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Abstract 

This thesis presents a novel combination of fluid and mechanism models to simulate and 
optimise the motion of an open topped fluid filled container within a warehouse environ- 
ment. 
Preliminary to the investigation in closed or weakly coupled fluid-structure systems a com- 

putational fluid dynamics code has been further developed to model and simulate the 

behaviour of liquid within an open topped container, driven by a time dependent acceler- 

ation profile. 
In parallel to the study of the model of the comprehensive system, an optimal control 

algorithm, namely sequential quadratic programming, has been analysed and used to cal- 

culate minimal time motions of the given combination of partial- and ordinary differential 

equations. 
Furthermore, this thesis presents a set of results for the minimal time motion of an open 
topped fluid filled container with various parameter settings. Additional focus is on the se- 
lection and performance of optimisation codes in terms of applicability, speed, robustness 
and accuracy on the given problem. 
A description is given of the development of a practical experimental machine to simulate 
and actually drive a test case. This has been used to illustrate that the solutions produced 
are feasible in terms of real world implementation. Results are presented to support the 
calculated simulations and optimisations. 
These results have indicated, that the fastest possible motion is not only limited by a max- 
imum acceleration of the cube, but by a time dependent function. 
In a final, critical view on the research the used methodology and codes are analysed. This 
highlights some areas in which improvements could be made in the future. 
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Chapter 1 

Introduction 

The introduction is split into four major parts. In the first section, the background and 
driving forces which led the author to research the subject of trajectory optimisation to 

reduce sloshing in open liquid filled containers, are illustrated. In the second section the 

problem is introduced by illustrating first the real world application of the problem, sec- 

ondly necessary general simplifications and thirdly a preliminary mathematical formulation 

of the problem. In the third section the objectives and aims of this research work are given. 
For this purpose a general overall goal together with sub - aims are formulated. The fourth 

section summarises the contents of the thesis. 

1.1 Background to the research project 

In order to illustrate the background to this research project, the four major laboratories 

participating in this work are introduced and their aims and work further analysed. The first 

inspiration to the problem of optimal free surface motion within a warehouse environment 
has been initiated by the existence of an automated warehouse within the Laboratory 

of Machine Tools at the Faculty of Mechanical Engineering in the University of Applied 
Sciences and Research Munich (Fachhochschule München, FHM). Within the research work 
of this laboratory the control of rigid parts within the warehouse has been investigated. 
Additionally latest warehouse methods can be demonstrated. In general no sophisticated 
control in terms of optimal motion is used to drive these storage facilities. 

The second driving force to initiate the optimal control problem is associated with the 

1 
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work of two research groups. Both research groups, the Mechanisms Research Group in the 
School of Engineering at Liverpool John Moores University and the Laboratory of Control 
Systems and Machine Dynamics at the FHM are working on the research and development 

of optimal path and design planning of rigid mechanisms. On one hand, the group in Liver- 

pool researches the optimal design of mechanisms with the use of evolutionary algorithms 
and on the other the optimal path planning of a three degree of freedom robot using numer- 
ical optimisation algorithms is studied in Munich. Apart from these universities, numerous 
other research groups around the world are also currently working on optimal design and 
control of machines and rigid mechanisms. 

The third reason for. this research work has been fuelled by the authors interest in fluid 
dynamics, which was initiated during his time as M. Sc. student in the School of Engi- 

neering at Liverpool John Moores University. In this school sophisticated modelling and 
computation techniques for fluid flow in technical applications are investigated. 

Based on these interdisciplinary academic foundations the author started the research into 

the optimal motion of an open topped fluid filled container within a warehouse environment. 
The research work contained in this thesis has arisen from the question: "Given a fluid 

filled open topped container, what's the best method to transport the container in the 

warehouse? ", which was initially formulated by the manufacturer of the warehouse. Clearly 

the answer to this question is based on the sloshing characteristics of the fluid stimulated. 
To the knowledge of the author there is no work on the optimal transport of fluids within 

a two or three dimensional environment. Therefore it is both interesting and novel to 
investigate the optimal control of a warehouse unit transporting an open topped fluid filled 

container. 

A new approach to optimal trajectory planning has been investigated within this research. 
To generate results, emphasis has been on the combination of different physical properties 
within one model. In order to analyse the magnitude of difficulty of the problem dealt 

with, and to specify objectives for the research project, the following section will further 
illustrate the problem. 
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1.2 Problem introduction 
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In order to specify and formulate the problem of the project the general layout of an auto- 
matic warehouse must be illustrated. This is done by describing the integrated warehouse 
at the Fachhochschule München. Based on this information a reduction of the modelling 
process is proposed and justified, resulting in a small scale model for the automatic ware- 
house. 

This small scale model rig was built at Liverpool John Moores University to experimentally 
verify the results of the theoretical calculations. The theoretical representation of this rig is 

still quite cumbersome in its physics, therefore further simplifications are introduced. These 

simplifications are necessary for the numerical computation of the problem. Additionally 

the layout of the experimental installation is presented and further discussed. A comparison 
is initiated, illustrating how the dynamics of such a small scale model can still be compared 
with the dynamics of a full size automatic warehouse. 

Finally the numerical formulation of the problem will be based on the simplified represen- 
tation of the small scale model rig. 

1.2.1 Warehouse representation 

Modern automatic storage facilities have emerged from standard warehouse design. A stan- 
dard, old fashioned warehouse consists of shelves in various shapes and sizes. The height 

of the shelf is limited by the working domain reachable by the warehouseman or a fork-lift 
truck. The size in terms of height and depth of the different shelves has been determined by 
the product to be stored. These warehouses have been quite specialised and cumbersome. 

Development and rationalisation have led the drive to modern warehouse layouts where all 
storage spaces are of equal size. The storage spaces are distributed in a structured mesh, 
hence every space has a predefined number and position. Additionally some specialised 
warehouses do store palettes for bulky items and baskets for small items. The shelves are 
separated with alleys. In these alleys a conveyor system transports the items to be stored. 
This transport facility is able to reach all storage spaces. In huge warehouses all single 
alley conveyors are connected together. Finally it is possible to have a single input-output 
interface for the whole warehouse which can have thousands of storage spaces. 
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By neglecting the height of such warehouses' the basic structure of such a warehouse can 
be shown as in Figure(1.1). Here several logistic elements are grouped together and linked 

with a conveyor-cart system. 

Top-view 
of an 

ß 
c ' c cl c c ä 
ö ö 0 0 0 

U 

automatic warehouse 

0"00 

cart - motion 7 input-output interface 

Figure 1.1: General automatic warehouse layout. 

Great efforts have been made at the Faculty of Mechanical Engineering at the FHM Munich 

to establish a CIM environment where the computer aided design (CAD) and the computer 
aided manufacture (CAM) are linked. This equipment provides testing facilities for dynamic 

problems. Within these laboratories an automatic warehouse as shown in Figure(1.2) has 
been built to automatically supply a turning machine with tools and transport the ready 
made products into the warehouse. The conveyor system can be seen in the middle of 
Figure(1.2). On the left and the right side of the picture the plastic baskets within the 

shelves are shown. These baskets are transported from the warehouse interface towards 
the storing space and vice versa. This warehouse is capable of taking a basket from the 
interface at quite a low velocity, carrying the basket in an upright two dimensional space 
to its final destination in the warehouse at maximum speed and placing the basket into 
the storage space again with a low velocity. 

A comprehensive model of this mechanical motion would need to include: 
'Automatic warehouses have been built with a height over 50 metres. 
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Figure 1.2: Warehouse at the FHM. 

" Modelling of the structural mechanics. 

J 

The motion of the conveyor influences the stability of the shelves. There is possibly 

a difference between the desired final position of the cart and its actual final position 
due to displacement of the structure. 

" Modelling of the structural dynamics. 

The transporting system which can be located between the motor output motion and 
the actual basket motion has a dynamic behaviour (e. g. leadscrew dynamics). 

" Modelling of the motor controller dynamics. 

There is a difference between the programmed motion profile and the desired motor 
input motion profile. This transfer function must he modelled and simulated. 

" Modelling of the motor dynamics. 

There is also a difference between the motor input motion and the motor output 
motion, again this has to be modelled and simulated. 

In particular the three motions of the cart (warehouse interface -- main conveyor - storage 
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space) and its interaction with the rigid structure would need to be simulated. In the case of 
transporting an open fluid filled container, the fluid within the container must be modelled 

and simulated as well. Here one would need the following modelling capabilities: 

9 Full three dimensional modelling. 
The transport takes place in three dimensional space, furthermore, the fluid container 
is normally of circular shape. 

" Modelling of viscosity. 
This physical property is very important due to its influence on the reduction of the 

oscillating sloshing because of internal friction. 

" Turbulence modelling. 
Especially in high velocity motion the fluid could react with not just laminar but 

turbulent motion. 

9 Compressibility modelling. 
The more different fluids are used, the more important this kind of physical repre- 

sentation will become, due to the fact that some fluids are more compressible than 

others. 

" Modelling of surface tension. 
Like the modelling of compressibility, this can become very important for specific 
fluids, like mercury. 

Additionally thermal heat conduction or chemical reaction could influence the motion. This 

could happen if the motor runs hot or the fluid within the container reacts with the air or 
the container itself. 

With current modelling programmes and supercomputers it is still not possible to model, 
combine and simulate all the given physical properties. The problem must be reduced in 

order to be modelled, simulated and finally optimised. The major reason for reducing the 
complexity of the model is the cost of computation and modelling. Due to the fact that 
the model must be verified, the number of parameters influencing the model should be 

manageable. Hence, the specific influence on the model of every single parameter can be 
thoroughly investigated. Therefore it has been intended to start the study of free surface 
motion within an automatic warehouse only with a two dimensional model. Within this 
model the computational costs are of order 0(n2), where n is the number of mesh-cells in 
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one spatial direction. A three dimensional model for the fluid motion is more than n-times 
more expensive in terms of computational costs. 

To reduce the model to 2D, the following reductions must be specified and performed: 

1. The start motion of the basket, from the warehouse interface onto the cart, and the 
final motion, from the cart into the shelf, are neglected. These motions are assumed 
to be normally in slow motion, therefore the motion in the fluid container is not very 

severe and need not be investigated. 

2. The fluid container is limited to two dimensions, hence the container must be of 
rectangular shape with infinite length in the Z-direction. In general, the friction 

influence of the front and back walls can be neglected. 

Additional simplifications are necessary for the representation of the fluid. For the initial 

considerations the physical properties can be reduced to a single representative fluid. The 
fluid to be used is water, due to the fact that a lot of substances in the food and chemical 
industry are water-based. To model water, one would need at least a model for a Newtonian 

fluid being viscous, incompressible and, assuming moderate sloshing behaviour, having a 
laminar fluid flow. There is no chemical reaction in the fluid and the surface tension is 

quite low and can be neglected (see Section (3.8) for illustration). 

The assumption of laminar flow is essential. Turbulence modelling is still a field of intense 

research and therefore very difficult to handle. To capture all vortices of the turbulence 
flow, the control volumes of the grid must be very small (at least as small as the smallest 
vortices). This leads to a very high number of mesh cells resulting in very long calculation 
times for a single flow field calculation. This is not desirable within the optimisation. 

Due to the variety of warehouses which have been built it has been desired to focus on a 
very elementary version. This version should include only the parts which are necessary 
for any kind of warehouse. It is recognized that the structural dynamics of the cart have to 
be included within the modelling process. These dynamics from the motor shaft and the 
driving system of the cart (e. g. a leadscrew) are influenced by the motion of the fluid within 
the container. The structure of the warehouse is normally stiff enough to be neglected. The 
dynamics of the motor controller and the motor itself are very different for every single 
type of machine and control. In general, the output motion profile of the motor is the only 
interesting influence of the drive concerning the motion of the cart. 

'Assuming an equally spaced, structured grid. 

LIVERPOOL JOHN MOORES UNIVERSITY 
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Furthermore the observation equipment for the sloshing behaviour of the fluid during the 

cart motion should be as simple as possible. It has been decided that the equipment to (10 

so in the warehouse at the FHM would be too expensive (It would be necessary to develop 

a mobile, and very fight measuring equipment to be mounted on the cart). Therefore 

the development of a small scale model has been proposed to verify the results from the 

optimisation. Within the Mechanisms Research Group in the School of Engineering at 
John Moores University Liverpool, Osypiw[82] developed a two dimensional servo motor 
driven rig to drive a holding device in an automatic fuselink assembly. This rig has been 

Free Surface 

Figure 1.3: The experimental rig. 

modified (see Figure(1.3)) to fit the needs for the experimental simulation of a warehouse 
('uvironmelit. 

Two linear conveyors can be mounted together to simulate an upright two dimensional 
motion domain within a warehouse. To drive the two dimensional motion, the container is 
mounted on the vertical conveyor. This vertical conveyor with its actuator and the container 
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are mounted on the horizontal conveyor. This system results in a very high inertia for the 
horizontal motion. In order to investigate the influence of the fluid onto the motion of 
the conveyor more thoroughly the low inertia version has been used in Figure(1.3). This 

means that the horizontal conveyor does not need to transport the vertical conveyor and 
its actuator, hence the ratio of the mass of the fluid and the total mass to be transported 
(mass of the fluid, of the container and of the holding device) by the horizontal conveyor 
is higher, with the result that the fluid motion has more influence on the motion of the 

conveyor. Another reason to use this reduced one dimensional motion is the fact that the 

sloshing behaviour of the fluid is only triggered by a horizontal motion of the cart. A 

motion limited to a vertical motion alone would result in no sloshing at all. 

This small scale model rig has been used to verify the results obtained with the simula- 
tion and the optimisation. Physical limitations of this small scale rig have been used as 
boundaries for the optimisation. In particular the maximum velocity has been limited. 

Based on these limitations the time optimal control problem for the motion of a fluid filled 

container in a warehouse environment will be formulated. 

1.2.2 Problem formulation 

In order to simplify the large number of complicated properties of the real world warehouse, 
a small scale model system has been derived which represents the major properties of a 
warehouse. This model can be verified experimental on a servo motor rig. The general 
layout of this model system is illustrated in Figure(1.4). This model assumes that in a 
warehouse the movements take place in the horizontal and vertical plane. The container 
filled with liquid is assumed to be of rectangular shape. Hence, the fluid domain can be 

represented in two dimensions, while the third dimension is thought to be of infinite length. 

In this Figure, values are indicated with (c) and (f l) corresponding to the cart and the fluid, 

respectively. The length (1) and height (h) indicate the dimensions of the fluid filled cube. 
The main movement of the fluid will occur while moving the container in the horizontal 
X-direction using the acceleration-vector of the cart (Fr). The centres of gravity of the 
cart and the fluid are indicated with (S). The force-vector (F11) is the force of the fluid on 
the cart. Sloshing can only occur if a force orthogonal to gravity exists. The force-vector 
of gravity acts in the Y-direction and has not been given in Figure(1.4). Investigations 
illustrated in this thesis will only concern horizontal, one dimensional movement of the 
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V 

Y 

Y 

Figure 1.4: Model of the dynamic system. 

platform. 

In particular, the cart of the small scale servo rig will he modelled using common inechan- 

ical laws of' the interaction of masses, springs and damping devices. Their mathematical 

representation results in a system of ordinary differential equations (ODE). These equa- 

tions are the transfer functions correlating the input, data of the driving motors and the 

output motion of the cart. 

Fluid flow is modelled and solved for numerically by using finite discretisatioui oft lie fluid 

domain. There are three different major (liscretisation strategies, finite volume-, finite 

element-, and finite difference tecliniques. Main properties of interest of the fluid domain 

will be velocity and pressure at any given point in space and time. Free surface motion 
introduces additional information such as surface tension and surface shape. 

Based on these models a comprehensive model for the whole system will be generated. 
This comprehensive model will he used to simulate the behaviour of the fluid and the cart 
due to a specified design or control function. An optimisation procedure will be studied 
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and developed, using the simulation of the overall model to calculate the optimal control 
function for the time optimal motion of the cart. 

1.3 Project objectives 

The aim of this thesis is to investigate and research into a strategy to store and extract 

open topped fluid filled containers in an automated warehouse. During the whole process 

a constraint in the fluid is not allowed to slosh over. This problem is more difficult than 

the transportation of rigid parts, as in this case not only the motion of the platform, but 

also the motion of the fluid has to be controlled. 

In order to reach the final goal, several preliminary objectives must be achieved: 

1. In order to model the motion of the cart and the fluid a numerical mathematical 

representation for these motions must be investigated and developed. In particular, 
the author intends to avoid the basic approach of a crude simplification which would 
involve the development of a system of damped ordinary differential equations, to 

model the motion of the fluid. By building computational blocks, to be combined 

within the optimisation, users should be able to adapt the efficiency and accuracy 

of the modelling codes to the capabilities of modern computing facilities. Hence, 

when the speed of computers increase future users will be able to incorporate more 

physical properties to be modelled within the code without the need for restructuring 
the modelling and optimisation programmes. 

2. The modelling process of the research must also involve the combination of the fluid 

model and the model for the mechanical system. Currently there are different ap- 
proaches under research. Particular focus must be on the accuracy of the results and 
their affiliation to efficiency. Eventually, the author intends to develop a combined 
fluid- structure interaction model. This overall model must be able to calculate the 

response of the fluid and the cart based on the input motion of the drive. 

3. Furthermore this model must be integrated into an optimisation strategy. In order to 
do so, different optimisation strategies must be investigated and the most appropriate 
for the problem calculations must be used. 

4. Generally, the manufacturer of the warehouse is interested in optimal motions of the 
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cart. In particular time and energy optimal motions. 
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5. The final aim of the research is to experimentally validate the theoretical results 
in a practical verification. This feedback is necessary to justify the various steps of 
the research and to formulate proposals for further improvement of the models, the 

optimisation and the calculation of the process. 

As a summary of the objectives, the following can be stated: The aim of the investigation 
is to integrate fluid dynamics analysis with machine dynamics within an optimisation 
strategy for application within automated warehouse technologies. This type of problem is 

a special case of fluid-structure interaction. The goal is to enable optimal transport paths 
to be found for liquid-filled open containers within a warehouse. 

1.4 Thesis structure 

This thesis is split into eight chapters that describe the overall research programme, the 
investigation of the various computational techniques and their combination within the 

optimisation and studies the results of the performed optimisations. 
Chapter (2) contains a comprehensive literature search and illustrates the state of the art 
in this field of research. This literature research was carried out throughout the duration 

of the work and is intended to highlight existing research and illustrate the need for and 
novelty of the proposed project. 
Chapter (3) illustrates the basic structure and coding of the fluid model. Furthermore, some 
additions for the representation of transient force impact are given. 
The aim of Chapter (4) is to illustrate the model of the mechanical system, the difficulties 

of combining the different models and their integration within the optimisation algorithm. 
Here justifications for the use of the mechanical model and the specific optimisation code 
are given. 
Chapter (5) presents the numerical background for the simulation and optimisation of the 
problem. The results, obtained within this research project are collected and studied within 
Chapter (6). Results from theoretical calculations and practical experiments are presented 
and verified. 
Chapter (7) is a discussion of the results of the project in relation to the project objectives. 
It aims to further illustrate the obtained results from a more distant point of view. 
Finally, Chapter (8) concludes the thesis, outlines the contribution to knowledge of this 
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research project and also includes a number of suggestions for possible future research on 
the subject. 

The references, cited within the thesis are collected within the References. 
The Appendices include some code additions for the model of the fluid motion and the 

optimisation code. Additionally copies of published papers concerning the work in this area 
are included. 
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1.5 Nomenclature 

d time dependent distance between Sf, and SS 
h height of the container 
l length of the container 
FfI fluid force 
Fx external force 
S centre of gravity 
x, x(x, y, z) position vector with cartesian components x, y, z 

14 



Chapter 2 

Literature Review 

The goals of the research reported in this thesis are twofold. In the first instance a realistic 

model representing an open topped vessel containing liquid, being moved in one dimension 

by an external force is sought. In the second instance the model is to be integrated within 

an optimisation procedure and hence optimal trajectories can be obtained. 

The work integrates three separate bodies of knowledge. Fluid dynamics knowledge is re- 
quired to enable a free surface motion to be accurately modelled and predicted. Mechanical 

system modelling is required to enable the servo driven transport system to be established. 
And finally optimisation knowledge is required to identify which of the many potential 
optimisation approaches is best suited to the problem. 

This literature review starts with a review of the fluid dynamics focused on free surface flow 
in open topped containers, the second part of the review explores the modelling of dynamic 

mechanical systems and particular emphasis is given to work that has been reported about 
fluid structure interaction. Finally, the third part of the review illustrates the current state 
of research in the various methods of optimisation. 

Furthermore, the literature review on these three major topics has been further focused 
based on certain limitations. These limitations were: 

" The available computational resources, 

" The possible investment in software and 

" The tackled knowledge base. 

15 
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The available computational resources limits the comprehensiveness of the model, the sim- 
ulation and the optimisation. For instance a genetic algorithm as an example for a modern 
optimisation scheme is best performed on multiple machines. The problem can be dis- 
tributed easily' over several CPU's. Due to the relatively huge computation costs of such 
an optimisation scheme it is only advantageous on simple models or on huge computer 
platforms. 

The investment in software limits mainly the comprehensiveness of the modelling and 
simulation tools. Modern, sophisticated codes for modelling free surface flow can be quite 
expensive. Additionally it was necessary to integrate the model for the mechanical system 
and to adapt the CFD-code to the requirements of the optimisation. These enhancement 
need the privilege of access to the source code. In general, developers of sophisticated 
CFD-codes do not provide their source code, or if so only under high costs. 

The tackled knowledge base was a limitation in terms of subjects which have already been 
investigated quite thoroughly. It has not been intended to further investigate modelling 
strategies for free surface motion or the modelling and simulation of mechanical systems. 
Furthermore, it was not within the scope of the research to develop new strategies of 
optimisation, but to profitably develop a strategy to tackle such a difficult and non-linear 
model within an optimisation scheme. 

This chapter is split in three major parts. In the first part different strategies for the 

modelling of the free surface motion within CFD-codes will be reviewed and some codes 

will be discussed. A sub-part will focus on some new strategies to model free surface motion. 

The second part of the literature review is focused on the mechanical system. Some basic 
foundations are given for the representation of the warehouse in terms of ordinary differ- 

ential equations. In addition some notes are given for the solution strategies to solve such 
systems of ODEs. 

An additional focus is on the problems of fluid-solid interaction and the control of a fluid. 
Here some computational work will be presented which has already been undertaken in this 
field. This subject has re-emerged due to the increase of computational resources and power 
of recent computers and the developments within mathematics and computer sciences. 

The final part of this chapter is dedicated to available optimisation codes and their appli- 
cability to the given research problem. 

The review concludes by identifying the techniques which will be built upon to attain the 
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research objectives. 

2.1 Modelling of free surface flow 

The history of modelling fluid systems has been a history of experiments in water channels 
and wind tunnels (Smith et al. [106], [4], Pope[85]). Even though the governing equations 
for Newtonian fluid dynamics, the unsteady Navier-Stokes equations, have been known for 

150 years or more, such experiments have been the only possible way to reduce costs in 

the developing stage of a product. The steady improvement in the speed of computers and 
memory size since the late 1950s has led to the emergence of computational fluid dynamics 
(CFD). With this tool it is possible to evaluate solutions for the Navier-Stokes equations. 
The Navier-Stokes equations represent the physical properties of a flow field. Following 
Chapmann et al. [16] and Fletcher[31], CFD provides five major advantages compared with 
experimental fluid dynamics: 

1. Lead time in design and development is significantly reduced. 

2. CFD can simulate flow conditions not reproducible in experimental model tests. 

3. CFD provides more detailed and comprehensive information. 

4. CFD is increasingly more cost-effective than wind-tunnel testing. 

5. CFD produces a lower energy consumption. 

In order to simulate the fluid motion it is necessary to model the fluid and container layout 

within a CFD-code. There are several different strategies to evaluate a free surface model to 
calculate the fluid motion. Hawken et al. [47] give a comprehensive overview and literature 

review on adaptive node movement techniques. These techniques attempt to update the 
representation of the fluid domain at certain time steps, hence moving the mesh with the 
calculated movement of the free surface. 

One example of a programme using these techniques and in particular utilising 'spines' to 
"track or guide the free surface is FIDAP[30]. Spines are straight lines passing through the 
free surface nodes which determine a direction for the free surface to move. These spines 
are elements of the regular mesh and not necessarily perpendicular to the free surface. 
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Another example, using node movement techniques is given in Soulaimani et al. [107] where 
the problem of large amplitude sloshing is used as a test case. The external forces are of 
the form f= (Ag sin wt, -g) for the two spatial dimensions and therefore only used to 
determine the frequency of the uniformly accelerated fluid. The same test case is used by 
Huerta et al. [55] in the context of arbitrary Lagrangian-Eulerian (ALE) Petrov-Galerkin 
finite element techniques. Also Tezduyar et al. [110] [111] used this test case to confirm their 
technique of deforming-spatial-domain/space-time procedure where the deformation of the 

spatial domain with respect to time is taken into account automatically. 

In Behr et al. [9] the test case of large amplitude sloshing is extended to three spatial di- 

mensions. An oscillating external excitation is used and the objective of this calculation 
is to assess the capabilities of the space-time finite element formulation as a method for 
handling deforming domain problems. 

Fluid mechanics research at the Technical University Erlangen-Nürnberg includes free 

surface flow. A CFD-code named FASTEST has been developed to fit problems occurring 

when combining free surface calculations with parallel programming. Extensions to 3D 

modelling have been considered. The approach, presented by Egelja et al. [24], belongs to 

the adaptive grid Eulerian methods and consists of solving discretised mass and Navier- 
Stokes equations on a non-orthogonal moving grid using the finite volume approach in 

connection with a pressure-correction technique. 

A different approach, using particles moving on a fixed mesh, has been proposed and 
translated into a software programme by Griebel et al. [45]. The Navier-Stokes equations 
are solved on a rectangular control mesh. The properties of the mesh-cell determines the 
further movement of the particles which are free to move in the whole domain. They are 
redirected at the walls due to certain algorithms. Based on the new particle distribution a 
new mesh is applied to the domain. 

The literature review on the field of free surface movement reveals there is a broad area 
of research modelling the fluid flow. To perform the calculation of an optimal control for 
the cart it has been necessary to use a CFD-code with the best balance between accuracy 
and computational efficiency. Therefore it was necessary to find the most suitable CFD- 
code for the modelling problem. The decision on what type of representation should be 
used as a trade off between computational efficiency, accuracy and other criteria has been 
investigated and studied by Leonpacher[69]. 
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Leonpacher classified and investigated among others the following CFD-codes: 

1. Commercial (not freely available) CFD-codes 

" ANSYS/FLOTRAN [3] 

" FIDAP [30] 

9 FLUENT [34] 

2. Shareware, public-domain and freeware CFD-codes. 

" CLAWPACK [71] 

" SINDA/FLUINT at "http: //www. webcom. com/-crtech" 

" FCT [2] 

" NSC2KE [74] 

" FEMLAB [26] 

" NAST2D [45] 

19 

A decision matrix was specified and used to select the most appropriate code for the 

modelling and simulation of the free surface motion. The selected code was NAST2D 
developed by Griebel et al. [45]. In comparison to all other codes, this code resulted to be 
the best on the given problem due to the following characteristics: 

1. The code is capable of modelling an incompressible, laminar, viscous, unsteady, free 

surface fluid flow based on the Navier-Stokes equations. 

2. A finite difference scheme is used, which is quite simple and cost effective in terms 
of calculation time. 

3. The source code is freely available, and thus the platform to operate the code is 
arbitrary. 

4. Only one additional module concerning external forces need be developed. 

5. The developers of the code at Munich Technical University are easy to reach for 
communication. 
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2.2 The mechanical system 
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The mechanical system is built of several components which interact as a multi-body sys- 
tem. There are motors, gears and rigid bodies with defined characteristics. These character- 
istics are modelled within transfer functions. Several authors (Driels[21], Emanuel et al. [25], 

Prentis[91]) have derived the characteristic behaviour of the prescribed elements and their 
interaction. The overall performance of the system can be represented in a system of ordi- 

nary differential equations (ODE). 

There has been extensive study (Sciavicco et al. [101], Bishop[10], Schaupp[97]) modelling 

and simulating mechanical systems within software packages such as MATLAB[72] (includ- 

ing SIMULINK), MAPLE (e. g. Kraft[66]) and SIMPACK[104]. 

The techniques to solve a system of ordinary differential equations are well known, mature 

and several algorithms have been developed, including the well established initial value 

solver of Euler or Runge-Kutta-Fehlberg (Fehlberg[27]), or more recent techniques such 

as collocation (e. g. Ascher et al. [5], Bulirsch et al. [13]). 

In order to reduce computational costs, the well established Runge-Kutta-Fehlberg for- 

mulae will be used. 

2.3 Control of fluid, fluid-structure interaction 

In contrast to the calculation of the motion of the fluid, control of fluid motion is intended to 

alter the effects of the mechanical environment on the fluid. This is the case in the problem 
of optimal trajectory planning-for an open fluid filled container. Two different approaches 
are distinguishable. On the one hand an alteration of the design of the environment can 
be performed, or on the other hand a variation of the external energy which triggers the 

motion can be performed. The second approach has been studied within this research 
project. 

Some investigations have been undertaken to evaluate the influence on the fluid of an altered 
mechanical design. Muto et al. [77] tackled a problem of vibrational phenomena regarding 
flow in a fuel tank during an earthquake. The aim of the work was the development of 
effective submerged blocks to restrain the fluid from sloshing with high amplitudes. 
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Popov et al. [86] present and discuss the liquid behaviour in rectangular road containers un- 
dergoing a turning or braking manoeuvre. Experimental data was compared with calculated 
results performed with a marker-and-cell method (First established by Harlow et al. [46] 

and developed and documented in Hirsch[50][51] and Hoffmann et al. [53][54]). In this and 
further investigations Popov et al. [87] [88] on cylindrical and rectangular road containers the 

structure of the container has been investigated and optimised. The movement is said to 
be inalterable and has not been given any focus in terms of control. 

Another design optimisation problem associated with fluid motion has been under research 
by Cliff et al. [17]. A duct flow with a shock was studied, where the location of the shock 

was treated as a parameter. The study was concerned with optimal cross-sectional layout 

of the duct at the position of the shock. 

This research involved also a study by Shenoy et al. [103] into the optimal heat transfer 
from a solid body to a stationary, incompressible and convection driven fluid flow. Here 
the design parameter is the temperature distribution on the inflow boundary to achieve a 
predefined value on the outflow boundary. 

Due to the increasing demands for accuracy, the interactions of different physical phe- 
nomena are no longer neglected or simplified, but are taken into account in detail. These 
developments are possible due to the improved algorithms in the field of mathematics and 
computer sciences, and the increase of available computational capacity. 

The FoRTwrHR' Research Group, the sponsors of this work, has among other things been 
focusing on fluid-solid interaction problems. Following Bungartz et al. [14] different interac- 
tion possibilities between the following physical properties can be specified as follows: 

" Structural dynamics 

" Fluid dynamics 

" Heat conduction 

" Electromechanics 

9 Chemical reactions 

He defines two different coupling strategies for the combination of the different physical 
interactions, namely weakly coupled systems and strongly coupled systems. These coupled 

'Research group for high performance scientific and engineering computation. 
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systems are characterised by the mode of computation. A strongly coupled system is solved 
for every represented physical property within the smallest time step of the simulation. In a 

weakly coupled system the represented physical properties are calculated one after another. 
This coupling problem has been investigated and solved in this research project as well and 
will be further discussed in Section (4.3). 

Another project by Dütsch et al. [22] has focused on the accuracy of the prediction of a 
fluid-structure interaction problem compared to an experiment. Here the fluid damped 

oscillations of a lamina at large initial amplitudes has been investigated. 

Nomura[78] focuses on the development of a closed coupled algorithm to model and simulate 
fluid-structure interaction problems. This investigation has been interested in the motion 

of a fluid due to a given, fixed excitation. 

Fursikov[35] recently published a contribution about optimal control of Navier-Stokes prob- 
lems. In this article the body force is regarded as the control. Necessary and sufficient 
conditions of minimum and uniqueness of the solution were studied mathematically. The 

major drawback of the obtained results is the used simplification of the Navier-Stokes 

equations resulting in abstract, ordinary differential equations. Hence the accordance with 
reality is no longer guaranteed and practical applicability is greatly restricted. 

To the knowledge of the author there is no source dealing with the control of the external 
energy to influence the fluid motion. 

2.4 Optimisation schemes 

In general, there are two different optimisation tasks. In the first task, the general parameter 
optimisation problems, a normally non-linear objective function based on several, time- 
independent parameters and limited by state constraints has to be optimised. The most 
important limitation in this sub-family of optimisation is the time-independence of the 
design variables. 

These problems can be solved, apart from various other strategies, with genetic algorithms, 
where the natural process of survival of the fittest based on mutation and selection is used 
to calculate a new 'generation' of parameters, as described by Goldberg[42]. A general 
overview of optimisation with genetic and selective algorithms is given by Kinnebrock[60]. 
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Another solution strategy for parameter optimisation applications is tabu search which has 
been developed by Glover[38]-[41]. The search is constrained by classifying certain of its 

moves as not allowed, the search direction being set free by a short term memory function, 

providing 'strategic forgetting'. 

A genetic algorithm has been used by Connor[18] to evaluate an optimal five bar mechanism 
layout for a given trajectory to follow. Another often referenced problem for this category 
of optimisation is the travelling salesman problem([60][42]). 

The second general idea of optimal control is the calculation of an optimal solution of an 
object function based on a system of non-linear equations limited by state constraints with 
time dependent parameters. This problem has often been utilised successfully as a two 

point boundary value problem (e. g. Ascher etal. [6], Bulirsch et al. [13] and Kraft[63]). 

There are several different approaches as described by Gillet al. [36] to solve these kind of 
problems. Another helpful book to accompany an engineer in solving a practical optimisa- 
tion problem is More et al. [75] where an insight in the different branches of optimisation is 

given and several different optimisation software packages are listed and categorised due 

to their solution algorithms. 

The problem of time minimal movement of an open fluid filled container is an optimal con- 
trol problem with a set of time dependent parameters. These kind of problems are often 
called trajectory optimisation problems. The general approach to calculate such optimi- 
sation problems involves 'hill climbing' in some form. Hill climbing describes the search 
for the fastest descent on the surface of states of the fluid due to the parameters and the 
dynamics of the system. Hence the solution domain is said to be convex and uniformly 
formed with presumably several local minimal solutions. 

Trajectory path planning problems result in a two-point boundary-value problem as de- 
scribed by Kirk[61] or Gill[36]. They can be solved using direct shooting or collocation 
methods and subsequent application of a quadratic programming (QP) algorithm. In com- 
parison, indirect shooting or indirect collocation methods incorporate the state constraints 
into the model function and create additional differential equations. They are often ex- 
tended to multiple shooting methods (see Diekhoffet al. [20], Bulirsch et al. [13]) to increase 
the stability of the algorithm. The drawback of larger computational efforts to solve the 
additional differential equation is compensated by the integrated optimisation. These meth- 
ods do not result in a boundary value problem. If a solution to the system can be found, 
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this solution will be optimal. 
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Direct shooting in conjunction with sequential quadratic programming (SQP) (see eg. 
Gill etal. [37]) has been used by Kraft[63][65] for the calculation of an optimal trajectory 
for a six-degree-freedom robot. 

In the context of optimal flow control using SQP-methods Ravindran[92] presented a se- 

quential quadratic programming method and its implementation to treat optimal Dirichlet 

control problems associated with steady Navier-Stokes equations. Due to the restriction on 

steady flow, this approach has not been applicable to the transient problem of trajectory 

optimisation involving sloshing fluid motion. 

Further study has been undertaken by Barcley et al. [7] on the solution of large scale opti- 

misation problems using SQP algorithms. These algorithms calculate a new direction (see 

Murray et al. [76]) and a new step-size due to gradient calculations on the surface of the 

state. The use of a direct collocation method has been described by von Stryk[109] to 

calculate the optimal ascent of the lower stage of a Sänger-type vehicle. 

Several different optimisation strategies have been tested by Schittkowski et al. [100]. The 

SQP optimisation method emerged as quite effective and robust on a variety of test prob- 
lems. 

Based on these findings the MATLAB OPTIMIZATION TooLBox[73] has been used as basis 

for the optimisation of the optimal trajectory problem. The different modules within this 

toolbox can be exchanged. There are different solvers for the quadratic programming sub- 

problem like SOLNP by Ye[113]. 

Following Kassim[59] additional boundary conditions in the optimisation must be speci- 
fied to increase the effectiveness of the cart motion in terms of friction and energy loss. 
Norton[79] has been used to develop specific acceleration and jerk functions for the motion 
of the cart. These limitations do result in an efficient and smooth motion profile. 

This chapter has covered some of the recent literature that is relevant to this research. To 
the knowledge of the author there is no source dealing directly with the proposed work. 
The control of fluid motion within a predefined and fixed structural environment is new 
and novel. The investigations and studies of this research project allowed the calculation 
of optimised trajectories for open fluid filled containers. 
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2.5 Nomenclature 

A 
ff (f., fyr fzý 

9 

general matrix of values 
force, force vector with cartesian components (fr, fy, f, ) 

natural gravity 
time 
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w angular velocity 



Chapter 3 

Modelling of fluid motion 

This chapter deals with theory related to the modelling of fluid flow, particularly modelling 

of a fluid system with a free surface in the manner to be used within the simulation of the 

optimal control problem. 

The approach by Griebel et al. [45] for modelling fluid motion with a free surface will be 

described. A finite difference code (NAST2D) for free surface motion has been chosen based 

on a discussion of the problem by Leonpacher[68]. The program is a two dimensional solver 
for the incompressible, transient Navier-Stokes equations including the energy equation 

and incorporating free surface boundary conditions. 
In addition, some notes are presented concerning necessary alterations to this code. 

3.1 Modelling of the free surface motion 

To model the sloshing fluid motion the CFD-code NAST2D was chosen' based on the 
following criteria: 

" The code was able to perform free surface sloshing. 

" The code was accessible in its source form. 

9 Steady and quick feed back with the developer of the code was possible. 
It was possible to add modules to the code to allow 

'See Leonpacher[68]. 

26 
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" Computations with time varying acceleration, 

" Change of accuracy of the sloshing values, 

" Integration of the mechanical model, 

" Alterations to fit the CFD-code into an optimisation cycle. 

Based on the initial idea of the research, to evaluate strategies for transporting fluids in 

automated warehouses, the properties for these fluids (e. g. water, ink or other chemical liq- 

uids) can be specified. The fluid aimed to be simulated is transient, laminar, incompressible 

and viscous and is therefore represented mathematically by the Navier-Stokes equations. 

NAST2D is based on the Marker-and-Cell method (MAC) developed by Harlow et al. [46] 

and has been especially designed for fluids with the previous defined properties in a domain 

with open boundaries. It uses finite differences for discretisation on a structured equidistant 
staggered grid, central and upwind (donor-cell) discretisation for the convective terms and 
a first order explicit time stepping scheme. 

The programme was developed for educational purposes at a computer science institute. 
Thus, it is easy to understand and easy to implement but it is not a "state of the art" 
programme. But in spite of the relative age and simplicity of the code it is flexible and 
quite powerful. 

3.2 The Navier-Stokes equations 

In order to describe a flow field mathematically, some definitions for the flow field and the 
fluid must be specified. For this reason a mathematical domain QC RN (N E J2,3}) in 
the time interval tE [0, tend] is specified. The motion of the fluid is characterised by the 
velocity field ü: Il x [0, tend] -} 7ZN the pressure distribution p: SZ x [0, tend] -4 R. and 
the density of the fluid o: 0x [0, tend] --+ R- 

Assuming incompressible flow then the density o(x, t) = o. = const. For transient viscous 
flow, the fluid motion is described by a system of partial differential equations (PDE) of 
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non-dimensionalised2 form 

at u+ (u " grad) u+ grade = 
divü = 
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we Au -+ f (3.1) 

0 (3.2) 

Equation (3.1) describes the conservation of linear momentum and Equation (3.2) the 

conservation of mass. No heat source or sink in the system is assumed and the temperature 

increase in the fluid due to friction is neglected, thus allowing the conservation of energy 

equation to be neglected. Equation (3.1) is called the Navier-Stokes equation where Re = 
is the dimensionless Reynolds number and f are external forces, such as gravitation, 

acting on the fluid. In two dimensional space, the operators div and grad are defined as 
following: 

gradu = (au/ax, au/ay), divü = au/ax + av/ay. 

and therefore 

(ü " grad)ü (uau)/ax + (vau)/ay 
= (uav)/ax + (vav)/ay 

3.3 Dynamic similarity of fluid flows 

In numerical fluid dynamics nearly all calculations are based on non-dimensionalised equa- 
tions such as the non-dimensionalised Navier-Stokes equations given in the previous sec- 
tion. The idea of dimensionless representation is based on the dynamic similarity of a small 
scale model compared to its large scale real world application. It is possible to combine the 

characteristic values of fluid flow (namely a characteristic length L, velocity ums, dynamic 

viscosity µ and characteristic density o) to dimensionless values in a way that statements 
are possible about the correlation of model and real world. 

In Figure(3.1) the domain 1* has been scaled down from the domain St by S<1. The 

geometries SZ and S2* =S"0 are similar. 

The dimensionless values are generated as following: 

value with dimension dimensionless value = correlation value with the same physical dimension 
In particular the following characteristics must hold for the correlation values 

'See Hoffmann[53]. 
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Figure 3.1: Similarity of fluid flows. 

" constant for the problem, 

" must be known initially, 

. raust be characteristic for the problem. 

The CFD-code NAST2D uses the following dimensionless values for the Navier- Stokes 

equations: 

(3.3) xLtLu 
, ums ýýuöo 

Where L, ums, p,, g,,. are scalar constants. The transformation of the Navier Stokes equa- 

tions using the variables (3.3) yields to the following system: 

0ü+ 
(*"grad*)ü* + grad*p* _ al* 

C11V*47* _ 

It 0*i +L (3.4) 

0 (3.5) 

Where the operators grad*, 0* and div* are related to a-"* and no longer to : i;. Therefore, fluid 

flow with similar geometries S2* =L" SZ, L>0 are dynamically similar if the corresponding 

parameters N, ums, pes, L and g of the two fluid flows do result in identical dimensionless 

values for the Reynolds- and the Froude-number, 

Re = °° u°°L 
, and Fr = 

? L°° 

LIIýýII 
where jjgjj =9+ gy is the length of vector g. For the conservation of linear momentum 
it is also necessary to non-diniensionalize the gravitational forces, hence 
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Lg 1g 
9 

ýý Fr2 ýý9ýý 

Now the incompressible, viscous, time dependent, laminar fluid flow can be described with 
the non-dimensionalized Navier-Stokes equations. 

3.4 Discretisation of the fluid domain 

Control volumes and calculation points must be specified to interpolate the velocities 

and the pressure in the fluid domain. The following section describes how the CFD-code 

NAST2D discretises the fluid domain on those control volumes and calculation points to 

solve the continuous flow problem on a mesh with a limited number of mesh points. 

Boundary conditions for the edges of the fluid domain will be given. Additionally the 
discretisation of the time derivative, for the given transient problem will be illustrated. 

For later reference and better illustration, the Navier-Stokes equations will be rewritten, 

neglecting the (*) for clarity. The conservation of linear momentum can be given in the 
following form: 

au op 1 a2u a2u CU2 auv = at + ax + Re axe aye _ _ fx' ax 8y + 

av ap 1( a2v a2v auv 0v2 
__ at + ay Re laxe +äy2) _ _ ax ay +fY 

and the continuity equation or conservation of mass becomes: 

öu av 
T aý+ =o. 

3.4.1 Discretisation of the velocities and the pressure 

(3.6) 

(3.7) 

In two dimensional space a rectangular domain is approximated with an equally spaced 
mesh in both dimensions. The boundaries (dimension of the cube and the fluid domain, 
length of (a) and height of (b)) of the two dimensional R. 2 domain SZ are 0= [0, a] x [0, b] E 
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R2, where the X-, and Y-directions are divided into imax and jmax equally spaced cells, 

respectively. Therefore the size of an individual cell is: 

8x =a and Sy 
b 

= imax 3max 

The CFD-code uses a staggered grid as in Figure(3.2) to discretise the Navier-Stokes 

meshcell (i, i 

j+1 I\ °ij 

J. u. 
0P ij u. 

Vi, j-1 

j-1 
i-1 i i+1 

Figure 3.2: Staggered grid. 

equations on the mesh. A staggered grid allows the coupling of variables and consequently 
improves stability constraints. By solving the velocities on different mesh points then the 

pressure, oscillation in the pressure can be reduced. 

The values of u, v and p in mesh-cell (i, j) are shifted with respect to each other by half 

a cell, therefore not all cell values at a boundary of the domain will be on the boundary. 

To overcome this problem an additional layer of boundary cells is added to all four sides 
of the initial mesh domain. The values of u, v and p on the edge of the boundaries are 
subsequently interpolated. 

The continuity equation (Equation (3.7)) is discretised in the middle of cell (i, j), i= 
1, """, imaz, 

,i=1, " .. ' Amax. The differential operators au/ax and äv/8y are replaced 
with central differences 

Öu 2ly, j - Ui-l, j C7v vj, j - yi, 9-1 
lox] 

i, j öx ' 
lay] 

ij= sy 
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The first equation of the conservation of linear momentum (Equation (3.6)) for u is discre- 

tise<1 tuiclwav between the vertical mesh edges, whereas the second part of equation (3.6) 

for v is (iiscretise(l midway between the horizontal mesh edges. 

The second derivatives 32u/0 x2,02uu/örj2, dz v/i3. r2 and a2v/0y2, the so called diffusive 
tel'111ti, are replaced by the discrete telnis analogous to 

cd rl a- 1 0u, Du 

z 

ii(. r, +H) - 2u(xi) + u(xi-1) 

where cd denotes central differences with lialf stepp size. 

u ij+l 

vi, j 

+ 
U i- l .j 

Vi+l, j 

u+ i,. l 

ui+ 

vi+l, j-1 

u i, j- 

6x2 

Ij 

Figure 3.3: Values to be used to discretise n. 

The convective terms of Equation (3.6) D("ire)/Dx, O(uu)/D: xx, O(ut; )/Oy and D(v2)/&ij are 
more difficult to discretise. As an example tile discretisation of a('uv)/üy at the middle of 
the right edge of cell Z, j will be illustrated (See black dot in Figure(3.3)). To represent 
this term discrete, suitable values for the product uv can be found at intermediate points, 
drawn in Figure(3.3) with (x). 

The discretisation of 0('u2)/0x is also performed with central differences of half step size, 
using values indicated in Figure(3.3) with (+). 

In Appendix Section (A. 1.2) the discretisations of all terms in the Navier Stokes equations 
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are ̀ given. In addition, some comments are listed with regard to the stability conditions of 
the code. 

3.4.2 Boundary conditions 

The following boundary conditions can be chosen in NAST2D 

" Slip condition, 

" Non slip condition, 

" Inflow or outflow condition and 

" Periodic condition in x, y-direction. 

The slip condition sets the velocity perpendicular to the wall to zero. In addition, the 

fluid is not allowed to accelerate parallel to the wall. In case of values of velocity being 

not situated at the edge of the boundary, mean values calculated from the neighbouring 

cell-velocities are used. 

The non slip condition sets all velocities at the wall to zero. In case of values of velocity 
being not situated at the edge of the boundary, similar to the slip condition, mean values, 
calculated from the neighbouring cell-velocities are used. 

When using the inflow condition, the velocities at the boundary must be set by the user. 
The outflow condition sets all change of velocity perpendicular to the outflow boundary to 

zero, thus allowing the fluid to flow through the boundary. 

The periodic conditions can only be applied on two opposite sides. On these sides the 
values of velocity and pressure are the same. 

3.4.3 Discretisation of the time derivative 

To discretise the derivatives of time au/ät and äv/ät in Equation (3.6) at time t,, +, the 
Euler procedure is used, hence differential quotients of first order 

IOU 
(n+1) 

U(n+l) - 26(n) 11 
(n+l) 

v(n+l) - v(n) I(3-8) ] 
st c7t - st 

(3.8) 

where the superscript (n) represents the current point in time. 
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3.5 The time loop in NAST2D 

34 

With the initial values for u and v, the outer time loop is started at t=0. The time is 

increased by St in every iteration loop until the final time tend has been reached. At time 

step n the value of tn is known and the value for to+l is to be calculated. The discretised 

values of the time derivatives in equation (3.8) are substituted into equation (3.6) resulting 
in 

u(n+i) =F- Stag, 

v(n+l) =G-R 
LP, 

with 
y 

2u 
19(UV) F= U(n) + bt 

[Re 1 (a2ax2u + 
aay2) a(U2) 

ay + . fz 
G= v(n) + st 

1 Dtv 
+ 

a2v1 

_ 

a(uv) 

_ 
a(v2) 

+f 
[Re Caxe 

aye) ax ay ý] 

F and G are represented at time level (n) and äpläx and äplay are represented at time 
level (n + 1), hence 

u(n+l) = F(") - btOP(n+1) äx 

v(n+l) = G(n) 
- 

jt 

ay 
This representation can be interpreted as being explicit in the velocities and implicit in 
the pressure. With the help of the conservation of mass the pressure at time level (n + 1) 

will be calculated, leading to the Poisson equation for the pressure p(n+l) at the (n + 1)th 
time step 

a2p(n+l) a2p(n+l) 1 OF(") (LJG(") 
äx2 + öy2 Ot ax + ay (3.9) 

To solve the Poisson equation, boundary values for the pressure must be specified. Equation 
(3.9) is finally discretised in space (see Appendix Section (A. 1.2)). It can be shown that 
this structure of computation will finally lead to a system of (imax X im. ) equations with 
(imax X jmax) unknown values pij, i=1, ... , imax, j=1, ... , jmax. This can be solved with 
an appropriate iterative solution strategy for linear systems of equations. A well known 
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classical strategy is the Gauss-Seidel algorithm (see e. g. van Kan et al. [58]). This algo- 

rithm has quite a slow convergence rate when used on practical problems. The programme 
NAST2D uses successive over-relaxation (SOR), where usually the SOR parameter (w) is 

specified' to be w=1.7 (see Stoer et al. [108] for a discussion on the relaxation parameter 

w). 

This procedure of pressure correction is often referenced as a semi-implicit method for 

pressure linked equations or SIMPLE procedure (see Patankar et al. [84]). 

3.6 Free surface modelling in NAST2D 

The modelling of a free surface includes, apart from the calculation of the velocities and the 

pressure also the computation of the layout of the fluid domain SZ at every time step. This 

can be done with particles which are incorporated in the fluid domain. These particles are 
transported from time step to time step by the known velocities. With the knowledge of the 

position of these particles the computational domain can be separated into the transient 
fluid- and the empty "air" domain. 

Within NAST2D it is not intended to simulate two phase flow. The code has been developed 

to simulate 2D-fluid flow, where empty domains are simulated as a vacuum. Additionally 

the surface tension must be insignificantly small and the fluid incompressible. 

At the start, the initially fluid filled part of the calculation domain is filled with particles. 
Usually there are between 9 and 16 particles in every fluid filled cell. The number of particles 
in a single cell is a trade off between computation accuracy and speed. In Section (3.8) some 
thoughts are discussed regarding a modification to the distribution of particles in the fluid 
filled domain. 

The position of the particles at time tn is known. With knowledge of the velocities u"+1 
and Vn+1 it is possible to calculate the new positions at time to+i. To increase the accuracy 
of the free surface tracking, the velocities u, v are calculated for every single particle due 
to its position on the mesh. The particular velocity of a single particle is calculated based 
on the four neighbouring velocities. The neighbouring velocities in u-direction for u(x, y) 

'In the parameter file. 
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y v_cell (i: tt j) 
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in Figure(3.4) would be: 

Figure 3.4: Velocity it-cell (i, j). 

'Ili -l, j-1 = 'U1, 'U 
, 
j-1 = 7121 

'ui-l, j = 'U31 ui, J '11.1. 

The velocity u(x, y) can be calculated using bilinear interpolation 

7d (: r Y) =1 [(. 12 - x)(112 - Y)'Udl + (7; 
- xI)(? /2 - y)4u2 

(5.1.6y 

+(x2-a, )(y-yr)? rs+(x-: r; i)('Y-Ji)r14]" 

Subsequently the new positions must be evaluated. There exist three categories: 

" Empty cells: Cells without, particles, 

" Iüner cells: Cells with particles and no border to empty cells, 

" Surface cells: Cells with particles and border to empty cells. 
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Generally, the surface cells approximate the line of the surface. For a more precise knowl- 

edge of the surface the particles themselves must, be observed'. The mathematical model 

of the discretisation of the free surface is based on the definition of' a fluid stress vector 

on the free surface. The physical condition on the boundary layer of two different. fluids is 

'Sec Section (3.8). 
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characterised by the force, acting on the boundary layer. Thes boundary conditions on the 

mesh cells are based on the physical law that the force acting on an interface is directed 

perpendicular to the interface and is direct proportional to the mean curvature of the in- 

terface. Based on these relations and the limitation to one fluid in vacuum, discretised in 

two dimensions following equations can be evaluated. They are 

2p 
-(' Re n2 ax + n-. ny au + ax + ny 

0v 
=0 (3.10) 

yy 

2nýmý ý+ (n., my + nymy) ay + av + 2nymy 
ay 

= 0. (3.11) 

The expressions n(n,, ny)T and m«mx my)T are unit vectors normal and tangential to the 
free surface, respectively. 

Several different flow situations must be recognised to set the boundary conditions (see 

Equations(3.10,3.11)) of the surface cells accurately. They are 

1. Surface cells with one empty neighbouring cell; 
(See Figure (3.5)) 

2. Surface cells with two empty neighbouring cells, the empty cells being at one corner 
of the cell; 

3. Surface cells with two empty neighbouring cells, the empty cells being at opposite 
sides of the fluid cell; 

4. Surface cells with three empty neighbouring cells and 

5. Surface cells with four empty neighbouring cells. 

The general calculation procedure will be illustrated for the case that one neighbouring 
cell is empty. 
The free surface is assumed to be nearly parallel to the mesh lines at a cell. Therefore 

either n, and mx or n_, and mY are very small, hence equation (3.10) will be 

2arc 2av 
Re ax or p_ Re ay 

with the first equation representing the vertical and the second equation representing the 
horizontal boundaries. Equation (3.11) reduces to 

au av 
ay + ax = o. 



CHAPTER. 3. MODELLING OF FL[[ID MOTION 

1.2.3. 

empty neighbouring cell 

fluid cell i, j 

' free surface 

4. 

Figure 3.5: Free surface boundary situations. 
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The discretisation is dependent on the flag 5 of the cell, which identifies the empty sides of 

the surface cell. 

3.7 Implementation of variable accelerations 

The original version of NAST2D was not capable of modelling and simulating a fluid flow 

in an acceleration field with varying forces. When modelling and simulating the complete 

experimental rig, i. e. modelling both mechanical and fluid dynamics, this problem had to 
be solved. The general idea was to implement sub-procedures which would: 

" Supply an acceleration profile in terms of time-acceleration pairs, readable from an 

external data file. 

" Supply a variety of interpolation sclienies ranging frone simple to sol)histicatNNl. 

" Allow the selection of interpolation schemes to calculate the acceleration at different 
times. 

5NAS'r2D uses a flag register for every cell to verify the identity (empty-, fluid- or surface cell) of the 

cell. 
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The interpolation modules developed by Kraft[63] using FORTRAN have been translated 
to C (see Section (A. 1.1.2) in the appendix for corresponding programme). The whole code 
has been rewritten to maximise computation speed with the set of parameters representing 
the interpolated function being calculated only once for a single simulation of the fluid flow. 

This code rewrite rather than a simple translation from FORTRAN to C was done because 

programmes translated by the programme F2C (FORTRAN to C converter, developed by 

David Gay (AT&T Bell Labs), Mark Maimone (Carnegie-Mellon University), Norm Schryer 
(AT&T Bell Labs) and Stu Feldman (Bellcore)) produces code which is up to 60% slower 
than the original code. 

The procedures allow the interpolation of data in six different ways. 

" Piecewise constant interpolation, 

" Piecewise linear interpolation, 

" Piecewise cubic interpolation, 

" Piecewise cubic exponential spline interpolation, 

" Piecewise cubic exponential spline interpolation, with tension parameters set by the 

user, 

" Akima's interpolation. 

Further details can be found in Kraft[63], deBoor[11] and Hilberg[49]. 

3.8 Accuracy of NAST2D 

In order to gain confidence in the representation of the free surface fluid motion using 
NAST2D various experiments were undertaken to verify the accuracy of the finite difference 

code NAST2D. In particular, a comparison has been undertaken between NAST2D and 
an off the shelf, commercial CFD-code. These calculations have been accompanied by 
experimental verification. Additionally some numerical investigations of NAST2D have 
been made. 

Initially a well known commercial CFD-code, FIDAP[30], was used to calculate the fluid 

motion for a given acceleration of the container, the results being compared to the predic- 
tions from NAST2D. 
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The comparison must be performed with the same computational model for both CFD- 

codes. The computational model of the physical process is limited by the differing limi- 

tations of the CFD-codes. On the one hand NAST2D is not capable of modelling surface 
tension, it is assumed to be zero. On the other hand FIDAP can only perform linear inter- 

polation for the approximation of an external force acting on a rectangular container filled 

with fluid. Therefore the fluid must have a very low surface tension. The liquid chosen for 

the comparison is glycerin. 

fx, fy 

force in X-direction 
1 

0 
free surface 

0.3 t[s] 

fluid 
-1 

X gravitational force 

Figure 3.6: Initial layout of the container and the profile of the applied forces. 

In Figure(3.6) the general, two dimensional layout of the container with the fluid region 
and the data for the forces acting on the fluid are given. 

The shown force profiles indicate a time independent gravitational force in the Y-direction, 

and a time dependent accelerating force in the X-direction. 

Due to the behaviour of the free surface several limitations had to be applied. Within FI- 
DAP, the mesh had to be spaced equally in X, Y-direction, resulting in a mesh consisting 
of 30 fluid filled cells in the X-direction and 12 fluid filled cells in the Y-direction. Addi- 
tionally the surface tension had to be specified, very small but greater than zero. Otherwise 
the liquid tended to stick at the boundaries and the distinct oscillating behaviour could 
not be observed at the boundaries. 

The external force impact on the fluid region finishes at t=0.3[s]. Afterwards the distur- 
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bance of the free surface will gradually decline. The calculations are performed in the time 

interval (0.0 <t<1.0[s]). Within this time the maximum amplitude is reached. 

Indicators for the movement of the free surface are the surface heights at the left and right 
boundary, changing with time. The transient amplitude heights of the free surface at the 
left and right boundary have been observed and plotted in Figures(3.7), (3.8). They show 
a distinct oscillating behaviour. 

Surlace amplitude at left boundary. 
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Figure 3.7: Amplitude at left boundary. Figure 3.8: Amplitude at right boundary. 

The different plots in Figures (3.7) and (3.8) for NAST2D and FIDAP are quite similar. 
The main feature, the wavelength is nearly the same over the whole time-period. The 

major difference is in the height of the maxima and minima. It can be observed that 

the sloshing within FIDAP is always smaller than within NAST2D. This is due to the 

representation and tracking of the free surface within FIDAP using spines. They are not 
as flexible as particles and can not follow large free surface motion particularly well. In 

addition the effects of the very small, but existing surface tension is another reason for the 
lower sloshing of the surface within FIDAP. 

In these early stages of the research a milling machine was used to simulate the motion 
of a small scale model. An experiment was undertaken to simulate the motion of a fluid 

within a 100[mm] x 100[mm] x 100[mm] cube accelerated by the working bed of the milling 
machine. In order to compare predicted results with reality, the motion has been captured 
with a video. Within this video, the position of the cube has been observed against a static 
grid in the background. This information has been used to calculate the motion of the free 
surface with NAST2D and to compare it with the motion within the video. 
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These experiments illustrated that, in most cases, even the amplitudes calculated by 
NAST2D are not as high as in reality. Additionally, the higher amplitudes predicted by 

NAST2D compared to FIDAP act as an additional safety margin against sloshing within 
the optimal control calculations. 

The calculations have shown that the simple finite difference code NAST2D is capable of 

obtaining the same results as the commercial CFD-code FIDAP for the specified sloshing 

case. Further investigations are necessary to get a broader view of the differences between 

the codes. It is clear that FIDAP is the more sophisticated CFD-code with a capability of 

solving a much greater variety of flow situations, whereas NAST2D can be faster and as 

good for a limited number of problems. 

In order to increase the accuracy of the finite difference code NAST2D several modifica- 
tions have been proposed and partially integrated into NAS'r2D. The code tracks the free 

surface with particles which are initially uniformly distributed over the whole fluid domain. 
Some investigations have been undertaken to estimate the influence of non-uniform particle 
distributions. 

Particle distribution 
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555"5555S N""""" 5555 """"""""" 

"""""""""N"""""""M""""""""" 

000000"001 1M00 000"S Ml I""0"""""" 
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Figure 3.9: Variation of particle distribution. 

In Figure(3.9) the investigated configurations, uniform distribution, sinusoidal distribution 
in the X-direction of the cube and sinusoidal distribution in the Y-direction of the cube are 
shown schematically. It has been observed that none of these special configurations resulted 
in a more accurate or faster calculation. It can be shown that the uniform distribution has 
advantages over the other distributions, because in the sinusoidal cases it can happen that 
some fluid cells have no particles. This situation can not be tolerated within the calculation. 
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In order to increase the accuracy of the surface amplitude results, two different modes 
have been programmed. The first mode is concerned with the CFD calculation within the 

optimisation, hence the principal aim is to run the programme as quickly as possible. Thus 

the information should be supplied with as little additional computation as possible. This 
has been achieved with the focus on the particles. The Y-coordinate of the particles in a 

specified boundary layer is stored and analysed, with only the Y-coordinate of the highest 

particle on both sides being stored for later processing. 

The second mode is concerned with the final calculation and generation of fluid motion 
data. Here the amount of information is important and the overall time for the calculation 
is of secondary interest. A second mesh was designed to cover the fluid domain. This mesh 
has no influence on the calculation. For surface tracking purposes the mesh cell size in 
X-direction is normally the same as the calculation mesh cell size. The spacing in the 
Y-direction is far more interesting and can be divided into user defined cell heights. 

To understand the behaviour of the code several parameter variations were undertaken to 

evaluate their influence on the motion of the fluid. 

The following influences have been investigated: 

" Mesh spacing in X- and Y-direction, 

" Filling state of surface cell, 

" Variation of magnitude of disturbance 

" Variation of time step control. 

The theoretical result for any given problem of sloshing in an open fluid filled container is 
the return of the free surface to its initial surface height, a result which should be achieved 
if no fluid sloshes over the vertical boundaries. 

However, the calculated results obtained from NAST2D proved that some variation within 
the amount of fluid occurred. This difference was always negative, being a loss of fluid. 
Based upon the experimental results using the investigated influences the following sum- 
mary can be stated. 

The deviation is proportional to the magnitude of the motion. A greater magnitude of 
motion gives greater variations in the velocity and pressure in the fluid domain, hence 
greater changes take place within any given time-step. 
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The more accurate the code is, in terms of time-step and domain decomposition, the smaller 
is the deviation of the calculated and theoretical results. The accuracy of the code is more 
sensitive to a broad mesh spacing in the X-direction than in the Y-direction. In general, 
NAST2D is capable of performing precise, accurate and practically comparable results. 
The accuracy of the results is dependant upon the configuration of the calculations (mesh- 

spacing, time step control) and are therefore proportional to calculation time. The better 

the results, the longer the calculation being taken to simulate the fluid flow. It has been 

observed that it is possible to achieve results within a bandwidth of 5% deviation in a 
moderate calculation time of about 60 seconds. 

The initial filling height of the surface cells has no influence on the accuracy of the calcula- 
tion. It is only an important parameter for the visualisation of the sloshing. The variation 
of the magnitude of disturbance revealed high sensitivity of the computational algorithm. 
The correlation between disturbance and sloshing behaviour is further discussed in Sec- 
tion (6.1). 

Additionally, it has been observed, that the maximum amplitude of the sloshing motion 
is less influenced by these accuracy features. Since the maximum amplitude is the main 
criteria for the selection of an optimal trajectory, the author is very confident in the ability 
of NAST2D to realistically simulate sloshing behaviour. 

3.9 Summary of fluid modelling 

This chapter has presented the theory of modelling of fluid flow, in particular modelling 
the special case of a fluid system with free surface motion. 

The specific approach, NAS'r2D, by Griebel et al. [45] for modelling a fluid motion with free 

surface has been described. To do so, basic fluid-mechanical theory has been illustrated. 
This included the representation of the Navier-Stokes equations and the theory of non- 
dimensionalisation in terms of dynamic similarity of fluid flows. 

The particular discretisation of the rectangular calculation domain and the time derivative 
are given. The calculation of the time step, using the SIMPLE pressure correction algorithm 
and successive over-relaxation has been illustrated. 

Some thoughts have been given to the representation and tracking of the free surface 
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within NAST2D. In order to integrate the fluid model within the optimisation of the cart 
trajectory, a module for using time dependent variable acceleration has been investigated 

and written for the code. It has been shown that the finite difference code NAST2D has 

all capabilities to simulate the required free surface motion. The specifications investigated 

and developed in Leonpacher[68] for the selection of the CFD-code have been adequate. 

In order to justify the use of the finite difference code NAST2D to model the behaviour 

of the free surface motion a final focus has been on the accuracy of the code. From these 
findings, the following can be concluded: 

" NAST2D is very much capable of simulating a free surface flow. 

" The accuracy of the obtained results is dependent on the fineness of the rectangular 
grid and parameters of the code. 

" The correlation between accuracy of the results and computation time of the algo- 
rithm is very advantageous, because the there is a potential to reduce the computation 
time with just a small loss of accuracy. 

These results have been the originator to base the further investigations of this work on 
the finite difference, computational fluid dynamics code NAST2D. 
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3.10 Nomenclature 

a, b dimension of the fluid domain 
f, f (f. " ff, fz) force, force vector with cartesian components (ff, fa,, fz) 

Fr Froude number 
g natural gravity 
i, j position within the CFD mesh in X- and Y-direction 

imaz, max number of fluid cells in X- and Y-direction 

L characteristic length 

r"n(mx my)T unit vector tangential to the free surface 
(n) current state of time 
(n + 1) future state of time t("+1) = t(n) + At 

n"(nx ny)T unit vector normal to the free surface 
N dimension 

p, Poo pressure, characteristic pressure 
R domain of real numbers 
Re Reynolds number 
S scaling factor 
t time 

u, ü(u, v, w) velocity vector with cartesian components u, v, w 
u" characteristic velocity, (within the calculations a mean 

velocity of the fluid within the cube has been used) 
x, x"(x) y, z) position vector with cartesian components x, y, z 

o, LOO, density, characteristic density 

µ dynamic viscosity 

w relaxation factor 
S2 domain, volume 
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Chapter 4 

Overall model of the fluid-mechanic 

system 

This chapter is concerned with the completion of the model process and the combination 
of the fluid and the structural dynamics. 

In order to do so a standard approach for modelling and solving the motion of the mechan- 
ical system is introduced. In particular the mechanical system is modelled using ordinary 
differential equations and solved with a Runge-Kutta scheme. 

Furthermore, two different methods for the combination of the models of the solid and 
the fluid mechanical system are studied. These methods are the approaches of weakly and 

strongly coupled systems. The investigations of these coupling approaches results in the 

selection of the appropriate scheme and the implementation of the scheme by the author. 

Finally the conclusion presents an overview on the properties and characteristics of the 

studied subjects within this chapter. 

4.1 Modelling of the mechanical system 

The modelling of the mechanical system is based on the simplifications introduced in 
Section (1.2.1). Due to the fact that observation of the fluid motion within a real world 
storehouse environment is very expensive, a small scale experimental rig has been used to 
evaluate experimental data. This rig can be accurately moved in two dimensional upright 

47 
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space, and as such reflects a motion domain similar to the main motion domain of a 
warehouse. The horizontal motion of the rig can be illustrated as in Figure(4.1). The fluid 

container is linked to a transmission belt and runs on a fixed track. This general model cane 

--w --- 
I. 

T 

x 

Figure 4.1: Illustration of the mechanical system. 

be transformed into a schematic model to represent forces, motion, weights and friction. 

4.1.1 Specific model of the experimental rig 

The cart is modelled as a cube, fixed with a spring and a damper to a device which is sliding 
with friction over ground. The friction between the device and the ground represents the 
friction on the track and the friction of the turning shafts. The spring and the damper 

represent the elasticity in the transmission belt. 

-44 Mo. 
Fr, 

s 
FIl 

zs zc 

Figure 4.2: Model of the mechanical system. 
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The following equations can be formulated to model the dynamic behaviour of the me- 
chanical system: 

(m, )z, = Ff1-k(z, -z3)-b(zc-zg) 
(m3)z8 = Fz-F�, -}-k(zc-zs)-}-b(z, -, z, ) 

(4.1) 

where m3, m, are the masses of the shaft-motor system and the cart respectively. The 

transmission belt is modelled using the spring coefficient k and the damping coefficient b. 

The accelerated fluid applies a force Ff, onto the container. Ffi is calculated and supplied 
by the finite difference code. The fluid force on the walls of the container is strictly based 

on the pressure difference between the left and the right boundary of the fluid domain. The 
following equation is used to calculate Ff, from the dimensionless variables of pressure p, 
vertical cellsize Ay and depth of the container z: 

jmax [(iimaxi RC2 ýZ 
Ff !_j -1ý1, j) Dy z] (4.2) 

60 j-1 

using the nondimensionalized variables illustrated within equation3.3, with use of 

Poo, =0 

equation (4.2) can be reduced to 

and Re = 
µ 

F=p. A. 

Within this context, j is the cell number in vertical direction, with jmax being the top 

cell row and i is the cell number in horizontal direction, with i=1 being the cell column 
at the left wall of the container and i= imax being the cell column at the right wall of 
the container. 

The friction of the cart on the track and the shaft of the motor result in F,, 9 = µ, ((m9 + 
mc)g + Ff1, y), where Fft, y corresponds to the weight of the fluid. 

This results in the following equations: 

(m, )zc(t) = Ffi(t) - k(zc 
, 
(t) - z3(t)) 

- b(zý(t) - zs(t)) 
(ms)28(t) = F, z(t) - µs((ms + m, )9 + Fi1, y(t)) 

+ k(z, (t) - z, (t)) + b(zý(t) - z9(t)) 
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These equations are used to form a system of first order ordinary' differential equations 
(ODEs) with zi = z, z2 = zc, z3 = zs and z4 = is: 

Z1 = z2 

Z2 = (mac) 
(Ff1 

- 
k(zl - z3) - 

b(z2 
- Z4) 

(4.3) 
z3 = z4 

Z4 =1 (Fx 
- µs ((m3 + mc)g + Ff1, 

v) 
+ k(zi 

- z3) + b(z2 -- z4) 

Ma 
This system of ODEs must be solved to know the motion of the shaft and the cart with 
the fluid container, based on the external force on the system and the pressure force of the 

fluid at every single time step. 
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4.1.2 Mechanical motion solved with Runge-Kutta 5 (4)° 

The motion of the mechanical system is generally regarded as an initial value problem. 
There are many algorithms capable of solving such a problem. They are classified into 
'start'-techniques and 'follower'-techniques. The 'start'-techniques like Euler-Cauchy or 
Runge-Kutta solve a system of ordinary differential equations as the name implies from 

the start. Whereas the 'follower'-techniques like the Milne-procedure rest upon an initial 

solution of a 'start '-technique to calculate additional points with lower computational costs. 

In general, the system of ordinary differential equations according to equations (4.3) can 
be formulated as an initial value problem 

z(t) = ¢(t, u(t), z(t)), z(to) = zo, (4.4) 

using the time derivative z(t) and initial conditions zo. 

To solve the ordinary differential equations of the problem of cart motion with a sloshing 
fluid, a 5-ary Runge-Kutta procedure according to Fehlberg[27] has been implemented'. 
This is well proven because of the accuracy, robustness, general simplicity and wide use 
(see [72] [83] [104]) of these procedures within mathematical programming. 

The general form of this Runge-Kutta procedure with integrated step control can be for- 

mulated as 
i-1 

ýti =¢ tk + aihk, zk + hk E, 
ijOj ti = 1, ... )q7 

(4.5) 
j=1 

a 

Zk+i = zk + hk E ryici" (4.6) 
i=l 

These procedures consist of equations of order p and q, where q>p (in general q=p+ 1). 
The coefficients aj, ßzß and 'y characterise the Fehlberg Runge-Kutta equations. See Tables 
(4.1,4.2) for the values of these coefficients. 

In equations (4.5) and (4.6) hk is the step size, zk and zk+l are the approximation to the 
solution of equation (4.4) at times =tk and tk+1 = tk + hk. The step size hk is set by a 
comparison of the actual error to the admissible error. To do so, 6(tk) is calculated using 

°Runge-Kutta 5(4)means, that the solver is of order 5 with an error correction procedure of order 4. 'See Section A. 1 for C-implementation. 
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the coefficient set yi and the solution ¢; of equation (4.5) 

5(tk) = hk 'ici" 

i=1 

This actual error is compared with the admissible error T(tk) >0 using the following 

approach 
i 

T n+l 
hk = min 

[hmc 

, ahk_1 aý , 
(4.7) 

where the hm = s(tf - to), aE (0,1]2 and p=4. 

Z ai 

0 0 

1 1 
2 

4 4 
3 3 9 

3 
8 32 32 
12 1932 7200 7296 4 
13 2197 2197 2197 

439 3680 845 5 1 _8 2 66 513 4104 
1 8 3544 1859 11 6 2 
2 27 2565 4104 40 

Table 4.1: Coefficients for Runge-Kutta RK5(4) formulation 

4.2 Verification of the mechanical system modelling 

The dynamics of the mechanical system within the experimental rig could only be measured 
approximately. The main problem of the specifications of the dynamics is the separation 
of the dynamics of the servo motor input side and the servo motor output side. 

21n general MATLAB[72] uses a=0.8. 
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i123456 

16 6656 28561 9 
ryy 135 

0 
12825 56430 50 

1 128 2197 1 2 
ry' 360 

0 
4275 75240 50 55 

Table 4.2: Weighting-coefficients of the Runge-Kutta procedure RK5(4) by Fehlberg 

The main components of the dynamic system of the controller and actuator of the ex- 

perimental rig are shown in Figure(4.3). The values of the gains (K, Kd, KQ, K, Kp) are 

studied in Section (4.2.1). It was possible to observe the following data: 

" Command input at the motion controller. 
(qualitatively) 

9 Encoder counts from the encoder mounted on the servo motor. 
(qualitatively) 

9 Visual video data from the motion of the cart and the fluid. 
(quantitatively) 

The information from the command input, if fully decoupled from other influences can be 

given accurately. The information from the encoder is a mixture of several physical influ- 

ences. These influences correspond to the responses of the motion controller, the amplifier, 
the servo motor and the plant. 

The visual video data from the motion of the cart and the fluid can supply a quantitative 
answer to the general questions of: 

" Has the correct cart motion been performed? 
(Start point, final point 

" Has the fluid motion responded in the calculated manner? 
(Sloshing behaviour, amplitudes of the fluid, frequency of the fluid) 

The motion of the cart and the fluid is very quick. The optimal motion needs only 0.5[s] 
from the start point to the destination. A standard video capture allows only 26 pictures 
per second recording time. That means that there are only 13 pictures available for the 
whole movement. The results obtained from these captures are therefore not very accurate. 
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Motion Controller Amplifier--- 
_-_-__ 

Servo Motor 

+K (s-A/256) 1/Ký 
4 (s+ B/256) ZOH KKa 

mom`s+I} s 

----- ---------------------------------------------- ---- ------------ 
Velocity Feedback 

K 
V 

Position Feedback 
Kp 

--------------------------' 

Figure 4.3: Block diagram of servo-rig control scheme. 

But the general questions, which have been given before, can be answered uniquely due to 
their nature of having only two results: true or false. 

The controller, amplifier and servo motor system used in this experimental rig has been used 
before. Osypiw[82] has modelled and evaluated the characteristic dynamics of the system. 
This information enables work to be undertaken on the specific problem of fluid container 
motion. To use his informations, a computational model of the controller, amplifier and 
servo motor has been built with the help of MATLAB and SIMULINK. 

4.2.1 SIMULINK modelling of the servo control system 

The first model built was for the complete control of the servo motor. This includes the 

motion controller, the amplifier and the servo motor dynamics. Figure(4.4) shows the layout 

of this dynamical system. 

Several values are set by the hardware of the system (cf. to Figure(4.3)). The digital 

analogue converter (DAC) generates a voltage (±5 volts) proportional to the filter's output, 
the gain Kd is calculated by: 

_ 
10 

_2" 
voltage output of DAC 

_ Kd 
256 number of bits for DAC - 0.039 
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Figure 4.4: SIMULINK representation of the servo-rig control. 
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output. mat 

Data 

Position 
Scope 

Position feedback gain Kp is dictated by the resolution of the encoder employed. The 

encoder output is proportional to the motor angular position. For the encoder used in the 

experimental rig, the position feedback gain corresponds to: 

K_ 
4000 

_ 
encoder counts 

_ 636.6 
2ir per revolution 

The compensator filter values of filter gain K, zero value A and pole value B have been 

set on the findings of Osypiw[82]. He observed detrimental effects on the trajectory of 
the servos outside the limits of 30 <K< 65. Furthermore the controller has been found 

sensitive to changes outside the following limits of A, B: 235 <A< 256,100 <B< 256. 

The sampling period (t) is set by the sample timer register of the controller, using the 
following formula: 

t= 16(T -I-1) 
1 

2 MHz 
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where T is the contents of the controller's time register, which is set by the user, whilst 
the 2 [MHz] is the frequency of the computer's clock. Experiments with various sampling 
times revealed that the controller remains stable with sampling times up to 0.41 [msec], 

which is a register value of 50, beyond this limit the system becomes unstable. 

The Max-250 pulse width modulator amplifier with the amplifier gain Ka,, which has been 

used within the experiments must be set manually and cannot be set by software. The Ka, 

gain is adjusted so that the motor rotates at the appropriate speed relative to the input 

signal. 

For the model simulation, the gain of the transfer function of the servo motor is not known. 

It is set to one and the amplifier gain is used to adjust the system. The mechanical time 

constant Tm is found experimentally so that the system becomes unstable at sampling 
times greater than 0.41 [msec]. 

These values have been used to set up the system of the the motion controller, the amplifier 
and the servo motor dynamics. 

The following data has been generated for the given configuration of the servo motor 

control: 

" Input acceleration, velocity, position. 

" Final output velocity, position. 

" Velocity difference of input and output velocity. 

" Position difference of input and output position. 

These findings are illustrated in Figure(4.5). 

A trapezoidal acceleration profile is used as the excitation of the system. The corresponding 
position profile for this movement is also given. Because the servo control system is based 

on position control, the error for the position is therefore quite small (note the logarithmic 
time scale). The position error is smaller than 2% from time 0.05 [s] on. The velocity 
error is more severe on certain points in time. This behaviour is expected, because the 
acceleration changes with an infinite slope at these points. The behaviour generated by the 
simulation with these configurations can be observed and compared with the experimental 
rig. In particular, that the position can be reached with a maximal error of ±1 encoder 
counts of the servo motor. Additionally, there is no oscillation of the servo at the desired 
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Figure 4.5: The dynamics of the servo control unit. 

position. 

4.2.2 SIMULINK modelling of the servo-cart system 

57 

A second model has also been built to model the servo output system. This includes 

the mechanical elements of the experimental rig configuration. In particular the spring 

and damper model of the transmission belt, the interaction of the various masses and 
the disturbance of the fluid. The properties of this dynamical system are illustrated in 
Figure(4.2). Figure(4.6) shows the layout of this dynamical system which again has been 

modelled within SIMULINK. 

4 

N 
2 

0 

U-2 
U 
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Figure 4.6: SIMULINK representation of the servo-rig control. 
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The plant dynamics are ordinary differential equations based on the model and equations 
given in Section (4.1.1). The following parameters must be set: 

" The spring coefficient k of the transmission belt. 

" The transmission belt damping coefficient b. 

" The mass me of the servo shaft and joint shafts. 

" The mass m, of the cart. 

" The mass m f, of the fluid. 

A step input force in the motion controller combined with an oscillating force, generated 
by the fluid has been used to simulate the behaviour of the transport-cart system. The 

response of this system can be observed in Figure (4.7). Here the initial input acceleration, 
the corresponding actual acceleration of the cart and the velocity difference of servo output 
and cart motion are shown. 

To calculate these results the following settings for the parameters of the experimental rig 
have been used. The container is 80 % filled with water, resulting in a mass of m f, = 0.8 [kg]. 
The shaft of the servo motor and the joint shafts have a mass of m3 = 0.45 [kg]. The cart 
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Figure 4.7: Simulation results of the warehouse. 
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and the container have a mass of m, = 2.55 [kg]. The spring coefficient of the transmission 
belt is approximated with k= 350 [N/m] and the damping coefficient with b= 110 [kg/s]. 

These values result in a representation of the plant mechanics. These dynamics represent 
the stiff mechanics of the experimental rig. 

4.3 Combination of both models of dynamics 

In the case of trajectory optimisation of a fluid filled container the combination of the 

model of the fluid motion and the mechanical system is the essential part to be performed. 
This is essential since the dynamics of the mechanical system and the dynamics of the fluid 
interact and influence each other. Within the combination of the dynamics two different 

strategies can be distinguished, weakly coupled systems and strongly coupled systems. 
Both approaches will be described in detail. 

Additionally, the simulation of the fluid motion and the mechanical system and their 
combination has to suit the optimisation procedure which will be used. The general focus 
is on an optimisation procedure which is only interested in a sloshing behaviour in reaction 
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to a specific parameter setting and its calculation. 

The overall optimisation strategy can be observed in Figure(4.8). An initial set of parame- 
ters (x°) is fed into some modelling and simulation module of the solid and fluid mechanics. 
Here the response of the mechanical system and the fluid motion due to their characteris- 
tic transfer functions and mathematical descriptions is calculated. The simulation module 
supplies information such as the amplitudes of the surface at the boundaries (fun(xc)), 

the violation of the constraints (g(xk)) and their gradients (Vfun(xc), Vg(xc)). Before 

this information is used within the optimisation module, it can be observed and modified 
if necessary through the user interface. 

Input: x° 

Simulation: 
Input: xk 
NaSt2D - fluid motion (PDE) 
RK4(5) - mech. system (ODE) 
Output: fun(xk), Vfun(xk), g(xk), Vg(xk) 

------------------- 

Interface 
-------------------- 

Optimisation: 
Input: fun(xk), Vfun(xk), g(xk), Vg(xk) 
MATLAB SQP-Algorithm 
Output: xk+l 

kE-k+1 

Output: x* 

Figure 4.8: Optimisation strategy. 

The optimisation module utilises a hill climbing technique to determine the alterations on 
the parameter values of the acceleration profile and the time. The step-direction and the 
step size can be calculated due to the gradients of the function and the constraint viola- 
tions. In comparison an evolutionary algorithm could be used as well. In Figure(4.8), a (0) 
indicates initial predefined values, (k) indicates a set of parameters within the optimisation 
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cycle and (*) denotes optimised values. 

The control parameters for the mechanical system (e. g. time function of shaft-angle or num- 
ber of revolutions) are influenced by the acceleration profile for the calculation of the fluid 

motion and vice versa. There are two main strategies which can be followed to simulate the 

combination of the fluid motion and the mechanical system. The first simulation strategy 
involves alternating computation of the fluid motion and the mechanical system with cross 
interaction of the calculated results. In general the simulation using such a routine will 

converge with an increasing number of alternating calculations. This can be described as 

weakly coupled approach. 

The second approach solves alternating the fluid motion and the mechanical system within 

each time step of the calculation of the fluid motion. In general the simulation using such 

a routine will converge with a decreasing time step size within the calculation of the fluid 

motion. This latter approach can be classified as being strongly coupled. Each strategy is 
discussed in detail as follows. 

4.3.1 Weakly coupled combination strategy 

The calculation of the response of the overall system is illustrated in Figure(4.9). The 

simulation of the mechanical system and the fluid motion uses a direct shooting method 
to determine the response of the system due to its stimulus. This can be formulated as an 
initial value problem (IVP). The steps are as follows: 

Step 1. An acceleration distribution, whether supplied initially from the user or by the 
optimisation module drives the solid mechanical system, where the fluid is modelled 
as a rigid body. The IVP solver calculates the response of the mechanical system and 
passes the slightly altered acceleration profile to the next step. 

Step 2. The updated profile is used to determine the reaction of the fluid, the pressure 
distribution and the force impact on the walls of the container due to the dynamics 

of the fluid flow. 

Step 3. With the information of the influence of the fluid on the mechanical system, 
the model of the mechanical system can be simulated again. The initial acceleration 
profile changes once more. This time with the fluid flow information gained via using 
the acceleration profile calculated within the 18t step. 
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Step 4. The objective function and the most important constraint of not sloshing over, 

can only be calculated while simulating the fluid motion. Therefore the final simula- 
tion of the overall system must involve the fluid dynamics. This calculation uses the 

new acceleration profile gained after step (3). 

Initial acceleration profile 

Simulation of the mech. system 
fluid modelled as a rigid body 

Simulation of the fluid 

Simulation of the mech. system 
fluid modelled with force-distribution 

next parameter 

Simulation of the fluid 

Figure 4.9: Combination of the dynamics. 

This integrated strategy of weakly coupled alternating simulation of the fluid motion and 
the mechanical system results in an iterative process. The accuracy of the resulting sim- 

ulated overall model is dependent, on the number of iterations. The error of the result 
decreases while increasing the number of iterations. 

After four single simulations, the mechanical system has influenced the fluid motion and 
vice versa. In Section (4.3.3) results are given concerning the accuracy of the simulation 
module when using two simulations of the mechanical system and two simulations of the 
fluid motion (illustrated in Figure(4.9)) or only one simulation of the mechanical system 
and one simulation of the fluid flow starting one step later in Figure(4.9). 
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The first two simulation steps of Figure(4.9) can be skipped within one iteration of the 

optimisation algorithm because the alterations within the parameter variation to obtain 
gradients for each parameter are very small. This is only true for the case that the effects of 

a slight alteration on the acceleration will not influence the behaviour of the fluid rapidly 

while simulating the mechanical system. 

However, within the optimisation algorithm a fundamental problem is the evaluation of a 

new set of parameters based on the information obtained from previous calculations. The 

way this information is provided and their contents are crucial. Therefore it has to be ex- 

amined whether this weakly coupled approach of alternating simulation gives a sufficiently 

precise result. 

4.3.2 Simultaneous, closed coupled simulation 

In this approach the mechanical system is solved within every time-step of the simulation 

of the fluid motion since the time step within the computation of the fluid motion is very 

much restricted. The time step within the fluid simulation is calculated depending on the 

velocity of the particles within the fluid. The particles are not allowed to travel more then 

the size of a single mesh cell within one time step of the fluid simulation. Hence the time 

steps in a transient computation are quite small, and the variation within the mechanical 
system can only be very small. Additionally the properties within the mechanical system 

can instantly influence the fluid motion. It is for these reasons that this approach is defined 

as a close coupled approach. 
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Fft (tti+i) 
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Figure 4.10: Computation sequence. 

The computation sequence shown in Figure(4.10) illustrates the implemented simulation of 
the overall system. Here the calculation of the solution to the ordinary differential equations 

and the layout of the fluid motion are performed simultaneously. It can be seen that they 

are influencing each other within each time-step of the simulation of the fluid motion and 
the values of the various forces are updated from one time-step to the next. 

The dynamic model shown in Figure(4.2) illustrates the previously used forces and defi- 

nitions in one spatial direction. The excitation of the mechanism is represented with the 
force F2. The movement of the fluid results in a secondary force Ffl. There is additional 
friction Fr, h due to the weight of the mechanism and the fluid, and the fluid dynamics. The 

movement of the container is represented with z,, z,, z,. 

The procedure was programmed in the programming language C (See Appendix(A. 1.1.3) 
for a printout of the code). This procedure was used within the calculation of the mechanical 
system (ordinary differential equations) as part of the fluid motion solver NAST2D. 

4.3.3 Performance study of model integration schemes 

This section focuses on the performance of the two different combination approaches of the 
calculation of fluid and mechanical system. The two approaches are: 



CHAPTER 4. OVERALL MODEL OF THE FLUID-MECHANIC SYSTEM 65 

1. Weakly coupled approach which consists of alternate calculation of the two models, 
hence a sequential exchange of the influence of the properties of the two models. 

2. Closed coupled approach of integrated calculation of the two models, thus a parallel 
exchange of the influence of the properties of the two models. 

These two approaches have been compared to distinguish differences and preferences. 

It has been intended to use the practical application of the strategies within an optimi- 
sation algorithm as a base for the comparison. Therefore not only the accuracy and the 

computation time of a single component calculation has been compared, but also the use 

within the iterative process of the optimal control calculations. This has been done due to 
the possibility of the re-use of information already gained and the possibilities of parallel 
computing within an optimisation procedure. 

Based on these definitions and goals, some properties have been specified to compare the 
two approaches. All computations are based on the same configuration of the mesh and the 

mechanical system and they are all performed on the same machine. This is necessary to 

guarantee comparability of the results achieved. The performance of the strategies is not 
dependent on these specifications. The closed coupled approach is used as the reference 
calculation for the weakly coupled calculation due to the greater accuracy of this approach. 
Its accuracy parameter, the time step of the transient fluid motion, has not been changed 
within these calculations. The properties summarised in Table (4.3) are as follows: 

" Single component calculation. 
One single calculation of the weakly coupled approach ( ODE PD]) is compared 

to one combined closed coupled approach ([ 
PDE 

]) calculation. 

" Eight parameters, high accuracy. 
The calculation is based on a sample calculation within the optimisation. In this 
sample calculation it is said that seven parameters and the overall time of the motion 
have been specified to interpolate the acceleration of the cart. Hence in each iteration 
of the optimisation eight values must be varied and their change must be observed. 
Therefore the single component calculation must be multiplied by eight. 
Additionally in order to get high accuracy, the single component calculation of the 
weakly coupled approach must be performed twice to enable the fluid to influence the 
mechanical motion and vice versa. This results in the following calculation procedure 
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ODE PDE ODE PDE. 

" Eight parameters, low accuracy. 
This comparison is similar to the previous one, in terms of the specification of the 

parameters and the calculation of the closed coupled approach. Within the weakly 

coupled approach two different calculation procedures are used. 

1. ODE PDE HODE PDE 1 procedure for one acceleration parameter and the 

overall time of the motion. These calculations are used as an initial guess for 

the calculation of the other six acceleration parameters. 

2. Single ODE PDE I calculation with the initial guess from the first procedure 
for the remaining parameters. 

This strategy assumes that the change within the parameter variation is small and 
therefore the influence of the fluid onto the mechanical system and vice versa is very 

similar for every varied parameter within one iteration. 

" 2/4/8 processors. 
These calculations are based on the use of a parallel processor. The eight calculations 

within one iteration of the optimisation are distributed to a changing number of 

processors. Three different types are examined theoretically, they are: the use of two, 
four or eight processors. The calculation within the weakly coupled approach is based 

on the strategy described in: Eight parameters, low accuracy. 

The values in column two and three are the calculation time of the CPU in [s] of the 

previously decribed strategies and approaches. Column four illustrates the time correlation 

of the two main approaches of weakly coupled ( ODE PDE) and closed coupled ([hl]) 

calculation. The smaller value indicates the faster calculation. 

ODE PDE 
PDE 

] Time-rate 

Single component calculation 46.00 47.76 0.96: 1 
Eight parameters, high accuracy 736.00 382.08 1.93: 1 
Eight parameters, low accuracy 460.00 382.08 1.20: 1 
2 processors 230.00 191.04 1.20: 1 
4 processors 138.00 95.52 1.44: 1 
8 processors 92.00 47.76 1.93: 1 
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Table 4.3: Computation time in CPU [s]. 
0 

Within Table (4.3) a comparison of weakly and closed coupled calculation of the fluid- 

structure interaction performed on different calculation platforms is given. The values 
indicate, that the closed coupled calculation is advantageous in most applications. 

Based on the accuracy of the closed coupled approach the author investigated the improve- 

ment of accuracy within the weakly coupled approach. For this purpose the single weakly 

coupled calculation procedure ODE PDE has been repeated up to four times, using the 

previously calculated results as an initial guess. The resulting motion has been compared 
to the motion of the closed coupled approach. A deviation from the results of the closed 
coupled approach has been calculated and plotted in Figure(4.11). 
The weakly coupled calculation procedures can be illustrated as follows: 

" 1. Calculation ODE/PDE 
ODE PDE 

" 2. Calculation ODE/PDE 
ODE PDE HODE PDE 

" 3. Calculation ODE/PDE 
ODE PDE HODE PDE HODE PDE 

" 4. Calculation ODE/PDE 
ODE PDE HODE PDE HODE PDE HODE PDE 

In Figure(4.11) a comparison is shown between alternating and integrated simulation. The 
integrated simulation has been used as a referencing calculation. The deviations of the 
alternating simulation after one, two, three and four cycles of ODE/PDE calculations 
compared to the integrated simulation, in percent of the integrated simulation, are shown. 

4.4 Selection of the overall modelling strategy 

The modelling of the fluid motion and the mechanical system are based upon standard 
approaches. Since the optimisation is an iterative process, needing possibly an extremely 
large number of computations the main focus has been on a balance between accuracy 
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Figure 4.11: Accuracy of alternating compared to integrated calculation. 
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and simplicity of the models. It is clear that this aim is quite difficult to achieve since free 

surface modelling is quite demanding in terms of computation time and accuracy. 

The data in Table (4.3) and the graphs in Figure(4.11) illustrate quite comprehensively that 
in each practical computational application the integrated closed coupled simulation is able 
to perform a more precise result quicker than the alternating weakly coupled simulation. 
Therefore the author has used this type of closed coupled approach for the optimal control 
calculations of the minimal time trajectory. 

Due to the importance of simplicity and computational speed the author combined the 

models of fluid flow and mechanical system into one software code. In particular the closed 

coupled approach is implemented in a way that the transient calculation of one of the 

models is split into several sub-intervals to be processed within each time step of the other 
transient model. For reasons of lower data storage, the mechanical model has been split 
into sub-intervals and integrated within the calculation of the fluid motion. 
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4.5 Nomenclature 

A digital filter zero 
b coefficient of the damper 
B digital filter pole 
k coefficient of the spring 
fun function vector of the plant 
F general force vector 
Ffi fluid force 

Fr, 3 friction force of the slider 
Fz external force 

g natural gravity 
h iterative step 
k iteration level 

K gain 

m mass 
p, q order of Runge-Kutta equations 
s domain operator 
t time 

T time constant 

x, x (x, y, z) position vector with cartesian components x, y, z 

x vector of control or design parameters 
z, z, z position, velocity, acceleration in the horizontal direction 

of the conveyor system 
ai, ßß, j, 'y coefficients of the Runge-Kutta equations 
ö actual error 
At time step 

As friction coefficient of the slider 
functions, in general 

T admissible error 
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Chapter 5 

Simulation and Optimisation 

This chapter is concerned with the application of the optimisation to the overall model of 
the fluid-mechanic system investigated in Chapter (4). 

The general properties, structure and rudiment to solve the optimisation problem is dis- 

cussed and illustrated. For this purpose the optimal control problem is transferred to a 

non-linear programming problem. This involves the introduction of control parameterisa- 
tion, approximation and solution of the initial value problem. 

Additionally the specific optimisation procedure of sequential quadratic programming is il- 
lustrated. The essential details are the solution to the quadratic programming sub-problem, 
the update of the Hesse matrix and the specification of the merit function. 

5.1 Simulation of the overall model 

Simulation is, first of all, to make experiments with a model; moreover, computer simulation 
is experimenting with the mathematical model. The reason why computer simulations have 
become so popular are their advantages for gaining insight into system properties. Such 

advantages as 

" Fast turnaround and low cost investigations, 

" No risks or danger as with experiments on the real cart or vehicle. 

In particular, simulation models are needed for 

70 
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" Early stage basic design considerations such as estimation of the approximate dy- 

namic behaviour of alternative concepts based on simple models; 

9 Design and optimisation of system performance based on more involved but still low 

order design models; 

" Evaluation of the performance of the final design, e. g. running stability, critical ve- 
locities, curving ability, force levels; 

" Prediction of experimental and field test results to assist in the design of test sched- 

ules. 

Up to now, the possibilities of mathematically representing the physical properties and 
interactions of the cart and the fluid have been detailed. This led to the formulation of a 
model for these systems. 

Within this project, simulation is the link between the model and the optimisation. The 

simulation gathers the information about the plant determined and fixed within the model 
and the control. This information is processed to calculate specified characteristic values of 
the plant. This new information can be further processed by the optimisation to generate 
and calculate optimal values for the control. 

5.2 Structure of the optimisation 

The general structure of the simulation and optimisation procedure is shown in Figure(5.1) 

and can be described by the following steps: 

Step 1. Get an initial parameter set. 
This initial parameter set contains several value pairs of time and amount of acceler- 
ation at the specific time. The minimum number of pairs is four and the maximum 
number should not be greater then twenty, to avoid extensive calculations within the 
iterative optimisation procedure. 
This initial parameter set must be within the boundaries and limitations of the op- 
timisation. 

Step 2. Change the parameter set due to the optimisation scheme and the optimality 
criteria. Due to the actual optimisation scheme one or several different sloshing ac- 
tivities have to be calculated. 
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Figure 5.1: General optimisation structure. 
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Step 3. Optimise the error measures on the constraints. There are limitations on the 

velocity, the acceleration and the distance of the container and the fluid within the 

container. The overall time of the transport can be limited as well. 
To reach a predefined point within the automized warehouse certain values based on 
the acceleration profile have to be kept to. The achievement of these values, defines 

the optimisation of the error measures within this context. 
The first limitation defines the resulting distance, based on the change of the velocity 
in time. The second limitation assures that the container is without any motion after 
the predefined point has been reached. 

Step 4. Calculate the sloshing response due to different sets of parameters. 

Step 5. Based on the previous outcome of the sloshing calculations choose next general 
optimisation direction and start again at Step (2). If a predefined error measure is 

achieved, terminate the optimisation and return the optimised values of the param- 
eters and the sloshing data, together with the values of different error measures to 
the user interface. 
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The alteration of the parameter set and the minimisation of the error measure are part of 

some optimisation routine. A finite difference code, named NAST2D[45] has been chosen 
Leonpacher[68] to calculate and simulate the specific sloshing. The code has been altered 
by the author to embed the physics of the problem and to create an interface for the 

exchange of sloshing and parameter data. 

5.3 Optimal control problem (OCP) 

The optimisation problem needs to be formulated mathematically, allowing computation 

of cost function and constraints via numerical algorithms. The model for the motion of the 

cart and the fluid flow, and their interaction has been investigated in the previous chapters. 

The formulation of the modelling problem illustrates the separation of two different models. 
The influences in the specific case of trajectory path planning for open fluid filled containers 
are separated into the effects within the fluid described by the velocity vector u= (u, v) 

and those in the mechanical system providing the movement in the coordinates x= (x, y). 

The general optimal control problem is formulated as the minimisation of a real-valued 

objective function subject to the differential constraints', appropriate boundary conditions 

and algebraic state or control constraints by proper choice of control function u(t) and 
design parameters, e. g. the final time b= tb. 

In the case of optimal control of sloshing liquids, the optimal control problem (OCP) will 
be formulated as follows: 

10rdinary differential equations (ODEs) and partial differential equations (PDEs) 
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OCP 
6 

min 0(t, z(t), u(x, t), u(t))dt + O(z(a), z(b), u(x, a), u(x, b)) fa 
subject to 

d 
z(t) - fun(t, z(t), u(t)) 

T +(u"V)u+Vp- 
1 Au 

div(u) 

ginequality(z(t), u(t), t) 

gequality(z(a), z(b), u(x, a), x(a)) 

=0tE [a, b], (5.1) 
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=FtE [a, b], 1C Sl (5.2) 

=0tE [a, b], Sta CQ (5.3) 

>0tE [a, b], (5.4) 

=0 xEQ, 0 CR2. (5.5) 

where equations (5.1-5.3) describe the differential constraints on the system. In particular, 
(5.1) represents the mechanical system using ordinary differential equations and (5.2,5.3) 

represent the Navier-Stokes equations modelling the fluid flow where Re is the Reynolds 

number. 

The algebraic state or control constraints are given in equation (5.4). There are limitations 

on the control due to the physical limitations of the motors driving the cart: 

Umgin <_ u(t) <_ Umax, VtE [a, b]. 

The size of the warehouse or the small scale model defines the boundaries for the state 
constraints. Additionally the limitation for the liquid not to slosh over is specified: 

Zmin :5 z(t) :5 Zmax, 

y(t)ýý_o <_ h, y(t)Ix=a < h, VtE [a, b]. 

The layout of the surface at a= ta and the velocity and location of the cart at (a, b) need to 
be specified. Figure(1.4) illustrates the free surface within the container at some time-step 
(ti, t2 > a); the initial distribution of the fluid is as a horizontal surface. This is specified 
within the boundary conditions: 

y(a) = Ya, y(b) = Yb, 

u(x, a) = ux, a,, x(a) = Xa,, VxEQ, S2 C R2. 

In general SZ denotes a feasible domain for the fluid and 1Z a sub-volume of the fluid filled 
region in which the Navier-Stokes equations are solved. 
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Equations (5.1-5.3) describe the continuous optimal control problem (OPC) of the minimal 
time transport of an open topped fluid filled container. Only for special cases of the govern- 
ing equations a solution can be found to OCP. The next section focuses on the development 

of a representation of OCP to solve the problem iteratively. 

5.4 Solving (OCP) with nonlinear programming (NLP) 

The model for the motion of the cart and the fluid flow, and their interaction has been 

investigated. If these governing equations had been linear, an algebraic single iteration 

solution could have been found. However, the model-equations for the mechanical system 

and the fluid flow are highly non-linear, hence an numerical iterative algorithms must be 

used to calculate an optimal solution. This section investigates and develops a strategy 
to represent the OCP in an iteratively solvable problem formulation. The optimal control 
problem is generally a continuous problem and must be transformed into an iterative 

procedure to be solved. 

In Chapter (2) some optimisation strategies have been discussed to find an optimal solution 
for the given problem. Two major differences between the optimisation schemes can be 
found. 

1. Optimisation schemes, which do not use information of the curvature of the surface 
of parameters to be optimised (e. g. genetic algorithms) 

2. Optimisation schemes, which do use information of the curvature of the surface of 
parameters to be optimised (e. g. hill climbing techniques) 

In general random initial parameter settings are used within an algorithm of the first 

category. Within the feasible domain of the parameters several settings will be used to 

calculate an intermediate solution. This very large amount of intermediate solutions is 

used to extract improved parameter settings to be worked on within the next iteration. 
This system provides solutions from within a huge solution domain, hence such algorithms 
do usually not get caught within local optimal solutions. However the calculation of a 
global optimal solution is very cost intensive. The experience of the author leads to the 
following conclusion: In general it is more likely that an algorithm of the first category 
reaches finally global optimised values due to their search characteristics, compared to an 
algorithm of the second category. 
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The main difference between an algorithm which does not use information of the curva- 
ture of the surface of parameters to be optimised and one which does use information 

of the curvature of the surface of parameters to be optimised shall be illustrated using 
Rosenbrock's[96] banana function. 

qS(x)=100(y-x2)2+(1-x)2 

Using a genetic algorithm by Goldberg[42] it was shown that the known minimal value 
q5(x) =0 at (1,1) can only be reached with a very high error tolerance of order (0-1) 

when using the same amount of function evaluations when compared with an algorithm of 

category two, which uses curvature information. 

The comparison calculation was performed in MATLAB using the following command: 

x=fmins('100*(x(2)-x(1)"2)"2+(1-x(1))"2', [-1.2 11, [1,1. e-81); 

which required 225 function evaluations. The result has an error tolerance of order (0-$). 
The search method fmins is a direct search method that does not use numerical or analytical 
gradients. 

Therefore the first group of mainly evolutionary algorithms must be neglected due to their 

extensive use of function evaluations. In the illustrated problem of sloshing water these 
function evaluations are very cost intensive in terms of calculation time. 

Due to the complexity of the equations a direct shooting method will be used which is 

more robust in comparison to collocation or multiple shooting methods. Robustness is an 
essential requirement for the illustrated aim of minimal time movement of a cube with 
sloshing fluid, because of the highly non-linear structure of the Navier-Stokes equations. 
In addition, due to the complexity of the problem, direct shooting is easier to apply within 
MATLAB. The structure and implementation of the direct shooting method is shown in 
Figure (5.2). 
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The optimal control problem is solved itera- 

tively including the following steps: 
1. control parameterisation 
2. control approximation 
3. solution of initial value problem (IVP) 

4. iterative procedure 
This will result in a replacement of the opti- 

mal control problem (OCP) by a non-linear 

programming problem (NLP). 

Optimal values 

Figure 5.2: Applied optimisation structure. 

5.4.1 Control parameterisation 

The infinite optimal control problem must be converted to a finite dimensional problem by 

introducing a finite set of control parameters (x) representing the infinite control function 

u(t), to be able to solve the OCP. 

The resulting non-linear programming problem NLP will be solved using commercial nu- 

merical software for finite dimensional optimisation like sequential quadratic programming 
(SQP) (also known as iterative quadratic programming, recursive quadratic programming 

and constrained variable metric methods). The following equation describes the NLP for- 

mulation: 
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NLP 

min O(x) 
xER" 

x 

subject to lb < g(x) < ub 
A. x 

The continuous control function u(t) is approximated by a vector of control parameters 

x. The differential constraints represented by A and bounded with lb and ub are solved 

with initial values C(a), v(x, a), where C(t), v(x, t) are the approximation to z(t), ic(x, t) 

respectively. Additionally the state and control constraints g(x) must be fulfilled. 

5.4.2 Control approximation 

The control function u(t) will be defined differently for each iteration k and has to be 

approximated via ü' (t). The different steps are illustrated in Figure(5.3). 

1. Interval partitioning: tj, E [a, b]. 

Split the time interval [a, b] in several sub-intervals, not necessarily equally spaced 
(dashed lines). 

2. Choice of basis functions ppf. 
Choose an interpolation scheme e. g. piece-wise polynomial functions (ppf), or other 
linear or spline functions. In the given example four points are necessary to build a 
third order polynomial function (dotted line). 

3. ük (t) cýe uk (t) : {ppf I xi = uk (ti) 
J 

Discretise the control using the points x which represent the value of uc at time t= 
and interpolate with the basis functions in the intervals in between. 

The result is a continuous function ülc (t) as an approximation to U k. 

5.4.3 Initial value problem 

The centre of the direct shooting method is the solution of the initial value problem. 
Boundary value problems can be formulated as an iterative optimisation, using and solving 
initial value problems. In this case the system of equations to be solved consists of a sub- 
system of first order differential equations, representing the mechanical system and the 
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k 

u 
kit) Xu, i 

........... 

U fit) 

........... ........... 

a ti b 

Figure 5.3: Approximation of uc (t). 

Navier-Stokes equations as representation for the fluid motion. The procedure of solving 
an initial value problem can be observed in Figure(5.4) and will be performed as follows: 

1. Start the calculation with an initial value (o = zo. 
This value has been predefined within the boundary conditions. 

2. Evaluation of the solution of the IVP using the control function ülc(t), 

(k =f ((o, uk (t)), 

where k is the number of iteration. 

3. The solution deviation is generally dc = (6 - (6 0. 
Depending on the value of the state (6 = (k (b) a solution deviation dc can be calcu- 
lated which in the optimised case will be d* = 0. 

ß (t)1 --I 

t a ti b 

Figure 5.4: Initial value problem. 
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The constraints inust be applied on the control function and the state function. It, is 

very easy to limit the control during its evaluation. Constraint violation of the state will 

occur while proceeding towards an optimal solution within the iterative process. Point-wise 

verification as ilhistrated in Figure(5.5) will be used to measure the constraint violation as 
follows: 

1. Choose (nl"ti(t), (TWIL'(t). 

The uj)per and lower bounds on the state are indicated with a grey shade. Generally 

they are time dependent. In Figuie(5.5) these hoiiu(l5 are cOiistaiit. 

2. Set communication grid: tj E [a, b], i=0... n. 
The communication grid is illustrated with dotted lines. This grid can be different, 

to the one used for the control discretisation. 

3. Analyse function e,, n, i > 0, V 'i =0... I?. 
The 1'miction will he analysed at all ti. Figure(5.5) illustrates only the verification on 

the upper bound. The value of ez i5 calculated by e, tb, i _ (max(ti) - C(ti). 

A similar procedure can he formulated for the violation of' the lower bound: 

('lb(ti) ýý ýl6ýtiý = Sltiý - 
(rrei7i(ti), ti E [a, b], i_0... 'u. 

Y (rý A Ij\L) 

max (t 

c 
min(( 

e 
ub, i 

d 

h 

a t; b T. 
Recognized constraint violation for upper bound 

Figure 5.5: Pointwise verification of' (. 

By using the direct shooting procedure it is possible to calculate unique solutions based 0l) 
the model system. A specific set of control parameters creates a specific soliltioll 

constraint violations and a value for the objective function. The control Parainel e5 fur tl)e 
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calculation of the fluid motion (proportional to F) are a function of the control parameters 
x for the mechanical system. Therefore it is not necessary to introduce a separate set of 
parameters. 

5.5 Solving (NLP) with MATLAB sequential quadratic 

programming (S QP ) 

In the following section, the nonlinear programming problem (see Section (5.4)) will be 

solved using sequential quadratic programming. In particular using the mathematical pro- 
gramming language MATLAB. Initially an introduction to SQP algorithms will be given to 
lead to the special modules implemented in MATLAB. 

5.5.1 Introduction to sequential quadratic programming (SQP) 

The aim is to solve a NLP problem of the form 

min q5(x) 
xER" 

g3 (x) = 0, j=1, ... , me 

gj (x) >_ 0, 
.7= me + 1, ... , m. 

Some definitions must be made to do so as follows: The feasible domain P of the problem 
(NLP) is the amount of feasible solutions, hence 

P= {x : gj(x) = 0, j=1, ... 1 me, gj(x) ? 0, j= me + 1, ... , m} 

The active restrictions of xEP are characterised by 

I(x)={j: gj(x)=0, me<j <m} 

The Lagrange function of (NLP) is defined for every xE Rn and 1= (li, 
... , lm)T E Rm 

with 

L(x, 1) = ¢(x) -Z ljgj(x). 
j=l 

The variables lj are the multiplier of the Lagrange function. 

The following conditions must hold to solve the NLP problem: 
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" The problem is smooth, hence the problem functions 0 and g are continuously dif- 
ferentiable on the domain 7L". 

" The problem is small, hence the number of variables and constraints is not too big 
(e. g. n, m< 100 - 200). Otherwise special algorithms like SNOPT[7] would need to 
be used. 

" The problem is well scaled, hence changes of the variables result in changes of the 

problem functions in the same magnitude. 

" The problem is well defined, hence the feasible domain is not empty and an optimal 

solution does exist. 

The previously defined conditions can be verified for the problem of sloshing fluid motion. 
For example, 

" the ordinary and partial differential equations are not analytically but numerically 
continuously differentiable. 

9 the problem is small, there is a maximum of 10 variables and less than 15 constraints. 

" it has been observed (in a sensitivity analysis) that the problem is well scaled, hence 

changes of the variables do result in changes of the problem functions in the same 
magnitude. 

" in early optimisation runs it could be observed that the feasible domain is not empty. 
See Equations (5.6) for the necessary conditions for the existence of an optimal solu- 
tion. 

To picture the Kuhn-Tucker conditions necessary for the existence of an optimal solution 
the following must be stated. 
The problem functions 0 and gj Vj=1, ... ,m are twice continuously differentiable, x* is 

a local minimum of (NLP) and the constraint qualification holds in x*. Then there is an 
2Constraint qualification: linear independence of the vectors Vgl (x*) for all jE {1, 

..., me} U I(x*). 
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optimal control x* E RI, with the following fulfilled conditions: 

lý > 0, j =me+1,..., m 

ýý 7=1, 
... , mg gj (X*) = 

gj (x*) > 0, j= me + 1, ... ,m 
V L(x*, 1*) =o 

lj* gj (x*) = 0, j =me+1,..., m 
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(5.6) 

This means that in a minimum the gradient of the objective function is a positive linear 

combination of the gradients of the active constraints. 

Having satisfied the previous conditions a mathematical optimisation algorithm can be 

applied. Due to their efficiency and robustness, particularly for general problems, where no 

specialised codes can be developed, a sequential quadratic programming (SQP) algorithm 

will be illustrated. 

SQP algorithms are based on the continuous solution of quadratic sub problems. To solve 

quadratic problems with objective functions of the form 

ON =1 xTAx + dTx 

special algorithms can be used which utilise the special structure of such problems to 
increase convergence speed. The quadratic sub problems within an SQP algorithm are 
generated by a quadratic approximation of the Lagrange function and a linearisation of 
the restrictions. 

min 1 sTBkS + VO(4)Ts 
sE9t" 2 

V99(Xk)TS+gilXk) =0j= 11 Me 

Vgj (Xk)TS + g1(Xý) 0, j= me + 1, ... , m. 

This sub problem, where xk E ?Z is an approximation to the optimal solution and Bk is an 
approximation to the Hesse matrix of the Lagrange function in the optimal solution, must 
be solved in every iteration of the SQP algorithm. The quadratic sub problem is called 
(QP). If Sk is the search direction, Ik E R' are the approximation to the multiplier of 
the Lagrange function and Ik the corresponding multiplier of (QP) the values of the next 
iteration are: 

(k+i 

= 
:4 Sk 

lk+1 lk 
+ ak 

(lk 

- ik 
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where ak is a suitable step length. For ak =1 it follows that 1k+1 =1k. 

A general SQP method can be formulated with the following algorithm. 
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00) Initially the following values must be set. The generally used start values are given. 

xo E 7V (Given by the user) 
1o E Rm (_ (0, 

... , 0)T) 

Bo E 7Z'ß"" (= I, identity matrix) 

Additionally some values like error tolerance or a reduction multiplier for the step 

size calculation must be set. 

0) Calculate 0(xo), VO(xo), gj (xo), Ogg (xo), j=1, ... , M. 

1) Solve the quadratic subproblem (QP). 

2) Compute the step length. This calculation is in general based on a predefined merit 

function with penalty parameters for constraint violations. 

3) Set: 

Xk+1 = Rk + akSk 

'k+l = 'k + ak(lk - lk) 

and calculate c5(Xk+l), gj (Xk+1), j=1, ... 17bß Vq(Xk+1), Vgj 
(Xk+l), 

j=1, 
... J n- 

4) Specify the approximation to the Hesse matrix of the Lagrange function Bk with an 

appropriate method. This is possible with a Newton algorithm3 or one of the Quasi- 

Newton algorithms. The most often used algorithms are those of Davidon-Fletcher- 

Powell (DFP update) and Broyden-Fletcher-Goldfarb-Shanno (BFGS update). 

5) Calculate and evaluate the objective function and the constraint violations, either to 

stop the algorithm if a local optimal solution has been found, or restart from point 

one until a solution is found within the predefined error tolerance. 

This algorithm to be used is found in the MATLAB OPTIMIZATION TOOLBOx. The special 

functions for constraint optimal control calculations will be described next. 

3With the drawback of huge calculation time and possible difficulties in convergence and the layout of 

the Hesse matrix (nonsingularities and bad conditioning). 
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5.5.2 Realisation of (SQP) within MATLAB 

This section describes the SQP algorithm used in the MATLAB OPTIMIZATION TOOLBOX 

to solve the constraint NLP problem. A characteristic of a large class of early methods is the 

translation of the constraint problem to a basic unconstrained problem by using a penalty 
function for constraints, which are near or beyond the constraint boundary. These methods 

are now considered relatively inefficient and have been replaced by methods that have 

focused on the solution of the Kuhn-Tucker (KT) (see Equations (5.6)) equations. If the 

problem is a so-called convex programming problem, that is, O(x) and gj(x), j=1,... , m, 

are convex functions, then the KT equations are both necessary and sufficient for a global 

solution point. Otherwise the solution might only be a local optimal solution. 

The solution of the KT equations forms the basis to many non-linear programming al- 

gorithms. These algorithms attempt to compute directly the Lagrange multipliers. Con- 

strained quasi-Newton methods guarantee super-linear4 convergence by accumulating sec- 
ond order information regarding the KT equations. These methods are commonly referred 
to as SQP. 

A nonlinearly constrained problem can often be solved in fewer iterations than an uncon- 
strained problem using SQP. One of the reasons for this is that, because of limits on the 
feasible area, the optimiser can make well informed decisions regarding directions of search 
and step length. 

The function available for constraint non-linear minimisation within the MATLAB OPTI- 

MIZATION TOOLBOX is 'constr'. The general notation for the problems to be solved with 
this function is 

min q(x) such that g(x) < 0. 

The syntax of constr. m is 

[x, OPTIONS, lambda, HESS] 

= constr('FUN', xO, OPTIONS, VLB, VUB, GRADFUN, P1,..., P15); 

with xO as starting point on the problem function FUN, applying lower and upper bounds 
VLB, VUB. If mathematical gradients are possible they can be integrated in the function 
GRADFUN. P1,. .. , P15 are parameters to be directly transferred to the problem function. 

4Linear convergence < super-linear convergence < quadratic convergence. 
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Within this function a quadratic programming sub-problem is built and solved using a 

modified update for the estimate of the Hessian of the Lagrangian. The QP sub-problem 
is solved with the function 'qp' of MATLAB. The general notation for the problems to be 

solved with this function is 

min 21 xT Hx + dT x such that Ax < b. 
x 

The syntax of qp. m is 

[X, lambda, how] = qp(H, d, A, b, VLB, VUB, xO, NEC, display_flag) ; 

with xO as starting point on the estimate of the Hessian matrix H and the vector d as the 

set of coefficients of the quadratic objective function. The matrix A and vector b are the 

coefficients of the linear constraints. Lower and upper bounds are given by VLB, VUB. NEC 
is the number of equality constraints. 

'qp' of MATLAB uses an active set method, which is also a projection method. Correspond- 

ing to the Kuhn-Tucker optimality conditions only constraints active at the solution are 

significant. Methods where non-active constraints5 are deleted are called active set meth- 

ods. The algorithm used in 'qp' finds an initial feasible solution by first solving a linear 

programming problem of the form 

min dTx such that Ax < b. 
X 

The quadratic programming sub-problem is built upon a quasi-Newton method. Quasi- 
Newton methods renounce to calculate second order derivatives. The search direction is 
derived by a multiplication of the gradient of the objective function with a quasi-Newton 
matrix Hk, therefore 

Sk - -HkVO(Xk) 
with Hk being an appropriate approximation of V20(xk)-1. The following conditions on 
Hk must hold: 

1) Hk must be positive definite, 

2) Hk must fulfil the quasi-Newton condition: 

Hk+1(V (Xk+i) 
- Vc5(Xk)) = Xk+1 - Xk, 

'Constraints where the Lagrange multiplier for the constraint is negative. 
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3) Hk+1 is calculated from Hk, xk+1, Xk VO(xk+i) and Vf (xk) using a rank-2-correction, 
hence 

Hk+1 - Hk + 1k1k -1kik , 

with 'k, 'k E R". 

5.5.2.1 Updating the approximation to the Hesse matrix 

The most known and used methods for updating the approximation to the Hesse matrix of 

the Lagrange function Hk, introduced in the previous section (DFP and BFGS algorithm) 

must be given to illustrate the method used within MATLAB. 

Hessian update, Davidon, Fletcher[33], Powell[90] (DFP): 

pkpk Hkgkqk Hk 
Hk+l = Hk + 

pk qk q Hkqk 

where pk = Xk+l - Xk (5.7) 

qk = VO(xk+1) - Vg5(xk) 

Hessian update, Broyden[12], Fletcher[33](, Goldfarb[43], Shanno[102] (BFGS): 

Pk k Hk+i = Hk + 
(1 

+ ýP 
4 kk /P 

qk P qk 
(Pkgk Hk + HkQkýk ) 

kkk 
where Pk = Xk+l - Xk (5.8) 

qk = Vq(Xk+1) - Vc(Xk) 

As a starting point, Ho can be set to any symmetric positive definite matrix, for example, 
the identity matrix I. The gradient information is either supplied through analytically cal- 
culated gradients, or derived by partial derivatives using numerical differentiation methods, 

e. g. finite differences. This involves perturbing each of the design variables, x, and subse- 
quent calculation of the rate of change in the objective function. 

MATLAB uses a modified Hesse matrix updating algorithm within 'qp'. This modified 
algorithm is called dual or complementary algorithm of the DFP updating method due to 
its close relationship to DFP. 

To avoid that Hk within the BFGS update is not positive definite the MATLAB update uses 
the inverse matrix of Hk for the iterations. When using Bk = H; 1 for all k, the following 
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rank-2-correction for Bk can be developed: 

88 

Bk+1 = Bk +q 
qk 

- 

Bkpkiýk Bk 

Qk Pk pk Bkpk 

where Pk = Xk+l - Xk (5.9) 

qk = VO(Xk+1) -V 
(Xk) 

Additionally, a BFGS update using Cholesky factorisation of Gillet al. [36] can be used. 
This update has been used by Gill to prove positive definiteness of the BFGS formula. The 

calculation of the updated Hesse matrix uses the upper triangular non singular matrix R 

such that Hk = RR. The BFGS formula may be written as 

Hk+l = RTWR 

where the matrix W is given by 

T -T 

PP4P 

with p= Rpk and q= (RT )-lqk. This formula is disabled for use because it is less robust 
than the above method and slower. 

5.5.2.2 Quadratic programming solution 

If the Hesse matrix has been updated within the major iteration of the SQP method, a 
sequential quadratic programming problem is solved. 
QP 

min qp(s) = 2sTHks+dTs 9EIZ 

(5.10 Ass = b3,9 = 1, ---, Me 
Aas<bj, ý=me+ 

The solution procedure for this problem involves two phases. In the first phase a feasible 
point (if one exists) is calculated, in the second phase an iterative sequence of feasible points 
are generated that converge to the solution. In this method an active set is maintained, 'k, 

which is an estimate of the active constraints at the solution point. Equality constraints 
always remain in the active set, 1k. 
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To form a basis for the search direction sk, 'k is updated at each iteration k. The special 
notation sk is used to distinguish the search direction in QP from Sk in the major iterations 

of the SQP method. The search direction s"k minimises the quadratic objective function 

while remaining on any active constraint boundaries. The feasible subspace for sk is formed 
from a basis, Zk whose columns are orthogonal to the estimate of the active set Ik, hence 

IkXZk=O. 

The matrix Zk is formed from the last m-1 columns of the QP factorisation of the 

matrix 'k, where m is the number of constraints, 1 is the number of active constraints and 
1<m. Therefore with 1-l being the Housholder transformation of 'k and R being an upper 
triangular matrix: 

Zk CQ= 9n ... 712W1 

where QIk = 
(). 

Having calculated Zk, a new search direction of the QP problem is sought that minimises 
the quadratic object function qp(s). §k is in the null space, the orthogonal complement, of 
the active constraints, that is, sk is a linear combination of the columns of Zk; 4= ZkP 
for some vector p. 

By substituting sk in the quadratic objective function qp(s) becomes 

qp(p) = 2PTZ: HZkP + dTZkP 

Assuming the Hesse matrix H is positive definite (which is the case in the illustrated 
implementation of SQP), then the minimum of the quadratic objective function qp(p) c Zk 

occurs when Vgp(p) = 0, hence differentiation with respect to p yields: 

Vgp(p)=ZkHZkp+Zkd, 

Vqp(p) is referred to as the projected gradient of the quadratic objective function because 
it is the gradient projected in the subspace defined by Zk. The Term Zk HZk is called the 
projected Hessian. To derive a step size 9A, = Zk p the solution of the system of linear 
equations must be calculated 

ZýHZkp=-Zýd. 

A step is then taken of the form 

Xk+1= Xk'i'aZkP =Xk+ask 
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Due to the quadratic nature of qp(s) there are only two choices of step length a at each 
iteration. If no violation of constraints occurs a step of unity along sk is the exact step to 
the minimum of the QP problem. Otherwise, the step along sk is smaller than unity, hence 

a new constraint is included in the active set I, for the next iteration. 

When n independent constraints are included in the active set I,, and no location of the 

minimum can be found, Lagrange multipliers 1k are calculated that satisfy the non-singular 
set of linear equations 

Ik 'k = d. 

Xk is the optimal solution of the QP problem if all elements of lk are positive. However, if 

any component of lk is negative, and it does not correspond to an equality constraint of 
Ik, then the corresponding element is deleted from Ik and a new iterate is sought. 

5.5.2.3 Merit function for the SQP step length 

When even one constraint function in non-linear, it is not straightforward (and may even 
be impossible) to generate a sequence of iterates that exactly satisfy a specified subset of 
the constraints. If feasibility is not maintained, then in order to decide whether Xk+1 is a 
'better' point than Xk, it is necessary to define a merit function that somehow balances the 

usually conflicting aims of reducing the objective function and satisfying the constraints. 

The solution of the QP sub problem (Equation 5.10) is a vector Sk, which is used within 
the SQP algorithm to form a new iterate 

Xk+i = Xk + akSk. 

The step length parameter cxk is determined for each iteration k of the SQP algorithm in 

order to produce a sufficient decrease in a merit function. MATLAB implemented a merit 
function by Powell[90] of the form 

me 
M_ ON +E rj " gj (x) 

-i- 

j=1 

rj" max{O, gj(x)} 
7=me-f1 

with the recommended settings for the penalty parameter rj 

ri = (rk+l)9 = ma 
ix 

1j, 2 ((rk)j + li) 
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allowing positive contribution from constraints that are inactive in the QP solution but 

were recently active. The initial penalty parameter rj0 is represented by the Euclidean 

norm of 

r' 
II VON 11 

° llvgj(x)ll* 
With this initial representation it is ensured that constraints with smaller gradients do 

have larger contribution to the penalty parameter then constraints with larger gradients. 
This is the case for active constraints at the solution point. 

5.6 Conclusions on simulation and optimisation 

The simulation of the warehouse plant has been introduced and discussed. It has been 

stated that the closed coupled combination of the various models is more precise and 

accurate then the weakly coupled system. 

In Chapter (2) several different optimisation strategies have been considered and a brief 

selection of the optimisation strategies due to their capability and applicability has been 

given. 

This has been further promoted in this chapter to focus on the proposed strategy for con- 
trol of the sloshing motion with an optimisation algorithm. Therefore an optimal control 

problem with the objective of motion in minimal time has been formulated. Firstly in con- 
tinuous form and secondly in discretised form, to be solved within an iterative procedure. 

A direct solution method has been proposed to solve the initial value problem. This method 
is a practical approach type, using engineering knowledge and experience to establish real- 
istic estimates for initial parameters and to finding the solutions. Solutions are less accurate 
than using multiple shooting or collocation methods, but easier to find since the conver- 

gence radius is larger. 

The summarised aspects of the direct shooting method in combination with the MATLAB 
SQP algorithm are: 

" The gradients are calculated numerically. 

" Complicated model functions can be used. 

9 The optimisation problem can be implemented very quickly. 
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9 The QP solver within the SQP can be exchanged. 

However, the following drawbacks can be distinguished: 

" The numerical calculations are very costs intensive. 

" MATLAB does not have parallel processing capabilities. 

The general advantage of MATLAB and its OPTIMIZATION TOOLBOX is the uncomplicated 
pre- and post-processing. If the model is set up correctly, hence having the desired output, 
the optimisation is able to calculate results based on given initial values. The output of 
the optimisation can be studied and visualised with the graphical tools of MATLAB. 

'Computational time. 

1N M` ýGý dýýý, rtiý 

1G ý(, ýý"2 
Lt. ý fsQ 

,ýo 
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5.7 Nomenclature 

a, b boundary values of the time for the control 
A general matrix of values 
b, d general vectors of values 
B inverse matrix of H 

d solution deviation 

e error value 
fun function vector of the plant 
F general force vector 

g natural gravity 

g constraint function vector 
h iterative step 
H Hesse matrix (approximation to Hesse matrix) 

Householder transformation, IL =I- ý- bbT 

I identity matrix 
I matrix of active restrictions 
I estimate of active constraints at the solution 
k iteration level 
k coefficient of the spring 
lb lower bounds 

1, l3 vector of Lagrange multipliers, single multiplier 
I vector of approximation to the Lagrange multipliers 
L Lagrange function 

m mass 

m, me constraint function dimension, number of equality constraints 

. 
A4 merit function 

p pressure 

p, q order of Runge-Kutta equations 
p projected vector of the search direction 
P feasible domain of the optimisation 
Q orthogonal matrix, product of '1-1, """ It, 
R upper triangular matrix 

93 
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r penalty parameter 
R domain of real numbers 
s domain operator 
s vector of search directions in SQP 
§ vector of search directions in QP 

t time 

T time constant 

ub upper bounds 

u, ii(u, v, w) velocity vector with cartesian components u, v, w 
u continuous control or design function 

ii continuous approximated control or design function 

x, i(x, y, z) position vector with cartesian components x, y, z 
x vector of control or design parameters 
x approximation to the control or design parameters 

z, z, z position, velocity, acceleration in the horizontal direction 

of the conveyor system 
Z matrix, with orthogonal columns of I 

a step length control 
ai, ß2, j, 'y coefficients of the Runge-Kutta equations 
6 actual error 
At time step 
As friction coefficient of the slider 
01 ¢ functions, in general 
T admissible error 
Q domain, volume 
v approximation of the velocity vector 

approximation of the state 
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Chapter 6 

Theoretical results, practical 

verification 

In this chapter final findings from the optimisation and preliminary results on the small 

scale model rig, are evaluated. These preliminary results were necessary to test the suit- 

ability of the rig for application on the given problem, and in particular to evaluate the 

given constraints for the optimisation code. 

Therefore in the first part of this chapter, constraints, applied by the small scale servo rig 

are evaluated. These constraints influence the height of the fluid within the container and 

the velocity and acceleration specifications. 

The second part of the evaluation consists of the theoretical optimal control calculations 

of the fluid and cart motion, and the subsequent experimental verification of these results. 

Within the theoretical optimal control calculations several different local and global param- 

eters of the container motion are varied to investigate their influence on the local optimal 

motions of the cart and the fluid. 

Some particular interesting motions and configurations have been used to be simulated 

with the small scale model rig. These motions have been monitored and recorded with a 

video system. 

Finally the results of the optimal control calculations and the corresponding experimental 
verifications are summarised and linked within the verification of the optimisation results. 

95 
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6.1 Limitations applied by the servo rig 

In this section the two basic limitations applied by the servo rig are investigated. The first 

limitation concerns the application of the experimental servo rig itself. The control of the 

servo motor applies limitations on the motion profile to be used within the experiment. It 

has only been possible to use a step function input for the acceleration of the cart. It is 

well known that such acceleration profiles can not reflect reality, thus they can only apply 

sub-optimality. Additionally the bandwidth and the specification of the velocity and the 

acceleration are limited. 

The second limitation affects the modelling and simulation process of the fluid. The rig 
has been used to evaluate a limit experimentally and mathematically for the applicability 

of the fluid flow solver on the given sloshing problem. The applicability is limited by the 
height of the fluid within the container which is modelled within the code NAST2D. 

6.1.1 The control mode of the experimental rig 

The basic idea of the small scale model rig is to execute and verify results obtained with 
the optimisation procedure. For this purpose a large number of optimal control calculations 
have been specified particularly to be transferable to the experimental rig, knowing that 

the involved straight line interpolation of the acceleration profile is not optimal. The op- 
timisation of the interpolation mode has been performed in Chapter (6.2.4). It is intended 

to use a very simple approach for the control of the servo motor, because of the limited 

capabilities of the servo rig control and the simplicity of the command programme to be 

written. Additionally it is easier to observe, control and verify the actual motion of the rig 
if the control is specified in this way. 

In Figure(6.1) a simple trapezoidal and a triangular mode of the velocity profile are illus- 
trated. In general the motor is accelerated with a step input until the maximum velocity 
is reached; for deceleration the same velocity slope will be used. If the maximum velocity 
can not be reached within half the time of the motion, a triangular velocity motion profile 
is executed instead. 

Additional investigations have been performed, concerning the specification of the velocities 
and accelerations within the control of the servo motor. 
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Figure 6.1: Trapezoidal profile control mode. 

time 

time 

It has been observed that the behaviour of the servo motors in terms of velocity do not 

correspond to the command velocity of the motion controller. Experiments have been 

undertaken to evaluate the response of the servo motors due to specific command velocities 

of the motion controller in the low velocity mode of the amplifier. 

In several experiments, the time has been measured for a high number of revolutions in 

order to calculate the mean velocity of the servo. To reduce the influence of acceleration and 
deceleration during the motion the value of the acceleration has been set to its maximum 

value. Additionally a large number of revolutions has been undertaken to keep the measured 
time always great enough to be able to reduce the influence of measuring on the overall 
time. 

From the number of revolutions and the measured time a mean velocity has been calculated 
for every experiment. This velocity has been compared with the velocity calculated with 
the formula given by the reference manual of the HCTL-1100 motion controller': 

Vr _Vg"60 Nt " rpm s) (6.1) 
'Note, that the units in brackets must be multiplied with the equation. They are not the unit of the 

resulting variable. 
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where v, is the velocity of the shaft in [rpm], Vq is the programmed velocity in [quadrature 

counts per sample time](0.. 255)2,1/4N is the number of slots in the code-wheel (1000), 

t= 2000 00 
+1) is the sample time3 (128 [psec].. 2048 [µsec]) and T is the value for the sample 

time register (15.. 255). 

Finally the quotient of the two velocities has been calculated and plotted in Figure(6.2). 
The different velocities to be programmed into the HTCL-1100 register are indicated with 
(v = .. 

) within the figure. As a further illustration the actual performed velocities have 

Deviation of experimental to calculated velocity over sampling time. 
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Figure 6.2: Velocity deviation. 

been plotted in Figure(6.3) over the sampling time used. It can be observed that there 

exists a maximum velocity of 333.33 [rpm] which can not be exceeded. It can also be 

observed that there exists a limit velocity from which no further velocity change will 
occur, when increasing the programming value of the velocity. Therefore the bandwidth of 
programmable and actual driven velocity on the rig is limited. The lower constraints on the 

velocity have no effect on the calculation of the optimal results due to the fact that these 

velocities are too low to allow sloshing within the fluid. Whereas the upper constraints on 
2Number-range, the value can be specified in. 
3Signal command update time. 
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Figure 6.3: Velocities in [rpm]. 
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the velocity introduce the specification of a boundary for the maximum velocity within the 

calculation of the optimal results. 

The values for the velocity and the acceleration of the cart and its command velocity for the 

motion controller must be converted to the values used within the optimisation and vice 

versa. Special emphasis must be put on the conversion concerning the non-dimensionalized 
values within NAST2D. The following equation holds, to convert the velocity used within 
NAST2D to the command velocity for the motion controller. 

Vq = 
196 

vT vcNt 
m 

(6.2) 

where Vq is the velocity in [quadrature counts per sample time] (0.. 255), vT is the non- 
dimensionalized velocity (within NAST2D) and v... is the characteristic velocity [m/s] 
(within NAST2D). The variables N, t and T must be specified similar to equation (6.1). 
The limit velocity of the servo motor can be given in several different states: 
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velocity of servo motor 1333.33 [rpm] 

velocity of rig 10.50 [m/s] 

nondimensionalized velocity 5.00 [] 

using v... = 0.1 [m/s] 

command velocity 4.08889 [quadrature counts/sample time] 

using T= 22, t= 184 [µsec] 

100 

The command velocity must be rounded to the next integer value to be programmed into 

the command velocity register of the motion controller HTCL-11004. 

The specification of the acceleration is similar to the specification of the velocities. The 

experiments, used for the evaluation of the feasible domain for the velocity specification 
has also been used to observe the acceleration behaviour of the experimental rig. 

Special focus has been on the influence of the sampling time on the acceleration of the 

servo motors. It has been observed that there is no change in the acceleration of the servo 
motor in the full range of sample time (128 [jcsec] to 2048 [psec]) when using a very low 

command acceleration. In all other cases, good correlation has been observed between the 

motion of the rig and the command acceleration. 

Therefore, the following equation given in the data sheet of the HTCL-1100 motion con- 
troller can not be true for the whole parameter domain. This equation is given to convert 
the desired acceleration a, of the servo motor to the command acceleration aq for the 

motion controller. 

aq 
260 

arNt2 
( 

r1 

) 
(6.3) 

Pm s 

The variables N, t and T must be specified similar to equation (6.1). 

Sloshing within the container is only possible in cases of medium to severe acceleration 
of the cart. Therefore the difficulties in specifying low accelerations do not apply in the 
problem of optimal trajectory planning with open fluid filled containers. 

The following equation holds, to convert the acceleration used within NAST2D to the 
command acceleration for the motion controller. 

4Note that the corresponding velocities must be recalculated. 
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/ 
aq = 

25600 6 
a, * 

L2 Nt2 Im (6.4) 

where aq is the acceleration in [quadrature counts per (sample time)2] (0.. 255), a, *. is the 

non-dimensionalized acceleration (within NAST2D) and L is the characteristic length [m] 

(within NAST2D). The variables v.., N, t and T must be specified similar to equation (6.2). 

As a result, the acceleration of the servo motor can be given in several different states: 

acceleration of servo motor 11000 [rpm/s] 

acceleration of rig 11.50 [m/s2] 

nondimensionalized acceleration 1 15.00 [] 

using v,,. = 0.1 [m/s], L=0.1 [m] 

command acceleration 17.0667 [quadrature counts/sample time2] 

using T= 124, t= 1000 [psec] 

The command acceleration must be rounded to the next integer value to be programmed 
into the command acceleration register of the motion controller HTCL-11005. 

6.1.2 Limitation of fluid height 

Based on the standard experimental specifications of the model rig, the fluid height within 
the cube can be varied. Four different heights have been investigated and a comparison has 
been calculated between the results of the experiments and the predictions of the NAST2D 

simulation. 

The fluid level has been changed within the cube of the experimental setting. It has been 
filled with a fluid height of 20,40,60 and 80 [mm]. The maximum height of the cube and 
therefore the sloshing limit is 100 [mm]. While making the maximum velocity available to 

the servo motors, the acceleration has been increased until the fluid started to slosh over the 
top level of the cube. This specification results in a triangular velocity profile of the servo 
motor, because the maximum velocity can not be reached (for illustration see Figure(6.1)). 
The obtained values of command acceleration and sampling time have been converted to 

a force distribution on the container to be used to simulate the fluid behaviour with the 
CFD-code NAST2D. Theoretically this should result in a figure of the amplitudes, of the 

5Note that the corresponding accelerations must be recalculated 
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water height on the right and left boundary of the container, where the upper limit of the 

cube must be reached at least once. 
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Figure 6.4: Variation of fluid height - Amplitudes of the fluidmotion. 

In Figure(6.4) the different amplitudes, calculated mathematically, on the left and right 

boundary of the cube are shown. It can be seen that only the fluid height of 80 [mm] 

achieves the goal of reaching the upper limit of the cube. Therefore, in the other cases, the 

fluid is not modelled and simulated accurately. 

This behaviour of the simulation can be explained with the model of the fluid. The fluid is 

modelled with the CFD-code NAST2D. This code is capable of modelling laminar, viscous, 
incompressible flow. 

In the experiments fluid separation in the form of single fluid droplets were observed for 

the fluid dimension cases of 20 and 40 [mm] fluid height. This indicates that the fluid is not 

strictly a laminar flow field. There must be turbulent features in the physical representation 

of flow field as well. Consequently different physical laws must be implemented in the code 
to allow computation of all possible fluid levels. 

LIVERPOOL JOHN MOORES UNIVERSITY LEARNING & INFORMATION SERVICES 
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The main problem with the model is not strictly the fluid height within the container. It 

is more important to limit the allowed sloshing height. Therefore, the following limitation 

has been heuristically formulated for the fluid flow within the cube: 
the fluid model is only accurate if the amplitude motion of the fluid does not exceed 20% 

of the initial fluid height. Further experiments would be needed to evaluate the influence 

of the container ratio on this motion limitation. 

It has been shown that the fluid flow height is one of the crucial elements in the simulation 

which must be limited within the model. Only if the fluid height is limited to a certain 
domain can it be guaranteed that the model of the fluid flow and the fluid flow itself react 
in a comparable way. 

Based on these findings the optimal control calculations have been based on the rectangular 
cube of the experimental rig with a edge length of 100 [mm] and a filling height of 80 [mm] 

minimum. 

In general the following setting is used for standard experimental verification: 

Dimension of the cube 
Initial surface height 
Domain decomposition 
Fluid properties 
Distance to travel 
Parameter interpolation mode 
Initial parameter set 

100 [mm] x 100 [mm] x 100 [mm] 

80 - 95 [mm] 
30 x 26 cells 
Water at 20 °C 

< 90 [mm] 

straight-line 
Trapezoidal, segmentation 1/3 acceleration, 
1/3 steady velocity, 1/3 deceleration 
final time: 0.55±0.05 [s] 

acceleration: 1.32/1.58 [m/s2] 

These limitations are due to the specifications of the model rig, the limitations described 
in Section (6.1) and the findings in the initial experiments. 

6.2 Optimisation and simulation results 

In order to evaluate knowledge about the characteristic behaviour of the fluid and the cart 
in motion and the performance of the optimisation procedure using sequential quadratic 
programming, several simulations of the fluid and the optimisation have been performed. 
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This has been accompanied by experimental work on the small scale model rig to specify 
the actual range of use for the mathematical model and simulation. The following sections 
illustrate some of these theoretical calculations, and where possible, link their result to the 

experimental model rig. 

The general used motion profile, used to be optimised for various parameter settings has 
been illustrated and explained in Section (6.1). Some limitations have been formulated on 
the acceleration profile due to the limitations of the experimental servo rig configuration. 
These limitations concern the fluid height within the container and the specification of the 

velocity and the acceleration. 

The following will focus on the results achieved by the variation of different parameters and 
properties of the motion as described below. These parameters implement firstly a major 
impact on the performance of the optimisation code, secondly a variation on the optimal 
fluid motion or thirdly a change in both characteristics. These parameters are: 

" length/height ratio of the container 

" distance to travel 

" viscosity of the fluid 

" influence of interpolation mode 

The influence of variations in these parameters on the optimal trajectory will be studied. 

The final investigation on the influence of the interpolation mode of the control is based 

on a study of the necessity of smooth interpolation to guarantee practical applicability of 
the proposed control strategies for the optimal motion of liquid filled containers. 

Finally the results obtained and illustrated within this chapter are summarised. 

6.2.1 Variation of length of container 

In Section (6.1.2) it has been illustrated that a certain fluid level must be given within 
the container to guarantee similarity between simulated model and reality. Therefore all 
the optimal control calculations in this section have been performed with a fluid height 
of 80 [mm]. Additionally the maximum velocity has been limited to a value of 0.50 [m/s]. 
This is the maximum velocity applicable on the small scale model rig. 
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In general the following setting is used for the optimal control calculation: 
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Dimension of the cube (LxH [xD]) 

Initial surface height 
Domain decomposition 
Fluid properties 
Distance to travel 
Parameter interpolation mode 
Initial parameter set 

50-200 [mm] x 100 [mm] x 100 [mm] 

80 [mm] 

30 x 26 cells 
Water at 20 °C 
90 [mm] 

straight-line (Step function) 

Trapezoidal, segmentation 1/3 acceleration, 
1/3 steady velocity, 1/3 deceleration 
final time: 0.55±0.05 [s] 

acceleration: 1.32/1.58 [m/s2] 

Due to the fact that the optimal solutions obtained result only in local minimal solutions, 
several optimal control computations have been started with different initial parameter 
settings. This is indicated by the variation of final time and acceleration within the ini- 
tial parameter set. The obtained results have been used to calculate mean values for the 

characteristic values indicated in Table (6.1). 

Dimension 50[mm] 80[mm] 100[mm] 120[mm] 200[mm] 

Number of iterations 12.67 11.33 11.00 14.20 14.17 
Number of function evaluations 51.33 47.17 56.33 87.40 69.50 
Optimal final acceleration time 0.2806 0.4795 0.4825 0.4882 0.6160 

Table 6.1: Calculation results of container length variation. 

The low number of iterations in the case of 100 [mm] corresponds to the used initial param- 
eter sets. They have been composed from values achieved with experiments on the small 
scale model rig. The cube in the experiment has the same dimensions (100[mm] x 100[mm] 

x 100[mm]). 

Figure(6.5) shows the progress of the optimisation from one iteration to the next. Repre- 

sentative optimisation runs of all five variants have been used to analyse their behaviour 

within the optimisation. A deviation between the value of the objective function fc at 
iteration level k and the value of the optimal objective function f* was calculated. A value 
for the deviation (f k1 f *) greater then one indicates that the function value at the itera- 
tion time k is larger then the final optimal solution for the specific case. A value for the 
deviation smaller then one indicates that the function value at the iteration time k is less 
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Figure 6.5: Progress of iterations. 

then the final optimal solution. In these cases constraints or boundaries are violated. 
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It can be observed that the iterative procedures for the cases of 80,100, and 120 [mm] do 

start quite near to their optimal solution and do iterate quite well towards the optimal 

solution. All the intermediate results are greater then the final optimal solution. The inter- 

mediate solutions within the iterative process are strictly monotonic downwards towards 

the final solution. 

Only the optimisation runs of the case 50 and 200 [mm] container length show extraordinary 
behaviour. 

In the case of cube length 50 [mm] the optimisation starts with an initial set of parameters 

which can be seen is quite far away from the final optimal solution, but the initial solution 

provides a fluid motion without sloshing. This leads to a fast iterative process towards the 

optimal solution, only disturbed by minor back-slopes. 

In the case of cube length 200 [mm] the optimisation starts with an initial set of parameters 
which is very near to the final optimal solution. But in this case the initial solution provides 
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a fluid motion with sloshing, because the final time in this iteration is smaller then the 
final time of the optimisation. This leads to a slow iterative process towards the optimal 
solution with oscillating behaviour within the functions of the iterations. The optimisation 
code is not able to increase the final time as much as needed' to result in a parameter 
function which allows a fluid motion without sloshing. It is only in the last three iterations 

the optimisation code is able to specify the control function of the motion in a way that 
the fluid is not sloshing. 

It has been observed in several other calculations, that the optimisation code iterates 

quicker towards an optimal solution if the time needs only to be reduced (from iteration 

to iteration). This is the case for dimensions of cube-length 50/80/100 [mm]. In these cases 
the number of iterations, and the number of function evaluations is smaller than in the 

cases of dimension 120/200 [mm]. 
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Figure 6.6: Variation of container length - Amplitudes of the fluid. 

In Figure(6.6) the amplitudes on the left and right boundary for the time optimal case are 
given. Please notice that the lower half of the cube is not printed for better illustration. 

6Quotient of the deviation f kIf *>1. 
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In the case of sloshing, the graphs would go over the top. In this figure one can see that 

the restriction in terms of sloshing resulted on a limitation of the acceleration (because 

the upper limit of the cube has been reached and the acceleration has not been restricted 
initially). It can be observed that the fluid reaction is slow and progressively lethargic, 

the more the ratio of the container dimensions change from a slim upright cube towards 

a long horizontal one. Additionally the frequency of the fluid motion is decreasing. This 

calculated fluid behaviour corresponds to the fluid motion one would measure within a 

practical experiment by changing this ratio. 

6.2.2 Variation of distance to travel 

Another geometrical parameter of the container within the warehouse to be studied is the 
distance to be travelled. Here only motion in horizontal direction has been studied, since 
this motion applies the necessary forces on the fluid to allow the fluid to slosh. Again, the 
fluid height has been fixed to 80 [mm] to guarantee similarity between simulated model 
and reality. 

For the study of variation of distance to travel, following settings were used for the optimal 
control calculations. 

Dimension of the cube (LxH [xD]) 100 [mm] x 100 [mm] x 100 [mm] 
Initial surface height 

Domain decomposition 

Fluid properties 
Distance to travel 

Parameter interpolation mode 
Initial parameter set 

80 [mm] 

30 x 26 cells 
Water at 20 'C 
45-720 [mm] 

straight-line (Step function) 
Trapezoidal, time of acceleration equal to 
time of deceleration, steady velocity otherwise, 
final time and acceleration adapted to the task 

Again, several optimal control calculations with different initial parameter settings were 
performed to heuristically determine the shape of the optimal solution domain. The ob- 
tained results do differ in the amount of iterations, in the amount of function evaluations 
and in the value of the actual optimal solution. 

For practical application the best result, hence the calculation with absolute minimal time 
would be used. For a general overview on the performance of the optimisation code it 
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Distance to travel 45[mm] 90[mm] 180[mm] 360[mm] 720[mm] 
Number of iterations 12.60 11.00 12.33 23.20 29.33 
Number of function evaluations 76.80 56.33 55.33 124.0 179.7 
Optimal final acceleration time 0.3613 0.4825 0.6527 1.0222 1.720924 

Table 6.2: Calculation results of the distance variation. 

is desirable to calculate the values indicated in Table (6.2) using mean values. In this 

calculations, very unsatisfactory results in terms of optimal solution have been eliminated 
and do not count within these mean values. 

Some sample calculations have been chosen to illustrate the calculation behaviour of the 
SQP-code. The calculation have been based on the coarse acceleration profile which is used 
within the experimental servo rig. 

Two different optimisations have also been studied in more detail. In Figures(6.7-6.10) the 
results of an optimisation performed with a desired distance of 45 [mm] are presented. 
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Figure 6.7: Acceleration of the cube. Figure 6.8: Amplitudes of the fluid. 

Figure(6.7) shows the initial and optimal acceleration profile. The optimal solution needs 
only 60 % of the initial time to perform the motion. Figure(6.8) shows the amplitudes of 
the fluid on the left and the right boundary of the cube. The cart has been accelerated with 
the optimal acceleration profile shown in Figure(6.7). It is clearly shown in Figure(6.8) that 
the maximum allowed amplitude has been reached once by the right amplitude of the fluid 

within the cube. 

Figure(6.9) shows the iterative improvement of the solution within the optimisation. Three 
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Figure 6.9: Deviation of the solution. Figure 6.10: Error of the solution. 

different optimisations are illustrated within this figure. They differ in their initial param- 

eter setting and their final optimal solution. The unity value of the Y-axes indicates the 

quotient of specific optimisation solution and the mean value of the final optimal solutions. 
Hence, if the final solution of one of the shown calculations is less then unity, the specific 

solution is better then the mean solution. If it is greater then unity, the specific solution is 

worse then the mean solution. 
In all three calculations a steady improvement can be observed from start on, even when 
the initial time is more than 1.6 times greater then the optimal solution. In all cases the 

optimal solution has been reached in less than 16 iterations. 

Figure(6.10) shows a corresponding distribution of the error within the iterative optimi- 

sation process. Note that the line specification is the same as in Figure(6.9). The error 
function is composed by the maximum of several different error specifications and is given 

at iteration level k as follows: 

ek = e� + e� + e81 (6.5) 

Where ex is the error on the desired final location (desired final position is 45 [mm]), e� 
is the error on the final velocity (desired final velocity is 0 [m/s]) and eel is the error of 
sloshing calculated from the maximum sloshing on either right or left boundary. 

In this specific optimisation the various errors have the following bandwidth: 

. Error 1. Error of 1 [mm] deviation between the desired and the calculated final position 
corresponds to the error value of e,, = 0.01. This error is linearly dependent on the 
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acceleration parameters. 

" Error 2. Error of 1[m/s] deviation between the desired and the calculated final velocity 
corresponds to the error value of e� = 1. This error is also linearly dependent on the 

acceleration parameters. 

" Error 3. Sloshing of 1[mm] over the top of the container corresponds to the error value 
of e31 = 0.01. This error is nonlinearly dependent on the acceleration parameters. In 

order to increase the influence of this very important and difficult to control error 

measurement, this value has been multiplied by 100 within the calculations. 

It is clearly visible in Figure(6.10), that the maximum error within the optimal control cal- 
culations reduces from one iteration to the next. Only the optimisation procedure specified 

with (Nr. 1) shows a small increase of the error value between iteration seven and itera- 

tion eight. This is due to the fact that the maximum error measure within ek has jumped 
from one error specification (ei, et, or esi) to another error specification. This is especially 
conspicuous if at different iteration levels the fluid motion oscillates between sloshing and 
non sloshing motion. 

The second calculation is shown in Figures(6.11-6.14). These are the results of an optimisa- 
tion performed with a desired distance of 720 [mm]. Note that this is 16 times the distance 

studied before. 
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Figure 6.11: Acceleration of the cube. Figure 6.12: Amplitudes of the fluid. 

Figure(6.11) shows the initial and optimal acceleration force profile. This time the initial 
acceleration force profile has been coarsely adapted to a parameter setting which would 
result in a motion able to move the cart nearly the desired distance. In several other 
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optimisations the specification of a feasible initial solution has not been necessary. Based 

on a predefined maximum velocity the whole feasible motion profile has been calculated 
beforehand based on the desired distance to travel. Due to the fact that this specified 
velocity has been close to the maximum velocity of the warehouse limitations, the initial 

parameter setting is very close to the optimal acceleration profile. This time the deviation 
between initial time and optimal time is only 10 %. Figure(6.12) shows the amplitudes of 
the fluid on the left and the right boundary of the cube. The cart has been accelerated 
with the optimal acceleration profile shown in Figure(6.11). It is clearly shown that the 

maximum allowed amplitude has been reached within the deceleration process. A distinct 

time separation of the fluid motion can be observed, separating the fluid motion during 

the acceleration from the motion within the deceleration. 
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Figure 6.14: Error of the solution. 

In Figure(6.13) the time deviation of the solution at iteration level (k) is shown, whereas 
Figure(6.14) illustrates the error of the solution. The plots numbered 1 and 3 within these 
Figures indicate that constraints have been active during the optimisation. Within optimi- 
sation Nr. 3 the optimisation has started from a point of sloshing and has not been able to 
move away from this boundary. While following the boundary towards an optimal solution 
the step size has been reduced dramatically, resulting in a very large number of iterations. 
Optimisation Nr. 1 has not been able to establish a promising starting point for further 
iterations until iteration ten. The optimisation pursues a local solution until iteration 22 
and has to follow the constraint boundary of sloshing from iteration 30 onwards. 

Only the optimisation Nr. 2, which starts also from a point of sloshing, is able to find a 
feasible point within the solution domain within just four iterations and moves onto the 
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final optimal solution using just another five iterations. 

The comparison of the initial parameter settings does not indicate any significant differences 

between the optimisations. The optimisations did have the following initial parameter 

settings: 

Nr. 1 Nr. 2 Nr. 3 

Time of acceleration within cart motion 12.5 % 12.5 % 12.5 % 

Maximum value of acceleration force 65.00 [N] 70.00 [N] 75.00 [N] 

Overall time of forced motion 1.50 [s] 1.55 [s] 1.55 [s] 

Number of iterations 50 9 44 

Optimal acceleration force 72.08 [N] 77.50 [N] 67.41 [N] 
Optimal time 1.70 [s] 1.68 [s] 1.71 [s] 

The behaviour of the iterative process seem to be dependent upon the initial parameter 

setting of the optimisation. This behaviour can be viewed quite precisely within optimisa- 
tion Nr. 3 within Figure(6.13). This is an example of an optimisation where the constraints 

of the state and/or the boundaries of the parameters have been reached and the opti- 

misation tries to minimise the violations in order to iterate towards an optimal solution. 
Within this optimisation the constraint and boundary violations do not change. Here the 
fluid motion is very close to sloshing from the beginning. This is, due to the fact, that 

the initial parameter setting of optimisation Nr. 3 has the maximum value of acceleration 
compared with the other two optimisation calculations. Within the parameter-variation of 
the optimisation, the error value of the sloshing violation has the greatest impact. This 

results in very small steps towards the optimal solution, hence the number of iterations 

increases dramatically compared to optimisation Nr. 2. 

In optimisation number 1 some other additional effects have taken place. After iteration 
28 the optimisation has reached a parameter set which fulfils the general goals of distance 
to travel, velocity at final destination and region of optimality, but still suffers of small 
sloshing within the fluid. This behaviour slowly reduces from iterations 29 to 50. Before 
that, the optimisation is searching in various directions and is able to find solution regions 
with smaller error but increased time to travel (see iteration 2,4 and 7). While the first 
two regions (iteration 2,3 and 4,5) do not seem to be good starting points for further 
improvements, the third one (iteration 7 onwards) is able to start a continuous improvement 
towards the optimal solution. Within the error plot of Figure(6.14), optimisation Nr. 1 
performs quite a number of large jumps within the error of the optimisation. These jumps 
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correspond to the change of the error specification within the optimisation. It is possible 
that within one iteration, the deviation within the distance to travel is the major error and 
within the next iteration the velocity at the final time is the major error. These changes 
can result in jumps within the global error plot of the optimisation. 

6.2.3 Variation of fluid viscosity 

For the problem of sloshing fluid motion in an open topped container, viscosity is the most 
important property of the fluid. This property influences the motion of the fluid in terms 

of sloshing amplitude, sloshing frequency and delay of the fluid. 

Again, only motion in horizontal direction has been studied, due to the fact that this 

motion applies the necessary forces on the fluid to allow the fluid to slosh. Similar to the 

previous section the fluid height has been fixed to 80 [mm) to guarantee similarity between 

simulated model and reality. In general the following setting is used for the optimal control 
calculation: 

Dimension of the cube (L xH[x D]) 100 [mm] x 100 [mm] x 100 [mm] 
Initial surface height 80 [mm] 
Domain decomposition 30 x 26 cells 
Fluid properties o= 998.2 [kg/rn3], 

77 = 0.25 -4" r/water [kg/(ms)] 

Distance to travel 90 [mm] 

Parameter interpolation mode straight-line (Step function) 
Initial parameter set Trapezoidal, time of acceleration equal to 

time of deceleration, steady velocity otherwise, 
segmentation 1/3 acceleration, 
1/3 steady velocity, 1/3 deceleration 

Again, due to the fact that the calculated parameter sets do, in general, only result in 
local minimal solutions, several SQP calculations have been started with different initial 
parameter settings. The obtained results do differ in the amount of iterations, in the amount 
of function evaluations and in the value of the actual optimal solution. 

For practical application the best result, hence the calculation with absolute minimal time 
would be used. For a general overview on the performance of the optimisation code it is 
desirable to calculate mean values for those characteristic values. Poor results in terms of 
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Viscosity %O, f 
water 25 50 100 200 400 

Number of iterations 13.80 13.75 11.00 12.67 15.25 
Number of function evaluations 75.40 85.00 56.33 73.80 81.33 
Single motion calculation time 34.30 69.62 169.95 363.41 584.23 
Optimal final acceleration time 0.4860 0.4847 0.4825 0.4665 0.4438 

Table 6.3: Calculation results of the viscosity variation. 

optimal solution have been eliminated and do not count within the mean values presented 
in Table (6.3). 

The mean value of the single motion calculation time is perturbed by influences which alter 
the accurate result. To generate this value the overall time of a single optimisation run has 
been stored and divided by the number of single model simulations. A mean value has been 

calculated based on several different optimisation runs. Hence the following influences can 
be distinguished: 

9 The calculation time of the optimisation procedure to generate new parameters is 

not eliminated. 

" Even when the calculations have been performed on one single workstation, the ad- 
ditional calculation load of the CPU is not isolated. Hence it is not assured that the 
optimisation runs have all been performed on the same computational resources. 

The calculation time of the altered parameters within the optimisation routine is very small 
compared to the calculation time of the fluid motion. Additionally, within every simulation, 
the same amount of those auxiliary calculations must be added to the simulation time of 
the fluid motion. 

The variation of the computation load on the CPU has been compensated by calculating 
mean values based on several optimisations. These optimisations have been performed in 
the middle of the night (no other users on the workstation) as well as in times where 
students used the workstation for other calculations. Therefore the results have been cal- 
culated using a balanced work load distribution of the CPU. 

The reduction of the optimal forced motion time (optimal final acceleration time in Ta- 
ble (6.3) with increasing viscosity coheres with the physical understanding that a lethargic 
fluid can be accelerated more severely than a fluid with lower viscosity. 
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In addition to the values generated within Table (6.3) the transient amplitudes of the fluid 

on the left and the right boundary of the cube have been generated. These variations can 
be seen in Figures(6.15-6.19). In each plot the point of maximum amplitude is clearly 

visible. Due to the very low viscosity of the fluid, the surface of the fluid in Figure(6.15) 

reaches the upper limit of the container on both sides of the cube. 
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Figure 6.16: Amplitudes, 50% Water- 

The motion of the fluid with dynamic viscosities of 77 = (50/100)%rjwate,. [kg/(ms)] (Figures(6.16- 

6.17)) shows that in these cases the deceleration of the cart takes place at a time when the 

motion of the fluid is not critical. Moreover, while the fluid is decelerated, the fluid moves 
in opposite direction to the acting forces. Subsequently, the acceleration is the limiting 

part of the motion, because the first sloshing motion of the left surface amplitude limits 
the optimal acceleration. 

On the other hand the motion of the fluid with dynamic viscosity of 77 = (200/400)% 
water 

[kg/(ms)] (see Figures(6.18-6.19)) show that in these cases the deceleration of the cart 
takes place at a time when the motion of the fluid is critical. Therefore, at the time of 
deceleration the fluid moves in the same direction as the acting forces. Subsequently, the 
deceleration is the limiting part of the motion, because the first sloshing motion at the 

right surface amplitude limits the optimal acceleration profile. 

Figure(6.20) has been generated in order to visualise the increase of frequency of the fluid 
in motion with increasing dynamic viscosity 77. The different plots in this figure are based 

on optimised acceleration profiles which are very close to the mean values of the various 
viscosity settings stated in Table (6.3). 
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Figure 6.20: Frequency of the motion. 

The main feature to be observed is the noticeable increase of frequency with increasing 

77 (it takes longer to cross the zero line for the first, second and third time), even if the 

optimal acceleration time is decreasing. This also coheres with the physical understanding 
that a lethargic fluid does not react as quickly as a fluid with lower viscosity. Therefore 

the frequency of the sloshing motion is reduced. 

6.2.4 Shape-variation of optimal acceleration profile 

Within this section the focus is on the variation of the shape of the parameter profile, hence 
the acceleration of the motor of the warehouse plant. In general this profile is defined on 
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specific breakpoints. The control function is interpolated in the time domain inbetween 

these breakpoints (see approximation in Figure(5.3)). 

Firstly, the focus on this kind of variation will be justified. Secondly, some alternatives will 
be given, the investigation will be based on. These are: 

" Step interpolation. 

" Straight line interpolation. 

" Polynomial interpolation. 

" Spline interpolation. 

" Exponential spline interpolation. 

Not all of these alternatives have been used for the optimal control calculation. The reason 
for the selection will be given. 

In the third part, the actual achieved results are illustrated to end up the investigation on 
shape variation with some concluding remarks. 

6.2.4.1 Justification for the study of shape variation 

Up to now, all the theoretical calculations have been focused on the geometrical and phys- 
ical properties of the fluid and the container. For this purpose a very simple and harsh 

acceleration profile has been used. This profile has been used because of its easy applica- 
bility to the experimental servo rig and to reduce and simplify the evaluation and analysis 
of the results. Another reason for the application of this coarse profile is its simple specifi- 
cation. It can be described with only three parameters: 

1. Acceleration/deceleration maximum amplitude. 

2. Time segment of acceleration/deceleration. 

3. Overall time of the forced motion. 

As a result, the minimal number of function evaluations per iteration is four. One compu- 
tation of a basic solution and one variation of each parameter. 

In order to incorporate all possibilities of optimality the shape of the acceleration profile 
must be free to be optimised as well. This must also be done, because the infinite jerk of the 
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cart, when using a step input, is not acceptable for practical application (see Norton [79]). 
In Figure(6.21) some general transfer functions of mechanisms, machines or motor controls 
are illustrated. In order to maximise system performance it is desirable to drive the system 
in a critically damped way. Especially in the case of transporting an open topped fluid filled 

container any oscillating behaviour in the input motion of the cart would result in severe 
sloshing of the fluid. In order to optimise system performance Norton [79] investigated 

various cam acceleration functions as shown in Figure(6.22). System performance has been 

classified based on the evaluated maximum velocity, maximum acceleration and especially 
maximum jerk. 
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Figure 6.21: General transfer functions. 
Figure 6.22: Comparison of cam acceleration 
functions. 

This classification outlines that there is no best acceleration procedure. But there is always 
a most useful and applicable acceleration profile for one specific task. For instance Nor- 
ton [79] illustrates that a modified sine curve is usually chosen in cam designs in which the 
follower mass is very large. For the specific problem of fluid motion in an open topped fluid 
filled container, the modified trapezoidal profile is assumed to be the most appropriate. 
This is due to the fact that this profile promises in comparison to other profiles, low values 
of acceleration with a little bit more severe jerk. The low value of acceleration is necessary 
for the reduction of the liquid sloshing. The slightly rough jerk values are within the limits 
due to the fact that the cart is only performing low speed motion. 



CHAPTER 6. THEORETICAL RESULTS, PRACTICAL VERIFICATION 

6.2.4.2 Acceleration shapes studied within this research 

In particular the following interpolation modes have been investigated. 

" Step input (as used previously). 

" Linear, straight line interpolation. 

" Exponential spline interpolation. 

120 

The exponential spline interpolation is assumed to be able to represent an acceleration 

profile based on the modified trapezoidal function, because this interpolation represents a 

spline under tension. This spline under tension is able to eliminate oscillating behaviour of 
a traditional spline or polynomial interpolation. 

Within the optimisation, the SQP-algorithm tries to reduce the sloshing motion of the 
fluid, hence the objective of the code is to reduce the acting acceleration while increas- 
ing the speed of the motion. The parameters which are the support-points of the con- 
trol approximation (see Section(5.4.2)) are tuned within the given control boundaries. 
When using exponential spline interpolation with fixed end conditions (see comparison in 
Figures(6.23,6.24)) 
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Figure 6.23: Interpolation modes. Figure 6.24: Enlargement. 

5 

the predefined points will be interpolated in a way that the boundary which has been 
reached in the points with time ti = (0.2/0.4/0.6) will only be minor exceeded in the 
intervals between these points. Additionally, the severe oscillation in the last time interval 
can be reduced dramatically. These characteristics of an exponential spline or spline under 
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tension do correspond to the general requirements of the modified trapezoidal acceleration 
profile proposed in Figure(6.22). 

6.2.4.3 Results for the variation of acceleration shapes 

The main problem within the comparison of the results of the optimisation of different 

acceleration profile shapes is based on the practical applicability of these profiles. An 

acceleration profile in reality is always n-times continuously differentiable. Therefore it is 

clear that a step input or linear interpolated input, respectively is not able of modelling 
an acceleration profile of reality. 

Within this research program, the plant consist of the motor dynamics and the subsequent 
mechanical system of the warehouse. The dynamics of the controller, especially the closed 
loop feedback of the control system has not been modelled. Therefore, the acceleration 
profile supplied by the controller must be compared. 

In order to compare the different acceleration profiles, the input must be pre-computed 
with a transfer function of the control system. The resulting inputs of the acceleration 
profiles for the plant are then comparable among each other. In particular a second order 
system has been used to simulate the dynamics of the controller system. 
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Figüre(6.25) is based on the results of several computations of the SQP optimal control 
programme. The following settings for the optimisations have been used: 
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Dimension of the cube (LxH [xD]) 1100 [mm] x 100 [mm] x 100 [mm] 

Initial surface height 
Domain decomposition 
Fluid properties 
Distance to travel 
Parameter interpolation mode 

80 [mm] 

30 x 26 cells 
998.2 [k9/rn3], r1= 1.002 [kg/(ms)] 

90 [mm] 

1. ) Simplified step function 
2. ) Linear interpolation 

3. ) Exponential spline interpolation 

Opposed to former calculations on the variation of cube dimensions, distance to travel and 

variation of viscosity, within the variation of interpolation mode only the best result of all 
optimisation results have been compared. This has been necessary to be able to compare 
a specific profile of the different interpolation schemes. A mean acceleration profile of 
several optimal acceleration functions is assumed to be not representative for the specific 
interpolation mode. 

It is also clear that the comparison is not based on global optimal solutions. But based 

on the various calculations which have been performed, the three optimal control schemes 
must be very close to the global optimal solutions. 

In Figure(6.25) the results of the optimal control calculations is given. It is clearly visible 
that the step interpolated case is quicker than the linear interpolated case, which is quicker 
than the exponential spline interpolated case. This is due to the fact that in the step and 
linear interpolated cases it is possible to increase the acceleration in the beginning more 
rapidly then in the exponential spline interpolated parameter profile. The exponential 
spline interpolated parameter profile has zero gradient of the acceleration boundary end 
conditions (for illustration see Figure(6.21)). 

Figure(6.26) shows the optimal acceleration profiles of Figure(6.25) transformed with the 
second order transfer function of the control system. In this plot the input functions are 
all shown in a realistic shape for the motor input. This is clarified by the zero gradient 
end conditions of the acceleration boundary at all three profiles. In this figure, the final 
time of motion is shown with the vertical lines on the right side of the plot. These lines 
specify the time when the value of the acceleration of the corresponding interpolation mode 
stays smaller then (1). In this figure the expected behaviour of the dynamics of the fluid 
and the mechanical system according to the acceleration profile of the motor input can be 
observed. The exponential spline interpolation results in the most realistic interpolation 
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compared to the step and linear interpolation. Therefore, the actual motion of the cart can 
be performed the fastest using exponential spline interpolation. Using linear interpolation, 
the actual motion is slower, and the motion with the step input interpolation is the slowest. 

6.3 Practical experiments using the small scale model 
rig 

In this section a specific optimisation will be described for application on the small scale 
model rig. Motion behaviour of the fluid on the rig has been observed and compared with 
the mathematically calculated results. Main emphasis is on the sloshing behaviour. 

6.3.1 General description of the rig 

The rig, illustrated in Section (1.2.1) is capable of two dimensional movements in an upright 
plane. This motion domain is identical to the motion domain of a real warehouse if the 
minor motion into the storage place can be neglected. 

The servo motors have not been specially chosen or designed for this application, but their 
load and accuracy capabilities have been investigated by Kassim[59]. The servo motors 
have the following specifications: 

Stall torque 2.10 [Nm] 
Peak torque 12.0 [Nm] 
Maximum speed 2500 [rpm] 
Radial weight limit 18.0 [kg] 
Axial weight limit 9.0 [kg] 

The load to be placed on the servo is well within these limits. The influences of the con- 
trol system, which are not modelled within the mechanical system are one reason for the 
difficulties of predicting the motion of the fluid within the system, because the command 
acceleration is different to the actual cart acceleration. 

To focus especially on the inertia influence of the fluid and its weight, the cube and its 
fixing have been designed to be stiff but light. 
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Encoder feedback provides the servo with its accuracy. Encoders used on the servo mo- 
tors have resolution of one thousand lines per revolution with a quadrature output sig- 
nal. With an encoder count of four thousand pulses per revolution (hence, a resolution 
of 360/4000 = 0.09 degree per count), this gives a minimum position resolution in the 
trajectory of 0.0225[mm], which is adequate for the required assembly accuracy. 

6.3.2 Verification of the optimisation results 

In order to achieve 'quick and good results with the optimisation, experiments have been 

undertaken to generate initial values for the acceleration parameters. These experiments 
have been undertaken with maximum possible velocity. The acceleration has been increased 

until the water started to slosh over the edge of the cube. 

In general, the sequential quadratic programming optimisation, applied to a non-convex 

problem can only result in local optimal solutions. This is the reason why every single 
optimisation, started with small perturbations in the initial parameter set, resulted in a 
different set of optimal parameters. 

The following settings have been used within the optimisation: 

Dimension of the cube (L xH[x D] ) 
Initial surface height 
Domain decomposition 
Fluid properties 
Distance to travel 
Parameter interpolation mode 
Initial parameter set 

100 [mm] x 100 [mm] x 100 [mm] 

80 [mm] 

30 x 26 cells 
o= 998.2 [kg/m'], 77 = 1.002 [kg/(ms)] 
90 [mm] 

straight-line (Step function) 
Trapezoidal, segmentation 1/3 acceleration, 
1/3 steady velocity, 1/3 deceleration 
final time: 0.55±0.05 [s] 

acceleration: 1.32/1.58 [m/s2] 

With this data, six different local optimal solution have been calculated. MATLAB indicated 
that all of them reached an optimal solution. The final time for the command accelera- 
tion varies in these optimal solutions between 0.460 [s] and 0.552 [s]. The best three of 
these solutions have been transformed into values for the command velocity and command 
acceleration of the HTCL-1100 controller card of the model rig. 
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The motions have been performed on the model rig and showed that in all of these cases 
the fluid does not slosh over the upper limit of the cube. The fluid only came very close to 
the sloshing limit. Additionally the time for the motion has been reduced, even compared 
to the former experiments'. This is due to the fact, that in these experiments only the 

acceleration has been tuned, while the velocity has been set to its maximum value. 
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Figure 6.27: Acceleration comparison. 

In Figure(6.27) the three profiles are shown. Firstly in terms of the command acceleration 
and secondly with the time-position information given by the encoder of the servo motor. 

It has been shown that the modelling and simulation of the small scale model rig can be 

used to calculate the fluid and cart motion. These mathematical results are according to 
the experimental results of the actual servo driven cube. This has been documented with 
a video record. It has also been documented that a small change within the acceleration of 
the optimal acceleration profile of the cube does result in a sloshing behaviour of the fluid. 

Another experimental verification has been undertaken to illustrate the influence of velocity 
and acceleration within the motion. Again three different motions have been calculated and 

7lncreasing the acceleration until the fluid starts to slosh. 
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verified upon the small scale model rig. 

1. Firstly, a slow motion has been chosen. This motion can be stated as based on an 
engineers knowledge and experience. This motion is based on a maximum acceleration 
of 10% of natural gravity. This approach seems to be safe enough that the fluid will 
not slosh more than 25% of its height within the cube of 100[mm] x 100[mm] x 
100[mm]. 

2. Secondly, a quick motion has been chosen. This motion uses the same time base as 
the optimised motion. This motion is based on a maximum acceleration of 20% of 

natural gravity. This approach will result in a sloshing behaviour of the fluid. 

3. Thirdly, the optimised motion has been calculated. In this motion the optimisation 
resulted in an acceleration of 25% of natural gravity. This approach does not result 
in a sloshing behaviour of the fluid. 

In Figure(6.28) these three acceleration profiles are shown. Firstly in terms of the command 
acceleration and secondly with the time-position information given by the encoder of the 

servo motor. This difference is based on the fact, that the closed loop control of the servo 
has not been modelled within the mechanical system of the warehouse. 
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Figure 6.28: Acceleration of the experiment. Figure 6.29: Amplitudes of the experiment. 

In Figure(6.29) the calculated reaction of the fluid due to the acceleration of the cube are 
shown. 

The obvious features of the different accelerations are: 

" Slow motion: only minor sloshing movement, the top of the cube has not been reached, 
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" Quick motion: major sloshing movement, water is sloshing over the top of the cube 

on both sides, 

" Optimised motion: sloshing movement, but water is only reaching the top of the cube, 

These features have been documented with the servo motor encoder and a video record. 
Using these velocities and accelerations on the small scale model rig it has been possible 
to document the different motions of the fluid. 

6.4 Summary of theoretical results and practical ver- 
ification 

Based on the software implementation of a closed coupled overall model code, incorporating 

the code NAST2D and a Runge-Kutta ODE-solver, an optimisation procedure within 
MATLAB was used to calculate theoretical optimal control for the warehouse problem. 
Several different parameters like, fluid height, length of container and distance to travel have 

been varied to simulate the behaviour of the fluid and the mechanical system. Furthermore, 

the influence of these properties on the shape and characteristics of a corresponding optimal 
trajectory solution were investigated. 

It has been shown that the case of fluid height limits the capabilities of the finite difference 

code NAST2D. A prediction with this code is only reliable if the maximum allowable 
sloshing motion does not exceed 25% of the initial surface height. 

Furthermore it has been shown that the optimal trajectory is influenced by the shape 
of the container. Here the influence of the ratio of length to height of the container can 
be studied. Results have been obtained for container shapes ranging from slim and tall 

containers to long and flat ones. In particular the influence on the minimal time and 

maximum acceleration were investigated. 

Within the variation of distance to travel, optimal results have been achieved for distances 

ranging from 45 [mm] to 720 [mm]. Different characteristic behaviours of the amplitudes of 
the fluid on the left and right container wall were distinguished for very short and very 
long distances to travel. Related to this property, a great influence on the performance of 
the optimisation code has been documented. 
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The fluid property viscosity has been varied in a bandwidth of 0.25 ... 4.0 times the vis- 

cosity of water. Within these calculations an increase in the single motion calculation time 
has been observed, while the optimal value for the time to travel decreases. In addition to 

these characteristic values of the performance of the simulation and optimisation, the lay- 

out of the amplitudes on the left and the right wall of the container have been observed and 

compared. As a result, a frequency of the sloshing motion of the fluid has been calculated. 
This frequency is decreasing with increasing viscosity. 

In order to reflect the properties and essential elements of reality more comprehensively, 
the shape of the interpolation scheme has been optimised. This included the study of step-, 
linear interpolated- and exponential spline interpolated input. It has been shown that a 
parameter profile which is more justified by practical applicability does also result in better 

solutions then the step input which is not usable in practical applications. 

Additionally a small scale model rig has been built to simulate a selection of motions 
calculated with the SQP-algorithm. The rig has been described and its features in terms 
of control capabilities were shown. Especially some difficulties with the specification of the 
velocities and accelerations using the HTCL-1100 were illustrated. 

Finally, some motions have been selected to be verified on the small scale model rig. It has 
been shown that the sloshing behaviour of the fluid is dependent not only on the maximum 
value of the acceleration but also on the time the acceleration acts on the system. The 
optimal movement, using even 1/4g is not sloshing compared to the motion with 1/5g. 
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6.5 Nomenclature 

a acceleration 
e error value 
fk value of the objective function at iteration level k 
f* value of the optimal objective function 
fr frequency of the sloshing motion 

g natural gravity 
LxH[x D] length x heigth [x depth] of the container 
N accuracy of the encoder 
t time 

t sampling time in [u sec] 
T value of the sample time register 
v velocity 
x, x(x, y, z) position vector with cartesian components x, y, z 

71 dynamic viscosity 
o density 
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Chapter 7 

Discussion of the optimal trajectory 

results 

The aim of this chapter is to discuss, explain and illustrate the results presented in Chap- 

ter (6). In particular the findings of the following investigations will be studied and dis- 

cussed. 

9 Investigations on the influence of the dimension ratio of the container onto the optimal 
fluid motion and the optimisation. 

" Investigations on the influence of the distance to travel on the optimal motion of the 
fluid and the performance of the optimisation. 

" Investigations on the correlation of change of viscosity of the fluid and change within 
the optimal fluid motion and the iterative optimisation procedure. 

" Investigations on the objectivity of different interpolation shapes for the control and 
their performance and impact on the optimal fluid motion and the optimisation. 

Additionally some findings will be discussed, which spanned over all computation processes 
within the optimisations. These results are linked with various parameters and properties of 
the CFD- and the SQP-code. In particular the influences of surface tension and parameters 
of accuracy like time-step control, number of particles per fluid-cell or penalty function 

variation are considered. 

130 
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Where possible, considerations are made in which way the achieved theoretical results can 
be turned into practical applications. 

7.1 Theoretical investigations concerning the simula- 
tion 

In order to discuss the results presented in Chapter (6) in a rational and objective way, 
it is important to restate the main targets and intentions of this work. The aim was to 
develop a novel model for the representation of a warehouse environment in order to be 

able to optimise the motion of the transport facility in a time optimal way. Due to certain 
limitations like limited computational resources one of the objectives was the research and 
development of efficient, accurate but also fast models for the fluid and the mechanical 
system. 

It has been shown in Chapter (3.8) that the necessary reduction of accuracy in order to 
achieve the goal of faster calculation times does not affect the accuracy of the character- 
istic values of the system. These characteristic values, the maximum sloshing amplitudes 
at the boundaries of the container, have not been affected within the reduction of the 
model accuracy. To illustrate this behaviour of the finite difference code NAST2D various 
experiments were undertaken to classify and verify its accuracy. 

Furthermore, the accuracy and representation of the mechanical system has been investi- 
gated. Its model is based on very standard and generally applied approaches, which were 
revised several times (see Chapter (2.2)), these codes have only been verified in terms of 
reality reproduction. Strong correlation to other results[10][72] were found. 

Focus was on the model and simulation of the fluid-structure interaction. Based on the 
known approaches of closed and weakly coupled interaction, computer and accuracy perfor- 
mance features were studied. As a result, the strongly coupled approach has been selected 
(see Chapter (4.4)) to be used within the overall model of the fluid and the mechanical 
system. This decision has been based on the advantages of higher accuracy and faster 
calculation of the selected closed coupled approach. 

Another study within the preparation of the optimal control calculations and their experi- 
mental verification involved the investigation of the capabilities of the small scale servo rig 
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and its limitations which must be mapped onto the boundaries of the theoretical calcula- 
tions. Furthermore the experimental rig was used to set boundaries for the applicability of 
the CFD-code NAST2D in terms of accurate representation of the physical properties of 
the fluid. 

As a result of these preliminary experiments constraints had to be formulated for the 
optimisation in order to correlate the results of the optimisation procedure to the practical 
experiments on the small scale model rig. 

It was possible to illustrate that the fluid model is only accurate if the amplitude motion of 
the fluid is not exceeding 25% of the initial fluid height. This heuristic rule was verified for a 
quadratic cube of 100 [mm] edge length, according to the one used within the experiments. 
These findings are based on the absence of modelling additional physical properties, like 
turbulence, within the finite difference code NAST2D. The experiments on the small scale 
model rig showed the presence of these properties. 

In order to evaluate knowledge about the characteristic behaviour of the fluid in motion, 
several theoretical calculations of the fluid and the optimisation were performed. First of 
all some geometrical parameters were varied to study their influence on the shape of the 
optimal control acceleration profile. 

Within the calculation of fluid motion there is an ongoing debate about the influence of 
the shape of the control volumes on the results of the calculations. In general the most 
precise results can be achieved if the length of the edges of the control volume all have 
the same length, hence their ratio is one. It was researched what influence a change in this 
ratio of the overall cube edge lengths causes within the optimal acceleration shape. For 
this purpose the length to height ratio of the cube was varied between (0.5 < ratio < 2). 
It can be observed that the fluid reacts more slowly and lethargic, the more the ratio of 
the container dimensions change from a slim upright cube towards a long horizontal one. 
Additionally the frequency of the fluid motion is decreasing. It has been shown that the 
acceleration of the cart motion can be increased while making the container slim and tall. 
On the other hand, the motion must be slowed down if the container is very long and flat. 

The small scale model rig limits the absolute distance to travel quite thoroughly (the 
maximum distance to be driven is 100 [mm]). Therefore some other distances to travel must 
be investigated to get closer to the dimension properties of a normal large scale warehouse 
environment. Only the motion perpendicular to the natural gravity was investigated to 
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study the motion of most severe sloshing motion. Additionally, the shape of the acceleration 
profile was limited to the simple step input motion used by the servo rig motion controller. 

When using the very simple acceleration and deceleration profile the optimisation of the 
distance to travel can be analysed separated into the acceleration part and the deceleration 

part. The sloshing motion of the fluid, stimulated by the acceleration does not influence the 
fluid sloshing within the deceleration. This separation is only possible for large distances 

to travel. A specific, characteristic distance can be distinguished, starting from which this 

separation occurs. This specific distance is dependent on the properties of the fluid and 
the cart (viscosity of the fluid, weight of the cart, etc. ). In the experimental cases studied 
where water is being transported, this travelled distance is approximately 600 [mm]. 

The degree of freedom in terms of possible sloshing constraint violations is greater the 
longer the distance to travel becomes. There is a characteristic frequency for the given 
fluid and container properties in which the fluid moves. This frequency is dependent on 
the external force impact and has a frequency bandwidth of 0.2-L [ý < fr < 0.3-L ýý using 
the given fluid and container properties (viscosity of the fluid, dimensions of the cart, 
etc. ). Therefore with a fixed maximum velocity of the cart, a maximum number of sloshing 

constraint violations can be calculated. This number is greater the longer the distance to 
travel becomes. It is clear, that an increased number of possible constraint violations results 
in an increased complexity and level of difficulty of the optimisation procedure. This is an 
additional reason for the high numbers of iterations within Figure(6.14). 

Within the shorter distances to travel, the sloshing motion of the liquid amplitudes is the 
result of a combined influence of acceleration and deceleration. The separation of the two 
sloshing motions within the longer distances makes it more difficult for the optimiser to 
calculate the optimal acceleration profile because the constraint violations are not as closed 
coupled with the variation of the acceleration profile like in the short distance calculations. 
That means that a small perturbation within the control profile could result in the reduction 
of the left amplitude within the acceleration process, and at the same time an increase of 
the left amplitude at a later time. As a result, the optimiser could not distinguish whether 
the motion control profile has improved or not. 

In order to investigate the most important property of a fluid in an open topped container, 
the viscosity of the liquid, was varied. This physical property influences rapidly the motion 
of the fluid in terms of sloshing amplitude, sloshing frequency and delay of the fluid. 
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The reaction of the fluid was studied for viscosity ranging from 25% to 400% of 77water- 
In general, the calculation of the fluid motion with higher viscosity is more time consum- 
ing than with lower viscosity. This is due to difficulties within the pressure correction of 
the SIMPLE algorithm within NAST2D (see Section (3.5)). Numerical experiments of the 

simulation showed that these difficulties can not be avoided by variation of the number of 
mesh-cells, the shape of the cells (ration of the edge lengths) or the time step control. They 

were overcome by using higher accuracy, especially using more particles in every single fluid 

cell. It was verified that the calculation time of a single function evaluation is linear coupled 

with the number of particles per fluid cell. Hence, when the number of particles within one 
calculation cell is doubled, the calculation time for the overall calculation is doubled as 
well. 

It was confirmed that the frequency of the motion, hence the time intervals between the 

moments when left and right amplitude do have the same height, is decreasing with in- 

creasing viscosity. But it must be drawn to the attention of the reader, that a change of the 
physical property of viscosity does also possibly change the overall model. Hence it might 
be possible that higher viscosity requires the implementation of surface tension within the 

simulation of the fluid. This was not considered due to the low influence of surface tension 

within the model of liquids like water. 

For practical application, fluids with higher dynamic viscosity can be accelerated more 
severely than fluids with lower viscosity, because the liquid responds slower to the accel- 
eration of the cube. This can be demonstrated easily with water compared to honey. But 

on the other hand, if the fluid is already sloshing, it is more difficult and costly in terms 

of energy consumption to reduce the motion of the fluid. 

Finally within the investigations of the theoretical calculations, the main input parameters 
of the simulation and optimisation were studied. These input parameters are the control 
of the servo motors. They are also called design parameters, because they determine the 
response and motion of the plant. There are different ways to specify the control parameters. 
Due to its flexibility, adaptivity, robustness and ability to be tuned easily, an interpolation 
attempt will be used. In this research work equally spaced base points are specified and 
interpolated using several different interpolation schemes. This specification is done for the 
time period ([0... 1]), which will be multiplied with the overall time to be optimised. In 
order to get an insight into the performance of the mechanical system and the fluid, this 
interpolation mode was varied and the results studied. 



CHAPTER 7. DISCUSSION OF THE OPTIMAL TRAJECTORY RESULTS 135 

Three different shapes were investigated. They are step interpolation, straight line inter- 

polation and exponential spline interpolation. The results were presented in two stages. 
Initially the actual results of the simulation based on the optimal trajectories of each case 

were compared. From these findings the following conclusion can be drawn: 

The rougher the interpolation mode is, the better and quicker the motion will be. This 

would assume that the acceleration can be switched from zero to maximum within an 
infinite small step in time. Due to the fact, that this motion is not applicable on servo 

motors in reality a second way was introduced. 

Within this second approach, the control system will be modelled as well. This results in 

the advantage, that the actual motion of the servo motor, based on the three different 

interpolation modes, can be investigated. Hence the practical implementation will come 
into focus and not only the theory. For this purpose the controller of the servo motor 
was modelled with a two degree of freedom dynamical system. The optimal acceleration 
profiles of the interpolation schemes were transferred from the pre-controller state to the 

post-controller state. Subsequent the results of the transferred optimal trajectories were 
compared once more. 

This time the results are turned completely. The smoother the interpolation mode is, the 
better and quicker the motion will be. The final outcome of the study on interpolation 

shape variation can be summarised as follows: 

The optimal motion, hence the motion using minimal time is strongly coupled with the 

context of practicality. The interpolated shape which is closest to the optimal shape within 
cam design (see Norton[79]) in terms of inertia, velocity, acceleration and jerk is also the 
optimal shape in terms of overall speed. 
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7.2 Theoretical investigations concerning the optimi- 
sation 

Within the used sequential quadratic programming algorithm of MATLAB some problems 
occurred which are well known when using numerical optimisation codes. 

First of all it became obvious very early that the optimisation gets into difficulty in terms 

of proceeding towards an optimal solution, if the simulation result of the arbitrary initial 

parameter set did already result in sloshing of the fluid. Meaning, that the solution of the 
initial parameter set is not part of the feasible domain. It was necessary to introduce a 
penalty function which forces the optimisation code to develop a parameter set with feasible 

solution. This penalty function was varied and several different schemes (fixed value, linear 

or exponential increase, etc. ) were studied. Finally a very simple, linear function was used 
to increase the value of violation. This approach indicated the best results. 

Secondly, the author was able to observe the known critical behaviour of SQP methods to 
follow the steepest descent towards a boundary and then following the boundary towards an 
optimal solution. This behaviour is very time consuming in the iterations where the SQP- 

code follows the boundary, because the step size must be made very small. Additionally 

even more severe constraint violations of the solution will occur, based on the parameter- 
variations within the SQP-code. 

The plots of iterative improvement showed that the optimal solution can be found more 
easily if the initial overall acceleration time is longer than the final optimal time, hence 

the optimisation should be started from a feasible solution. In the case of the overall time, 
an additional effect comes into play. In the case of longer initial time the main constraint 
violation will take place preferable in the limitations of final position and velocity and not 
within the sloshing behaviour of the fluid. In the case of shorter initial acceleration time 
the limitations of final position and velocity are strongly accompanied by the violation of 
the sloshing limitation. 

It has been shown that the SQP-code is more sensitive on the sloshing error than on the 
velocity or position error. The additional violations of sloshing aggravate the search for a 
new, improved set of design parameter. 

Additional difficulties within the optimisation were observed while the change in the param- 
eter set leads to jumps within the constraints. Jumps means a switch from one constraint 
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being the maximum violation to another constraint being the new maximum violation. 
This results in severe difficulties within the calculation of the new step direction and step 

size. This behaviour was pictured in large variations within the error plots of the iterative 

process within the optimisation. 

It is clear that the optimal solution of the problem of trajectory optimisation to reduce 
sloshing in open liquid filled containers lies on the boundary of the feasible domain. This 
boundary is marked by the sloshing constraint. Therefore the influence of the boundary 

on the iterative process of the optimisation is very large. Initially, the optimisation tries to 

reduce the violation of the constraints. In the case that the initial parameter set results in 

a feasible solution, the only constraints to be reduced are the constraints of final position 
and final velocity. The reduction of the objective function, in our case the overall time of 
the movement, is only pursued with minor interest. From the point, when a set of design 

parameters can be found, which is very close to the fulfilment of these constraints, the main 
objective of the SQP-algorithm is the optimisation of the objective function. As long as the 
time of first sloshing can be delayed, the iterative process is proceeding rapidly towards an 
optimal solution. Hence the main delay within the optimisation is based on the violation 
of the sloshing constraint. 

7.3 Practical verification 

It was confirmed that the finite difference code NAST2D is capable of modelling and simu- 
lating free surface motion of water within a cube. This was documented within preliminary 
investigations using the bed of a milling machine as an accelerator for the cube. 

Additionally, based on the small scale model rig, it was shown that the modelling and 
simulation of this rig can be used to calculate the fluid and cart motion. These mathematical 
results are according to the experimental results of the actual servo driven cube. A large 

number of experiments were performed and eventually documented with a video record. It 
was also documented that a small change within the acceleration of the optimal acceleration 
profile of the cube does result in a sloshing behaviour of the fluid. For this purpose limit 
accelerations based on maximum velocities were determined experimental. 

Finally a set of acceleration profiles were used to illustrate that the optimal set of initial 
acceleration parameters in the case of step input for the controller of the servo motor is 
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a combination of the optimal maximum velocity and maximum acceleration. The optimal 
motion is not determined strictly by the acceleration of the cube. The author was able 
to document these calculated findings with a video, when applying the corresponding 
acceleration profiles to the small scale model rig. 

The main limitations within the practical verification were the restricted motion input and 
the limited distance to travel. Additionally it was not possible to control and drive the 

servo motors directly, the controller had to be programmed respectively. This controller 
has a feedback control of the servo motor encoder which was not modelled within the 

mechanical system of the warehouse. 



Chapter 8 

Conclusion and recommendation for 
further work 

This chapter is dedicated to a final conclusion on the whole research project. In particular 
conclusions will be made on the modelling process, the optimisation procedure and the 

results obtained. 

These conclusions will be rounded off with an illustration of the contribution to knowledge 

elaborated by this research work. 

Finally an outlook will be given into suggested improvements and alterations possible for 

the modelling, simulation and optimisation of the given problem in a more comprehensive 

way. 

8.1 General conclusions of the thesis 

In order to draw conclusions on the thesis presented the general goals and aims are illus- 
trated. These aims can be shortly summarised as follows: 

1. Development of a simple but accurate model of the fluid motion and the mechanical 
system. 

2. Efficient combination of the two models. 

139 
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3. Simulation of characteristic values for the warehouse motion and incorporation of the 

model simulation within an optimisation package. 

4. Calculation of optimal trajectories within the optimisation procedure. 

5. Verification of the obtained result, using real world application. 

The general way in which the proposed goals (1-5) have been fulfilled will be presented. 

With the help of the finite difference calculation procedure NAST2D and additional pro- 
gramming, the free surface fluid motion has been modelled. In order to achieve the goal 
of accuracy combined with efficiency some simplifications and limitations had to be intro- 
duced. Therefore, the results presented in this thesis include laminar, incompressible, free 

surface motion without modelling turbulence compressibility or surface tension. Due to 
the module orientated structure of programming there would be no problem to integrate 

additional modules with these capabilities. The programmed enhancements to this code 
include a time varying acceleration of the fluid and a reduced calculation time. Further- 

more, a sensitivity analysis revealed the particular good applicability for the given problem 
due to the specific balance of computational time and accuracy of the code. 

The mechanical system of the small-scale model rig has been modelled with a standard 
approach for such systems of ordinary differential equations. The motion of the mechanical 
system is calculated using a Runge-Kutta method of order 4(5). The accuracy of this solver 
has been verified using other mathematical calculation platforms such as MATLAB. 

A closed-coupled, fluid-structure interaction model for the combination of the fluid motion 
and mechanical system dynamics was developed. The advantages of such a closed-coupled 
approach in comparison to a weakly coupled approach were shown. As a result of the 
combination, the overall model is able to calculate the interaction of the fluid motion 
and the motion of the mechanical system within every time step of the CFD algorithm. 
Furthermore, the author was able to show the effects of the assumption, that the motion 
of the fluid influences the motion of the cart. 

With the generated model, the motions of the cart and the fluid were simulated. Calcu- 
lations were performed especially to determine the influence of the walls of the container 
on the motion of the fluid. These investigations led to a more exact determination of the 
free surface at the walls, allowing higher sensitivity in the correlation of the acceleration 
profile (the input) and the amplitudes of the fluid (the output). This increased accuracy 
has been very important during the simulation of the overall system. 
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Based on the need for robustness and efficiency an appropriate optimisation algorithm 

was selected. The comprehensive overall model was incorporated within the optimisation 
code. In order to do so, the optimal control problem presented within this thesis was 
adapted to the sequential quadratic programming algorithm implemented within MATLAB. 

This selection was justified by the saving of computational time compared to evolutionary 
algorithms like genetic algorithms and the robustness of the code compared to specialised 
SQP implementations. 

Within a series of optimal control calculations the efficiency of the combined model and 
the performance of the optimisation algorithm were evaluated. On the one hand, these 

calculations illustrated thoroughly that the specified SQP algorithm combined with the 

overall model could be used to simulate the model of a warehouse and calculate optimal 
trajectories for a fluid filled container within such warehouses. On the other hand, dif- 
ficulties within the optimisation have been spotted and solution strategies in the sense 
of appropriate initial value settings have been formulated. Finally, a set of time optimal 
trajectories were calculated to illustrate dependencies of the motion on different physical 
properties like cube dimensions, distance to travel or fluid viscosity. 

In order to be able to verify results of the optimisation algorithm, constraints have been 

specified which fulfil the limitations by the small- scale model rig. Using the overall model 
and the SQP algorithm, a time optimal trajectory for a specific motion has been calculated. 
Using the small-scale model rig, this optimal trajectory was verified. Furthermore, the 

author illustrated that the time optimal trajectory is not only based on the maximum 
acceleration used, but also on the maximum velocity gained during the motion. 

8.2 Contribution to knowledge 

Several aspects of the tools and models that were developed during the research have 
innovative significance. 

The integration of various different interpolation schemes for the specification of the ac- 
celeration of the container and the fluid has opened new simulation capabilities for liquid 
motion. These capabilities have still not been realised in commercial CFD-codes like FIDAP. 

A new combination of fluid motion and mechanical system motion was proposed and used to 
develop a finite difference CFD-code with Runge- Kutta solver for the mechanical system. 
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The study on such closed coupled fluid-structure systems is at the moment under intense 

research. These systems became applicable due to the improvements of computational 

resources. 

The study on such a system was further promoted, applying optimisation. To the knowledge 

of the author, this is the first study on the numerical optimal calculation of a motion of a 

coupled system of ordinary and partial differential equations. 

The applicability of an optimisation technique on such a system was verified using a prac- 
tical experiment. 

8.3 Future work 

Already within this study several improvements of the models and the simulation and 

calculation of the fluid and mechanical system were thought over. In most cases these 
improvements had to step back due to their complexity of implementation or their increase 

of computational costs. 

For future, additional research in the illustrated field of optimal control of sloshing liquids 

several different directions can be distinguished. In general they have all the common aims 
to improve the calculation speed and the solution domain of the results. This means the 

application of the calculations to a broader field of science. 

Firstly the speed of computation can be further improved. This would allow the calculation 
of real time motion. With real time calculation the control system of the motion platform 
would be enabled to perform a closed loop calculation. Hence, the feedback of the actual 
motion of the fluid could influence the optimal motion of the platform. This would enable 
the control system to perform self tuning of the optimal motion parameters. The results 
obtained and illustrated in this thesis were calculated based on a limited access to mod- 
ern computational resources. The workstation which was bought at the beginning of the 

research was in terms of computational speed modern at that time and outdated at the 
end of the research. Together with the modern parallel computational techniques there is 

an enormous amount of possible improvements in calculation speed. 

Secondly several different computational techniques could be improved in order to allow 
the calculation of a broader area of initial conditions and a broader area of final solutions. 
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The following list illustrates in the left column the computational proposals and in the 

right column the possible improvements. 

1. The various elements of the modelling With these improvements the potential 

of the process could be improved. This user of the code would be enabled to 

would include the calculation of the fluid use the optimal control code on a wider 

motion in three dimensions, the integra- range of problems. In particular the cal- 
tion of surface tension modelling and the culation of real warehouse configurations 

modelling of turbulence within the fluid. would be enabled. Nearly all containers 
Additionally a boundary layer model in practical use are of a circular shape 

could be included to reflect the stick- and the calculation of severe sloshing is 

slip conditions of the fluid at the con- only possible with turbulence modelling 
tainer walls. Within the model of the (see Section(6.1.2)). 

mechanical system the non-linear char- 

acteristic curves of the servo motor and 
the other mechanical equipment could be 

integrated. A database could be gener- 

ated to allow the calculation with various 
different configurations (rubber band-, 

leadscrew- or gear drive). 

2. A multiple shooting method could be in- 

tegrated. Within this research a direct 

shooting method has been used in order 
to calculate the response of the cart and 
the fluid based on a specified parameter 

set of the acceleration of the drive. 

The application of a multiple shooting 
method would enable the calculation of 
more speculative initial parameter sets, 
due to the fact that these procedures cal- 
culate more intermediate precise results. 

3. A multiple-grid approach could be used 
to simulate the fluid motion. This would 
be very effective when using turbulent 

motion of the fluid. 

Multiple-grid calculations have the ad- 
vantage that the propagation of errors 
within the free surface motion of the fluid 

are highly limited due to smoothing of 
the solution using 'V' or 'W' multiple- 
grid cycles. 
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The common disadvantage of all of these algorithms and modelling enhancements is their 

additional computational cost. Therefore, it can be summarised that the resources of physi- 
cal properties to be modelled in order to incorporate all interactions still absolutely exceeds 
the possibilities of modern computers. Therefore the range of improvements on this field 

of modelling will be still a science of simplifications for a long time to come. 
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Appendix A 

Additional theory 

A. 1 NAST2D 

A. 1.1 NAST2D additions 

In this appendix the files and additions within NAST2D are given which have been neces- 
sary to compute the problem of fluid sloshing in a warehouse environment. 

A. 1.1.1 The file ode-fun. c 

This routine is necessary to compute the result of the motion of the mechanical system. 

#include <stdio. h> 
#include <stdlib. h> 
#include <string. h> 
#include <math. h> 
#include <fcntl. h> 
#include <unistd. h> 
#include "datadef. h" 
#include "init. h" 
#include "spline. h" 
#include "auxiliary. h" 
#define MAX(A, B) ((A) 
#define MINA, B) ((A) 

> (B) ? (A) : (B) ) 

< (B) ? (A) : (B) ) 

/*----------------------------------------------------------------- 
/* 

----------------------------------------------------------------- 
0 

/*------------------------------------------------------------------ 

void 0DE45(double *GX, double *GY, double **txvor, double **polypx, double **tyvor, 
double **polypy, double tO, double t_end, int n_dz, int numi, 
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int spmode, double **zu, double **zu_stop, double **Ffun, double F_G, double **l_end) 
{ 

double **alpha, **bbeta, **ggamma, exponent, t_i, temppx, temppy; 
double **dzu_m, **dzu, **zu_m, **zu_temp, **zu_temp2, hmax, h_gl, delta_e, 

tau_e, toler_e; 
double **ddzu_temp; 
int i, j, k, count_k; 

/*--------------------------------------------------------------------- */ 
/* Runge-Kutta algorithm with Fehlberg coefficients of order 5(4) 

/* GX : Force of fluid in X-direction 
/* GY : Force of fluid in Y-direction 

txvor : Time-value pair of initial motion in X-direction 
/* tyvor : Time-value pair of initial motion in Y-direction 

polypx : Spline parameters for txvor 
polypy : Spline parameters for tyvor 

/* tO : Initial time for ODE-solver 
/* t_end : Final time for ODE-solver 
/* n_dz : Number of ODEs, length of state vektors 
/* numi length of txvor, tyvor (0 ... numi) 
/*------------------------------------------------------------------ --- 
/*--------------------------------------------------------------------- 

Allocation of space for data arrays 
/*--------------------------------------------------------------------- 

toler_e = 0.0000001; /* Tolerance fuer RK45 

alpha = RMATRIX(0,0,0,4); 
bbeta = RMATRIX(0,4,0,5); 
ggamma = RMATRIX(0,1,0,5); 

ddzu_temp = RMATRIX(0,1,0,499); 
dzu_m = RMATRIX(0,5,0, n_dz-1); 
dzu = RMATRIX(0,0,0, n_dz-1); 
zu_m = RMATRIX(O, n_dz, 0,499); 
zu_temp = RMATRIX(0,0,0, n_dz-1); 
zu_temp2 = RMATRIX(0,0,0, n_dz-1); 

alpha[0][0] = 1.0/4.0; 
alpha[0][1] = 3.0/8.0; 
alpha[0][2] = 12.0/13.0; 

alpha[0][3] = 1.0; 

alpha[0][4] = 1.0/2.0; 

bbeta[0][0]=1.0/4.0; bbeta[1][0]=3.0/32.0; bbeta[2][0]=1932.0/2197.0; 
bbeta[3][0]=439.0/216.0; bbeta[4][0]=-8.0/27.0; 

bbeta[0] [1]=0.0; bbeta[1] [1]=9.0/32.0; bbeta[2] [1]=-7200.0/2197.0; 
bbeta[3] [1]=-8; bbeta[4] [1]=2; 

bbeta[0] [2]=0.0; bbeta[1] [2]=0.0; bbeta[2] [2]=7296.0/2197.0; 
bbeta[3][2]=3680.0/513.0; bbeta[4][2]=-3544.0/2565.0; 

bbeta[0][3]=0.0; bbeta[1][3]=0.0; bbeta[2][3]=0.0; bbeta[3][3]=-845.0/4104.0; 
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bbeta[4][3]=1859.0/4104.0; 
bbeta[0] [4]=0.0; bbeta[1] [4]=0.0; 

bbeta[4][4]=-11.0/40.0; 
bbeta[0] [5]=0.0; bbeta[1] [5]=0.0; 

bbeta [4] [5] =0.0 ; 

bbeta[2] [4]=0.0; bbeta[3] [4]=0.0; 

bbeta [2] [5] =0.0; bbeta [3] [5] =0.0; 

ggamma[0][0]=16.0/135.0; ggamma[1][0]=-1.0/360.0; 
ggamrna[0] [1]=0.0; ggamma[1] [1)=0.0; 

ggamma[0][2]=6656.0/12825.0; ggamma[1)[2]=128.0/4275.0; 
ggamma[01 [33=28561.0/56430.0; ggamma[1][33=2197.0/75240.0; 
ggamma[0](4]=-9.0/50.0; ggamma[1][4]=-1.0/50.0; 
ggamma[0][53=2.0/55.0; ggamma[1][5)=-2.0/55.0; 

exponent = 0.2; 

/*--------------------------------------------- 
/* Initialisation 
/*--------------------------------------------- 

for (i=0; i<=5; i++) 
for (j=0; j<=n_dz-1; j++) 

dzu_m[i] [j] - 0.0; 

hmax = (t-end - t0)/16; 
h_gl = hmax/8; 

count_k = 0; 
/*--------------------------------------------- 
/* States 
/*--------------------------------------------- 
t_i = to; 

zu_m[O][count_k] = t_i; 
for (i=1; i<=(n_dz); i++) 

zu m[i] [count_k] = zu[O] [i-1] ; 

/*----------------- while ? --------------------- 
while ((t_i < tend) && ((t_i + h_gl) > t_i)) 
{ 

if (t_i + h_g1 > t_end) 
h_gl = tend - t_i; 

/*--------------------------------------------- 
/*------------- Compute the Slope ----------- 
/* 

for (j=0; j<=n_dz-1; j++) 

zu_temp[O] [j] = zu[0] [j]; 

temppx = SPLINT(spmode, numi, txvor, polypx, t_i); 
temppy = SPLINT(spmode, numi, tyvor, polypy, t_i); 
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ODE_FUN(dzu, zu_temp, temppx, temppy, Ffun, tO, txvor[O][numi], 1_end); 

for (i=0; i<=(n_dz-1); i++) 
{ 
dzu_m[0] [i] = dzu[O] [i] ; 
} 

/*-------------------------- 
MATRIXMULTIPLIKATION */ 

/*-------------------------- 
for (i=1; i<=5; i++) 

{ 
/*--------------------------------------------- 
/*------------- Clear up ----------- 
/* 

for (j=0; j<=n_dz-1; j++) 

zu_temp2[0] [j]= 0.0; 

for (j=0; j<=n_dz-1; j++) 
{ 
for (k=O; k<=5; k++) 

{ 

zu_temp2[O] [j] = zu_temp2[O] [j] +(dzu m[k] [j]*bbeta[i-1] [k]); 
} 

} 

for (j=0; j<=n_dz-1; j++) 
{ 
zu_temp2[O] [j] *= h_gl; 
zu_t emp [0]Ii] = zu t emp2 [0] [j]+ zu [0] Ej1; 
} 

temppx = SPLINT(spmode, nnmi, txvor, polypx, (t_i+alpha[O][i-1]*h_gl)); 
temppy =SPLINT(spmode, numi, tyvor, polypy, (t_i+alpha[0][i-1]*h_gl)); 

ODE_FUN(dzu, zu_temp, temppx, temppy, Ffun, tO, txvor[O][numi], 1_end); 

for (j=0; j<=(n_dz-1); j++) 
{ 
dzu_m[i] [j] = dzu[0] [j]; 
/* printf ("dzu[0] [%d]= %. 4e ", j , dzu[O] (j]); */ 
} 

} 
/*-----------------------------------------------*/ 
/* Estimate the error and the acceptable error */ 
/*----------------------------------------------- 

delta_e = 0.0; 
tau_e = 1.0; 
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zu_t emp2 [0] [j]=0.0; 

for (j=0; j<=n_dz-1; j++) 
{ 
for (k=0; k<=5; k++) 

zu_temp2 [0] [j] += dzu_m [k] [j] *ggamma [1] [k] ; 

zu_temp2[0] [j] *= h_gl; 
zu_temp2[0] [j] = fabs(zu_temp2[0] [j]); 

delta_e = MAX(delta_e, zu_temp2[0][j]); 
tau_e = MAX(tau_e, fabs(zu[0][j])); 
} 

taue *= toler_e; 

/*----------------------------------------------- 
/* Update only if error acceptable 
/*----------------------------------------------- */ 

for (j=0; j<=n_dz-1; j++) 
zu_temp2[0] [j]= 0.0; 

if (delta_e <= tau-e) 
{ 
t_i += h_gl; 
for (j=0; j<=n_dz-1; j++) 

{ 
for (k=O; k<=5; k++) 

zu_temp2 [0] [j] += dzu_m [k] [j] *ggamma [0] [k] ; 

zu_temp2[O] [j] *= h_gl; 
zu[0] [j] += zu_temp2[0] [j]; 
if ( tO<=txvor [0] [numi] ) 

{ 

zu_stop[0] [j]=zu[0] [j] ; 
} 

} 

count_k += 1; 

zu_m[O][count_k) = t_i; 
for (i=1; i<=(n_dz); i++) 

{ 

zu-m[i] [count-k] = zu[O] [i-1] ; 
} 

} 

/*----------------------------------------------- 
/* Update the step size 
/*----------------------------------------------- */ 
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h_gl = MIN(hmax, 0.8*h_gl*pow((tau_e/delta_e), exponent)); 

} 

/*----------------------------------------------- 
/* Differentiation 

*/ /*----------------------------------------------- 

for (i=0; i<=count_k-1; i++) 
{ 
ddzu_temp [0] [i] = (zu_m [2] [il-zu-m[21 [i+1]) / (zu_m [0] [il-zu-M[01 [i+11); 

ddzu_temp [1] [i] = (zu_m [4] [i] -zum [4] [i+1]) / (zu_m [0] [i] -zum [0] [i+1]) ; 
} 

if (t0<=txvor [0] [numi] ) 
{ 
1_end [0] [0] =zu [0] [0] ; 
1_ead [0] [1] =zu [0] [2] ; 
} 

*GX = ddzu_temp[0][count_k-1]; /* Wert von x_2 zur Zeit t_end */ 
*GY = ddzu_temp[1][count_k-1] + F_G; 

/*------------------------------------- 
/* Free allocated space 
/*------------------------------------- 
FREE_RMATRIX(alpha, 0,0,0,4); 
FREE_RMATRIX(bbeta, 0,4,0,5); 
FREE_RMATRIX(ggamma, 0,1,0,5); 

FREE_RMATRIX(ddzu_temp, 0,1,0,499); 
FREE_RMATRIX(dzu_m, 0,5,0, n_dz-1); 
FREE_RMATRIX(dzu, 0,0,0, n_dz-1); 
FREE_RMATRIX(zu m, 0, n_dz, 0,499); 
FREE_RMATRIX(zu_temp, 0,0,0, n dz-1); 
FREE_RMATRIX(zu_temp2,0,0,0, n_dz-1); 

} 

A. 1.1.2 The file splines 
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This routine is necessary to compute the parameters representing the interpolated function, 
and to calculate interpolated values for the acceleration. 

$include <stdio. h> 
*include <stdlib. h> 
*include <string. h> 
$include <math. h> 
#include <fcntl. h> 
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tinelude <unistd. h> 

idefine Al (0.166666666657193) 
#define 12 (0.00833333363787823) 
#define A3 (0.000198409277128940) 
#define A4 (0.00000277139911687000) 
=define PHI(Z) (A1+(A2+(A3+A4*Z)*Z)*Z) 
#define XPHI(Z) (Z*((Z+Z)*(A2+Z*Z*(2*A3+(3*A4)*Z*Z)))) 

int LEFT(int LXT, double **XT, double X, int MFLAG) 
{ 
/*---------------------------------------------------------------------- 
1*---------------------------------------------------------------------- 
/* LEFT FINDS INDEX LEFT OF AN ARRAY XT FOR WHICH XT(LEFT) */ 

LIES IMMEDIATELY LEFT OF X */ 

/*PURPOSE: */ 
FINDS INDEX LEFT OF AN ARRAY XT FOR WHICH XT(LEFT) 
LIES IMMEDIATELY LEFT OF X 

/*INPUT ARGUMENTS: */ 
/* LXT : NUMBER OF ELEMENTS IN VECTOR XT */ 
/* XT VECTOR OF LENGTH LXT STORING THE ABSCISSAE */ 
/* X: X-VALUE FOR WHICH THE INDEX LEFT IS TO BE FOUND */ 

/*OUTPUT ARGUMENTS: */ 
/s LEFT : INDEX FOR WHICH XT(LEFT) LIES IMMEDIATELY LEFT OF X */ 
/* MFLAG : FLAG SET IN THE FOLLOWING MANNER */ 

LEFT MFLAG s/ 
1 -1 IF X LT. XT(1) 
I0 IF XT(I) I. E. .X LT. XT(I+1) */ 

/* LXT 1 IF XT(LXT) . LE. X 

/*METHOD: 
/* THAT OF CARL DE BOOR AS DESCRIBED ON PAGE 91 FF. IN: */ 
/s /1/ DE BOOR, C. (1978) A PRACTICAL GUIDE TO SPLINES. 
/s APPLIED MATHEMATICAL SCIENCES, VOLUME 27. */ 
/* NEW-YORK-HEIDELBERG-BERLIN: SPRINGER. 

/*IMPLEMENTED BY: 
/* KRAFT, D., DLR - INSTITUT FUER DYNAMIK DER FLUGSYSTEME */ 

D-8031 OBERPFAFFENHOFEN s/ 
/s s/ 
/*STATUS: 15. JANUARY 1980 

/*SUBROUTINES REQUIRED: NONE 
/*---------------------------------------------------------------------- 

/*----------------------------------------------------------------------*/ 

int IHI, ISTEP. MIDDLE, abbr; 
static int ILO; 

ILO-0; 
IHI=ILO+1; 
if(IHI < LXT) goto A10; 
if(X >= XT[0][LXT]) goto A110; 
if(LXT <= 1) goto A90; 
ILO=LIT-1; 
IHI=LXT; 

A10: if(X >= XT[0][IHI]) goto A40; 
if(X >- XT[0][ILO]) goto A100; 
ISTEP=1; 

A20: IHI=ILO; 
ILO=IHI-ISTEP; 
if(ILO <= 1) goto A30; 
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if(X >= XT[0][ILO]) goto A70; 
ISTEP=ISTEP+ISTEP; 

goto A20; 
A30: ILO=1; 

if(X < XT[0][1]) goto A90; 
goto A70; 
A40: ISTEP=1; 
A50: IL0=IHI; 

IHI-ILO+ISTEP; 
if(IHI >= LXT) goto A60; 
if(X < XT[0][IHI]) goto 170; 
ISTEP=ISTEP+ISTEP; 

goto A50; 
A60: if(X >= XT[0][LXT]) goto A110; 

IHI=LXT; 
A70: MIDDLE=(ILO+IHI)/2; 

if(MIDDLE _- ILO) goto A100; 
if(X < XT[0][MIDDLE]) goto 180; 
IL0=MIDDLE; 

goto A70; 
A80: IHI=MIDDLE; 

goto A70; 
A90: MFLAG=-1; 

return(! ); 

goto A120; 
A100: MFLAG=0; 

return(ILO); 
goto A120; 
A110: MFLAG=1; 

return(LXT); 
A120: {} 

} 
/*END OF LEFT*/ 

double SPLINT(int MODE, int N, double **X, double **poly, double XS) 
{ 
/+---------------------------------------------------------------------- 
/*---------------------------------------------------------------------- 
/*SPLINT INTERPOLATES IN THE RANGE OF COEFFICIENT SETS FOR CUBIC 

OR EXPONENTIAL SPLINES ESTABLISHED IN SUBROUTINE SPLINE 

/*PURPOSE: 
/* INTERPOLATION WITHIN COEFFICIENT SETS FOR CUBIC OR EXPONENTIAL 
/* SPLINES 

/*INPUT ARGUMENTS: 
/* MODE : INDICATES ORDER OF INTERPOLATION: 

1- PIECEWISE CONSTANT 

2" PIECEWISE LINEAR */ 
3i PIECEWISE CUBIC SPLINE 
4a PIECEWISE EXPONENTIAL SPLINE 

WITH TENSIONS A PRIORI CALCULATED 
5- PIECEWISE EXPONENTIAL SPLINE 

WITH TENSIONS GIVEN BY USER 
6" AKIMA'S INTERPOLANT */ 

/* N: NUMBER OF DATA FOR WHICH THE COEFFICIENT SET HAS BEEN 
CALCULATED IN SUBROUTINE SPLINE PREVIOUSLY 

/+ X: VECTOR OF LENGTH N STORING THE ABSCISSAE 
/* AND THE DATA POINTS (2 x N) */ 
/* poly : MATRIX OF LENGTH Nx4 EACH STORING THE COEFFICIENT SET +/ 
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/* IS : ABSCISSA AT WHICH INTERPOLATION IS REQUIRED 

/*OUTPUT ARGUMENTS: */ 
/* SPLINT: VALUE OF THE INTERPOLATING ORDINATE AT ABSCISSA XS */ 

/*METHOD: 
/* THAT OF CHR. REINSCH, P. RENTROP k D. KRAFT AS DESCRIBED IN: 
/* /1/ BULIRSCH, R., RUTISHAUSER, H.: INTERPOLATION UND GENAEHERTE 

QUADRATUR. IN: SAUER, R., SZABO, I. (EDS. ) MATHEMATISCHE HILFS-*/ 
MITTEL DES INGENIEURS, VOL. III. BERLIN-HEIDELBERG-NEW YORK: 
SPRINGER, 1968. +/ 

Is /2/ RENTROP, P.: AN ALGORITHM FOR THE COMPUTATION OF THE 
EXPONENTIAL SPLINE. NUMER. MATH. 35 (1980) 81-93. 

Is /3/ KRAFT, D.: FIRST DERIVATIVES OF EXPONENTIAL SPLINES. 
UNPUBLISHED MANUSCRIPT (1984). */ 

/+ /4/ AKIMA, H: A NEW METHOD OF INTERPOLATION AND SMOOTH CURVE FITTING*/ 
BASED ON LOCAL PROCEDURES. J. ACM 17 (1970) 589-602. 

/*IMPLEMENTED BY: 
/* KRAFT, D., DLR - INSTITUT FUER DYNAMIK DER FLUGSYSTEME */ 

D-8031 OBERPFAFFENHOFEN 
/*REFORMULATED IN C: +/ 
/+ LEONPACHER, H., FACHHOCHSCHULE MUENCHEN FB03 */ 

D-80335 MUENCHEN 

/*STATUS: 14. Januar 1997 +/ 
/*SUBROUTINES REQUIRED: += DIRECT CALL 

LEFT */ 
/+---------------------------------------------------------------------- 
/*----------------------------------------------------------------------*/ 

int IP, IS, MFLAG; 
double H, U, V, Z, D1, D2, HP, XT, DPHI, ZERO. HALF, zvi; 

ZERO - 0; 
HALF * 0.5; 

/" FIND INDEX OF ABSCISSA WHICH LIES IMMEDIATELY LEFT OF XS */ 

IS - LEFT(N, X, XS, MFLAC); 
XT s XS; 
i1(MFLAC an -1) XT a X[0][0]; 
ii(MFLAG a- 1) XT - X[0](N]; 

/+ CHOOSE INTERPOLATION ORDER +/ 

switch(MODE) { 
/* CONSTANT SPLINE 

case 1: {if(MFLAG 1) IS " IS-1; return(X[1][IS]); break; ) 
Is LINEAR SPLINE */ 

case 2: {zvi s 1(1](IS]; U- XT-X[O][IS]; i1(U =a ZERO) { return(zvi); break; } 
return (zvi+poly[0][IS]*U); break; ) 

/* CUBIC SPLINE A AKIMA SPLINE */ 
case 3: {zvi - X[1][IS]; U- XT-X10][IS]; ii(U =. ZERO) ( return(zvi); break; ) 
return(zvi+(poly (0][IS]+(poly [1][IS]+poly[2][IS]*U)*U)*Ü); break; ) 

/* EXPONENTIAL SPLINE */ 
case 4: {zvi - X[1](IS]; U- XT-X[0](IS]; if(U -" ZERO) { retura(zvi); break; ) 
IP - IS+1; H- X[0][IP]-X10][IS]; U= U/H; Va1.0-U; HP - H*poly[3](IS]; 
if(HP <= HALF) {HP = HP*HP; D1 - U*U; D2 - V*V; return(U*(X[1][IP]+ 
poly [0][IS]*poly [2][IP]*(D1*PHI(HP*D1)-poly [1][IS])) 
+ V*(X[1][IS]+poly[0][IS]*poly [2][IS]*(D2*PHI(HP*D2) 
-poly[1]EIS]))); break; ) 
else {D1 - exp(-HP*U); D2 - exp(-HP*V); return(U*X[1][IP]+ 
(poly [0][IS]*D2*(1-D1*D1)-U)*poly [1][IS]*poly [2][IP] 
+ V*X[1][IS]+(poly [0][IS]*D1*(1.0-D2*D2)-V)*poly [1][IS]*poly [2][IS]); break; )} 
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/* EXPONENTIAL SPLINE */ 
case b: {zwi - X[1]CIS]; Ua XT-X[0]CIS]; if(U -- ZERO) { return(zwi); break; } 
IP - IS+1; H- X[0][IP]-X[0](IS]; U- U/H; V-1.0-U; HP = H*poly[3][IS]; 
if(HP <- HALF) {HP - HP*HP; D1 a U*U; D2 - V*V; return(U*(X[1][IP]+ 
poly[0][IS]*poly[2][IP]*(D1*PHI(HP*D1)-poly[1]EIS])) 
+ V*(X[1][IS]+poly[0][IS]*poly[2][IS]*(D2*PHI(HP*D2) 

-poly[1][IS]))); break; } 
alas {D1 a exp(-HP*U); D2 a exp(-HP*V); return(U*XC1][IP]+ 
(poly[0][IS]*D2*(1-D1*D1)-U)*poly[1][IS]*poly[2][IP] 
+ V*X[1][IS]+(poly[0][IS]*D1*(1.0-D2*D2)-V)*poly [1][IS]*poly [2](IS]); break; )) 

/s CUBIC SPLINE k AKIMA SPLINE */ 
case 6: {zvi - 1(1][IS]; U- XT-X[0][IS]; if(U == ZERO) ( return(zwi); break; ) 
return (zwi+(poly [0][IS]+(poly [1][IS]+poly[2](IS]*U)*U)*U); break; } 

} 

/*END OF SPLINT*/ 
} 

double DSPLNT(int MODE, int N, double **X, double **poly, double XS) 
{ 
/*---------------------------------------------------------------------- 

/* FIRST DERIVATIVE OF SPLINE FUNCTION */ 
/*---------------------------------------------------------------------- 
int IS, IP, MFLAG; 
double XT, ZERO, zvi, U, H, HP, V, HALF, D1, D2; 

ZERO a 0; 
HALF = 0.5; 

IS = LEFT(N, R. XS, MFLAG); 
XT = XS; 
if(MFLAG -1) IT = x[0][0]; 
if (MFLAG == 1) IT =Z [0] [N] ; 
i1(MFLAG 1) IS = IS-1; 

switch(MODE) { 
/* CONSTANT SPLINE 

case 1: {return(ZERO); break; ) 
/* LINEAR SPLINE */ 

case 2: (return(poly[03[IS)); break; ) 
/* CUBIC i AKIMA SPLINE */ 

case 3: {zvi = poly[O]CIS]; return(zwi); U= XT-X[O]CIS); if(U == ZERO) break; 
zwi - zwi+(2*poly[1][IS]+3*poly[2][IS]*U)*U; return(zwi); break; ) 

Is EXPONENTIAL SPLINE */ 
case 4: {IP - IS+1; U- XT-X[0][IS]; H= X[O][IP]-X[O][IS]; U= U/H; 
V-1.0-U; HP = H*poly[3][IS]; 
if(HP <= HALF) {D1 = U*U; D2 = V*V; U- HP*U; V= HP*V; HP = HP*HP; 
zvi - X[3] [IP] + poly[O] [IS] *poly[2] [IP] s 

( D1*(3*PHI(HP*D1)+XPHI(U))-poly[1][IS)) 
-X [1] [IS] - poly [0] [IS] *poly [2] [IS] * 

( D2*(3*PHI(HP*D2)+XPHI(V))-poly [1][IS]); return(zvi/H); break; ) 
also {D1 = exp(-HP*U); D2 - exp(-HP*V); 
zvi = X[1](IP] + (poly [0]CIS] *HP*D2*(1.0+D1*D1)-1.0)*poly [1][IS]*poly [2](IP] 

- X[1] [IS) - (poly[O][IS]*HP*D1*(1. O+D2*D2)-1.0)*poly [I][IS]*poly[2](IS]; 
return(zvi/H); break; )) 
Is EXPONENTIAL SPLINE 

case b: {IP - IS+1; U= XT-X[O]CIS); H= X[O][IP]-X[O][IS]; U= U/H; 
V=1.0-U; HP = H*poly[3][IS]; 
if(HP <i HALF) {D1 = U*U; D2 - V*V; Ua HP*U; V= HP*V; HP - HP*HP; 
zvi = XC1) [IP] + polyCO] [IS]*poly[2] [IP]* 

( D1*(3*PHI(HP*DI)+XPHI(U))-poly[1][IS)) 
-X [1] [IS] - poly [0] [IS] *poly [2] [IS] * 
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( D2*(3*PHI(HP*D2)+XPHI(V))-poly[1][IS]); return(zwi/H); break; } 

else {D1 = exp(-HP*U); D2 = exp(-HP*V); 
zvi a X[1]LIP] + (poly[O][IS]*HP*D2*(i. O+D1*D1)-i. 0)*poly[i][IS]*poly[2][IP] 

- X[1]EIS] - (poly[0][IS]*HP*D1*(1. O+D2*D2)-1.0)*poly[1][IS]*poly[2][IS]; 
return(zvi/H); break; )) 
/* CUBIC & AKIMA SPLINE 

case 6: {zvi = poly[0]CIS]; U= XT-X[O]EIS]; return(zvi); if(U == ZERO) break; 
zwi = zvi+(2*poly[1][IS]+3*poly[2][IS]*U)*U; return(zvi); break; ) 

/*END OF DSPLNT*/ 
} 

void SPLIN(int MODE, int N, double **X, double **poly) 
{ 
/*---------------------------------------------------------------------- 
/*---------------------------------------------------------------------- 
/*SPLINE CALCULATES COEFFICIENT SETS FOR LINEAR, CUBIC OR EXPONENTIAL 

INTERPOLATING SPLINES 

/*PURPOSE: 
/* CALCULATION OF COEFFICIENT SETS FOR LINEAR, CUBIC, OR EXPONENTIAL */ 
/* INTERPOLATING SPLINES. +/ 
/+ ALSO TENSION PARAMETERS FOR VISUALLY PLEASING EXPONENTIAL SPLINE 
/* INTERPOLANTS ARE CALCULATED. */ 
/+ TO BE USED FOR INTERPOLATION IN CONNECTION WITH FUNCTION SPLINT 

/*INPUT ARGUMENTS: 
/+ MODE : INDICATES ORDER OF INTERPOLATION: 

1- PIECEWISE CONSTANT 
2s PIECEWISE LINEAR */ 
3- PIECEWISE CUBIC SPLINE 
4= PIECEWISE EXPONENTIAL SPLINE 

WITH TENSIONS A PRIORI CALCULATED 
5= PIECEWISE EXPONENTIAL SPLINE 

WITH TENSIONS GIVEN BY USER 
6- AKIMA'S INTERPOLANT */ 

/* N: NUMBER OF DATA FOR WHICH THE COEFFICIENT SET IS TO BE 
CALCULATED */ 

/* X: MATRIX OF LENGTH Nx2 STORING THE ABSCISSAE 
AND THE DATA POINTS 

/*CHANGED ARGUMENTS: 
/+ poly : MATRIX OF LENGTH Nx4 STORING THE COEFFICIENT SET 

TO BE USED FOR INTERPOLATION IN FUNCTION SPLINT. 
THESE TOGETHER WITH X ARE INPUT ARGUMENTS TO */ 
SPLINT AND MAY NOT BE CHANGED BY THE USER BETWEEN CALLS. 

/*REMARK: 
/* A PRACTICAL WAY TO FIND SUITABLE STIFFNESS PARAMETERS 
/* IS DESCRIBED IN /2/ AND IS IMPLEMENTED IN SUBROUTINE GENERA */ 

/*METHOD: 
/* THAT OF CHR. REINSCH AND P. RENTROP AS DESCRIBED IN: 
/* /1/ BULIRSCH, R., RUTISHAUSER, H.: INTERPOLATION UND GENAEHERTE 

QUADRATUR. IN: SAUER, R., SZABO, I. (EDS. ) MATHEMATISCHE HILFS-*/ 
MITTEL DES INGENIEURS, VOL. III. BERLIN-HEIDELBERG-NEW YORK: 
SPRINGER, 1968. */ 

/* /2/ RENTROP, P.: AN ALGORITHM FOR THE COMPUTATION OF THE */ 
EXPONENTIAL SPLINE. NUMER. MATH. 35 (1980) 81-93. 

/* /3/ RENTROP, P., WEVER, U.: THEORY AND APPLICATION OF THE 
EXPONENTIAL SPLINE. REP. 282, MATH. INST. TU MUENCHEN, 1991. /* /4/ AKIMA, H: A NEW METHOD OF INTERPOLATION AND SMOOTH CURVE FITTING+/ 

/+ BASED ON LOCAL PROCEDURES. 3. ACM 17 (1970) 689-602. +/ 
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/* */ 
/*IMPLEMENTED BY: */ 
/* KRAFT, D., DLR - INSTITUT FUER DYNAMIK DER FLUGSYSTEME */ 

D-8031 OBERPFAFFENHOFEN */ 

/*COPYRIGHT 
/* ******* DLR ***r*** r/ 
/* ******* 1986 ****r** */ 
/* ******* FHM ******* */ 
/* ******* 1991 rrrrrrr r/ 

/*CHANGES: */ 
/*INCORPORATION OF ZERO-ORDER SPLINES 
/*TOGETHER WITH PARAMETER MODE FOR SPLINE SELECTION 
/*31. JANUAR 1986 */ 
/*INCORPORATION OF AKIMA'S INTERPOLANT */ 
/*14. JUNI 1989 */ 
/*INCORPORATION OF VISUALLY PLEASING INTERPOLANT */ 
/*OF RENTROP A WEVER */ 
/*16. JUNI 1991 */ 
/*REFORMULATED IN C: */ 
/* LEONPACHER, H.. FACHHOCHSCHULE MUENCHEN FB03 */ 
/* D-80335 MUENCHEN 

/*STATUS: 14. Januar 1997 */ 
/* */ 
/*SUBROUTINES REQUIRED: NONE */ 
/*---------------------------------------------------------------------- 
/*----------------------------------------------------------------------*/ 

int I. IBACK, IS; 
double C1, C2, DI, D2, H, HP, U, V, W, Z, ZERO. TWD, THREE. HALF, QUART. UMAX; 

ZERO a 0; 
HALF - 0.5; 
TWO - 2; 
THREE " 3; 
HALF - 0.5; 
QUART " 0.25; 
UMAX = 25.0; 
IS - 6; 

/* Is MODE in it's range? */ 
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if((MODE < 1) II (MODE > 6)) (printf("SPLINE: MODE not in its range; MODE: %d\n", MODE); abort(); ) 

/+ DO YOU HAVE MONOTONE ABSCISSAE? */ 

for(I-0; I<-(N-1); I++) {if(X[0][I] >= X[O][I+1]) for(I-O; I<=(N-1); I++) {if(X[O](I] <. X[0][I+1]) 
{printf("SPLINE: non-monotonic abscissae: %. 3e. %. 3e\n", X[0]CI]. X[O][I+1]); abort(); }}} 

/* CHOOSE INTERPOLATION ORDER */ 

switch(MODE) { 

case 1: { break; } 
case 2: { tor(I=O; I<=(N-1); I++) poly[0]CI] _ (X[1][I+1]-X[1][I])/(X[0](1+1]-1[0][I]); break; } 

/s LINEAR SPLINE COEFFICIENTS "/ 
case 3: { V= ZERO; /+ COMPUTATION OF THE ELEMENTS OF THE TRIDIAGONAL SYSTEM 

for(I=O; I<=(N-1); I++) {poly[2](I] - X[0][I+1]-X[0](I]; 
U= (X[1] [I+1]-X[1] [I])/poly[2] [I] ; 

poly [1](I] - U-V; V=U; ) /* CUBIC SPLINE COEFFICIENTS ei 
U- ZERO; V-U; poly[1][0] - V; 
! or(I=1; I<=(N-1); I++) {poly[i][I] = poly [1][I]+Uepoly[i](I-1]; poly[0]EI] a TWO*(X[0][I-1]- 

X[0][I+1])-U+V; V= poly(2][I]; U= V/poly[0](I]; } 
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/* SOLUTION OF THE TRIDIAGONAL SYSTEM i/ 
poly[0][N] - ZERO; poly[1]EN] = ZERO; poly[2][N] - ZERO; 
for(I=1; I(=(N-1); I++) {IBACK = N-I; poly[1][IBACK] _ (poly[2][IBACK]+poly[l][IBACK+1]- 
poly[1][IBACK])/poly[0][IBACK]; } 
for(I=0; I<=(N-1); I++) {V = poly[2][I]; U- poly[l][I+1]-poly[1][I]; 
poly[2] [I] = U/V; poly[l] [I] = THREE*poly[l] [I] ; poly[0] [I] _ (R[1] [I+1]- 
X[1][I])/V-(poly[1][I]+U)*V; } break; } 

case 4: { 
/* EXPONENTIAL SPLINE COEFFICIENTS -- A PRIORI COMPUTATION OF THE TENSION PARAMETERS 
for(I=0; 1<=(N-1); I++) poly[2][I) = X[0](I+1]-X[0][I]; 
for(I=1; I<-(N-1); I++) poly[1][I] _ (X[i][I+1]-X[1][I])/poly[2][I]-(X[1][I]-X[1][I-1])/ 
poly[2][I-1]; 
for(I=1; I<=(N-2); I++) {if(poly[1][I]*poly[1][I+1] no ZERO) /* ABNORMAL CASE 
poly[0][I] = UMAX; 

else if(poly[13[I)spoly[I][I+1] < ZERO) /* MONOTONICITY */ 
{if (X [1] [I+1] on X [i] [I]) poly [0] [I]   UMAX; 
else poly[O]EI] = poly [2] [I]*fabs((poly[1] [1+1] -poly[l] [I])/(X[1] [I+1]-X[1] [I])); } 

else /* CONVEXITY 
{H = tabs (poly[1][I]/poly [1][I+1]); if (H >_ (1.0/H)) poly[0]II) =H ; else poly[0][I] 

if (UMAX <_ (poly[0]EI])) poly[0]1I] = UMAX; 
if(poly(0]II] < THREE) poly[0]EI] = ZERO; ) 

poly [O] [0] - poly [0] [1] ; poly [0] [N-i] = poly [O] [N-2] ; 
for(I=O; I<=(N-1); I++) poly[3][I] - Poly 103 [1] /poly [23 111; 
/* COMPUTATION OF THE ELEMENTS OF THE TRIDIAGONAL SYSTEM 
U- X[1][0]; 
for(I=1; I<=(N); I++) {V = X[1][I]; H= X[0][I]-XEO][I-13; poly[2][1] _ (V-U)/H; U=V; 

HP = H*poly[3][I-1]; 
if(HP > HALF) {D1 = exp(-HP); D2 = D1*D1; W=1.0-D2; C1 - W*HP; C2 = W/HP; W= H/C1; 

poly[0]CI] _ (1.0-C2+D2)*W; poly[1][I] _ (C2-TWO*D1)*W; } 
also {HP = HP*HP; C1 = PHI(HP); W= H/(1.0+HP*C1); HP QUART*HP; 

C2 = 1.0+HP*PHI(HP); 

poly[O]EI) _ (HALF*C2*C2-C1)*W; poly[l][I] = C1*W; }} 
/* GENERATE THE TRIDIAGONAL SYSTEM 
U- ZERO; poly[2][0] = U; 
for(I=1; I<=(N-1); I++) { 

poly[0]II] = poly[0][I]+poly[O][I+1]-U*poly[i][I]; 
poly[2][I] = polyC2]CI+1]-poly[2]EI]-U*poly[2][I-1]; 
U- poly [i] [I+l] /poly[0] [I] ;} 

/* SOLUTION OF THE TRIDIAGONAL SYSTEM 

poly[2][N] = ZERO; 
for(I=1; I<=(N-1); I++) {IBACK - N-I; 

poly[2][IBACK] - (poly [2][IBACK]-poly [1][IBACK+1]*poly [2][IBACK+1])/poly [0][IBACK]; } 
/* STORE AUXILIARY TERMS FOR SPLINT & DSPLNT IN AhB */ 
for(I-0; I<-(N-1); I++) {H - X[O][I+1]-X[0][I]; HP = H*poly[3][I]; 

if(HP > HALF) {D1 = exp(-HP); poly[0]CI] = 1.0/(1.0-D1*D1); 
poly[1][I] = 1.0/(poly[3][I]*poly[3][I]); ) 

else {HP - HP*HP; D1 - PHI(HP); D2 = H*H/(1.0+HP*DI); 
poly[O][I] = D2; poly[l][I] = D1; }} break; ) 

*, 

- 

case 6: { /* COMPUTATION OF THE ELEMENTS OF THE TRIDIAGONAL SYSTEM */ 
U- x[1][0]; 
for(I=1; I<=(N); I++) {V = 1[1][I]; H= 1[0][I]-1(0][I-1]; poly [2](I] _ (V-U)/H; U-V; 

HP - H*poly [3] [I-1] ; 
if (HP > HALF) {Di - exp(-HP); D2 - D1*D1; W=1.0-D2; C1 - W*HP; C2 = W/HP; W= H/Cl; 

poly[0]CI] _ (1.0-C2+D2)*W; poly[1][I] _ (C2-TWO*D1)*W; } 
also {HP = HP*HP; C1 - PHI(HP); W= H/(1.0+HP*C1); HP = QUART*HP; 

C2 = 1. O+HP*PHI(HP); 

poly[0]CI] _ (HALF*C2*C2-C1)*W; poly[1](I] = C1*W; }} 
/* GENERATE THE TRIDIAGONAL SYSTEM 
U= ZERO; poly[2][0] = U; 
for(I=1; I<=(N-1); I++) { 

poly[0]1I] = poly[0][I]+poly[0](I+1]-U*polyll][I); 
poly[2][I] = poly[2][I+1]-poly[2][I]-U*poly[2][I-1]; 
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Ua polyLl](1+1]/poly[0][I]; } 
/* SOLUTION OF THE TRIDIAGONAL SYSTEM 
poly[2][N] = ZERO; 
for(I=1; I<=(N-1); I++) {IBACK = N-I; 

poly[2][IBACK] a (poly [2][IBACK]-poly [1][IBACK+1]*poly [2][IBACK+1])/poly[0][IBACK]; } 
/* STORE AUXILIARY TERMS FOR SPLINT & DSPLNT IN A&B */ 
for(I=0; I<=(N-1); I++) {H = 1(0][I+1]-1[0][I]; HP = H*poly[3][I]; 

if(HP > HALF) {D1 = exp(-HP); poly[O][I] a 1.0/(1.0-D1*D1); 
poly[1] [I] - 1.0/ (poly[3] [I]*poly[3] [I]); } 

else {HP a HP*HP; D1 = PHI(HP); D2 a H*H/(1.0+HP*D1); 
poly[O][I] = D2; poly[1][I] = Dl; )) break; ) 

case 6: { /* AKIMA SPLINE COEFFICIENTS */ 
for(I=O; I<=(N-1); I++) poly[3][I] - (X[1][I+1]-X[1][I])/(X[O][I+1]-X[0][I]); 
/* SLOPES AT NODES 
for(I=2; I<=(N-2); I++) { 

if ((poly [3] [I-2] _= poly[3] [I-1]) gA (poly [3] [I] _= poly[3] [I+1]) ) 
if(poly[3] [I-1] !- poly[3] [I]) poly[0] [I] = HALF*(poly[31[I-1]+poly[3] [I]); 
else poly[O]CI] = poly[3] [I] ; 

else {U=f abs(poly[3][I+1]-poly[3][I]); V=fabs(poly[3][I-1]-poly[3][I-2]); 
poly[0][I] _ (U*poly[3][I-1]+V*poly[3]EI])/(U+V); }} 
/s BACKWARD EXTRAPOLATION */ 
U= X[0310]+X[03113-X[01[23; H= U-X [0] [0] ; 
Ci = X[i) [0]+H*(poly [3] [0]+poly[33 [0]-poly [3] [1]); 
DI = (Cl-X[1] [0])/H; V= U+X[0] [O]-X[0] [1]; H- V-U; 
C2 = C1+H*(D1+D1-poly[3][0]); D2 - (C2-C1)/H; 
if ((D2 == Di) && (poly [3] [0] _= poly [3] [1]) ) 

if(D1 Is poly[3](0]) poly[0][0] = HALF*(D1+poly[3][0]); 
also poly[0][0) - poly[3][0]; 

also { 
U=f abs (poly [3] [1] -poly [3] [0]) ; 
V- fabs(DI-D2); 

poly[O][0] _ (U*D1+V*poly[3][0])/(U+V); } 
if((D1 == poly[3][0]) && (poly[31[1] _= poly[3][3])) 

if(poly[3][0] !- poly[3][1]) poly[0][1] = HALF*(poly[3][0]+poly[3][1]); 
also poly[0] [1] = poly[3] [1] ; 

also { 

U= fabs(poly[3] [3]-poly[3] [i]); 
V= fabs(poly[3] [0]-Dl); 
poly[0][1] _ (U*poly[3][0]+V*poly[3][1])/(U+V); } 

/* FORWARD EXTRAPOLATION */ 
U=X [0] [N] +X [0] [N-1] -X [0] [N-2] ; 
H= U-X [0] [N] ; 
C1 -X [1] [N]+H* (poly [3] [N-1]+poly [3] [N-1] -poly [3] [N-2]) ; 
D1 = (C1-X[1][N])/H; 
V= U+X [0] [N] -X [0] [N-1] ; 
H= V-U; 
C2 = C1+Hs(D1+D1-poly[3][N-1]); 
D2 = (C2-C1)/H; 
if((poly[3][N-3] _= poly[3](N-2]) Q& (poly[3][N-1] _= Di)) 

if(poly[3][N-2] != poly[3][N-1]) poly[0]EN-1] = HALF*(poly(3](N-2]+poly[3][N-1]); 
also poly[O][N-1] = poly[3][N-i]; 

else { 
U= fabs(poly[3][N-1]-D1); 
V= fabs(poly[3](N-2]-poly[3)[N-3]); 
poly[0](N-1] _ (U*poly[3][N-2]+V*poly[3][N-1])/(U+V); } 

if((poly[3][N-2] _= poly[3][N-1]) Q& (D1 == D2)) 
if(poly[3][N-1] != D1) poly[0]EN] = HALF*(poly[3](N-1]+D1); 
else poly[O]EN] D1; 

else { 

U= fabs(D1-D2); 
V= fabs(poly[3][N-1]-poly[3][N-2]); 
poly[0]EN) _ (U*poly[3](N-1]+V*D1)/(U+V); } 
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for(I=0; I<=(N-1); I++) { 
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H" X[0] [I+1]-X[0] [I]; 
poly[1] [I] _ (poly[3] [I]+poly[3] [I]+poly[3] [I]-poly[0] [I]-poly[0] [I]-poly[0] [I+1])/H; 

poly[2][I] " (poly[0][I]+poly[O][I+1]-poly[3][I]-poly[3][I])/(H*H); } 

} 
Is END OF SPLINE 
11 

A. 1.1.3 The procedure ODE-FUN 

This function represents and calculates the dynamic behaviour of the mechanical system. 
The various influences of friction, damping and acting forces are represented using ordinary 
differential equations. 

/*----------------------------------------------------------- 
/* Calculation of the derivatives in X, Y 
/*----------------------------------------------------------- 
void ODE_FUN(RAAL **dzu, RAAL **zu_temp, RAAL temppx, RAAL temppy, 
BAAL **Ffun, RAAL t, RAAL t_acc, RAAL **l_end) 
{ 

BAAL m_c, m_h, c, b, mu_r, F_c, F_b, F_r; 

/*----------------------------------------------------------- 
/* Setting up the system 
/*----------------------------------------------------------- 

m_c = 5.24; /* Mass of the cart 
m_h = 2.5; /* Mass of the holding device 
c= 50; /* Spring coefficient 
b= 80; /* Damping coefficient 
mu_r = 0.1; /* Friction coefficient */ 

/*----------------------------------------------------------- 
/* Calculation of various forces 
/*----------------------------------------------------------- 

F_c = c*(zu_temp[0][0]-zu_temp[0][4]); /* Spring force */ 
F_b = b*(zu_temp[0][1]-zu_temp[0][5]); /* Damping force */ 
F_r = mu_r*((m_c+m_h)*9.81+Ffun[O][1]); /* Friction force */ 

/*----------------------------------------------------------- 
/* Calculation of the system of derivatives ODE's 
/*----------------------------------------------------------- 

dzu [0] [0] 
dzu[0] [1] 
dzu [0] [2] 
dzu [0] [3] 
dzu [0] [4] 
dzu [0] [5] 

zu-temp [0] [1]; 
1/(m_c)*(Ffun[0][O]-F_c-F_b); 
zu-temp [0] [31 ; 
temppy; 
zu_temp[0] [5] ; 

1/(m_h)*(temppx-F_r+F_c+F_b); 
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} 
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A. 1.2 NAST2D discretisation 

In this section of the appendix the discretisation of the Navier-Stokes equations within the 
CFD code NAST2D are given. In the conservation of linear momentum the finite difference 

represention in the X-direction will be represented in the middle of the right edge of cell 
(i, j) with 
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The finite difference represention in the Y-direction of the conservation of linear momentum 
represented in the middle of the top edge of cell (i, j) can be given as 
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The terms in the equation for the conservation of mass are represented in the middle of 
cell (i, j) 

au 2G;, j - ui-lj av 
_ 

yij - y1, j-1 lä-x] 
i Ox ay] . Ay 

The parameter a can be chosen between 0 and 1. If a=0 the Euler forward in time, 
forward in space (FTFS) scheme is applied. This can lead to an oscillating behaviour in 
the solution, similar to the error growth in an Euler forward in time, backward in space 
(FTBS) formulation with c=2.0, to overcome the problem a will be encreased until 
a=1 and the so called Donor-Cell-scheme is achieved. This scheme is very similar to the 
Marker and Cell method which is related to the volume tracking methods. In practice an 
intermediate scheme is often used (0 <a< 1) with 

u1 t vOt 
a>max Z, Dy 

The spacial and time discretisation of the Poisson equation is performed in NAST2D as 
following: 
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The discretisation scheme leads to the following stability conditions where the second 
and the third condition are the well known Courant-Friedrichs-Lewy conditions which are 
conditionally stable. 

22 
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A. 2 Optimisation programme files 

In order to simplify the data exchange between the MATLAB OPTIMIZATION TOOLBOX 

and the CFD-code NAST2D, file transfer has been used to exchange data and information. 
This method also allows the preservation of information even if one of the codes crashes. 

In order to start an optimisation using MATLAB and NAST2D the following files have been 

necessary: 

"A startup script, to set initial parameters of MATLAB and start the optimisation. 

"A parameter file, setting the initial acceleration profile. 

"A parameter file, setting the initial configuration for NAST2D. 

" An optimisation function which starts NAST2D for the various parameter variations 
and calculates the violations of the constraints. 

Within the startup script and the optimisation function several data backup calls have 
been implemented to track the iterative process of the optimisation and the improvements 
within the solution. 

A. 2.1 Optimisation startup script 

Startup script file for parameter optimisation 
% The system and the bounds get fixed 

%c Harald Leonpacher 1997 

echo off; 

Load initial value file 

load init_XF. val 

Evaluation of the final time 
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tf = init_XF(length(init_XF(:, 1)), 1); 

Selection of n parametervalues from t_0 to t_f 
n is given by the length of the matrix 'init_XF' 

teil = 120; 
el = length(init_XF)-1; 
u0 = [init_XF(3: e1-2,2)]/teil; 
ux = [init_XF(1,2) init_XF(e1,2)]; 

uy = [init XF(2: e1-1,3)]; 

Selection of n timeintervals from t_0 to t_f 

ti_o = [0: (1/(length(init XF(:, 1))-4)): 1]; 
ti = [0,0.0000001, ti_o(2: length(ti_o)-1), 0.9999999,1]; 

Initial time 

t0 = init_XF(1,1); 

Criteria for optimisation 

options=f options; 
options(01)=1; 
options(02)=0.001; 
options(03)=0.001; 
options(04)=1e-4; 
options(13)=0; 
options(14)=1000; 
options(16)=0.0051; 
options(17)=0.51; 

Selection of upper and lower bounds on the parameters 
As an example, the acceleration is bounded by [+/- 500] 
As an example, the time is bounded by [0.1 

.. 1.4] 

k= length(uO(1,: )); 
tf = tf*ones(1, k); 
U0 = [uO; tf]; 
1= length(u0(:, 1)); 
vlb=zeros(1-1, k); 
vlb(:, 1)=vlb(:, 1)-(500/teil); 
lb =(0.1 )* ones(1, k); 
vlb= [vlb; lb] ; 
vub=[zeros(1-1,1)+(500/teil)] 
ub =(1.4 )* ones(1, k); 
vub= [vub ; ub] ; 

Optimisation 
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u= constr_h('opti_sch', uO, options, vlb, vub, [], t0, ti, uy, ux); 
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Final calculation of the fluid motion based on the optimised 
% parameter set 

! runt schwapp. end 

A. 2.2 Optimisation function 

function [fout, gout] = opti_1(uO, tO, ti, uy, ux) 

Function to caculate the objective function and the bounds 
% within the specific optimisation problem of sloshing 

%c Harald Leonpacher 1997 

Some helpful values 

1= length(uO(:, 1)); 
k= length(uO(1,: )); 
teil = 120; 

Declaration and saving of the parameter value set for every 
% single function evaluation within the optimisation 

initxy=[[ti u0(1,1)]' ... [ux(1); ux(1); u0(1: 1-1,1)*teil; ux(2); ux(2); u0(1,1)] ... [O; uy; O; u0(1,1)]]; 
save initxy. val initxy -ascii 

Start of the cart and fluid motion simulation to achieve 
'I. output results for the boundary violations 

Irun schwapp. par 

Loading of the output results for the boundary violations 

load maxlr. val 
max_i = maxlr; 

Scaling of the sloshing boundary violation 
% Linear penalty function 

if maxlr(1)>1 
maxlr(1)=(maxlr(1)-1)*1000+maxlr(1); 

end 
if maxlr(2)>1 

maxlr(2)=(maxlr(2)-1)*1000+maxlr(2); 
end 
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Setting of the objective value 

fout = uO(1); 

% The constraint violations are evaluated 

tol_ = 0.0002; h to get inequality constraints only 
dist = 0.9; % Distance to travel in 10-(-1) [m] 

gout(1) = (maxlr(1)-1) ; 
gout(2) = (maxlr(2)-1) ; 
gout(3) = (maxlr(3)-(dist+0.5*tol_)); 

gout(4) = ((dist-0.5*tol_)-maxlr(3)); 

gout(5) = maxlr(4)-(0.5*tol_) 
gout(6) = -(0.5*tol_)-maxlr(4) 

gout(7) = (maxlr(8)-5.0) ; 
'/. The velocity is not allowed to be 
y. greater than 0.5 [m/s]= 333 rpm; 

nondimensionless: u_oo=0.1 => boundary value 5.0 

h Writing of the comprehensive output file 
tracking every function evaluation 

fid=fopen('track_sp. dat', 'a'); 
for co=1: 1-1 

fprintf(fid, 1%1.4f ', u0(co, i)*teil); 

end 
fprintf(fid, '%1.4f .... 

%1.5f \n' 
... 

, fout, gout(1), gout(2), gout(3), gout(4), gout(5) ... 
, gout(6), gout(7), max_i(1), max_i(2)); 
fclose(fid) ; 
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Relevant published papers 

The research program was funded by the bavarian government and the bavarian research 
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" Optimal Control of Sloshing Liquids. 12th Conference on Variational Calculus, Op- 
timal Control and Applications, Trassenheide, Usedom, 1996 

" Dynamic Warehouse Optimisation., Annual FORTWIHR-presentation, Erlangen, 1996 

" R&D Aspects in Modelling, Simulation, and Optimisation., 2. International Research 
Forum `Market meets Science', München, 1997 

" Dynamic Warehouse Optimisation., Annual FORTWIHR-presentation, München, 1997 

" Optimal Control of Sloshing Liquids. International Series of Numerical Analysis, 
ISNM Vol. 124, pp. 303-312, Birkhäuser, Basel, 1998 

" Modelling, Simulation and Optimisation of complex systems., FHM-Journal, Nr. 1.98, 
pp. 69-73, München, 1998 

" Simulation and Optimization of Logistic Processes Involving Sloshing Media. In: 
Bungartz, H. -J., Durst, F., Zenger, Ch. (Eds. ): High Performance Scientific and En- 
gineering Computing, Springer, Berlin, 1999. 
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