McLaughlin, G, Morris, N, Kavanagh, PV, Power, JD, Dowling, G, Twamley, B, O’Brien, J, Hessman, G, Murphy, B, Walther, D, Partilla, JS, Baumann, MH and Brandt, SD

Analytical characterization and pharmacological evaluation of the new psychoactive substance 4-fluoromethylphenidate (4F-MPH) and differentiation between the (±)-threo- and (±)-erythro- diastereomers

http://researchonline.ljmu.ac.uk/id/eprint/5310/

Article

Citation (please note it is advisable to refer to the publisher’s version if you intend to cite from this work)

LJMU has developed [LJMU Research Online](http://researchonline.ljmu.ac.uk/) for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.

The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/
Analytical characterization and pharmacological evaluation of the new psychoactive substance 4-fluoromethylphenidate (4F-MPH) and differentiation between (±)-threo- and (±)-erythro- diastereomers.

Gavin McLaughlin, a,b* Noreen Morris, a Pierce V. Kavanagh, b John D. Power, b,c Geraldine Dowling, b,d Brendan Twamley, e John O’Brien, e Gary Hessman, e Brian Murphy, d Donna Walther, f John S. Partilla, f Michael H. Baumann, f and Simon D. Brandt g

a Department of Life and Physical Sciences, School of Science, Athlone Institute of Technology, Dublin Road, Westmeath, Ireland
b Department of Pharmacology and Therapeutics, School of Medicine, Trinity Centre for Health Sciences, St. James’s Hospital, Dublin 8, Ireland
c Forensic Science Ireland, Garda HQ, Phoenix Park, Dublin 8, Ireland
d School of Chemical and Pharmaceutical Sciences, Dublin Institute of Technology, Dublin 2, Ireland
e School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
f Designer Drug Research Unit of the Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
g School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK

*Correspondence to: Gavin McLaughlin, Department of Pharmacology & Therapeutics, School of Medicine, Trinity Centre for Health Sciences, St. James’s Hospital, Dublin 8, Ireland. E-Mail: gmclaug@tcd.ie or gavinmclaughlin@research.ait.ie

\[
\begin{align*}
\text{N} & \quad \text{O} \\
\text{H} & \quad \text{O} \\
\text{N} & \quad \text{O} \\
\text{H} & \quad \text{O} \\
\end{align*}
\]

Methylphenidate

\[
\begin{align*}
\text{N} & \quad \text{O} \\
\text{H} & \quad \text{O} \\
\text{N} & \quad \text{O} \\
\text{H} & \quad \text{O} \\
\end{align*}
\]

4-Fluoromethylphenidate
Table of contents

1. Examples of powdered 4F-MPH and tablet products.
2. TLC analysis of vendor sample containing both (±)-threo- and (±)-erythro-racemates of 4F-MPH, followed by LC-MS analysis of the isolated bands.
3. Preparation of 4F-MPH tablets for GC-MS/LC-MS analysis
4. GC-induced thermal degradation of 4-fluoromethylphenidate isomers (4F-MPH) to methyl 4-fluorophenyl acetate (7.26 min).
5. EI-MS data obtained for vendor samples 1-3.
6. ESI-MS data obtained for vendor samples 1-3.
7. 13C NMR spectra obtained for the isolated (±)-erythro- and (±)-threo racemates of 4F-MPH (HCl salt in DMSO-d$_6$).
8. 1H and 13C NMR spectra obtained for the isolated (±)-erythro- and (±)-threo racemates of 4F-MPH (Free Base in CDCl$_3$)
9. 13C and 1H NMR spectra obtained for one of the powdered 4F-MPH products identified as mixed (±)-erythro- and (±)-threo- racemates (HCl salt in DMSO-d$_6$).
10. 13C and 1H NMR spectra obtained for one of the powdered 4F-MPH products identified as the (±)-threo- racemate (HCl salt in DMSO-d$_6$)
11. Two-dimensional NMR experiments
 • Heteronuclear single quantum coherence spectroscopy (HSQC)
 • Heteronuclear Multiple Bond Correlation (HMBC)
12. IR spectra for isolated (±)-threo-racemate, isolated (±)-erythro-racemate, and vendor samples 1-3
13. Additional x-ray crystal data for isolated (±)-threo- and (±)-erythro racemates of 4F-MPH
14. High Resolution Mass Spectrometry data obtained for isolated (±)-threo-racemate, isolated (±)-erythro-racemate, and vendor samples
1. Examples of powdered 4F-MPH and tablet products
2. TLC analysis of vendor sample containing both (±)-threo- and (±)-erythro-racemates of 4F-MPH, followed by LC-MS analysis of the isolated bands.
3. Preparation of 4F-MPH tablets for GC-MS/LC-MS analysis

For analysis of the 4F-MPH tablets by gas chromatography mass spectrometry (GC-MS), the tablet was crushed using a mortar and pestle and 10 mg was added to 1 mL of methanol. This solution was added to a Corning® Costar® Spin-X® centrifuge tube filter (cellulose acetate membrane, 0.45 µm) (Corning Inc, United States) and centrifuged at 2500 rpm for 3 minutes. Furthermore, 100 µL of this filtered solution was added to 900 µL methanol in a GC vial.

For analysis of the 4F-MPH tablets by liquid chromatography mass spectrometry (LC-MS), the tablet was crushed using a mortar and pestle and 10 mg was added to 1 mL of acetonitrile/water (1:1) with 0.1% formic acid. This solution was added to a Corning® Costar® Spin-X® centrifuge tube filter (cellulose acetate membrane, 0.45 µm) (Corning Inc, United States) and centrifuged at 2500 rpm for 3 minutes. Furthermore, 20 µL of this filtered solution was added to 980 µL acetonitrile/water (1:1) with 0.1% formic acid in a LC vial.
4. GC-induced thermal degradation of 4-fluoromethylphenidate isomers (4F-MPH) to methyl 4-fluorophenyl acetate (7.26 min)
5. EI-MS data obtained for vendor samples 1-3

Vendor 1: both (±)-threo- and (±)-erythro racemates of 4F-MPH (Powder)

Vendor 2: (±)-threo-4F-MPH only (Powder)
Vendor 3: (±)-threo-4F-MPH only (Tablet)

6. LC-ESI-MS of vendor samples 1-3
Vendor 1: both (±)-threo- and (±)-erythro racemates of 4F-MPH (Powder)
McLaughlin et al. Supporting Information Drug Testing and Analysis

Vendor 2: (±)-threo-racemate of 4F-MPH (Powder)
7. 13C NMR spectra obtained for the isolated (±)-erythro- and (±)-threo-racemates of 4F-MPH (HCl salt in DMSO-d_6).
8. 1H and 13C NMR spectra obtained for the isolated (±)-erythro- and (±)-threo racemates of 4F-MPH (Free Base in CDCl$_3$)
McLaughlin et al. Supporting Information Drug Testing and Analysis

(±)-threo-4F-MPH

(±)-threo-4F-MPH
9. 13C and 1H NMR spectra obtained for one of the powdered 4F-MPH products identified as mixed (±)-erythro- and (±)-threo- racemates (HCl salt in DMSO-d$_6$)
10. 13C and 1H NMR spectra obtained for one of the powdered 4F-MPH products identified as the (±)-*threo*-racemate (HCl salt in DMSO-d_6)
11. Two-dimensional NMR experiments

- Heteronuclear single quantum coherence spectroscopy (HSQC)

(±)-threo-4F-MPH raceme (HCl salt in DMSO)

(±)-erythro-4F-MPH raceme (HCl salt in DMSO)
4F-MPH vendor product identified as (±)-threo- and (±)-erythro-4F-MPH racemes (HCl salt in DMSO)

4F-MPH vendor product identified as (±)-threo-4F-MPH racemate (HCl salt in DMSO)
Heteronuclear Multiple Bond Correlation (HMBC)

(±)-threo-4F-MPH racemate (HCl salt in DMSO)

(±)-erythro-4F-MPH racemate (HCl salt in DMSO)
4F-MPH vendor product identified as \((\pm)-\text{threo}\) and \((\pm)-\text{erythro}\)-4F-MPH racemates (HCl salt in DMSO)

4F-MPH vendor product identified as \((\pm)-\text{threo}\)-4F-MPH racemate (HCl salt in DMSO)
12. Infrared Spectroscopy - IR spectra for isolated (±)-threo-racemate, isolated (±)-erythro-racemate, and vendor samples 1-3
Powdered product containing (±)-threo-4F-MPH racemate

Powdered product containing mixture of (±)-erythro and (±)-threo-4FMPH racemate
Tablet containing (±)-threo-4F-MPH racemate
13. X-ray crystallography supporting information

Left: *erythro* salt hydrogen bonded dimer with hydrogen atoms omitted for clarity. The cell is shown. Only atoms involved in H-bonding interactions are labelled. Right: *threo* salt hydrogen bonding network extending parallel to the b-axis.
14. High resolution mass spectrometry data obtained for isolated (±)-threo-racemate, isolated (±)-erythro-racemate, and vendor samples.

<table>
<thead>
<tr>
<th>Sample Description</th>
<th>Meas. m/z</th>
<th>Ion Formula</th>
<th>m/z</th>
<th>err [mDa]</th>
<th>err [ppm]</th>
<th>rdb</th>
<th>N-Rule</th>
<th>e° Conf</th>
<th>mSigma</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>252.139659</td>
<td>C14H19FNO2</td>
<td>252.139433</td>
<td>0.2</td>
<td>0.8</td>
<td>8.5</td>
<td>ok</td>
<td>even</td>
<td>4.3</td>
</tr>
</tbody>
</table>

SmartFormula Settings

Low value of mSigma indicates good isotopic pattern match.
Sample ID
Submitter
Station
Supervisor
Analysis Name
Acquisition Date
Sample Description

```
<table>
<thead>
<tr>
<th>Meas. m/z</th>
<th>#</th>
<th>Ion Formula</th>
<th>m/z</th>
<th>err [mDa]</th>
<th>err [ppm]</th>
<th>rdb</th>
<th>N-Rule</th>
<th>Conf</th>
<th>mSigma</th>
</tr>
</thead>
<tbody>
<tr>
<td>252.139854</td>
<td>1</td>
<td>C14H19FNO2</td>
<td>252.139433</td>
<td>0.4</td>
<td>1.7</td>
<td>5.5</td>
<td>ok</td>
<td>even</td>
<td>6.2</td>
</tr>
</tbody>
</table>
```

SmartFormula Settings

Low value of mSigma indicates good isotopic pattern match.
McLaughlin et al. Supporting Information Drug Testing and Analysis

Trinity College Dublin
Bruker Open Access LC-MS - Formula Identification Report

Sample-ID
Submitter
Supervisor
Analysis Name: GML_VENDOR_1_RA8_01_4050.d
Acquisition Date: 06/07/2016 15:10:46
Sample Description

![Graph](image)

Means, m/z # Ion Formula m/z err [mDa] err [ppm] rdb N-Rule e¯ Conf mSigma

<table>
<thead>
<tr>
<th>m/z</th>
<th>Ion Formula</th>
<th>m/z</th>
<th>err [mDa]</th>
<th>err [ppm]</th>
<th>rdb</th>
<th>N-Rule</th>
<th>e¯</th>
<th>Conf</th>
<th>mSigma</th>
</tr>
</thead>
<tbody>
<tr>
<td>252.139564</td>
<td>C14H19FNO2</td>
<td>252.139433</td>
<td>0.2</td>
<td>0.8</td>
<td>5.5</td>
<td>ok</td>
<td>even</td>
<td>2.8</td>
<td></td>
</tr>
</tbody>
</table>

SmartFormula Settings

Low value of mSigma indicates good isotopic pattern match
McLaughlin et al. Supporting Information Drug Testing and Analysis

Trinity College Dublin
Bruker Open Access LC-MS - Formula Identification Report

Sample-ID
Submitter
Analysis Name: GML_Vendor_2_RB1_01_4051.d
Acquisition Date: 06/07/2016 15:14:03

Sample Description

Meas. m/z # Ion Formula m/z err [mDa] err [ppm] ndb N-Rule e¯ Conf mSigma
252.140197 1 C14H19FNO2 252.139433 0.8 3.0 5.5 ok even 3.4

SmartFormula Settings
Low value of mSigma indicates good isotopic pattern match

Bruker Compass DataAnalysis 4.1 printed: 06/07/2016 15:21:11 Page 1 of 1
Analysis Name D:/Data/GML_Vendor_2_RB1_01_4051.d
<table>
<thead>
<tr>
<th>Meas. m/z</th>
<th>#</th>
<th>Ion Formula</th>
<th>m/z</th>
<th>err [mDa]</th>
<th>err [ppm]</th>
<th>ndb</th>
<th>N-Rule</th>
<th>Conf</th>
<th>mSigma</th>
</tr>
</thead>
<tbody>
<tr>
<td>252.139433</td>
<td>1</td>
<td>C14H19FNO2</td>
<td>252.139433</td>
<td>-0.4</td>
<td>-1.7</td>
<td>5.5</td>
<td>ok</td>
<td>even</td>
<td>0.7</td>
</tr>
</tbody>
</table>

SmartFormula Settings

Low value of mSigma indicates good isotopic pattern match.