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ABSTRACT 

Providing  effective  and  scalable  real-time  security  to  Inter- 
net  of  Things  devices  can  be  a  challenging  task  given  the  lim- 
ited  computational  capacity  of  the  devices  and  the  amount  of 
network  traffic  that  can  be  viewed  at  any  given  time.  Multi- 
Agent  Systems  have  proven  to  be  a  valuable  tool  within  the 
areas  of  cyber  security,  distributed  networks  and  legacy  sys- 
tems  because  of  their  scalable  and  flexible  architecture.  In 
this  paper  we  present  a  novel  implementation  of  a  Com- 
pletely  Decentralised  Multi-Agent  System  for  use  within,  or 
to  support,  Internet  of  Things  networks  through  the  dis- 
tributed  processing  of  security  events  to  offload  the  compu- 
tational  cost  of  data  processing  from  Internet  of  Things  de- 
vices.  The  concepts  of  conditions  and  effects  are  introduced 
to  allow  agents  to  describe  digital  evidence  found  in  an  ab- 
stract  language  instead  of  sharing  individual  pieces  of  data 
to  mitigate  concerns  of  data  leakage  in  extended  networks. 
Emphasis  is  placed  upon  the  scalable  architecture  design  al- 
lowing  domain  experts  to  independently  create  agents  spe- 
cific  to  a  particular  technology  or  application  process  which 
will  automatically  work  with  other  existing  agents  without 
further  configuration. 
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1. INTRODUCTION 

A  Multi-Agent  System  (MAS)  [27]  can  be  distinguished 
from  traditional  software  by  its  distributed  and  autonomous 
deployment  model.  Traditional  approaches  to  cyber  secu- 
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rity  have  typically  processed  the  entire  contents  of  a  net- 
work  through  a  single  Intrusion  Detection  System  (IDS) 
[10,  25,  23].  With  the  ever  increasing  amount  of  traffic 
flowing  through  networks,  IDSs  require  expensive  and  high- 
performance  hardware  to  manage  the  computationally  ex- 
pensive  task  of  processing  data  in  real  time.  With  the  lim- 
ited  capacity  of  most  Internet  of  Things  (IoT)  [26,  16]  de- 
vices,  a  more  scalable  approach  is  required  to  deliver  the 
required  level  of  security  to  devices  without  the  capability 
to  process  or  store  large  amounts  of  data.  In  this  paper,  a 
distributed  MAS  is  proposed  to  offload  the  computational 
cost  from  the  IoT  devices  to  specialised  agents  located  on 
different  networks  to  perform  an  in-depth,  intelligent  and 
automatic  analysis  of  the  network  traffic  flowing  to  IoT  de- 
vices.  Computational  gains  are  made  by  automating  tech- 
niques  commonly  used  in  manual  network  forensics  [2];  by 
utilising  agents  that  can  search  for  digital  evidence  intelli- 
gently  by  considering  what  is  already  known  about  an  attack 
and  searching  for  additional  information  in  the  areas  where 
it  is  most  likely  to  be  found. 

Network  forensics  is  a  valuable  process  most  commonly 
performed  manually  by  trained  practitioners  who  will  anal- 
yse  the  cause  and  spread  of  an  attack  after  the  fact.  In 
this  paper,  the  forensic  process  is  automated  and  adapted 
for  use  within  the  IoT  environment  where  domain-specific 
factors  such  as  having  a  multitude  of  independently  created 
devices,  a  variety  of  different  protocols  and  devices  spread 
across  a  large  network  must  be  considered.  By  giving  agents 
the  tools  to  perform  network  forensics  autonomously,  we  will 
be  able  to  collect  and  analyse  data  faster,  avoiding  problems 
such  as  data  degradation  and  concerns  about  leaking  private 
information.  By  giving  agents  the  ability  to  follow  one  line 
of  investigation  over  another,  when  it  is  supported  by  previ- 
ously  collected  evidence,  agents  will  avoid  performing  unnec- 
essary  and  unimportant  data  collection  thereby  making  the 
system  more  efficient  than  traditional  brute  force  attempts 
to  analyse  the  entire  contents  of  a  given  network.  These  pro- 
cesses  will  be  facilitated  through  the  use  of  a  decentralised 
communications  protocol  well  suited  for  the  task. 

It  is  uncommon  for  traditional  security  systems  to  take 
advantage  of  the  points  discussed  above.  Instead,  detection 
normally  takes  place  on  a  constant  stream  of  network  traffic 



using  either  anomaly  or  signature  detection  [28].  A  more 
proactive  solution  that  will  actively  seek  to  find  data  on 
the  network  even  if  it  wasn’t  initially  collected  is  needed  to 
ensure  a  higher  level  of  accuracy  and  scalability  for  large 
distributed  networks  that  do  not  have  a  strong  central  IDS 
such  as  in  the  case  of  IoT  networks. 

This  paper  is  organised  as  follows:  Section  2  contains  an 
analysis  of  current  security  technologies  and  issues  to  con- 
sider  within  the  IoT  environment.  Section  3  contains  an 
explanation  of  the  proposed  Multi-Agent  architecture.  Sec- 
tion  4  describes  the  implemented  simulator  built  to  work 
with  the  concepts  described  throughout  this  paper.  Section 
5  lists  related  research  as  well  as  a  comparative  discussion  on 
the  proposed  and  existing  solutions.  Finally,  Section  6  sug- 
gests  possible  next  steps  towards  developing  more  scalable 
Multi-Agent  IoT  security  technologies. 
 

2. SECURITY  ANALYSIS  OF  THE  INTER- 

NET  OF  THINGS 
 

Scalability. 
Traditional  security  models  for  protecting  IoT  networks 

have  often  included  a  number  of  nodes  that  collect  and  then 
deliver  data  to  an  IDS  for  processing.  This  hierarchical 
model  where  all  data  is  sent  back  to  a  central  location  is 
inefficient  in  operation  and  can  result  in  performance  bot- 
tlenecks  when  too  much  data  is  delivered  to  the  IDS  for 
processing.  Furthermore,  it  is  not  scalable  since  the  security 
of  the  network  as  a  whole  is  dependant  on  the  capacity  of  the 
IDS,  introducing  more  IoT  devices  onto  the  network  would 
result  in  decreased  security  if  the  IDS  is  not  also  scaled.  This 
limited  model  which  would  typically  be  found  in  a  single  or- 
ganisation  implementing  a  network  of  IoT  devices  cannot 
scale  up  to  even  greater  levels,  for  example  in  a  cooper- 
ative  environment  with  multiple  organisations.  Instead,  a 
distributed  multi-agent  architecture  is  proposed  to  support 
IoT  devices  by  offloading  the  computational  cost  from  the 
IoT  network  to  the  network  of  security-focused  agents  as  will 
be  discussed  in  Section  3). 
 
Data  Sharing. 

There  has  been  a  historic  reluctance  in  sharing  network 
data,  especially  security  data,  because  of  the  risk  that  un- 
intended  information  (e.g.,  personal  or  organisational  data) 
might  be  leaked.  While  merging  networks  together  has  proven 
to  be  a  useful  measure  to  take  (e.g.,  in  the  case  of  the  supply 
chain  network),  security  has  typically  been  performed  inde- 
pendently  on  each  network  with  minimal  data  sharing  taking 
place.  In  the  case  of  multiple  interacting  IoT  networks  the 
benefits  of  sharing  data  are  even  greater  where  performing 
computational  processing  is  expensive  and  sharing  conclu- 
sions  about  security  events  could  considerably  reduce  the 
overall  amount  of  work  that  must  be  done.  Devices  of  sim- 
ilar  type  and  function  are  more  likely  to  experience  similar 
attacks  and  so  would  benefit  from  being  able  to  communi- 
cate  that  they  are  under  attack,  even  without  disclosing  any 
specific  data.  A  wider  example  of  this  in  cyber  security  is  an 
industry  wide  attack  [11]  where  similar  infrastructures  are 
targeted,  for  example,  a  malware  attack  against  the  bank- 
ing  industry.  In  examples  like  this,  knowing  that  there  is  an 
increased  risk  of  being  targeted  and  knowing  the  taxonomy 
of  the  attack  ahead  of  time  can  be  useful  in  preparing  for 

the  attack,  making  data  sharing  [8]  a  critical  aspect  of  cyber 
security. 
 
Network  Forensics. 

Network  forensics  [2]  is  the  process  of  collection  and  anal- 
ysis  of  digital  evidence.  This  process  is  most  commonly  per- 
formed  manually  by  trained  practitioners  after  a  successful 
cyber  breach  has  occurred  in  an  attempt  to  understand  the 
event  more  clearly.  Forensic  practitioners  will  typically  be- 
gin  with  a  more  general  analysis  of  the  network  and  then 
narrow  down  their  search  based  upon  the  already  collected 
digital  evidence.  In  this  way,  network  forensics  is  an  iter- 
ative  process  of  search  and  discovery  using  what  is  already 
known  to  find  more  evidence.  Currently,  network  forensics 
is  not  apart  of  the  average  intrusion  detection  toolkit  and 
is  considered  to  be  a  separate  component  to  signature  and 
anomaly  detection.  However,  the  process  itself  is  efficient 
[4]  in  the  way  evidence  is  searched  for  in  only  those  loca- 
tions  that  the  analyst  would  expect  evidence  to  be  found 
in,  given  what  is  already  known,  and  so  would  be  valuable 
to  the  efficiency  of  an  IoT  security  system  by  reducing  the 
overall  amount  of  work  done  by  only  search  in  the  network 
locations  that  are  more  likely  to  contain  digital  evidence. 
 
Domain  Expert. 

Security  achieved  through  the  use  of  a  signature  detection 
[17]  requires  that  a  domain  expert  create  the  rules  for  de- 
tecting  the  known  attacks.  Corporate  software  will  often  use 
a  variety  of  proprietary  protocols  for  data  transfer,  which  as 
a  result  are  not  well  supported  by  open  source  IDSs  such  as 
Snort  [23]  and  Bro  [13],  two  popular  open  source  systems. 
With  the  increasing  interest  of  IoT  devices,  the  number  of 
protocols  has  also  steadily  increased  but  widespread  support 
is  still  lacking.  A  scalable  approach  wherein  the  develop- 
ers  of  these  protocols  can  easily  and  independently  define 
malicious  activities  is  required  as  a  component  that  can  be 
easily  included  in  the  running  network.  Given  the  example 
of  network  layer  security  [6],  which  typically  uses  sources 
of  threat  intelligence  [15]  (e.g.,  lists  of  known  malicious  IP 
addresses  or  a  whitelist  of  allow  locations)  to  perform  secu- 
rity,  we  believe  it  is  desirable  to  have  multiple  lightweight 
agents  to  monitor  these  sources  and  take  actions,  but  also 
make  it  easy  for  developers  to  create  their  own  agents  for 
protocol-specific  monitors. 
 

3.  MULTI-AGENT  ARCHITECTURE  FOR 

INTERNET  OF  THINGS 
In  this  section  we  present  an  overview  of  our  agent  model 

for  the  decentralised  collection  and  analysis  of  cyber  secu- 
rity  data.  Our  system  is  composed  of  a  number  of  agents 
(G  =  {g1, ..., gi}),  each  capable  of  performing  one  data  col- 
lection  and  analysis  task  for  a  specific  service  of  technology. 
This  information  can  be  formalised  by  a  set  of  features  F 
representing  different  attributes  or  characteristics  of  a  given 
activity;  e.g.,  the  IP  address  of  a  given  connection,  Virtual 
Private  Network  (VPN)  usage,  etc.  Each  feature  (f  ∈  F ) 
has  a  domain  (Df )  containing  all  its  possible  values.  The 
data  collection  task  entails  the  agent  interacting  with  a  data 
source  which  may  be  a  host  device,  server,  log  file  or  any 
other  component  from  which  information  can  be  gathered. 
These  could  be  located  either  locally  on  the  network  that 
the  agent  is  protecting  or  remotely  on  an  internet-connected 



server.  Each  data  collection  task  is  designed  to  only  collect 
one  piece  of  information  so  that  many  lightweight  agents 
collecting  different  piece  of  data  can  be  created  for  each 
source.  As  the  network  expands  with  new  technologies  be- 
ing  added,  additional  agents  can  be  added  to  interact  with 
them.  A  data  analysis  task  will  classify  the  data  that  was 
collected  to  determine,  based  on  the  agent’s  local  signature 
or  anomaly  detection  database,  whether  collected  data  is 
malicious  or  innocuous.  These  two  components  of  data  col- 
lection  and  analysis  form  the  basis  of  the  agent’s  abilities 
to  be  able  to  sense  the  environment,  collect  relevant  infor- 
mation  and  analyse  it  without  the  need  for  administrator 
oversight.  Consider  the  following  two  definitions: 
 

Definition  1.  A  data  collection  action  is  defined  as  a 
tuple  C, e  in  which: 

•  C  is  the  action  conditions;  i.e.,  a  set  of  pairs  (f, v) 
where  feature  f  ∈  F  and  value  v  ∈  Df ; 

•  e  ∈  F  is  the  action  effect;  i.e.,  a  feature  whose  value 
will  be  determined  by  the  action. 
 

Definition  2.  Given  a  set  of  pairs  (f, v)  representing 
the  available  information  about  a  suspicious  activity,  a  data 
analysis  action  is  defined  as  a  function  returning  a  value 
between  [0, 1]  representing  the  probability  of  the  suspicious 
activity  being  malicious. 
 

Each  of  the  agents  will  also  have  a  set  of  constraints  placed 
on  them  which  must  be  satisfied  before  the  agent  can  per- 
form  its  data  collection  and  analysis  tasks.  Each  constraint 
will  be  a  piece  of  data  about  the  security  environment,  for 
example,  an  agent  monitoring  a  VPN  service  may  hold  the 
constraint  that  it  requires  a  remote  IP  address  before  it  may 
perform  its  data  collection  task.  The  data  for  this  constraint 
will  come  from  data  that  another  agent  collects  during  its 
data  collection  task.  For  the  purposes  of  this  system,  the 
constraints  will  be  called  the  conditions  and  the  data  gath- 
ered  during  the  data  collection  process  the  effect.  Each  agent 
should  only  perform  one  data  collection  task  and  should  pro- 
duce  one  effect,  however,  it  may  have  several  conditions  de- 
pending  upon  the  actual  data  collection  task  it  is  designed 
to  perform. 
 

Definition  3.  Given  a  set  I  formed  by  pairs  (f, v)  repre- 
senting  the  available  information  about  a  suspicious  activity, 
and  a  data  collection  action  C, e  we  define  that  action  con- 
ditions  are  satisfied  iff  for  all  (f, v)  ∈  C,  (f, v)  ∈  I. 
 

The  concept  of  an  extended  data  collection  task  is  intro- 
duced  to  describe  the  process  of  several  agents  performing 
their  data  collection  and  analysis  tasks  together  for  the  pur- 
poses  of  investigating  a  potential  security  event.  Since  the 
conditions  are  derived  from  the  effects,  when  a  new  effect 
is  gathered  during  the  data  collection  process,  it  may  sat- 
isfy  the  conditions  of  other  agents,  resulting  in  additional 
agents  being  able  to  perform  their  data  collection  and  anal- 
ysis  tasks.  In  addition  to  participating  in  extended  data 

collection  tasks,  each  agent  will  be  responsible  for  the  con- 
tinual  monitoring  of  a  data  source.  If  during  this  continual 
process  some  data  is  flagged  as  being  potentially  malicious, 
the  extended  data  collection  process  will  begin  with  an  agent 
communicating  its  effect  to  any  agents  who  have  the  effect 
set  as  a  condition.  Figure  ??  illustrates  this  concept  using 
four  agents  (A1-A4)  with  each  performing  a  data  collection 
task  and  communicating  the  effect  discovered  during  that 
task  to  the  next  agent.  The  result  of  the  data  analysis  pro- 
cess  is  a  judgement  about  the  collected  or  monitored  data 
of  either  malicious  or  innocuous,  within  the  system,  this  is 
called  the  local  decision. 

A  communication  model  allows  for  the  transfer  of  infor- 
mation  between  agents,  the  main  use  of  which  involves  the 
sending  of  a  report  between  agents  which  is  a  grouping  of 
the  agent’s  ID,  effect  and  local  decision  about  the  malicious- 
ness  of  the  data.  The  report  is  generated  and  then  sent  to 
the  next  agent  whose  conditions  have  been  satisfied  by  the 
effects  already  known,  each  agent  generates  their  own  re- 
port  and  aggregates  it  with  the  reports  that  it  receives.  The 
transfer  of  the  aggregated  set  of  reports  facilitates  the  build 
up  of  information  within  the  agent  network  and  is  called  the 
extended  data  collection  task.  This  can  be  viewed  in  Figure 
1  where  data  is  being  collected  during  stages  1,  3,  5  and  7, 
the  effect  gathered  from  the  data  source  is  being  analysed  by 
each  of  the  4  agents  and  then  the  aggregated  set  of  reports 
is  being  build  up  and  transferred  between  each  agent  during 
stages  2,  4  and  6.  Figure  2  shows  a  similar  extended  data 
collection  process  occurring  within  our  multi-agent  simula- 
tor,  this  process  can  be  viewed  as  connections  being  made 
between  the  agent  nodes. 
 

Definition  4.  A  local  report  defined  as  a  tuple  g, (f, v), p 
where: 

•  g  ∈  G  is  the  agent’s  identity; 

•  (f, v)  is  a  pair  feature  value  corresponding  to  the  output 
of  the  data  collection  action  performed  by  agent  g; 

•  p  ∈  [0, 1]  is  the  agent’s  analysis  of  the  suspicious  activ- 
ity;  i.e.,  the  probability  of  the  suspicious  activity  being 
malicious. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  1:  Flow  diagram  for  the  extended  data  col- 
lection  task  using  agents  (A1-A4)  and  data  sources. 
 
 

At  some  point  during  the  extended  data  collection  pro- 
cess  there  will  be  no  more  agents  that  can  participate  as 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  2:  The  extended  data  collection  task  being 
performed  within  the  simulator. 
 
 

their  conditions  have  not  been  satisfied.  At  this  point  the 
aggregated  set  of  reports  will  contain  a  number  of  IDs,  ef- 
fects  and  local  decisions  about  the  maliciousness  of  the  effect 
data.  Using  this  set  of  local  decisions,  the  last  agent  to  re- 
ceive  the  set  will  calculate  the  final  global  decision  for  the 
participating  agents.  The  final  global  decision  is  calculated 
through  the  use  of  a  voting  system  [27]  which  will  use  the  lo- 
cal  decisions  (collectively  named  the  global  report)  to  come 
to  a  final  decision  about  the  security  event  as  a  whole.  If  the 
global  decision  returned  is  “malicious”  then  the  agents  will 
be  justified  in  taking  action  against  the  detected  attacker 
knowing  that  other  agents  have  also  detected  an  attack.  The 
communications  protocol  is  also  used  to  send  the  results  of 
the  global  decision  to  each  of  the  participating  agents  in- 
forming  them  after  it  has  been  made. 
 

Definition  5.  A  global  report  R  is  defined  as  a  set  of  lo- 
cal  reports  {  g1, (f1, v1), p1  , ...,  gn, (fn, vn), pn  }  containing 
the  information  collected  by  different  agents  participating  in 
a  same  extended  data  collection  process. 
 

Definition  6.  Given  a  global  report  G  representing  the 
local  decisions  made  by  the  agents  participating  in  an  ex- 
tend  data  collection  process,  the  global  decision  is  a  function 
returning  a  value  between  [0, 1]  representing  the  collective 
judgement  about  the  maliciousness  of  the  investigated  activ- 
ity. 
 

This  section  has  outlined  the  basic  architecture  for  the 
propagation  of  information  through  the  agent  network.  Each 
agent  has  a  condition  that  must  be  satisfied  before  it  may 
take  part  in  the  extended  data  collection  and  produces  and 
effect  based  upon  its  findings.  This  architecture  is  desirable 
for  a  number  of  reasons: 
 
Data  Sharing. 

Within  this  architecture  the  decision  made  by  each  agent 
is  the  important  variable  that  must  be  shared.  Within  envi- 
ronments  with  multiple  systems  interacting  with  each  other, 

it  is  as  discussed  previously,  beneficial  to  share  security  data 
to  gain  a  more  holistic  view  of  the  network,  however,  busi- 
nesses  often  have  concerns  about  data  being  shared  with 
potential  competitors  and  so  are  reluctant  to  share  secu- 
rity  data.  In  the  proposed  architecture,  the  decisions  can 
be  sent  from  agent-to-agent  without  the  actual  information 
used  to  make  that  decision,  making  it  a  viable  system  for 
multiple  systems  (IoT  networks  belonging  to  different  or- 
ganisations)  to  interact  and  share  conclusions  about  events 
without  disclosing  sensitive  information.  The  approach  of 
sharing  higher  level  conclusions  about  events,  for  example, 
that  a  port  scan  occurred  and  it  was  found  to  be  malicious, 
is  a  more  secure  approach  than  to  share  the  actual  network 
packet  data  which  could  contain  sensitive  information. 
 
Network  Forensics. 

This  architecture  was  designed  to  make  use  of  the  forensic 
process  to  be  more  efficient  in  detecting  cyber  attacks.  With 
the  limited  capacity  of  IoT  devices,  probing  every  available 
devices  for  information  is  computationally  expensive  so  the 
alternative  approach  of  using  what  is  already  known  to  in- 
form  where  to  look  next  is  taken.  Agents  may  only  take  part 
in  the  extended  data  collection  task  if  all  of  their  conditions 
are  first  satisfied.  If  the  information  necessary  for  the  agents 
data  collection  and  analysis  task  is  missing  or  not  yet  known, 
they  will  not  attempt  to  take  part  in  the  investigation  until 
enough  evidence  has  been  accumulated  to  suggest  that  they 
are  likely  to  find  more  evidence. 
 
Domain  Expert. 

This  system  makes  it  easy  for  the  domain  expert  or  de- 
vice  creator  to  create  new  agents  in  the  environment  without 
needing  to  be  aware  of  other  existing  agents.  Each  individ- 
ual  agent  is  seen  as  an  independent  entity,  with  any  infor- 
mation  required  for  its  analysis  of  the  data  to  be  included 
(or  made  aware  of  its  location)  upon  its  creation.  The  use 
of  conditions  and  effects  allows  the  agents  to  assimilate  into 
the  agent  network  by  simply  fitting  into  the  extended  data 
collection  process  when  its  conditions  are  satisfied. 

3.1  Agent  Discovery  &  Communication 

To  allow  agents  participating  in  an  extended  data  collec- 
tion  to  coordinate,  this  model  includes  an  interaction  pro- 
tocol  (depicted  in  Figure  3).  The  protocol  is  formed  by  five 
main  phases:  (i)  request  for  participants;  (ii)  proposals  from 
available  participants;  (iii)  participant  selection;  (iv)  inform 
summary;  (v)  inform  result,  described  as  follows. 
 
Request  for  Participants. 

Once  an  agent  has  performed  its  data  collection  and  anal- 
ysis  tasks,  the  agent  must  add  its  local  report  to  the  global 
report  and  then  send  it  onto  the  next  agent  for  further  in- 
formation  collection.  The  communication  module  is  used  to 
facilitate  this. 

The  first  step  of  the  interaction  protocol  is  to  request  help 
from  other  agents  that  can  participate  in  the  data  collection 
process.  In  particular,  the  set  of  pairs  feature  value  are  ex- 
tracted  from  the  global  report  and  then  broadcast  (by  the 
initiating  agent)  to  the  other  agents.  Given  a  global  report 
{  g1, (f1, v1), p1  , ...,  gn, (fn, vn), pn  }  a  request  for  partici- 
pation  is  formalised  as  a  set  {(f1, v1), ..., (fn, vn)}  containing 
the  available  information  about  currently  known  broadcast 
out  to  all  agents. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure  3:  An  example  information  flow  between  5  agents  using  the  decentralised  communications  protocol. 

 
Proposals  from  Participants. 

Any  agents  whose  data  collection  action  is  satisfied  by 
the  information  contained  can  respond  by  indicating  their 
availability  to  participate  in  the  extended  data  collection 
task.  Figure  3  illustrates  this  with  Agent  2  broadcasting  to 
other  agents  on  the  network. 
 
Participant  Selection. 

It  is  possible  that  several  agents  respond  to  the  initial  re- 
quest  indicating  that  they  can  work  with  the  available  data. 
The  initiator  must  decide  which  agent  will  be  selected  to 
continue  with  the  data  collection  process.  In  particular,  the 
initiator  will  send  the  whole  global  report  to  this  selected 
agent. 

Unlike  in  other  MAS  solutions,  the  proposed  model  does 
not  include  a  central  repository  of  agents  which  can  be  queried 
to  find  the  most  suitable  agent  for  a  given  task.  This  im- 
proves  scalability  but  requires  a  system  to  allow  agents  to 
find  each  other.  The  agents  will  maintain  a  local  database 
of  agents  that  they  have  previously  worked  with.  Deciding 
which  agent  should  be  selected  as  the  preferred  agent  will 
affect  the  performance  of  the  system  as  a  whole.  If  the  most 
optimal  agent  is  selected  for  the  task  most  of  the  time,  the 
search  process  will  improve  as  less  time  is  spent  performing 
data  collection  by  unreliable  agents.  There  are  a  number  of 
ways  in  which  the  preferred  agent  can  be  identified  based  on 
what  is  important  in  a  given  situation.  If  accuracy  is  espe- 
cially  important  for  the  current  event  the  agents  may  select 
the  agent  that  most  often  votes  correctly,  this  will  result  in 
a  more  accurate  search.  If  time  is  an  important  factor  dur- 
ing  some  event  the  agent  may  choose  the  fastest  performing 
agent  to  collect  information  quickly,  this  will  produce  a  re- 
sult  faster  than  the  previous  but  could  potentially  result  in 
a  less  certain  decision.  While  an  analysis  of  factors  such 
as  these  could  be  done  to  determine  the  optimal  preferred 
agent  selection  algorithm,  events  within  the  security  envi- 
ronment  can  often  be  unpredictable  and  allowing  the  agents 
to  choose  the  preferred  agent  at  run  time  could  produce  a 
more  adaptable  solution. 

For  example,  in  a  Distributed  Denial  of  Service  (DDoS) 

attack,  selecting  the  preferred  agent  based  on  the  speed  at 
which  agents  are  capable  of  collecting  information  could  not 
result  in  a  timely  collection  if  one  part  of  the  network  is 
under  attack.  However,  selecting  agents  based  on  their  geo- 
graphical  location  (e.g.,  using  the  agents  that  are  not  under 
attack),  would  improve  the  efficiency  of  the  response. 
 
Inform  Summary. 

The  agent  selected  from  previous  stage  (termed  the  child 
agent)  will  send  back  a  summary  to  the  previous  agent  (termed 
the  parent  agent)  containing  information  about  the  decision 
it  made  during  its  own  data  collection  task,  this  is  done  so 
the  parent  agent  may  evaluate  the  performance  of  the  child 
agent  by  comparing  its  decision  to  the  groups.  This  process 
can  be  viewed  in  Figure  3  where  Agent  3  (the  child)  sends 
back  a  summary  to  Agent  2  (the  parent).  This  summary 
will  be  logged  by  the  parent  agent  for  use  in  selecting  the 
child  agent  in  future  extended  data  collection  tasks.  The 
parameters  sent  in  the  summary  will  include  the  agents  lo- 
cal  decision  about  the  maliciousness  of  the  event,  as  well  as, 
performance  variables  such  as  the  time  taken  to  perform  the 
collection  task,  the  importance  of  the  data  collected  and  the 
computational  cost  of  performing  the  collection. 
 
Inform  Result. 

Once  a  final  decision  has  been  reached,  the  final  decision 
will  be  sent  to  all  of  the  participating  agents,  this  can  then 
be  used  by  the  agents  to  review  its  method  for  selecting 
the  preferred  agent  (e.g.,  the  preference  can  be  increased 
for  those  agents  with  local  decisions  in-line  with  the  final 
decision). 

3.2  Remote  Agent  Communication 

The  interaction  protocol  described  in  this  section  has  de- 
tailed  how  agents  on  the  same  network  may  communicate 
with  each  other  to  find  other  agents  that  can  participate 
in  the  extended  data  collection  task  given  the  information 
already  known.  While  this  protocol  works  for  a  single  net- 
work  where  messages  can  be  broadcast  across  the  entire  net- 
work  with  little  cost,  networks  that  are  disconnected  from 



each  other  across  long  distances  would  require  an  extended 
discovery  protocol  for  making  agent  networks  aware  of  each 
other.  Many  discovery  protocols  that  perform  a  similar  func- 
tion  exist  already,  the  most  commonly  known  being  Domain 
Name  System  (DNS)  [9]  which  uses  a  distributed  network  of 
information  repositories  that  can  be  queried.  Any  number 
of  similar  solutions  or  alternatively  a  decentralised  discovery 
protocol  could  be  implemented  to  allow  remote  agent  net- 
works  to  link  together  for  the  purposes  of  participating  in 
the  extended  data  collection  over  the  internet  but  is  consid- 
ered  out  of  scope  for  this  paper. 

3.3 Bro  IDS  for  Attacker  Profiling 

The  two  fundamental  approaches  to  intrusion  detection 
are  to  use  either  signatures  of  known  malicious  software  or 
actions  (e.g.,  a  threshold  for  a  port  scan)  or  to  detect  be- 
havioural  anomalies  (e.g.,  an  unusual  number  of  login  at- 
tempts  from  a  user).  While  signature  detection  is  useful 
for  detecting  what  is  already  known,  the  IoT  environment 
is  vast  and  varied  with  many  different  types  of  protocols 
and  systems  which  makes  manually  creating  signatures  for 
timely  detection  a  challenging  task.  A  more  scalable  ap- 
proach  is  to  perform  an  analysis  of  higher-level  features  such 
as  the  identity  of  those  interacting  with  the  system,  how 
those  users  interact  with  the  system  and  to  rely  more  on 
behavioural  and  anomaly  analysis. 

The  Bro  IDS  [14]  is  a  popular  open  source  research  tool 
for  understanding  networks.  Bro  distinguishes  itself  from 
other  IDSs  as  its  primary  function  is  to  understand  and 
make  sense  of  what  is  being  monitored  in  a  policy  indepen- 
dent  way  rather  than  to  determine  what  is  and  what  is  not 
malicious.  Once  what  is  being  monitored  is  well  understood 
and  catalogued  into  a  useful  format,  the  behaviour  of  the 
users  can  be  studied  and  malicious  actions  extracted  using 
either  policy  scripts  or  anomaly  analysis. 

With  several  policy  scripts  enabled  the  ISCX  IDS  dataset 
[22]  was  analysed.  The  dataset  was  collected  from  an  IDS 
on  a  network  and  includes  both  instances  of  infiltrating  the 
network  from  inside  and  normal  activity.  Bro  IDS  produces 
an  output  file  named  notice.log  containing  any  activity  con- 
sidered  noteworthy  by  the  policy  scripts  used,  examples  of 
noteworthy  behaviours  include  attempted  port  scans,  invalid 
SSL  certificates  and  other  non-standard  network  activity. 
To  simulate  the  use  of  the  Bro  IDS  as  part  of  the  proposed 
multi-agent  architecture  contents  of  the  file  was  used  to  de- 
fine  agents  for  monitoring  specific  behaviours  Bro  can  detect, 
for  example,  the  feature  that  performs  a  lookup  against  SSL 
certificates  is  defined  as  its  own  agent  within  the  simulator 
(described  in  more  detail  in  the  Section  4).  The  concepts  of 
conditions  and  effects  were  then  applied  to  the  agents  so  that 
each  of  the  Bro  agents  had  their  corresponding  set  of  condi- 
tions  and  effects  to  work  within  the  architecture.  Adapting 
Bro  IDS  to  the  MAS  was  done  to  show  how  different  tech- 
nologies  can  be  adapted  using  the  concept  of  conditions  and 
effects  to  work  within  the  proposed  architecture  as  well  as  a 
way  to  automatically  define  agents  using  existing  technolo- 
gies. 

3.4 Agent  Coalitions 

Coalitions  are  used  within  the  system  to  increase  the  speed 
at  which  agents  can  be  consulted  during  the  extended  data 
collection  task  as  well  as  to  compensate  for  a  large  number 
of  agents  outvoting  a  smaller  number  when  it  is  not  desir- 

able  to  do  so.  The  most  basic  algorithm  for  use  within  this 
architecture  is  to  consider  the  amount  of  votes  cast  by  all 
of  the  participating  agents  for  either  malicious  or  innocu- 
ous  and  make  a  decision  about  the  event  as  a  whole  based 
upon  the  total.  This  method  of  tallying  up  votes  to  de- 
cide  the  overall  decision  is  useful  in  the  detection  of  less 
advanced  attacks  where  multiple  agents  are  able  to  detect 
the  attack  from  different  vantage  points  on  the  network  and 
classify  it  as  malicious,  but  it  becomes  less  useful  in  the 
case  of  advanced  stealthy  attacks  because  a  large  number  of 
unreliable  agents  may  outvote  a  smaller  number  of  reliable 
agents.  This  is  often  the  case  in  the  example  of  network  level 
threat  intelligence  lookups.  If  an  IP  address  is  well  known 
for  being  malicious  and  multiple  threat  intelligence  vendors 
have  logged  it  as  being  so,  then  detection  of  the  IP  address 
given  many  votes  for  it  being  malicious  accurately  detects 
the  user.  However,  if  the  IP  address  is  unknown  to  many 
threat  intelligence  vendors  and  there  are  a  large  number  of 
agents  monitoring  a  variety  of  vendors,  there  will  be  an  over- 
whelming  number  of  innocuous  votes  which  would  outvote  a 
smaller  number  of  agents  that  have  correctly  identified  the 
attack  in  some  other  area  of  the  network. 

Coalitions  are  used  in  this  instance  to  reduce  outvoting 
by  a  large  number  of  agents.  The  coloured  nodes  in  Fig- 
ure  4  show  a  number  of  coalitions,  with  one  agent  randomly 
selected  as  the  ‘representative’  of  the  group.  Only  the  rep- 
resentative  will  respond  to  the  extended  data  collection  task 
when  its  conditions  are  satisfied,  but  will  instead  first  com- 
municate  the  global  report  containing  all  the  accumulated 
effects  to  each  of  the  members  of  the  coalition  to  receive 
their  individual  decisions.  This  process  can  be  viewed  as 
a  separate  1-stage  extended  data  collection  task  performed 
locally  within  the  coalition.  The  votes  are  collected  by  the 
representative  and  then  a  single  decision  for  the  group  is 
decided  based  upon  the  chosen  aggregation  algorithm,  the 
simplest  of  which  is  to  take  the  highest  number  of  votes  in 
either  direction  of  malicious  or  innocuous.  This  final  group 
decision  is  then  delivered  by  the  representative  as  one  vote. 

Coalitions  are  locally  formed  when  agents  of  the  same  type 
and  function  become  aware  of  each  other,  for  example,  if 
several  agents  on  a  network  all  have  the  same  conditions 
and  possible  effects,  they  are  functionally  the  same  and  so 
will  form  a  coalition.  This  most  often  occurs  with  agents 
responsible  for  monitoring  threat  intelligence  sources,  often 
multiple  sources  will  exist  for  the  same  type  of  information 
(e.g.,  file  hashes)  and  each  will  have  a  dedicated  agent,  but 
they  all  have  the  same  conditions  and  same  possible  effects. 

The  algorithm  used  within  the  coalition  to  aggregate  the 
decisions  will  be  chosen  based  upon  a  number  of  factors,  for 
example,  the  importance  of  the  data  source;  if  the  threat 
intelligence  source  used  by  the  agent  is  a  reliable  indicator 
of  compromise,  then  only  one  vote  for  malicious  may  be 
required.  However,  for  less  reliable  sources,  a  majority  vote 
may  be  required.  The  selection  of  this  algorithm  may  be 
automated  to  an  extent  based  upon  the  consistency  of  group 
decisions,  for  example,  if  all  agents  tend  to  vote  in  a  similar 
way,  then  the  sources  are  likely  more  reliable  than  if  the 
agents  vote  inconsistently. 
 
4.  SIMULATOR 

A  simulator  was  developed  to  explore  the  viability  of  the 
use  of  conditions  and  effects  in  the  IoT  environment.  Figure 
4  shows  the  simulator  with  the  nodes  (representing  agents) 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure  4:  The  multi-agent  simulator  consisting  of  three  groups  of  agents  (Bro  IDS,  Threat  Intelligence, 
Manual)  ordered. 

 
spatially  organised  into  three  distinct  groups  showing  the 
three  types  of  agents  used.  The  first  type  of  agent  (left 
group)  is  initialised  from  the  notice.log  file  created  by  Bro 
IDS  and  represents  the  capabilities  that  it  can  perform.  The 
second  type  of  agent  (bottom  right  group)  show  agents  man- 
ually  created  using  the  agent-builder  feature  within  the  sim- 
ulator  allowing  the  creation  of  new  agents  for  specific  jobs. 
Finally,  the  third  group  (top  right  group)  area  created  to 
represent  sources  of  threat  intelligence  [15]  found  online. 
Agent  nodes  with  a  colour  represent  a  coalition  [7]  of  simi- 
lar  agents  that  all  share  the  same  condition  type  and  effect 
type  (further  details  in  Section  3.4).  An  example  of  this  is 
the  intel-addr-6  agent  which  is  capable  of  performing  a  rep- 
utation  lookup  against  IP  addresses  for  a  particular  source 
online.  Within  the  simulator,  there  are  many  agents  of  this 
type  which  can  perform  a  reputation  lookup  for  an  IP  ad- 
dress  and  so  are  all  grouped  together  under  the  intel-addr-6 
agent  (discussed  further  in  Section  3.4).  The  white  box  at 
the  bottom  of  Figure  4  is  an  interactive  view  activated  by 
selecting  agents  to  view  information  about  them  including 
their  ID,  a  description  of  what  actions  they  perform,  the 
condition  and  effect  information  among  other  details. 

4.1  Conditions  &  Effects  Implementation 
To  increase  compatibility  across  the  different  agent  groups 

the  conditions  and  effects  were  described  in  key:value  pairs 
representing  the  condition  or  effect  type  and  the  condition 
or  effect  value.  Wherever  possible  the  Bro  IDS  syntax  for 
describing  types  was  used,  for  example,  in  Figure  4  agent- 
3  has  been  selected  and  its  first  condition  can  be  seen  as 
id.orig  h  representing  the  source  IP  address  and  the  value  is 
set  to  any  meaning  it  requires  any  IP  address  to  satisfy  this 
condition.  Agent  3  also  has  a  second  condition  of  ipLocality 
with  a  value  of  remote  ensuring  that  it  only  performs  its  geo- 
graphical  lookup  function  on  remote  IP  addresses,  not  inter- 
nal  IP  addresses,  which  would  be  a  waste  of  resources  given 
the  limited  capacity  of  IoT  devices.  This  agent  in  particular 
returns  the  an  effect  of  ipGeoBlacklist  with  a  value  of  either 
blacklisted  or  whitelisted.  Once  the  agent  has  had  both  of 
its  conditions  satisfied  and  has  participated  in  the  extended 
data  collection  task  it  will  broadcast  its  effect.  If  another 
agent  has  the  condition  of  ipGeoBlacklist:blacklisted,  it  will 
then  be  able  to  perform  its  data  collection  task  perpetuating 
the  collection  and  analysis  of  relevant  information. 



4.2 Deployment  Models 
The  architecture  described  so  far  has  been  framed  as  a 

distributed  system  that  performs  data  collection  and  analy- 
sis  over  a  network.  The  system  can  be  deployed  in  two  ways, 
the  first  being  within  the  actual  IoT  devices  if  the  capacity 
to  support  these  agents  is  great  enough.  Having  one  or  more 
agents  operating  on  each  device  could  be  a  viable  distribu- 
tion  method  if  the  devices  have  the  capacity  to  support  the 
processing  required  by  each,  which  is  far  less  taxing  than 
having  an  entire  IDS  performing  brute-force  analysis  from  a 
single  device.  However,  the  agents  may  also  be  deployed  in 
a  supporting  role  by  introducing  more  agents  into  the  net- 
work.  The  agents  described  this  far  have  all  had  a  function 
to  perform,  e.g.,  an  agent  which  can  perform  a  geographical 
lookup  against  an  IP  address.  However,  this  is  a  taxing  func- 
tion  which  may  not  be  able  to  be  supported  on  IoT  devices. 
By  including  a  number  of  lightweight  agents  that  perform 
no  real  processing,  but  instead,  just  aggregate  data  for  use 
within  the  extended  data  collection  task  can  be  used  as  a 
way  to  retrieve  the  information  from  IoT  devices  and  send 
it  to  remote  agents  located  on  more  suitable  hardware  for 
analysis.  An  example  of  this  can  be  seen  in  Figure  4,  the 
manual  agent  named “net-locality-2” performs  no  heavy  pro- 
cessing  such  as  performing  a  lookup  but  instead  determines 
if  a  given  IP  address  is  locally  or  remotely  located.  This  is  a 
much  less  computationally  taxing  function  to  retrieve  data 
from  the  IoT  devices. 
 

5. RELATED  RESEARCH  &  DISCUSSION 

Shakarian  et  al.  [18]  described  a  cyber  attribution  sys- 
tem  [19,  20]  that  takes  into  consideration  different  data 
sources  and  uses  MAS  to  reason  about  the  origin  of  an  at- 
tack  through  the  use  of  agent  reasoning.  The  system  uses 
information  gathered  about  the  attack  as  well  as  informa- 
tion  gathered  from  a  wide  range  of  military  sources  to  reason 
in-depth  about  the  attribution  of  an  attack.  A  highlighted 
danger  of  relying  on  external  sources  of  information  is  the 
trustworthiness  of  the  source,  which  must  be  taken  into  con- 
sideration.  Agents  were  used  that  could  both  reason  about 
facts  and  make  presumptions  by  factoring  in  trustworthi- 
ness  for  each  individual  source.  Facts  would,  by  default,  be 
trusted  more,  while  presumptions  would  be  relied  on  less 
based  on  the  trustworthiness  of  the  source  of  information 
that  the  presumption  was  gathered  from.  This  use  of  ex- 
ternal  information  provided  an  effective  way  to  gain  extra 
contextual  information  for  detected  attacks  but  was  heavily 
reliant  on  previously  collected  and  catalogued  information 
from  military  sources.  When  adhering  to  the  design  archi- 
tecture  of  a  CDMAS,  agents  must  not  rely  on  centrally  col- 
lected  and  formatted  data  but  instead  be  more  adaptable 
to  whatever  information  is  available  during  time  at  which 
the  agent  searches  for  it.  Furthermore,  within  the  security 
environment  where  events  can  begin  and  finish  on  a  very 
small  time-scale,  in  order  to  enable  useful  real-time  detec- 
tion,  the  agents  must  be  able  to  interact  with  the  sources  of 
information  when  needed  rather  than  waiting  on  a,  typically 
slower,  human  operator  to  provide  the  information.  The  im- 
portance  of  externally  collected  information,  typically  used 
during  network  layer  detection  is  recognised  and  was  in- 
cluded  within  the  proposed  architecture  as  one  three  types 
of  agents  (See  Figure  4),  however  the  system  is  extended 
beyond  the  use  of  previously  collected  and  catalogued  infor- 

mation  through  the  implementation  of  agents  that  process 
information  gathered  during  the  live  event.  This  approach 
is  beneficial  to  security  as  the  process  of  cataloguing  data 
is  typically  performed  sometime  after  events  have  occurred 
and  so  is  not  available  in  real  time. 

Jahanbin  et  al.  [5]  proposed  a  MAS  framework  for  foren- 
sic  information  gathering  which  uses  three  types  of  agents 
for  data  collection,  data  analysis  and  alert  generation.  The 
authors  note  how  the  MAS  paradigm  is  well  suited  to  the 
task  of  forensic  data  collection  as  agents  can  be  dispatched 
to  areas  of  the  network  to  perform  collection  and  analysis  of 
evidence  such  as  log  files.  This  system  is  structurally  similar 
to  Haack  et  al.  [3]  with  layered  agents  passing  information 
up  the  agent  pipeline  to  a  central  agent  for  decision  making. 
This  central  agent  structure  is  similar  to  an  IDS  as  it  collects 
information  and  then  makes  a  judgement  based  on  that  in- 
formation,  however,  if  some  information  is  missing,  the  sys- 
tem  would  continue  processing  new  information  rather  than 
actively  searching  missing  data.  It  is  desirable  for  agents  to 
be  able  to  actively  seek  out  missing  sources  of  information 
where  some  is  expected  in  the  security  environment  where 
attackers  are  prone  to  covering  their  tracks  by  removing  in- 
formation.  Furthermore,  in  keeping  with  the  principles  of 
a  MAS,  agents  should  be  adaptable  when  the  environment 
changes.  To  improve  upon  this  architecture  and  to  allow 
agents  to  adapt  to  missing  information  the  agents  in  our 
proposed  model  will  search  for  information  based  upon  what 
is  already  known  (i.e.,  collected  previously  by  other  agents) 
and  will  continue  to  search  for  information  in  locations  where 
previous  evidence  suggests  more  will  be  found.  In  the  case  of 
explicitly  missing  information,  resulting  in  conditions  that 
cannot  be  fulfilled,  the  data  collection  process  is  not  halted 
but  instead  will  continue  to  search  for  information  where  it 
can  be  found.  Given  the  example  shown  in  Figure  2  where  a 
the  extended  data  collection  task  begins  with  Agent-9  and 
includes  several  agents  until  concluding  the  search  for  in- 
formation  with  Agent-8,  if  an  intermediate  agent  could  not 
collect  information,  an  alternate  series  of  agents  could  have 
been  used  to  gather  more  information  to  compensate  for  the 
information  gap. 

Shanmugasundaram  et  al.  [21]  developed  a  distributed 
forensics  system  using  a  hierarchical  approach  with  multiple 
configurable  sensors  that  were  distributed  on  a  network.  The 
system  uses  a  variety  of  sensors  and  servers  to  collect  and 
aggregate  the  information  and  attempt  to  derive  the  nature 
of  the  security  event  from  the  collected  data.  The  system 
identifies  the  attack  type  based  on  which  pieces  of  evidence 
are  and  are  not  found  during  the  search.  In  the  complex 
and  changing  environment  of  cyber  security,  this  approach 
is  desirable  as  the  lack  of  information  does  not  necessarily 
conclude  no  attack  is  taking  place.  The  underlying  system 
of  conditions  and  effects  is  used  to  allow  domain  experts 
to  independently  create  agents  for  specific  applications  and 
technologies  without  having  to  consult  with  each  other.  If 
information  is  required  for  the  analysis  of  some  application 
specific  data,  it  can  be  abstractly  defined  within  the  agents 
condition,  for  example,  a  condition  that  the  SSL  certificate 
must  be  invalid,  if  this  is  then  detected  on  the  network  the 
application  specific  agent  may  then  participate  in  the  ex- 
tended  data  collection  task  without  knowledge  of  how  the 
SSL-monitoring  agent  works  or  which  domain  expert  cre- 
ated  it.  Through  the  effects  agents  share  conclusions  about 
data  they  have  collected  and  processed  without  exposing  the 



internal  mechanism  or  particular  data,  this  makes  the  sys- 
tem  more  scalable  as  domain  experts  can  define  agents  using 
these  abstract  conclusions  and  have  their  agents  fit  into  the 
existing  agent  ecosystem  without  the  need  to  reconfigure 
existing  agents. 

Babar  et  al.  [1]  described  eight  concerns  in  regards  to 
the  security  of  IoT  devices:  user  identification,  tamper  re- 
sistance,  secure  software  communication,  secure  digital  con- 
tent,  secure  network  access,  availability,  identification  man- 
agement  and  secure  storage.  While  each  of  these  concepts 
are  particularly  important  to  the  security  of  IoT  devices  they 
lack  a  scalable  and  automatic  mechanism  for  understanding 
attacks  at  a  more  abstract  level.  Currently,  the  focus  of  IoT 
security  centres  on  the  application  of  security  technologies  to 
the  newly  formed  IoT  domain.  There  is  little  focus  on  con- 
sidering  responsive  architectures  to  detect  and  understand 
attacks  against  the  wider  network,  for  example,  to  attribute 
a  number  of  smaller  incidents  across  the  network  as  part 
of  a  single  targeted  attack.  The  proposed  agent  architecture 
aims  to  dress  the  concerns  of  information  leakage  highlighted 
by  Babar  et  al.  by  abstracting  the  low  level  data  into  ab- 
stract  facts  about  the,  for  example,  an  agent  that  processes 
SSL  certificates  seen  on  the  network  will  necessarily  process 
sensitive  information  about  the  user  but  will  only  produce 
an  abstract  effect  of  either  valid  or  invalid  certificate.  In  an 
IoT  environment  which  may  contain  multiple  technologies 
by  multiple  vendors,  implementing  a  security  system  that 
only  shares  the  abstract  conclusions  rather  than  the  per- 
sonal  data  will  reduce  the  risk  of  information  being  leaked 
from  a  compromised  agent.  Since  only  the  conclusions  are 
included  in  the  global  report  transmitted  between  agents, 
a  compromised  agent  will  not  have  access  to  the  personal 
information  used  to  come  to  each  of  the  individual  decisions 
contained  within  it. 

Oriwoh  et  al.  [12]  describes  a  forensics  response  model 
tailored  for  IoT  environments  taking  into  consideration  the 
increased  scope  and  complexity  faced  by  forensic  analysts. 
Performing  manual  forensics  by  trained  practitioners  in  an 
IoT  environment  where  the  devices  can  be  physically  sepa- 
rated  by  great  distances  and  the  number  of  devices  can  be 
many  can  be  a  time  consuming  task.  During  the  manual 
forensic  process  evidence  is  first  gathered,  then  analysed  for 
possible  implication  and  if  found  to  be  suspicious  is  used  as 
a  starting  point  to  find  more  related  information.  Through 
the  use  of  conditions  and  effects  the  process  of  gathering  in- 
formation  and  using  it  as  evidence  to  inform  future  searches 
has  been  modelled  using  a  MAS  to  automate  the  forensic 
process  in  IoT  environments.  This  model  is  beneficial  over 
the  traditional  IDS  approach  of  analysing  security  events 
where  data  is  analysed  according  to  known  signatures  or 
anomaly  analysis  without  the  forensic  feedback  loop  to  help 
inform  future  analysis  of  relevant  data. 

Suo  et  al.  [24]  discusses  the  security  concerns  at  each  of 
the  four  conceptual  lays  for  IoT  devices  (perceptual,  net- 
work,  support  and  application).  At  the  perceptual  or  hard- 
ware  layer  the  integrity  of  the  data  stored  is  a  concern  and 
should  be  encrypted.  At  the  network  layer  attacks  on  the 
systems  availability  are  a  concern  (e.g.,  Denial  of  Service 
attacks)  or  the  manipulation  of  protocols  (e.g.,  Man-in-the- 
Middle  attacks).  At  the  support  layer  encryption  and  the 
use  of  anti-virus  was  recommended.  Finally  at  the  appli- 
cation  layer  data  privacy  and  concerns  about  disclosing  in- 
formation  were  considered.  Each  of  the  described  counter- 

measures  at  the  specific  layers  are  preventative  and  do  not 
attempt  to  understand  the  attackers  or  consider  the  sys- 
tem  as  a  whole.  A  more  completely  approach  to  security  is 
needed  wherein  the  behaviour  of  the  attacker  is  studied  to 
understand  how  they  are  attempting  to  penetrate  the  net- 
work  and  to  collect  relevant  data  from  any  affected  nodes. 
The  proposed  agent  architecture  has  attempted  to  fulfil  this 
requirement  by  facilitating  data  collection  across  multiple 
network  layers.  Figure  4  shows  the  simulator  with  three 
classes  of  agents  operating  on  different  layers,  for  example, 
the  Conn:Content  Gap  agent  operates  on  the  network  level 
considering  missing  packets  during  a  communication  and  the 
geoip-3  agent  works  at  the  application  layer  by  matching  IP 
addresses  to  physical  locations.  The  benefit  of  this  imple- 
mentation  is  that  an  intrusion  can  be  detected  at  any  layer  of 
the  network  stack  and  the  resulting  extended  data  collection 
task  can  cross  the  layer  boundary  to  collect  information,  for 
example,  an  extended  data  collection  task  beginning  with 
the  detection  of  a  port  scan  may  progress  up  the  network 
stack  to  collect  information  about  the  possible  location  of 
the  attacker. 
 

6.  CONCLUSION  &  FUTURE  WORK 
In  this  paper  we  have  discussed  the  use  of  a  multi-agent 

security  architecture  for  use  within  IoT  networks.  The  dis- 
tributed  nature  of  IoT  makes  performing  security  more  chal- 
lenging  as  the  devices  do  not  have  the  benefit  of  a  centralised 
IDS  to  monitor  all  connections.  The  distributed  multi-agent 
architecture  that  aims  to  provide  security  by  using  the  foren- 
sic  process  of  gathering  and  analysing  information  to  inform 
future  actions  will  reduce  the  overall  amount  of  communi- 
cation  and  processing  that  must  be  done  during  the  course 
of  a  security  event  by  only  considering  the  most  relevant 
sources  of  data.  The  architecture  is  more  scalable  than  tra- 
ditional  approaches  to  security  as  domain  experts  can  create 
agents  for  a  specific  function  and  have  them  fit  into  the  cur- 
rent  agent  ecosystem  through  the  use  of  the  conditions  and 
effects  mechanism. 

We  will  continue  to  develop  the  architecture  with  a  focus 
on  developing  distributed  algorithms  for  use  within  it.  Par- 
ticular  focus  will  be  placed  upon  the  scalability  concerns  of 
having  domain  experts  create  the  knowledge  of  what  is  and 
what  is  not  malicious.  We  believe  that  use  of  anomaly  and 
behaviour  analysis  in  place  of  manually  created  rules  will  be 
a  better  alternative  for  the  IoT  environment  due  to  the  in- 
creased  chance  of  working  with  proprietary  protocols  which 
will  often  result  in  a  knowledge  gap  and  lack  of  support 
from  traditional  systems.  The  development  of  algorithms  to 
work  in  environments  such  as  this  and  the  expansion  of  the 
simulator  will  be  the  primary  focus  of  future  work. 
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