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ABSTRACT: 

Introduction – Prenylated and pyrano-flavonoids of the genus Artocarpus J. R. Forster & G. 

Forster are well known for their acetylcholinesterase (AchE) inhibitory, anticholinergic, 

antiinflammatory, antimicrobial, antioxidant, antiproliferative and tyrosinase inhibitory 

activities. Some of these compounds have also been shown to be effective against 

Alzheimer’s disease.  

Objective – The aim of the in silico study was to establish protocols to predict the most 

effective flavonoid from prenylated and pyrano-flavonoid classes for AchE inhibition linking 

to the potential treatment of Alzheimer’s disease. 

Methodology – Three flavonoids isolated from Artocarpus anisophyllus Miq. were selected 

for the study. With these compounds, Lipinski filter, ADME/Tox screening, molecular docking 

and QSAR were performed in silico. In vitro activity was evaluated by bioactivity staining 

based on the Ellman’s method. 

Results – In the Lipinski filter and ADME/Tox screening, all test compounds produced positive 

results, but in the target fishing, only one flavonoid could successfully target AchE. Molecular 

docking was performed on this flavonoid, and this compound gained the score as -13.5762. 

From the QSAR analysis the IC50 was found to be 1659.59 nM. Again, 100 derivatives were 

generated from the parent compound and docking was performed. The derivative number 20 

was the best scorer i.e., -31.6392 and IC50 was predicted as 6.025 nM. 

Conclusion – Results indicated that flavonoids could be efficient inhibitors of AchE and thus, 

could be useful in the management of Alzheimer’s disease. 

 

Keywords: Artocarpus anisophyllus; Alzheimer’s disease; acetylcholinesterase; Lipinski filter; 

ADME/Tox screening; QSAR. 
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Introduction 

Alzheimer’s disease (AD) is known as the most common form of dementia and is a progressive 

neural disorder, characterized by memory loss and severe impairment of other intellectual 

capabilities (Thompson et al., 2012). AD is connected with the reduced level of acetylcholine 

(Ach) and loss of cholinergic neurons in the brain (Lane et al., 2006). Ach was the first 

discovered neurotransmitter that, transfers neural signal at all autonomic ganglia including 

neuromuscular junction and synapses in the central nervous system. In autonomic nervous 

system the neurotransmission of signal is governed by Ach between the preganglionic 

sympathetic and parasympathetic neurons. It is also responsible for stimulation of muscles, 

which include the muscles of gastro-intestinal muscles. The loss of function of Ach is implicated 

to the development of AD (Perry et al., 1999). The AChE, an enzyme that breaks the 

neurotransmitter Ach into acetate and choline, hampers the normal neurotransmission. 

Cholinergic hypothesis of the disease states that the inhibition of AChE action may be one of 

the realistic approaches to the symptomatic management of AD (Weinstock, 1995).  

Acetylcholinesterase acts as one of the most significant targets against AD (Giacobini, 2004). 

Some of the known inhibitors of AchE are donepezil, galantamine tacrine, huperzine, and 7-

methoxytacrine (Mirjana et al., 2013).  

5, 7-Dihydroxy-4'-methoxy-8-prenylflavanone (1), isobavachalcone (2) and 5-hydroxy-7, 

8-(2, 2-dimethylchromano)-4'-methoxyflavanone (3) (Figure 1), isolated for the first time from 

the leaves of Artocarpus anisophyllus Miq. (Lathiff et al., 2015), were selected for the present in 

silico bioactivity analysis. Artocarpus anisophyllus is a Malaysian plant, found in the lowland 

forests of Negeri Sembilan and Johor States of Malaysia, Sumatra and Philippines. This mid-

canopy tree is locally known as “keledang babi” in Peninsular Malaysia or “mentawa” in Borneo. 

The Artocarpus species are rich in phenolic compounds especially prenylated and pyrano-

flavonoids with various bioactivities including antimicrobial, anti-inflammatory, antioxidant, 

antiproliferative, anticholinergic, acetylcholinesterase (AchE) inhibitory and tyrosinase 

inhibitory activities (Arung et al., 2006; Fang, et al., 2008; Lin et al., 2009; Ma et al., 2010; Okoth 

et al., 2013; Somashekhar et al., 2013). Compound 1 is inactive towards DPPH free radicals, but 

possesses significant tyrosinase inhibitory activity (Lathiff et al., 2015). In this present work, the 

bioactivity of the isolated compounds was studied in silico using several screening methods, 

which include drug likeness, ADME/Tox screening, molecular docking and QSAR. The goal of the 

study was to establish protocols to find out suitable target for the compounds in AD, and to 

check whether the isolated compounds could act as a better option for inhibition of AchE. After 

identifying the suitable target for the isolated compounds in silico, in vitro activity of these 

compounds was studied using bioactivity staining method (Ellman’s method) for validating the 

in silico findings.  
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Figure 1. Structures of flavonoids isolated from the leaves of Artocarpus anisophyllus 

 

Experimental 

Structural details of the selected compounds 

The isolation and characterization of the flavonoids were achieved by vacuum liquid 

chromatography (VLC), gravity column chromatography (CC), 1D and 2D NMR, FTIR, UV, MS and 

by direct comparison with literature data (Lathiff et al., 2015). 

 

In silico approach for bioactivity analysis of the selected compounds  

Ligand preparation 

In the present study, ligands are the compounds isolated from the A. anisophyllus (Figure 1). 

Their structures were drawn with the ChemDraw Ultra 8.0 software and then the structures 

were converted to 3D structures of ‘smiles’ and ‘sdf’ formats with software viz. OpenBabel. 

Toxicity and drug likeness 

For ADME/Tox screening of the selected ligands, Mobyle@rpbs online portal (Lagorce et al., 

2008) was used. Molsoft L. L. C. online portal (www.molsoft.com) was used to screen the drug 

likeness of the compounds. 

 



Target selection   

In computer-aided drug designing, drug target search is an essential part of the work. A 

probable target for these selected compounds in relation to AD was anticipated with the help 

of PharmMapper (Figure 3). Of the flavonoids (Figure 1), only compound 1 showed any activity 

towards the expected target for AD, and the rest were discarded as they were inactive towards 

the target. For docking study the 3D structure of the target protein was obtained from Protein 

Data Bank (http://rcsb.org/pdb).  

 

Molecular docking 

Molecular docking was performed using FlexX of Biosolveit LeadIT with 5,7-Dihydroxy-4'-

methoxy-8-prenylflavanone (1) and the target, and a separate docking was also performed with 

the target and known inhibitors to compare the efficacy of 1. Docking results i.e., docking 

energy, docked amino acid residues, hydrogen bond, and bond energy were recorded using 

LeadIT. 

 

Quantitative structure activity relationship (QSAR) studies 

The QSAR analysis was performed by taking 21 known inhibitors (Table 1). The QSAR 

descriptors viz. Molar Refractivity, Index of Refraction, Surface Tension, Density, Polarity and 

LogP were generated for each of the molecule using ACD ChemSketch software. The activities 

were measured by taking the inverse logarithm of IC50 values. The descriptors were tabulated in 

a MS Excel sheet against their bioactivities (log IC50
-1). The descriptors and activities were 

loaded in Easy QSAR software for multiple linear regression analysis. From the regression, the 

QSAR equation was generated and the activity of 5, 7-dihydroxy-4'-methoxy-8-prenylflavanone 

was predicted. 

 

Table 1. Compounds and the known inhibitors (including marketed drugs) in SMILES 

Compounds Simplified Molecular Input Line Entry Specification (SMILES) 

5, 7-Dihydroxy-4'-methoxy-8-

prenylflavanone (1) 
c1c(ccc(c1)OC)C1Oc2c(C(=O)C1)c(cc(c2CC=C(C)C)O)O 

Donepezil 
COC1=C(C=C2C(=C1)CC(C2=O)CC3CCN(CC3)CC4=CC=CC=C4)

OC 

Galantamine CN1CCC23C=CC(CC2OC4=C(C=CC(=C34)C1)OC)O 

Rivastigmine CCN(C)C(=O)OC1=CC=CC(=C1)C(C)N(C)C 

Tacrine C1CCC2=NC3=CC=CC=C3C(=C2C1)N 



Huperzine CC=C1C2CC3=C(C1(CC(=C2)C)N)C=CC(=O)N3 

7-Methoxytacrine COC1=CC2=C(C=C1)N=C3CCCCC3=C2N 

1,3-Bis[3-(2-imidazolin-2-

yl)phenyl]urea;propionic acid 
O=C(Nc1cccc(c1)C1=NCCN1)Nc1cccc(c1)C1=NCCN1 

4-(2-(3-(4-Hydroxyphenyl)-4-

methylcyclohexyl)propyl)phenol 
CC(Cc1ccc(O)cc1)C1CCC(C)C(C1)c1ccc(O)cc1 

4-Amino-N-(1-benzyl-piperidin-

4-yl)-5-chloro-2-methoxy-

benzamide 

COc1cc(N)c(Cl)cc1C(=O)NC1CCN(Cc2ccccc2)CC1 

3-(2-Amino-phenylsulfanyl)-1-(4-

isobutyl-phenyl)-3-(3-nitro-

phenyl)-propan-1-one 

CC(C)Cc1ccc(cc1)C(=O)CC(Sc1ccccc1N)c1cccc(c1)[N+]([O-

])=O 

2,4'-(2,3-Dihydrobenzo[b] 

[1,4]thiazepine-2,4-diyl)diphenol 
Oc1ccc(cc1)C1CC(=Nc2ccccc2S1)c1ccccc1O 

3-(2-Chloro-phenyl)-5-methyl-

isoxazole-4-carboxylic acid [2-

chloro-5-(1-hydroxyimino-ethyl)-

phenyl]-amide 

CC(N=O)c1ccc(Cl)c(NC(=O)c2c(C)onc2-c2ccccc2Cl)c1 

1-Benzo[1,3]dioxol-5-ylmethyl-

1-(4-fluoro-phenyl)-3-(3-

trifluoromethyl-phenyl)-

thiourea 

Fc1ccc(cc1)N(Cc1ccc2OCOc2c1)C(=S)Nc1cccc(c1)C(F)(F)F 

N-(4-(N-(4-(4-

(dimethylamino)phenyl)-6-(4-

methoxyphenyl)pyrimidin-2-

yl)sulfamoyl)phenyl)acetamide 

COc1ccc(cc1)-c1cc(nc(NS(=O)(=O)c2ccc(NC(C)=O)cc2)n1)-

c1ccc(cc1)N(C)C 

N''-{[2-propyl-4-(1H-pyrazol-1-

yl)benzoyl]oxy}-4-

(trifluoromethyl)benzenecarboxi

midamide 

CCCc1cc(ccc1C(=O)ON=C(N)c1ccc(cc1)C(F)(F)F)-n1cccn1   

N,N'-(1-(4-methoxyphenyl)-1H-

pyrrole-3,4-diyl)bis(methan-1-yl-

1-ylidene)bis(4-methoxyaniline) 

COc1ccc(cc1)\N=C\c1cn(cc1\C=N\c1ccc(OC)cc1)-

c1ccc(OC)cc1 

4,4'-(Cyclohexane-1,1-

diyl)bis(2,6-dimethylphenol) 
Cc1cc(cc(C)c1O)C1(CCCCC1)c1cc(C)c(O)c(C)c1 

2-((7-Amino-1,1,3,3,6-

pentamethyl-2,3-dihydro-1H-

inden-5-ylimino)methyl)phenol 

Cc1c(N)c2c(cc1\N=C\c1ccccc1O)C(C)(C)CC2(C)C   



9-(4-(Dimethylamino)phenyl)-

2,6,7-trihydroxy-3H-xanthen-3-

one 

CN(C)c1ccc(cc1)-c1c2cc(O)c(O)cc2oc2cc(=O)c(O)cc12 

5-(1-(Biphenyl-4-yl)-1H-tetrazol-

5-yl)-4-methylpyrimidin-2-amine 
Cc1nc(N)ncc1-c1nnnn1-c1ccc(cc1)-c1ccccc1 

3,4,5-Trihydroxy-benzoic acid 2-

(3,4-dihydroxy-phenyl)-5,7-

dihydroxy-chroman-3-yl ester 

Oc1cc(O)c2C[C@@H](OC(=O)c3cc(O)c(O)c(O)c3)[C@H](Oc2

c1)c1ccc(O)c(O)c1 

 

In vitro activity 

AchE inhibitory activity of three flavonoids isolated from A. anisophyllus was assessed using the 

AchE inhibition assay using TLC with bioactivity staining based on the Ellman’s method 

developed by (Rhee et al., 2003). Detection limit was established by applying nine spots with 

various concentrations (2000, 1000, 500, 250, 125, 62.5, 31.25, 15.62 and 7.81 µg/mL) onto the 

TLC plate. The concentration that produced a spot with the least observable whiteness after 

being sprayed with mixtures of acetylthiocholine iodide as substrate, Ellman’s reagent and 

AChE enzyme solution was the detection limit.  Detection limit is defined as the minimum 

concentration where the white spot is visible by eye (Rhee et al., 2001).  

 

Results and discussion       

Acetylcholinesterase inhibitory activity 

AD is characterized by the loss of memory function that hampers the normal living and also the 

intellectual ability of the brain. During neural transmission the Ach breaks down into acetyl and 

choline by AchE on the post synaptic membrane. This degradation of Ach breaks the normal 

nervous transmission in the synaptic cleft and leading to the development of cholinergic AD 

symptoms. Restoring the damage caused by AchE can block the occurrence of AD and that can 

be gained through the inhibition of AchE function. Inhibitors of AchE or anti-cholinesterase 

prevent the breakdown of Ach and in turn maximize both level and duration of 

neurotransmitter action. In the present study, 5, 7-dihydroxy-4'-methoxy-8-prenylflavanone (1) 

was identified as an AchE inhibitor.  

The in silico study was performed to check whether the selected compound could target 

the AchE more efficiently than the other inhibitors or drugs presently available in the market. 

There are a few drugs, e.g., donepezil, rivastigmine, galantamine, tacrine, huperzine, and 7-

methoxytacrine, available in the market, (Mirjana et al., 2013). Donepezil, rivastigmine and 

galantamine are regarded as the phase-4 drugs (Mangialasche et al., 2010), and known as the 

most effective cholinergic drugs. Use of these medications was approved by regulatory 

organizations such as the U.S. Food and Drug Administration (FDA) and the European Medicines 



Agency (EMA) to treat the mental manifestations of AD and to improve life quality of the 

patients (Birks, 2006; Hyde et al., 2013). Though these drugs were approved by various 

regulatory agencies, those still display several side effects. The use of tacrine has been 

abandoned because of several side effects including hepatotoxicity (Watkins et al., 1994; Birks 

et al., 2009) and donepezil antagonistic effects include diarrhoea, anorexia, abdominal pain, 

gastrointestinal anomalies-nausea, as well as an increase in cardiac vagal tone causing 

bradycardia (Tayeb et al., 2012).  Adverse effects of rivastigmine are consistent with the 

cholinergic actions of the drug, and include nausea, vomiting, diarrhoea, anorexia, headache, 

syncope, abdominal pain and dizziness (Inglis, 2002; Birks et al., 2009). Galantamine, huperzine 

and 7-methoxytacrine also show similar type of toxicities (Birks, 2006). However, compared to 

other AChE inhibitors, huperzine shows better permeation through blood-brain-barrier has 

higher oral bioavailability and longer AChE inhibition (Ebrahimi et al., 2012). Considering the 

clinical effects of all the marketed drugs, there is no indication that any of these medicines is 

superior to other in efficacy (Tayeb et al., 2012). The current study was about searching a 

potential inhibitor with higher efficiency than the marketed drugs for AD. In this connection, 

the in silico establishment of the isolated compound 1 was studied and it was validated by in 

vitro study against acetylcholinesterase.  

 

In silico study  

In silico study involved ADME/Tox screening, drug likeness prediction, target prediction, 

molecular docking and QSAR analysis. ADME/Tox screening is the initial step for selection of 

potential drug molecule, which helps in predicting the in vivo behaviour of such compound (Yu 

and Adedoyin, 2003).  To be an efficient lead molecule, it should follow some basic criteria – viz, 

drug molecule must be bioavailable (absorption), distributed to the particular site of action, 

metabolically active (non-toxic) and should be eliminated from the body (Wan, 2013). 

ADME/Tox screening can be performed through online web server like FAF-Drugs3 maintains 

under the Mobyle@rpbs, OSIRIS Property Explorer, ADMET Predictor, ADMET Modeler etc. In 

the present context, compound 1 was found nontoxic i.e, could sustain the standard for 

absorption, digestion, metabolism and excretion in FAF-Drugs3 screening and also followed the 

drug likeness properties in the Molsoft (Figure 2) described by the Lipinski Rule of 5 (RO5). 

Molecules maintaining the Lipinski Rule of 5 are mainly orally administered drugs (Lipinski, 

2004). The RO5 demonstrate mainly four physicochemical properties of a molecule to become a 

drug likely Molecular weight (MW) should be ≤ 500, logP ≤ 5, H-bond donors ≤ 5 and H-bond 

acceptor ≤ 10. Poor absorption, bioavailability and solubility is observed if a molecule shows 

MW more than 500 (Miteva et al., 2006). However, in exceptional cases fulfilling the RO5 does 

not guarantee that a molecule is drug like. Moreover, it provides an idea about the solubility 

and oral bioavailability of a compound. Following the Lipinski Rule of 5, compound 1 showed 

molecular weight as 354.40 Dalton, logP value 4.64, H-bond donor 2, and H-bond acceptor 5. 



The findings pointed that, compound 1 has drug like properties with drug likeness model score 

1.28 (Lipinski et al., 1997) and this can be an orally active drugs. Based on its physicochemical 

parameters shown in Rule of 5 it could be water soluble, permeable through intestine and 

orally bioavailable (Lipinski, 2004).   

 

                                      
                 Figure 2. MolSoft drug likeliness properties of the isolated compound 1 

Target prediction in PharmMapper, ligand (compound 1) generated about 300 probable 

targets and information about the binding score. PhamMapper is a web-based server and relies 

on high throughput screening process for target identification. Swiss Target Prediction, SEA, 

ChemProt and Target Hunter of Small Molecule etc. are other web-based server for target 

prediction. From the PharmMapper result, AchE was chosen as the target for the selected 

compound 1 by thoroughly studying all the consequences among the probable targets in the 

PharmMapper (Figure 3).  

             

Figure 3. Target prediction in PharmMapper. 



Molecular docking with FlexX was performed between ligand and the target along with 

some known inhibitors including a few drug molecules available in the market. In this approach, 

the ligand is allowed to interact with the specific target and it is the basic step of Ligand Based 

Drug Design (LBDD) method (Acharya et al., 2011). Docking involves an algorithm of molecular 

interactions (intermolecular interaction) between the ligand and the specific target. Ligand 

molecule interacts with the target at specific binding site by searching favourable conformation 

of the protein. The ligand target binding is determined by mode of bonding between the amino 

acid residues of the target protein and the ligand molecule. Molecular docking furnishes 

quantitative prediction of binding energetics and also provides the ranking (score) of docked 

compounds on the basis of binding affinity of ligand-target complex (Huang and Zou, 2010). The 

binding energetics mainly based on the hydrogen – bonding pattern of amino acid residues and 

ligand molecule. Autodock, DOCK, GOLD, FlexAID, HYBRID and idock etc. are some other 

softwares for performing molecular docking.  The docking study showed that the ligand-target 

binding complex for 1 (Figure 4) was more significant than that with the phase-4 drugs except 

donepezil and also few known inhibitors shown higher docking score than the molecule 1. The 

score shown by compound 1 and donepezil was -13.5762 and -15.4974 respectively; other 

inhibitors’ scores were within the ranges from 1.0000 to -23.4139 (Table 2).  

Table 2.  Different parameters in the comparison of drug efficacy of 5,7-dihydroxy-4'-methoxy-8-

prenylflavanone in LeadIT 

Molecule Name Score Bonding Pattern 
Bond 

Energy 

Bond 

Length 

5,7-Dihydroxy-4’-methoxy-8-

prenylflavanone(1) 
-13.5762 

H48-O GLY-523-A 

O14-H GLN-527-A 

O26-H ALA-526-A 

-4.7 

-4.5 

-3.9 

1.71A 

1.64A 

1.87A 

Donepezil -15.4974 
O2-HD22 ASN 533-A 

H58-OE2 GLU-313-A 

-4.7 

-6.0 

1.98A 

1.95A 

Galantamine -11.1766 
H43-O ASN-533-A 

O11-HE ARG-517-A 

-4.7 

-3.4 

1.89A 

1.87A 

Rivastigmine -10.1986 
H41-O GLY-523-A 

O6-H ALA-528-A 

-4.7 

-4.7 

1.78A 

1.64A 

Tacrine -14.3769 
H28-OD1 ASN-533-A 

H29-OE1 GLN-413-A 

-4.4 

-4.1 

1.90A 

2.01A 

Huperzine -0.0000 Not Docked    -    - 

7-Methoxytacrine -18.3407 
H33-OE1 GLN-508A 

N9-HE ARG-534-A 

-4.6 

-4.7 

1.66A 

1.78A 

1,3-Bis[3-(2-imidazolin-2-yl)phenyl]urea; 

propionic acid 
   1.000 

H47-O GLY-523-A 

O1-H ALA-528-A 

-4.7 

-4.7 

1.64A 

1.84A 



4-(2-(3-(4-Hydroxyphenyl)-4 

methylcyclohexyl)propyl)phenol 

-9.9479 H33-O ALA-412-A 

O8-HH TYR-503-A 

-4.7 

-4.7 

1.66A 

1.74A 

4-Amino-N-(1-benzyl-piperidin-4-yl)-5-

chloro-2-methoxy-benzamide 

-17.1618 O12-H ALA-528-A -4.7 2.17A 

3-(2-Amino-phenylsulfanyl)-1-(4-isobutyl-

phenyl)-3-(3-nitro-phenyl)-propan-1-one 

-18.3317 O12-H ALA-528-A 

O31-HH TYR-510-A 

-4.7 

-3.7 

1.76A 

1.62A 

2,4'-(2,3-Dihydrobenzo[b][1,4]thiazepine-

2,4-diyl)diphenol 

-23.4139 H26-OH TYR-503-A 

O1-H LEU-524-A 

-4.4 

-4.7 

1.69A 

1.62A 

3-(2-Chloro-phenyl)-5-methyl-isoxazole-4-

carboxylic acid [2-chloro-5-(1-

hydroxyimino-ethyl)-phenyl]-amide 

-16.9822 O4-H ALA-528-A 

H34-O GLY-523-A 

-4.7 

-4.7 

1.76A 

2.04A 

1-Benzo[1,3]dioxol-5-ylmethyl-1-(4-fluoro-

phenyl)-3-(3-trifluoromethyl-phenyl)-

thiourea 

-17.0306 O16-HE GLN-413-A 

O14-HE ARG-417-A 

-4.3 

-3.7 

1.85A 

2.09A 

N-(4-(N-(4-(4-(dimethylamino)phenyl)-6-

(4-methoxyphenyl)pyrimidin-2-

yl)sulfamoyl)phenyl)acetamide 

-18.6011 O2-HD21 ASN-317-A 

H48-O ALA-505-A 

-4.6 

-3.8 

2.20A 

1.81A 

N''-{[2-propyl-4-(1H-pyrazol-1-

yl)benzoyl]oxy}-4-

(trifluoromethyl)benzenecarboximidamide 

-12.7710 N13-H GLN-527-A 

O11-H ALA-528-A 

-4.5 

-4.2 

1.98A 

1.90A 

N,N'-(1-(4-methoxyphenyl)-1H-pyrrole-

3,4-diyl)bis(methan-1-yl-1-ylidene)bis(4-

methoxyaniline) 

-18.5407 N17-H ARG-525-A -4.3 1.78A 

4,4'-(Cyclohexane-1,1-diyl)bis(2,6-

dimethylphenol) 

  0.2879 O21-HD21 ASN-317-A -4.4 1.90A 

2-((7-Amino-1,1,3,3,6-pentamethyl-2,3-

dihydro-1H-inden-5-

ylimino)methyl)phenol 

-9.0876 H36-O GLN-413-A 

N9-HE ARG-417-A 

-3.6 

-3.7 

2.27A 

1.61A 

9-(4-(Dimethylamino)phenyl)-2,6,7-

trihydroxy-3H-xanthen-3-one 

-10.4276 H43-O GLY-523-A 

O19-H GLN-527-A 

-4.7 

-4.5 

1.63A 

2.07A 

5-(1-(Biphenyl-4-yl)-1H-tetrazol-5-yl)-4-

methylpyrimidin-2-amine 

-21.0719 H29-OH TYR-503-A 

N10-HD22 ASN-533-A 

-4.7 

-4.5 

1.73A 

2.11A 

3,4,5-Trihydroxy-benzoic acid 2-(3,4-

dihydroxy-phenyl)-5,7-dihydroxy-

chroman-3-yl ester 

-17.9143 O31-H LEU-524-A 

H48-OH TYR-503-A 

H49-O LEU-524-A 

-4.7 

-4.6 

-3.2 

1.89A 

1.81A 

1.52A 

 



                               

                            Figure 4. Flex X binding pattern of compound 1 with the target 

 

QSAR models describe the relationship between a chemical structure and biological 

activities in a set of chemicals and based on this, it also predicts the activity of new chemicals. 

QSAR software predicts the biological activity based on statistical calculation such as regression 

analysis. Prediction of biological activities is achieved quantitatively as a concentration of a 

chemical substance required to express a biological response. Easy QSAR, cQSAR, QSARPro. and 

McQSAR etc. are some of the softwares for prediction of structure activity relationship. In the 

QSAR assay by Easy QSAR software, significant correlation with R square value of 73.55% was 

found. The Rsq value should be definitely high for a good QSAR equation, higher Rsq means 

higher fitting of the equation to the given data, hence better predictions it would provide for 

new test data. The Adjusted Rsq was 61.34%; therefore, the difference between Rsq and 

adjusted Rsq was less. High difference in Rsq and Adjusted Rsq indicates weaker overall 

prediction. The F statistics of the test was 6.02 and the critical F was 2.63. The F statistics of the 

test should be greater than Critical F, otherwise the generated equation is inefficient. The 

multiple regression plots (linear) for 21 AChE inhibitors are shown in (Figure 5).  



 

                                Figure 5. The Multiple regression plots (Linear) for the inhibitor 

The equation generated out of QSAR analysis is as follows: 

Activity = 1.0518E+001 + 8.8234E-001*(Molar Refractivity) + -7.4631E+000*(Index of 

Refraction) + 8.8064E-003*(Surface Tension) + -1.5087E+000*(Density) + -2.9761E-001*(logP) + 

-2.2007E+000*(Polarity) 

From the above QSAR equation the IC50 value of 5, 7-dihydroxy-4'-methoxy-8-

prenylflavanone (1) was predicted as 1659.59 nM. Validating the in silico result, an in vitro 

investigation on AchE inhibitory activity showed compound 1 as one of the AchE inhibitors with 

the detection limit of 125 µg/mL for inhibiting AChE enzyme and that of the positive control, 

galantamine hydrobromide was 7.81 µg/mL. Compound 1 was clearly an inhibitor of AChE, but 

it was less efficient than the standard. As a result, a family of 100 derivatives was prepared 

from the parent compound 1, and again molecular docking was performed to get the higher 

efficiency compound. Several derived compounds showed much higher efficiency towards the 

target than that of donepezil, compound 1 and known inhibitor. In docking analysis, the 

compound 20 exhibited (score -31.6392) the highest efficiency towards the target binding site 

to form a stable configuration of ligand-target complex (Figure 6) to inhibit the activity of AchE. 

The IC50 value of this derivative was predicted as 6.025 nM from the QSAR study and it was 

much less than that of the parent compound.  So, compound 20 might act as the efficient 

inhibitor of AchE (Mirjana et al., 2013).  AchE pathway is one of the pathways leading to 

Alzheimer’s disease (Perry et al., 1999). If compound 20 blocks the AchE activity during 

neurotransmission, the AchE pathway leading to Alzheimer’s disease can potentially be 



blocked. Further synthesis and in vitro and in vivo analyses are required to establish the AchE 

inhibition activity of compound 20. 

                            

                   Figure 6. Flex X binding pattern of derived compound 20 with the target 
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