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0.1 Preface

A Tale of Two Theses

It was the best of times, it was the worst of times, it was the age of wisdom, it was the

age of foolishness, it was the epoch of belief, it was the epoch of incredulity, it was the

season of Light, it was the season of Darkness, it was the spring of hope it was the

winter of despair...

A Tale of Two Cities, Charles Dickens

This thesis is written in two completely independent parts. This is based on the

progress of my PhD. I was working on AGN, then my supervisor left, and now I am

researching cosmology. The first part of this thesis is my current research on combin-

ing simulations and observations to constrain cosmological parameters using velocity

dispersions of groups. The second part was research conducted in the first year and a

half of my PhD, and focuses on the effect of AGN feedback on galaxy star formation

and morphology.

Although some may say it is customary to write the thesis on one subject, I have

chosen to separate the thesis into two independent parts to maintain the potency of

the arguments and theories that are relevant to each particular part. Each part has its

own introduction, literature review, conclusions, and future work. I am not in any way

saying that there is not a bridge between the two parts, but for the sake of clarity, I

leave this to a verbal discussion.
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Abstract

The evolution of galaxy cluster counts is a powerful probe of several fundamental

cosmological parameters. A number of recent studies using this probe have claimed

tension with the cosmology preferred by the analysis of the Planck primary CMB data,

in the sense that there are fewer clusters observed than predicted based on the primary

CMB cosmology. One possible resolution to this problem is systematic errors in the

absolute halo mass calibration in cluster studies, which is required to convert the stan-

dard theoretical prediction (the halo mass function) into counts as a function of the

observable (e.g., X-ray luminosity, Sunyaev-Zel’dovich flux, optical richness).

Here I propose an alternative strategy, which is to directly compare predicted and ob-

served cluster counts as a function of the one-dimensional velocity dispersion of the

cluster galaxies. I show that the velocity dispersion of groups/clusters can be theoret-

ically predicted as robustly as mass but, unlike mass, it can also be directly observed,

thus circumventing the main systematic bias in traditional cluster counts studies. With

the aid of the BAHAMAS suite of cosmological hydrodynamical simulations, I demon-

strate the potential of the velocity dispersion counts for discriminating even similar

ΛCDM models. Then, I compare the abundance of groups in the GAMA survey to the

predictions from BAHAMAS to constrain the values of several cosmological parame-

ters.

Additionally, I investigate the role of active galactic nuclei (AGN) in galaxy evolution.

The color bimodality of galaxy populations roughly divides galaxies into two groups:

blue, star-forming galaxies, and red, quiescent galaxies. One theory that explains how

high-mass, red, non-star-forming galaxies maintain this condition is the duty cycle hy-
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pothesis. This hypothesis invokes AGN feedback from low luminosity radio-loud AGN

(LERGs) to deposit mechanical heating into the intergalactic medium, thus preventing

star formation.

I test this hypothesis by comparing the half-light radii of quiescent elliptical galax-

ies with LERG host galaxies using a large multi-wavelength sample from two sur-

veys, UKIDSS/UDS, and ULTRAVISTA/COSMOS. The radius distribution of the two

groups are similar, thus providing evidence for the duty cycle hypothesis. I also check

the star formation activity of the LERGs. For the duty cycle to hold, LERGs should re-

side within non-star-forming galaxies. However, I find that a subset of LERGs appear

to be dusty star forming galaxies.
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Chapter 1

Introduction

1.1 General Introduction

In 1915, Einstein published the field equations for his general theory of relativity. As-

trophysics has played an important role in providing empirical evidence for the the-

ory. In 1919, Eddington’s observations of stars during a solar eclipse showed that

general relativity accurately predicts the gravitational deflection of light paths (Dyson

et al., 1920). In the 1920’s and 30’s, the search for exact solutions to Einstein’s field

equations resulted in what is now called the Friedmann-Robertson-Walker-Lemaitre

(FLRW) metric. This metric is based on two assumptions: the universe on large scales

is homogenous and isotropic. When the metric is applied to the field equations, the

following solution (Friedmann, 1922) is obtained:

(

ȧ

a

)2

=
8πGρ

3
+

Λc2

3
− kc2

a2
, (1.1)

ä

a
=

4πG

3

(

ρ+
3p

c2

)

+
Λc2

3
. (1.2)

These equations are known as the Friedmann Equations. The scale factor, a, is a func-

tion of time, and describes the expansion of the universe. The Hubble parameter, H,

appears in equation 1.1 as ȧ
a
. When the H2 is divided by on both sides, the right hand

2



1.2. Modern Cosmology 3

side terms of equation 1.1 describe three fundamental cosmological parameters. From

left to right they are: the matter density of the universe (Ω), the dark energy density of

the universe (ΩΛ), and the curvature of space.

The time dependent scale factor, a, means that the size of the universe is not static.

Once again, astronomy played a role in providing supporting evidence for this the-

ory. Hubble’s observations, in 1929, of the recession velocity of galaxies showed a

correlation between recession velocity and distance (Hubble, 1929). This was seen as

evidence for the expansion of the universe. Lemaitre took this idea to the t = 0 limit,

and proposed, in 1931, that the universe started from a single point, “l’atom primitif”

(Lemaitre, 1931). This theory became known as the Big Bang.

1.2 Modern Cosmology

Now, the big bang theory is accepted as the standard cosmological model. From this

theory it can be shown that the Universe began in a hot, dense state where matter and

radiation were in equilibrium. As the Universe expanded, it cooled. At z ≈1100 it had

cooled sufficiently for recombination to take place, allowing the radiation to decouple

from the matter and travel across the Universe essentially uninhibited (Peebles, 1968).

This radiation is known as the cosmic microwave background, CMB.

The CMB is a probe of large-scale structure, because it is the earliest look at over den-

sities of matter in the universe. Although FLRW requires a homogeneous universe,

at decoupling these over densities are very small and therefore the FLRW metric con-

tinues to be a good approximation. These over densities are directly related to the

initial conditions of the universe. Understanding and quantifying these initial condi-

tions is a primary goal of observational cosmology. Three major cosmological surveys

of the modern era are: Cosmic Background Explorer (COBE) (Smoot et al., 1992), the

Wilkinson Microwave Anisotropy Probe (WMAP) (Hinshaw et al., 2003), and Planck

(Planck Collaboration et al., 2011). These surveys have observed the whole sky in

microwave radiation and use the cosmic microwave background temperature and po-
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larization anisotropy to understand how structure formed in the universe.

WMAP and Planck follow the pioneering work of the first all sky mission to map CMB

anisotropy, COBE (Smoot et al., 1992). COBE, first data release 1992, was the first

space based mission to show small temperature anisotropy in the CMB. The following

two missions, WMAP and Planck, have viewed these density fluctuations in higher

spatial resolution. WMAP began observing in 2001, and its final data release was

published in 2011 after 9 years of observing the CMB. It uses 5 bands ranging from 23

to 94 GHz to observe the CMB (Hinshaw et al., 2013). The increased number of bands,

from the COBE experiment, provide information on foreground flux from the galaxy

that must be subtracted before measuring the CMB. Planck is a further improvement

on resolution. Planck began operating in 2009 and the most recent full data release

was in 2015. It has 33 detectors and observes in the range of 30 GHz to 875 GHz with

nine different bands (Planck Collaboration et al., 2011).

1.2.1 Power spectrum

Once an all sky map has been created, a power spectrum, i.e. a statistical approxi-

mation of the clustering of matter as a function of distance, is produced. The angular

power spectrum, modeled in figure 1.1 is estimated from the temperature fluctuations

of the CMB map.

Parametric fits to the Planck and WMAP power spectra are compared in figure 1.1

(Larson et al., 2015). The peaks in the power spectrum indicate where baryonic matter

is initially more clustered. Figure 1.1 shows that there is a small, ∼ 2%, difference

between the amplitude of the peaks of the WMAP and Planck surveys. Due to the

systematic difference between the two surveys, Larson et al. (2015) show a grey, 1σ

band of uncertainty around the ratio of the two surveys, indicating that the differences

between WMAP and Planck are almost always less than one standard deviation. How-

ever, I will demonstrate throughout this thesis that these small differences have a large

impact on structure formation in the universe.
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Figure 1.1: copied from this figure’s caption in Larson et al. (2015) “A comparison of the

best-fit 6-parameter λCDM model spectra derived from recent CMB data sets. Solid black -

fit to WMAP+eCMB data (SPT and ACT); dashed red- fit to WMAP (only) data; solid blue

- fit to Planck plus WMAP low-l polarization data. The bottom panel shows the ratio of the

Planck-based fits to the two WMAP-based fits. The dominant feature is a ∼ 2% amplitude

difference between the fits, though some structure is present in the ratio. A dashed horizontal

line is shown at 0.975 to guide the eye. The WMAP-only forecast, in red, exhibits an additional

∼ 2% difference at high l, well beyond the l range directly measured by WMAP (l < 1200).

The gray band shows the 1σ uncertainty in the ratio accounting for the fact that WMAP and

Planck observe the same sky, but apply different sky masks, cover different multipole ranges

and have independent noise. Given this uncertainty, we cannot distinguish a simple amplitude

rescaling from a more complicated shift in parameters.”
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1.2.2 Cosmological Parameters

The WMAP survey was the first all sky survey to measure the CMB power spectrum

over a large range of angular scales. These observations are best fit by a model with

six cosmological parameters. The standard 6-parameter model is composed of Ωch
2,

Ωbh
2, ΩΛ, 109∆2

R, ns, and τ . There are many other derived parameters, a few of

interest are σ8, Ωm, and H0. Ωch
2 is the physical cold dark matter density, Ωbh

2 is

the physical baryon density, ΩΛ is the dark energy density, 109∆2
R is the amplitude of

the primordial scalar curvature perturbations at k = 0.002Mpc−1, ns is the spectral

index of the primordial density perturbations, and τ is the optical depth at reionization

(Hinshaw et al., 2013). Additionally, σ8 is the parameter that describes the standard

deviation of matter density on scales of 8 Mpc/h, Ωm is the sum of the matter densities:

Ωc,Ωb, and in some cases, Ωneutrino, and finally, H is the Hubble parameter, defined

as the recession velocity divided by the distance. When the parameter appears in this

form, H0, it is to be evaluated at redshift 0.1

In general, the parameters are derived with the following method. First, theoretical

model power spectra are generated using CAMB2 (Lewis et al. 2000; April 2014 ver-

sion), assuming a flat ΛCDM cosmology. Then, assuming a uniform probability of a

given set of cosmological parameters and that the temperature fluctuations are gaus-

sian, a maximum likelihood estimation is run on the power spectra to determine the

best fit parameters (Hinshaw et al., 2003).

1.2.3 Neutrinos

The best-fit cosmological parameters indicate that dark matter constitutes a large frac-

tion, approximately a quarter, of the composition of the universe. Several candidates

have been suggested as the physical component of dark matter, including, MACHOs,

WIMPs, and neutrinos. Neutrinos are highly energetic particles that very rarely inter-

1Another fundamental parameter that is not fitted is the temperature of the CMB, T0, or equivalently

Ωphotons. This is known accurately with T0 = 2.725K.
2http://camb.info/
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act with the matter around them. As more is learned about the elusive neutrino, it may

be the case that neutrinos act like hot dark matter. However, large scale structure points

to cold dark matter being the dominant component. Nevertheless, I will show in this

thesis that neutrinos have an effect on large scale structure.

An excellent review of the historical development of the neutrino can be found in the

introduction of the review article by Xing & Zhao (2016). It was once thought that,

due to their rare interactions with matter that neutrinos do not have mass (Weinberg,

1967). However this was disproven using oscillation experiments, and the 2015 Nobel

prize in physics was awarded to those scientists who discovered that neutrinos have

mass (Kajita, 1999; McDonald et al., 2002). However, the exact value of the neutrino

mass is an open question.

Particle physics based experiments have shown that there are 3 mass eigenstates of

neutrinos, each individuated by its own unique mixture of neutrino flavors: electron

neutrinos, muon neutrinos, and tau neutrinos, but has yet to determine the masses of

all three eigenstates (Patterson, 2015). The mixing is shown in figure 1.2. While

solar neutrino experiments have established that the mass of species 1 is less than

species 2, the mass of species 3 is not known. The normal hierarchy is defined as

m3 > m2 > m1 and the inverted hierarchy is defined as m2 > m1 > m3 (Patterson,

2015). A tight constraint on the summed neutrino mass could discriminate between

the two hierarchies. The normal and inverted hierarchy are illustrated in figure 1.2.

Despite not being easy to detect, several particle physics experiments are underway or

proposed to understand the underlying hierarchy of neutrinos. These experiments can

be grouped into four main categories: Long-baseline, accelerator based (T2K/Super-

Kamiokande (Abe et al., 2011)), atmospheric (PINGU/IceCube (Aartsen et al., 2014)),

reactor (JUNO/KamLAND (Vogel et al., 2015)), and cosmological (DESI (Levi et al.,

2013), EUCLID (Refregier et al., 2010)).The late 2020’s to early 2030’s are the esti-

mated time frame for significant (> 5σ) results from all these experiments. This figure

is from Patterson (2015).

Cosmological neutrino experiments are sensitive to the summed mass of the neutrinos
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Figure 1.2: This figure shows two possible neutrino mass hierarchies: normal, and inverted.

Each neutrino type is a mixture of three neutrino flavors that is represented by the three colors:

red, blue, and green. While the mass order of two neutrinos is known, the mass of the third

remains undefined. This causes the ambiguity in the hierarchy. (Patterson, 2015)

rather than the hierarchy, specifically. The summed mass can be used to determine the

hierarchy by comparing to the known limits determined by oscillation experiments. If

the summed mass is less than 0.1 eV, then the hierarchy is normal (Patterson, 2015).

To detect cosmological neutrinos, their effect on the abundances of groups and clusters

is observed. They act like hot dark matter that erases structure on small scales (Bird

et al., 2012). Neutrinos will free-stream out from primordial over densities before those

over densities collapse to form galaxies and groups of galaxies (Bird et al., 2012). The

evacuation of neutrinos, which have mass, leaves the over density less massive and

less dense, and sometimes the decreased density slows or prevents the gravitational

collapse. An estimate of the summed neutrino mass can be made by comparing the

observed number of groups to models with varying summed neutrino mass.
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1.3 Galaxy Groups and Clusters as Cosmological Probes

The abundance of galaxy groups and clusters at a given redshift is directly tied to cos-

mological parameters that control the growth rate of structure, such as the total matter

density (Ωm), the amplitude of density fluctuations in the early Universe (σ8), the spec-

tral index of fluctuations (ns), and the evolution of dark energy (for recent reviews see

Voit 2005; Allen et al. 2011). Consequently, measurements of the evolution of the

abundance of groups and clusters can be used to constrain the values of these fun-

damental cosmological parameters. Recent examples include: Vikhlinin et al. (2009)

and Bohringer et al. (2014) using X-ray emission observed with ROSAT, Benson et al.

(2013) and Planck Collaboration XX et al. (2014) using the Sunyaev-Zel’dovich (SZ)

effect observed with the South Pole Telescope (SPT) and Planck, respectively, and

Rozo et al. (2010) using the optical maxBCG sample from the Sloan Digital Sky Sur-

vey (SDSS). Upcoming X-ray (eROSITA), SZ (e.g., SPT-3G, ACTpol), and optical

(e.g., the Dark Energy Survey, the Large Synoptic Survey Telescope, and Euclid) mis-

sions promise to provide even richer datasets that will further enhance this field of

study.

In order to compare the observed abundances of groups and clusters with theoretical

predictions for a given cosmology, the relation between the observable (e.g., X-ray

luminosity, optical richness, weak lensing signal, SZ flux, etc.) and the total mass, in-

cluding its evolution and scatter, is required to convert the standard theoretical predic-

tion (i.e., the halo mass function) into a prediction for the number counts as a function

of the observable. (A separate important issue is that the predictions normally corre-

spond to the total mass in a dark-matter-only model, but the masses of real groups and

clusters can be modified significantly by baryonic physics; e.g., Cui et al. 2014; Vel-

liscig et al. 2014.) One can attempt to determine this observable–mass relation either

empirically or by using self-consistent cosmological hydrodynamical simulations.

However, both methods have their shortcomings. The empirical route is limited by

non-negligible systematic errors in all current methods of total mass estimation (e.g.,

Rozo et al. 2014) and can, in any case, generally only be applied to relatively small
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(generally low-z) samples where the data quality is sufficiently high to attempt mass

measurement. The basic problem for the simulation route is that many observable

quantities (such as the X-ray luminosity, SZ flux, total stellar mass, etc.) cannot be

robustly predicted due to the sensitivity to uncertain ‘subgrid’ physics (Le Brun et al.,

2014).

The issue of absolute mass calibration has been brought to the forefront by the Planck num-

ber counts discrepancy (Planck Collaboration et al., 2014). Specifically, the best-fit

ΛCDM model based on analyses of the primary CMB data over-predicts the observed

number counts by a factor of several (Planck Collaboration XX et al. 2014; Planck Col-

laboration XXIV et al. 2015, see also Bohringer et al. 2014). One possible explanation

for this discrepancy is the presence of a large ‘hydrostatic mass bias’, such that the

adopted X-ray-based masses under-predict the true mass by up to ∼ 50% (e.g., von der

Linden et al. 2014). Alternatively, there may be remaining relevant systematics in the

Planck CMB data analysis (see, e.g., Spergel et al. 2015; Addison et al. 2015), or the

discrepancy could be signaling interesting new physics which suppresses the growth

of large-scale structure compared to that predicted by a ΛCDM with parameters fixed

(mainly) by the primary CMB at redshift z ∼ 1100, such as free streaming by massive

neutrinos (e.g., Wyman et al. 2014; Battye & Moss 2014; Beutler et al. 2014). Clearly,

before we can arrive at the conclusion that there is interesting new physics at play, we

must rule out the ‘mass bias’ scenario.

1.4 Dynamics of Galaxy Groups

One way to independently check the robustness of the discrepancy between observed

and predicted galaxy cluster abundances is to measure the abundance of groups/clusters

as a function of some other property that can be theoretically predicted as robustly as

mass. Fortunately, such a variable exists: the velocity dispersion of orbiting satellite

galaxies. The velocity dispersion of the satellites is set by the depth of the potential
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well and, when in equilibrium, can be expressed via the Jeans equation as:

d[σ3D(r)
2ρgal(r)]

dr
= −GMtot(r)ρgal(r)

r2
, (1.3)

where σ3D(r) is the 3D velocity dispersion profile, ρgal(r) is the density distribution

of the tracer (satellite) population, and Mtot(r) is the total mass profile. Provided the

simulations have the correct spatial distribution of tracers (which we discuss further

below), they ought to predict the velocity dispersion of satellites as robustly as the

mass distribution.

In practice it is not necessary to solve the Jeans equations, because the simulations

evolve the equations of gravity and hydrodynamics self-consistently, which is nec-

essary given the non-linear complexity of real clusters (e.g., mergers, substructure,

asphericity, derivations from equilibrium), and I can directly compare the predicted

and observed velocity dispersions. In particular, in the present study I use the BA-

HAMAS suite of simulations, presented in McCarthy et al. (2016) (hereafter M16).

These authors calibrated the stellar and AGN feedback models to reproduce the ob-

served local galaxy stellar mass function and the hot gas mass fractions of X-ray

groups and clusters. They then demonstrated that the simulations reproduce a very

wide range of other independent observations, including (particularly relevant for the

present study) the overall clustering of galaxies (the stellar mass autocorrelation func-

tion) and the spatial and kinematic properties of satellites around groups and clusters.

1.5 Outline of Part One

The first part of the thesis addresses the issue of constraining cosmological parameters

through comparisons of group abundances in simulations and observations. First, the

datasets are introduced. Then, a method is developed using velocity dispersions of

simulated groups to constrain cosmological parameters. Finally, I report the progress

to-date of the attempt to constrain cosmological parameters using observational data.



Chapter 2

Simulations and Observations

2.1 Introduction

In this section, I describe the simulations and observations used in the research to probe

cosmology and large scale structure using velocity dispersions of groups. I discuss the

details of the BAryons and HAloes of MAssive Systems (BAHAMAS) simulation, that

make it an excellent choice for modeling galaxy group dynamics and probing large

scale structure. I also introduce the Galaxies and Mass Assembly (GAMA) survey

(Driver et al., 2011), and justify the use of this survey for this project.

2.2 The BAHAMAS simulation

I use the BAHAMAS suite of cosmological smoothed particle hydrodynamics (SPH)

simulations, which are described in detail in M16, McCarthy et al. (2016). The BA-

HAMAS suite consists of large-volume, 400 h−1 Mpc on a side, periodic box hydrody-

namical simulations. Updated initial conditions based on the maximum-likelihood cos-

mological parameters derived from the WMAP9 data (Hinshaw et al., 2013) {Ωm, Ωb,

ΩΛ, σ8, ns, h} = {0.2793, 0.0463, 0.7207, 0.821, 0.972, 0.700} and the Planck 2013

data (Planck Collaboration XVI et al., 2014) = {0.3175, 0.0490, 0.6825, 0.834, 0.9624,

12
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0.6711} are used.

The BAHAMAS suite includes simulations with massive neutrinos, which I use for

this analysis. Specifically, McCarthy et al. have run massive neutrino versions of the

WMAP9 and Planck cosmologies for several different choices of the total summed

neutrino mass, Mν , ranging from the minimum mass implied by neutrino oscillation

experiments of ≈ 0.06 eV (Lesgourgues & Pastor, 2006) up to 0.48 eV. When imple-

menting massive neutrinos, all other cosmological parameters are held fixed apart from

the matter density due to cold dark matter, which was decreased slightly to maintain

a flat model (i.e., so that Ωb + Ωcdm + Ων + ΩΛ = 1), and σ8. The parameter σ8

characterizes the amplitude of linearized z = 0 matter density fluctuations on 8h−1

Mpc scales. Instead of holding this number fixed, the amplitude of the density fluctua-

tions at the epoch of recombination (as inferred by WMAP9 or Planck data assuming

massless neutrinos) is held fixed, in order to retain agreement with observed CMB

angular power spectrum. Note that other possible strategies for implementing neutri-

nos are possible (e.g., decreasing ΩΛ instead of Ωcdm) but McCarthy et al. have found

with small test simulations that the precise choice of what is held fixed (apart from the

power spectrum amplitude) does not have a large effect on the local cluster population.

What is most important, is the value of Ων , which is related to Mν via the simple rela-

tion Ων = Mν/(93.14 eV h2) (Lesgourgues & Pastor, 2006) and ranges from 0.0013

to 0.0105 for our choices of summed neutrino mass.

The Boltzmann code CAMB1 (Lewis et al. 2000; April 2014 version) was used to com-

pute the transfer functions and a modified version of V. Springel’s software package

N-GenIC2 to make the initial conditions, at a starting redshift of z = 127. N-GenIC

has been modified by S. Bird to include second-order Lagrangian Perturbation Theory

(2LPT) corrections and support for massive neutrinos3.

The runs used here have 2× 10243 particles, yielding dark matter and (initial) baryon

particle masses for a WMAP9 (Planck 2013) massless neutrino cosmology of ≈ 3.85×
1http://camb.info/
2http://www.mpa-garching.mpg.de/gadget/
3https://github.com/sbird/S-GenIC



2.2. The BAHAMAS simulation 14

109 h−1 M⊙ (≈ 4.45×109 h−1 M⊙) and ≈ 7.66×108 h−1 M⊙ (≈ 8.12×108 h−1 M⊙),

respectively. (The particle masses differ only slightly from this when massive neutrinos

are included.)

The comoving gravitational softening lengths for the baryon and dark matter particles

are set to 1/25 of the initial mean inter-particle spacing but are limited to a maximum

physical scale of 4 h−1 kpc (Plummer equivalent). The switch from a fixed comoving

to a fixed proper softening happens at z = 2.91. Nngb = 48 neighbors are used for the

SPH interpolation and the minimum SPH smoothing length is limited to 0.01 times the

gravitational softening.

The simulations were run using a version of the Lagrangian TreePM-SPH code GAD-

GET3 (last described in Springel, 2005), which was significantly modified to include

new subgrid physics as part of the OverWhelmingly Large Simulations project (OWLS)(Schaye

et al., 2010). The simulations include prescriptions for star formation (Schaye & Dalla

Vecchia, 2008), metal-dependent radiative cooling (Wiersma et al., 2009a), stellar evo-

lution, mass loss, and chemical enrichment (Wiersma et al., 2009b), a kinetic super-

nova feedback prescription (Dalla Vecchia & Schaye, 2008), and a model for black

hole mergers and accretion and associated AGN feedback (Booth & Schaye, 2009).

For runs with massive neutrinos, the semi-linear algorithm developed by Ali-Haı̈moud

& Bird (2013), implemented in GADGET3, was used.

BAHAMAS is a direct descendant of the OWLS and cosmo-OWLS (Le Brun et al.,

2014; McCarthy et al., 2014) projects, both of which explored the impact of varying

the important parameters of the subgrid models on the stellar and hot gas properties

of haloes. These projects demonstrated that many of the predicted observable proper-

ties are highly sensitive to the details of the subgrid modeling, particularly the mod-

eling of feedback processes. The idea behind BAHAMAS was therefore to calibrate

the supernova and AGN feedback models, using the intuition gained from OWLS and

cosmo-OWLS, on some key observables. M16 elected to calibrate the feedback using

the local galaxy stellar mass function and the gas mass fractions of groups and clus-

ters, thereby effectively calibrating on the baryonic content of massive haloes (with

Mtot > 1012M⊙).
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For the purposes of the present study, the accuracy of the calibration is not critically im-

portant provided an appropriate selection criterion is imposed on the simulation satel-

lite population. That is, as long as simulated satellites with total masses similar to

those of the observed satellites are selected (i.e., we want to select the same tracer pop-

ulations). In the case of simulations that reproduce the observed galaxy stellar mass

function, one can just select simulated galaxies based on their stellar mass (or absolute

magnitude). For simulations that significantly violate the galaxy stellar mass function,

and will therefore have an unrealistic mapping between stellar mass and halo mass,

one could instead use semi-empirical constraints (e.g., subhalo abundance matching)

to re-assign the stellar masses of the simulated galaxies, thereby imposing a realistic

mapping between stellar mass and halo mass. I explicitly demonstrate the lack of sen-

sitivity of the velocity dispersions to the details of the subgrid modeling in Section

3.1.3.

2.3 The GAMA Survey

The GAMA survey is a highly complete, down to r = 19.8 magnitude, optical spectro-

scopic redshift survey that covers ≈ 180 square degrees (Liske et al., 2015). It over-

laps with many well known survey fields, for example GALEX in the ultraviolet, to

VIKING in the infrared, and SDSS in the optical. This enables GAMA to have a very

extensive multi-wavelength catalog (21 different wavelength band passes) that can be

used to address many different questions in astrophysics today, from star formation,

galaxy morphology, and cosmology (Driver et al., 2016).

The uniform spatial completeness and deep magnitude depth of the GAMA survey

enables unprecedented examination of groups of galaxies (Robotham et al., 2011).

These plentiful, but faint associations of galaxies have heretofore not been detected in

sufficient number to statistically understand their properties.

The GAMA survey was conducted in three, 60 square degree, regions that are named

by the approximate center in right ascension of that slice: G09, G12, and G15 for
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centers of 9 hours, 12 hours and 14h30m, respectively. The velocity errors on the

redshifts are typically ∼ 50 km/s (Baldry et al., 2014). I use two physical quantities,

stellar mass and redshift, that have been calculated by members of the GAMA team.

The masses are released in Taylor et al. (2011), and the redshifts are described in

Baldry et al. (2014); Liske et al. (2015).

2.3.1 Volume-limited sample

As noted in the previous section, the GAMA survey has very high spectroscopic com-

pleteness, ninety-nine per cent down to r-band magnitudes of 19.8 (Driver et al., 2011).

High completeness ensures that all of the galaxies down to that particular magnitude

limit have been observed. However, high completeness is not enough for a comparison

of number density. For a number density calculation, a volume limited sample must be

created so that the galaxy counts from one sample can be compared to another. In this

section, I describe how that volume-limited sample was created.

A nearly volume-limited sample bounded by 0.0 < z < 0.20 and lower mass limit

of M∗ > 1010M⊙ has been selected from the full GAMA survey, see figure 2.1. The

mass limit is set by the resolution limit of the BAHAMAS simulation. Unfortunately,

such a high mass limit forces us to discard most of the GAMA data, which excels at

observing lower mass galaxies.

The volume redshift limit is determined by considering the redshifts that galaxies,

above the mass limit, reach if they were to have an r-band magnitude of 19.8, the

magnitude limit of the GAMA survey. This maximum redshift that a galaxy can be

observer is called zmax. The zmax values for the galaxies have been calculated by Tay-

lor et al. (2011). Briefly, the method employed by those authors is the best-fit spectral

template for each galaxy is redshifted until its apparent r-band Petrosian magnitude

reaches 19.8 mag.

I follow the method described in Lange et al. (2015) to calculate the redshift limit of the

volume limited sample, except those authors begin with a redshift limit, and calculate
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the mass limit, and I begin with a mass limit and calculate the redshift limit. A plot

of stellar mass versus maximum redshift (fig.2.1) shows that, the zmax of is 0.20 is an

reasonable choice for a mass limit of 1010M∗ . Choosing a zmax at this range means

that 64% of the galaxies at the mass limit are seen over the full volume, and it is clear

that if the mass limit was increased by another 0.5 dex, nearly all the galaxies in the

mass range would be visible at z=0.2 or greater.

Figure 2.1: The stellar mass-maximum redshift (zmax) for the limiting petrosian magnitude of

r = 19.8 mag. This plot uses values from the GAMA survey calculated by Taylor et al. (2011).

The mass limit imposed by the resolution of the BAHAMAS simulation is log(M⊙) > 10.

Therefore I select z=0.2 as the maximum redshift for galaxies in my volume limited sample.

The yellow contours show the median and 1 sigma distribution of the data. Although zmax =
0.2 is not at the flux limit of log(M⊙) = 10, it is below the median value for that range.

2.3.2 Group Finding

Clustering of galaxies can be determined by eye, (Abell, 1958; Zwicky et al., 1961).

However, new large redshift surveys have too many groups to make visual detection ef-

ficient. The improvements in computational power, and the requirement for repeatable
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scientific methods lead modern astronomers to use group finding algorithms. Within

the volume-limited sample described above, the grouping of galaxies was determined

by the GAMA group finding algorithm, written by Aaron Robotham (Robotham et al.,

2011). Below, I discuss the chosen set up for finding groups in this research.

The GAMA group finder uses a Friends of Friends algorithm to detect clustering. The

algorithm calculates the separation between galaxies and considers them grouped if

the separation (linking distance) meets certain criteria in both the radial and x-y plane

projections. Specifically, for the x-y projection, the tangent of the angular galaxy sep-

aration must be less than the mean comoving galaxy separation at that epoch, scaled

by the mean required linking overdensity (b). The former quantity is calculated from

the integral of the galaxy luminosity function to the effective absolute magnitude limit

of the survey at that galaxy’s position. The latter quantity is determined from analysis

of a mock catalog.

For redshift surveys, the apparent lengthening in the radial direction caused by pecu-

liar velocities, which is sometimes referred to as a redshift space distortion or, more

figuratively, the finger of god effect, is a major concern and source of error. The reces-

sion velocity due to the expansion of the universe, referred to here as the cosmological

redshift, is increased or decreased by a factor due to additional motion from the galaxy

(peculiar velocity). This additional velocity may be due to a local flow that the galaxy

is a member of, or by interacting with a nearby galaxy’s gravitational field. This means

the total redshift observed is a combination of cosmological and peculiar redshift, and

can be expressed as

1 + z = (1 + zcosmo)(1 + zpec). (2.1)

Tempting as it may be to add velocity vectors that point in the same direction, it is

important to note that redshifts combine geometrically, as shown above. To account

for the effect of peculiar velocities in the group finding algorithm, a radial expansion

factor, R, is included in the criteria to increase the linking length. Due to the peculiar

velocity increasing in high density environments like clusters, Robotham et al. allow
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two of the parameters above, b and R, to vary based on the local density contrast.

Taking all the criteria into consideration, there are 8 parameters in this algorithm, but

through testing, Robotham et al. find that only two, b and R, are the most dominant

and the others only introduce slight perturbations to the grouping.

The group finding algorithm is trained on mock catalogs from the Millennium Dark

Matter simulation (Springel, 2005). This is an N-body dark matter simulation, that

semi-analyically matches galaxies to DM haloes using GALFORM (Bower et al., 2006).

These galaxies then have their r-band magnitudes adjusted to perfectly match the

GAMA luminosity function and selection function. The mock catalogs are used to

find the parameter space that optimally finds a high group detection rate and low inter-

loper fraction.

Using the optimized parameter set, a comparison is performed between the mock sur-

vey and the GAMA survey. Robotham et al. find the purity, which is essentially the

fraction of found group member that are classified correctly, of GAMA groups to be 80

per cent, and the purity of mock groups is 73 per cent. The authors also note that at high

multiplicities, GAMA has fewer systems than the mock catalog. Overall, the authors

conclude that there is remarkable consistency between the mocks and real groups and

the velocity dispersion and radius of the groups are median unbiased. These quantities

should form an accurate resource for statistical analysis.



Chapter 3

Properties of Galaxy Clusters and

Groups from BAHAMAS

Simulations provide a system with known parameters that can aid in the interpretation

of observational results. Scaling relations are one way simulations are used in observa-

tional research. Most commonly, since mass cannot be directly observed, relationships

between observables and mass are created. The mean relations are verified by theory,

but often, the scatter is not well accounted for. If large scatter in observations is not

accounted for, it could bias the result. This is where simulations become an asset.

They can model populations of galaxies, including the scatter, which has astrophys-

ical, statistical, and instrumental sources. In this section, I calculate some velocity

dispersion scaling relations, and quantify the scatter using the hydrodynamic simula-

tion BAHAMAS. These relations will form the foundation for cosmological models that

I create in Chapter 4.

One observable used for scaling relations is the velocity dispersion of objects. The

velocity is calculated from the shift of spectral lines from light emitted by the object.

If there are a number of objects gravitationally bound in one system, the distribution

and width of the velocities can be calculated. The width of the velocity distribution is

called the velocity dispersion.

20
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The classical principle that enables velocity dispersions to be a good tracer of mass is

the Virial theorem. This states that the kinetic energy of a system in a state of energetic

equilibrium, called ‘Virial Equilibrium’, is twice the potential energy. In the case of

galaxies or galaxy groups, the kinetic energy is the time average of 1/2mv2, and the

potential is the gravitational potential, hence the relation between velocity and mass.

Another observable commonly used in large galaxy clusters to estimate mass is the

hot gas temperature, emitted in the X-ray, which can be determined from fitting the

X-ray spectrum. The X-ray emission in high mass groups and clusters is dominated by

thermal bremsstrahlung continuum, and is dominated by line emission in less massive

groups (Mulchaey, 2000). There is some discussion in the literature about whether the

mean relation for temperature and mass is best modeled by a continuous function or

a broken power law (Le Brun et al., 2016; Mulchaey, 2000). The basis for this is that

some of the energetic processes, such as AGN feedback, affect groups more strongly

than clusters. In smaller associations of galaxies, the potential well is weaker, and it is

easier for highly energetic gases to escape.

The trouble with all scaling relations is that there is rarely a direct mapping between

the observed quantity and a mass. Scatter around the mean relation determines the

reliability of the conversion. This is why velocity dispersions are not widely acknowl-

edged as the best mass proxy, because the scatter at low masses can span almost an

order of magnitude. Observations can overcome this scatter with increased sensitivity,

thus adding more tracers. With the aid of the BAHAMAS simulations, I will model the

scatter around the mean velocity dispersion - mass relation as well as several other

quantities. With the benefit of hydrodynamic simulations, I can observe the intrinsic

and statistical errors. This will provide a quantification of the scatter, and will help

interpret results from current observational surveys.

In this chapter, I will describe how groups are selected, and their velocity dispersions

are calculated. Using the information about the potential encoded in the velocity dis-

persions, I will show that velocity dispersions can be used instead of masses to under-

stand the population statistics of a galaxy group. I will also demonstrate that velocity

dispersions can be used to distinguish between different cosmological models. Us-
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ing the BAHAMAS simulation, I explore several relations between fundamental phys-

ical quantities and observables. In many cases, understanding the mean relationship

between observables and physical quantities is not sufficient because there is a non-

negligible amount of scatter which causes a wide distribution of points about the mean.

Additionally, the relations can evolve significantly over cosmic time. Therefore, when

necessary, I also investigate the scatter and evolution of the scaling relation.

3.1 Velocity Dispersion Calculation

3.1.1 Galaxy and group selection criteria

Before velocity dispersions for the simulated groups and clusters can be calculated,

an appropriate tracer population must be selected. Previous studies (usually based

on N-body simulations) often selected bound dark matter particles (e.g., Evrard et al.

2008). However, the satellite galaxy population could in principle have a different spa-

tial/kinematic distribution compared to the underlying smooth dark matter distribution,

e.g., through the effects of dynamical friction, or just simply differences in the time of

accretion of satellites compared to that of the (smooth) dark matter component. In-

deed, many previous studies have found that the satellites are more spatially-extended

(i.e., have a lower concentration) than what is measured for the total mass distribution

(e.g., Carlberg et al. 1997a; Lin et al. 2004; Budzynski et al. 2012; van der Burg et al.

2015). M16 have shown that in the case of BAHAMAS, the satellites have a negative ve-

locity bias (i.e., a lower velocity dispersion) with respect to the underlying dark matter

particles.

With cosmological hydrodynamical simulations, I am able to move beyond selecting

dark matter particles, and identify satellite galaxies. Galaxies in the simulations are

defined as self-gravitating substructures (identified with SUBFIND algorithm, Springel

et al. 2001; Dolag et al. 2009) with non-zero stellar mass. For the analysis below, I

present results based on selecting groups of 5 or more galaxies with stellar masses

exceeding 1010M⊙ (i.e., that are ‘resolved’ in the simulations) and that are within a 3D
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radius r200m, which is the radius that encloses a mean density that is 200 times the mean

universal density at that redshift [i.e., 200Ωm(z)ρcrit(z)]. Note that the derived velocity

dispersions are not strongly sensitive to these choices, however, owing to the fact that

the total mass distribution is fairly close to isothermal, and that the radial distribution of

satellites is not a strong function of stellar mass (M16). For completeness, in table 3.1,

I provide fits to the velocity dispersion–halo mass relation for various choices of mass

definition and aperture (including both spherical and cylindrical radii) for selecting

satellites.

3.1.2 Velocity dispersion calculation

With a tracer population in hand, I proceed to calculate the velocity dispersions of

the simulated groups and clusters. There are several possible methods for calculating

the velocity dispersion of a system (simulated or real), including calculating a simple

root-mean-square (RMS) or fitting a normal distribution to the galaxy redshifts. I have

decided to use the so-called ‘gapper’ algorithm (Wainer & Thissen, 1976), due to its

practical application to observations (e.g., Eke et al. 2004; Robotham et al. 2011; Ruel

et al. 2014; Proctor et al. 2015) and robustness at low richness (Beers et al., 1990).

With the gapper method, the velocities are sorted from least to greatest and the velocity

dispersion is then estimated as:

σgap =

√
π

N(N − 1)

N−1
∑

i=1

wigi, (3.1)

with wi = i(N − i) and gi = vi+1− vi, where N is the number of galaxies in the group

or cluster, and vi is the ith velocity from a list of the group’s galaxies’ velocities, that

has been sorted in ascending order.

Although, statistically, the gapper method does not require the central object to be re-

moved before calculation of the velocity dispersion, I have found that the mean gapper

velocity dispersion is lower than the mean RMS velocity dispersion with the central

removed. This is likely due to the central galaxy moving at a velocity that is not typical
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of the satellite population. Therefore, I follow Eke et al. (2004) and scale σgap up by

[N/(N − 1)]1/2 to account for these effects. Clearly, this correction is only relevant

for low-mass groups with richnesses approaching unity, for which I have found that

including this correction results in velocity dispersion estimates that are more stable to

changes in the stellar mass cut used to select satellites. I use the symbol σv to denote

the gapper velocity dispersion after it has been multiplied by the Eke et al. correction.

Although the simulation provides velocities in three dimensions, I limit this analysis to

using only one dimension (I do not average the three one-dimensional velocity com-

ponents) to replicate the information available in real observations. Therefore, σv is a

1-dimensional velocity dispersion. 1

3.1.3 Effects of Baryon Physics

Predictions for the internal properties of groups and clusters (particularly of the gaseous

and stellar components) are often sensitive to the details of the subgrid modeling of im-

portant feedback processes. One can attempt to mitigate this sensitivity by calibrating

the feedback model against particular observables, as done in BAHAMAS. I anticipate

that the velocity dispersions of satellites will be less sensitive to the effects of feed-

back than, for example, the gas-phase properties or the integrated stellar mass, since

the dynamics of the satellite system is driven by the depth of the potential well which

is dominated by dark matter. However, the total mass (dark matter included) of groups

and clusters can also be affected at up to the 20% level with respect to a dark matter

only simulation, if the feedback is sufficiently energetic e.g., Velliscig et al. (2014).

The feedback will also reduce the masses of the satellites prior to accretion. The re-

duction of the satellite and host masses could, in turn, also affect the resulting spatial

distribution of the satellites somewhat, and hence the velocity dispersion. Given these

potential effects, it is therefore worth explicitly testing the sensitivity of the velocity

dispersions to baryon physics.

1Due to a bug found post-publication of Caldwell16, σv needs to be divided by the correction factor

of
√

(h). This bug was introduced from a program, written by an external collaborator, that converts

between comoving and physical units in the simulation. The velocity dispersions affected are in Chapter

3, and sections 4.1 and 4.2 in Chapter 4.



3.1. Velocity Dispersion Calculation 25

To test the sensitivity of the velocity dispersions to baryon physics, an important test

was performed by Ian McCarthy. The (WMAP9) hydro simulation-based results are

compared with those derived from a dark matter only version of the simulation (i.e.,

using identical initial conditions but simulated with collisionless dynamics only). To

make a fair comparison with the dark matter only simulation, he selects the same satel-

lite population as in the hydro simulations. In order to do this, first the stellar masses

are assigned to the subhaloes using the subhalo abundance matching (SHAM) results

of Moster et al. (2013). Specifically, the Moster et al. stellar mass–halo mass relation

(including their estimated level of intrinsic scatter) is converted into a stellar mass–

maximum circular velocity (Vmax) relation, using the M200–Vmax relation for centrals

from the dark matter simulation. Then the stellar masses of all subhaloes (centrals and

satellites) are estimated using this stellar mass–Vmax relation. (The resulting galaxy

stellar mass function from the dark matter simulation reproduces the observed SDSS

galaxy stellar mass function well, as found in Moster et al. 2013.) Furnished with stel-

lar mass estimates for the subhaloes, the same galaxy and group selection criteria are

applied on the dark matter only simulation as imposed on the hydro simulations (as

described in Section 3.1.1) and the velocity dispersions are estimated in the same way.

Then the groups/clusters in the dark matter only simulation are matched to those in the

hydro simulation using the dark matter particle IDs.

In Fig.3.1, I compare the mean fractional difference in the velocity dispersions be-

tween the hydro and the dark matter only simulations, plotted as a function of the dark

matter only halo mass. For comparison, I also show the effect of baryon physics on

the halo mass. Baryon physics (AGN feedback, in particular) lowers the halo masses

of galaxy groups by ∼ 10% (consistent with Velliscig et al. 2014) and also reduces the

velocity dispersions by ≈ 5%, approximately independent of (the dark matter only)

mass. Comparing these differences to the differences in the predicted VDFs for differ-

ent cosmological models (see Fig. 3.2), the effect is not large but is also not negligible.

Therefore, if one plans to use velocity dispersions from dark matter only simulations

(+SHAM), the velocity dispersions should be appropriately scaled down by ≈ 5%. Al-

ternatively, if one starts from a halo mass function from a dark matter only simulation,
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Figure 3.1: Mean fractional differences in the velocity dispersion and halo mass of matched

haloes between BAHAMAS and a corresponding dark matter-only simulation (WMAP9 cos-

mology). The error bars represent the standard error on the mean. Note that I use subhalo

abundance matching (SHAM) to assign stellar masses to subhaloes in the dark matter only

simulations (see text), in order to apply the same selection criteria as imposed on the hydro

simulations. Baryon physics (AGN feedback, in particular) lowers the halo masses of galaxy

groups by ∼ 10% (consistent with Velliscig et al. 2014) and also reduces the velocity disper-

sions by ≈ 5%.
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the halo masses first need to be adjusted (e.g., as proposed by Velliscig et al. 2014)

and then my hydro-simulated velocity dispersion–halo mass relation can be applied

(including the scatter and evolution, as described below).

3.2 Velocity dispersion function

The velocity dispersion function (Φ), or VDF, is defined as the number of systems per

unit comoving volume per decade in velocity dispersion; i.e., Φ ≡ dn/d log10 σv. In

Figure 3.2 (top panel), I show the z = 0 VDFs for various cosmologies. The errors

on the VDF are the square root of the number of groups in a velocity dispersion bin,

divided by the volume of the simulation. The VDF clearly depends on cosmology, as

expected. Note that the turnover in the VDF at low σv is due to the fact that I impose a

richness cut of N ≥ 5 on the simulated groups (i.e., each system must have at least 5

galaxies meeting the selection criteria noted in Section 3.1.1).

The lower panel of Figure 3.2 shows the ratios of the predicted VDFs with respect

to that of the WMAP9 case with massless neutrinos. It more clearly demonstrates

the strong cosmology dependence of the VDF. For example, at a velocity dispersion

σv ∼ 1000 km/s, adopting a Planck 2013 cosmology results in ≈ 50% more sys-

tems compared to adopting a WMAP9 cosmology (both assuming massless neutrinos).

Even at a relatively modest velocity dispersion of ∼ 300 km/s (corresponding roughly

to haloes with masses ∼ 1014M⊙) the difference is still significant (≈ 20%). The

introduction of massive neutrinos suppresses the number of high-velocity dispersion

systems, as expected.

3.3 Number counts

Because the systems of interest have space densities of only < 10−4 Mpc−3, obser-

vational surveys covering a large fraction of the sky are required to detect massive

systems in appreciable numbers. Given the limited statistics, splitting the sample into
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Figure 3.2: The predicted one-dimensional velocity dispersion function Φ ≡ dn/d log10 σv,

or VDF, for the WMAP9 and Planck 2013 cosmologies for various choices of neutrino mass

(including massless) at z = 0. The error bars represent Poisson sampling errors and are esti-

mated as the square root of the number of systems in a given velocity dispersion bin divided

by the simulation volume. The lower panel shows the ratio of the predicted VDFs with re-

spect the WMAP9 case with massless neutrinos. Velocity dispersions are calculated using

member galaxies within a 3D radius r200m that have stellar masses M∗ ≥ 1010M⊙. Only

groups/clusters having at least 5 member galaxies are included, which is why the VDFs turns

over at log10 σv(km/s) < 2.4. The predicted VDFs are a strong function of cosmology, like the

halo mass function, but offer the advantage that velocity dispersions are directly measurable.
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bins to measure a differential function, like the VDF, may not always be possible, par-

ticularly as one moves to higher redshifts. An alternative, therefore, is to measure the

cumulative number counts above some threshold value in the observable. With this in

mind, I show, in Figure 3.3, the number density of systems with σv > 300 km/s as

a function of redshift for the various cosmologies considered in this work. This plot

is analogous to the SZ number counts in Planck Collaboration et al. (2014) (see their

Fig. 7). There is a clear stratification between the different cosmologies presented in

this plot.

It is interesting to note that the velocity dispersion number counts do not drop off very

steeply with redshift, in contrast to the halo mass counts. This is due to the fact that the

radius enclosing a spherical overdensity mass (e.g., r200m) decreases with increasing

redshift (because the background density increases with increasing redshift), and hence

the typical orbital velocity, which scales as (GM/r)1/2, will increase for a halo of fixed

mass with increasing redshift. The net result of this is that the number of systems above

a given threshold value in velocity dispersion will not drop off as quickly as the number

of haloes above a given halo mass threshold.

3.4 Scaling relations

3.4.1 Velocity dispersion–halo mass relation

Present-day relation

I model the mean relation between velocity dispersion and halo mass at a given redshift

using a simple power-law of the form:

〈σv|M∆〉 = a
( M∆

1014M⊙

)b

. (3.2)

To derive the mean relation, I first compute the mean velocity dispersions in mass bins

of width 0.25 dex. A power-law is then fit to these mean velocity dispersions. Note
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Figure 3.3: The number density of systems with σv > 300 km/s as a function of redshift for

the various cosmologies that are considered in Figure 3.2. The error bars are the square root of

the number of objects in a redshift bin, divided by the volume of the simulation.

that by deriving the mean velocity dispersion in bins of halo mass before fitting the

power-law, I give equal weight to each of the mass bins. If instead, one were to fit

a power-law to all systems, groups would clearly dominate the fit due to their much

higher abundance compared to clusters. However, I want to accurately characterise the

relation over as wide a range of halo masses as possible, motivating binning the data

in terms of mass first.

In Figure 3.4, I show the velocity dispersion–halo mass relation for the Planck 2013

cosmology (with massless neutrinos). The small black dots show the individual groups

and clusters, the red circles connected by a solid red curve show the mean velocity

dispersions in halo mass bins, and the gold line represents the best-fit power-law to the

mean relation (i.e., to the red circles).

The mean z = 0 σv–halo mass relation for this particular Planck 2013 cosmology

simulation, adopting a group mass defined as M200m, and selecting satellites within
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Figure 3.4: The velocity dispersion–halo mass relation for the Planck 2013 cosmology with

massless neutrinos. Velocity dispersions are calculated using member galaxies within a 3D

radius r200m and that have stellar masses M∗ ≥ 1010M⊙. The small black dots show the

individual groups and clusters, the red circles connected by a solid red curve show the mean

velocity dispersions in halo mass bins, and the gold line represents the best-fit power-law to the

mean relation (i.e., to the red circles). The upper and lower dashed blue curves enclose 68%

of the population. The mean relation and scatter are well-represented by a simple power-law

relation with lognormal scatter.
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r200m with a minimum stellar mass of 1010 M⊙, is:

〈σv|M200m〉z=0 = 280.5± 1.0 km/s
( M200m

1014M⊙

)0.385±0.003

. (3.3)

The errors quoted above are merely errors on the fit to the data and should not be used

to reconstruct the σv–halo mass relation. A full description of modelling the spread of

the distribution is presented in chapter 4.1.1. Note that although this relation was de-

rived from simulations run in a Planck 2013 cosmology, the best-fit relations for other

cosmologies I have examined are virtually identical. This likely just reflects the fact

that once systems are virialized, the orbital motions of satellites are mainly sensitive

to the present potential well depth and not to how that potential well was assembled

(which will change with the cosmology). The lack of a cosmological dependence of

the velocity dispersion–halo mass relation, at redshifts less than one, considerably sim-

plifies matters, as it means one does not need to re-fit the relation for every cosmology

and can just convolve this ‘universal’ relation with the halo mass function (which does

depend strongly on cosmology, but for which there are many models in the literature

for quickly calculating the HMF for a particular choice of cosmological parameters).

It is interesting to note that the best-fit relation has a slope of b = 0.385, which is

comparable to the self-similar prediction of 1/3. A similar finding has been reported

recently by Munari et al. (2013), who also used cosmological hydro simulations to

examine the velocity dispersion–halo mass relation (although they did not address the

issue of velocity dispersion counts).

Furthermore, the best-fit amplitude differs significantly from that found previously by

Evrard et al. (2008) for dark matter particles in pure N-body cosmological simulations:

〈σv|M200m〉Evrard+08,z=0 = 342± 1 km/s
( M200m

1014M⊙

)0.355±0.002

, (3.4)

suggesting that the satellite galaxies have a ≈ −20% velocity bias with respect to the

velocity dispersion of the dark matter. M16 have confirmed this to be the case for

BAHAMAS by comparing the satellite velocity dispersions to the dark matter particles



3.4. Scaling relations 33

in the same simulation.

Is the mass–velocity dispersion relation derived from BAHAMAS realistic? As I have

already argued, self-consistent simulations ought to be able to predict velocity dis-

persions as reliably as they can halo masses, so long as an appropriate selection is

applied. However, one can also attempt to check the realism of the relation by com-

paring to observational constraints, noting the important caveat that observational halo

mass estimates could have relevant systematic biases (which is what motivated the

proposed use of velocity dispersion counts in the first place). Of the methods cur-

rently in use to estimate halo masses, weak lensing mass reconstructions are expected

to have the smallest bias (of only a few percent) when averaged over a large number

of systems (e.g., Becker & Kravtsov 2011; Bahé et al. 2012). M16 have compared the

mean halo mass–velocity dispersion relation from BAHAMAS (using the same galaxy

stellar mass selection as our fiducial selection employed here) to that derived from

the maxBCG cluster sample (Koester et al., 2007), derived by combining the stacked

velocity dispersion–richness relation of Becker et al. (2007) with the stacked weak

lensing mass–richness relation of Rozo et al. (2009). Fig. 10 of M16 demonstrates the

excellent agreement between the simulations and the observational constraints.

For completeness, in Table 3.1, I provide the best-fit power-law coefficients for the

mean velocity dispersion–halo mass relation for different combinations of mass defi-

nition and aperture.

Cosmology independence

One benefit of using velocity dispersions to probe cosmology is the mean velocity

dispersion–halo mass relation is generally insensitive to the choice of cosmology and

uncertain subgrid (feedback) physics in the simulations. This means it can easily be

used to convert masses to velocity dispersions or vice a versa without affecting the

cosmological information contained within the data.

In Figure 3.5, I compare the mean relations for the Planck and WMAP9 (massless

neutrino) cases (dashed orange and dotted green curves, respectively). The subgrid
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physics model is identical in the two cases, the only difference is in the background

cosmology. The trends are nearly identical.

The solid red and dashed blue curves represent the OWLS ‘AGN’ and ‘REF’ mod-

els (see Schaye et al. 2010) run in a 200 h−1 Mpc box with 10243 particles (i.e., a

factor of 8 better mass resolution than the BAHAMAS runs) in a WMAP7 cosmology.

Neither of these models reproduce the galaxy stellar mass function, particularly the

‘REF’ model, which neglects feedback from black holes and suffers from strong over-

cooling at high halo masses. Since the mapping between stellar mass and halo mass

differs strongly between the two runs and both differ strongly from the BAHAMAS runs

(which do reproduce the GSMF), if one were to naively select satellites above a given

stellar mass cut one would be selecting different tracer populations compared to the

BAHAMAS analysis, which could result in a somewhat different relation (though the

effect would not be very strong).

In any case, to rectify this mismatch the stellar masses are re-assigned in the ‘AGN’ and

‘REF’ runs using subhalo abundance matching results of Moster et al. (2013) by Ian

McCarthy. Specifically, Moster et al.’s abundance matching, stellar mass–halo mass

mapping (including intrinsic scatter) is applied to the central galaxies. The satellites

are abundance matched using the M200–Vmax relation of centrals to infer M200 for the

satellites, which is then used to assign a stellar mass. The simulations still reproduce

the observed galaxy stellar mass function.

The derived mean velocity dispersion–halo mass relations for the two OWLS models

are in good agreement with the BAHAMAS result, in spite of the differences in cosmol-

ogy, resolution, and subgrid physics.

Note that cosmological independence does not extend to other cluster scaling relations.

For example, in figure 3.6, the mean mass vs richness relation is shown for several cos-

mologies with and without SHAM. In the cluster regime, with halo masses greater than

1014M⊙, the WMAP9 results with baryons are approximately 35 percent higher than

the abundance matched WMAP9 clusters. There is also a slight difference between the

fully hydrodynamic simulations of Planck and WMAP9.
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Therefore, not only is understanding the effects of subgrid physics and abundance

matching employed in other simulations necessary before interpreting results, but a

wise choice of observable must be made. Velocity dispersions have been shown to

be an excellent tracer of mass, and can be used to estimate masses without losing

cosmological information.

Figure 3.5: The mean halo mass–velocity dispersion relation for four models with different

baryon physics and cosmology. The solid red curve and dashed blue curves represent the

OWLS ‘AGN’ and ‘REF’ models (see text), while the dotted green and dashed orange curves

correspond to the calibrated BAHAMAS simulations in WMAP9 and Planck cosmologies, re-

spectively. The mean relation is generally insensitive to changes in background cosmology and

feedback physics.

Evolution

To predict the evolution of the velocity dispersion counts, I need to know how the ve-

locity dispersion–halo mass relation evolves with redshift. To estimate the evolution, I

make the assumption that the galaxy groups are self-similar objects, essentially being

the same object at different ages of the universe, so that the only thing that changes
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Figure 3.6: Unlike the velocity dispersion - mass relation, this figure shows that the mass-

richness relation is sensitive to subhalo abundance matching. Here are the mass-richness mean

relations is shown for three cosmologies: WMAP7, WMAP9, and Planck, and for two differ-

ent methods of handling baryons, either through the subgrid models discussed in the sim-

ulation section, or by abundance matching. The difference between the top green dashed

line(WMAP9) and its abundance matched analogue in blue, is approximately 35 percent. A

clear separation between each cosmology is also apparent.
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between a group at redshift 3 and a group at redshift 0.5 is its size, which is primar-

ily due to the growth of the universe. Under the assumption of self-similar evolution,

the typical orbital velocity of a halo of fixed spherical over-density mass evolves as

σv ∝ E(z)1/3, where E(z) = [Ωm(1+ z)3+ΩΛ]
1/2, if the mass is defined with respect

to the critical density, or as σv ∝ (1 + z)1/2 if the mass is defined with respect to the

mean matter density. Note that even though I have already shown that the dependence

on halo mass (the power-law index) at z = 0 is not exactly self-similar, this does not

automatically imply that the redshift evolution of the amplitude will not be well ap-

proximated with a self-similar scaling. Indeed, such behavior is seen in other variables

such as the X-ray luminosity–temperature relation, which displays a strong departure

from self-similarity in the slope of the relation but, according to some current analyses,

evolves at a close to self-similar rate (e.g., Maughan et al. 2012).

In the top panel of Fig. 3.7, I plot the mean velocity dispersion–halo mass relation at

a variety of redshifts going back to z = 1. Clearly, there is a strong increase in the

amplitude of the relation with increasing redshift. In the bottom panel of Fig. 3.7, I

scale out the self-similar expectation, which has the effect of virtually removing the

entire redshift dependence seen in the top panel. In other words, to a high level of

accuracy (. 2%), I find that the velocity dispersion–halo mass relation evolves self-

similarly. This statement remains the case if one instead defines the mass according

to the critical density and uses E(z)1/3 as the self-similar expectation, as opposed to

(1 + z)1/2, so that:

σv(M∆,mean, z) = σv(M∆,mean, z = 0) (1 + z)1/2 , or

σv(M∆,crit, z) = σv(M∆,crit, z = 0) E(z)1/3.
(3.5)

I note that although the assumption of self-similar evolution works spectacularly well

in the case of velocity dispersions, it is not always so effective at explaining the evo-

lution of observables. For an example, I demonstrate the ambiguous evolution of the

temperature-mass relation in section 3.4.3. The compatibility of velocity dispersions
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Figure 3.7: Evolution of the mean σv–halo mass relation back to z = 1. Velocity dispersions

are calculated using member galaxies within a 3D radius, r200m, and that have stellar masses

M∗ ≥ 1010M⊙ . In the top panel I show the unscaled relations, while in the bottom panel the

mean velocity dispersions have been re-scaled to account for self-similar evolution. The veloc-

ity dispersion–halo mass relation evolves at the self-similar rate to a high level of accuracy.



3.4. Scaling relations 39

with the self-similar assumption should improve its reputation as a mass proxy, since

one can select self-similar objects with certainty in velocity dispersion space.

Total scatter and its evolution

The scatter about the mean σv–halo mass relation is non-negligible at all masses and

can be particularly large at low masses, due to poor sampling (as I will show be-

low). Modeling this scatter is necessary if one wishes to predict the velocity dispersion

counts by convolving the velocity dispersion–halo mass relation with a halo mass func-

tion, as Eddington bias will become quite important. Here, I characterize the scatter in

the velocity dispersion as a function of halo mass and redshift.

To aid analysis of the scatter, I first divide the velocity dispersion of each system by that

predicted by the best-fit power-law to our mean velocity dispersion–halo mass relation.

After dividing out the mean mass relation, the residuals (see Fig. 3.8) clearly show that

the scatter decreases with mass. To improve statistics, the velocity dispersions for

different redshifts have been rescaled to z = 0 using equation 3.5, stacked, and binned

to model the scatter as function of halo mass. The bin widths are chosen to equally

sample the range in log10 halo mass space, while avoiding large statistical errors from

low bin populations. The first four halo mass bins are 0.25 dex in width, increasing to

0.5 dex for the following two bins, and final bin has a width of 0.25 dex.

It is interesting to note that previous studies that used dark matter particles or subhaloes

to estimate the velocity dispersions (e.g., Evrard et al. 2008; Munari et al. 2013) found

that the scatter did not vary significantly with system mass. The difference between

these works and the current one is that I select only relatively massive galaxies, which

should be more appropriate for comparisons to observations. Since massive galaxies

become increasingly rare in low-mass groups, the statistical uncertainty in the derived

velocity dispersion increases. Studies that use dark matter particles (or, to a lesser

extent, all dark matter subhaloes), on the other hand, have essentially no statistical

error and therefore any scatter present is likely to be intrinsic in nature (e.g., due to

differences in state of relaxation). These studies therefore suggest that the intrinsic
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Figure 3.8: Residuals about the best-fit power-law to the mean velocity dispersion–halo mass

relation. The 7 histograms correspond to different mass bins. The solid black curve represents

the residuals about the mean, while the solid red curve represents the best-fit lognormal distri-

bution. To boost our statistics, I stack the velocity dispersions from all redshifts and vary the

binning in halo mass. Lognormal distributions describe the residuals about the mean relation

quite well, but the width of the distribution (i.e., the scatter) about the mean decreases strongly

with halo mass.
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scatter does not depend significantly on halo mass, a finding which I confirm below.

I fit the total scatter residuals about the mean relation in each mass bin with a lognor-

mal distribution. Fig. 3.8 shows histograms of logged velocity dispersion residuals,

and the normal curve fit. A lognormal distribution describes the residuals well in all of

the mass bins we consider. Note that in the first three (lowest) mass bins, the distribu-

tion becomes somewhat skewed relative to lognormal when systems with less than 5

members are included in the analysis. As discussed in Section 3.1.1, I have excluded

these systems from our analysis, noting that when comparing to observed velocity dis-

persion counts from GAMA (Caldwell et al., in prep), I also plan to impose a richness

cut of ≥ 5 on the observed sample.

Figure 3.9: Evolution of the total scatter about the mean velocity dispersion–halo mass relation

for seven redshifts from z = 0 to z = 1. There is no evidence for significant evolution in the

scatter about the mean relation.

In Fig. 3.9, I show the evolution of the total scatter–halo mass relation for seven red-

shifts from z = 0 to z = 1. Here one can more clearly see that the scatter varies

strongly with halo mass. However, it does not appear to vary significantly with red-
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Table 3.1: Power law fits to the z = 0 σv–halo mass relation for Planck 2013 cosmology. Fits

are of the form loge(y) = a + b loge[M/1014M⊙]. The average intrinsic scatter is provided

for each halo mass and aperture cut. The value for intrinsic scatter quoted below adds with the

natural logarithm of statistical scatter in quadrature to equal the loge of total scatter for a group

or cluster on the velocity dispersion-halo mass plane.

Halo mass Aperture σv–M intercept σv–M slope intrinsic scatter

M500,mean R500,mean 5.7788 0.4003 0.1881

M500,crit R500,crit 6.0084 0.4113 0.1897

M200,mean R200,mean 5.6366 0.3852 0.1864

M200,crit R200,crit 5.8220 0.4019 0.1906

M200,mean 1 Mpc 5.6672 0.3986 0.1877

M200,crit 1 Mpc 5.8138 0.3908 0.1877

M200,mean 0.5 Mpc 5.7104 0.4060 0.1889

M200,crit 0.5 Mpc 5.8583 0.4058 0.1889

shift, at least back to z = 1.

Now that the method for calculating the mean power law and scatter has been ex-

plained, I can present the power law coefficients for a range of popular overdensity

values. Table 3.1, shows models for the velocity dispersion- mass relation and its scat-

ter. Since the relation changes slightly depending on the distribution of the galaxies in

the cluster, I have calculated the fits for several mean and critical mass definitions and

cluster radii.

Summary of velocity dispersion–mass relation

Here I summarize our characterization of the velocity dispersion–halo mass relation for

groups with at least 5 members with stellar masses M∗ ≥ 1010M⊙. The mean relation

can be well-described by a simple power-law spanning low-mass groups to high-mass

clusters (see Fig. 3.4) is approximately independent of cosmology (for example, the

amplitude for the mean σv − M power-law differs by ≈ 0.3% between Planck and

WMAP9 cosmologies). The mean power-law evolves self-similarly back to z = 1 at

least (see Fig. 3.7). Note that the amplitude of the relation is ≈ 5% lower than that

predicted by a dark matter only simulation where a consistent selection of satellites is

applied (see Fig. 3.1). The scatter about the mean relation can be well-represented by
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a lognormal distribution whose width varies strongly as a function of halo mass (see

Fig. 3.8) but not with redshift (see Fig. 3.9).

3.4.2 Velocity Dispersion - Richness relation

Powerlaw and comparisons with literature

Although quantifying the total scatter as a function of halo mass (in order to interpo-

late it with a halo mass function later) is the primary focus of this project, a deeper

understanding of the scatter is required if one wishes to consistently compare with

observations. That is because the scatter is composed of both intrinsic and statistical

components and the latter is clearly going to be a function of observational survey pa-

rameters (e.g., limiting magnitude). Therefore, I must decompose the total scatter into

its two components as a function of richness.

To begin, I proceed in a method similar to the one used to understand the velocity

dispersion - mass relation in the previous section. First, I construct a mean power

law from the trend in the simulated groups. Then I investigate the scatter, however, I

continue the analysis a bit longer to decompose the scatter into two more fundamen-

tal groups, statistical scatter, which is determined by Poisson counting statistics and

intrinsic scatter which is determined by astrophysical processes.

To model the mean velocity dispersion - richness relation, I once again assume, based

on the distribution of the scatter plot, that it can be well modeled by a power law.

Figure 3.10 shows the result of the power law fit, in yellow, to the mean bins of the

simulated groups, in red. Blue contours enclosing 68% of the population indicate that

the fit is well within the one-sigma interval of the points. I find a power law of :

ln(σv(km/s)) = 6.69 + 0.51(ln(N)− ln(100)), (3.6)

describes this distribution well. In the following chapter, I show, in figure 4.7, that

there is good agreement between the mean and 1 sigma contours of the GAMA groups
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σ − N relation and the simulated values. This agreement suggests that proceeding to

compare these two surveys will produce accurate results.

Figure 3.10: The velocity dispersion–richness relation for the Planck 2013 cosmology with

massless neutrinos. Velocity dispersions are calculated using member galaxies within a 3D

radius r200m and that have stellar masses M∗ ≥ 1010M⊙. The small black dots show the

individual groups and clusters, the red circles connected by a solid red curve show the mean

velocity dispersions in halo mass bins, and the gold line represents the best-fit power-law to the

mean relation (i.e., to the red circles). The upper and lower dashed blue curves enclose 68%

of the population. The mean relation and scatter are well-represented by a simple power-law

relation with lognormal scatter.

Total scatter of the Velocity Dispersion- Richness relation and components

In section 3.4.1, I focused on the (total) scatter as a function of mass, but the statistical

component is best understood through its dependence on richness, since fundamentally

it is the number of tracers that determines how well the (true) velocity dispersion can

be determined.

Similar to the previous investigation of scatter, I proceed by dividing the galaxy groups
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by the mean relation to remove the richness slope. The residuals after this process are

binned in richness and a normal curve is fit to the distribution of groups in that bin

to determine the spread or width of the scatter. Figure 3.11 shows histograms of σv

residuals are very well fit by a log normal curve (in red). The width of the log normal

curve is the estimate of the scatter around the mean velocity dispersion - richness in

that richness bin. The bin limits can be found at left corner of each plot.

Figure 3.11: Residuals about the best-fit power-law to the mean velocity dispersion–richness

relation. The 7 histograms correspond to different richness bins. The bin limits appear in the

upper left corner of each plot. The histogram represents the residuals about the mean, while

the solid red curve represents the best-fit lognormal distribution. To boost our statistics, I

stack the velocity dispersions from all redshifts and vary the binning in richness. Lognormal

distributions describe the residuals about the mean relation quite well, but the width of the

distribution (i.e., the scatter) about the mean decreases strongly with halo mass.

Now, I investigate the sources of the total scatter: statistical scatter and intrinsic scatter.

Statistical scatter is the scatter caused by randomly sampling a distribution with a finite

number of points. In this particular case, sampling the velocity distribution of a galaxy

group or cluster with a finite number of galaxies means that I can only measure the

velocity dispersion to a certain level of accuracy. Clearly, the more tracer galaxies
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one has, the more precise and accurate the measurement of the velocity dispersion will

become.

To help understand the level of statistical scatter contributing to the total scatter, I

use simple Monte Carlo simulations to determine the accuracy to which the velocity

dispersion of a system can be determined given a finite number of tracers. I assume a

normal distribution for the velocities and vary the number of tracers from 2 up to 1500

(which approximately spans the range of richnesses relevant for groups and clusters),

drawing 1000 random samples for each number of tracers I consider. So, for example,

to determine how well one can measure the velocity dispersion for a system with 5

members, I would randomly draw 5 velocities from a normal distribution and then

compute the velocity dispersion using the gapper method. I repeat this 1000 times,

each time recording the derived velocity dispersion. This gives a spread of velocity

dispersions at fixed richness, which I then fit with a lognormal distribution. The width

of this lognormal distribution is the statistical scatter in the velocity dispersion for a

system with 5 members.

In Fig. 3.12, I plot the derived statistical scatter as a function of richness. As expected,

the statistical scatter increases with decreasing richness. I find that for N ≥ 5, the

scatter is well modeled by a simple power-law of the form:

σstat(ln(σv)) = 0.07
( N

100

)−0.5

for N ≥ 5 (3.7)

This result is generally applicable for systems that have an underlying normal distribu-

tion, regardless of whether they are simulated or real clusters. Note that this does not

depend on whether the multiplicative Eke correction is applied because the scatter is

modeled in ln(σv).

Now I have a measurement of the statistical scatter at fixed richness. The total scatter

is assumed to be composed of statistical and intrinsic components (summed in quadra-

ture), so I can now also determine the intrinsic scatter as a function of richness.

In Fig. 3.13, I show the contribution of the statistical and intrinsic scatter to the total



3.4. Scaling relations 47

Figure 3.12: Statistical scatter as a function sample size, N , determined from Monte Carlo

(MC) simulations (see text). The black points are the calculated value (derived from the MC

simulations) for each sample size, and the red line is a power-law fit to the points with N ≥ 5.

A simple power-law relation works well for N ≥ 5.

scatter as a function of richness. I find that statistical scatter dominates the total scatter

for all but the richest (highest-mass) systems.

Note that it is galaxy selection criteria that determine the degree of statistical scatter.

In the simulations, I use a galaxy stellar mass limit of 1010M⊙, but if one were able

to lower that limit (e.g., by using higher resolution simulations) the statistical scatter

would decrease. Likewise for observational surveys, if the apparent magnitude limit of

the survey were increased (i.e., so that we could measure fainter systems), the number

of galaxies will increase, and so too will the accuracy of the velocity dispersions. Other

selection criteria (such as red sequence selection) can also affect the estimated velocity

dispersion (e.g., Saro et al. 2013) via their influence on the number of tracers used to

measure the velocity dispersion.

Note that while the statistical scatter is a strong function of richness, the intrinsic scatter

does not vary significantly over the range of richnesses I have examined, consistent
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with previous studies (e.g., Evrard et al. 2008; Munari et al. 2013). In table 3.1, I

provide the mean intrinsic scatter for a variety of mass definitions and apertures. The

average intrinsic scatter varies little with mass definition and choice of aperture with

values ≈ 0.19 in ln(σ).

Figure 3.13: Contributions of intrinsic and statistical scatter to the total scatter about the

mean velocity dispersion–richness relation, for the case of a Planck cosmology with mass-

less neutrinos and selecting only groups with at least 5 member galaxies with stellar masses

M∗ ≥ 1010M⊙ and that are within r200m. The black curve is the total scatter, the red curve

is the statistical scatter, and the dashed blue curve is the derived intrinsic scatter (assuming the

intrinsic and statistical scatters sum in quadrature to give the total scatter). Statistical scatter

dominates for all but the most rich/massive systems. The intrinsic scatter does not depend

strongly on richness/mass.

Summary of Velocity Dispersion- Richness relation

This subsection was an investigation of how the velocity dispersion of galaxy groups

varies with the richness of the system. It was motivated by the need to understand the

causes of the scatter in the velocity dispersion- mass relation. I find that the main cause

of scatter in the velocity dispersions is due to statistical scatter. Therefore, richness
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rather than mass is the natural way to understand the scatter.

I have shown that the mean velocity dispersion of groups increases with richness. This

is due to the fact that as the number of galaxies in a group increases, so does mass, and

as discussed in the previous subsection, velocity dispersions are dynamically related

to the mass of the group or cluster. In Chapter 2, the N-M relation derived from simu-

lation and the GAMA survey are in excellent agreement. This is promising for future

comparisons with the GAMA survey which will be conducted in later chapters. I also

showed that the scatter around the velocity dispersion-richness relation is composed of

intrinsic and statistical scatter. The statistical scatter was modeled by a power law and

is the dominant source of scatter in groups. The intrinsic scatter is relatively constant,

and as a source of scatter, becomes more prevalent in clusters and larger groups. This

information can be used to model the expected scatter in observational surveys.

3.4.3 Mass - Temperature relation

The following scaling relations were produced for the simulation comparison part for

Susan Wilson’s observational paper on X-ray scaling relations, Wilson et al. (2016).

As she is an X-ray astronomer, the main analysis and interpretation was left to her. I

provide my own brief context and analysis below.

Moving from optical probes of mass to X-ray, the temperature of the gas visible in the

X-ray that surrounds a galaxy cluster is used as a tracer of cluster mass. The energetic

state of the cluster describes the state of relaxation, that is, how closely the kinetic

and potential energy of the cluster follow the Virial theorem. Instead of using the

kinetic energy derived from the dynamics of the cluster, which was discussed in the

previous section, one can use the kinetic energy from the gas temperature of the cluster

to estimate the mass via the Virial theorem.

The Virial theorem says objects are in energetic equilibrium when twice the kinetic

energy of the system is equal to the potential energy. In the case of a gravitationally
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bound object, like a group or cluster, the potential energy is described by

−Φ/2 =
3

2
kT. (3.8)

The gravitational potential, Φ, is equal to the gravitational constant times the mass of

the cluster, divided by the radial distance from the center of the cluster. The average

kinetic energy of a gas, derived from the ideal gas law, is related to the temperature as

3/2 kT. Where k is the Boltzmann constant, 8.6173324(78)× 10−5eVK−1. Therefore,

using the Virial theorem one can show that the potential energy, and therefore the mass

of the cluster, is proportional to the temperature.

In this section, I calculate the mass -temperature (M-T) and investigate the evolution of

the normalization. Then I construct the temperature-velocity dispersion (T-σ) scaling

relation.

Powerlaw and comparisons to literature

To calculate the mass-temperature relation, I used the simulation run with a Planck

cosmology and a group mass definition of 500 times the critical density of the universe

at the time of the snapshot. The groups from the simulation are represented by grey

dots in figure 3.14. These groups are binned in increments of 0.25 log10M500c and the

mean value of the temperature is calculated for that mass bin. These mean temperature

values are fit with a power law, described in equation 3.9, and pictured in figure 3.14

as the gold line.

ln(kT(keV)) = 1.204 + 0.523(ln(M500c)− ln(3× 1014M⊙)) (3.9)

The scatter about the mass-temperature relation is much smaller than the mass-velocity

dispersion relation seen in the previous section. Presently, I have not conducted an

investigation of the scatter around this relation, but will do in a future work.

The slope of the M-T relation found here to be ≈0.5 is in good agreement with Shimizu
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Figure 3.14: The mean power law fit to the temperatures and masses of clusters from BA-

HAMAS is shown in red. The underlying grey scatter points are the groups from the simulation.

There is a small departure from the mean power law beginning around M500c=1e15 M⊙. This

could be an indication of more cluster-like processes becoming more dominant at that mass,

indicating a need for an additional power law at high masses.
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et al. (2003), and, in that paper’s figure 4, also shown to be comparable to Finoguenov

et al. (2001); Allen et al. (2001). Figure 4 in Shimizu et al. (2003) also shows that all

of these slopes are shallower than the Virial relation suggesting that, on average, the

gas is hotter in systems that have not reached equilibrium. A number of causes can be

contributed to the additional heating of non Virialized systems, such as stellar or AGN

feedback, or disturbance from a recent merger.

Evolution

The applicability of the self-similar scaling relation for the evolution of the mass -

temperature relation is debatable. There are many examples in the literature of both

observed (Shimizu et al., 2003; Finoguenov et al., 2001; Allen et al., 2001) and simu-

lated (Le Brun et al., 2016) deviations from self-similarity. I also find that the evolution

of the normalization of the temperature-mass relation is not best described by the self

similar expectation of T ∝ M2/3. Figure 3.15, shows the effects of three different scal-

ings of E(z): 1/2, 1/3 and 2/3 on the mean relation shown at redshifts ranging from

one to the present.

In this figure, the bottom panel shows the effect of scaling the mean relations by the

self-similar coefficient of 2/3. Note that the mean relations do not return to the z=0

trend. A crude test of alternative scalings E(z)1/3 (middle panel), and E(z)1/2 (top

panel), show that the relations scale best by E(z)1/2. This slower than self-similar

scaling is suggested, by Le Brun et al. (2016), to be caused by non-thermal pressure

support that increases with redshift.

3.4.4 Velocity Dispersion - Temperature relation

The velocity dispersion - temperature relation is interesting, despite not returning a

mass estimate, because it shows the relationship between the dynamics and energetic

state of the group or cluster. It also allows a test of the baryon physics used in the sim-

ulation, because gas properties should be more closely linked to the particular recipe
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Figure 3.15: Here I show the effect of applying different exponential scaling factors of E(z) to

the mean mass versus temperature relation. From top to bottom, the scalings of E(z) are 1/2,

1/3, and 2/3. A successful scaling would cause the mean relations to fall on the redshift zero

line, however none of these scalings achieve this over the entire mass range. The best scaling

of these three is E(z)1/2,which is lower than the self-similar scaling relation.
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of physics used. I have already shown that while velocity dispersions have high scatter,

they evolve self-similarly, and the opposite can be said of temperature. Additionally, if

the velocity dispersion is squared, a direct proportionality between velocity and tem-

perature is expected. First, I will show the velocity dispersion - temperature relation

and its evolution, because this is the plane commonly used in the literature, and then

the relation with the squared velocity dispersion.

Powerlaw and comparison to literature

The velocity dispersions are calculated using the RMS velocity of all galaxies with

M∗ > 5 × 109M⊙, by Ian McCarthy. A group mass limit imposed of M500c > 1 ×
1014M⊙ is imposed to be a realistic limit of current surveys out to z ≈ 1. Because of the

large scatter in the velocity dispersions the T-σ relation is obtained using a method that

attempts to minimize the effects of the scatter. First, the functions to σ-M500 and kT-

M500 are fitted separately, and then their power law coefficients are combined to get

σ-kT. The coefficients for the M-T relation are shown in section 3.4.3, and although, I

have not shown the σ-M500c relation in this thesis, I have demonstrated the method in

the previous section, and shown that changing aperture and mass definitions does not

greatly affect the relation, see table 3.1.

In figure 3.16, the red powerlaw of σ-T relation is compared to the median and 1-

σ contours (dashed blue lines) of the underlying distribution. Note that the points

on the σ-T plane as shown were not used to fit the powerlaw, instead the powerlaw

was derived from the σ-M500 and kT-M500 relations. Nevertheless, there is very

good agreement between the underlying distribution and the powerlaw. The relation is

described in equation 3.10. Additionally, in figure 3.17, the best fit slope is 1.09. The

slope’s proximity to unity indicates that the velocity dispersions and temperatures are

finding the same potential well.

ln(σv(km/s)) = 6.64 + 0.557(ln(T)− ln(5keV)) (3.10)
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Figure 3.16: The velocity dispersion - Temperature relation from the BAHAMAS simulations

is shown in red, as well as the 1-sigma upper, lower, and median contours in dashed blue lines.

Despite the large scatter in velocity dispersion the mean, median, and underlying data points

are in agreement.

Evolution

Unlike the M-T relation, the squared velocity dispersion versus temperature relation is

very well constrained since because both quantities scale like the energy of the system,

the scalings should cancel. Figure 3.18 shows that without any scaling, such as E(z)

used in previous sections, the mean trends at redshifts up to redshifts of 0.75 very

closely coincide.

3.4.5 Summary of Temperature as a mass proxy

In the previous two sections, I looked at the relationship between X-ray temperature

and Mass, and then compared the temperature to another mass proxy to test baryon

physics models, and see if both estimates of gravitational potential agree, on average.
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Figure 3.17: The mean powerlaw fit to the the velocity dispersion squared versus the tempera-

ture in keV.

Figure 3.18: Here I show the redshift evolution of the velocity dispersion versus temperature

relation is minimal due to both quantities representing the same thing; the energy of the system.
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First I found that the X-ray temperature and Mass relation has much less scatter than

the velocity dispersion - mass relation. Therefore if one uses temperature as a mass

proxy, the mapping is more certain than with velocity dispersion. However, when

examining the evolution of the M-T relation, I found that it did not scale self-similarly.

This has been confirmed by previous studies in the literature. I found that a E(z) scaling

factor of 1/2 produces a better result than the self-similar scaling of 2/3. Then, I used

my previous analysis of σ-M and M-T to construct a mean powerlaw for σ-T and σ2-T.

The quantities in the latter relation both are proportional to the energy of the system,

and should have a slope of unity and not evolve with redshift. I find, for the groups in

the BAHAMAS simulations, that both of these requirements are met. This ensures that

both σ and T are measuring the potential of the group, and that the choice of subgrid

physics in BAHAMAS is not dramatically affecting the gas properties in groups.

3.5 Summary of the properties of Galaxy Groups and

Clusters from Simulation

Two common mass proxies are the velocity dispersion and temperature. I begin with

a discussion of the necessary selection criteria that must be imposed to make a ob-

servationally realistic sample, and I discuss the effects of baryon physics on the ob-

servables, and show that velocity dispersions are more robust to various choices of

baryon physics (fig. 3.1) because velocities are more closely linked to the dark matter

halos than energetic processes. However, as a discussion later in the chapter shows,

the gas temperatures in the BAHAMAS simulation yield similar results to the velocity

dispersions (fig. 3.17), and are still reliable tracers of the potential.

I calculated the mean σ-M powerlaw (fig. 3.4) and looked at the evolution of this mean

trend as a function of redshift (fig. 3.7). I found that it evolves self-similarly, which

is not a trait that other observables, such as the T-M relation share (fig. 3.15). I also

look at the scatter around the σ-M and σ-N relations (figs. 3.8, and 3.11, respectively).

The total scatter around the σ-M relation is large at masses less than 1 × 1014M⊙.
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It does not appear to evolve with redshift (fig. 3.9). The dominant source of scatter

at low masses is due to statistical scatter (fig. 3.12). Lower mass groups tend to

have less galaxies in them, and the lack of tracers produces a large uncertainty when

determining velocity dispersions. Mass dependent scatter was not found in previous

studies using simulations. This is because they were looking primarily at larger groups

that are intrinsic scatter dominated. I find a similar result when looking at more massive

and rich groups. When N is large enough (>10 galaxies) to determine the velocity

dispersion accurately, the remaining source of scatter, is constant with respect to mass.

I also ask the reader to consider velocity dispersions as physical quantities, and argue

that they can, like mass, be used to probe cosmology. I show that the velocity dis-

persion function (fig. 3.2) and number counts from velocity dispersions (fig. 3.3) are

sensitive to changes in cosmological values. There is a statistically significant separa-

tion between WMAP9 and Planck cosmologies and between several different values of

neutrino mass. In Chapter 4, I will use the discriminating power of velocity dispersions

to constrain cosmological values from the GAMA survey.



Chapter 4

Constraining Cosmological

Parameters

4.1 Predicting the velocity dispersion counts for differ-

ent cosmologies

In the previous section, I calculated, directly from the simulation, cluster number

counts as a function of velocity dispersion and redshift for seven different combina-

tions of cosmology and neutrino masses. The computational expense of running large

simulations like BAHAMAS prohibits us from running a dense grid of cosmologies for

comparison with observations, which is ultimately necessary to determine not only the

best-fit cosmology, but also the uncertainties in the best-fit cosmological parameters. I

therefore require a means to rapidly compute the predicted velocity dispersion counts

for many different cosmologies.

Here I propose a method to combine the results of the simulations with the halo model

formalism to predict the velocity dispersion counts. Specifically, I show that when the

mean and scatter of the mass-sigma relation are convolved with the distribution of halo

masses in the simulations, it closely predicts the velocity dispersion counts. One can

therefore take advantage of popular theoretical models for the halo mass function (e.g.,

59
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Sheth et al. 2001; Tinker et al. 2008), provided they are appropriately modified for the

effects of baryon physics (e.g., Cui et al. 2014; Velliscig et al. 2014), and my velocity

dispersion–halo mass relation to quickly and accurately predict the velocity dispersion

counts as a function of cosmological parameters.

4.1.1 Testing the model

I now test the accuracy of our simple velocity dispersion–halo mass relation model

by convolving it with the halo mass distribution drawn from the simulations and com-

paring the predicted velocity dispersion distribution with the one drawn directly from

the simulations. In particular, for the model prediction, I use the mass of each halo to

infer the predicted mean velocity dispersion using eqns.3.3 and 3.5. I then (additively)

apply scatter by randomly drawing from a lognormal distribution with a width set by

the total scatter–halo mass relation, which is characterized by the black curve in Figure

3.13.

Figure 4.1 compares the VDF derived directly from the simulations with that predicted

by my simple model of the velocity dispersion–halo mass relation convolved with the

halo mass distribution, both imposing a richness cut of N ≥ 5. I also show the effect

of ignoring the scatter in the velocity dispersion–halo mass relation. In spite of its sim-

plicity, the model prediction (with scatter) reproduces the simulation VDF remarkably

well (to better than 10-15% accuracy) over the full range of velocity dispersions that

we sample. By contrast, ignoring the scatter causes the curve to strongly under predict

the VDF above velocity dispersions of 300 km s−1. Modeling the scatter is there-

fore crucially important if one wishes to make an accurate prediction for the velocity

dispersion counts and obtain unbiased constraints on cosmological parameters.

In Figure 4.2, I compare the evolution of the velocity dispersions counts for systems

with σv ≥ 300 km/s from various simulations with different cosmologies with that pre-

dicted by my simple model. There is good agreement with between model predictions

and the simulations.
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Figure 4.1: Comparison of the VDF from the Planck 2013 (massless neutrino) simulation (solid

black curve) with that predicted by a simple model of the velocity dispersion–halo mass relation

convolved with the halo mass distribution from the simulations (red dashed curve). Also shown

is the model prediction when the scatter in the velocity dispersion–halo mass is ignored (blue

dashed curve). The model with scatter reproduces the simulation VDF quite well over the full

range of velocity dispersions. Ignoring the effects of scatter and associated Eddington bias

leads to an underestimate of the number of systems with velocity dispersions exceeding 300

km s−1.
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Figure 4.2: The number density of systems with σv ≥ 300 km/s as a function of redshift.

Solid lines are from the simulation, dashed lines are velocity dispersions constructed from

the models described in the previous section and convolved with the halo mass function from

the BAHAMAS simulation. The colors indicate different cosmologies: blue=Planck, green=

WMAP9, and red = WMAP9 with neutrino mass = 0.48 eV.

Finally, note that in the above analysis the effects of feedback have already implicitly

been included. As demonstrated in Section 3.1.3, feedback can affect both the halo

mass and the velocity dispersion. Therefore, in order to predict the velocity dispersion

function from the halo mass function one must appropriately account for feedback ef-

fects on the halo mass and then apply the above velocity dispersion–halo mass relation.

The modification of the halo masses is already implicitly included in my analysis, as

we use the halo mass distribution directly from the hydro simulations. If, however, one

wishes to use theoretical mass functions in the literature that are based dark matter sim-

ulations (e.g., Sheth et al. 2001; Tinker et al. 2008) appropriate feedback modifications

should be applied (such as those proposed by Velliscig et al.).
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4.2 Cosmological constraint forecasts

In Section 4.1, I outlined a simple yet accurate method for predicting the velocity

dispersion counts for different cosmologies. Here I use this apparatus to make some

simple forecasts for current and future spectroscopic surveys. In particular, I examine

the kind of constraints that these surveys will place on the σ8–Ωm plane and on the

summed mass of neutrinos.

I consider three different synthetic spectroscopic surveys, with characteristics chosen

to approximately match those of the completed GAMA survey (Driver et al., 2011), the

upcoming WAVES-Wide survey (Driver et al., 2015), and the upcoming DESI bright

galaxy survey (Levi et al., 2013). For the synthetic GAMA-like survey, I adopt a survey

field of view of 180 square degrees and galaxy stellar mass limit of 1010M⊙. For the

synthetic WAVES-like survey, I adopt 1000 square degrees and a stellar mass limit of

109M⊙. For the synthetic DESI-like survey, I adopt 14,000 square degrees and a stellar

mass limit of 1010M⊙. For all three cases, I examine the cosmological constraints that

can be derived using the velocity dispersion number counts exceeding 300 km s−1

within a redshift z < 0.2. Note that it may be possible to obtain improved constraints

by looking at multiple thresholds in velocity dispersion and/or multiple redshift bins,

which I intend to explore further in future work.

4.2.1 The σ8–Ωm plane

I construct a 151×151 grid of [σ8,Ωm] values ranging from 0.7 < σ8 < 0.9 and

0.2 < Ωm < 0.4. For the other parameters, we adopt a ‘WMAP9-based’ cosmology,

fixing h = 0.7, Ωb = 0.0463, ns = 0.972 and ΩΛ = 1 − Ωm. For a given set of

cosmological parameters (of which there are 22801 independent sets), I use CAMB to

compute the z = 0 linear transfer function, which is used as input for the Tinker et al.

(2008) halo mass function. I convolve the predicted halo mass function with the halo

mass–velocity dispersion relation derived in the previous sections. Note that for the

case of the synthetic WAVES-like survey, I have decreased the statistical scatter in the
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velocity dispersions in line with the adopted lower stellar mass limit of that survey.

This was done by using the abundance matching procedure described in Section 3.1.3

to estimate how much the richnesses would increase by dropping the stellar mass limit

from 1010M⊙ to 109M⊙.

Figure 4.3: Forecasted constraints on σ8 and Ωm using the velocity dispersion number counts.

Dashed contours define the 1-σ confidence interval for the GAMA-like, WAVES-like, and

DESI-like synthetic surveys that we consider. The black star indicates the adopted test cos-

mology. The joint constraint scales approximately as σ8Ωm (see text). The amplitude can be

determined to approximately 20%, 10% and 4% accuracy with the GAMA-like, WAVES-like,

and DESI-like synthetic surveys, respectively.

Figure 4.3 shows the 1-σ confidence interval for a test cosmology of σ8 = 0.8 and

Ωm = 0.3; i.e., I assume these are the truth and see how well this is recovered. The

1-σ confidence interval shows a strong degeneracy in the joint constraints on σ8 and

Ωm, as expected. I find that a simple power law with σ8 ∝ Ωα
m with α ≈ −1 describes

the degeneracy relatively well. The exact slope of the degeneracy depends somewhat

on which synthetic survey is considered; I find α = −0.86± 0.01, −1.08± 0.01, and

−1.13± 0.01 for the GAMA-like, WAVES-like, and DESI-like surveys, respectively.

It is worth noting that the degeneracy found here is significantly steeper than that found
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in some previous halo mass counts studies, which indicate α ≈ −0.6 (e.g.,Vikhlinin

et al. 2009; Rozo et al. 2010). The reason for this difference is not that I am using

velocity dispersions as opposed to halo mass, but is instead due to the specific velocity

dispersion threshold of 300 km s−1 that I adopt. In particular, this velocity dispersion

threshold corresponds roughly to a halo mass of ∼ 1014M⊙, which is lower than most

current halo mass counts studies (certainly compared to X-ray- and SZ-based stud-

ies). Note that the abundance of groups is somewhat more sensitive to Ωm than to σ8,

whereas the reverse is true for high-mass clusters. I have verified that using higher ve-

locity dispersion thresholds leads to a flatter degeneracy between σ8 and Ωm, similar in

shape to that found previously for studies based on massive clusters. This motivates my

comment above, that one can potentially use multiple velocity dispersion thresholds to

help break the degeneracy between the two cosmological parameters.

It is immediately evident from Figure 4.3 that upcoming spectroscopic surveys will

severely constrain the amplitude of the degeneracy. I can quantify this by comparing

the width of the 1-σ confidence interval (i.e., the width perpendicular to the degener-

acy) to the best-fit amplitude. I find that a GAMA-like survey would be expected to

constrain the amplitude to ≈ 20%, whereas a WAVES-like survey would constrain it

to ≈ 10% and a DESI-like survey would constrain it to better than 4% accuracy.

Note that in the above analysis I have held the other cosmological parameters fixed.

Allowing these to be free will likely broaden the constraints on σ8 and Ωm slightly.

A recent study by Ntampaka et al. (2016) that also uses velocity dispersions of clusters

to constrain cosmological parameters found the slope of the σ8Ωm interval to be 0.29.

The slope from my work is much steeper, even for the 180 square degree survey, and

as the width of confidence interval, which biases our slope fitting function, shrinks

with increased survey volume, the value of the slope converges to 1.105, which is

very different from the value in Ntampaka et al. (2016). A possible explanation for

this is although there is agreement between the slopes of the σv – Mass relation in

the two studies, the normalization for this work is much lower, even after accounting

for differences in mass normalization. One significant difference between the two

studies is Ntampaka et al. (2016) has a mass limit of 3.5 ×1014M⊙h
−1, while my
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model extends to groups with M200m > 7 × 1012M⊙. The extra information at lower

masses may affect the normalization, however, other studies velocity dispersion studies

of higher mass clusters, such as Evrard et al. (2008), find the normalization of the σv−
−M200m relation to be closer to my value of ≈ 300 km s−1. Finally, in addition to the

subtleties of the simulations used in either work, the method of calculating confidence

intervals varies between the two studies. While I use a minimum delta χ2 interval,

the Ntampaka et al. (2016) study uses a confidence interval derived from a covariance

matrix. However, one would expect to recover relatively similar values from either

statistical approach.

Figure 4.4: Forecasted constraints on the summed mass of neutrinos, Mν . The 1-σ confidence

intervals are plotted in red, blue and green for the GAMA-like, WAVES-like, and DESI-like

synthetic surveys that I consider. I adopted Mν = 0.06 eV as the test cosmology.

4.2.2 Summed mass of neutrinos, Mν

Here I examine how well the velocity dispersion counts can be used to constrain the

summed mass of neutrinos. For this case I adopt a Planck-based cosmology, fixing
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h = 0.6726, Ωb = 0.0491, Ωcdm = 0.2650, ns = 0.9652, and assume a flat universe

(i.e., as I increase Mν and Ων , ΩΛ is decreased to maintain Ωtot = 1). By holding all

parameters apart from Mν and ΩΛ fixed, I am essentially considering a case where I

take the primary CMB cosmology to be a correct description of the Universe at early

times and quantify how well adding measurements of the velocity dispersion counts

constrains the summed mass of neutrinos.

I consider 151 different values of the summed neutrino mass, ranging from the mini-

mum allowed value of 0.06 eV up to 1 eV. I adopt Mν = 0.06 eV as our test case.

In Fig. 4.4 I explore the constraining power of the three synthetic surveys described

above. The error bars show the 1-σ confidence errors. A GAMA-like survey, when

combined with primary CMB constraints, would be expected to constrain Mν < 0.38

eV. A WAVES-like survey will improve on this somewhat, while a DESI-like survey

will tightly constrain the summed mass of neutrinos (Mν < 0.12 eV) when it is com-

bined with primary CMB measurements. The potential constraints from a DESI-like

experiment are interesting from a particle physics perspective, as they could poten-

tially allow one to distinguish between the ‘normal’ and ‘inverted’ neutrino hierarchy

scenarios (see Lesgourgues & Pastor 2006 for further discussion). However, I note

that the forecasts are still fairly simplistic, in that I have held the other cosmological

parameters fixed (although they are strongly constrained by the primary CMB) and I

have not considered the effects of redshift errors, group selection, etc. On the other

hand, I have also not used the full information available in the dataset (e.g., multiple

redshifts and velocity dispersion thresholds), which would be expected to improve the

precision of the constraints.

4.3 Comparing GAMA with BAHAMAS

Although simulations excel at forecasting constraints for future surveys, and in this

way guide observational astronomy along productive research paths, they can not

single-handedly constrain the cosmological parameters in the real Universe. To con-
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strain the parameters in our Universe, simulations and observations must be used in

tandem.

In this thesis, I will compare a volume limited, mass limited, sample of GAMA data

with results from BAHAMAS, and need to know how well the group finder recovers

groups in this simulation. There is a discussion in Robotham et al. (2011), about how

well the group finder detects groups in the entire GAMA survey and the mock catalogs

from the Millennium simulation. However, there are differences between the mocks

used to calibrate the group finder and BAHAMAS. Therefore, it is necessary to conduct

an investigation into the group finder’s results on the BAHAMAS simulation.

In the following section, I test the group finder’s ability to recover the groups in the

simulation. For clarity, I will refer to Robotham’s Friend of Friends group finding al-

gorithm used in this analysis as RFOF. I will show several scaling relationships with

velocity dispersion, richness, and “radius” as measured from the RFOF. These quanti-

ties will test the accuracy of the simulation to create realistic groups. First, however, I

will describe how the light cones are constructed from the BAHAMAS simulation.

4.3.1 Light cones

To make like-with-like comparisons of the simulations to the observations, light cones

must be constructed. In brief, if the observer is at z=0 (as assumed here), then light

cones contain all of the matter and radiation within some solid angle (the survey area)

back to some earlier time, zmax. In a flat Universe characterized by Euclidean geome-

try, light rays travel in straight lines in comoving coordinates. Making light cones from

simulation outputs is therefore straightforward under these conditions.

Ian McCarthy created the light cones for this project. He stacked randomly rotated

and translated simulation snapshots at differing redshifts along the line of sight. The

maximum opening angle, theta, that a light cone can subtend depends on the size of

the simulation box (400 Mpc/h in this case) and the maximum redshift one wishes the

cone to extend to. He chose a maximum redshift of zmax = 0.5. Given the simulation
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box size, this translates into an opening angle of 15 degrees. Therefore, each light

cone has a FOV of 225 squared degrees, which is comparable to (slightly larger than)

that of the GAMA survey. For each simulation volume (i.e., for each of the different

cosmologies considered), 10 quasi-independent light cones are created by adopting

randomized viewing angles through the simulation boxes (i.e., different random trans-

lations and rotations).

Robotham then subdivided each cone into three slices, each with 5 degrees in declina-

tion. This matches the GAMA survey geometry. He also imposes on the light cones a

stellar mass cut of 1010M⊙, and a further redshift cut of z < 0.2, to match the GAMA

volume-limited sample. Finally, Robotham runs each subdivided light cone through

RFOF. This program detects the groups and calculates the richness, radius, and gapper

velocity dispersion of the group.

4.3.2 Purity of BAHAMAS groups

One test of the effectiveness of the group finding algorithm is to compare how many

groups it finds to the known number of groups in the simulations. The number of

groups in the simulations can be determined accurately when the simulations are in

original form, and have all three dimensions of position information available. When

the simulations are converted to light cones, this grouping metadata is still available

for comparison purposes. However, the RFOF does not know the original groupings,

and has to disentangle the positions from redshift space distortions, just like in real

observations. Therefore, assuming the simulation is a good model of the universe, the

group finder should work equally well on GAMA as BAHAMAS.

To calculate the detection fraction, I have created a program that matches known cen-

tral galaxies (BCGsim) to centrals in the simulated light cone as determined by RFOF

(ITERCEN). For this task, I search for ITERCEN galaxies within one R500 of the true

BCGsim. I also apply a redshift limit of ±3000 km/s of the BCGsim redshift. If one or

more ITERCEN galaxies fall within that search radius, I classify the group as detected.

I only search for matches of groups with 5 or more members. This is for two reasons.
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First, I will not be using N< 5 groups for my analysis due to the low accuracy of their

velocity dispersion, and secondly, RFOF has not been optimized to search for groups

below this limit.

In figure 4.5, the results of the detection fraction program show that detections increase

steeply with velocity dispersion. Detection fractions range from 0.17 to 1.00. Lower

velocity dispersion groups are much less likely to be detected, while large groups with

σ > 1000 km/s are always detected in the light cone. In Robotham et al. (2011), 73

per cent of the mock groups are recovered. If I average the detection fractions above

300 km/s, the region of interest for my research, I find the mean detection fraction is

64 percent. Since the detection fraction is a steep function of velocity dispersion, it

is difficult to confidently produce one value to compare with the value in the original

paper.

Figure 4.5: The fraction of BAHAMAS groups recovered by RFOF shown as a function of

logged velocity dispersion. The detection fraction is a steep function of velocity dispersion,

however, if averaged over the velocity dispersion range of interest for this work (σ & 300

km/s), then the detection fraction is 64 per cent.
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The low detection fraction is puzzling. One explanation, provided in the Robotham

et al. paper, is that the group finder detects more high richness groups in the mock

than it does in the GAMA survey. Another reason for the low detection fraction is the

group finder is splitting larger groups into smaller ones. To check, I perform a quick

test. For each galaxy in a RFOF group, I referenced the original simulation catalog and

looked up its actual group number. In several cases, the RFOF group was composed of

galaxies that were originally assigned to separate groups. In these cases, I calculated

the statistical mode of the groups that the galaxies belong to, in order to choose the

group I think RFOF algorithm was targeting.

For example, a RFOF group, alpha, is composed of 5 galaxies. I look up the original

group assigned to each of those galaxies. Say, three of those galaxies are assigned to

group A and two are assigned to group B. The mode is group A, and I look up group

A’s richness and it happens to be ten. Another RFOF group, beta, has a similar set

up, where most galaxies belong to group A and a few do not. Now I have two RFOF

groups assigned to group A, which has a true richness of ten. That is how the points

are determined. At the time of writing, this test has only been performed on one light

cone.

Figure 4.6 shows the result of crossmatching groups assigned to galaxies from the

simulation with groupings from the algorithm. The x axis is the richness of the sim-

ulated group calculated within R200m. The y axis shows how many times the mem-

bers of a FoF group have the mode of their originally assigned groupings equal to

the group whose richness is plotted below. For figure 4.6, I plot the subset with

300 < σ(km/s) < 1000 and N> 4 within the volume limited sample. At richnesses

less than 10, the probability of a group being split into two is 46%. For richnesses

greater than 10, it is highly probable that multiple FoF groups will be assigned to a

single simulated group. Although more work is needed to extend this analysis to the

whole sample, it is clear that splitting larger groups into smaller groups could con-

tribute the low detection fraction at intermediate velocity dispersions. However, this

cannot completely explain the phenomena in fig.4.5 because the highest σ bin is com-

pletely detected.
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Figure 4.6: The number of FoF groups assigned to a single simulated group as a function

of simulation group richness within a radius of R200m. There is a clear positive trend with

richness, implying that large simulation groups are being split into smaller groups by the group

finding algorithm.

4.3.3 Scaling Relations

Another approach to testing the compatibility between simulations and observations

is to see if their mean properties are similar. To illustrate this, I show three different

compatibility tests based on the velocity dispersion, richness and radius. All three of

these quantities are products of the Robotham et al. group finding code. To ensure a

similar selection of groups, both the simulated light cones, and the GAMA data have

undergone group selection using the GAMA group finder. The velocity dispersion

is calculated using the “gapper” method, described in Beers et al. (1990); Robotham

et al. (2011) and chapter three of this thesis. The richness is the number of galaxies

belonging to the group, according to the RFOF algorithm, and the radius is the quantity

named “Rad50” in the RFOF catalog. It is the radius that contains 50% of the galaxies

in the group. Please see chapter three for an in-depth discussion of the scaling relations.

Here I present them as a means to qualitatively judge the compatibility of GAMA and

BAHAMAS.
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Velocity Dispersion - Richness relation

First, I present the velocity dispersion - richness relation.1 The figure 4.7 shows the

contours of the 14th and 86th percentiles of the distribution, which approximates one

standard deviation in a normal distribution. I also show the median value. The colors

represent several different cosmologies from the BAHAMAS simulation, and the black

line shows the GAMA values. This looks like a very good match.

Figure 4.7: The mean velocity dispersion - richness relation for the volume-limited GAMA

groups (black) and several different neutrino mass light cones from the BAHAMAS survey.

Richness - Radius relation

Next, I investigate the richness versus radius relation between GAMA and BAHAMAS.

It is not as compatible as the velocity dispersion-richness relation. In figure 4.8, the

lines represent the same surveys as in figure 4.7. However, in this plot the slope of the

1From this point on, the velocity dispersions from BAHAMAS are multiplied by the inverse square

root of little h. This is necessary to correct an error that occurred when converting the BAHAMAS veloc-

ities from comoving space to physical.
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median simulated groups is much steeper than the GAMA relation. Statistically, the

median simulated values fall within the 1σ contours of the GAMA distribution, and

that should be an acceptable match, but the discrepancy in slopes begs an explanation.

Surely, since velocity dispersion and radius are related through the gravitational po-

tential, one would expect something to look awry with the velocity-richness plot as

well. However this is not the case. Perhaps this is because the radius definition used

in the FoF group finder is based on the assumption that the group is complete before

calculating the radius of half the population? In their paper, Robotham et al. claim

that at high richness, there was a discrepancy between number of systems. It could be

that the number of systems is different because the radii are not the same, allowing for

groups to be combined that shouldn’t be.

Figure 4.8: The mean radius - richness relation for the volume-limited GAMA groups (black)

and several different neutrino mass light cones from the BAHAMAS simulation.



4.3. Comparing GAMA with BAHAMAS 75

Velocity Dispersion - group radius

As a third and final scaling relation test, I examine the velocity dispersion-group radius

distribution. Again, in figure 4.9 the colors of the simulations are the same as in fig-

ure 4.7 and the percentiles of GAMA are in black. Unlike the previous radius plot, the

simulation and observations seem to be in very close agreement. If richness was affect-

ing the distribution, as assumed above, then since velocity dispersion is proportional

to richness, I would expect some discrepancy at high velocity dispersions, but there is

none. From these plots it is clear that despite one puzzling, yet insignificant, deviation

in the richness-radius plot, the simulations and observations are in good agreement.

Figure 4.9: The mean velocity dispersion - group radius relation for the volume-limited GAMA

groups (black) and several different neutrino mass light cones from the BAHAMAS survey.

The agreement between the simulations and observations in the scaling relations shows

that the bulk physical properties of the real universe and simulated universe are similar.

However, the low detection fraction indicates that number densities need to be treated

cautiously. As I proceed to use the simulated and mock surveys to estimate cosmolog-

ical parameters in Chapter 4, I will discuss further the corrections necessary to derive
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reliable answers from the comparison.

4.4 Abundance of Groups in the GAMA Survey

Now that I have explored the effects of the group finding algorithm, I proceed to cal-

culate the abundance of groups in the volume-limited GAMA sample. Since I have

already shown that the constraining power depends on population size, I stack all three

GAMA slices (G09, G12, and G15) to take advantage of the full 180 square degree

survey area. Then, I count the groups with 5 < N < 20 members that have velocity

dispersions greater than 300 km s−1. The upper limit is informed by low number of

groups at the N > 20 range, as well as the group finder’s bias to detecting large groups

in the mocks compared to the observational data. I find that GAMA has a number

density of groups equal to 6.19× 10−05 ± 4.24× 10−06(Mpc/h)−3
at a mean redshift

of 0.14.

Abundances are sensitive to the chosen mass or velocity dispersion thresholds. The

GAMA data enables me to use a low threshold of 300 km s−1, which corresponds to

M200m ≈ 1014M⊙. As low mass groups are more prevalent than higher mass structures,

this allows me to gain predictive power by increasing the sample size. Most abundance

work, eg. Planck Collaboration XX et al. (2014), are unable to reach the sensitivity of

GAMA and use massive clusters and higher thresholds. Therefore it is difficult to make

a direct comparison with the literature.

To estimate the best-fit cosmological model, I compare the GAMA abundance to the

BAHAMAS simulations. For this comparison, I use BAHAMAS light cones that have had

groups identified by the GAMA group finder. For each cosmology there are ten light

cones, of which A. Robotham has trimmed in declination to match the dimensions of

a GAMA slice. One light cone becomes three 60 degree wide light cones. This aids

in direct comparison to individual GAMA slices, but for this test, large sample size is

required. So the slices and cones are stacked. Then, I limit the light cones to groups

with z < 0.2 and 4 < N < 20. The original light cones and volume limited GAMA
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sample have already been mass limited to M> 1010M⊙. Finally, I create figure 4.10 by

counting the number of groups above 300 km s−1.

Figure 4.10: Number density of groups from the GAMA survey and number counts from the

BAHAMAS light cones with, which have groups selected by the GAMA FoF, for comparison.

The simulations shown here are based on a WMAP9 cosmology with neutrino masses of 0,

0.06, 0.12, 0.24, and 0.48 eV. The GAMA point between the WMAP9 cosmologies with 0 and

0.24 eV summed neutrino masses. All abundances are shown with Poisson 1σ vertical error

bars and horizontal error bars represent the 14 and 86 percentiles of the redshift distribution.

Each abundance is placed at the mean of the median group redshifts.

Figure 4.10 shows that the GAMA abundances are within the range of the WMAP

cosmologies from BAHAMAS, and that the appropriate summed neutrino mass lies be-

tween 0 and less than 0.24 eV. The upper GAMA error bar lies above the neutrinoless

WMAP9 abundance. However, considering the trend in fig. 3.3, this would imply a

Planck cosmology with neutrino masses greater than 0.24 eV, which is ruled out by

Planck CMB ΛCDM models, that place the upper limit on summed neutrino mass at

0.59 eV (Hannestad, 2016; Planck Collaboration et al., 2016). This upper limit is fur-

ther constrained to 0.23 eV when large scale structure is added (Planck Collaboration

et al., 2016). Therefore, the GAMA data agree with models of WMAP9 cosmology
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with 0eV <
∑

Mν < 0.24eV. A chi-squared test using the method described in sec-

tion 4.1 will have to be conducted to officially exclude Planck cosmologies and obtain

a statistically verified constraint.

4.5 Summary

Constraining cosmological parameters provides insight into how the universe formed.

In this chapter, I present methods to constrain cosmological parameters with velocity

dispersion based group abundances. First, I show that a simple model can be con-

structed from the mean mass-velocity dispersion relation, and its scatter that will ac-

curately reproduce velocity dispersion functions and number counts for a variety of

cosmologies. I exploit this simple model to create a grid of abundances, each with a

different set of underlying cosmological parameters. I make multiple grids to account

for differences in surveys. Then, I calculate the minimum chi-squared statistic to find

the 1σ confidence interval for several mock surveys.

I also attempt to constrain cosmological parameters using the GAMA survey by com-

paring the GAMA group abundance to several simulated abundances from BAHAMAS.

First, I investigate the detection capabilities of the group finder using BAHAMAS. Al-

though, the detection fraction was a steep function of richness, the mean detection

fraction, 64%, is close to the detection fraction stated in Robotham et al. (2011). More

work on the compatibility between GAMA and BAHAMAS will improve the accuracy

of the constraints derived from this comparison. Finally, I show the abundance of

GAMA groups at a median redshift of 0.15. The GAMA point falls near the WMAP9

cosmologies with neutrino masses between 0eV <
∑

Mν < 0.24eV.



Chapter 5

Part One Conclusions and Future

Work

In the first part of this thesis, I constrain cosmological parameters using a non standard

technique: velocity dispersion based group number counts.

In chapter 2, I describe the simulation and survey that I use in this research. The BA-

HAMAS simulation (McCarthy et al., 2016) is a new hydrodynamic simulation based

on the insights gained from the OWLs and CosmoOWLs simulations(Le Brun et al.,

2014; McCarthy et al., 2014). The GAMA survey is a spectroscopic redshift survey

that has been designed for uniform spatial completeness that makes it ideal for char-

acterizing galaxy groups. There are 652 groups in the volume limited and richness

limited sample.

In chapter 3, I explore properties of groups and how they evolve over time using sev-

eral well known scaling relations. The temperature - velocity dispersion relation does

not scale self similarly, but the velocity dispersion - mass relation does. The scatter

around the velocity dispersion - mass relation is large, particularly at masses less than

M200m< 1013 M⊙. I have investigated the sources of this scatter and created a para-

metric model to describe it. The powerlaw coefficients for several 2D and 3D volumes

are presented in Table 3.1.

79
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In chapter 4, I create a method for constraining cosmological parameters using velocity

dispersions of groups. From the number counts plot in chapter 3, it is clear that veloc-

ity dispersions of groups can be used in this context to discriminate between different

cosmological models, including non standard models that include massive neutrinos.

To constrain cosmological parameters using BAHAMAS, I follow three steps: 1. Gen-

erate a power spectrum for a chosen cosmology using CAMB, 2. Convert the power

spectrum into a mass function using the Tinker mass function (Tinker et al., 2008), and

3. Use the Mass-velocity dispersion power law and scatter to get the velocity disper-

sion function for that cosmology. Then I forecast the constraining power of current

and future surveys. These predictions show a steep degeneracy on the σ8 − Ωm plane.

The precision of the constraint is a strong function of number of groups, and therefore

survey area. I predict that the constraint on summed neutrino mass will be precise

enough using the DESI bright galaxy survey to break the degeneracy between inverted

and normal neutrino hierarchy.

In the final part of chapter 4, I begin to compare GAMA data and the BAHAMAS sim-

ulation. First, I check that the BAHAMAS simulation has accurately reproduced some

important scaling relations from the GAMA survey. I also investigate the group finding

algorithm’s ability to recover groups by testing it on BAHAMAS. After confirming the

compatibility of the GAMA and BAHAMAS simulations, I compare the abundance of

GAMA groups at z ≈ 0.15 to BAHAMAS. I find that the GAMA point lies within the

bounds of neutrino masses currently set by other cosmology based estimates.

There are two main future work projects for this section. First, I will redo the anal-

ysis involving scaling relations so that the correction factor (h)−0.5 is applied to the

velocities from the BAHAMAS simulation. This is to correct for a bug in the black box

that converts velocities from comoving to physical units. Due to time constraints, I

was not able to complete this before submission. However, with respect to the scaling

relations, this will only produce a simple offset.

Secondly, I will finish the GAMA cosmological constraint project. As mentioned in the

text, the correction to the velocity dispersion has been applied in section 4.3 and those

that follow it. Additionally, there is some discrepancy in the radii and richnesses of
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GAMA and BAHAMAS groups, as seen in the scaling relation comparison in chapter 4.

I will conduct a full investigation into the group finding algorithm to understand why

the detection fraction is a strong function of richness, and why the average radii of

GAMA and BAHAMAS groups do not coincide. Following a thorough characterization

of the effects of RFOF on group selection properties, I will correct incompleteness.

Then, the number count grids will be calculated using the Tinker mass function with a

correction to account for the effects of baryons (Velliscig et al., 2014). Finally, I will

follow the method described in section 4.2 to calculate the constraints on σ8, Ωm, and

Mν .
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Effect of Active Galactic Nuclei

Feedback on Host Galaxy Morphology
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Chapter 6

Introduction

6.1 AGN and Galaxy Evolution

6.1.1 The Color Bimodality

It has been demonstrated that galaxies in the local Universe can be grouped into two

color bins, red and blue (Baldry et al., 2004; Strateva et al., 2005). Blue galaxies are

undergoing star formation or have had star formation recently quenched, and red galax-

ies have stopped forming stars. Since all galaxies originally were blue, star-forming

galaxies, the color bimodality in the recent universe indicates that at some point, some-

thing must have happened to some of the galaxies to make them stop forming stars

permanently.

The questions remain of when and how this bimodality began. There have been several

attempts to constrain the point at which red galaxies first formed. Work by Cirasuolo

et al. (2007), shows the red sequence being populated from a redshift of 2 to 0.6.

Brammer et al. (2009) traced the existence of a red sequence back to a redshift of

2.2, see figure 6.1. This places an upper limit on the formation of the red sequence.

Simpson et al. (2012) show that the FRII population peaks at z ∼ 2. A high amount of

energetic radio activity may indicate that a dramatic change in the galaxy population is
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Figure 6.1: This is the color bimodality near redshift = 2 (Brammer et al., 2009). There are two

clearly defined populations. The red sequence consists of the objects between U-V colors of

approximately 1.3 and 2, and the blue cloud consists of the objects below a U-V color of 1.3.

occurring at this epoch. More observations are needed beyond a redshift of 2 to view

the Universe at earlier times to uncover the origin of the red sequence.

Initially, theoretical models of galaxy evolution were unhelpful in understanding the

color bimodality. They typically produced large massive, bright galaxies (Somerville

& Primack, 1999; Cole et al., 2000), emphasizing the fact that the mechanism for

star formation quenching was unknown. Later, modelers obtained successful results

by artificially switching off and on the cooling in massive halos in order to curb the

growth of massive galaxies (Kauffmann et al., 1999), but it was unclear what could

physically control the halo’s on/off switch in the galaxy. Finally, recent models (Croton

et al., 2006; Bower et al., 2006; Cattaneo et al., 2006), improved the agreement with

observation by suggesting that active galactic nuclei feedback could be the physical

analogue to the switch in the simulation. The most recent models (Booth & Schaye,

2009; Bower et al., 2012) use a combination of stellar and AGN feedback to control
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star formation, but the specific contribution of these various feedback modes needs to

be confirmed by observation.

It has been observed that red galaxies dominate the high mass regime of the galactic

mass distribution. The most massive galaxies are also predominantly elliptical. Addi-

tionally, the strong correlation that is observed between masses of the black hole and

the bulge, (Ferrarese & Merritt, 2000; Gebhardt et al., 2000) suggest that quenched

massive elliptical galaxies host some of the largest black holes in the universe.

Silk & Rees (1998) suggested that AGN feedback could affect galaxy evolution by

ejecting gas, if its energy is coupled with the baryonic matter in the galaxy. Active

galactic nuclei (AGN) feedback is the process where energy is released back into the

galaxy when a galaxy’s central supermassive black hole is accreting matter. It limits

the further accretion of matter by the black hole. AGN feedback has been observed

to produce massive radio jets and lobes that create X-ray bubbles and cavities (Carilli

et al., 1994; McNamara et al., 2000; Bı̂rzan et al., 2004). This is evidence that AGN

feedback does input energy back into the galaxy, and could be an agent of star forma-

tion quenching. The theory of “Eddington fueled feedback events” (Rawlings 2003),

dynamical models, and observations all provide strong evidence that AGN feedback

is responsible for shaping the bulge and depositing enough energy into the galaxy to

balance the effects of halo cooling and create the color bimodality.

6.1.2 Galaxy Growth

Quenching star formation is not the only effect that AGN can have on their host galaxy.

Fan et al (2008) propose that rapid mass loss from high power AGN winds can cause

a galaxy to dramatically expand in radius. If the mass loss occurs faster than a dynam-

ical time then the galaxy finds itself in a energetically unbalanced state with velocity

dispersions of the stars (kinetic energy) too large for the new (lower) mass (potential

energy). The orbits of the stars then expand because the gravitational potential is less

than before. In the Fan et al paper, this growth mechanism was used to explain the evo-

lution of ’red nugget’ galaxies - very compact, quiescent galaxies found only at high
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redshift. This effect was originally theorized for globular clusters and was scaled up

to make predictions for galaxies. One important difference between globular clusters

and elliptical galaxies, is the latter has a dominant dark matter halo that suppresses

mass loss. This condition was accounted for in their predictions. Despite the damping

effects of the dark matter halo, for galaxies with pre-ejection masses of greater than

2× 1010 M∗, the authors predict that the radius could increase to a maximum of twice

its original size.

The predicted size decrease is shown in figure 6.2. This is figure 1 in the original Fan

et al. paper. This complex figure shows the effective radius - stellar mass relation for,

GMASS data (filled symbols) and numerical models (open symbols). Since the radial

growth is caused by AGN powered mass loss, this effect will be seen most clearly in

the most massive galaxies, that on average host more massive black holes (Ferrarese &

Merritt, 2000; Gebhardt et al., 2000). Therefore Fan et al. direct the reader to observe

the evolution in galaxies with stellar masses greater than 2e10 Mstar. For the most

massive galaxies, the radius evolves from 0.5 kpc to 1 kpc in the time between the

last AGN mass loss episode and the present day. The authors calculate the timescale

of this growth to be approximately 2 Gigayears, scaling up an estimate from globular

clusters of 40 dynamical times. Assuming the last AGN outburst was at the peak of

AGN activity, redshift 2, then galaxies should reach virialization (denoted by the open

stars in the figure) at around a redshift of 0.8.

6.2 Radio Galaxies

Radio galaxies are a class of AGN that are known for the powerful jets that are emitted

from the centre of the galaxy. The most powerful jets extend up to megaparsecs outside

their host galaxy. The powerful AGN that drive these jets could produce the rapid mass

loss described in Fan et al. (2008). In this section, I will describe the various types

of radio galaxies and explain why one particular type, High Energy Radio Galaxies

(HERGs), are relevant for my study of galaxy size evolution.
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Figure 6.2: This figure is from Fan et al 2008. For galaxies greater than 2×1010 M star, it shows

the effective radius as a function of stellar mass galaxies in three different stages of evolution.

The solid points are observational data from various surveys that are explained on the plot.

The open symbols are predictions from a numerical simulation. The triangle symbols denote

galaxies at the end of the bright quasar phase. The stars represent galaxies that have reached a

new virial equilibrium after the quasar phase, and the square symbols show the radius of these

galaxies at the present. This figure also shows evolution for galaxies less than 2 × 1010 M

star. The crosses are galaxies at the end of baryon collapse, the triangles are after 0.5 Gyr, and

squares show the current size. The gray area shows the ±1σ local size-Mstar relation (Shen et

al 2003).
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6.2.1 Types of Radio Galaxies

There are two main classes of radio galaxies. Those with strong, powerful jets, are

called Fanaroff and Riley Class Two (FRII) sources, and galaxies with weaker jets,

FRI (Fanaroff & Riley, 1974). There is a similar division based on spectral properties.

Hine & Longair (1979), found that some radio galaxies had strong emission lines, and

others had weak lines. These are named Class A and Class B, respectively. Class A

roughly corresponds to the FRII type, and Class B roughly corresponds to the FRI

type. However, unlike the Hine and Longair classification, the morphological (FR)

classification system is not directly indicative of the processes in the central engine of

the AGN. The spectral properties identified by Hine and Longair suggest that there are

fundamentally different processes at work in the central engine of Class A and Class B

sources. The presence of strong emission lines indicate that cold-mode accretion via an

accretion disk is present. Likewise, the absence of lines in Class B types suggest that

the black hole is undergoing hot-mode accretion, that is accretion in a less radiatively

efficient way, perhaps in a spherical, Bondi-Hoyle manner. Another distinction is based

on radio luminosity. Low Energy Radio Galaxies (LERGs) are radio galaxies with

energies lower than Lrad = 1025WHz−1, and the radio emission could be produced

by stars to low powered AGN jets. High Energy Radio Galaxies (HERGs) definitely

correspond to very strong AGN activity.

Low-luminosity Radio-loud AGN (a.k.a.“hot-mode” AGN), or LERGs, which accrete

matter in all directions (Bondi and Hoyle 1944) rather than from an accretion disk (Silk

& Rees, 1998), (Best & Heckman, 2012), are the best candidate to deposit enough heat

into the halo via feedback that the halo will not be able to cool and form stars (Best

et al., 2005, 2006). I will investigate if this class of AGN could be responsible for the

end of star formation in massive galaxies, and create an empirical evolutionary history

of AGN to z ∼ 3.
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6.2.2 Duty Cycle Hypothesis

The Duty Cycle Hypothesis (DCH) (Best et al., 2005, 2006) applies the proposed ef-

fect of hot-mode AGN feedback to galaxy evolution. The hypothesis proposes that

over long time scales, the energy deposited into the galaxy from the hot-mode AGN

balances cooling from the halo, which, if left unbalanced, could return the galaxy to

conditions where star formation is possible. If hot-mode feedback balances halo cool-

ing then star formation would be quenched indefinitely.

Figure 6.3 describes how a galaxy moves onto the red sequence and how the duty cycle

maintains an environment where star formation cannot occur. In the first panel, there is

a blue, star forming galaxy with an active AGN. The AGN feedback is apparent from

the massive jets that extend outside of the galaxy. According to the DCH these jets can

drive gas out of the galaxy, thus stopping star formation and the fueling of the AGN.

The second panel shows that after star formation has been quenched, some time passes

while the massive, blue stars are extinguished. When this occurs, the galaxy is left

with less massive stars that emit in longer wavelengths, and it appears golden or red

like the galaxy M87, pictured in the chart.

Focusing on the rightmost panel in figure 6.3, now that the galaxy has arrived on the

red sequence, the duty cycle begins. Gas ejected from the central part of the galaxy

returns and fuels the AGN. This returning gas could also condense and form stars, but

the AGN feedback, which has now returned with the fueling of the AGN, prevents

this by heating, in the form of mechanical energy, the intergalactic medium. The extra

energy in the system, prevents the formation of stars. Once the gas supply is exhausted,

the process ceases until more gas returns to the system.

Figure 6.4 shows observational evidence for the duty cycle hypothesis. It shows the

X-ray luminosity and the B band luminosity of elliptical galaxies. The solid line shows

the modeled X-ray emission from the hot haloes of the galaxies (Best et al., 2006). The

good fit of the observational data to the model is evidence that the heating and cooling

are balanced by AGN feedback in elliptical galaxies.
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Figure 6.3: This flow chart shows the process of the duty cycle hypothesis. A full explanation

is included in the text.

Figure 6.4: This plot from Best et al. (2006) shows the observed luminosities in the X-ray

and B band (represented by the small points), and the median of the observed luminosities (the

large points) fit nicely along the solid line that is a model of a galaxy that has the heating and

cooling balanced by AGN feedback. This is strong evidence for the duty cycle hypothesis.
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The Duty Cycle part of the hypothesis comes from the idea that initially, the cold gas

in the galaxy would be removed, perhaps by the AGN emitting a powerful FRII type

jet. Then star formation would cease until some of the gas found its way back into

the galaxy. As the gas returns to the galaxy, some will find its way back to the central

supermassive black hole. Then AGN activity will resume, however, this time, since the

central region is less dense, the feedback will be less powerful. Over several iterations

of gas expulsion, the feedback will be hot-mode, and only as powerful as the halo

cooling which drove the gas back to the central engine, thus balancing the cooling, and

quenching star formation.

In 1996, Cowie et al. coined the term “downsizing” to describe the observational

result that massive galaxies stopped forming before less massive galaxies (Cowie et al.,

1996). If the duty cycle hypothesis is true, then it could partially explain the apparent

downsizing in the universe.

6.2.3 Source Counts

Figure 6.5 shows the expected source counts for different objects. The FRII objects

have a steep decline in number density by S= 1milliJansky. One Jansky has units of

10−26Wm−2Hz−2. The FRI objects, which are in some cases similar to the low lumi-

nosity AGN involved in the DCH, continue to be well represented out to microJansky

regime and beyond. The actual turn off of in number density for FRI sources is un-

known due to lack of data at the microJansky level. My work will increase the sample

size of these objects, provide insight into their evolution, and help refine the shape of

the number density function of FRI sources.

6.3 The Square Kilometre Array

One future application of the proposed work involves the Square Kilometre Array

(SKA), which will be built in South Africa and Australia. The Square Kilometre Array
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Figure 6.5: Using semi-empirical models, this plot from Wilman et al. (2008) shows the ex-

pected source counts for many types of radio emitting objects. These predictions will inform

observations on the Square Kilometre Array.
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is a new radio telescope array that will be able to trace hydrogen emission from the first

stars and galaxies (Carilli & Rawlings, 2004). The SKA will be ∼ 2 orders of magni-

tude deeper than the VLA for the same integration time (Norris et al., 2013). This will

finally allow for the detailed analysis of low luminosity and radio quiet populations at

higher redshift.

Galaxy evolution is one of the telescope’s main science objectives, and the data from

this telescope will provide the most complete observational history of the evolution of

galaxies. It is important for us to understand the mechanisms behind the growth of

galaxies in order to use this new facility to its fullest ability. The predictions from the

proposed work can be tested when the SKA goes online in the mid 2020’s.

6.3.1 Pathfinders

There are other telescopes that will act as pathfinders to SKA that will be online in

the near future. The Low Frequency Array (LOFAR) is the newest pathfinder to come

online. It will survey the radio sky of the Northern hemisphere in unprecedented detail,

and a follow up project on the William Herschel Telescope‘s WEAVE (first light 2016)

will provide optical spectroscopy. Using simulations of the radio sky (Wilman et al.,

2008), it is predicted that WEAVE will be able follow up bright radio sources at high

redshift due its large field of view and high survey speed (Trager & the Science Teams,

2012). These objects will help trace galactic evolution in the early universe, and test

our theories about source counts and properties of hot-mode AGN at these epochs.

6.4 Comparing the Morphologies of LERGs and ellip-

ticals

Using the duty cycle hypothesis, I can test the theory of radius growth due to rapid

mass loss from AGN winds. The DCH says HERGs turn into LERGs after a large

expulsion of gas (AGN fuel) from the galaxy. HERGs host the quasars that could
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potentially cause the rapid mass loss described in the radius growth theory (Fan et al.,

2008). Therefore, the presence of a LERG at low redshift indicates that a HERG

phase happened at earlier times, and now some of that expelled gas has returned to

the center of the galaxy, refueling the AGN, but at a lower rate. If this link holds

I can trace the size evolution due to rapid mass loss by looking at LERGs between

the last AGN outburst, around redshift 2, and in the present epoch. According to the

evolution theories discussed above, I expect current LERG hosts to be red, and larger

than ellipticals that never experienced a HERG phase.

Throughout the AGN investigation we adopt a flat ΛCDM cosmology with H0 =

70 km s−1 Mpc−1 and ΩΛ ≡ 1− Ωm = 0.7. All magnitudes are on the AB system.



Chapter 7

The Data

K-band selected, multi-wavelength catalogs in the ULTRAVISTA COSMOS (Muzzin

et al., 2013), and UKIDSS UDS (Arumugam et al., in prep) fields are used in this

research. I also use morphological information derived from HST/CANDELS data in

the F814W (Griffith et al., 2012), F160W and F125W bands (van der Wel et al., 2012).

Radio data for COSMOS and UDS are from the catalogs of Schinnerer et al. (2010),

and Simpson et al. (2012), respectively.

The Muzzin et al., Ks-selected catalogue, includes 30 bands of photometry including

data from GALEX, Subaru, CFHT, UltraVISTA, and Spitzer. The Muzzin et al. cat-

alog has a 90 per cent completeness at KsAB=23.4. In addition to multi-wavelength

data, the COSMOS field has a spectroscopic subset of data, zCOSMOS, which has

been matched to the rest of the data (Lilly et al., 2009). We use radio data from the

vlaCOSMOS deep survey (Schinnerer et al., 2010).

The ULTRAVISTA Spitzer data have a considerably larger point spread function (PSF)

than the ground based data. The Muzzin et al. catalogue uses a technique of cleaning

the Spitzer data using the Ks band as a high resolution template. This extra step of

cleaning the Spitzer data improves the quality of the image, and by removing assump-

tion that all the objects have the same Ks – IRAC magnitude, allows the flux of each

object in the Spitzer data to be measured more accurately. After the flux has been cal-

culated from the cleaned image, an aperture correction factor, which is a ratio of fluxes
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in different apertures, is applied to get the final flux.

The UDS, data release 8, covers 0.8 degrees2 and has 5-σ completeness to 24.6 AB

magnitude in the K band (Lawrence et al., 2007). The UDS DR8 has data in the J,H,

and K bands and other wavelengths (B, V,Rc,i’,and z’) are described in the Subaru-

XMM Newton Deep Field optical catalog paper (Furusawa et al., 2008). Catalog

matching was performed by Chris Simpson and documentation cannot be found. 1.4

GHz radio data in the UDS field is presented in Simpson et al. (2012).

The 24 micron data was included in the Muzzin et al. (2013) catalog, and the UDS 24

micron fluxes were measured on the 24 micron image at the K band source position

using an IRAF task to fit a Gaussian near the specified position and calculate the flux

under the curve. During the fitting, if the Gaussian position tries to move by>2.2

arcsec, then the peak position is fixed at the input position.Due to the large point spread

function of the 24 micron image, occasionally the gaussian peak value in the 24 micron

image was more than 2.2 arc seconds away from the specified K band position. In these

instances, an interactive IRAF task was used to remove noise in the target area to ensure

only the flux from the intended source was measured. Then upper limits for the UDS

24 micron sources, where the flux was less than the signal to noise, were calculated by

taking three times the noise.

The van der Wel et al. (2012) catalogue of GALFIT structural parameters for a subset

of objects in the UltraVISTA/COSMOS and UDS fields is used to determine a ra-

dial separation between stars, quasars and galaxies. The structural parameters of the

van der Wel catalogue are determined from HST/CANDELS data in the F125W and

F160W filters, which correspond roughly to the J and H bands, respectively (Grogin

et al., 2011; Koekemoer et al., 2011). The Griffith et al. (2012) catalog of structural

parameters for the COSMOS field, using the ACS F814W band was used along with

the F160W data for the radius analysis in section 8.3.1. When an object was found in

both the F814W and F160W catalogs, the F814W radius measurement was used.

Table 7.1 shows the number of galaxies at different stages of the analysis. After identi-

fying the galaxies, I combine the UDS and ULTRAVISTA catalogs to obtain a sample
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Table 7.1: The number of galaxies in the sample after matching additional catalogs.

Total combined galaxy sample 364,891

Galaxies with spectroscopic z 12,041

Galaxies with radii information 162,062

Galaxies with radio flux 1,711

LERGs 151

size of 364,891 galaxies. 12,041 galaxies have spectroscopic redshifts. There are

162,062 galaxies with either F814W or F160W radius information, and 1711 galaxies

with radio counterparts. See chapter 8.2.2 for more information about how the ra-

dio catalog was matched to the photometry. Finally, I identify 151 radio galaxies as

LERGs using the q24 method discussed in chapter 8.2.3.



Chapter 8

Analysis and Results

Galaxy evolution theories state that AGN feedback can quench star formation (Best

et al., 2014) and dramatically increase the radius of AGN host galaxies (Fan et al.,

2008). The aim of this research is to examine the effects of AGN feedback on the

radius and star formation and test these galaxy evolution theories.

This chapter describes the methods and techniques used to turn the fluxes in the cata-

logs into useful quantities for the radius comparison which will test the role of AGN

heating in elliptical galaxies. Photometric redshifts and masses are calculated from

the photometry. Then stars and quasars must be removed from the sample, and the

galaxies are carefully matched with radio sources. Finally, the radio emission must be

classified as radio-loud or radio-quiet before radius comparisons between radio-loud

AGN and quiescent ellipticals can be made. Then, using these data products, I present

the results of a comparison of AGN host galaxy radii with a matched population of

non-active ellipticals.

8.1 Calculating redshift and mass

As I am using both the UDS and ULTRAVISTA catalogs, I will need to calculate zero

point offsets to ensure that the zero points of the bandpasses used in the two surveys

98



8.1. Calculating redshift and mass 99

are calibrated consistently. Slight differences occur between filters. Then, I need to

calculate a redshift of each object, and finally estimate its mass. In the following

section, I describe my methods to calculate these fundamental quantities.

8.1.1 Photometric redshifts

Both COSMOS and UDS have subsets of data with optical spectroscopy, however these

spectra do not cover the redshift range required, and so I take advantage of the excellent

multi wavelength coverage to calculate photometric redshifts. I used the photometric

redshift code, EAZY (Brammer et al., 2008), along with the Charlot and Bruzual 07

template set, to calculate 15 band photometric redshifts for the ULTRAVISTA dataset,

and 11 band photometric redshifts for the UDS data. Spitzer/IRAC channels 3 and 4,

and the g and Y band were not available for the UDS catalog. As the EAZY code

uses template fitting, the accuracy of the fit and of the redshift improve when the user

provides more band passes to characterize the spectral energy distribution (SED).

I fine tune the redshifts using the subset of data with optical spectroscopy, by calcu-

lating the small zero point offsets which exist between the different bandpasses. This

calculation is done by holding the K band fixed, and running a simulated annealing

code on the matrix of filters until it minimizes the EAZY parameter σNMAD (Bram-

mer et al., 2008), which is the normalized median absolute standard deviation between

the photometric and spectroscopic redshifts. Table 8.1 shows the offsets in magnitude

applied to each filter when the redshifts were calculated.

8.1.2 Masses

The masses (see Figure 8.1) were calculated by Chris Simpson, and are derived using

the SED fitting method of Simpson et al. (2013). This method fits linear combinations

of a large set of simple stellar population templates (Charlot and Bruzual 2007) to

the source at the spectroscopic redshift. If spectroscopic redshift is not available, the

photometric redshift is used.
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Table 8.1: Photometric magnitude zero point offsets for ULTRAVISTA COSMOS and

UKIDSS UDS.

Filter UltraVISTA UDS

u -0.004 -0.051

B 0.010 0.005

g -0.019 –

V -0.006 -0.026

r 0.008 0.114

i 0.007 -0.015

z 0.029 -0.028

Y -0.008 –

J 0.018 -0.028

H -0.007 0.011

ch1 -0.009 0.021

ch2 0.007 0.002

ch3 0.011 –

ch4 -0.009 –

Figure 8.1: Masses of all objects in the UltraVista and UDS fields out to a redshift of 4. The

contours have bin sizes of 0.1 on both axes, and have levels of 100,200,400, and 800.
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8.2 Selecting AGN host galaxies

Now I will describe how I transform a catalog of fluxes into a targeted sample of

LERGs. First the galaxies must be selected from the catalog. Then, since the radio

emission catalog is separate from the multi-wavelength catalog, I will have to match

radio emission to the right galaxy. This is complicated by the fact that radio emission

extends much farther across the sky than the radius of the host galaxy. Finally, I will

classify the radio galaxies into HERGs and LERGs.

8.2.1 Star, Quasar, and Galaxy Separation

Multiwavelength photometry offers many different methods of discriminating between

stars and galaxies. In the following subsection, I will discuss two: color-color, and

radial profile.

Color-Color diagrams compare the flux in two band passes to distinguish stars from

galaxies. Two prominent methods are UVJ diagrams (Williams et al., 2009) and BzK

diagrams (Daddi et al., 2004). Although there are subtle differences between each

method, in general, these operate on the principle that galaxies will undergo additional

reddening by cosmological redshift, and therefore be redder than stars.

Another object classification method is using the radius of the object. This requires

accurate imaging of the galaxy, which is not always possible to acquire. The radius

method uses the principle that stars are point sources and galaxies are extended objects.

There is a degeneracy in this method between stars and quasars. Quasars are distant

galaxies that host powerful AGN. The light from the galaxy is dominated by the AGN

and appears as a point source on the sky.

To perform the object selection on my sample, I selected the galaxies from the catalogs

by analyzing the effective radius (re) as calculated by GALFIT in the F160W and

F125W band passes from the CANDELS survey. When plotted against each other

(figure 8.2) these two bands show a bimodal distribution of point sources, that is, stars
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and quasars, occupying the area of the plot with re <0.05 arc seconds, and the galaxies

forming a long sequence beginning a re >0.05 arc seconds. This is because stars and

quasars are point sources and galaxies are not. A break at 0.05 arc seconds can be seen

in the F814W radius data also. I use this cut in radius to remove the stars and quasars

from the sample.

For comparison, in figure 8.2, I show the results of the radius selection on a BzK plot.

The point sources selected in the radius plot (top) appear as the red squares in the

BzK diagram (bottom). Most of the red squares are on the stellar locus, and those in

the galaxy cloud have experienced some reddening or have complex SEDs, and are

therefore quasars. This confirms the results of the radius separation method.

Another method to separate stars, galaxies, and quasars, based on template fitting and

bayesian statistics, is outlined in Appendix A.

8.2.2 Radio AGN Host Identification

The radio catalog and photometry catalog were not matched initially, so I assigned

radio emission to host galaxies. In this subsection, I will discuss the algorithm I used

to automatically assign radio emission to galaxies. Then I will show a few instances

where the galaxy matching failed, and show how I resolved the assignment in those

cases.

Likelihood ratios

Due to the vast extent and asymmetry of radio emission, the true K-band counterpart

to a blob of radio flux may not be identified by conducting a minimum distance coordi-

nate match. Rather than matching simply on coordinates, I calculate likelihood ratios

for each proposed match in the Ks band within 5 arcseconds of the radio coordinates.

The likelihood ratio, which was developed by Sutherland & Saunders (1992) and Wol-

stencroft et al. (1986), and used in Simpson et al. (2006), is calculated by the following

equation:
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Figure 8.2: The top panel shows GALFIT effective radius measured in the J and H bands in

the ULTRAVista field. The distinct division at radius = 0.05 arc seconds shows the boundary

between resolved galaxies, and unresolved stars and quasars. For comparison, the lower panel

shows most of the objects with r<0.05 arc seconds (red) fall on the stellar sequence BzK

diagram, and those in the galaxy cloud are classified as quasars.
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Lkr =
Q(< mk) exp(−r2kr/2)

2πσxσyN(< mk)
(8.1)

where Q(< mk) is the fraction of radio sources whose K band counterpart is brighter

than the proposed match, r is the normalized separation on the sky between the radio

coordinates and the K band source. It is described by the equation

rkr =
√

(∆x/σx)2 + (∆y/σy)2. (8.2)

σx and σy are the positional uncertainty taken from the radio catalogue. ∆x and ∆y

are the positional offsets of the IR and radio coordinates on the sky. N(< mk) is

the surface density of K band sources brighter than the proposed match. The K band

source information was provided by Chris Simpson. The probability that a given K

band source is the correct counterpart is given by:

Pkr =
Lkr

∑

k

Lkr + (1− q)
, (8.3)

where q is the fraction of radio sources with K band counterparts in the catalogue. I

initially assume q=0.9 and seed Q(< mk)=0.5. These parameters are updated automat-

ically after each run. The process is repeated until the number of matches ceases to be

increased.

Treatment of multicomponent sources

A multicomponent source is a radio source with multiple blobs attributed to one host

galaxy. The majority of the multicomponent radio sources are properly assigned with

the likelihood ratio method. However, due to the complexity of these objects, all mul-

ticomponent source matches were confirmed by eye, and there were 8 objects out of a

total of 109 multicomponent sources which required reassignment. There were also 4

multicomponent radio sources for which there was no match. They were also included

in the subset that received detailed visual inspection.
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In four of the objects that required reassignment, the original mis-assignment was due

to the radio coordinates not being representative of the AGN position. There were two

instances where it was determined that two individual entries in the radio catalogue

should be attributed to one source.

Figure 8.3: Radio Emission of a quasar at RA=150.3096, Dec=2.3991, with 1.4GHz radio

contours and BzK photometry.

The radio source COSMOSVLADP−J100112.94+022423.3 was considered a com-

plete object in the VLA catalogue, however it appears to be a hotspot of the quasar at

150.3096, 2.3991 in the UltraVISTA catalogue1 with an ID number in the Muzzin et

al. catalogue of 136421. The other hotspot component of the quasar is the radio source

COSMOSVLADP−J100117.15+022301.1. The quasar is the most suitable choice for

the source because there are no K band components at the hotspot positions, and the

hotspots seem to be well aligned with the quasar, which is typical of double radio

sources. The fluxes of the two hotspots have been combined (there was no noticeable

core component), and assigned to the coordinates of the quasar.

The flux of radio source COSMOSVLADP J100129.35+014027.1 was combined with

the flux of COSMOSVLADP J100131.09+014016.9 because it appeared in the radio

image to be a single multicomponent source. The flux was assigned to the host galaxy

1The RA and DEC are in J2000 coordinates.
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Figure 8.4: Host Galaxy 150.3760;1.6723 and associated radio emission, with 1.4GHz radio

contours and BzK photometry.

at RA=150.3760, DEC=1.6723 in the UltraVISTA catalogue with an ID of 1005.

8.2.3 Radio-Loud Classification

Since I am operating under the assumption of the DCH, it is important to select the cor-

rect type of radio galaxy for this comparison. The best way to perform this selection

is to compare line ratios to detect the presence of an accretion disk (Best & Heckman,

2012). A lack of emission lines produced by an accretion disk is indicative of ineffi-

cient accretion and the presence of a Low Energy Radio Galaxy (LERG). While High

Energy Radio Galaxies (HERGs) efficiently drive gas away from the galaxy and stran-

gle star formation, only LERGs can produce the right amount of feedback to balance

the cooling of the hot halo and prevent new star formation. In lieu of spectral identifi-

cation, a suitable alternative is to use the IR/Radio correlation which detects an excess

of radio emission from the AGN. The q24 ratio (Appleton et al., 2004) is given by

q24 = log(
S24µm

S1.4GHz

). (8.4)

It is the ratio of ionizing photons from star formation in the 24 micron band, repro-

cessed in the dust, compared to the radio flux. A q24 value less than 0.03 indicates that

the galaxy has an excess of radio emission, probably from an AGN. Objects below this
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threshold in q24 are radio-loud (Ibar et al., 2008). Both the radio and 24 micron fluxes

have been k-corrected. A k-correction is necessary to standardize the bandpasses and

rest frame photometry (Hogg et al., 2002). Simpson used a M82 SED to k-correct the

24 micron fluxes for this research.

Figure 8.5: The q24 ratio shows the ratio of 24 micron flux to the 1.4GHz radio flux for all

the radio emitting galaxies in the combined sample. Galaxies with an excess of radio emission

have q24 values <0.03, and are classified as “Radio-Loud”.

Without spectral confirmation of the accretion mode of the AGN, I cannot confirm if

the sources are LERGs or HERGs, however, the Hine and Longair boundary for class

A (low energy) and class B (high energy) AGN is ≈ 1025 W Hz−1 (Hine & Longair,

1979). Hine and Longair classes divide low energy AGN from high energy. Combining

the q24 selection and the Hine and Longair classification, I can identify radio-loud, low

energy sources, that will comprise the LERGs for this analysis. Figure 8.5 shows that

most of the AGN lie below the q24 boundary, and therefore are radio-loud galaxies.

Radio-loud galaxies below 1025 WHz−1 are the LERGs.
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8.3 Testing the effect of AGN mass loss on host galaxies

With the sample of LERGs selected in the previous section, I can now test the radius

evolution scenario proposed in Fan et al. (2008). I compare the radius of LERGs and

massive elliptical galaxies, and their star formation activity. This will demonstrate the

effects of rapid mass loss due to powerful AGN feedback, assuming the duty cycle

hypothesis correctly leads me to select LERGs and the predecessors of HERGs.

8.3.1 Radius Comparison

AGN activity has been theorized to expand the radius of a galaxy (Fan et al., 2008).

If the radii of the radio mode and inactive elliptical galaxies are similar, this is evi-

dence that the effects of radio heating is common to all ellipticals, not just active radio

galaxies, and suggests that a radio AGN duty cycle must play a primary role in the

formation of all elliptical galaxies. The radio galaxies have been matched to three el-

liptical galaxies (nSersic > 2.5) with the closest stellar mass and redshift minimizing

the equation:

s2 = (Mradio −Mgal)
2 + (zradio − zgal)

2 (8.5)

where s, is the difference between the mass of the radio and elliptical galaxy and the

difference in redshift added in quadrature. Finally, the likelihood that the distribution

of the radii of the radio and elliptical galaxies are drawn from the same population is

calculated using a Kolmogorov-Smirnov test.

Kolmogorov-Smirnov test can be used to test if two samples are drawn from the same

population. It calculates the cumulative histograms for both samples and produces a

D value for the largest difference between two histogram bin heights. The p value is

calculated from D, the KS statistic.

Figure 8.6 shows the results of the KS test on the radius, the probability and D value,

binned by redshift. Initially the bin width is 0.1 wide in redshift, however, the KS test

requires a minimum of 4 objects to perform the test, so when necessary, the redshift
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bin size was expanded to accommodate at least 4 radio galaxies.

Figure 8.6: Results of KS test on radius of radio galaxies and the radius of ellipticals. When

possible the test was run on subsets in redshift bins 0.1 wide, however the bin size was increased

as much as necessary to include at least 4 radio galaxies.

Figure 8.6 identifies several redshift areas of interest that can be looked at in more

detail. I have divided the sample into three redshift bins: 0.1< z <0.8, 0.8< z <1.6,

and 1.6< z <3, and the bins have 133, 9, and 9 radio galaxies, respectively. The bins

have been selected to highlight the change in radius distribution after z≈0.8, whilst

keeping in mind the strong evolution of the radio luminosity function at redshifts of 2.

Table 8.2 shows the result of the KS test after adopting the new, broader set of redshift

bins.

Figure 8.7 shows the change in the mass-radius distributions with redshift. In the

lowest redshift bin, the top plot of the figure, the radio and elliptical galaxies occupy

the same space of the mass-radius plane. The KS test confirms with a low D value

there is only a small separation of the distribution, but the probability that the objects

are drawn from the same population is only 5 percent. Perhaps the apparent agreement
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Figure 8.7: Log stellar mass vs. Radius in kpc. Elliptical galaxies with Sersic indices of

greater than 2.5 are represented by black circles, and LERGs are represented by red asterisks.

The three redshift bins are 0.1-0.8 (top), 0.8-1.6 (middle), and 1.6-3 (bottom). Average errors

on the radii in each bin are: 3.6 kpc, 5.8 kpc, and 5.9 kpc, respectively. There is excellent

agreement between the radius distribution of the two groups in the lowest redshift bin where

completeness is highest, and the association holds, but becomes less clear at higher redshift.



8.3. Testing the effect of AGN mass loss on host galaxies 111

Table 8.2: KS test results of the radius distribution. The cumulative distribution functions for

each bin are presented in Appendix B.

Redshift D Probability

0.1-0.8 0.151 0.055

0.8-1.6 0.333 0.603

1.6-3 0.444 0.250

in size between the two populations would be better represented in the KS test results if

the sample was subdivided by mass into bins larger and smaller than 1011 solar masses.

This statistic appears to be at odds with the trend in the top plot of 8.7, and additional

analysis will be completed to interpret this result.

The central plot of Figure 8.7 shows an intermediate redshift bin between 0.8 and 1.6.

All of the radio galaxies are greater than 10.5 log mass, and have radii between 2 and

20 kpc. The underlying elliptical population may appear slightly smaller in radius than

the radio, but the KS probability is large enough to conclude that the radio AGN hosts

are a subset of the main elliptical population.

The lowest plot of Figure 8.7 is of the redshift bin 1.6 to 3. The radio galaxies in this

bin are less massive in general than those in previous bins. This is interesting because

it hints that the data are sensitive enough to show some hierarchical formation over this

large timescale. Also, the radio galaxies appear slightly smaller on average than the

more massive, nearby, radio galaxies.

From visual inspection, the elliptical galaxies at high redshift are not as closely matched

in mass, compared to the first bin; but this is, in part, because sampling becomes sparse

at these redshifts. The results of the KS test show that there is a comparatively larger

separation, D value, between the cumulative distributions of the radio and elliptical

radii. This seems to be mostly due to some large elliptical radii. Nevertheless, the KS

probability is sufficiently large to conclude that the radio and elliptical galaxies at this

redshift are drawn from the same population.
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8.3.2 Star Formation Activity

In addition to puffing up the elliptical galaxies, LERGs may quench star formation in

all ellipticals by balancing the cooling haloes (Best et al., 2006). The rest frame (U-V)

vs (V-J) plane is a diagnostic to determine the color, and therefore the star formation

activity of a galaxy (Williams et al., 2009). It has the advantage of not being sensitive

to reddening by dust, because the slope of the star formation and quiescent sequence

is the same as the change in color due to increasing Av (Williams et al., 2009). There-

fore, compared to other color-bimodality diagnostics such as UBV, it is less likely that

dusty star forming galaxies appear in the red sequence. I use data from Chris Simpson

which has been k-corrected and had rest-frame U-V and V-J colors by determining

the best-fitting spectral energy distribution from a library of 105 galaxy models con-

structed from two exponentially-declining bursts of star formation covering a range of

strengths, e-folding and cut-off times, metallicities, delay intervals, and extinctions.

The rest frame colors were calculated by Simpson using the MUSYC U, V, and J fil-

ters. I set the boundary for the red sequence as (U−V ) > 0.88(V −J)+0.89, because

there is a clear separation between the red sequence and the cloud in the lowest redshift

bin at this threshold.

Figure 8.8 shows that, out to a redshift of 1.6, the majority of low power AGN are

hosted in quenched, red galaxies. At redshifts greater than 1.6, the radio mode hosts

are in the star forming part of the UVJ diagram. The broad distribution of the radio

galaxies across the V-J axis indicates that some radio galaxies are not star forming

galaxies, and others are dusty star forming galaxies. Additionally, the radio galaxies

in the highest redshift have 1.4GHz luminosities near the Hine and Longair boundary,

and this information in conjunction with the knowledge that the number density for

LERGs/Radio Mode AGN sharply decreases at redshifts greater than two (Simpson

et al., 2012), may lead to the conclusion that the radio galaxies in this bin are not

LERGs, but quasar mode HERGs which are theorised to be responsible for initialising

the duty-cycle of star formation quenching by driving the gas into the halo or out of

the galaxy entirely (Best et al., 2014).
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Figure 8.8: Star formation activity in 3 redshift bins (0.1 < z < 0.8, 0.8 < z < 1.6, and1.6 <
z < 3). The yellow line represents the boundary between the red sequence and blue cloud.

Most radio galaxies (represented by red asterisks) are in the red sequence, except for the highest

redshift bin. Background points show the location of all the galaxies in that redshift bin, and

clearly show the locations of the blue cloud and red sequence.
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8.4 Discussion

Are the LERGs the same host in different phases of the duty-cycle, or two inherently

different objects with a few similar characteristics? The K-S tests suggest that LERGs

and the control elliptical sample are from the same distribution. At this point, it is

not possible to distinguish the two populations. A matched, statistically significant

sample at high redshift is required. If the results here are a good representation of the

actual population then the presence of a LERG does not indicate that a HERG rapidly

expelled mass from the galaxy at earlier times, and caused the radius of these galaxies

to expand.

In the Fan et al paper, it is suggested that the effective radius of ellipticals which

once hosted a powerful quasar expands after suffering massive mass loss due to AGN

winds. If the duty cycle hypothesis enables me to properly select the galaxies, the

LERGs in figure 8.7 should increase in size up to twice original effective radius over a

timescale of ≈ 2 gigayears. Assuming I have correctly selected LERGs as the progeny

of HERGs, then the change in radius is much larger than what Fan et al predicts. The

average radius of the high redshift galaxies is approximately 5 kpc and can increase up

to several tens of kpc in the present epoch. This surpasses Fan et al’s prediction.

Additionally, Fan et al make a distinction between the growth of large and small ellipti-

cals. They say that if a galaxy is less than 2×10 M⊙, the AGN is too weak, and growth

is driven instead by supernova and stellar winds. Have I actually selected these galax-

ies instead? Four of the nine LERGs in the highest redshift bin fall below this mass

limit, however, I have looked at their radio luminosities and can confirm that they are

active galaxies with powerful AGN, see figure 8.5. So, although there are some less

massive galaxies present in the sample, they should display the behavior associated

with powerful AGN activity.

Finally, there is additional evidence that 1.4 GHz radio galaxies are not a separate mor-

phological class from general radio galaxies. Rees et al. (2016) found that nearly 50

per cent of radio-AGN possess a VLBI detected counter- part, and that those objects

with a VLBI counterpart show no discernible bias towards specific stellar masses, red-
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shifts or star formation. This is at odds to the DCH that, in its simplest form, relies on

a strong dichotomy between HERGs and LERGs.

Further analysis of this dataset may yield better results. Additionally large, deep radio

surveys will complete samples out to higher redshift, populating the highest redshift

bin, and allowing better comparisons. For now, I have isolated radio-mode sources and

ellipticals from K band selected catalogs and have observed their colors and location on

the mass-radius plane at various redshifts. It is clear that the high mass M∗ > 1011M⊙

region becomes more populated by LERGs and quiescent ellipticals in the present day

than at redshifts around 3. Additionally, from the color information, I confirm that the

host galaxies of the LERGs decrease in star formation over time, and become red.

8.5 Summary

Combining data from the COSMOS and UKIDSS fields, I tested the theory that in-

termittent injection of feedback from LERGs into the intergalactic medium forms qui-

escent elliptical galaxies by balancing the cooling from the galactic halos. I conduct

KS tests on the distribution of the radii of LERGs and elliptical galaxies out to a red-

shift of 3 and find that the distributions are drawn from the same population. Plots

of the mass-radius plane agree with the KS test results, and UVJ plots show that the

star formation activity is quenched in LERG hosts out to a redshift of approximately

2. The similarity of the radii between active and passive elliptical galaxies agrees with

the DCH which says they are the same galaxy but in different phases of the duty cycle.

However, the LERG star formation activity seen in 2 of the 3 redshift bins is contrary

to the DCH’s proposal of AGN quenching star formation. Spectral classification of

LERGs will clarify if this shows a flaw in the DCH, or shows a lack of precision in

one’s ability to classify AGN without spectra.



Chapter 9

Part Two Conclusions and Future

Work

In this part, I test the theory that rapid mass loss can cause a dramatic size increase

in AGN hosts (Fan et al., 2008). I also test the duty cycle hypothesis (Best et al.,

2014), which says the star formation in massive elliptical galaxies is quenched by

AGN feedback.

In chapter 6, I describe the surveys I combine to obtain the maximum area coverage

that is necessary to recover enough low luminosity radio-loud AGN hosts. All of the

research in part 2 was conducted with publicly available survey data. I also used a

publicly available catalog of morphological parameters derived from HST data.

In chapter 7, I guide the reader through the process of deriving essential physical quan-

tities from the photometric survey data, and demonstrate the selection process of low

luminosity radio loud AGN (LERGS). Finally, I present three tests of the galaxy evo-

lution theories. First, I examine a plot of mass versus radius of LERGS compared to

a control sample of non active elliptical galaxies in three different redshift bins. The

LERGS do not appear to have a preferential mass range compared to the control sam-

ple, nor do they appear to have significantly larger radii. This test of the Fan theory

proves negative, however it supports the duty cycle hypothesis, in which non active
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ellipticals and LERGS are the same type of objects in different phases of the duty cy-

cle. This is confirmed by a K-S test that does not produce a critical value high enough

to conclude that the LERGS are drawn from a different population than the control

sample. The third test, an analysis of the star formation activity of the LERGS shows

that they are mostly found in the non star formation part of the UVJ diagram, indicat-

ing that although these galaxies host low luminosity radio loud AGN, they share the

star formation and radial properties of non active elliptical galaxies. However, a few

galaxies fall in the star formation part of the diagram and these have been flagged for

follow up in future work.

More future work could be done improving mass estimation and radius estimations

and increasing the sample size of objects with reliable radius estimations. More radii

are needed in the higher redshift bins to begin to make a significant comparison. Addi-

tionally, the research would benefit from matching the control sample in magnitude as

well as redshift and mass. I will also investigate the cause of the low probability from

the KS test for the first bin in 8.7. The figure 8.6 suggests that within the 0.1 < z < 0.8

bin, there is not good agreement between redshifts of 0.4-0.5. However, the statistics in

all other bins are high enough to confirm the null hypothesis. I will check the matching

of ellipticals and LERGs in this range, and experiment with different weightings of the

redshift and mass matching. I plan to write up this research as a paper after improv-

ing the classification of the LERG sample with spectroscopy and/or investigating the

LERGs that appear in the dusty star former part of the UVJ diagram.



Appendix A

Star/Galaxy/Quasar Separation

A.1 Literature Review

An unavoidable step in doing science with large surveys is classifying objects and

isolating the population of interest in a timely and reliable fashion. Also photometric

redshifts, which are calculated using template fitting, rely on correctly identifying the

type of object. For the work in this thesis, a large sample size of objects is necessary

to do meaningful statistical analysis. However, separating over 200,000 objects by eye

is not time efficient and is prone to error. There are methods to separate stars from

galaxies, but quasars are usually separated by eye or spectra.

The isolation of the quasar population is very important for statistics with the galaxy

population. Since quasars are very luminous, the mass to light ratio could make them

appear as very high mass galaxies, if they are left in the galaxy population. Therefore,

it is necessary to exclude them from the galaxy population. I will build upon the

currently available star/galaxy separation techniques to create a quasar identification

method. The advantages and disadvantages of several of the most popular star/galaxy

separations are discussed below.

Many surveys use color plots to distinguish stars from galaxies (Daddi et al., 2004;

Caputi et al., 2011; Baldry et al., 2010; Muzzin et al., 2013). These plots can show
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two distinct groups of objects. The objects that form a fairly coherent sequence are

classified as stars, and those that appear in a large cloud are galaxies. These plots

work because a star is characterized by a single blackbody curve, therefore stars are

constrained to follow a tight locus of colors. Galaxies are composed of many stars and

therefore their SED is composed of many blackbody curves. This results in the colors

of galaxies not being as tightly constrained. The reddening effects of cosmological

redshift also affect galaxies, and so in addition to having composite SEDs the galaxies

also depart the color locus that stars follow due to being redshifted.

There are several disadvantages to this method. First, the classification is highly sensi-

tive to the photometric quality of the bandpasses. Secondly, the dividing line for stars

and galaxies must be decided upon visually, and there is usually not a completely clear

division between the two populations. Third, and most importantly for this work, there

is not an easy way to identify quasars.

Another star/galaxy separation tool is the Class Star output in SourceExtractor (Bertin

& Arnouts, 1996). The Class Star output is a morphological discriminant that uses a

neural networks code based on the size on the sky to determine if the object is a star or

galaxy. This method is reliable to a certain magnitude, but results become less reliable

when the signal-to-noise quality is poor.

The Bayesian algorithm developed by Simpson et al. (2013) delivers an a priori method

of classifying stars and galaxies, and also outputs a reliability factor for the classifica-

tion. SED classification is robust at higher redshifts where morphological information

is less reliable. The program works by fitting SEDs of different object types to the

object. The program uses prior knowledge about morphology, and expected number

density to guide the classification. The best fit is determined by the formula:

Pg

Ps

=
1− S

S

Ng(K)

Ns(K)

∫ zmax

zmin
P (z|K) exp(−χ2

g/2)dz

exp(−χ2
s/2)

(A.1)

which compares the probability that an object is a galaxy to the probability that an

object is a star. Sometimes this is referenced as Pgalstar. S is the Class Star parameter

from SourceExtractor which is useful for distinguishing between nearby galaxies and
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stars. N is the expected number density of stars (Jarrett, 1992), and galaxies (Gardner

et al., 1993), and z min/max are set by the user and are the limits of the photometric

redshifts. P (z|K) is the prior of the redshift distribution for galaxies, and χ2 is the

fit of the template to the SED, the product of these two quantities is from EAZY’s

(Brammer et al., 2008) output.

When run on a spectroscopic sample it had 4/305 stellar mis-classifications, and 20/3116

galaxy mis-classifications (Simpson et al., 2013). In addition to being a reliable star/galaxy

separation technique that outputs probability of each classification, the Bayesian method

should be easily expandable to include the probability that the object is a quasar.

A.2 Bayesian Star/Galaxy/Quasar Separation

The two main steps necessary to extend Simpson et al’s (2013) method to include

quasars are: (1) derive the quasar analogue to equation A.1, and (2) make quasar tem-

plates that unambiguously fit quasars better than stars and galaxies.

The first step is relatively straightforward. First I constrain all the probabilities add up

to 1. That is, Pg + Ps + Pq = 1. Then I compare the probability that the object is a

quasar to its probability of being a star or galaxy. It follows from equation A.1 that:

Pq

Ps

=
Nq(K)

Ns(K)

∫ zmax

zmin
P (z|K) exp(−χ2

q/2)dz

exp(−χ2
s/2)

(A.2)

Pg

Pq

=
Pg

Ps

/
Pq

Ps

(A.3)

describe the relationship of the probabilities that a quasar is a star or galaxy. The

probabilities are normalized to attain the absolute probabilities.

Note that there is no source extractor Class Star value for the Pqsostar. This is because

SourceExtractor only assigns a value between 0 and 1 of an object being a point source

or not. Also, the quantity P (z|K), the redshift distribution of quasars in different

magnitude bins in equation A.2, is created by taking a slice in K band magnitude and
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redshift space and calculating the absolute magnitude of a quasar in that slice. Then

the quasar luminosity function (Croom et al. 2004, Richards et al. 2006) is used to get

the space density at that luminosity. Then the space density is multiplied by an area of

1 degree2 on the sky to get the number of quasars per square degree in a 1-magnitude

wide bin with that K band magnitude in that redshift slice. This quantity is proportional

to P (z|K), and the normalization is done by EAZY.

The second step, creating a good set of templates that yield low χ2 values, is essential

for the Bayesian technique to work. The templates used for the photometric redshift

calculations have been demonstrated by this work to be a good set of templates for the

data. A variety of templates were used to achieve the best fit for various objects. A set

of stellar spectral templates of Allard et al. (2011) were used. These templates cover

a wide range of effective temperatures and surface gravities. From these templates,

additional templates for main-sequence binaries have been constructed (Simpson et al.,

2013). The galactic photometric redshifts use a template set by Charlot and Bruzal

(2007). This template set is based on Bruzual & Charlot (2003), and includes models

of galaxies with pulsating AGB stars. Such objects are very red, and very bright, and

can produce excess near-infrared flux. If left unaccounted for they could cause an

incorrect template fit during the redshift determination process. These are the same

templates that were used in Simpson et al. (2013) and should work equally well for

this data set.

Simpson made the quasar templates from a combination of templates from SDSS QSO

spectrum of Vanden Berk et al. (2001) and the composite QSO SED of Richards et al.

(2006). Mildly reddened spectra were created using the Pei (1992) parametrisation of

the SMC reddening law. Then the spectral indices of the blue and red elements (i.e.

above and below λ=14150 Å) were calculated by the following formula:

Snew = Sold ×
(

λ

λdustbump

)∆α

(A.4)

to diversify the template set by accounting for variations in the AGN and dust compo-

nent of the quasar. ∆α is the amount by which the spectral index was varied, and in
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this instance it was incremented in steps of 0.1 over the range -0.3 to 0.3.

EAZY also requires a template error function to be created. The template error function

is a comparison between the fit of the template SED to the observed SED. The stellar

templates do not require a template error function because it is believed that the stellar

templates accurately cover the range of SEDs, and galaxy templates already have a

template error function, but the new quasar template set does not. So, after creating

many permutations of the quasar spectra, the template error function was created in

a method similar to Brammer et al. (2008). First, I use EAZY to find the best fitting

Figure A.1: This figure shows the quasar template error function before the absolute value of

the median was taken. It indicates that the Spitzer data are not well fit by the current set of

templates. The decline in the IR and scatter in the rest frame UV needs to be investigated in

more detail to determine all the contributing factors.

quasar spectral template for each spectrally confirmed quasar in our sample. Then,

I calculate the separation of the observed and the template flux at each rest-frame

wavelength, see figure A.1. Then the absolute value of the residuals are binned by

wavelength and extrapolated to the ends of the wavelength range of the template grid.
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A.3 Preliminary Results

The program was tested on a spectroscopic subset comprised of the zCOSMOS data

with the spectroscopic confidence class of 3 or 4 for stars and galaxies, and 13 or 14 for

quasars (which claims to have 99.5% confidence in quality of the redshift) and a sample

of 107 broad line AGN from the COSMOS/XMM survey (Trump et al., 2007). Only

39 out of 445 stars were misclassified. 64/5538 galaxies, and 62 out of 191 quasars

were mis-classified. The distribution of sources can be seen in Figure A.2 and Table

A.1. Figure A.2 shows the probability plane of Log10(
Pg

Pq
) vs. Log10(

Pg

Ps
) . The position

of the points show the classification of the object based on the Bayesian algorithm, and

the colors represent the spectral classification. Objects in Quadrant I are assigned as

galaxies. Objects in Quadrant II and III are classified as stars, and objects in Quadrant

IV are quasars. Green represents galaxies, red represents stars, and yellow represents

quasars, as defined by zCOSMOS spectra.

Table A.1: The spectroscopic “real” classification is read along the row, and the Bayesian

assigned type is read down the column, e.g. there were 62 quasars classified as galaxies.

Assigned Type

Real Type G S Q

Galaxy 5474 36 28

Star 35 406 4

Quasar 62 0 129

Another significant result is that when the entire catalogue is run through the classifi-

cation program, the quasars are grossly over represented. The quasar luminosity func-

tion (Croom et al., 2004; Richards et al., 2006) predicts approximately 300 quasars per

square degree of sky, and I calculate about 10 times as many. However, despite altering

the quasar sky density, templates, and template error function, it was not possible to

prevent the mis-classification of quasars and galaxies.
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Figure A.2: Results of the Star/Galaxy/Quasar separation. The color of the points represents

the spectroscopic classification: red=star, green=galaxy, and yellow=quasar. The position on

the plot represents the Bayesian classification: Quadrant I=galaxy, Quadrant II & III = star, and

Quadrant IV = quasar. Although the stars and galaxies are well separated, the quasars tend to

spread into the galaxy quadrant.



Appendix B

Cumulative histograms for KS tests

Here I present the cumulative histograms that accompany the KS test results presented

in table 8.2. I have plotted cumulative histograms of two populations to determine if

the populations are identical, or not. The histograms are for the redshift bins: 0.1 <

z < 0.8, 0.8 < z < 1.6, and, 1.6 < z < 3.0. The control galaxies, plotted in black,

are identified as elliptical galaxies without radio AGN activity. The red histogram is

comprised of the the low energy radio galaxies (LERGs). In the lowest redshift bin, the

histograms show that the populations are almost identical, except for a slight difference

below 6 kpc. The higher redshift bins are limited by a small amount of data. There

are only 9 LERGs in each of the higher redshift bins. There may be some agreement

between the populations in the middle redshift bin, but in the 1.6 < z < 3.0 bin, the

cumulative distribution functions are very different.
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Figure B.1: The cumulative histograms of the control galaxies (non-active ellipticals), black,

and the LERGs, red. The plots are in order of increasing redshift from top to bottom, they are

0.1 < z < 0.8, 0.8 < z < 1.6, and, 1.6 < z < 3.0. There is good agreement between the

populations in the 0.1 < z < 0.8 bin. The other redshift bins show large discrepancies between

the control population and the LERGs.
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