
Kim, JY, Lee, GM and Choi, JK

 Popularity-Based Adaptive Content Delivery Scheme with In-Network Caching

http://researchonline.ljmu.ac.uk/id/eprint/507/

Article

LJMU has developed LJMU Research Online for users to access the research output of the
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by
the individual authors and/or other copyright owners. Users may download and/or print one copy of
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or
any commercial gain.

The version presented here may differ from the published version or from the version of the record.
Please see the repository URL above for details on accessing the published version and note that
access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you
intend to cite from this work)

Kim, JY, Lee, GM and Choi, JK (2014) Popularity-Based Adaptive Content
Delivery Scheme with In-Network Caching. ETRI Jouranl, 36 (5). ISSN 1225-
6463

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk

ETRI Journal, Volume 36, Number 5, October 2014 © 2014 Jeong Yun Kim et al. 819
http://dx.doi.org/10.4218/etrij.14.0113.0090

To solve the increasing popularity of video streaming
services over the Internet, recent research activities have
addressed the locality of content delivery from a network
edge by introducing a storage module into a router. To
employ in-network caching and persistent request routing,
this paper introduces a hybrid content delivery network
(CDN) system combining novel content routers in an
underlay together with a traditional CDN server in an
overlay. This system first selects the most suitable delivery
scheme (that is, multicast or broadcast) for the content in
question and then allocates an appropriate number of
channels based on a consideration of the content’s
popularity. The proposed scheme aims to minimize traffic
volume and achieve optimal delivery cost, since the most
popular content is delivered through broadcast channels
and the least popular through multicast channels. The
performance of the adaptive scheme is clearly evaluated
and compared against both the multicast and broadcast
schemes in terms of the optimal in-network caching size
and number of unicast channels in a content router to
observe the significant impact of our proposed scheme.

Keywords: Content delivery network, in-network
caching, request routing, content popularity.

Manuscript received Sept. 23, 2013; revised Feb. 17, 2014; accepted June 27, 2014.
This research was supported by the ICT Standardization program of MISP (The Ministry of

Science, ICT & Future Planning).
Jeong Yun Kim (corresponding author, jykim@etri.re.kr) is with the Communications &

Internet Research Laboratory, ETRI, Daejeon, Rep. of Korea.
Gyu Myoung Lee (G.M.Lee@ljmu.ac.uk) is with the Liverpool John Moores University,

Liverpool, UK.
Jun Kyun Choi (jkchoi59@kaist.edu) is with the Korea Advanced Institute of Science and

Technology (KAIST), Daejeon, Rep. of Korea.

I. Introduction

In a content delivery network (CDN), a CDN server is
traditionally used to reduce traffic on the Internet backbone by
offloading traffic requests from the origin server. However,
sitting outside networks provided by Internet service providers
(ISPs), a CDN server cannot reduce traffic on the transit or
peering links that connect the ISP network with the Internet
backbone and other ISP networks [1]. As demand for content
access and delivery over the Internet increases, innovative
CDN architectures and technologies are becoming increasingly
important to efficiently cache and distribute the surging amount
of video content.

To minimize delivery latency and inter-ISP traffic, a lot of
recent researches address localized delivery of large content
volumes from a network edge by introducing a storage module
into network entities (for example, a content router) [2]–[3]. In
other words, a content router can be allowed to provide in-
network caching and localized delivery while continuing to
support its basic features such as packet forwarding and routing.
Therefore, from the viewpoint of the design of a content router,
the optimal in-network caching size should be carefully
determined to minimize the performance degradation that
results from the introduction of such a storage module.

In general, content delivery schemes can be classified into
three major types. First, a unicast scheme does not appropriate
well at a large scale and is, therefore, not discussed further in
this paper. Second, a multicast scheme allows a number of
requests for the same content to be grouped together and
served by a single multicast stream. In a batching-based
multicast scheme [4] for example, several content requests are
delayed for a period of time before finally serving the resulting
batch via a multicast stream. In a patching-based multicast

Popularity–Based Adaptive Content Delivery
Scheme with In-Network Caching

Jeong Yun Kim, Gyu Myoung Lee, and Jun Kyun Choi

820 Jeong Yun Kim et al. ETRI Journal, Volume 36, Number 5, October 2014
http://dx.doi.org/10.4218/etrij.14.0113.0090

scheme [5]–[6], a content request is first served by a unicast
stream and then joined back to a multicast stream. Third, a
broadcast scheme [7] can broadcast content on dedicated
channels at a pre-defined schedule.

Owing to the limitations of content caching and content
delivery capabilities, content routers seem very unlikely to
cache all content. However, it would be better to cache and
deliver a prefix (that is, the beginning portion of the content), if
its length is sufficiently short. In addition, prefix caching has a
number of advantages, such as a reduction of both delivery
latency to clients and traffic volume over networks [5], [8]–[9],
particularly compared to the threshold-based multicast scheme
running on a centralized server [6], [10]. Therefore, the CDN
server can only deliver the suffix — that is the remaining
portion other than the prefix — to multiple clients through a
single multicast stream.

Our previous work in [11] showed that the performance of a
patching-based multicast scheme is much better than that of
batching-based multicast schemes. However, the former
requires that content routers perform relatively complex
processing operations. This is caused by the occurrence of
changes in suffix lengths, which is due to the variation in the
arrival times of suffix requests. Thus, compared to the latter
scheme, which has a fixed suffix length, patching-based
multicast schemes need more complex operations. Based on
this context, this paper mainly focuses on patching-based
multicast and broadcast schemes.

Proxy-assisted multicast schemes [5], which combine proxy
prefix caching with multicast schemes, such as batching and
patching, are generally known as their system control is
simpler than that of broadcast schemes. Such schemes can
collect more requests for the same content because they are
served by a single multicast stream. On the other hand, proxy-
assisted broadcast schemes [7] can significantly reduce the
network resource requirements as well as service latency by
broadcasting content to dedicated multicast channels. However,
most research has focused on developing multicast schemes for
generally minimizing the aggregate network bandwidth rather
than the network bandwidth consumed by only proxy servers.
The request-routing system (RRS) used in a traditional CDN
system is used to redirect client requests to the closest surrogate
by considering network proximity to provide fast delivery [2]–
[3], [12]–[13]. This paper first presents detailed operations of a
persistent RRS that can redirect all client requests for the same
content to a particular content router once the router is chosen
from the first request. Therefore, such requests can consume
only a single multicast stream during their prefix lengths,
thereby reducing the amount of network resources used. In
addition, the persistent RRS can provide a finer granularity (for
example, content chunk level) than that of the original RRS

(for example, content file level).
With the persistent RRS and in-network caching, this paper

introduces a hybrid CDN system that combines novel content
routers in the underlay with the CDN server in the overlay. In
addition to this, the hybrid CDN system is capable of providing
adaptive content delivery. As an efficient delivery scheme is
adaptively selected according to content popularity for the
overall performance gain, the proposed popularity-based
content delivery scheme can significantly reduce delivery
latency and traffic volume over the network. Given the number
of multicast channels in the CDN server, we address the
problem of both minimizing the average number of channels
(the required capacity) at the content routers and determining
the optimal prefix length (that is, in-network caching size). We
also evaluate and compare the performance of the proposed
popularity-based adaptive scheme with other content delivery
schemes to highlight the fact that the proposed one clearly has
performance improvement against both the multicast and
broadcast schemes coupled with in-network caching.

The remainder of this paper is organized as follows. The
CDN system model is briefly presented in Section II. Section
III describes a popularity-based adaptive content delivery
technique with in-network caching. In Section IV, we evaluate
the performance of content delivery schemes under varying
conditions. The paper is concluded in Section V.

II. System Model

We illustrate the hybrid CDN system, which consists of an
origin server, a CDN server, a persistent RRS, and content
routers, in Fig. 1. A group of clients receiving content delivered
across networks from the CDN server through the content
routers are considered. The Hypertext Transfer Protocol
(HTTP) is used for describing the requested content by its
uniform resource identifier (URI) [14]. In general, the origin
server is managed by the content provider and located in the
data center. It also stores content that is distributed to both the
CDN server and content routers before such a request is made.

Fig. 1. Hybrid CDN system architecture.

Content router

CDN server Origin
server

RRS

Client

Client
Content router

In-network caching
inside content router

Selecting best
content router

Multicast
channel

Unicast
channel

Distributing
content

ETRI Journal, Volume 36, Number 5, October 2014 Jeong Yun Kim et al. 821
http://dx.doi.org/10.4218/etrij.14.0113.0090

Fig. 2. Multicast delivery scheme with in-network caching and
operation.

Content router

CDN
server

Origin
server

Prefix request

Prefix response

RRS

Client

(1) Content request

(2) Redirect content request

Suffix request

Suffix response

(3) Prefix request

(5) Prefix response

(4) Suffix request

(8) Suffix response

(6) Suffix request

(7) Suffix response

Client

Content
router

Suffix request

Suffix response

Fig. 3. Broadcast delivery scheme with in-network caching and
operation.

Content router

CDN
server

Origin
server

Prefix request

Prefix response

RRS

Client

(1) Content request

(2) Redirect content request

Suffix request

Suffix response

(3) Prefix request

(5) Prefix response
(4) Suffix request

(7) Suffix response

(6) Suffix join

Client

Content router

Suffix join

Suffix
 broadcas

t

Suffix broadcast

Thus, the ISP is aware of what both the CDN server and
content routers have cached [1], [15]. The CDN server can
deliver the requested suffixes to the clients through multicast
channels. In addition, the content router is a network element
that acts as a regular router. It can also cache and deliver the in-
network caching prefix to the client, though with a buffer of
limited size, through unicast channels.

In Figs. 2 and 3, the persistent RRS is used to locate the best
content router, for a particular client, while providing the
granularity of the content chunk level in step 1. If the request is
satisfied, then the RRS can return (in step 2) a status code, such
as HTTP 300 Multiple Choices, in its response to inform the
client of the new URIs of both the content routers and the CDN
server. Such URIs also indicate the content name and its range
— namely, the content chunk. This paper fundamentally
assumes that content can be divided into two parts: a prefix and
a suffix. The client should then simultaneously reissue its prefix
and suffix requests with two or more HTTP GETs to the
content routers and CDN server, respectively. If both can return
the requested chunk (that is, prefix and suffix), then they do so
in their response. They can indicate its success with the
appropriate status code: HTTP 206 Partial Content [14]. Along

with the status code, they include the chunk itself in their
responses.

For simplicity, we assume that the clients always request
playback from the beginning of the content and that prefixes
are always available in the content routers. The content router
can intercept client requests and deliver the prefix directly to
clients. It then contacts the CDN server to issue a request for
the suffix, and clients can, therefore, receive the remaining part
of that content by joining the suffix streams at the content
router. The content router will calculate the transmission and
reception schedules so that the time and channel for
transmitting and receiving the content are determined using the
schedules [5], [8].

For efficient usage of the bandwidth, it is important to know
of a video’s popularity. There have been various studies related
to video popularity. In [16], video popularity was reported to
follow a Zipf distribution with skew factor 0.271; that is, 80%
of the user’s demand is for about 20% of the most popular
videos and 20% of the user’s demand is for the remaining 80%
of the most popular videos. This fact helps with the design of
the efficient delivery schemes, whereby we use a broadcast
scheme for popular content and a multicast scheme for less
popular content. In this sense, we assume that content
popularity follows the Zipf distribution. Furthermore, we
assume that information about the popularity of content is
available by means of statistics and expectation.

In addition, previous studies exploring the distribution of
multimedia files in CDNs used Zipf distributions to
characterize the popularity of the different contents [5], [16].
Although the popularity of content does not exactly fit the Zipf
distribution, many researchers still adopt the Zipf approach to
model popularity in CDNs. With the aforementioned
assumption, the costs in Fig. 4 are deduced by using (9) and (15).

We assume that costs associated with content routers are
mainly linked to the delivery, rather than the caching, of
content — a fact reflected by the trend in ever-decreasing
storage costs. We also consider that there are enough channels
in the CDN system so that the probability of running out of

Fig. 4. Example of a fast broadcast (FB) scheme when partition
function f(ni) and number of server channels (Ki = 6) are
given.

F(3) F(3) F(3) F(3) F(3) F(3)
F(4)

F(8)

F(5)

F(9)

F(4)

F(10)

F(5)

F(11)

F(4)

F(8)

F(5)

F(9)

F(2) F(2) F(2) F(2) F(2) F(2)
F(1) F(1) F(1) F(1) F(1) F(1)

F(6) F(7) F(6) F(7) F(6) F(7)

F(1)

F(1) F(2) F(3) F(4) F(5) F(6) F(7) F(8) F(9) F(10) F(11)

F(1) F(1) F(1) F(1)

F(2) F(2) F(2) F(2) F(2)

F(3) F(3) F(3) F(3) F(3)

F(4) F(5) F(4) F(5) F(4)

F(6) F(7) F(6) F(7) F(6)

F(8) F(9) F(10) F(11) F(8)

Server channel 1

Server channel 2

Server channel 3

Server channel 4

Server channel 5

Server channel 6

Video content

L

822 Jeong Yun Kim et al. ETRI Journal, Volume 36, Number 5, October 2014
http://dx.doi.org/10.4218/etrij.14.0113.0090

such channels can be neglected. Some system parameters are
identified from [17]–[19] as follows. We use Nv to denote the
number of content types in the system and S as the total
number of content routers. The available number of multicast
channels in the CDN server is denoted by Nc, and Li is the
length (in minutes) of the ith content, where 1 i Nv. Each
request for content i arrives at content router s (1 s S)
according to a Poisson process with a rate of i, s requests/min.
The aggregate requests for content i and the overall external
request rate are given, respectively, by

1 ,
S
si i s (1)

and 1 .vN
i i (2)

III. Efficient Content Delivery Scheme with In-
Network Caching

1. Multicast Scheme with In-Network Caching

In the multicast scheme coupled with in-network caching, as
shown in Fig. 2, let Wi be the prefix length for content i, which
also corresponds to the patching window for in-network
caching in content routers [5]. Suffixes (of length Li) of content
are stored and delivered from the CDN server by means of
multicast channels, while prefixes (of length Wi) stored in
content servers are delivered to clients through unicast streams.

When the first request arrives in the content router in steps 3
and 4, a patching window will be started for time interval Wi.
The requests for the same content that arrive within the
window will form a group, and then a single multicast from the
CDN server is initiated by the first request and carried out to all
clients in the group. Furthermore, since the range of the suffix
always includes that of the prefix, the content router relays the
suffix request to the CDN server in step 6, whereas in response
to step 3, it issues the prefix response to the client with an
HTTP 204 No Content. With an HTTP 200 OK, the CDN
server immediately begins transmitting the suffix to the content
router in step 7, where a copy of the suffix is transmitted to
clients with an HTTP 200 in step 8.

For the following requests that arrive later than the first
request, the clients can obtain the missing initial portion
through a patching stream with an HTTP 206 in step 5. At the
same time, they will obtain the rest of the content by tuning to
an ongoing multicast stream with an HTTP 206 in step 8. Once
clients start to receive the content from a multicast channel, a
patching stream will be released after receiving the missing
part that the CDN server cannot transmit to the client. The
patching stream is, therefore, “transient” in nature and of a
short duration. For requests for the same content within the

window, the content router repeatedly copies the suffix in
proportion to the number of requests and then transmits it to the
clients [14].

For the first request that arrives after the end of the patching
window, it initiates a new window whereby the same
operations should be repeated. Therefore, the average interval
between successive multicast streams is given by Wi + 1/i.
The required number of multicast channels for the ith content is
given by

, 1
1/
i

i v
i i

L
M i N

W

. (3)

Since the expected prefix length of the patching stream is
Wi /2, the total average number of channels allocated to the
content routers is given by

1

1

2
vN

iM i iU W . (4)

The problem of minimizing the total average number of

channels allocated to the content routers is solved by

determining the optimal value of Wi, subject to the constraint

1
vN

i i cM N . Since Li is the length of content i, we always

have Li Wi 0, and then Mi 0 from (3). Given positive

constants, the following optimization problem is formulated:

1

1

1
(1) min ,

2

subject to , 0, 1 .

v

v

N

i ii

N

i c i vi

P W

M N M i N

 (5)

The optimization problem (P1) has a unique optimal solution
that can be obtained analytically. It follows from (3) that

1
, 1i

i v
i i

L
W i N

M
 . (6)

By substituting (5) for (6), the problem (P1) can be rewritten as

1

1

1
(2) min (),

2

subject to , 0, 1 .

v

v

N i i

i
i i

N

i c i vi

L
P

M

M N M i N

 (7)

When the Karush–Kuhn–Tucker (KKT) condition of (P2) is
given, we can solve the optimal prefix length by setting
(P2)/Mi = 0 and using the Lagrangian multipliers with
respect to the equality constraint and inequality constraints. In
our system model, we derived the optimal prefix length in (8)
that minimizes the average number of channels allocated to the
content routers for each content i from (P2). The optimal prefix
length, which indicates the in-network caching size in the
content routers, is given by

1 1vN
ki i k k

i
i c i

L L
W

N

. (8)

ETRI Journal, Volume 36, Number 5, October 2014 Jeong Yun Kim et al. 823
http://dx.doi.org/10.4218/etrij.14.0113.0090

From (3), we find that there is a trade-off between the prefix
length and the number of multicast channels because having
longer prefixes reduces the necessary number of multicast
channels of the CDN server but increases the number of
unicast channels of the content router. By combining (4) and
(8), when in-network caching size Wi is cached in the content
routers, the total average number of channels allocated to the
content routers for content i is given by

1
1

1
.

2 2

v

v

N
ki i k kN

iM
c

L L
U

N

(9)

2. Broadcast Scheme with In-Network Caching

Broadcast schemes, in general, are wasteful when the arrival
rate is not high enough, since a broadcast channel is scheduled
independent of any user request and dedicated to a video
content [7], [20]–[21]. On the other hand, a broadcast scheme
coupled with in-network caching, as shown in Fig. 3, not only
significantly reduces the CDN server and network resource
requirements but is also capable of immediately providing
service to a large number of clients by taking advantage of in-
network caching available at the content routers.

Before initiating the requests to the content routers, the CDN
server periodically broadcasts video content to the content
routers through a number of dedicated broadcast channels, as
shown in Fig. 3. When the first request arrives in the content
router in steps 3 and 4, it immediately joins an appropriate
broadcast channel without waiting for the beginning of the next
broadcast period in step 6. With an HTTP 206 OK, the content
router immediately begins transmitting a copy of the suffix to
the client (step 7). At the same time, the content router sends a
response including the missing prefix of the video content with
an HTTP 206 to the client (step 5).

For the subsequent requests, the same operations should be
repeated as such. Once clients start to consume the content
from a broadcast channel, a patching stream will be released
and the client keeps playing the remaining part from the
broadcast channel.

FB is chosen to broadcast the video content in the system
model because of the simplicity of the control system among
broadcast schemes. The FB model [7], [21] has been
introduced to address the scalability issue of video content
delivery. The scheme makes the server I/O bandwidth usage
independent of the number of clients at the expense of a
bounded user waiting time.

The partition function f(ni), used to partition the video
content into some segments, represents the relative length of
each segment for content i. The FB divides the video content
into a geometrical series of (1, 2, 4, … , 2ni–1), where ni is the

number of broadcast channels for content i at the CDN server
[7], [20]. We assume that the network bandwidth on the client
side is only sufficient to support two channels at the same time.
It is the same condition in the case of the multicast scheme. To
satisfy this condition, the partition function f (ni) of an FB is
slightly modified by

1 1, 2, 3,

() 2 4, 5,

2 (2) 5.

i

i i

i i

n

f n n

f n n

 (10)

An example of an FB scheme is shown in Fig. 4, where
partition function f(ni) and number of server channels (Ki = 6)
are given. Channel 1 broadcasts the first segment F(1)
periodically, Channels 2 and 3 periodically broadcast segments
F(2) and F(3), respectively. Channels 4 and 5 periodically
broadcast the next two segments; that is, F(4), F(5) and F(6),
F(7), respectively. Channel 6 periodically broadcasts the next
four segments; that is, F(8), F(9), F(10), and F(11). The length
of each segment is Fi for content i.

By adding two initial segments, a client can join only one
broadcast channel while receiving the patching stream from the
content router. For simplicity of exposition, we define the
summation of the partition function h(ni) when the number of
the server channel is Ki for content i.

1
(4)/ 2

(5)/ 2

1 1,

2 2,

() () 3 3,

(2 6) 1 3, mod 2 0,

(2 8) 1 3, mod 2 1.

i

i

i

i

i

i
K

i i in
n

i i

n
i i

n

n

h n f n n

n n

n n

 (11)
Consider video content whose length is Li. Given the

partition function f(ni), suppose the number of broadcast
channels at the CDN server Ki is dedicated to broadcast video
content i and let Fi denote the length of the first broadcast
segment at the content routers. From the definition of the
partition function, we then have

1 () ().i

i

K
ni i i i iL F f n F h n

 (12)

By setting the first segment of the suffix broadcast equal in
size to the prefix length, the bandwidth usage on the long-haul
path can be substantially reduced [7], [20]. From (12), we can
see that there is a trade-off between the number of broadcast
channels and the length of the first segment (that is, in-network
caching size), since a smaller number of dedicated CDN server
channels, Ki, will result in a larger first broadcast segment, Fi.

To minimize the average number of channels allocated to
content routers, the length of first segment (that is, in-network
caching size) should be minimized. This leads to the following

824 Jeong Yun Kim et al. ETRI Journal, Volume 36, Number 5, October 2014
http://dx.doi.org/10.4218/etrij.14.0113.0090

optimization problem:

1

1

1
(3) min ,

2

subject to , 0, 1 .

v

v

N

B i ii

N

i c i vi

P U F

K N K i N

 (13)

Using the trade-off between the first segment length, Fi, and
the number of CDN server channels, Ki, (P3) is rewritten by

1

1

1 1
(4) min ,

2 ()

subject to , 0, 1 .

v

v

N

B i ii
i

N

i c i vi

P U L
h K

K N K i N

When the KKT condition of (P4) is given, we can solve the
optimal caching size Fi by setting (P4)/Fi = 0 and using the
Lagrangian multipliers with respect to the equality constraint.
One of these channels transmits only the first segment of the
video content. The other channels transmit the remaining
segments through their dedicated broadcast channels. The
number of concurrent accesses to a CDN server is limited by
the number of supportable multicast streams, Ki.

From (P4), the number of dedicated channels of the CDN
server that minimize the length of the first segment is then
given by

/ 2
1/

2

1

2
2 log [()] .

c

v

v

N
N

i i N
i i

K

 (14)

By combining (12) and (13), when in-network caching size
Fi is cached on the content routers, the total average number of
channels allocated to the content routers for content i is given
by (15) and depends on the number of CDN server channels.

1

(4)/2

(5)/ 2

1
 1,

2
1

 2,
2 2
1

 3,
2 3
1

 3, mod 2 0,
2 (2 6) 1

1
 3, mod 2 1.

2 (2 8) 1

v

i

i

i i i

i i
i

N i i
B ii

i i
i iK

i i
i iK

L K

L
K

L
U K

L
K K

L
K K

 (15)

3. Adaptive Scheme Based on Content Popularity

For efficient content delivery, it is important to know the
popularity of the content in question. We assume that content,
ranked according to popularity, can be divided into two groups;
the content having mean arrival rates 1, 2, … , Nv,
respectively, where Nv denotes the rank index of popularity.

Since a broadcast scheme is scheduled independent of any

Fig. 5. Selection algorithm for determining the most suitable
delivery scheme.

Given number of server channels, Nc and number of content types, Nv

Determine number of channels and types allocated to broadcast, l and k

for all content request i do

if cost of broadcast, UB < cost of multicast, UM then

k = k + 1

end if

end for

for all content request i k do

l = l + Ki

end while

Determine number of channels and types allocated to multicast, Nc – l and Nv – k

Content 0 i k with number of channels l belong to Broadcast

Content k+1 i Nv with number of channels Nc – l belong to Multicast

user request, the most popular content is likely to be
transmitted through periodic broadcasting. On the other hand,
the least popular content is, preferably, transmitted through
multicasting because a multicast scheme will be scheduled
only when the content is requested [21]. Therefore, the
broadcasting of each video content demands one or more
channels dedicated to it, while the video content delivered
through multicasting usually share a pool of channels of the
CDN server.

Owing to the skewed popularity, even among the most
popular video content, a CDN system needs to be designed for
carefully selecting an appropriate content delivery scheme and
intelligently allocating resources between the content routers
and CDN server. To account for the skewed popularity, we
propose an efficient content delivery technique, called a
popularity-based adaptive content delivery scheme, that selects
either a broadcast scheme or a multicast scheme by considering
content’s popularity. The proposed adaptive content delivery
scheme broadcasts the most popular content using the
broadcast scheme, while delivering the least most popular
content using the multicast scheme.

Given the total number of available channels (the capacity)
of the CDN server, distributing them for individual
broadcasting and the multicasting pool so as to achieve the
optimal content delivery cost is a nonlinear optimization
problem. The popularity-based adaptive scheme aims to
minimize the average total number of unicast channels and the
average caching size of the content routers, using dynamic
programming, for a group of video content with highly skewed
popularity. Depending on the relative popularity of the content,
the adaptive content delivery scheme selects the most suitable
delivery scheme for all content, and then it allocates the
appropriate number of channels to each.

By taking advantage of the selection algorithm for
determining the most suitable delivery scheme (see Fig. 5), the
proposed adaptive scheme classifies the Nv pieces of content

ETRI Journal, Volume 36, Number 5, October 2014 Jeong Yun Kim et al. 825
http://dx.doi.org/10.4218/etrij.14.0113.0090

into two groups according to their popularity; namely, the most
popular content (0 k Nv) and the least popular content
(Nv – k). The former group is assigned 0 l Nc channels for
fast broadcasting, and the latter group is assigned the remaining
Nc – l channels for multicasting. Note that one of these groups
will not exist if k = 0, Nv.

Once the specific values of k and l are calculated using the
selection algorithm, the number of broadcast channels and
multicast channels are determined by replacing Nv and Nc with
k and l in (9) and (14). By applying either a multicast scheme
or a broadcast scheme in consideration of content popularity,
the minimum average number of channels of the content
routers for the proposed adaptive scheme can then be achieved
using the following dynamic programming formulation (P5):

1

1 10
0

1 1

1
(5) min 1 ,

2 () 2

subject to , , 0, 0, 1 .

v

v

v

c

v

N

i i j jk N j ki i

i i kk N
i cl N

k N

i i c i i vi i k

L LL
P

h K N l

K l M N l K M i N

 (16)

IV. Performance Analysis

In this section, we evaluate the performance of the proposed
content delivery scheme, comparing to a multicast and a
broadcast scheme with in-network caching. As many
researchers [3], [22] have only showed performance gains over
the core network for the introduction of content routers with in-
network caching and different delivery schemes, we focus on
performance from the perspective of in-network caching size,
the number of streaming channels of content routers, and the
number of streaming channels of the CDN server.

The performance analysis is based on the following system
parameters: s = 10, Nv = 200, Nc = 800 to 1,000, Li = 90 min,
 = 500 requests/min, and 1 1

1/ (1/)vN
ji i j

requests/min for i = 1, 2, … , Nv. The relative popularity of the
content follows a Zipf distribution with a skew factor of
 = 0.271. The above system parameters are still effective
unless noted otherwise. Without loss of generality, let i > j
for 1 i < j Nv; that is, content popularity decreases in
accordance with the index. Here, the rank indexes 1 and Nv
denote the most- and least-popular, respectively. The ranking
index of content popularity 1 i Nv indicating the popularity,
is used on the x-axis instead of the arrival rate, i, since it can
help to clearly understand the different in-network caching size
on the y-axis. The values on the x-axis in the following figures
indicate the ranking index of the content popularity,
corresponding to arrival rate i in Figs. 6–8.

Figure 6 compares the optimal average in-network caching

Fig. 6. Average in-network caching size inside content routers via
a multicast scheme for different number of CDN server
channels.

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

Popularity (i)

800 channels
900 channels
1,000 channels

A
ve

ra
ge

 in
-n

et
w

or
k

ca
ch

in
g

si
ze

 [
W

i (
m

in
)]

Fig. 7. Average in-network caching size inside content routers via
a broadcast scheme for different number of CDN server
channels.

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

45

Popularity (i)

800 channels
900 channels
1,000 channels

A
ve

ra
ge

 in
-n

et
w

or
k

ca
ch

in
g

si
ze

 [
W

i (
m

in
)]

size of a multicast scheme for different numbers of CDN server
channels (Nc = 800, 900, and 1,000), leading to a minimization
of the number of unicast patching channels allocated to content
routers. The number of CDN server channels is chosen within
the range of the aforementioned Nc values to clearly
differentiate the performance of multicast and broadcast
schemes, since the latter always outperforms the former when
Nc is larger than 1,100. As the content popularity decreases, a
larger caching size is gradually needed. The caching size
changes from 5 (min) to 33 (min) for different numbers of
CDN server channels at arrival rate = 500 (requests/min).
With delivering the caching portion of the least popular content
from content routers, the required capacity of the CDN server
for the least popular content is reduced. The gain can, therefore,

826 Jeong Yun Kim et al. ETRI Journal, Volume 36, Number 5, October 2014
http://dx.doi.org/10.4218/etrij.14.0113.0090

Fig. 8. Average in-network caching size inside content routers via
the popularity-based adaptive content delivery scheme for
different number of CDN server channels.

800 channels
900 channels
1,000 channels

A
ve

ra
ge

 in
-n

et
w

or
k

ca
ch

in
g

si
ze

 [
W

i (
m

in
)]

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

Popularity (i)

be used to deliver the more popular content. On the other hand,
the caching portion of the most popular content decreases as
the number of CDN server channels increases. From the above
observation, we identify that a trade-off exists between the
capacity of the content router and the CDN server.

Figure 7 shows the optimal average in-network caching size
of a broadcast scheme for different numbers of CDN server
channels, minimizing the number of unicast patching channels
allocated to content routers. Similar to a multicast scheme, the
caching size increased in step-up style. The caching size
changes from 1 (min) to 45 (min) for different numbers of
CDN server channels at arrival rate = 500 (requests/min).
Compared to a multicast scheme, the caching size is smaller for
content of high popularity but is larger for content of low
popularity. The largest occurring caching size, Fi = 45 (min),
was equal to half of its content’s playback time. The storage
capacity of content routers is mainly occupied by the least
popular content.

Figure 8 illustrates the optimal average in-network caching
size of the popularity-based adaptive content delivery scheme
for different numbers of CDN server channels, minimizing the
number of unicast patching channels allocated to content
routers. We observe that the proposed adaptive scheme requires
a total average storage of 3,158 (min), whereas the multicast
scheme requires 3,939 (min) and the broadcast scheme
requires 3,265 (min) for all content when the number of CDN
server channels is 1,000. The proposed adaptive scheme
improves the required storage capacity of the content routers
compared to the multicast and broadcast schemes by about
19% and 3%, respectively. From Fig. 5 and (16), the proposed
adaptive scheme switches over from a broadcast scheme to a
multicast scheme when popularity rank index i is between 154

Fig. 9. Comparison of the average number of unicast patching
channels for different numbers of CDN server channels.

800 850 900 950 1,000 1,050 1,100

Number of CDN server channels (Nc)

4,500

4,000

3,500

3,000

2,500

2,000

1,000To
ta

l a
ve

ra
ge

 n
um

be
r

of
 u

ni
ca

st
 p

at
ch

in
g

ch
an

ne
ls

 (
U

)

Multicast scheme
Broadcast scheme
Proposed adapative scheme

Fig. 10. Average in-network caching size inside content routers
via a multicast scheme for different number of CDN
server channels.

800 850 900 950 1,000 1,050 1,100

Number of CDN server channels (Nc)

4,500

4,000

3,500

3,000

2,500

2,000

1,000

To
ta

l a
ve

ra
ge

 in
-n

et
w

or
k

ca
ch

in
g

si
ze

 (
m

in
)

Multicast scheme
Broadcast scheme
Proposed adapative scheme

and 200. We can, therefore, achieve the optimal in-network
caching size when applying the proposed adaptive scheme
since the caching size of the broadcast scheme suddenly
increases from popularity index rank 154, compared to that of
the multicast scheme.

The performance of the proposed scheme is compared for all
content in terms of the average numbers of channels allocated
to the content routers, as shown in Fig. 9. The proposed
adaptive scheme requires an average of 2,236 channels at the
content routers, whereas the multicast and broadcast schemes
require 3,522 and 2,270 channels, respectively. By applying the
proposed adaptive scheme, we can reduce the required number
of channels compared to the other schemes by up to 36%.

Figure 10 illustrates a comparison of the average total in-
network caching size allocated to the content routers for

ETRI Journal, Volume 36, Number 5, October 2014 Jeong Yun Kim et al. 827
http://dx.doi.org/10.4218/etrij.14.0113.0090

Fig. 11. Fraction of content delivered via broadcast channels for
different skew factor in adaptive content delivery
scheme.

800 850 900 950 1,000 1,050 1,100

Number of CDN server channels (Nc)

100

95

90

85

80

75

70P
er

ce
nt

ag
e

of
 b

ro
ad

ca
st

 c
ha

nn
el

s
(%

)

65

Skew factor = 0.271
Skew factor = 0.221
Skew factor = 0.171

different numbers of multicast channels of the CDN server.
The average total caching size of the adaptive scheme is close
to that of the multicast scheme when the number of channels of
the CDN server is the smallest; that is, at Nc = 800. Otherwise,
when it gradually increases, we observe that the average total
caching size of the proposed adaptive scheme is almost close to
that of the broadcast scheme.

The fraction of content delivered via broadcast channels for
different skew factors in the adaptive content delivery scheme
is shown in Fig. 11. The fractions are distributed very similar to
each other, regardless of the different skew factors, when the
number of channels of the CDN server is between 800 and 900.
On the other hand, when the number is above 950, the fractions
are distributed with more and more diversity as the skew factor
increases. In particular, the fractions approach 97% when skew
factor is 0.271.

The results of the performance analysis in this section show
that the adaptive scheme considerably outperforms other
schemes by considering the content popularity, since the most
popular content is delivered through broadcast channels and
the least popular through multicast channels.

V. Conclusion

This paper proposed the popularity-based adaptive content
delivery scheme in a hybrid CDN system that takes advantage
of the traditional CDN server in the overlay and novel content
routers in the underlay, while adopting in-network caching in
the content routers. By employing the proposed scheme,
content routers can adaptively select the most suitable delivery
scheme and allocate the appropriate number of channels to
efficiently minimize both their streaming and storage capacities

for all content, depending on the relative popularity. We
showed that the proposed scheme provides a notable
performance gain against both the multicast and broadcast
schemes coupled with in-network caching in terms of the
optimal in-network caching size and number of unicast
channels in a content router.

References

[1] D.D. Vleeschauwer and D.C. Robinson, “Optimum Caching

Strategies for a Telco CDN,” Bell Labs Tech. J., vol. 16, no. 2,

Sept. 2011, pp. 115–132.

[2] K. Cho et al., “How Can an ISP Merge with a CDN?,” IEEE

Commun. Mag., vol. 49, no. 10, Oct. 2011, pp. 156–162.

[3] G. Haßlinger and F. Hartleb, “Content Delivery and Caching from

a Network Provider’s Perspective,” Comput. Netw., vol. 55, no. 8,

Dec. 2011, pp. 3991–4006.

[4] W.K.S. Tang et al., “Optimal Video Placement Scheme for

Batching VOD Services,” IEEE Trans. Broadcast., vol. 50, no. 1,

Mar. 2004, pp. 16–25.

[5] B. Wang et al., “Optimal Proxy Cache Allocation for Efficient

Streaming Media Distribution,” IEEE Trans. Multimedia, vol. 6,

no. 2, Apr. 2004, pp. 366–374.

[6] L. Gao and D. Towsley, “Threshold-Based Multicast for

Continuous Media Delivery,” IEEE Trans. Multimedia, vol. 3, no.

4, Dec. 2001, pp. 405–414.

[7] L. Gao, J. Kurose, and D. Towsley, “Efficient Schemes for

Broadcasting Popular Videos,” Multimedia Syst., vol. 8, no. 4,

July 2002, pp. 284–294.

[8] S.H. Gary Chan, “Operation and Cost Optimization of a

Distributed Servers Architecture for on-Demand Video Services,”

IEEE Commun. Lett., vol. 5, no. 9, Sept. 2001, pp. 384–386.

[9] Van Jacobson et al., “Networking Named Content,” Proc.

CoNEXT, Tokyo, Japan, Dec. 2011, pp. 1–12.

[10] D. Eager, M. Vemon, and J. Zahorjan, “Minimizing Bandwidth

Requirements for on-Demand Data Delivery,” IEEE Trans.

Knowl. Data Eng., vol. 13, no. 5, Sept.–Oct. 2001, pp. 742–757.

[11] J.Y. Kim, G.M. Lee, and J.K. Choi, “Efficient Multicast Schemes

Using In-Network Caching for Optimal Content Delivery,” IEEE

Commun. Lett., vol. 17, no. 5, May 2013, pp. 1048–1052.

[12] A. Barbir et al., “Known Content Network (CN) Request-Routing

Mechanisms,” RFC3568, July 2003.

[13] M. Masa and E. Parravicini, “Impact of Request Routing

Algorithms on the Delivery Performance of Content Delivery

Networks,” IEEE Int. Performance, Comput. Commun. Conf.,

Apr. 9–11, 2003, pp. 5–12.

[14] S.A. Thomas, HTTP Essentials, Hoboken, NJ: John Wiley &

Sons, 2001.

[15] I. Psaras et al., “Modelling and Evaluation of CCN-Caching

Trees,” Proc. IFIP Netw., Valencia, Spain, 2011, pp. 78–91.

828 Jeong Yun Kim et al. ETRI Journal, Volume 36, Number 5, October 2014
http://dx.doi.org/10.4218/etrij.14.0113.0090

[16] J. Choi, A.S. Reaz, and B. Mukherjee, “A Survey of User

Behavior in VoD Service and Bandwidth-Saving Multicast

Streaming Schemes,” IEEE Commun. Surveys Tutorials, vol. 14,

no. 1, 2012, pp. 156–169.

[17] G. Xue, “Server Cost Minimization in a Distributed Servers

Architecture for on-Demand Video Services,” IEEE Commun.

Lett., vol. 7, no. 9, Feb. 2003, pp. 52–54.

[18] D. Guan and G. Xiong, “Optimal Prefix Cache Allocation among

Multiple Cooperative Local Proxies,” Int. Conf. Wireless

Commun. Netw. Mobile Comput., Beijing, China, Sept. 24–26,

2009, pp. 1–4.

[19] L. Dong et al., “Performance Evaluation of Content Based

Routing with In-Network Caching,” Wireless Opt. Commun.

Conf., Newark, NJ, USA, Apr. 15–16, 2011, pp. 1–6.

[20] L. Gao, Z.–L. Zhang, and D. Towsley, “Proxy-Assisted

Techniques for Delivering Continuous Multimedia Streams,”

IEEE/ACM Trans. Netw., vol. 11, no. 6, Dec. 2003, pp. 884–894.

[21] S.A. Azad and M. Murshed, “An Efficient Transmission Scheme

for Minimizing User Waiting Time in Video-on-Demand

Systems,” IEEE Commun. Lett., vol. 11, no. 3, Mar. 2007, pp.

285–287.

[22] Y. Kim and I. Yeom, “Performance Analysis of In-Network

Caching for Content-Centric Networking,” Comput. Netw., vol.

57, no. 3, Sept. 2013, pp. 2465–2482.

Jeong Yun Kim received his BS and MS

degrees in electronic engineering from Inha

University, Incheon, Rep. of Korea, in 1990 and

1992, respectively and received his PhD degree

in information and communication engineering

from the Korea Advanced Institute of Science

and Technology, Daejeon, Rep. of Korea, in

2014. Since 1992, he has been with the Electronics and

Telecommunications Research Institute, Daejeon, Rep. of Korea as a

special fellow. His main research interests are Future Internet,

streaming services, and energy saving technologies including smart

grids. He has actively participated in standardization meetings

including ITU-T SG 13 (Future Networks & Cloud) as an editor and

IETF. He has contributed more than 200 proposals for standards and

published more than 50 papers in academic journals and conferences.

He is a member of the IEEE.

Gyu Myoung Lee received his BS degree in

electronic and electrical engineering from Hong

Ik University, Seoul, Rep. of Korea, in 1999 and

his MS and PhD degrees from the Korea

Advanced Institute of Science and Technology

(KAIST), Daejeon, Rep. of Korea, in 2000 and

2007. In 2007, he worked as a guest researcher

at the National Institute of Standards and Technology, Gaithersburg,

MD, USA. Later that year, he was invited to work on the research staff

at the Electronics and Telecommunications Research Institute, Daejeon,

Rep. of Korea. In 2008, he was with the Institut Mines-Telecom,

Telecom SudParis, Evry, France, as an adjunct associate professor.

Then in 2012, he continued his work as an adjunct professor at KAIST,

Daejeon, Rep. of Korea. Recently he has been employed as a Senior

Lecturer at the Liverpool John Moores University, Liverpool, UK. His

research interests include Internet of things, future networks,

multimedia services, and energy saving technologies including smart

grids. He has actively participated in standardization meetings,

including ITU-T SG 13 (Future Networks & Cloud) as a rapporteur,

oneM2M, and IETF. He has contributed more than 300 proposals for

standards and published more than 100 papers in academic journals

and conferences. He is a senior member of IEEE.

Jun Kyun Choi received his BS degree in

electronics from Seoul National University,

Seoul, Rep. of Korea, in 1982, and his MS and

PhD degrees from the Korea Advanced Institute

of Science and Technology (KAIST), Daejeon,

Rep. of Korea, in 1985 and 1988, respectively.

He worked for ETRI from 1986 to 1997 and is

currently working as a professor at KAIST.

	I. Introduction
	II. System Model
	III. Efficient Content Delivery Scheme with In-Network Caching
	IV. Performance Analysis
	V. Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

