt, for all m>8, after A comparisons the pattern-blocks which have

103

not yet been compared will be similar to the expressions for patterns of length m',

4< m' < 7, where m' = (m mod 4) + 4. In other words, if we remove all the A

columns with all zeros from the expressions of pattern length m>8, the number of

wildcards in pattern-blocks will be the same as in the expressions of pattern length

m'. For example, if we remove 3 (i. e. A) columns of all zeros from the number

of wildcards in pattern-blocks, for m= 16 (see above), we will get the number of

wildcards in pattern-blocks, for m' =4 as below.

Expression 0: 3 (0) 1 (16)

Expression 1: 2 (1) 2 (17)

Expression 2: 1 (2) 3 (18)

Expression 3: 0 (3)

Figure 7.9: The number of wildcards in pattern-blocks, for m' =4

Lemma 7.3: For 2<m<7, I1 and 12 are as follows:

pattern length 01 02

2 1/

3 1/

4 3/3

5 5/12

6 7/25 1/102

7 1/6 1/204

Figure 7.10: The probability of the algorithm making at least 1 or 2 comparisons at
an attempt.

Proof: In an attempt, for 2<m<5 and 6<m<7 we have at most 2 and 3

104

comparisons respectively. Hence we only need to know the values of c1 for 2<m<5,

and (Dl and 42 for 6<m<7. Q

We show how the 4)1 and 4102 are calculated with an example for m=6. First

we will select the pattern-blocks 4,5,2, and 3 (see above for the expressions for the

number of wildcards in pattern-blocks, for m= 6).

'Di = rPB(4) + rPB(5) + rPB(2) + rPB(3)
1

= 44 0+44 0+44 1+44 0
(Lemma 7.1)

= 1/256 + 1/256 + 1/64 + 1/256

= 7/256

For 02 we only need to consider the first expression. We can have at least 3 com-

parisons, iff pattern-blocks 4 and (assume we select) 0 match with the corresponding

text-blocks.

gD2 = rpB (4) x rPB (O)

= T41 ox 44 3
(Lemma 7.1)

= 1/256 x 1/4

= 1/1024

Note that in any attempt for all m, we can have at most A+2 matches if m mod

4=2 and m>3, otherwise A+1 matches. For in > 8, to calculate (Da+l and (I)A+2,

we only need to know the values of (D1 and CF2 for m, 4<m<7. From these values

we can have the following Lemma.

105

Lemma 7.4: For m>4,

ý%+l = (1/256)` X ab and

4%+2 = (i/256)ß` x ,
ßb,

where ab and ßb are the values of bth base case in the first and second columns in the

table below respectively and b=m mod 4.

base case a ß

0 3/32

1 5/128

2 7/256 1/1024

3 1/2048

Figure 7.11: The number of wildcards in pattern blocks, for m' =4

Let Ti be the probability of making exactly i comparisons at an attempt. Using

we can have an equation for Ti:

llýi = 4'i+1+wi+2+'''

From this equation we have

Ti - 4loi-i - 4ýj

We know that we will make at least one comparison in every attempt. So (Do is 1.

For all m, the maximum number of comparisons in any attempt is p=[

which is equal to A+3 if m mod 4=2 and m 54 2, otherwise A+2. So ci is 0 for all

i>µ. This gives:

106

41i =1- (D1

Tj = (Di-, - iDi, 2<i<p-1

IIµ = II)µ-1

Lemma 7.5: The total number of comparisons, WTotal, is less than or equal to 2n'

on average, where n' is the number of text-blocks in the efficiently stored file.

Proof:

µ
WTotal =nXX Wi

i=l

= n' X 111 -4)+ 2(4ý1 - ýN)+ 3((1)2 -4)3)+

= n' x (1 +4ýD1 +(D2 +.... +l5µ-1)

= n' x (1 +4+ 1a+i + 4a+2) (Lemma 7.2)
i-1 256'

< 2n'

From Lemmas 7.2,7.3 and 7.4 we can see that E1 256, + 4ýa+l + (k\+2 <1 Cl

From these Lemmas we have the following Theorem.

Theorem: The average running time of the DS algorithm is O(n + m).

To show this is also true in practice we counted the number of comparisons by

running the DS algorithm when searching for the patterns without wildcards. Ta-

ble 7.2 shows the estimated number of comparisons (WTotat) and the actual number

of comparisons. We used the same texts as in Table 7.1. The patterns are the cutting

locations or boundaries for enzymes and are taken from [4]. There are 104 cutting

107

locations or boundaries for enzymes given in [4], 62 of them don't contain a wildcard

and 42 of them contain at least one wildcard and are shown in Figures 7.12 and 7.13

respectively.

AAGCTT AATATT ACGCGT ACTAGT
AGATCT AGCGCT AGCT AGGCCT
AGTACT ATCGAT ATGCAT ATTAAT
CACGTG CAGCTG CATATG CATG
CCATGG CCCGGG CCGG CCGCGG
CCTAGG CCTGCAGG CGATCG CGCG
CGGCCG CGTACG CTCGAG CTGCAG
CTTAGG GAATTC GACGTC GAGCTC
GATATC GATC GCATGC GCCGGC
GCGCGC GCGC GCGGCCGC GCTAGC
GGATCC GGCC GGCCGGCC GGCGCC
GGGCCC GGTACC GTAC GTCGAC
GTGCAC GTTAAC TACGTA TCATGA
TCCGAA TCCGGA TCGA TCGCGA
TCTAGA TGATCA TGCGCA TGGCCA
TTCGAA TTTAAA

Figure 7.12: The 62 patterns that don't contain a wildcard

CACNNNGTG CAGNNNCTG CCANNNNNTGG
CCANNNNNNTGG CCANNNNNNNNNTGG CCTCNNNNNNN
CCTNNNNNAGG CCTNAGG CCSGG
CCWGG CCWWGG CGGWCCG
CMGCKG CTNAG CYCGRG
GAATGCN GAAGANNNNNNN GACGCNNNNN
GACNNNGTC GACNNNNGTC GANTC
GCCNNNNNGGC GCTNAGC GDGCHC
GGATGNNNNNNNNN GGCCNNNNNGGCC GGNCC
GGTGANNNNNNNN GGTNACC GGWCC
GGYRCC GRGCYC GTMKAC
GTYRAC RCATGY RCCGGY
RGATCY RGCGCY RGGNCCY
RGGWCCY YGGCCR

Figure 7.13: The 42 patterns that contain one or more wildcards

We use the 62 patterns that don't contain a wildcard shown in Figure 7.12 to

calculate the number of comparisons taken by the DS algorithm. For each pattern

length, the actual number of comparisons in the table is the total number of compar-

isons divided by the number of patterns of that length. There are 9 patterns of length

4,50 of length 6 and 3 of length 8. The text length is the length of the efficiently

108

stored file.

pattern lengths of 4 pattern lengths of 6 pattern lengths of 8

ext no. n' Totai Actual Total Actual Total Actual

1 25000 27344 26874 25706 25588 25398 25289

2 25000 27344 26952 25706 25592 25398 25312

3 25000 27344 26857 25706 25592 25398 25274

4 25000 27344 26829 25706 25581 25398 25256

5 43000 47031 46269 44218 44064 43688 43349

6 54250 59326 58446 55786 55600 55118 54696

7 63377 69319 68193 65172 64946 64390 63936

8 71750 78477 77444 73782 73549 72897 72425

9 79750 87227 85926 82003 81720 81025 80411

10 48750 72070 268106 55774 254942 52728 250885

Table 7.2: The number of comparisons performed by the DS algorithm for each of the
10 efficiently stored DNA texts

From Table 7.2 we can see that the number of comparisons performed by the DS

algorithm is slightly more than the efficiently stored text size. Note that the algorithm

takes fewer comparisons than the estimate suggests.

7.6 Comparison with existing string matching algorithms

In this section we compare the existing string matching algorithms with our DS

algorithm. All searches with the DS algorithm were conducted on efficiently stored

DNA texts. The texts used for these experiments are the same texts used in Table 7.1

and the patterns are taken from Figures 7.12 and 7.13. For each of the 10 texts we

109

measure the total (user) time (including pre-computation time) in seconds to search

for all 104 patterns.

For each text we give the total time taken in seconds and the time taken for each

algorithm divided by the time taken by the DS algorithm (Ratio). We used an Intel

486-DX2-66 processor based machine with 8 megabytes of RAM and a 100 megabyte

hard drive running S. u. S. E. Linux 5.2 to conduct the experiments. All the algorithms

were coded in C.

Tables 7.3 and 7.4 show the time taken to search for the 62 patterns that don't

contain a wildcard (Figure 7.12). The existing algorithms searched in the original

DNA text and the DS algorithms searched in the efficiently stored DNA text.

text1 text2 text3 text4 text5

Time do Time do Time do Time Ratio Time Ratio

BR 9.09 2.34 9.14 2.37 19.11 2.41 0.00 2.49 2.56 2.65

BM 0.48 3.74 0.48 3.78 34.44 4.35 0.51 3.80 2.38 4.26

OR 5.51 3.13 6.51 3.29 5.46 3.21 5.59 3.19 3.37 3.53

QS 6.45 3.24 6.38 3.27 6.45 3.34 6.52 3.31 5.13 3.67

RAI 4.32 2.98 4.28 3.01 4.43 3.08 4.31 3.03 1.42 3.37

DS 8.15 1.00 8.06 1.00 7.92 1.00 8.02 1.00 12.28 1.00

SMI 6.15 3.21 6.15 3.24 6.15 3.30 6.19 3.26 4.76 3.64

Table 7.3: Time in seconds to search for all the patterns without wildcards in the

given texts

110

text6 text7 text8 text9 text10

Time Ratio Time Ratio Time do Time do rime Ratio

BR 1.14 2.75 8.05 2.77 4.39 2.84 0.30 2.93 191.7 3.17

BM 5.66 4.39 6.70 4.43 6.96 4.54 8.88 4.80 01.1 4.98

OR 5.41 3.70 4.10 3.70 2.97 3.81 0.35 3.90 54.1 4.20

QS 6.98 3.81 6.40 3.83 6.39 3.99 3.49 4.05 64.7 4.38

RAI 2.23 3.49 0.93 3.52 9.22 3.62 6.65 3.72 43.7 4.03

DS 14.96 1.00 17.33 1.00 19.14 1.00 0.60 1.00 60.5 1.00

SMI 6.42 3.77 6.69 3.85 4.67 3.90 2.86 4.02 62.0 4.33

Table 7.4: Time in seconds to search for all the patterns without wildcards in the
given texts

textl text2 text3 text4 text5

rime Ratio Time Ratio rime Ratio Time Ratio rime Ratio

BR 319 39.13 319 39.58 320 40.40 317 39.52 804 65.46

BM 131 16.07 131 16.26 131 16.54 131 16.33 354 28.82

OR 233 28.58 226 28.04 228 28.79 225 28.05 566 46.08

QS 286 35.08 277 34.37 312 39.39 280 34.91 694 56.51

RAI 222 27.23 236 29.28 222 28.03 238 29.67 558 45.43

DS 8 1.00 8 1.00 8 1.00 8 1.00 12 1.00

SMI 354 43.42 355 44.05 354 44.70 353 44.01 898 73.12

Table 7.5: Time in seconds to search for all the patterns with wildcards using bit
masking in the given texts

i11

text6 text7 text8 text9 textlO

Time do 'rime do Time do Time do rime Ratio

BR 911 60.90 1008 58.18 544 28.43 698 33.89 3155 52.18

BM 376 25.13 417 24.07 233 12.18 294 14.27 1354 22.40

OR 673 44.99 716 41.32 386 20.17 488 23.69 2241 37.07

QS 791 52.87 990 57.14 471 24.61 595 28.89 2730 45.16

RAI 636 42.51 704 40.63 380 19.86 478 23.21 2207 36.50

DS 15 1.00 17 1.00 19 1.00 21 1.00 61 1.00

SMI 1017 67.98 1131 65.27 612 31.98 767 37.24 3522 58.26

Table 7.6: Time in seconds to search for all the patterns with wildcards using bit
masking in the given texts

The algorithms were modified so that they would search in the efficiently stored

text using bit masking. By bit masking we mean that we read in an 8 bit ASCII

character and masked out the bits that we didn't want. We did this by manipulating

the ASCII character so as to reveal the character that we were comparing to the

pattern. We used the same method when calculating the value of a shift.

As can be seen from the results in Tables 7.5 and 7.6, we can see that searching in

the efficiently stored file with the existing algorithms for a pattern is not as efficient

as searching in the original DNA text. This is due to the cost of having to use bit

masking to return the character that we are interested in comparing.

Due to the massive difference in time between searching in the efficiently stored

DNA text and the original DNA text we will compare in the original DNA text for

the tests conducted using patterns that contain wildcards.

112

The existing string matching algorithms (except the BM algorithm) that are con-

sidered in this section could be adapted to search for patterns with wildcards.

We assign prime numbers to the DNA characters, A=2, C=3, G=5 and T=7.

The wildcard characters can be expressed as a product of its possible prime numbers.

For example, the value for K is 35 (5 x 7) as K can be G or T. Using prime numbers

ensures that any value given to a wildcard character is unique. We compare a text

character and a pattern character by dividing the value of the pattern character by

the value of the text character. If the remainder is zero then these two characters

match.

After a mismatch we need to consider the wildcard characters when calculating the

position of the rightmost occurrence of the mismatched text character. For example,

in the pattern ACTWG, where the wildcard character W is A or T, the rightmost

occurrences of A and T are at W.

From Tables 7.3 to 7.8 we can see that our DS algorithm is faster than the existing

exact string matching algorithms for the chosen data. As the size of the original file

increases, the Ratio increases. This is because the factor of four difference between

the original and efficiently stored DNA texts becomes more significant.

113

text1 text2 text3 text4 texts

Time Ratio Time Ratio Time Ratio Time Ratio Time Ratio

BR 7.44 4.09 7.23 4.12 8.61 4.30 9.00 4.31 8.42 4.78

OR 0.92 4.61 0.37 4.59 2.66 4.91 2.82 4.88 4.90 5.43

QS 2.79 3.40 1.41 3.24 6.19 3.93 6.21 3.90 4.28 4.38

RAI 0.46 4.54 0.69 4.64 8.37 4.26 8.42 4.23 9.08 4.85

DS 6.71 1.00 6.61 1.00 6.66 1.00 6.72 1.00 10.12 1.00

SMI 3.10 3.44 2.24 3.36 5.41 3.82 5.54 3.80 4.18 4.37

Table 7.7: Time in seconds to search for all the patterns with wildcards in the given
texts

text6 text7 text8 text9 textlO

Time do Time Ratio Time do Time do Time do

BR 8.55 4.87 8.69 4.98 1.59 5.25 6.32 5.26 79.7 5.67

OR 5.92 5.49 3.75 5.34 2.10 5.93 7.04 5.92 17.0 6.43

QS 8.68 4.05 0.22 4.36 4.27 4.78 1.51 4.36 55.8 5.18

RAI 4.52 5.37 4.27 5.38 1.84 5.27 5.56 5.83 83.3 5.74

DS 12.02 1.00 13.80 1.00 15.53 1.00 16.40 1.00 49.3 1.00

SMI 0.53 4.21 6.35 4.08 2.45 4.66 8.25 4.77 48.8 5.04

Table 7.8: Time in seconds to search for all the patterns with wildcards in the given
texts

114

7.7 Conclusions

Using the DS algorithm one can keep texts (with an alphabet of four characters)

efficiently stored indefinitely and perform the search for a pattern. These methods

will save both time and space. The experimental results show that our algorithm is

more efficient than the existing algorithms for the chosen data sets.

Even though the DS algorithm takes O(nm) time for the worst case, we prove that

the average time taken by the algorithm is O(n + m). We also justified our average

running time by experiments.

Chapter 8

A linear time string matching algorithm on average with

efficient text storage

8.1 Introduction

In this Chapter we extend our efficient storage method from Chapter 7 to include the

storage of texts with alphabets of size, a< 128. The storage method will efficiently

store the text in F1092
8° of the space required for the original text. We describe a

new string matching algorithm to search for a pattern in the efficiently stored text.

We prove that on average this string matching algorithm takes O(n + m) time. We

compare our new string matching algorithm with other well known existing string

matching algorithms by experimentation.

115

116

8.2 Efficient storage of a text

We assume that the size of the alphabet set, a, is in the range 1<u< 128 and

that we are representing each character in the alphabet with one byte. There are

redundant bits in each byte as we only need 11092 al bits to represent a character.

After we replace the characters in a text with 11092 Ql bits, it is possible to replace

eight consecutive bits in the binary text with its corresponding ASCII character.

These eight consecutive bits are called a block. The decimal value of a block is the

code of the block. This representation will reduce the storage space to 108 al n, where

n is the size of the original text.

For example, consider the text T= CACDABEB with the alphabet set E=

{A, B, C, D, E}. This text T of eight characters can be represented with three char-

acters T' = AOa. First we represent the characters with A= 000, B= 001, C=

010, D= 011 and E= 100. This will give the binary representation of the text T:

010000010011000001100001

The first bit in each block are shown in bold font. The codes for the text blocks

are 65,48 and 97 and their corresponding ASCII characters are 'A', '0', and 'a'

respectively.

117

8.3 Comparison with existing compression algorithms

The method described in section 8.2 is not compression as in the literature but does

reduce the size of the original text. In this section we compare the well known text

compression methods, Huffman encoding [73] and Lempel-Ziv encoding [102,134,141]

with our method.

The Huffman encoding determines the length of the bit representation of the

characters according to their frequency. It assigns smaller codes to high frequency

characters and larger codes to low frequency characters.

In Lempel-Ziv (LZ) encoding [141 the file may be compressed to less than Pog2 Ql

bits per character but requires re-occurring strings. Each of the repeated strings and

each of the characters in the alphabet are represented by 12 bits. The gains from

this method are reliant on there being enough repeated strings to counter the 12 bits

which are used to represent each of the compressed strings.

The LZ encoding and its derivative LZW encoding [134] are used in UNIX utilities,

compress and gzip. Another variation of LZ encoding (NR) is described in [102].

Table 8.1 shows that our efficient storage method is comparable to these methods.

Although our method is not very good for text files with large alphabets, the method

is competitive for DNA, RDNA and hexadecimal files. Note that the main purpose

of this method is not compression, but for the searching of a pattern in a efficiently

stored file.

118

o Our method Huffman Compress Gzip NR

2 62500 62500 71579 79644 121110

3 125000 104107 110629 118776 178706

4 125000 125000 136945 146402 215764

5 187500 149935 161641 168813 244192

8 187500 187500 209053 211543 297634

9 250000 201313 223571 226617 310964

16 250000 250000 288546 285834 373658

17 312500 257293 294476 290854 377491

32 312500 312500 367527 330150 449265

33 375000 316232 370975 332592 451570

64 375000 375000 461069 378224 493981

Table 8.1: Compressed text sizes for a random text of 500,000 bytes

8.4 Searching in a text with efficient storage

In this section we describe an algorithm to find all exact occurrences of a pattern in a

text. Here we assume that the text is stored as described in Section 8.2 and a< 128.

We describe the algorithm for o=2, we will see later that the algorithm can be easily

adapted for a>2.

A substring of the pattern may overlap between consecutive text-blocks and a

pattern may start in a text-block at any one of eight positions. During the search

we need to look whether a prefix (or suffix) of a pattern is a suffix (or prefix) of a

text-block. Due to this problem we have to consider eight different expressions. Each

119

expression is made up of pattern-blocks of length eight bits. There will be m+7

pattern-blocks in total (see Figure 8.1), where m is the length of a pattern.

For a pattern P1P2.. Pm we can construct the expressions as shown in Figure 8.1.

Here we consider the case for m mod 8=0. We number the pattern-blocks starting

from 0 at the top left corner to m+6 in the bottom right corner as shown in brackets.

The wildcard character N represents either 0 or 1, and P1.. ß represents Pi.. Pj_1P;, for

1<i<j<m.

ExpO: NNNNNNNP1 (0) Pm-14.. m-7 (rn-8) Pm-6.. mN (m)

Expl: NNNNNNPI.. 2 (1) Pm-13.. m-6 (m-7) Pm-s.. mNN (m + 1)

Exp2: NNNNNP1.. 3 (2) Pm-12.. m-s (m-6) Pm-4.. mNNN (m + 2)

Exp3: NNNNP1.. 4 (3) Pm-11.. m-4 (m-5) Pm-3.. mNNNN (m + 3)

Exp4: NNNP1.. s (4) Pm-10.. m-3 (m-4) Pm-2.. mNNNNN (m + 4)

Exp5: NNP1.. 6 (5) Pm-9.. m-2 (m-3) Pm-1�mNNNNNN (m + 5)

Exp6: NP1.. 7 (6) Pm-8.. m-1 (m-2) PmNNNNNNN (m + 6)

Exp7: P1.. 8 (7) Pm-7.. m (m-1)

Figure 8.1: Expressions for a pattern P1P2.. Pm when m mod 8=0

The naive algorithm will compare a text-block with the first pattern-blocks in

each expression. If any of these pattern-blocks matched with the text-block, we need

to compare the consecutive text-blocks with the rest of the pattern-blocks in the

expression.

Our algorithm first constructs a table called the Block- Table. The Block-Table

has 256 columns and m+7 rows as there are 256 possible blocks in a text and m+7

120

is the number of pattern-blocks we need to consider. The table is initialised to 0.

The (i, j)th entry in the table is defined as follows, where i, 0<i<m+6, is the

pattern-block number and j, 0<j< 255, is the code for a block. Suppose that the

pattern-block does not have a wildcard character, the (i, j)th entry is 1, if the code for

pattern-block i is equal to j. If there is one or more wild cards in the pattern-block,

we consider all the possible blocks. For example, if the ith pattern-block is NN111000,

the (i, j)th entry is equal to 1 for all j, where j is the code for 00111000,01111000,

10111000 or 11111000.

For each expression we only have to compare one pattern-block with a text-block,

and if these two match then we compare the rest of the pattern-blocks in the ex-

pression with the corresponding text-blocks. We choose a pattern-block (from each

expression) which has the minimum number of possibilities of matching with a text-

block. We build the Order-Table of dimensions 8 by [Z1 which contains the order

in which to examine the pattern-blocks for each expression. For each pattern-block

the number of possibilities of matching a text-block can be found by adding the values

in the row of the pattern-block in the Block-Table.

From these we construct a Search- Table of dimensions 8x 256, and it is initialised

to -1. In the first row of the Search-Table, we enter pattern-block numbers from the

first column of the Order-Table. If j is the code for these pattern-blocks, we enter the

pattern-block numbers at the jth column, for all j, 0<j< 255. A column number

121

may be the code for more than one of the chosen pattern-blocks. This is because a

text-block can match pattern-blocks from more than one expression. As there are

only eight expressions we need a maximum of eight rows. For example, the chosen

pattern-blocks, 110011NN and NNO01100, will both match the block 11001100. We

enter the pattern-blocks (110011NN and NNO01100) numbers in the first and second

rows respectively of the column k, where k is the code for 11001100.

We begin the search at the beginning of the text and compare the text-blocks with

chosen pattern-blocks in the Search-Table. We check the jth column in the Search-

Table, where j is the code of the text-block. If the entry is -1 then we check the next

text-block. Otherwise we know that the text-block is in the pattern. We compare

the rest of the pattern-blocks in the expression with the corresponding text-blocks

until either full match or mismatch is found using the Block-Table and Order-Table.

Before we move to the next text-block, we check if the entry in the next row of the

Search-Table is -1. We repeat this process if the entry is not -1, otherwise we check

the next text-block.

If o, > 2, we have to convert the pattern into a binary string by mapping the

characters into 11092 al bits as we did in Section 8.2. Here we don't have to consider

all the expressions. This is because in the pattern-blocks 0,1, .., 7 (from expressions

0 to 7 respectively) the pattern starts at positions 7,6, .., 0 respectively (see

Figure 8.1). The positions are numbered from left to right in a pattern-block.

122

Bit Length 1 2 3 4 5 6 7

1-2 1 1-8

3-4 2 1,3,5,7

5-8 3 1,4,7 0,3,6 2,5

9-16 4 3,7

17-32 5 2,7 O's 3 1,6 4

33-64 6 1,7 3 5

65-128 7 7,0 1 2 3 4 5 6

Table 8.2: The expressions considered at each comparison

We can show that for all o,, in a comparison we need at most r 1092 13
I expressions.

The number of expressions that are considered at a comparison are determined by

the length of the pattern being searched for. If a=8 then we know that we need 3

bits to efficiently store each character of the alphabet. When performing the search,

occurrences of the pattern are limited to beginning every 3 bits. In other words at

positions 0,3,6,9,12, etc. in the text. So at the first comparison we need only to

consider expressions 7,4 and 1, at the second comparison, expressions 6,3 and 0 and

at the third comparison, expressions 5 and 2 (see Figure 8.1).

In Table 8.2, o, is the size of the alphabet being used and Bit Length is the number

of bits used in the efficiently stored text to represent each of the characters of the

alphabet. The numbers 1 to 7 are the first to seventh comparison of the pattern and

text. The values given for each value of o are the expressions considered for each

comparison. From this table we can see that if o=4 then we consider expressions 1,

123

3,5 and 7 at each comparison.

8.5 The average running time

The pre-processing of our algorithm takes O(m) time, as the Block-Table, Order-

Table and the Search-Table can be constructed in O(m) time. The worst case for the

search will take O(mn) time. In this section we will show that the algorithm performs

on average at most 2n comparisons. From this we can say that the average running

time of the algorithm is O(n + m). We also justify this with experiments at the end

of this section.

At the end of section 8.3 we showed that we need to consider all eight expressions

only when a=2. First we prove that the average number of comparisons for this

worst case.

There are only 256 possible different blocks. If we assume that each of the 256

blocks occurs in a text with equal frequency, then we have the following lemma. Let

I'PB (j) be the probability of a pattern-block j matches a text-block.

Lemma 8.1: I'PB (j) = 281 W, where w is the number of wildcard character N in the

pattern-block.

Recall that when we compare a text-block with a pattern-block, we choose a

pattern-block (from each expression) which has the minimum number of possibili-

ties of matching with a text-block (i. e. the pattern-block with minimum number of

124

wildcard character N). If any of these pattern-blocks matches with the text-block,

then we choose the pattern-block with the minimum number of wild cards among the

remaining pattern-blocks in the expression. In an attempt, for each expression we

repeat this step until either a full match or mismatch is found.

For example, consider the expressions for m= 34. Figure 8.2 shows the values of

w in a pattern-block for each expression (pattern-block numbers are in brackets).

ExpO: 7 (0) 0 (8) 0 (16) 0 (24) 0 (32) 7 (40)

Expl: 6 (1) 0 (9) 0 (17) 0 (25) 0 (33)

Exp2: 5 (2) 0 (10) 0 (18) 0 (26) 1 (34)

Exp3: 4 (3) 0 (11) 0 (19) 0 (27) 2 (35)

Exp4: 3 (4) 0 (12) 0 (20) 0 (28) 3 (36)

Exp5: 2 (5) 0 (13) 0 (21) 0 (29) 4 (37)

Exp6: 1 (6) 0 (14) 0 (22) 0 (30) 5 (38)

Exp7: 0 (7) 0 (15) 0 (23) 0 (31) 6 (39)

Figure 8.2: The number of wildcards in pattern-blocks for m= 34

There are three columns with all zeros which are the first three columns in the

Order-Table. In general, for all m, if m mod 8 7, there are A= lm8 7] number of

columns will have all zeros. If m mod 8=7, and m> 15 we will have A-1 columns

with all zeros, and the remaining one with seven zeros in a column and the eighth

zero in another column. For example, Figure 8.3 shows the number of wildcards in

pattern-blocks for m= 23 (i. e. m mod 8=7.). We can see that there is one (i. e.

A- 1) column which is the second column with all zeros. The remaining column of all

zeros is the fourth column with seven zeros and the eighth zero is in the first column

125

(shown in bold font).

ExpO:

Expl:

Exp2:

Exp3:

Exp4:

Exp5:

Exp6:

Exp7:

7 (0)

6 (1)

5 (2)

4 (3)

3 (4)

2 (5)

1 (6)

0 (7)

o(8)
0 (9)
0 (10)

0(11)

0(12)

0 (13)

0 (14)

0 (15)

0(16)

0 (17)

0 (18)

0 (19)

0 (20)

0 (21)

0 (22)

1 (23)

2 (24)

3 (25)

4 (26)

5 (27)

6 (28)

7 (29)

Figure 8.3: The number of wildcards in pattern-blocks for m= 23

From this observation we have Lemma 8.2. Let ti be the probability of i number

of pattern-blocks matching with the text-blocks in an expression at an attempt. In

other words ci is the probability of the algorithm making at least i+1 comparisons

at an attempt.

m8 7 Lemma 8.2: For all m and o, = 2,1 <i<A, Ibt =8x 256, , where A

Proof: For all m, each expression has A number of pattern-blocks with w=0. At an

attempt, we can choose pattern-blocks with w=0 from each of the eight expressions

for the first .\ comparisons. From Lemma 8.1 we have FPB (j) = 1/256 if w=0. In

an attempt we will have the i+ 1" comparison only if i number of pattern-blocks in

an expression matches the corresponding text-blocks. The probability of i matches

for an expression is jr 2, and there are eight expressions and so '= is
256, ,1<i<A.

0

126

In an attempt, for 2<m<9 and 10 <m< 14 we have at most 2 and 3

comparisons respectively. Hence we only need to know the values of '1 for 2<m<9,

and 4 and 12 for 10 <m< 14. We can calculate these values easily. For example,

the following shows the values of w in a pattern-block for each expression (pattern-

block numbers are in brackets) for m= 10. First we will select the pattern-blocks 8

to 11 and 4 to 7.

ExpO: 7 (0) 0 (8) 7 (16)

Expl: 6 (1) 0 (9)

Exp2: 5 (2) 1 (10)

Exp3: 4 (3) 2 (11)

Exp4: 3 (4) 3 (12)

Exp5: 2 (5) 4 (13)

Exp6: 1 (6) 5 (14)

Exp7: 0 (7) 6 (15)

Figure 8.4: The number of wildcards in pattern-blocks for m= 10

FPa(8) + rPa(9) + FPB(10) + I'Pa(11) + I'PB(4) + 1'Pa(5) + rPa(6) + rPa(7)

s o+ +++++ao (Lemma8.1) = 8-0+ - 88 88-1 88-2 88-3 88-2 8- 8-

= 1/256 + 1/256 + 1/128 + 1/64 + 1/32 + 1/64 + 1/128 + 1/256

= 23/256

For 11ý2 we only need to consider the first expression. We can have at least 3 com-

parisons, iff pattern-blocks 8 and (assume we select) 0 match with the corresponding

text-blocks.

127

(P2 = rPB (8) X rPB (o)

= 8s ox 88 7
(Lemma 8.1)

= 1/256 x 1/2

= 1/512

In an attempt, for all m> 15, after A comparisons the pattern-blocks which have

not yet been compared will be similar to the expressions for patterns of length m',

7< m' < 14, where m' = (m mod 8) +8 if m mod 807. Otherwise m' = 7. In other

words, if we remove all the A columns with all zeros from the expressions of pattern

length m> 15, the number of wildcards in pattern-blocks will be the same as in the

expressions of pattern length m'. For example, if we remove (i. e. A) columns of all

zeros from the number of wildcards in pattern-blocks, for m= 34 (see Figure 8.2),

we will get the number of wildcards in pattern-blocks, for m' = 10 (see Figure 8.4)

as in Figure 8.5.

Note that in any attempt for all m, we can have at most A+1 matches before

we make the last comparison, if m mod 8=0,1 or 7, otherwise A+2. For m> 15,

we need to know (Da+l and 4%+2. From the above observation we can calculate these

values from the values of (D1 and '2 for m, 7<m< 14. From these base values we

can have Lemma 8.3. Note that A=0 for all m< 14.

128

ExpO: 7 (0) 0 (32) 7 (40)

Expl: 6 (1) 0 (33)

Exp2: 5 (2) 1 (34)

Exp3: 4 (3) 2 (35)

Exp4: 3 (4) 3 (36)

Exp5: 2 (5) 4 (37)

Exp6: 1 (6) 5 (38)

Exp7: 0 (7) 6 (39)

Figure 8.5: The number of wildcards in pattern-blocks, for m' = 10

Lemma 8.3: For m>7,

ý%+l = (1/256)' x ab and

4'a+2 = (1/256)A x Ob,

where ab and ßb are the values of bth base case in the first and second columns in

Table 8.3 respectively and b=m mod 8.

base case a

0 11/64

1 15/128

2 23/256 1/512

3 1/16 1/512

4 13/256 1/512

5 5/128 3/2048

6 9/256 5/4096

7 7/32

Table 8.3: The associated probabilities for a and 0 for each base case

129

Let 'Y; be the probability of making exactly i comparisons at an attempt. Using

ci we can have an equation for WY=:

4N = 4'i+l + 4'i+2 +'''

This gives
'fi't = 4ýj-1 - 4bt

We know that we will make at least one comparison in every attempt. So 4cDo is 1.

For all m and a=2, the maximum number of comparisons in any attempt is

18
, which is equal to A+2 if m mod 8=0,1 or 7, otherwise A+3. So 1, is

0 for all i>p. This gives:

W1 =1- '1

Wi = 4Pi_1 - 4)i, 2<i< it -1

Tµ = 4tµ-1

Lemma 8.4: For a=2, the total number of comparisons, WTotal, is less than or

equal to 2n' on average, where n' is the number of text-blocks in the text.
µ

Proof: WTotal = n' xixW;

= n' x ((1-(D1)+2(c1-42)x-... +Fý-1((Dµ-2-'CPµ-1)+11iµ-1)

= n' x (1+4ýD1+... -ý-(Dµ-2+4)µ-1)

= n' x (1 + 2561 + 4D, \+i + 4ýA+2) (Lemma 8.2)

< 2n'

This is because 1 256, + 4ýA+l + ('ýA+2 <1 (Lemmas 8.2 and 8.3) Q

130

Lemma 8.5: For or > 2, the total number of comparisons, 'YTotal, is O(n), where n

is the size of the original text.

Proof The probability of more than one comparison in an attempt is J+"""+

4bµ_2 + cµ_1 (see Lemma 8.4), where [m l0
80 +71. Note that m Pog2 Q] is the

length of the pattern when we convert it into a binary string. We show in section 8.4

that in an attempt we only need to consider a maximum of 11X0:
2 of expressions when

or > 2. Hence, for a>2, C+"""+ (Pµ_2 + iµ_1 is less than the value given for a=2.

0

From these Lemmas we have the following Theorem.

Theorem: The average running time of our algorithm is 0(n + m).

To show this is also true in practice we counted the number of comparisons by

running our algorithm. Tables 8.4 and 8.5 shows the estimated number of comparisons

(WTotal) and the actual number of comparisons. We used the same texts for each o, as

in Table 8.1. For each pattern length we use 100 random patterns. The actual number

of comparisons in Tables 8.4 and 8.5 is the total number of comparisons divided by

the number of patterns of that length. The pattern length given in Tables 8.4 and 8.5

is the length of the original pattern.

131

alphabet of 2 alphabet of 4 alphabet of 8

Pat Len. Totat Actual at Len. Total Actual at Len. Total Actual

5 5938 5413 2 156250 156258 2 07031 55959

10 8237 8276 4 135742 136513 4 190795 191710

20 4556 4446 8 127288 126999 6 189632 189931

30 4460 54460 12 26962 126962 8 189462 189537

40 4460 4467 18 126960 126962 12 189460 189898

50 4460 4473 24 126960 126962 16 189460 189551

Table 8.4: Estimated versus actual number of comparisons of our BRS algorithm

alphabet of 16 alphabet of 32 alphabet of 64

at. Len. Totos Actual at Len. Total Actual at Len. 'Total Actual

2 60742 65331 2 18237 322155 2 378296 378678

4 52288 52013 3 14507 314567 3 377132 376990

6 51960 51956 4 314556 314581 4 76962 376980

8 51960 51962 6 314460 314509 5 76962 376965

10 51960 51957 8 14460 314297 7 76960 76482
1

12 51960 51959 10 14460 14348 9 76960 76503

Table 8.5: Estimated versus actual number of comparisons of our BRS algorithm

8.6 Comparison with existing string matching algorithms

In this section we compare the existing string matching algorithms with our algorithm,

the BRS algorithm. There are a number of string matching algorithms available in

the literature. We have chosen seven of them, BR, BM, HOR, QS, RAI, SMI, RF and

132

NR algorithms which can be found in [31,36,70,129,109,125,48,102] respectively.

The first six algorithms were found to be fast in [31]. Animations of these algorithms

can be found at [39] and more information about the algorithms can be found in [38).

The experiments were carried out for all the algorithms on an un-compressed

text, except for our BRS algorithm and the NR algorithm [102). The text used for

these experiments was the same text as in Table 8.1. The patterns used in these

experiments are generated randomly. For each a and m, we tested 100 patterns and

we measured the total (user) time (including pre-computation time) in seconds to

search for all 100 patterns. We repeat each test 10 times and take the average. We

used an Intel 486-DX2-66 processor based machine with 8 megabytes of RAM and

a 100 megabyte hard drive running S. u. S. E. Linux 5.2 to conduct the experiments.

All the algorithms were coded in C. The results of the experiments are in Tables 8.6

to 8.10.

Pat. Length BRS BR BM HOR QS RAI SMI RF NR

5 14.2 29.1 31.3 31.5 31.1 28.7 31.8 32.6 30.7

10 5.3 27.0 24.7 30.9 31.0 27.7 31.4 22.0 30.5

20 4.4 27.3 20.4 28.8 32.4 26.6 31.0 18.2 29.5

30 4.2 27.3 18.3 31.2 31.2 28.0 31.4 16.0 27.5

40 4.2 28.3 17.3 29.7 31.3 27.9 30.7 13.5 28.5

50 5.2 26.5 16.4 30.5 30.0 27.7 31.1 15.0 28.4

Table 8.6: Times in seconds to search for 100 random patterns in each given text with
Q=2

133

Pat. Length BRS BR BM HOR QS RAI SMI RF NR

4 8.6 15.3 20.5 20.9 20.3 20.2 23.8 21.3 21.6

8 5.3 13.1 17.6 18.1 19.3 18.7 19.5 17.3 20.7

12 5.7 12.5 19.3 18.8 18.7 18.0 18.3 15.3 17.6

16 5.7 12.9 17.4 15.8 17.4 17.3 17.7 13.6 18.4

20 5.7 12.0 17.2 18.5 17.6 17.9 18.5 14.1 20.5

24 5.7 12.5 16.7 17.7 18.6 16.6 18.1 12.7 20.2

Table 8.7: Times in seconds to search for 100 random patterns in each given text with
a=4

Pat. Length BRS BR BM HOR QS RAI SMI RF NR

3 9.9 15.7 22.6 18.6 17.6 16.9 19.3 18.0 28.9

4 14.0 17.0 25.8 21.2 18.7 21.1 21.3 18.9 27.6

6 8.6 13.7 19.7 16.9 16.0 16.5 16.0 15.8 23.5

10 8.5 12.7 15.7 14.1 15.1 14.9 15.1 14.1 25.5

14 8.7 12.0 15.7 12.4 14.2 13.3 13.8 13.0 25.2

18 8.4 11.1 15.0 13.6 14.0 12.7 13.4 13.2 25.5

Table 8.8: Times in seconds to search for 100 random patterns in each given text with
or =8

Pat. Length BRS BR BM HOR QS RAI SMI RF NR

2 14.1 19.4 33.0 25.8 21.0 24.4 24.4 19.6 33.4

4 9.8 15.2 21.7 17.8 17.0 17.9 17.7 16.2 31.5

6 9.8 13.4 16.6 14.0 14.6 13.6 15.0 13.4 31.5

8 9.7 12.3 16.2 14.4 13.9 13.2 13.8 13.2 27.7

10 9.7 12.1 14.2 13.2 13.6 12.3 13.0 13.6 29.6

12 9.9 11.1 14.3 13.0 12.3 13.0 13.4 12.9 31.1

Table 8.9: Times in seconds to search for 100 random patterns in each given text with
o= 16

134

Pat. Length BRS BR BM HOR QS RAI SMI RF NR

2 66.5 18.6 33.0 23.6 19.5 23.8 22.3 19.0 39.1

3 42.1 16.3 24.0 20.2 17.7 19.8 20.3 16.6 40.1

4 31.9 14.8 21.2 17.1 15.5 15.4 17.5 15.0 37.2

6 39.7 12.3 17.5 13.2 14.7 14.6 15.5 14.1 36.2

8 37.9 12.3 15.5 13.4 13.4 13.2 13.9 13.5 38.8

10 48.2 11.5 15.0 12.4 11.8 12.5 13.7 13.0 34.2

Table 8.10: Times in seconds to search for 100 random patterns in each given text
with a= 32

8.7 Conclusions

The method described in Section 8.2 to store a text will reduce the original text size

to P092
8°n.

Although this method is not compression as in the literature, it reduces

the space and it is comparable with the existing methods.

The main aim of this Chapter is string matching in an efficiently stored text. Our

string matching algorithm compares two blocks, checks whether a prefix (or suffix)

of a block is a suffix (or prefix) of the other block. This takes constant time and

uses byte processing. In practice, byte processing is much faster than bit processing

because bit shifting and masking operations are not necessary at search time. We

prove that the average time taken by our algorithm is O(n + 7n). We also justified

our average running time by experiments.

Using our algorithm one can keep texts (with an alphabet of 2<Q< 128 char-

acters) efficiently stored indefinitely and perform the search for a pattern. These

135

methods will save both time and space. The experimental results show that our al-

gorithm is more efficient than the existing algorithms for or < 16. Texts with such a

small alphabet are DNA, RDNA and hexadecimal files. One can improve our algo-

rithm so that it performs well for large alphabet sets.

Chapter 9

String matching via pre-processing the text

9.1 Introduction

In the previous chapters we have pre-processed the pattern before searching for it

in the text. Using this method we make m and n attempts for the best case and

worst-case respectively, for finding a pattern in a text where n is the length of the

text and m is the length of the pattern. In this Chapter we show that the number

of attempts can be reduced by pre-processing the text. This method takes 2n + 2Q

space to store all the information required compared to a suffix tree that requires 4n

to store it.

When comparing a pattern and text at an attempt we get partial matches. The

number of partial matches depends on the frequency of the pattern characters in the

text. The more frequent the pattern characters the more partial matches we achieve.

The number of attempts can be decreased by considering positions in the text where

the least frequent pattern character occurs. To calculate the positions of the least

136

137

frequent pattern character we pre-process the text and record the positions of each

character in the text.

9.2 The algorithm

The following algorithm records the frequency, the first position and next position of

the characters of the text. This can be done in one pass of the text.

The position of the next occurrence of a character is stored in an array of size n

called Next. We use an array of length o, called Freq to record the frequency of the

characters of the alphabet in the text where a is the size of the alphabet set. We use

another array of length o, called First to record the first occurrence of each character,

starting from the beginning of the text. Next[i] is the position in the text of the next

occurrence of the character at position i in the text. First[a] is the first position in

the text of the character, a and Freq[a] is the frequency of the character, a.

The text is stored in an array. The start of the text being at the leftmost end of

the array. We start from the end of the text or the rightmost end of the text array.

The Next array is aligned with the text array and the array First is set to -1 and Freq

is set to zero.

We consider the last character in the text array first and consider character from

right to left until we are at the first character in the text. When we are at position i

in the text and the character at this position is a, we do the following steps:

138

Step 1: Increase Freq[a] by one

Step 2: Copy First[a] into Next[i]

Step 3: First[a] =i

For example, consider the string BAABA, there are two characters and so Freq

and First are of length two. Figure 9.1 shows the initial state of the arrays Freq, First

and Next. The Next array is empty and is aligned with text as shown.

Pos. 0 1 2 3 4
Text B A A B A
Next 1 1 L

i
Fr uenc First Pos.
A B A B
0 0 -1 -1

Figure 9.1: The initial values for Next, Freq and First

We start at the last position (position 4) of the text. The last character in the text

is an A and Freq[A] is incremented by one. First[A] is copied into Next[4]. Therefore

Next[4] = -1 and we update First and thus First[A] = 4. This is shown in Figure 9.2.

Pos. 0 11 2 3 4
Text B A A B A
Next -1

Fre uenc First Pos.
A B A B
1 0 4 -1

Figure 9.2: The values for Next, Freq and First after considering the A at position

The next character in the text is aB and so the frequency of B is incremented

by one. The value for B in the First array is entered into the Next array. Therefore

Next[3J = -1 and we update First and thus First[B] = 3. This is shown in Figure 9.3.

139

Pos. 0 1 2 3 4
Text B A A B A
Next -1 -1

Fr uenc First Pos.
A B A B
1 1 4 3

Figure 9.3: The values for Next, Freq and First after considering the B at position 3

The next character in the text is an A and so the frequency of A is incremented

by one. The value for A in the First array is entered into the Next array. Therefore

Next[2] =4 and we update First and thus First[A] = 2. This is shown in Figure 9.4.

Pos. 0 1 2 3 4
Text B A A B A
Next 4 -1 -1

Fr uenc First Pos.
A B A B
2 1 2 3

Figure 9.4: The values for Next, Freq and First after considering the A at position 2

The next character in the text is an A and so the frequency of A is incremented

by one. The value for A in the First array is entered into the Next array. Therefore

Next[l] =2 and we update First and thus First[A] = 1. This is shown in Figure 9.5.

Pos. 0 1 2 3 4
Text B A A B A
Next 2 4 -1 -1

Fr uenc First Pos.
A B A B
3 1 1 3

Figure 9.5: The values for Next, Freq and First after considering the A at position 1

The next character in the text is aB and so the frequency of B is incremented

by one. The value for B in the First array is entered into the Next array. Therefore

Next[O] =3 and we update First and thus First[B] = 0. This is shown in Figure 9.6.

The arrays are now complete.

140

Pos. 0 1 2 3 4
Text B A A B A
Next 3 2 4 -1 -1

Fr uenc First Pos.
A B A B
3 2 1 0

Figure 9.6: The values for Next, Freq and First after considering the B at position 0

Once we have the list of the positions of the characters in the text we can search

for a pattern. For a given pattern we chose the character in the pattern that appears

in the text the least number of times. If there are two characters with equal lowest

frequency then we choose the character that is leftmost in the pattern. The frequency

of this character is the number of attempts required to search for the pattern. The

pattern and text are aligned so that the least frequent character in the pattern is

aligned with the first occurrence of that character in the text. We can find this

position from the array, First. Then we compare the text and pattern characters

from left to right.

Upon a mismatch or match we shift the pattern so as to align the next occurrence

of the least frequent character in the pattern with its matching text character. This

position can be found from the array, Next.

For example, if we were to search for the pattern, BA, using the above arrays

then we first check which character has the lowest frequency. In this case B has the

lowest frequency. As the character B only occurs twice then we will only make two

attempts at matching the pattern and text characters. Using first we know that the

first occurrence of B is at position 0. So we align the B in the pattern with the

141

corresponding B in the text and begin our attempt:

Text B A A B A

Comparison

Pattern B A

Both of the pattern characters match the text and we have a full match. The

pattern now has to be shifted. The value of Next at position 0 is 3, we shift the

pattern as shown:

Text B A A B A

Comparison = =

Pattern B A

The value of Next at position 3 is -1 and so we know that there are no more

occurences of B in the text.

The pre-processing can be done using an extra n+ 2Q space. Where a is the size

of the alphabet set. This pre-processing can be done in O(n) time.

The worst-case is that we have to make n attempts and compare m characters at

each attempt. Therefore the new algorithm has a worst-case run time of O(nm).

9.3 Average case analysis

If we assume that each character in the text occurs with equal frequency. Then the

probability of a match between a text character and a pattern character is ö. When

we construct the list of the positions of the characters in the text there are going to

be o lists each of length ä

142

Lemma 9.1: The upper bound number of attempts is 2 for an average case text.

Proof: When we search for a pattern, all of the characters in the pattern will

have the same frequency. We will choose the first character in the pattern as it is the

leftmost character in the pattern. The least likely character in the pattern occurs 2

times and so we have to make attempts. If we assume that a 2. This means that

at most we will make 2 attempts. Q

From Lemma 4.1 we know that the upper bound number of comparisons at an

attempt is EO 1(a) for an average case text. The equation is maximised when a=2.

As m increases the equation approaches the limit for this equation which is 2. So we

expect to make at most 2 comparisons on average at each attempt.

So upon an attempt we expect to make at most 2 comparisons and to make at

most 2 attempts. If we multiply these two values we get n. This gives the following

Theorem.

Theorem: The new algorithm has an average case running time of O(n).

9.4 Recording the positions of more than one character

The algorithm described in Section 9.2 can be expanded to record the positions of

strings of characters rather than just single characters. The array of size n containing

the positions of the characters or strings remains the same length as we record the

positions of the start of the strings. From these positions we can calculate the starting

143

position of a possible match between the text and the pattern. When we increase

the size of the strings to be recorded, the Freq and First arrays increase in size

quadratically. So to store strings of length x we require n+ 2Qx space. When a is

small we can store the positions of longer strings. When o is large the amount of

space required grows very quickly as x increases.

If the characters in the text are approximately equal then we would expect an

even distribution of the possible Qx strings throughout the text. When searching for

a pattern we expect to make approximately äy attempts. So to decrease the amount

of attempts required to search for a pattern we increase the size of the strings that

we record.

9.4.1 Comparing the pre-processing algorithm with x=1 and x=2

Using the pre-processing algorithm we compare the time taken for searching for pat-

terns recording strings of lengths 1 (x = 1) and 2 (x = 2). The searches were

conducted on different texts with different sizes of a. From these times we will be

able to see if the length of the string to be recorded in the Next array affects the

amount of time taken by the algorithm. The main application of searching is in text

files. So we will use eight English texts from [37]. The texts range in size and are

the same as those used in Chapter 4.1. We searched the English texts for the 24,966

words in the UNIX dictionary.

144

We used a 486-DX66 with 32 megabytes of RAM and a 100 megabyte hard drive

running SUSE 5.2. The user time includes the time taken for any pre-processing and

the reading of the text into memory. Each algorithm was evaluated ten times and

the average time taken is given in Table 9.5. The difference between the slowest and

fastest time for each test for an algorithm was less than 0.2 of a second.

Text (size) Total Preprocessing search search / no. of pats.

x=1 x=2 x=1 x=2 x=1 x=2 x=1 x=2

book 1 (773635) 667.5 107.8 74.3 78.8 593.2 29.0 0.02359 0.00124

book 2 (610856) 540.8 85.3 58.4 59.7 482.4 25.6 0.01919 0.00091

paper 1 (53162) 33.9 11.2 5.2 5.2 28.7 6.0 0.00114 0.00030

paper 2 (82205) 64.1 15.2 7.7 8.3 56.4 6.9 0.00224 0.00029

paper 3 (47139) 30.9 11.0 4.4 4.7 26.5 6.3 0.00105 0.00031

paper 4 (13292) 9.2 6.6 1.3 1.4 7.9 5.2 0.00031 0.00027

paper 5 (11960) 8.5 6.4 1.2 1.3 7.3 5.1 0.00029 0.00029

paper 6 (38111) 22.0 9.1 3.6 3.7 18.4 5.4 0.00073 0.00025

Table 9.1: Time taken (in seconds) to search for the UNIX dictionary in the given
texts

In Table 9.1, the second row shows the length of the strings that were recorded.

Column 1 shows the text used from [37]. The number of characters in the text is given

in brackets. Columns 2 and 3 show the total time taken when searching for the UNIX

dictionary (24966 words) in the given texts. Columns 4 and 5 show the time taken

for preprocessing such as reading the text into the text array and building the Next,

First and Freq arrays. Columns 6 and 7 show the amount of time taken to search for

145

the dictionary. This is calculated by deducting the time for the preprocessing from

the total time taken. Columns 8 and 9 show the average time taken to search for a

pattern in the text.

From Table 9.1 we can see that recording strings of length 2 are the best method,

especially when the text is large. When the time taken for the pre-processing is

removed from the total time, we can see that the actual search for the patterns in

the text is quicker when we record the positions of longer strings. This is due to the

number of attempts and comparisons being reduced as the length of the strings we

record increases.

Text (size) Number of comparisons Number of attempts

x=1 x=2 x=1 x=2

book 1 (773635) 323282898 20215522 226448219 11106768

book 2 (610856) 264843964 15997981 187032763 9044580

paper 1 (53162) 22889598 1209387 16303290 664394

paper 2 (82205) 39086347 2125583 27979108 1186094

paper 3 (47139) 20544541 1322385 14709200 829796

paper 4 (13292) 5804608 330685 4089852 168079

paper 5 (11960) 4821030 264370 3425096 126769

paper 6 (38111) 14426883 758209 10201079 413144

Table 9.2: The number of attempts and comparisons taken when searching for the
UNIX dictionary in the given texts

From Table 9.2 we can see that if we increase the size of the strings that we record

then the number of comparisons and the number of attempts are reduced.

146

9.5 Comparing the new algorithm with the existing algorithms

From Chapter 4, we found that the 2 fastest string matching algorithms were the

HOR [70] and the BR algorithm [31]. Both algorithms read the text into an array of

length n and all searches are performed upon the text array. We searched the texts

used in Table 9.1 for the 24996 words in the UNIX dictionary using the HOR and

BR algorithms. The results are given in Table 9.3.

Text (size) Total time taken search search / no. of pats.

read in BR HOR BR HOR BR HOR

book 1 (773635) 74.05 2812.00 3514.00 2737.95 3439.95 0.10890 0.13682

book 2 (610856) 57.87 2215.00 2780.00 2157.13 2722.13 0.08579 0.10827

paper 1 (53162) 5.12 147.76 228.00 142.64 222.88 0.00567 0.00886

paper 2 (82205) 8.12 259.06 307.00 250.94 298.88 0.00998 0.01189

paper 3 (47139) 4.46 131.95 129.00 127.49 124.54 0.00507 0.00495

paper 4 (13292) 1.26 40.87 38.41 39.61 37.15 0.00158 0.00148

paper 5 (11960) 1.14 35.28 33.81 34.14 32.67 0.00136 0.00130

paper 6 (38111) 3.17 108.08 105.17 104.91 102.00 0.00417 0.00406

Table 9.3: Time taken (in seconds) to search for the UNIX dictionary in the given
texts using the HOR and BR algorithms

In Table 9.3, the second column shows the amount of time required to read the

text into the text array ready for searching. Columns 3 and 4 show the total time

taken for the given texts. Columns 5 and 6 show the time taken to search for the

dictionary in the given texts. This is calculated by deducting the time taken to read

the text into the text array from the total time. Columns 7 and 8 show the average

147

time required to search for a pattern. Note that the time taken is only fractions of a

second. The scanning of the text takes the bulk of the time. For the preprocessing

method to be better than the HOR and BR algorithms the time taken to build the

Next, First and Freq arrays has to be offset.

The time taken to build the Next, First and Freq arrays is the time taken for the

preprocessing in Table 9.1 minus the time taken for reading the text into the text

array. In Table 9.4 we shows the time taken to build Next, First and Freq for the

eight texts used.

Text (size) Preprocessing preproc. - scan in

read in x=1 x=2 x=1 x=2

book 1 (773635) 73.52 74.30 78.8 0.78 5.25

book 2 (610856) 57.87 58.40 59.7 0.53 1.83

paper 1 (53162) 5.11 5.36 5.2 0.25 0.09

paper 2 (82205) 7.22 7.70 8.3 0.48 1.08

paper 3 (47139) 4.40 4.51 4.7 0.11 0.30

paper 4 (13292) 1.26 1.40 1.4 0.14 0.14

paper 5 (11960) 1.12 1.22 1.3 0.10 0.18

paper 6 (38111) 3.17 3.60 3.7 0.43 0.53

Table 9.4: Time taken to build Next, First and Freq

In Table 9.4, column 2 shows the amount of time required to read into the text

array each of the given texts. Columns 3 and 4 show the amount of time taken to pre-

process the given texts as shown in Table 9.1. By taking the time taken for reading

the text into the text array from the total time for pre-processing we get the time

148

taken for building the arrays Next, First and Freq, which are given in columns 5 and

6

Due to the time taken to build the arrays Next, First and Freq the new algorithm

is not always better than using the HOR and BR string matching algorithms. If

we are searching for a low number of patterns then the HOR and BR algorithms

will be better. We can calculate how many patterns need to be searched for the

pre-processing method to become the fastest algorithm for the task.

The pre-processing algorithm is the fastest algorithm once the time taken to build

the arrays Next, First and Freq is offset. The method using x=2 is faster for all

searches that search for more than

time taken to build the Next, First and Freg arrays
(HOR or BR average search) - (pre-processing (x=2) average search)

All answers must be rounded up as we cannot search for a fraction of a pattern.

In Table 9.5, column 2 shows the amount of time required to build the arrays Next,

First and Freq. Columns 3 and 4 show the average amount of time taken to search

for a pattern using x=2 and the BR one dimensional string matching algorithm.

Column 5 shows the difference between the BR and x=2 average search. Column

6 shows the number of patterns that need to be searched for the x=2 method to

be faster than the BR string matching algorithm. The figure is found by dividing

column 2 by column 5. This is the same as the equation above.

149

Text (size) construct arrays x=2 search BR search BR -x=2 number of patterns

book 1 (773635) 5.25 0.001240 0.108895 0.107655 49

book 2 (610856) 1.83 0.000914 0.085794 0.084881 22

paper 1 (53162) 0.09 0.000299 0.005673 0.005374 17

paper 2 (82205) 1.08 0.000293 0.009981 0.009687 112

paper 3 (47139) 0.3 0.000312 0.005071 0.004759 64

paper 4 (13292) 0.14 0.000271 0.001575 0.001305 108

paper 5 (11960) 0.18 0.000287 0.001358 0.001071 169

paper 6 (38111) 0.53 0.000254 0.004173 0.003918 136

Table 9.5: Number of patterns that are required to be searched for, for the x=2
method to be the fastest

When the text is long we only need to search for a small number of patterns for

the x=2 method to become the best. When the text is shorter we need to search

for more patterns to get faster times with the x=2 method. We can choose which

algorithm to use depending on the number of patterns and the length of text being

searched.

9.6 Pre-processing DNA using a mapping function

When we pre-processed the English texts in the previous section we used a one di-

mensional array to record the Next array. If we are to record longer strings we have

to use a mapping function to map each of the possible strings to a unique location in

a linear array. Using the mapping function we can then update the Next, First and

Freq arrays.

150

The easiest mapping function to use is based on the number of characters in the

text and the length of the strings being recorded. We can assign a value to each

string in a similar way to that which is used to assign values to each of the ASCII

characters. We firstly number each of the characters in the alphabet from 0 to o, - 1.

If we let each of characters in the string to be recorded to be numbered from 1 to

in numbering from left to right. Then the value of a string is E i'-=, string[i] x Qý-ti,

where string[i] is the numeric value of the characters at the ith position in the string.

We can then enter the position of the string into the relevant arrays. There are o

possible strings to be recorded.

For example if x=5 and a=4 (DNA alphabet) and consider the string GATC-

TAGACAC, the first string we would record is GACAC. As we are recording the

strings from right to left the last string to be recorded is GATCT. Calculating this

string we firstly replace the characters with their numeric equivalents, A=0, C=1,

G=2 and T=3 as in Chapter 7. To give GACAC = 20101. We now need to find the

value of the string filling in the values in the equation we have: Ei 1 string[i] x 45-i

To give :

i=1: string[1] x 45-1 =2x 44 = 512

i= 2 string[2] x 45-2 =0x 43 =0

i=3: string[3] x 45-3 =1x 42 = 16

i= 4: string[4]x45-4=0x41=0

151

i=5: string[5]x45-5=1x4°=1

The total for GACAC = 512 +0+ 16 +0+1= 529.

The next string to be calculated is AGACA. We can calculate the value represented

by this string by using the above method or we can modify the above total to give us

the next total. We need to remove the value of the last character in the string away

from the total. In the above case this would be 1 which is the value of the second C

in GACAC. This makes the total 528. We now move each of characters to the right.

This makes each of the characters decrease in value by a factor of 4. So we divide

the total by 4 to get 132. We now add the value of the new character multiplied by

44 =0* 256 = 0. So the value of AGACA is 132. We can check this using the above

method which gives 0+ 128 +0+4+0= 132. Using this method we reduce the

number of mathematical operations from 5 to 3. No matter how long the strings that

we record are we always make 3 mathematical operations.

Using this mapping function we were able to search in texts recording longer

strings in the text. Using 5 of the DNA texts used in Chapter 7 we searched for

patterns of different lengths and used different values of x for the building of the arrays

Next, First and Freq. The sizes of the texts can be found in Table 7.1 in Chapter 7. In

our first experiment using DNA we searched for the unique 256 patterns of length 4.

In Table 9.6, the numbers in the first row show the length of the strings that

we are recording. In Column 1 we give the number of the text and the number of

152

characters in that given text is given in brackets. The texts used are the same as

those used in Chapter 7. We can see that recording strings of length 4 is the fastest

method for all 5 texts searched. This is due to the amount of text that is not searched

when searching for a pattern. As we are searching for strings of length 4 and we are

recording strings of length 4 we have recorded the positions of all possible matches.

Searching for the patterns is simply the printing of the list of recorded positions for

that pattern.

Text (size) x=1 x=2 x=3 x=4

1 (100000) 20.6 13.5 11.7 11.0

3 (100000) 20.5 13.5 11.8 11.1

5 (172000) 49.9 34.0 27.9 26.4

7 (253505) 62.3 42.9 35.4 34.0

9 (319000) 42.8 28.8 25.8 23.0

Table 9.6: Time taken in seconds to search for the 256 possible DNA patterns of
length 4 including any pre-processing time.

Text(size) x=1 x=2 x=3 x=4 x=5 x=6

1 (100000) 163.49 46.21 19.84 13.95 12.09 11.90

3 (100000) 160.49 45.74 19.98 13.97 12.23 11.66

5 (172000) 392.25 135.40 53.89 34.42 28.82 27.47

7 (253505) 511.93 176.63 68.90 42.40 36.06 35.57

9 (319000) 344.96 117.79 46.49 29.28 25.28 24.27

Table 9.7: Time taken in seconds to search for the 4096 possible DNA patterns of
length 6 including any pre-processing time

153

In Table 9.7, we show the time taken to search for all 4096 possible strings of length

6. We can see that recording strings of length 6 are the best method for searching for

the patterns. This method ensures that the least amount of text possible is searched

for the patterns. Again the length of the strings recorded is the same as the length

of the strings we are searching for. This means that we have a recorded list of all

possible matches and to search for all occurrences of a pattern is just a case of printing

out the list of recorded positions for that pattern.

Text(size) x=1 x=2 x=3 x=4 x=5 x=6 x=7 x=8 x=9

1 (100000) 162.7 53.5 22.6 14.5 12.6 12.1 12.1 11.8 11.9

3 (100000) 159.0 52.8 22.4 14.7 25.4 11.8 11.7 11.6 12.0

5 (172000) 389.9 162.0 54.5 34.2 28.4 27.5 27.3 26.9 26.8

7 (253505) 507.7 184.0 77.6 43.8 37.0 34.5 33.5 33.9 33.3

9 (319000) 418.0 122.9 56.5 29.2 21.4 23.4 23.7 23.6 24.0

Table 9.8: Time taken to search for 5000 DNA patterns of length 10 including any
pre-processing time

In Table 9.8, we can see that recording strings of length 9 is not the best method

for all the texts that we used. Using strings of lengths 8,8,9,9 and 5 are the test

methods for each of the texts 1 to 9 respectively. This may be due to the chosen

patterns not occurring very frequently in some of the texts and it could also be

possible that prefixs of the patterns don't occur in the text. For patterns of length 10

it is difficult to choose a single length of string to record for all the texts. Recording

patterns from length 6 to 10 for each of the texts, the times for a search differ by

154

a very small amount. As the length of the strings being recorded is increased it is

possible that the time taken for the pre-processing is degrading the savings made in

the search phase of the algorithm.

text 1 2 3 4 5 6 7 8 9

1 (100000) 10.4 10.6 11.0 10.5 10.8 10.5 10.8 10.6 11.0

3 (100000) 10.9 10.8 11.0 10.8 10.9 10.9 10.8 10.8 10,9

5 (172000) 26.6 26.4 25.5 25.7 25.8 26.0 26.0 26.7 26.1

7 (253505) 31.8 32.2 32.2 32.5 32.6 31.6 32.6 32.6 32.5

9 (319000) 22.1 22.2 23.1 22.2 22.5 22.2 22.9 22.5 23.2

Table 9.9: Time taken in seconds for pre-processing

From Table 9.9, we can see that as we increase the value of x the time taken are

all within a second of each other. This due to the way in which we calculate the

mapping function for recording the positions of the strings in the text.

9.7 Conclusions

From the experiments performed, we have found that indexing the positions of strings

of varying lengths can be faster than traditional string matching. Although this new

method is only faster when the number of patterns to be searched for is quite large. If

we are searching for only a few patterns then the traditional algorithms are the lest.

algorithms to use. This is due to the amount of time that is required to build the

required arrays in the new method. The preprocessing in the new method requires

155

more memory and time to record the positions of the chosen length strings in the text.

We have to search for enough patterns to offset the time taken building the arrays

Next, First and Freq. The length of the text is linked with the number of patterns

that need to be searched. Rom Table 9.5 we can see that for the larger texts (books

1 and 2) the number of patterns that need to be searched to offset the time taken

to build the arrays Next, First and Freq is less than those required for the smaller

files (papers 1-6). This is due to the larger percentage of text not compared with the

pattern when the larger texts are searched.

Chapter 10

Searching in an Efficiently Stored DNA Text Using a

Hardware Solution

10.1 Introduction

In this Chapter we describe a hardware solution that searches in the efficiently stored

DNA text used in Chapter 7. We also describe an algorithm coded in the programming

language C that will be synthesized into hardware. A DNA text (or molecule) encodes

information which by convention is represented as a string over the DNA alphabet

A, C, G and T.

10.2 Investigation into a hardware only solution to the string matching

problem

The string matching algorithm illustrated in Figure 10.1 was devised to investigate

the feasibility of performing computational algorithms in hardware. String matching

156

157

was chosen as one of the areas to be tested as such algorithms typically involve many

hardware manipulations of words of binary data. These manipulations are invoked

by the machine code instructions, which constitute the program and performed by

the general-purpose hardware within the microprocessor itself. So called software to

hardware synthesis techniques aim to accelerate algorithm execution by first of all

removing the need for machine instructions and by also performing computational

and logical operations on bespoke hardware.

while (match In 0 A& word-count Im 0)
result - current i mask;
match a result - target;
if (match !- 0) {

current - current » 2;
tamp a buffer « 14;
current a current tamp;
if (shifted a- 7) {

word__count--;
shifted - 0;
butter - *ptr;
ptr++;

}
else {

buffer a buffer >> 2;
shitted++;

}
}

Figure 10.1: The C code for searching for occurrences of a single pattern in a given
text

The example code shown works on a word size of 16 bits and can detect a pattern

of up to 8 DNA characters in length. However, the algorithm is by no means limited

to this word size.

The algorithm works by shifting the input stream through the variable current.

When the data is shifted, it is shifted two bits at a time to the right. It is shifted two

158

bits at a time because this is more efficient as the algorithm are searching for DNA

features which are encoded into two bit patterns. Each time current is shifted to the

right it is checked for a match with the target pattern. This concept is illustrated in

Figure 10.2.

target
ACGT

W 00011011bi, o
comvad. on

ban 1001 ®i9ý®01 10001 1 l01 1 brt0
Input data stream

Direction of shift

Figure 10.2: Comparison of input stream against target

When shifted, the two least significant bits (LSBs), which are bits 1 and 0, are lost

and the two most significant bits (MSBs), which are bits 15 and 14, become empty.

These two null MSBs are filled with the two LSBs of buffer. The variable buffer is a

pre-fetch word, which will contain word i+1 with current containing word i. This is

necessary if current is to kept full at all times. During initialisation, the first word

of data is copied to current from the input buffer and buffer is filled with the second

word of data.

In order to copy the two LSBs of buffer to the two MSBs of current, buffer is

first copied to a variable temp, which is then shifted 14 bits to the left. This shift

operation results in the two least significant bits of buffer (1 and 0) being moved to

the two most significant bits (15 and 14), with the remainder of the word (bits 13 to

159

0) being filled with 0's. The contents of temp is then ORed with current resulting in

the two most significant bits of current being replaced with the two least significant

bits of buffer.

In order to make sure that buffer always has at least two bits available for current,

a count is kept of how many times current has been shifted to the right. This count

is stored in the variable shifted, which is initialised to 0 and then incremented each

time shifted is shifted to the right and the two MSBs replaced with the two LSBs of

buffer. If after a comparison shifted is less than 7, then buffer is shifted two bits to

the right in order to replace the two LSBs which have been moved to current and

the variable shifted is incremented. If shifted reaches 7, then the last two bits of data

have moved from buffer to current and buffer requires re-filling. When this occurs,

shifted is set back to 0 and buffer is loaded with a complete new word from the input

stream.

The next byte to be fetched from the input stream is pointed to by the pointer

variable ptr, which is incremented once buffer has been refilled with a word from data

buffer named data-buffer.

To ascertain whether current contains a match for the bit pattern being searched

for, current is first ANDed with a variable named mask. The purpose of mask is to

mask out those bits of current which are not required for the comparison. To ignore

a bit during the comparison between target and current, then the associated bit of

160

mask should be 0. Likewise, to include a bit in the comparison, then that bit of the

mask should be set to 1. As illustrated in Figure 10.3 below, the pattern 'ACGT' is

being searched for, which is only an 8 bit pattern. Hence the remaining upper eight

bits can be ignored during the comparison and are thus set to 0.

target ACGT
r

bit 15 000000000001111011 1 bit0

mask

buffer

result

Figure 10.3: The use of the mask to reduce the number of bits compared

When current is ANDed with the mask, the result of the logical AND is stored in

result. A bit of result will only be set to 1 if both the corresponding bits of mask and

current are 1, otherwise the bit will be set to 0. A match with the target can now be

determined by subtracting target from result. If the result of this subtraction is all

0's, then both result and the target must have contained the same values and hence

a match has been found. This process is illustrated in Figure 10.4.

161

Equal Not Equal

Figure 10.4: The steps required to determine whether the target matches the current
data

The program has been written to locate patterns of DNA up to and including

eight two bit codes. Hence, all words are 16bits in length and are declared as being of

type unsigned short. However, the program could easily be amended to locate longer

patterns by simply changing the variable types and program constants.

10.3 Searching for multiple strings

The example algorithm illustrated in Figure 10.1, simply searches an input stream

for all occurrences of a single string. The program can be easily modified to search

an input stream for all occurrences of many strings by reading in many targets from

162

a file and storing them in an array. This way, each time current is shifted, it may

be compared with many targets before it is once more shifted. In order to do this, a

second array must be created to store the masks for each of the targets. These masks

may be automatically generated from the targets as they are read in.

whil. (ahifta>O) (
for (i=0; i<40-of-targets; i+a) {

result - current i aaak_array[i];
natab - result - tarq. t_array[ij;
if (match - 0) {

watch found
}

current - current » 2;

shifts-;
top - buffer < 14;
current " current I temp;

if (shifted "- 7)
shifted - 0;
buffer - *ptr;
ptr++;

also
buff " buff » 2;
shifted++;

Figure 10.5: An algorithm to search for multiple patterns in a single text

Apart from this simple modification, the program remains relatively unchanged.

This is the version of the program, which will be the subject of the investigation into

hardware acceleration of string matching.

163

buffer current

: 1011 11

TTACCGr-°-

TTGTG ý....

ATTGCCTG- 01'

GCATG r.... C

AAATTGI....

ACGT

target

mask

Logical AND

if.

result

Subtraction

match
Figure 10.6: Illustration of Figure 10.5

164

10.4 Hardware acceleration

Over the past decade hardware synthesis has been explored as a method of accel-

erating computing tasks at which conventional general-purpose microprocessors are

inefficient. The problem is that current microprocessors, although being suitable for

many tasks, are not particularly efficient at performing any one task. This is because

they are designed to be applicable to as many problem areas or tasks as possible.

Therefore, through necessity they possess many features which although utilised by

one application may never be used by another application. Another problem with

conventional machines is the stored program concept whereby and algorithm is ex-

ecuted by the microprocessor obeying a series of commands, which are stored in

memory. These commands are the machine code instructions, which the micropro-

cessor fetches, decodes and then executes one at time. This fetching and decoding

takes comparatively vast amount of time due to the slow speed of memory and the

numerous instructions within the instruction set of the processor. Even the execution

phase is by no means efficient. The execution circuits of a processor are finite and

although some resources are replicated, many must be shared. This resource con-

tention slows execution times. Additionally, the execution circuits of microprocessors

are designed to perform many tasks, making them less efficient.

Hardware and software co-design or hardware to software synthesis is a process

whereby computing algorithms expressed in high-level languages, are compiled to pro-

165

duce either an executable program and a hardware circuit design or just a hardware

circuit. In the case of hardware and software co-design [107,108], the majority of

the program is turned into an executable binary for execution on a microprocessor,

whilst the remainder of the algorithm is synthesised to hardware. The portion synthe-

sised to hardware would be the section of the algorithm at which the microprocessor

would be least efficient. The hardware portion is usually programmed into a Field

Programmable Gate Array (FPGA) [137], which then acts as a co-processor to the

host microprocessor. Producing programs for such architectures is usually performed

using a hybrid programming language and appropriate compilers and synthesis tools

[106]. Such programming languages tend to be based on C, with extensions being

added to express the hardware-only components for the FPGA.

With pure software to hardware synthesis [10,11], an attempt is made to map the

entire algorithm into an FPGA, resulting in a digital circuit, which is functionally

identical to and directly derived from an algorithm, which was originally expressed in a

programming language. Such approaches tend to use hardware description languages

such as VHDL [76], which are exclusively used for expressing the function of hardware

circuits.

Synthesis to a hardware only solution offers the greatest potential increase in

speed, removing the need for instructions and a conventional fetch-decode-execute

cycle. However, it is also the most difficult to achieve. The difficulty arises from the

166

design features of current FPGAs, which were originally intended for implementing

digital circuits. Although suitable for the prototyping and implementation of gen-

eral circuits comprising of digital logic, they are not well suited for implementing

algorithms. This is because algorithms require data storage for variables, buses for

register to register and register to execution unit transfers. Data storage and buses

are not available within an FPGA and must be created using the FPGAs resources,

such as macro-cells and signal lines. What makes the situation worse is that both

registers and buses are expensive in terms of FPGA resources, which ultimately limits

the size of the algorithm that may be implemented in hardware.

As part of the research into implementing string matching algorithms in hardware-

solutions, recommendations will be made regarding the development of a new FPGA

architecture, which will be more suited to the purpose of implementing software in

hardware.

10.5 Hardware Implementation of string Matching

The research currently being undertaken aims to overcome the limitations of current

FPGAs, with regards to configurable computing. First of all, it aims to do this

by recommending a new configurable device architecture, which lends itself more to

the mapping of software to hardware. The device will feature the bussing systems,

areas of storage and synchronization circuits required to facilitate both effective and

167

efficient hardware generation. Secondly, software tools are being developed which will

process standard C programs and as their output, will produce configuration files for

the programmable device.

Because of the low-level nature of the task of string matching, it is an ideal candi-

date for such acceleration techniques. At the hardware level, the most efficient method

of searching a string for a sub-string is as illustrated in Figure 10.2. The stream to

be searched is passed through a register, shifting one bit at a time. Each time the

register is shifted, the register is compared with the sub-string being searched for.

This is the same method as employed in the C algorithm discussed previously. The

number of register bits to be compared need only be equal in length to the number

of bits in the sub-string, with any additional bits simply being masked out or ignored

in the same way as the C algorithm. Additionally, the register being searched need

not only be shifted one bit at a time. In the case of searching for occurrences of bit

patterns consisting of two bit sub-patterns, it is more efficient to shift the register

two bits before a comparison with the target is made.

Figure 10.7, illustrates a simplified diagram of the components to be implemented

in hardware. Missing are the hardware components responsible for shifting both

current and buffer to the right. Also missing are the circuits required for synchronizing

the activities of the components in order to perform the operations of the algorithm

in the correct order.

168

MM

Figure 10.7: Simplified version of the components to be implemented in hardware

The memory labelled data-buffer holds the data to be searched for a sub-string.

The width of the words contained in data-buffer is immaterial and may be of any

width.

The registers labelled ptr and buffer are associated with the fetching of the words

from memory. The register buffer is the same width as the words contained in

data-buffer. This register is used to contain a pre-fetch word. The register ptr is

used as a pointer to reference the words contained in data-buffer. As such, its width

need only be sufficient to reference all of the words in data-buffer.

The register current contains the current bit pattern to be matched against a

169

sub-string bit pattern. It is a shift register, with the data contained in the register

being shifted right two bits at a time, with the two least significant bits being lost

and the two most significant bits being replaced with the two least significant bits of

buffer. This is the purpose of buffer, to keep current full of bits. Only once all the

bits contained in buffer have been shifted into current, will new data be loaded into

buffer from data-buffer.

As with the C algorithm, the mask register is used to contain a bit pattern to

mask off the bits of current, which are not to be compared. When ANDed with the

contents of current, then the resulting word is stored in the register result. It is the

contents of result, which will be compared with the target to determine whether or

not a matching bit pattern has been located. To ascertain whether the contents of

result and target do match, result is subtracted from target. Again, if the result of the

subtraction is zero, then a match has been located.

10.6 Conclusions

Using the storage method described in Section 10.2 we can store DNA text files in

25% of space required for the original DNA text file. Using algorithms such as the

DS and BK algorithm we can keep DNA texts efficiently stored and perform searches

on them. Thus saving both time and space.

The hardware synthesis of the BK algorithm into a hardware only implementation

170

is expected to produce a solution that we estimate to be significantly faster than even

the DS algorithm.

Chapter 11

Conclusions and Further Work

11.1 Applications of Algorithm Engineering

The topic of algorithms is a topic that is central to computer science. Measuring

an algorithm's efficiency is important because your choice of algorithm for a given

application often has a great impact. Although the efficient use of both time and space

is important, inexpensive memory has reduced the significance of space efficiency. The

main problem with memory has become the speed of the transfer of data from memory

to the CPU. Thus we generally focus on time efficiency (see Chapter 2).

The efficiency of an algorithm can be measured both theoretically and practically.

The theoretical evaluation of algorithms is usually performed using asymptotic anal-

ysis, which doesn't consider the constant factors that are hiding behind the Big-Oh

notation. Asymptotic analysis doesn't show the breakpoint where an asymptotically

slow algorithm with a small constant factor is faster than an asymptotically fast al-

gorithm with a large constant factor. Also the asymptotic analysis focuses primarily

171

172

on worst-case inputs that may not be representative of the typical input for a cer-

tain problem. The algorithm may also be too complicated to allow us to effectively

bound its performance. In such cases experimentation can often help us perform our

algorithm analysis.

In performing an experiment we must decide what to measure. We can measure

the actual time taken by the algorithm. This can be difficult as the time taken can

be affected by other factors such as other programs running on the same computer,

how the computer makes use of memory cache and whether or not there is enough

memory available. In our experiments we used a standalone computer, which was

only running the desired algorithm that is being evaluated.

An alternative approach is to count the number of times a basic operation is

executed. This can be the number of comparisons taken as in our string matching

algorithms. As found in our experiments this may give an indication of speed but

an algorithm may take less basic operations but take more time to perform the same

task.

The necessary step of coding up our algorithm correctly and efficiently involves

a certain amount of programming skill. If we are comparing two algorithms against

each other then we must be sure to code up the competing algorithm using the same

level of skill as is used for our algorithm. The degree of code optimisation between

the algorithms must be as close as possible, achieving a level playing field for the

173

algorithms being compared. Ultimately we should strive to make sure that our results

are reproducible by other programmers with similar skills. We must also include the

computer architecture of our chosen computer.

We have used Algorithm Engineering to modify and improve algorithms mainly

in the field of string matching. Within this field there are many more string related

problems and other fields, which would benefit from practical as well as theoretical

evaluation. From the practical evaluation it may be possible to improve the algorithms

and identify the features that determine the speed of the algorithms. Although the

new algorithms may not improve their theoretical evaluations the practical gains

should not be dismissed. The trend of improving the worst-case time complexity has

delivered a number of groundbreaking algorithms. But no claims were made about

their practical performance.

11.2 Algorithm Engineering and String processing

We have described the existing one-dimensional string matching algorithms and eval-

uated their performance both in theory and in practice. We found that the theoretical

evaluation of each of the algorithms could be divided into two categories. Algorithms

with a linear worst-case time complexity of (O(n + m)) which were mainly based on

the Knuth-Morris-Pratt (KMP) algorithm. The remaining algorithms mainly had a

quadratic worst-case time complexity of O(nm) and were mainly based on the Boyer-

174

Moore algorithm.

Implementing the existing algorithms and counting the number of comparisons

performed by the algorithms on a number of texts it was interesting to find that the

Boyer-Moore based algorithms took less comparisons than the KMP based algorithm

although their worst-case time complexities would indicate the opposite. This is due

to the pattern being shifted to the right by a greater distance in the Boyer-Moore

based algorithms. The KMP based algorithms reduce the number of times that a

character in the text can be compared again to the text, although this feature doesn't

reduce the number of comparisons much more than a Brute Force search of the text.

From the results of our evaluation we developed a new string matching algorithm,

the BR algorithm, which is described in Chapter 4. The BR algorithm is the combi-

nation of two existing algorithms the Zhu-Takeda and the Quicksearch algorithm. We

use the features of both algorithms that give them their speed. We have shown that

the BR algorithm has a worst-case time complexity of 0(nm) and have proven that

it has a linear average case time complexity. When the BR algorithm was compared

to the existing algorithms in practice we found that the number of comparisons taken

by the BR algorithm is fewer than those taken by any of the existing algorithms. Also

the shift of the BR algorithm is greater than the existing algorithms. When timing

each of the algorithms over a range of different English texts and using words from

the UNIX English dictionary as patterns we found that the BR algorithm was faster

175

than the existing algorithms.

Two-dimensional string matching is considered in Chapter 5 and we describe a

new algorithm, the 2D-BR algorithm. In one dimensional string matching we are

only trying to match a single row of text. In two-dimensional string matching both

the pattern and text are a matrix composed of rows and columns and for a full match

we must match the entire pattern matrix with the text matrix.

When comparing the text matrix and pattern matrix, if we find that the current

character to be compared is not in the pattern then no portion of the pattern matrix

can overlap this mismatched character. If we compare a sample point of the text

matrix with the elements in the pattern matrix then we can quickly tell whether the

sample point is in the pattern matrix at any location. This will allow the use of

sample points to search in a larger area than just the pattern matrix at an attempt.

In fact we can check a (2m1-1) x (2m2 - 1) area to see if it possible for the pattern

matrix to occur at that location (where ml and m2 are the dimensions of the pattern

matrix). This method could increase the size of the shift made although it requires an

extra "1 x" comparisons (where nl and n2 are the dimensions of the text matrix). It ml xm2

was found that the lower the probability of a match between the sample point and the

pattern the faster the algorithm ran. When the probability of a match between the

pattern and sample point was high then the algorithm was slower than the existing

algorithms. The 2D-BR algorithm is more efficient when the size of the alphabet is

176

large. We proved that the 2D-BR algorithm had a linear average case time complexity.

When performing the practical evaluation for our texts in Chapter 4, it was notice-

able that the main portion of the time taken was used reading the text into memory.

Reducing the size of the text would reduce the time taken to read the text into mem-

ory. The texts could not be changed and the data contained within the text must

remain in the same order. The texts were reduced by efficiently storing the text. In

Chapter 7 we consider DNA texts and show how they can be reduced to a quarter

of their original size by assigning a2 bit string to each of the 4 characters of the

alphabet. This meant that 4 characters could be combined to form one byte (8 bits).

Once the text is efficiently stored an algorithm, the DS algorithm, was developed

to search in the efficiently stored text. This was done so that a DNA text can be

efficiently stored indefinitely and still search for a pattern. The DS algorithm has a

worst-case time complexity of 0(nm) and was proven to have a linear average case

time complexity of O(n + m). For the practical evaluation we searched for enzyme

cutting locations in DNA texts. The times recorded showed that the DS algorithm

was roughly 3 times or more faster than the existing algorithms. The increase in

speed was due to the reduction in the size of the original text. Others have also made

savings by compressing the text and searching in the compressed text.

The DS algorithm was expanded to consider alphabets of any size < 128 and is

described in Chapter 8. Each character in an alphabet would take 11092 al bits per

177

character where o, is the size of the alphabet. A new algorithm was developed that

searched on the efficiently stored text. The algorithm also made use of the fact that

a character that required x bits in a pattern then the pattern may only start every x

bits in the text.

The algorithm has a worst-case time complexity of O(nm) and was proven to have

a linear average case time complexity of O(n + m). In practice the algorithm was

found to be fast when o, was small < 32. This is due to the reduction in the size of the

text not being as important a factor as the speed of the algorithm that is performing

the search.

When performing a search if the number of comparisons and attempts made could

be reduced then the time taken could also be reduced. In Chapter 9 we record the

positions of characters or strings of characters in the text. This allows us to make

attempts where one or more of the characters of the pattern have matched the text.

This reduces the amount time taken to search for a pattern. The algorithm has a

worst-case time complexity of O(nm) and was proven to have a linear average case

time complexity of O(n + m).

In practice we found that the algorithm needed to perform a larger amount of

pre-processing than the existing algorithms. The actual search for a pattern was

many times faster than the existing algorithm due to the amount of text characters

not considered during a search. Although to make this algorithm efficient we must

178

search for a number of patterns to offset the amount of pre-processing required by

this algorithm. The number of patterns that are required for the algorithm to become

efficient are also dependent on the size of the text being searched. We found that

the larger the text the fewer the number of patterns required to be searched for the

algorithm to become efficient. We adapted the algorithm to search in DNA files using

a mapping function.

In Chapter 10 we investigated the feasibility of performing computational algo-

rithms in hardware. String matching was chosen as one of the areas to be tested

as such algorithms typically involve many hardware manipulations of words of bi-

nary data. These manipulations are invoked by the machine code instructions, which

constitute the program and performed by the general-purpose hardware within the

microprocessor itself. So called software to hardware synthesis techniques aim to ac-

celerate algorithm execution by first of all removing the need for machine instructions.

We expect to produce a solution that we estimate to be significantly faster than even

the DS algorithm.

From the work undertaken in this thesis we have devised a number of novel new

algorithms that solve a number of distinct string matching problems. The new algo-

rithms have been theoretically and practically evaluated and compared to the existing

algorithms. An average analysis has been conducted of the new algorithms and where

performed they have all been found to have a linear average case time complexity.

179

Through the implementation of theoretical ideas and algorithms and practical

evaluation of the ideas and algorithms it is possible to develop improved algorithms.

Considerable experimentation and fine-tuning is typically required to get the most out

of a theoretical idea. Algorithms and ideas discovered by the theoretical community

should be implemented, tested and refined to the point where they can be usefully

applied in practice.

We propose to create a software library of efficient string processing algorithms.

These algorithms will enable many of the basic operations of string processing to he

performed. The aim of the library is to provide a library of tools and data structures

for managing sequences of symbols. The algorithms will have to be adaptable to

different data types such as trees, arrays, multi-dimensional arrays and graphs. An

architecture for such a library is described in [54].

11.3 Memory Management

A typical computer has several different levels of storage. Each level of storage has

a different speed, cost, and size. These levels form a storage hierarchy, in which the

topmost levels (those nearest the processor) are fastest, most expensive and smallest.

The fastest type of storage is most typical main memory usually RAM (Random

Access Memory) or ROM (Read Only Memory). Memory or storage is where data

and instructions are stored ready for it to be transferred to the CPU (Computer

180

Processing Unit) for processing.

A processor also usually has its own memory in addition to any RAM connected

to the computer and it is called cache memory. Cache memory is a small piece of fast,

but more expensive memory, usually static memory used for copies of parts of main

memory. It is automatically used by the processor for fast access to any data that

currently contained in it. Access to the cache typically takes only a few processor

clock cycles, whereas access to main memory may take tens or even hundreds of

cycles.

Any cache uses a cache policy to decide which data to store. A cache policy is an

attempt to predict the future, so that the cache will provide swift responses to future

requests.

Cache policy may be implemented in hardware, software, or a combination of

both. Some systems allow programs to influence cache policy, by giving hints or di-

rections about future use of data. There are three main aspects of cache behaviour,

which the cache policy can affect:

" Fetch policy - This determines which data is fetched into the cache, usually as

a result of receiving a request for data that isn't cached.

" Eviction policy - This determines which data is discarded from the cache to

provide space for newly fetched data.

181

" Write policy - This determines how and when modifications to cached data are

synchronized with the underlying storage.

If the CPU requests the contents of a main memory location and the value of that

location are held in some level of cache then the CPUs request is answered by the

cache itself (a cache hit). Otherwise the request is answered by main memory (a cache

miss). A cache hit has no penalty (1-3 cycles is typical) but a cache miss requires a

main memory access and is therefore very expensive. To amortise the cost of a main

memory access in the case of cache miss, an entire block of consecutive main memory

locations containing the required request is brought into cache on a miss. A program

that exhibits of accesses memory locations near those that it accessed previously will

incur fewer cache misses and will consequently run faster.

In the experiments undertaken when calculating the time taken by an algorithm,

cache memory was disabled so that it wouldn't affect the times recorded. By devising

a new cache management policy it may be possible to improve the speed of string

matching algorithms by storing more frequently requested data at the cache level.

The design of algorithms could be modified so as to make more utilisation of cache

memory.

182

11.4 Hardware implementation of string processing algorithms

We intend to fully implement the algorithm described in Chapter 10 into a hard-

ware solution and practically evaluate the new solution. We expect the hardware

implementation to be many times faster than the software implementation. From the

results received from the experiments we expect to learn more about the features that

are responsible for the increase in speed. We intend to use any information we learn

from the experiments to improve the existing algorithms. The information learnt

from this hardware implementation will allow us to improve other string matching

algorithms.

Bibliography

[1] Abrahamson K., "Generalized String Matching", SIAM Journal of Computing,

16(6), pp 1039 - 1051,1989.

[21 Aho A. V., Corasick M. J., "Efficient String Matching: An Aid to Bibliographic

Search", Communications of the ACM, 18(6), pp 333-340,1975.

[31 Akutsu T., "Approximate String Matching with don't Care Characters", Infor-

mation Processing Letters, 55(5), pp 235-239,1995.

[4] Amersham life science products catalogue, pp 378-379,1998.

[5] Amir A., "Multidimensional Pattern Matching: A Survey", Georgia Tech, Tech-

nical Report TR 92/29,1992.

[61 Amir A., Benson G., Farach M., "An Alphabet Independent Approach to Two-

Dimensional Pattern Matching", SIAM Journal of Computing, 23(2), pp 313-

323,1994.

[7] Amir A., Benson G., Farach M., "Let Sleeping Files Lie: Pattern Matching

183

184

in Z-Compressed Files", Journal of Computer and System Sciences, 52(2), pp

299-307,1996.

[8] Apostolico A., Giancarlo R., "The Boyer-Moore-Galil string searching strategies

revisited", SIAM Journal of Computing, 15(1), pp 98-105,1986.

[9] Arajo M., Navarro G., Ziviani N., "Large Text Searching Allowing Errors", Pro-

ceedings of the 4th South American Workshop on String Processing, (WSP'97),

Chile, pp 2-20,1997.

[10] Athanas P. M., O'Connor R. B., Peterson J. B., "Scheduling and Partitioning

ANSI-C Programs onto Multi-FPGA CCM Architectures", The Bradley De-

partment of Electrical Engineering, Virginia Polytechnic Institute and State

University, Blacksburg, Virginia.

[11] Athanas P. M., Peterson J. B., "High-Speed 2-D Convolution with a Custom

Computing Machine", The Bradley Department of Electrical Engineering, Vir-

ginia Polytechnic Institute and State University, Blacksburg, Virginia.

[12] Baeza-Yates R. A., "Improved string searching", Software Practice and Expe-

rience, 19(3), pp 257-271,1989.

[13] Baeza-Yates R. A., Rgnier M., "Fast Algorithms for Two Dimensional and Mul-

tiple Pattern Matching (Preliminary Version) ", Proceedings of the 2nd Scan-

185

dinavian Workshop on Algorithm Theory, (SWAT '90), Norway, pp 332-347,

1990.

[14] Baeza-Yates R. A., "Similarity in Two-Dimensional Strings", Proceedings

of the Computing and Combinatorics Fourth International Conference, (CO-

COON 1998), pp 319-328,1998.

[15] Baeza-Yates R. A., Navarro G., "A Faster Algorithm for Approximate String

Matching", Proceedings of Seventh Annual Symposium on Combinatorial Pat-

tern Matching 1996, (CPM '96), pp 1-23,1996.

[16] Baeza-Yates R. A., Navarro G., "A Fast Heuristic for Approximate String

Matching", Proceedings of 3 ''d South American Workshop on String Processing

(WSP'96), Brazil, (WSP '96). pp 47-63,1996.

[17] Baeza-Yates R. A., Gonnet G. H., "Fast String Matching with Mismatches",

Information and Computation, 108(2), pp 187-199,1994.

[18) Baeza-Yates R. A., Gonnet G. H., "A New Approach to Text Searching", Coln-

munications of the ACM, 35(10), pp 74-82,1992.

[19] Baeza-Yates R. A., Choffrut C., Gonnet G. H., "On Boyer-Moore Automata",

Algorithmica, 12(4/5), pp 268-292,1994.

[20] Baeza-Yates R. A., "A Unified View to String Matching Algorithms", Proceed-

186

ings of the 23rd Seminar on Current Trends in Theory and Practice of Infor-

matics (SOFSEM '96), Czech Republic, pp 1-15,1996.

[21] Baeza-Yates R. A., "Searching the Web: Challenges and Partial Solutions",

Proceedings of String Processing and Information Retrieval, (SPIRE '98), Bo-

livia, pp 23-31,1998.

[22] Baeza-Yates R. A., "Improved String Searching", Software, Practice and Expo-

rience, 19(3), pp 257-271,1989.

[23] Baeza-Yates R. A., Regnier M., "Average Running Time of the Boyer-Moore-

Horspool Algorithm", Theoretical Computer Science, (TCS), 92(1), pp 19-31,

1992.

[24] Baeza-Yates R. A., "Text-Retrieval: Theory and Practice", Proceedings of the

International Federation for Information Processing Congress, Spain, Vol. 1, pp

465-476,1992.

[25] Baeza-Yates R. A., Gonnet G. H., "Fast Text Searching for Regular Expressions

or Automaton Searching on Tries", Journal of the ACM, 43(6), pp 915-936,

1996.

[26] Baeza-Yates R. A., "Space-time trade-offs in text retrieval") Proceedings of 1'c

South American Workshop on String Processing, (WSP '93), Brazil, pp 15-21,

1993.

187

[27] Baker T. P., "A Technique for Extending Rapid Exact-Match String Matching

to Arrays of More Than One Dimension", SIAM Journal of Computing, 7(4),

pp 533-541,1978.

[28) Barbosa E. F., Navarro G., Baeza-Yates R. A., Perleberg C. H., Ziviani N.,

"Optimized Binary Search and Text Retrieval", Proceedings of the 3rd Annual

European Symposium on Algorithms, (ESA '95), Greece, pp 311-326,1995.

[29] Bell T. C., Cleary J. G., Witten I. H., "Text compression", Prentice-Hall, 1990.

[30] Bell T. C., Kulp D., "Longest-match String Searching for Ziv-Lempel Compres-

sion", Software, Practice and Experience, 23(7), pp 757-771,1993.

[31] Berry T., Ravindran S., "A fast string matching algorithm and experimental

results", Proceeding of the Prague Stringology Club Workshop, (PSCW '99),

Czech Republic, pp 16-28,1999.

[321 Berry T., Ravindran S., "String matching in a compressed DNA text", Proceed-

ings of the Australian Workshop on Combinatorial Algorithms, (AWOCA '99),

Australia, pp 53-62,1999.

[33] Berry T., Keller S., Ravindran S., "Searching in an Efficiently Stored DNA

Text using a Hardware Solution", Proceeding of the Prague Stringology Con-

ference '01, (PSC '01), Czech Republic, pp 1-13,2001.

188

[34] Berry T., Ravindran S., "A Linear Time String Matching Algorithm on Aver-

age with Efficient Text Storage ", Proceeding of the Prague Stringology Confer-

ence '01, (PSC '01), Czech Republic, pp 14-25,2001.

[351 Bird R. S., "Two Dimensional Pattern Matching", Information Processing Let-

ters, 6(5), pp 168-170,1977.

[36] Boyer R. S., Moore J. S., "A fast string searching algorithm", Communications

of the ACM, 23(5), pp 1075-1091,1977.

[37] The Calgary Corpus available at:

ftp: //ftp. cpsc. uCalgarY. Ca/PUb/PrOieCtS/text compression. corpus!

[38] Charras C., Lecroq T., 1997, Exact string matching, available at:

http: //www-igm. univ-mlv. fr/-lecroq/string. ps

[39) Charras C., Lecroq T., 1998, Exact string matching animation in JAVA avail-

able at:

http: //www-igm. univ-mlv. fr/-lecroq/string/

[40] Lecroq T., Charras C., "Exact string matching animation in JAVA ", Proceed-

ings of the Prague Stringology Club Workshop, (PSCW '98), Czech Republic,

pp 36-43,1998.

[41] Charras C., Lecroq T., Pehoushek J. D., "A Very Fast String Matching Algo-

189

rithm for Small Alphabeths and Long Patterns (Extended Abstract)", Proceed-

ing of the Ninth Annual Conference on Combinatorial Pattern Matching, (CPM

'98), USA, pp 55-64,1998.

[42] Cypher R., Plaxton C. G., "Deterministic sorting in nearly logarithmic time on

the hypercube and related computers", Proceedings of the 22nd ACM Symposium

on the Theory of Computing, (STOC '99), pp 193-203,1990.

[43] Collins English Dictionary, 3'" edition.

[44] Colussi L., "Correctness and efficiency of the pattern matching algorithms",

Information Computing, 95(2), pp 225-251,1991.

[45] Colussi L., Galil Z., Giancarlo R., "On the Exact Complexity of String Match-

ing", Extended Abstract, Proceedings of the 31't IEEE Foundations of Corn-

puter Science, (FOCS '90), pp 135-144,1990.

[46] Cormen T. H., Leiserson C. E., Rivest R. L., "Introduction to Algorithms", MIT

Press, 1990.

[47] Crochemore M., Rytter W., "Text algorithms", Oxford University Press, 1994.

[48] Crochemore M., Czumaj, A., Gasieniec, L., Jarominek, S., LeCroq, T.,

Plandowki, W., Rytter, W., "Speeding up two string matching algorithms",

Algorithmica, 12(4/5), pp 247-267,1994.

190

[49) Crochemore M., Iliopoulos C. S., Korda M., "Two-Dimensional Prefix String

Matching and Covering on Square Matrices", Algorithmica, 20(4), pp 353-373,

1998

[50] Crochemore M., Gasieniec L., Plandowski W., Rytter W., "Two-Dimensional

Pattern Matching in Linear Time and Small Space", Proceedings of the 12th

Symposium on Theoretical Aspects of Computer Science 1995, (STACS '95),

Germany, pp 181-192,1995.

[51] Crochemore M., Vrin R., "On Compact Directed Acyclic Word Graphs", Struc-

tures in Logic and Computer Science, pp 192-211,1997.

[52] Crochemore M., Lecroq T., "Tight Bounds on the Complexity of the Apostolico-

Giancarlo Algorithm", Information Processing Letters, 63(4), pp 195-203,1997.

[531 Czumaj A., Galil Z., Gasieniec L., Park K., Plandowski W., "Work-Time-

Optimal Parallel Algorithms for String Problems", 27th Annual ACM Sympo-

sium on Theory of Computing, (STOC '95), USA, pp 713-722,1995.

[54] Czumaj A., Ferrgina P., Gasieniec L., Muthukrishnan S., Traff J. L., "The

Architecture of a Software Library for String Processing", Proceedings of the

Workshop on Algorithm Engineering, (WAE '97), Italy, pp 166-176,1997.

[55] Dermouche A., "A Fast Algorithm for String Matching with Mismatches", In-

formation Processing Letters, 55(2), pp 105-110,1995.

191

[56] Diese W., Hellman M. E., "New directions in cryptography", IEEE transactions

on information theory, 22(6), pp 644-653,1976.

[57] Entrez database available at: http : //www. ncbi. nlm. nih. gov/Entrez/

[58) Farach M., Thorup M., "String Matching in Lempel-Ziv Compressed Strings",

Algorithmica, 20(4), pp 388-404,1998.

[59] Friedrich R., Ottmann T., Schuierer S., "Two-Dimensional String Matching

for Non-Rectangular Patterns ", Journal of Computing and Information, 1(1),

Special Issue: Proceedings of the 611 International Conference on Computing

and Information, 'Trent University, pp. 247-262,1994.

[60] Galil Z., Giancarlo R., "On the Exact Complexity of String Matching: Upper

Bounds", SIAM Journal of Computing, 21, pp 407-437,1992.

[611 Galil Z., Park K., "Truly Alphabet-Independent Two-Dimensional Pattern

Matching", Proceedings of the 33rd Symposium on Foundations of Computer

Science 1992, (FOCS '92), pp 247-256,1992.

[62] Galil Z., "On Improving the Worse Case Running Time of the Boyer-Moore

String Matching Algorithm", Communications of the ACM, 22(9), pp 505-508,

1979.

192

[63] Galil Z., "Open problems in stringology", NATO ASI series - Combinatorial

algorithms on words, Volume F12,1985.

[641 Garey M. R., Johnson D. S., Freeman W. H., "Computers and Intractability:

A Guide to the Theory of NP-Completeness", 1979.

[65] Gasieniec L., Rytter W., "Almost Optimal Fully LZW-Compressed Pattern

Matching", Proceedings of the Data Compression Conference, (DCC '99), USA,

pp 316-325,1999.

[66] Gasieniec L., Karpinski M., Plandowski W., Rytter W., "Efficient Algorithms

for Lempel-Zip Encoding (Extended Abstract) ", Proceedings of the Fifth Scan-

dinavian Workshop on Algorithm Theory, (SWAT '96), Iceland, pp 392-403,

1996

[67] Gasieniec L., Gibbons A., Rytter W., "Efficiency of Fast Parallel Pattern

Searching in Highly Compressed Texts", Proceedings of the The 24th Interna-

tional Symposium on Mathematical Foundations of Computer Science, (MFCS

'99), Poland, pp 48-58,1999.

[68] Hancart C., "Analyse exacte et en moyenne d'algorithmes de recherche dun

motif dans un texte", These de doctorat de 1'Universite de Paris 7, France,

1993.

193

169) Hooker J. N., "Needed: An empirical science of algorithms", Operations Re-

search 42, pp 201-212,1994.

[701 Horspool R. N., "Practical fast searching in strings", Software Practice and

Experience, 10(6), pp 501-506,1980.

[71] Horspool R. N., "Improving LZW", Proceedings of the Data Compression Con-

ference, (DCC'91), USA, pp 332-341,1991.

[72] Howard P. G., Vitter J. S., "Parallel Lossless Image Compression Using Huf

man and Arithmetic Coding", Information Processing Letters, 59, pp 65-73,

1996.

[73] Huffman D. A., "A method for the construction of minimum redundancy codes",

Proceedings of the Institute of Radio Engineers, 40, pp 1098-1101,1951.

[74] Hume A., Sunday D., "Fast String Searching", Software, Practice and Experi-

ence, 21(11), pp 1221-1248,1991.

[75] Idury R. M., Schffer A. A., "Multiple Matching of Rectangular Patterns", In-

formation and Computation, 117(1), pp 78-90,1995.

[76] "IEEE Standard VHDL Language Reference Manual", The Institute of Electri-

cal and Electronics Engineers, Inc. 1987.

194

[77) Johnson D. S., "A Theoretician's Guide to the Experimental Analysis of Algo-

rithms, available at:

http: //www. research. att. com/-dsj/papers/exper. ps

[78) Krkkinen J., Ukkonen E., "Lempel-Ziv parsing and sublinear-size index struc-

tures for string matching (extended abstract) ", Proceedings of the 3rd South

American Workshop on String Processing, (WSP '96), Brazil, pp 141-155,1996.

[79) Karmarkar N., "A new polynomial time algorithm for linear programming",

Combinatorica, Volume 4, pp 373-395,1984.

[801 Karp R. M., Rabin M. O., "Efficient randomized pattern-matching algorithms",

IBM Journal of Research and Development, 31(2), pp 249-260,1987.

[81] Kida T., Takeda M., Shinohara A., Miyazaki M., Arikawa S., "Multiple Pattern

Matching in LZW Compressed Text", Proceedings of the Data Compression

Conference, (DCC '98), USA, pp 103-112,1998.

[82] Kida T., Takeda M., Shinohara A., Arikawa S., "Shift-And Approach to Pattern

Matching in LZW Compressed Text", Proceedings of the 10th Annual Combi-

natorial Pattern Matching, (CPM '99), pp 1-13, UK, 1999.

[83] Kida T., Shibata Y., Takeda M., Shinohara A., Arikawa S., "A Unifying Frnrrae-

work for Compressed Pattern Matching", Proceedings of String Processing and

Information Retrieval, (SPIRE '99), Mexico, pp 89-96,1999.

195

[84] Knuth D. E., Morris Jr. J. H., Pratt V. R., "Fast Pattern Matching in Strings",

SIAM Journal of Computing, 6(2), pp 323-350,1977.

[85] Knuth D. E., "Dynamic Huffman coding", Journal of Algorithms, 6(2), pp 163-

180,1985.

[86] Larmore L. L., Hirschberg D. S., "A fast algorithm for optimal length-limited

codes", Journal of the ACM, 37(3), pp 464-473,1990.

[87] Lecroq T., "Experimental Results on String Matching Algorithms", Software,

Practice and Experience, 25(7), pp 727-765,1995.

[88] Lecroq T., "Experimental results on string matching over infinite alphabets",

Report LIR 97.01, Universit de Rouen, 1997.

[89) Lelewer D. A., Hirschberg D. S., "Data compression", Computing Surveys, 19(3),

pp 261-297,1987.

[90] Liu Z., Du X., Ishi N., "An improved adaptive string searching algorithm",

Software Practice and Experience, 28(2), pp 191-198,1998.

[91] Loewenstern D., Yianilos P., "Significantly lower entropy estimates for natural

DNA sequences", Journal of Computational Biology, 6(1), 1999.

[92] Mahmoud H. M., Smythe R. T., Rgnier M., "Analysis of Boyer-Moore-Horspool

196

string-matching heuristic", Random Structures and Algorithms, 10(1-2), pp

169-186,1997.

[93] Manber U., "A text compression scheme that allows fast searching directly in

the compressed file", ACM Trans. on Information Systems, 15 (2), pp 124-136,

1997.

[941 Manber U., Wu S., "An Algorithm for Approximate Membership checking with

Application to Password Security", Information Processing Letters, 50(4), pp

191-197,1994.

[95] Manber U., Smith M., Gopal B., "WebGlimpse - Combining Browsing and

Searching", Usenix '97 Annual Technical Conference, pp 195-206,1997.

[961 Matias Y., Rajpoot N., Sahinalp S. C., "Implementation and experimental eval-

cation of flexible parsing for dynamic dictionary based data compression", Pro-

ceedings of the 2"d Workshop on Algorithm Engineering, (WAE '98), Germany,

1998.

[97] Melichar B., "Approximate string matching by finite automata", Computer

Analysis of Images and Patterns, Lecture Notes in Computer Science 970, pp

342-349, Springer-Verlag, Berlin, 1995.

[98] Morse S. F. B., 1844, available at:

http: //www. morsecode. com/

197

[99] de Moura E. S., Navarro G., Ziviani N., Baeza-Yates R. A., "Fast Searching

on Compressed Text Allowing Errors", Proceedings of the 21"t Annual Interna-

tional ACM SIGIR Conference on Research and Development in Information

Retrieval 1998, (SIGIR '98), Australia, pp 298-306,1998.

[100] de Moura E. S., Navarro G., Ziviani N., Baeza-Yates R. A., "Fast and Flexi-

ble Word Searching on Compressed Text", ACM Transactions on Information

Systems (TOIS), 18(2), pp 113-139,2000.

[101] Muth R., Manber U., "Approximate Multiple Strings Search", Proceedings of

Seventh Annual Symposium on Combinatorial Pattern Matching, (CPM '96),

pp 75-86,1996.

[1021 Navarro G., Raffinot M., "A general practical approach to pattern matching over

Ziv-Lempel compressed text", Proceedings of Combinatorial Pattern Matching,

(CPM '99), Lecture Notes in Computer Science, 1645, pp 14-36,1999.

[103] Navarro G., Tarhio J., "Boyer-Moore String Matching over Ziv-Lempel Com-

pressed Text", Proceedings of the Combinatorial Pattern Matching, (CPM 'Q0),

Canada, pp 166-180,2000.

[104) Navarro G., "Improved approximate pattern matching on hypertext", Journal of

Theoretical Computer Science, 237(1-2), pp 455-463,2000.

198

[105) Nelson M., "LZW Data Compression", Dr. Dobb's Journal October, 1989 avail-

able at:

http: //www. dogma. net/markn/articles/lzw/lzw. htm

[106] Page I., Luk W., "Compiling occam into FPGAs", in FPGA, eds., Will Moore

and Wayne Luk, 271-283, Abingdon EE&CS books, 1991.

[107] Page I., "Constructing Hardware-Software Systems from a Single Description",

Oxford University Computing Laboratory.

[108) Page I., Aubury M., Randall G., Saul J., Watts R., "hcc: A Handel-C Corn-

piler", Oxford University Computing Laboratory.

[109] Raita T., "Tuning the Boyer-Moore-Horspool string searching algorithm", Soft-

ware Practice and Experience, 22(10), pp 879-884,1992.

[1101 Reingold E. M., Urban K. J., Gries D., "K-M-P String Matching Revisited",

Information Processing Letters, 64(5), pp 217-223,1997.

[111] Rivals .,
Delgrange 0., Delahaye J-P., Dauchet M., "A First Step Towards

Chromosome Analysis by Compression Algorithms", IEEE Symposium on In-

telligence in Neural and Biological Systems (INBS), 1995.

[112] Rivals ., Dauchet M., Delahaye J-P., Delgrange 0., "Compression and genetic

sequences analysis", Biochimie, vol. 78, pp 315-322,1996.

199

[113] Rivals., Delahaye J-P., Dauchet M., Delgrange 0., "A Guaranteed Compression

Scheme for Repetitive DNA Sequences", abstract in the Proceedings of the 6th

Data Compression Conference IEEE Computer Science Press, (DCC '96), 1996.

[114] Rivest R. L., "On the Worst-Case Behavior of String-Searching Algorithms",

SIAM Journal of Computing, 6(4), pp 669-674,1977.

[115] Rivest R. L., Shamir A., Adleman L., "A method for obtaining digital signatures

and public-key cryptosystems ", Communications of the ACM, 21(2), pp 120-126,

1978.

[116] Sadakane K., "An Improvement on Hash-Based Algorithms for Searching the

Longest-Match String Used in LZ77-type Data Compression", IPSJ SIG Notes,

97-AL-56,1997

[1171 Shibata Y., Kida T., Fukamachi S., Takeda M., Shinohara A., Shinohara T.,

Arikawa S., "Byte pair encoding: a text compression scheme that accelerates

pattern matching", Technical Report DOI-TR-CS-161,1999.

[118 Shibata Y., Takeda M., Shinohara A., Arikawa S., "Pattern Matching in Text

Compressed by Using Antidictionaries", Proceeding of the Combinatorial Pat-

tern Matching, (CPM '99), UK, pp 37-49,1999.

[119] Shibata Y., Matsumoto T., Takeda M., Shinohara A., Arikawa S., "A Boyer-

200

Moore Type Algorithm for Compressed Pattern Matching", Proceedings of the

Combinatorial Pattern Matching, (CPM '00), Canada, pp 181-194,2000.

[120] Schneider G. M., Bruell S. C., "Concepts in data structures and software devel-

opment", West publishing company,

[121] Practical Huffman coding by Michael Schindler at:

http: //www. compressconsult. com/huffman/

[122] Simon I., "String matching algorithms and automata", In First American Work-

shop on String Processing, Brazil, pp 151-157,1993.

[123] Simon I., "String matching algorithms and automata", In Results and Trends

in Theoretical Computer Science, Austria, Lecture Notes in Computer Science

814, pp 386-395, Springer Verlag, 1994.

[124] Smit G. de V., "A Comparison of Three String Matching Algorithms ", Software

Practice and Experience, 12(1), pp 57-66,1982.

[125 Smith P. D., "Experiments with a very fast substring search algorithm", Soft-

ware Practice and Experience 21(10), pp 1065-1074,1991.

[126] Standish T. A., "Data structure techniques", Addison Wesley, 1980.

[127) Stephen G. A., "String Searching Algorithms", World Scientific, 1994.

[128] Stifther J. J., "Theory of synchronous communications", Prentice-Hall, 1970.

201

[129] Sunday D. M., "A very fast substring search algorithm", Communications of

the ACM, 33(8), pp 132-142,1990.

[130] Takaoka T., "An On-Line Pattern Matching Algorithm", Information Process-

ing Letters, 22(6), pp 329-330,1986.

[131] Tichy W. F., "Should Computer Scientists Experiment More? ", IEEE Coin-

puter, volume 31, pp 32-40,1998.

[132] Vitter J. S., "Design and Analysis of Dynamic Huffman Codes", Journal of the

ACM, 34(4), pp 825-845,1987.

[133] Vitter J. S., "Algorithm 673 Dynamic Huffman Coding", ACM Transactions on

Mathematical Software, 15(2), pp 158-167,1989.

[134) Welch T. A., "A technique for high-performance data compression", IEEE Cotn-

puter, 17(6), pp 8-19,1984.

[135] Wu S., Manber U., "Fast Text Searching Allowing Errors", Communications of

the ACM, 35(10), pp 83-91,1992.

[136] Wu S., Manber U., "A fast algorithm for multi-pattern searching", Technical

Report TR-94-17, Department of Computer Science, University of Arizona,

1993.

202

[137] Xilinx Inc., "Spartan and SpartanXL Families of Field Programmable Gate Ar-

rays", Preliminary Product Specification, San Jose, CA, 1999.

[138] Zhu R. F., Takaoka T., "On Improving the Average Case of the Boyer-Moore

String Matching Algorithm", Journal of Information Processing, 10(3), pp 174

- 177,1987.

[139] Zhu R. F., Takaoka T., "A Technique for Two-Dimensional Pattern Matching",

Communications of the ACM, 32(9), pp 1110-1120,1989.

[140] Ziv J., Lempel A., "A Universal Algorithm for Sequential Data Compression",

IEEE Transactions on Information Theory, 23(3), pp 337-343,1977.

[141] Ziv J., Lempel A., "Compression of Individual Sequences via Variable-Rate

Coding", IEEE Transactions on Information Theory, 24(5), pp 530-536,1978.

