
Generating a Novel Scene-Graph Structure for a

Modern GIS Rendering Framework

David Tully, Abdennour El Rhalibi, Christopher Carter, Sud Sudirman

School of Computing and Mathematical Science

Liverpool John Moores University

Liverpool, UK

{ D.Tully@2008, A.Elrhalibi@, C.J.Carter@, S.Sudirman@ }.ljmu.ac.uk

Abstract—Within this paper we discuss and present a novel

modern 3D Geographical Information System (GIS) framework

Project-Vision-Support (PVS). The framework is capable of

processing large amounts of geo-spatial data to procedurally

extract, extrapolate, and infer properties to create realistic real-

world 3D virtual urban environments. The paper focuses on the

generation of a novel scene-graph structure used in a number of

algorithms and novel procedures for the increased rendering

speeds of large virtual scenes and the increased processing

capabilities as well as ease of use to manipulate a worlds worth of

data. The scene-graph structure, made of two sections, depicts

the spatial boundaries of the UKs Ordnance Survey (OS) scheme

down to 1km2. Each 1km2 node contains the second section of the

scene-graph structure, generated from the OpenStreetMap

(OSM) classifications; involving buildings, highways, amenities,

boundaries, and terrain. Leaf nodes contain the model mesh

data. Generation of the spatial scene-graph for the UK takes 7.99

seconds for 6,313,150 nodes. The scene-graph structure allows for

fast dispersal of render states, as well as scene manipulation by

pre-categorising the data into branches of the scene-graph

structure. Searching a node by name is evaluated using depth-

first-search and breadth-first-search giving 0.000186 and

0.036914 seconds respectively within a scene-graph of 3257 nodes.

Keywords— GIS, Scene-Graph, OpenStreetMap, XNA, Project-

Vision-Support

I. INTRODUCTION

Modern GISs are restricted through a number of factors
such as licenses which state the data or software cannot be used
for certain applications or domains. Open data does not include
license restrictions but is often inaccurate or error prone.
Accurate data is expensive to capture or create. Current
applications such as Google Maps1 restrict user’s interaction
within a scene. They do not generate realistic 3D scenes in
which a user can navigate and interact with in any manner they
wish. These problems can be overcome with the generation of
a novel and open framework dedicated to the processing of
multiple types of geographical/geospatial data to analyze and
infer further accurate or near accurate data to be visualized
using novel data structures by a rendering engine. A framework
such as this must allow users to view and manipulate scenes in
a flexible manner and view a scene depicting data for which
they are interested in. A project which utilizes a similar

1 https://www.google.co.uk/

technique is the SAVE project [1], [2]. Combining GIS data
and a modern computer game engine is legitimately sensible.
Game engines have considerably fallen in price and reduced
the need of domain experts through ease to use Application
Programming Interface (APIs). A framework must be able to
generate 3D model assets for viewing, as well as additional
data for categorization and analysis. For 3D generation of
assets, models can be generated by an artist within an external
modelling application. More commonly, Procedural Content
Generation (PCG) is being employed to generate assets by
data-driven processes. A framework capable of depicting a
worlds worth of data, realistically needs advanced procedural
generation techniques helped by supporting algorithms. This
framework we introduce is Project-Vision-Support (PVS).

The scene-graph structure is the focus of the paper. We
discuss the generation of a novel scene-graph structure used
within the pre-processor and runtime system of PVS. The need
for a new scene-graph data structure is through the large
amounts of varying data obtained from OSM, OS, and LiDAR.
Structuring this data is a concise way, replicating real-world
categorizations of assets (buildings, highways, amenities etc.).
This allows lookup references to particular types of nodes,
improving search time and processing by pruning unneeded
branches. We also discuss the ability to combine the scene-
graph structure with a rendering technique called ‘array
indexed shader function’, or as the game industry has coined
‘UberShader’. We also introduce the data sets we will utilize
within the PVS framework. The data we have chosen for the
project has depicted the generation and reasoning behind the
scene-graph structure; the base of the scene-graph depicts the
spatial organization obtained from the UKs Ordnance Survey,
and the top of the scene-graph is generated from input of
OpenStreetMap categorizations; splitting the scene-graph into a
spatial partition as the base, and separating city assets for the
top of the scene-graph.

II. A FRAMEWORK FOR A MODERN GIS

PVS is generated of offline and online processes, parsing
real-world open data for the procedural generation of realistic
virtual urban-environments allowing users to select and
visualize assets within a scene under their own interests. PVS
is built of integral separate libraries, each for a specific
purpose, and interacting with the other libraries in a specific
configuration. The libraries we have created are;

 Triangulator – generates polygonal triangles from an
arbratory list of 2D points. Used for creating
boundaries and rooftops of buildings.

 XMLSerialiser – serialises C# objects to XML, and
vice-versa.

 Content – raw textures, models, and geospatial data.

 Tweener – an interpolation library commonly used
with animation techniques but we also use it for the
generation of highway model meshes.

 Dynamic Expression Library – Allows user
generated procedural query expressions to be applied
to all objects within a scene.

 Input Manager – keyboard, mouse, and touch input.

 2D/3D Camera System – allow the viewing of a
scene in a multiple of perspectives by 3D and 2D
camera systems.

 Pre-processor – generation and compilation of assets
by means of PCG, and classification of the geo-data.

 Runtime – Contains the 3D model object class,
scene-graph structure, and screen manager system.

We also use specific class objects shared between the pre-
processor and runtime system, which need to be duplicated, or
vary slightly. This is a troublesome issue for maintenance, but
removes the issue of the dreaded diamond configuration2.

 Scene-Graph structure – discussed later.

 OSM Tag Data – data primarily extracted from the
OSM database but can contain inferred data.

 Ordnance Survey Reference lookup table – due to
the size of the UK OS grid, we produce a procedurally
generated lookup table for fast retrieval of results.

2 https://en.wikipedia.org/wiki/Dependency_hell

 Material Structure – this is the material object used
in conjunction with rendering the 3D assets. A 3D
model is generated in the pre-processor with a
material object which is generated by inferring data
from the OSM Tag Data as stated above, or from the
model object created by a 3D modelling program.

Figure 1 shows the high level overview and connections
between the created libraries and the pre-processor and runtime
system, and where the scene-graph sits within the runtime
application.

A. Data

Within this section we state the data we use within PVS,
and its relevance to the generation of the scene-graph structure.

1) UK Ordnance Survey
The OS reference scheme used for splitting the UK into

manageable 1km2 areas or divisions of 10. We copy this spatial
partition for the base of our scene-graph structure. OS data is
height data available from the UK Government. The files
contain height points separated 50meters apart. It is critical that
the OS data is accurate for the algorithms used within PVS.
Using OS data for realistic terrain visualizations is undesirable
due to its low resolution. Terrain characteristics are lost at this
resolution. Higher resolution terrain data is needed. OS data is
used as a base for map generation procedures combined with
error prone LiDAR data files discussed in a future section.

The spatial partition references are generated as shown in
the code below. The code is written within the C# language but
can easily be ported to many other languages due to the simply
nature of code and single object class. This improves
scalability and flexibility. Firstly, a class object to store the
references is needed. The object will store a name reference,

Figure 1 High level overview of the PVS framework. Blue are offline processes. Yellow is both offline and online

processes. Green represents libraries within the framework.

and a List or an Array of children. A List in this context and
language simplifies traversal techniques, but increases traversal
processing. Figure 2 depicts the algorithm used.

Figure 2 Code to generate the OSNode spatial partition

scene-graph
The reason we do not contain bounds in the form of

bounding box structure is due to the amount of memory
needed, and the generation will negate the speed of the
generation of the scene-graph. Parsing the OSNode name and
procedurally generating bounding box structures are used to
partition and store the PVG assets within 1km2 nodes of the
scene-graph; i.e. if an asset is within a 1km2 node bounds, then
attach it to the appropriate scene-graph branch.

To generate a complete scene-graph, we utilise a pre-
defined reference list which contains the single letter prefixes.
These prefixes represent the highest level of the OS reference
scheme. A node of this level represents a 500km2 area. To
generate the scene-graph structure, a series of for-loops are
needed. Each loop will be responsible to generate the children
of the parent node; starting with a single prefix (S), to a double
prefix which represent the 100k2 areas (SJ), to the double
prefix with 10k northing and easting which cover 10km2 area
(SJ39), to the double prefix with the 1km2 references (SJ3090).

The time taken to generate the complete coverage of the OS
reference schemes, which is a 2,500km2 area containing; 25
500km OSNode references, 625 100km OSNode references,
62,500 10km OSNode references, and 6,250,000 1km OSNode
references, takes 7.9888502 seconds. This does not include the
bounding boxes.

This section of the scene graph is simply a conversion of
the of the OS schema and will be used to organize the geo-
spatial data of OSM, OS, and LiDAR. Before we discuss the

addition of the OSM classification branches, we state that the
spatial scene graph structure explained is the first half of the
scene graph structure and used to spatially organize the OSM
and the terrain model data. We will explain the next step for
creating a full scene graph structure for a modern GIS within
the pre-processing section.

The top of the scene-graph will be a predefined node
reference which we state is the ‘World’ and all other nodes will
be attached as a child, or a grandchild.

2) Light Detection and Ranging

Light Detection and Ranging (LiDAR) is the technique of

pulsing light beams, normally from a low-flying aircraft, and

recording the time taken to bounce back to a sensor. Leberl

et.al [3], claims that LiDAR is rapidly replacing the

photogrammetric approach due to its reliability and ease of

capture compared to that of the commonly used

photogrammetry. We add to this claim with the research of

Montoya et.al. [4] whom use LiDAR equipment attached to

drones. This removes the huge cost of capturing aerial

imagery needed by photogrammetry. LiDAR provides data

accurate to 0 ~ 15cm of error. Data points can be achieved to a

high resolution up to 25cm. A large problem with the LiDAR

data is the large amounts of data, the multiple resolutions

which we have (2m, 1m, 50cm, and 25cm), and the lack of

accurate data, or the total lack of any data for unmapped areas.

Some areas of the UK are only mapped at 1 resolution, or a

multiple of the 4 resolutions. As stated, to counter act this

issue and create map files which contain a complete, but may

not be highly accurate of the real-world terrain, set of data

points, OS data will be used as a base for all processes for the

generation of additional data. OS data is processed and

interpolated to 2m resolution to then be added to the LiDAR

maps. Repeating this processes through the resolutions,

complete terrain data sets can be generated. When we state

complete we justify this as a terrain map which has no missing

data values, even if the values are not accurate to the real-

world terrain, and simply interpolated with neighboring data

points using Catmull-Rom [5], [6]. Terrain maps will contain

within their own branch of the scene-graph. Multiple

resolutions of the terrain model mesh can be attached. For

now, we develop the prototype with only 1m resolution terrain

maps. Referencing the terrain model mesh within its own

branch of the scene-graph, easy node lookups can generated.

This also allows custom search techniques to be implemented

for searching of singular or groups of terrain model meshes

being analyzed.

3) Open Street Map

OSM is a volunteered mapping project which maps all

areas of the globe from an army of volunteers and

Government sponsored data. OSM data is exported from the

web portal. It contains Nodes, Ways, Relations, and Tag data.

For more information of OSM data see [7]–[9]. For this work

we discuss the OSM partitions needed to generate a novel

scene-graph structure for partitioning OS, LiDAR, and OSM

data. The OSM data categories we have, splits the data into

manageable branches of the scene-graph structure. Each

branch is pertinent to our visualisations, and are selected with

commonality in mind. Within a city, overarching asset types

emerge through classification; buildings, highways, amenities,

waterways, and a few others. Each of these can be sub-

classed:

 Buildings (Emergency (Hospital, Police, Health,

Military), Other)

 Highways (Roads, Link, Paths, Special,

Waterways, Railways)

 Boundaries (Water, Emergency, Other)

 Amenities

We have not stated all variants of the Highway types due

to the amount of categories. The ‘Link’ highways are

highways which connect the different types of highways

together. For example, to connect to a motorway from a lower

graded highway, then a link is needed.

Open data and OSM have been used to generate many

variations of common computer games. Games set within real-

world parameters: Friberger et.al [10][11] use open GIS data

to create interesting variations of well-known games;

Monopoly with real-world place names, Top Trumps with

real-world countries with accurate states, and using real-world

maps to create 2D tile maps for a Civilisation style game. This

proves well for our work.

B. Scene-graphs

Scene-graph technology has been used in A closely related

Doctoral Thesis of Bo Mao, ‘Visualisation and Generalisation

of 3D City Models’, has many similarities to our research, and

the he explains the need for a modern GIS which integrates 3D

objects for improved realism [12]. The use of CityGML3 is

used to generate building model mesh data and rendered using

X3D4. The work and research is built for mainstream web

browsers. Due to the lack of infrastructure and rendering

capabilities of modern web browsers, he employs a LoD

technique which renders a scene in different scales; block,

building, and building with façade to improve rendering

speeds and scene realism. He introduces a novel scene graph

structure call CityTree, to represent groups of buildings. This

proves the needs for custom scene-graph structures to organise

geospatial data, and apply novel algorithms to view real-world

scenes in a number of options.

C. Preprocessor system

The pre-processor pre-compiles the runtime asset data for

the added benefit of; increased load time, typification and

classification of GIS data, error checking and data

augmentation, among others. To pre-process the OSM data,

data is passed through a custom pipeline. The pipeline

organizes, categories, checks for errors within data, combines

data with additional data-sets for the inference, and

augmentation of the raw data at hand.

3 http://www.citygml.org/

4 http://www.web3d.org/x3d/what-x3d

A raw OSM XML map file is parsed into a C# class object.

Multiple processes are applied to the class object to generate

additional data. This data is generated for future processes.

With each Node and Way of OSM having custom reference

IDs we place the Nodes and Ways into individual Key/Value

data structure (C# Dictionary). The Key will be the Node or

Way ID, and the value will be said Node or Way. This allows

speedy looping and lookups of the Nodes. This is especially

needed when checking the Nodes within a Way or the Ways

within a Relationship. Each of the data types are checked for

duplications and other errors which are a major problem with

large OSM maps. While processing the Nodes and Ways,

additional data is produced. We convert the Longitude and

Latitude to X, Y coordinates utilising DotNetCoords5.

Converting form Longitude and Latitude, to X, Y coordinates

is currently not accurate due to conversion error due to the

curvature of the Earth not being uniformly round. This error

increases the further away from the (0,0) coordinate which is

located near the bottom left of the UK. We plan to utilise this

error by sampling error at distinct distances and recording the

error. Using this as a benchmark, we can negate this error to

improve the conversion rate. This is needed due to the

multiple projections used between OSM, and OS/LiDAR.

We also generate the centroid of a Way, and store this

within the Way class object. Because a Way is a boundary, it

can be thought of as a none-overlapping polygon.

We utilise the spatial scene-graph to organise the data

while processing. Looping over the Nodes, Ways, and

Relations, the generation of the 3D assets are created. We

utilise the spatial scene-graph already stated, and create a

PVSNode structure which is used to create a separate scene-

graph. Each PVSNode contains everything needed to be saved

to XML and Binary to be used within the runtime pipeline.

These additions consist of 3D Model data, shader material,

translation, orientation, scale, OSM tag information, a string

name, a string pathname, and its parent name and pathname.

The model data, translation, orientation, and scale are self-

explanatory. The 3D model object can be nullable which turns

the PVSNode into a place holder style node, or as we wish to

use it, as a classification node to organise specific objects by

spatial locations, or classifications (objects in node SJ3080,

building object, specific points in space, and many others).

The name and pathname are used for the generation of the

runtime-scenegraph. It also stores its parents name and

pathname for this reason. This will be explained in a later

section.

The OSM tag object is a nullable type. Each object we

classify from OSM will have a corresponding OSM tag object.

These will be for Buildings, Highways, Amenities, and

Boundaries. Each tag will have data pertinent to each of the

objects. Each tag will have a default parameter settings list.

5 https://www.doogal.co.uk/dotnetcoords.php

We state that domain experts should be consulted to improve

these default parameters. Additional processes infer data of

OSM to improve these OSM tag parameters. Inferred data can

be the height of a building by estimating the height of the

average floor to a building and multiplying this by the number

of floors of the building.

The 3D model object can either be a converted FBX object

or a procedurally generated asset derived from the data-sets

already stated. Parsed from an FBX model object, the

processor will extract the shader parameters needed; diffuse,

emissive, specular, texture and others. If data is not available,

references to default textures and parameter values are set.

The most important parameters which is set is the Shader

Index value. This value is used for selecting the HLSL shader

vertex function, and pixel function used to render the object.

Generating this data within the pre-processor allows for

interesting classifications and assigning of a particular shader

index value to each of the models, or groups of models. This is

the essence of the use of the UberShader. This value is stored

within the model object, and to modify the model, changing

this shader index value can easily change the visualisation of a

scene by passing the value through the scene-graph structure,

setting each model of each node.

After processing, serialisation takes place. The

serialisation converts class object into an XML file which is

saved to disk. At this stage the object is not saved as binary.

To convert the XML file to binary, additional processing is

needed. The use of XNA was chosen for this reason. The

conversion of XML to Binary is done through a custom

processor which is triggered when the solution is compiled.

This means no objects are compiled when the application is

run, thusly increased loading speeds are achieved even for

large city visualisations.

One thing we have yet to discuss is the categorisation of

the OSM branches. As stated within the previous section, the

OSM categories partition the generated assets within

individual branches of the scene-graph. The scene-graph is

depicted within Figure 1.

Within the next section we discuss the runtime scenegraph

structure which is very much similar to that of the pre-

processor but additional data parameters are included.

D. Runtime system

The runtime scene-graph is very similar to that used within

the pre-processor. It is built up of 2 class objects; PVSSpatial,

and PVSNode. We stated earlier within the paper the decision

to store the names of the node, and a reference to its parent’s

name, and not the parent object itself. The recursive nature of

scene-graphs create an infinite loop when saving an object to

disk or loading from disk. Saving a node with a reference to its

parents node, will call for that parent node to also save. It is

easier to store a name to other nodes, and have the file name

the same as the node being saved. This has multiple

advantages. When selecting an area to load within the runtime

simulation, the node selected can be 5 layers deep within the

scene-graph; node SJ3585 from Figure 1 for example. The

loading process can load its parents, and load its children

simultaneously; loading to the base of the scene-graph, and

loading to the leaf of the scene-graph respectively. This loads

a scene-graph in a middle out procedure. Additional checks

are needed to make sure the nodes have not been loaded

already.

The PVSSpatial object contains the spatial parameters

needed to render a possible model object. We state possible

because the node may not contain a model mesh object, thusly

turning the node into a placeholder node. Placeholder nodes

are used for pruning particular branches, and search

optimisations, as well as spatial partitions, and scene

manipulations. Scene manipulation can be translation to a

parent node of a section, i.e. the buildings node, to move all

buildings within that branch. This is achieved because all

PVSSpatial node types are updated and rendered in

association with their parent’s world translation, orientation,

and scale. A world matrix structure contains the spatial

parameters in an optimised structure. If a parent’s world

matrix is updated, it will update and move the child world

matrix. The PVSNode is inherited from the PVSSpatial node,

but it extends the functionality of the PVSSpatial with the

addition of a list of PSVSpatials which are the children of

node, as well as a rendering function and an update function.

The PVSSpatial object contains many derivable and over

ridable functions, and properties used for optimisation

techniques. These functions are helper functions which are

applied to single nodes or can be applied to the scene-graph as

a whole. These functions are used for passing data through the

scene-graph as well as applying search techniques to the

scene-graph. We stipulate that the passing of information

should be applied from a root node. With each node object

containing these functions, any node of a scene-graph can act

as a root node, because the algorithms and search techniques

are applied to the node in question, and its children in a

bottom to top recursive nature.

Within the render function, responsible for rendering the

3D model, systematic checks are carried out. Utilising the

properties of the object, we check if its

‘IsWorldTranslationCorrect’ is true or false. This property is

set during the update function. If its parent or any of its

recursive parents have been updated in terms of translation,

orientation, or scale, then the World matrix of the node in

question is updated. When this is complete, the lighting

parameter held within the effect file are updated. To complete

the rendering the graphics state of the node is updated. This is

due to each node being able to set the graphics state of the

graphic card. Different rendering effects applied to objects

need the graphics card to be in a particular rendering state;

opaque or translucent etc. This option greatly improves the

flexibility and scalability of the scenegraph structure.

A user can generate their own rendering technique in the

effect file code with custom vertex and pixel functions, and

simply update the shader index to a node of the scene-graph or

to the whole scene-graph. The only thing that needs to be

updated is the effect file which can be done by domain

experts. The framework does not need to be recompiled, only

the effect file needs to be converted to binary and added at

pre-processing stage or runtime. The combination of the

custom scene-graph structure designed for the organisation

and categorisation of big-geospatial-data-sets with the pre-

processing of data for the procedural generation of assets, and

advanced rendering capabilities proves a valuable structure to

have for this framework and also for other domains; computer

games, serious games, and visualisations.

III. CONCLUSION

We have discussed the design of a novel scene-graph

structure developed to contain the assets and categorizations

needed for a modern GIS with scalability and flexibility. The

pre-processor utilized two similar scene-graph structures.

Firstly the OS spatial partition scene-graph used for easy

lookup and the procedural generation of bounding boxes

generated from the OSNode names and used to cauterize the

spatial locations of assets. The second utilizes the same scene-

graph as the base but is augmented to contain model mesh data

and OSM tag data. This scene-graph is saved as XML and

Binary to be used within the runtime scene-graph structure.

The runtime scene-graph would load the saved PVSNode

structures to be used for real-time search techniques and real-

time visualizations. The scene-graph can scale to contain small

amounts of data, to the visualization and origination of a

countries worth of data. The flexibility of the scene-graph

structure allows dispersal of the UberShader index value to

dynamically change the visual appearance of the simulation

within real-time. The scene-graph structure structures the

OSM data, and can be extended for future work.

To evaluate the scene-graph, iterative depth-first-search

(DFS) and iterative breadth-first-search (BFS) [13] is used to

search for a node with the name of ‘Saint George’s Hall’. We

use iterative instead of recursive due to its increased

processing speed through reduction of memory overhead.

Results are shown in

Node Count in

Scene-Graph

DFS Seconds BFS Seconds

815 0.001399 0.00645

1629 0.0002394 0.014573

2449 0.0004203 0.016436

3257 0.000186 0.000186

Table 1 Time to search for a node using DFS and BFS.

Categorising nodes by types and then searching proves

slower than searching a tree with either DFS or BFS; taking

0.12 seconds to return the same node.

IV. FUTURE WORK

Our future work consists of multiple aims. Analyse the

speed of the scene-graph structure by implementing multiple

search techniques. Optimizations can be achieved by changing

and processing the internal data structures; optimizations such

as using Array datatypes instead of List data types. As stated

within the paper, domain experts should be contacted to query

the default for the type of OSM tag defaults for buildings,

highways and the like.

V. REFERENCES

[1] J. Isaacs, “Immersive and non immersive 3D virtual

city: decision support tool for urban sustainability,” …

Constr. Vol …, vol. 16, no. January, pp. 149–159,

2011.

[2] R. a. Falconer, J. Isaacs, D. J. Blackwood, and D.

Gilmour, “Enhancing urban sustainability using 3D

visualisation,” Proc. ICE - Urban Des. Plan., vol. 164,

no. 2002, Jun. 2011.

[3] F. Leberl, A. Irschara, T. Pock, P. Meixner, M.

Gruber, S. Scholz, and A. Wiechert, “Point Clouds

Lidar versus 3D Vision,” Photogramm. Eng. Remote

Sens., vol. 76, no. 10, pp. 1123–1134, 2010.

[4] A. Montoya, B. Vandeportaele, S. Lacroix, and G.

Hattenberger, “Flight autonomy of micro-drone in

indoor environments using lidar flash camera,” IMAV

2010, Int. Micro Air Veh. Conf. Flight Compet., 2010.

[5] G. Kelly and H. McCabe, “Citygen: An interactive

system for procedural city generation,” Fifth Int. Conf.

…, 2007.

[6] C. Twigg, “Catmull-Rom splines,” Computer (Long.

Beach. Calif)., pp. 4–6, 2003.

[7] D. Tully, A. El Rhalibi, M. Merabti, Y. Shen, and C.

Carter, “Game Based Decision Support System and

Visualisation for Crisis Management and Response,”

in The 15th Annual PostGraduate Symposium on the

Convergence of Telecommunications, Networking and

Broadcasting, 2014.

[8] D. Tully, A. El Rhalibi, C. Carter, and S. Sudirman,

“Hybrid 3D Rendering of Large Map Data for Crisis

Management,” ISPRS Int. J. Geo-Information, vol. 4,

pp. 1033–1054, 2015.

[9] Z. P. William Hurst, Graham Davis, Abdennour El

Rhalibi, David Tully, “Predicting and Visualising City

Noise Levels to Support Tinnitus Sufferers,” in 8th

International Conference on Image and Graphics

(organised by Microsoft Research), 2015.

[10] A. Cardona, A. Hansen, J. Togelius, and M.

Gustafsson, “Open Trumps, a Data Game,”

fdg2014.org.

[11] J. Togelius and M. G. Friberger, “Bar Chart Ball, a

Data Game,” Proc. 8th Int. Conf. Found. Digit. Games

(FDG 2013) fdg2013.org, pp. 451–452, 2013.

[12] B. Mao, “Visualisation and generalisation of 3D City

Models,” 2010.

[13] N. P. Russel Stuart, Artificial Intelligence: A Modern

Approach, 3rd Edition. Prentice Hill, 2009.

