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Abstract— We present Random Forest, Support Vector 

Machine and Feedforward Neural Network models to classify 

2519 variable star light curves. These light curves are generated 

from a reduction of non-survey optimized observational images 

gathered by wide-field cameras mounted on the Liverpool 

Telescope. We extract 16 features found to be highly informative 

in previous studies and achieve an area under the curve of 0.8495 

using a feedforward neural network with 50 hidden neurons 

trained with stratified 10-fold cross-validation with 3 repeats. We 

propose using an automated visual feature extraction technique 

by transforming bin-averaged phase-folded light curves into 

image based representations. This eliminates much of the noise 

and the missing phase data, due to sampling defects, should have 

a less destructive effect on these shape features as they still 

remain at least partially present. There is also no need for feature 

engineering as the learning algorithms can learn shape features 

directly from the light curves. We produced a set of scaled 

images based on a threshold of data points in each pixel. Training 

on the same feedforward network, we achieve an area under the 

curve of 0.6348. By introducing the Period and Amplitude as 

features into this dataset therefore giving meaning to the 

dimensions of the image we show this improves to 0.7952. Our 

current models lack translational-invariance and the method 

may be better suited to specific sub-classification problems 

common in the variable object hierarchical multi-class problem. 

Keywords—Data analysis; Machine Learning; Light Curve 

Classification; Variable Stars; Visual feature extraction 

I. INTRODUCTION 

Time-domain Astronomy is an active field of discovery 
driven by recent technological advancements in observation, 
storage and data processing. Recent years have allowed for 
extended sky surveys such as the Sloan Digital Sky Survey 
(SDSS) [1] and the Gaia satellite which is mapping billions of 
stars allowing their fundamental parameters to be determined 
[2]. In the next few years this capability will grow through the 
deployment of even more powerful surveys such as the Large 
Synoptic Survey Telescope (LSST) generating approximately 
20 TB of raw data every night [3]. These surveys are capable 
of regularly gathering data on wide regions of the sky. The 
regularity of this sampling is defined by the survey cadence. 
Each survey is optimized to a given cadence describing the 
approximate duration between observations of the same area of 
sky. 

Despite the immense timescales involved in many 
Astrophysical processes, a number of variable phenomena 
occur within more human-comprehendible time scales. Few of 
these events are as well-studied as variable stars. These stars 
are at a volatile stage in their evolution resulting in perceived 
brightness fluctuations due to physical processes in their 
atmospheres. These stars allow for the study of stellar 
evolution and galactic structure [4]. Additionally, certain types 
of variable stars such as RR Lyraes or Delta Cepheids exhibit 



specific luminosity-period relationships that allow the 
determination of their distances from Earth [5, 6]. Other 
important variable light sources are eclipsing binary systems. 
These systems exhibit periodic brightness changes from binary 
stars eclipsing each other due to the orbital plane of the system 
having a low inclination relative to the Earth [7]. 

It is of great importance to reliably identify and monitor 
these objects and large wide-field sky surveys are an ideal 
method of accomplishing this task. The quantity of data from 
these surveys makes this a daunting exercise. Fortunately, the 
field of machine learning has provided techniques that can be 
developed for the automated classification of light sources. 
There have been a number of studies investigating the 
production of both general purpose and more specific learned 
classification models through the extraction of useful features 
from the data of known variable objects. 

Debosscher et al. developed a method of fitting harmonic 
models to light curves using multiple periods identified by a 
Lomb-Scargle Periodogram. These models were used to extract 
Fourier-based features for the production of learned 
classification models [8]. These features were extended into a 
set of 30 plus descriptive properties for light curves by adding 
non-periodic features by Richards et al [9]. These features were 
then processed into 16 highly informative features for general 
purpose variable star classification in the form of the Upsilon 
software package by Kim et al. [10]. Nun et al. have collated 
these feature extraction methods into the Feature Analysis for 
Time Series package [11]. Pichara et al. have also proposed 
using meta-classification allowing the use of multiple high-
performance, specific classification models named experts in 
general purpose classification tasks [12]. Puegert et al. have 
also proposed the extraction of shape-defining features from 
phase-folded light curves through the coefficients of fitted 
chains of polynomial models. These features were then used to 
classify eclipsing binary light curves using learned models 
built using a feedforward neural network [7]. 

These studies focused on datasets comprised of well-
sampled fixed-cadence light curves. How would these methods 
perform on a different style of light curves derived from wide-
field observations without a guaranteed cadence? These 
observations can have a significantly uneven distribution in 
time for individual light sources [13]. An example of one of 
these datasets is the observations produced by the Small 
Telescopes Installed at the Liverpool Telescope (STILT) [14]. 
The cameras are mounted to the frame of the Liverpool 
Telescope aiming co-parallel with the main telescope’s field of 
view capturing a ten second exposure every minute whilst the 
telescope is in operation. They have no control over the 
position of the telescope and therefore no ability to influence 
their observational cadence. These observations from March 
2009 to March 2012 have been processed into a dataset 
containing over 27 million individual light sources. 

In this paper we introduce the initial results and problems 
from the application of the methods from these previous 
studies to the STILT observations and propose a method of 
automatically extracting shape-based features from the phase-
folded light curves through the use of multiple learning 
algorithms trained to recognize visual features mirroring the 

methodology employed manually by astronomers. In the future 
additional topologies will be introduced to further power this 
feature extraction and allow for the classification of super and 
sub-classes in a large hierarchical multiclass problem. 

The rest of this paper is structured as follows. In Section 2, 
a selection of variable star light curves, generated from the 
STILT observations through coordinate comparison with the 
American Association of Variable Star Observers (AAVSO) 
variable star index catalogue is presented. Our method of 
analysing this light curve dataset is also introduced in this 
section. Section 3 presents the results of classifiers trained 
using a number of algorithms on features from previous studies 
as well as from our newly proposed. In Section 4 the study is 
summarised and we propose the direction of future work. 

II. DATASET AND METHOD 

The Small Telescopes Installed at the Liverpool Telescope 
(STILT) dataset is a wide field object SQL database. It 
contains 1.24 billion separate object observations of 27.74 
million independent stellar objects. It was generated through 
the pre-processing of observational images gathered by the 
STILT instruments [14]. This database contains light curves for 
many objects, including many of unknown classification. 
Reliable class information is required for a subset of objects in 
the database in order to test classification methods on these 
light curves. The optimal method to extract this class 
information is through a comparison between the STILT data 
to a variable star catalogue. The American Association of 
Variable Star Observers (AAVSO) operates one of the largest 
and best-updated catalogues of nearby bright variable stars in 
the world, The AAVSO International Variable Star Index. This 
catalogue does not contain any of the AAVSO gathered light 
curves but it does contain data on 373,565 known variable stars 
including their name, coordinates in right ascension and 
declination and their currently identified class. The coordinates 
of these variable stars were matched to objects in the STILT 
database with a tolerance of 3.6 arc seconds (seemingly 
sufficient to avoid detection collisions between nearby stars) 
and a minimum of 100 individual observations. This resulted in 
the production of 12461 variable stars of various types. Five 
variable star super-classes were selected which describe a large 
number of known periodic variable object types. They were all 
well-represented in this dataset leaving 2519 corresponding 
objects. Table 1 demonstrates the class by class breakdown of 
this dataset. 

TABLE I 

2519 OBJECT DATASET 

Class Dataset Statistics 

Type Acronym Count 

1 Delta Cepheid Variables DCEP 132 

2 Delta Scuti Variables DSCT 499 

3 Eclipsing Binaries EB 1409 

4 Long Period Variables LPV 365 

5 RR Lyrae Variables RR 114 

 

Following the selection of these 2519 variable light curves, 
the performance of the features used in previous high-



performance general purpose classifiers was established. The 
16 features used by Kim et al. [10] were chosen for this 
operation as they had been shown to be capable of reliably 
separating super-classes as well as achieving respectable inter-
class accuracy. These features are shown in Table 2. 

TABLE II 

KIM ET AL. 16 VARIABILITY FEATURES 

Feature Description Reference 

Period Period derived by the Lomb-

Scargle Periodogram 
 

Kim et al. 2014 

ψη η of a phase-folded light curve Kim et al. 2014 

ψCS Cumulative sum index of a 

phase-folded light curve 

Kim et al. 2014 

R21 2nd to 1st amplitude ratio  Kim et al. 2014 

R31 3rd to 1st amplitude ratio  Kim et al. 2014 

Φ21 Difference between 2nd and 1st 

phase 

Kim et al. 2014 

Φ31 Difference between 3rd and 1st 

phase 

Kim et al. 2014 

γ1 Skewness Kim et al. 2014 

γ2 Kurtosis Kim et al. 2014 

K Stetson K index Kim et al. 2014 

Q3-1 Difference between 3rd and 1st 

quartiles 

Kim et al. 2014 

A A ratio of magnitudes brighter 

or fainter than the average 

Kim et al. 2016 

H1 Amplitude from Fourier 

decomposition 

Kim et al. 2016 

W Shapiro-Wilk normality test Kim et al. 2016 

mp10 10th percentile of slopes of a 

phase-folded light curve 

Long et al. 2012 

mp90 90th percentile of slopes of a 

phase-folded light curve 

Long et al. 2012 

 

The Lomb-Scargle Periodogram [15] utilised in this 
method operated over a linear frequency grid from the 
reciprocal of the total observation time of a light curve up to 20 
cycles per day. The interval between candidate frequencies is 
shown in equation 1 where tmax and tmin are the last and first 
observation times respectfully.  

                                     ( 1 ) 
When calculated using the Lomb-Scargle Periodogram 

using light curves from the STILT dataset, the Period feature 
appears to have a correct match rate of under 5% relative to the 
AAVSO reference period (which is treated as the ground truth 
in this study) for many of the classes. As the period, calculated 
by the Lomb-Scargle Periodogram, is the basis in which phase-
folded light curves are generated, this inaccuracy heavily 
pollutes an additional 9 features. This is over half the number 
of features used in this analysis. As for the non-folded features, 
the distribution of these features amongst the classes appears to 
centre at or near their expected means. However, the range is 
much greater than expected increasing the overlap between 
classes. This is likely a result of the larger-than-usual noise 
threshold in the STILT data [13]. Classifiers trained using 
these polluted features resulted in models of accuracies only 

slightly better than the no-information accuracy, the expected 
result of a completely randomly trained model. This is 
primarily due to the Long Period Variable class as it exhibits 
long period sinusoidal variations with a high amplitude signal. 
Therefore, for the following analysis, the periodogram-derived 
period was replaced with the AAVSO reference period 
purifying the features shown in figure 1. 

 
Fig. 1.  Plot of each of the 16 features against the five super-classes in the 

order shown in table 1. Many features appear to poorly differentiate the super-

classes with light curves from the STILT dataset. 



These 16 features have been shown to be fully capable of 
training useful classifiers in previous work however they 
required the fitting of Fourier models to the light curves. These 
Fourier models are used to generate features such as the 
amplitude ratios, the phase information and the amplitude of 
the first harmonic. In the method of Kim et al., utilised in this 
work, a five harmonic Fourier model has been fit to the light 
curves [10]. These models are very versatile but can suffer 
from three serious drawbacks on our dataset. Firstly, the sums 
of sinusoids used to assemble Fourier models fit some classes 
of astrophysical signal poorly such as the sharp dips associated 
with eclipsing binary stars [9]. Secondly, the more harmonics 
used in a Fourier model, the more complex the signal it can fit. 
Unfortunately this can also result in overfitting the light curve 
data causing the noise to have an unwanted contribution to any 
resulting features. Finally, as these Fourier models are being fit 
in the time dimension, the poorly sampled regions can cause 
the fit model to deviate outside of expected ranges again 
resulting in a non-signal contribution to the Fourier 
coefficients. The cadence concerns raised in the STILT dataset 
can cause this to become a considerable source of poor results.  

It is important for the analysis method to address the above 
dangers as the extracted features are important. We propose, as 
the classes we are attempting to train models on are highly 
periodic, to transform the representation of the light curves into 
an epoch-folded representation and extract features. These 
features describe the shape of brightness changes through the 
dominant periodic variation by ‘folding’ all the gathered data 
points into one waveform. This is very useful in astronomy due 
to the limitations in gathering data. In fact, this is one of the 
most powerful techniques in eliminating sampling issues as 
long as the light curve does have a dominant period [7]. For 
non-periodic variable objects in astronomy, such as transient 
light sources, other approaches must be considered. In the case 
of many periodic variable objects, the shapes of the light 
curves in these phase-folded representations carry significant 
information about the class of the light source. Figure 2 shows 
an example of three of the light curves in this dataset, a Mira-
type Long Period Variable, an Algol-type eclipsing binary and 
a Delta Cepheid. These light curves have been folded at the 
AAVSO period of the associated objects. Therefore, a light 
curve must clearly demonstrate these shape features in order 
for the 16 Kim et al. features (and many more) to extract 
enough of this information from any noise. 

 
Fig. 2.  STILT dataset folded Light curves of the star Mira (Mira class) with a 
332 day period, Algol (Algol-type eclipsing binary) with a 2.86 day period and 
Eta Aquilae (Delta Cepheid class) with a period of 7.18 days. The shape of 
each light curve is distinctive to the associated class. 

In this form, the poorly sampled regions due to cadence 
limitations in the original observations can be removed with 
the restriction of the dominant period must be a fraction of the 
complete observed time. The 16 features of the previous 
research does contain a number of features extracted from the 
phase-folded light curve however the Fourier model is not 
performed in this representation. We propose to replace the 

shape features from the Fourier model with new shape features 
automatically extracted from the folded light curves through 
applying machine learning algorithms directly to a visualised 
image-based representation of this folded light curve. In 
essence allowing the learning of class-specific shapes. 

 The light curves in figure 2 are fairly typical of the better 
sampled light curves from the STILT database yet they do 
exhibit potential issues. Firstly, there are a lot of points with 
significant noise. This is possibly instrumental in nature but is 
much more likely due to a number of simplifications made to 
reduce the computational load of the pre-processing pipeline. 
This noise is likely to be the cause of both the larger range on 
the non-periodic features as well as the cause of the very low 
period match rate from the Lomb-Scargle Periodogram. 
Secondly, whilst the examples in figure 2 are well sampled 
across the whole phase space, there are other light curves that 
lack this due to the highly variable cadence of the STILT 
observations. This means that important shape features may 
only be partly present and not to the level required for the 
extracted features in previous studies. 

 Yet, despite these obvious limitations, human astronomers 
can still look at these light curves and recognise the main shape 
patterns. Therefore it seems reasonable to conclude that even in 
the more poorly sampled, noisy STILT light curves, there are 
still features that have not yet been extracted which are being 
gathered for manual classification. Ideally the models used to 
fit the light curves should attempt to parameterise the shape of 
the actual variable object classes rather than some predefined 
or abstract form. This can be done by determining the specific 
form of different astrophysical signals directly from the 
astrophysics driving the variability of these object types. This 
is quite an undertaking further complicated by a lack of 
consensus about the dominant physical processes shaping these 
variabilities in many classes. Therefore, it would seem to be 
more appropriate to have a model that can identify the patterns 
in the shape of the light curves without requiring an underlying 
physically produced model. This can be accomplished through 
a learning process applied to visualized examples of light 
curves. Over the last decade, neural networks have been 
developed into platforms for visual reasoning [16]. The 
ImageNet classification is a good example, a large dataset of 
images collected into 1000 classes. Respectable classification 
accuracy has been found through the use of deep networks with 
convolutional layers for visual feature extraction [16]. We 
attempt to replicate these visual feature extraction layers 
through the construction of hidden layers tuned to find visual 
features. As this is just the initial investigation, convolutional 
layers have not yet been utilised and this does result in 
limitations discussed in later sections. 

 We first phase-folded the light curves for each of the 
STILT dataset light sources. This task required a candidate 
period. As the Lomb-Scargle Periodogram is performing 
poorly on our data, we instead used the AAVSO period as we 
had when the 16 features used in Kim et al. were produced. 
This phase space exists from a phase of 0 to 1 with the 
brightest data point defined as 0.25. Outliers were also 
eliminated from the light curves by defining the brightness 
range of the folded light curve from the mean brightness as the 
amplitude of the light curve. This amplitude is defined as the 



difference between the median of the maximum 5% of data 
points and the median of the minimum 5% of data points 
divided by two. In order to emphasise shapes present at the 
edge of the folded light curve (as shapes can be split as phase 
values over 1 loop around to 0), the folded light curve was 
duplicated operating over a new phase space of -1 to 1. In order 
to reduce the noise we applied a bin-averaging process to the 
folded light curve data. The phase-space was binned into 100 
phase-bins each bin having a phase range of 0.02. All observed 
data points in each phase bin are mean averaged and retained. 
Empty phase bins are removed. The bin-averaged phase-folded 
light curves were then used to generate pixelated images. This 
has a number of important uses. First we can guarantee an 
identical number of inputs into our neural network regardless 
of the sampling of the light curve. Second, it can be minimized 
to a level which optimizes for computational cost. For this task 
we decided to transform the light curves into 100x20 pixel 
images giving 2000 input ‘feature’ pixels. Each light curve 
produced a magnitude-scaled image of the amplitude of the 
light curve centred on its weighted mean.  

III. RESULTS 

 Previous studies found their features performed best when 
trained using the random forest algorithm. Therefore, in this 
study we make use of Random Forest models with a number of 
different parameters, a Feedforward Neural Network with a 
single hidden layer of appropriate size and a Support Vector 
Machine with a linear kernel as the radial basis function kernel 
was unable to extract usable information from the features 
resulting in all predictions being assigned to the dominant class 
in the dataset, the eclipsing binaries. All the results were 
obtained through training on a 3.4 GHz Intel Core i7-3770 
processor with 16 GB of memory. RStudio was used as the 
running environment. The STILT data was stored on a separate 
1 TB hard drive within a MySQL database. 

 The 2519 light curves are evaluated through a process of 
stratified 10-fold cross-validation with 3 repeats. In this 
procedure the dataset is split into ten sections whilst 
maintaining the ratio of each class in the subsets relative to the 
whole dataset. Each subset is then used as a validation set for 
models trained using the other nine subsets. This validation 
involves the prediction of the classes of the validation set light 
curves followed by the computation of the Area under the 
Curve (AUC) statistic from the computed multi-class Receiver 
operating characteristic (ROC) curve. This validation is 
performed ten times for each data subset and mean averaged to 
produce the validation statistic for that repeat. This process is 
repeated three times with differing random seed values and 
again mean averaged to produce the final validation statistic. 
As the AUC is expected to vary around a mean value due to 
slight difference in the quality of the light curves being used 
for training and validation in each cycle, this procedure is 
hoped to be sufficient to eliminate any potential variation in the 
trained models performance. 

 The 10-fold cross-validation was first applied to the full 16 
features dataset determined for each of the 2519 light curves. 
The random forest model was tuned with a hyper-parameter 
that defines the number of predictors sampled for splitting at 
each node. The best performance was obtained with this 

parameter set to 4 features. The Neural Network was trained 
using backpropagation on a single hidden layer feedforward 
neural network with 16 input neurons, 50 neurons in the hidden 
layer and 5 neurons in the output layer using a softmax 
classifier. The Hyperbolic-Tangent function was used for non-
linearity and complexity control was introduced through a 
momentum term valued at 0.9. All neurons are initialised with 
a uniform random number between 0 and 0.07. The learning 
rate was set at 0.005. The network was trained using 
backpropagation for 600 iterations. The Support Vector 
Machine was tuned using a grid based search for the best 
performing cost value which was found to be 32 for this 
evaluation. The results of this evaluation are shown in table 3. 

TABLE III 

AUC OF THE THREE ALGORITHMS ON THE 16 KIM ET AL. FEATURES 

Model Mean AUC 

Random Forest 

Mtry parameter = 4 

0.84195528 

Support Vector Machine 

Linear Kernel, Cost = 32 

0.80900461 

Feedforward Neural Network 

16-50-5 

0.84946005 

  

 Additionally, due to neural networks often performing 
better with scaled data, the 16 features were scaled to a mean 
of 0 and a standard deviation of 1 and all three machine 
learning methods validated on this scaled dataset with results 
shown in table 4. The hyper-parameters were re-tested but did 
not change from the previous validation. 

TABLE IV 

AUC OF THE THREE ALGORITHMS ON THE SCALED 16 KIM ET AL. FEATURES 

Model Mean AUC 

Random Forest 

Mtry parameter = 4 

0.84195528 

Support Vector Machine 

Linear Kernel, Cost = 32 

0.80897909 

Feedforward Neural Network 

16-50-5 

0.76962864 

  

 Surprisingly, the scaled dataset resulted in a small drop in 
performance for the Support Vector Machine and Neural 
Network. The results show that our 50 hidden layer 
feedforward neural network achieved the best performance on 
the STILT light curves. The random forest model had a similar 
performance, a result expected by previous studies [9] with the 
no information rate being an AUC statistic value of 0.5. 

 By using the probabilities predicted by the random forest 
algorithm for each of the light curves to determine five binary 
one verses all ROC curves, a form of multi-class ROC curve 
can be plotted. These curves are a measure of a class’s true 
positive rate against the false positive rate with the ideal 
classifier maximising the true positive rate whilst minimising 
the false positive rate. Therefore, the better performing a class, 
the closer it will deviate towards the top left corner from the 
random-state as a straight line with slope 1 shown by the dotted 
black line in the figures. Figure 3 shows the ROC curve 



generated by one of the validation 16 feature random forest 
models with a multiclass AUC of 0.8102. Each line is related 
to a one-vs-many prediction on a specific class given by the 
line colour in the legend. This is performed by assigning a 
class label of 1 to the appropriate class and a label of 0 to all 
other classes. 

Fig. 3.  ROC curve for the 16 feature trained random forest model. The Long 

Period Variable (LPV) and Delta Scuti (DSCT) classes exhibit the best 

performance. 

 

 These results are reasonable considering the cadence 
limitations of this survey with all the classes detectable with 
greater than 80% retrieval rate at a cost of at worst a 10% false 
retrieval rate. The Delta Scuti and Long Period Variable 
classes achieve the best AUC with values of 0.9959 and 0.9877 
respectively. This is likely a result of the two classes exhibiting 
clear periodic and amplitude features. Long Period Variables 
tend to have highly sinusoidal variations with periods of the 
order of years and amplitudes of multiple magnitudes whereas 
Delta Scuti variables have periods of only a few hours and 
variations on the order of a tenth of a magnitude. This 
conclusion can be reinforced through obtaining the feature 
importance of the random forest model defined by the Mean 
Decrease GINI statistic. Table 5 demonstrates this importance 
statistic for the model used to generate the ROC curve in figure 
3. This shows that the Period, variability in the folded light 
curve and the amplitude of the Fourier model are dominant. 

 Overall, the most important features are the period and the 
amplitude of the primary harmonic of the Fourier model. This 
amplitude is superior to the range of magnitude for a light 
curve as the range can be prone to noisy observations. The 
Fourier model does have the disadvantage of poor fits due to 
sampling as discussed previously however the models have 
still selected it as a strong feature in these 2519 light curves. 
Additional features of interest are the Kurtosis and slope 
gradient features mp10 and mp90. These features are strong at 
identifying light curves with sharp peaks or dips in brightness 
which is a feature commonly associated with a large number of 
eclipsing binary light curves. Finally, the feature ψ

η
 shows how 

strongly aligned the data points are for a given period. This can 
be useful for Long Period Variables due to secondary periods. 

TABLE V 

MEAN DECREASE GINI COEFFICIENTS FOR THE 16 KIM ET AL. FEATURES 

Feature Mean Decrease GINI 

Period 2019.2553583 

ψη 549.73631507 

ψCS 192.76109940 

R21 209.11562924 

R31 136.55228001 

Φ21 69.433471117 

Φ31 71.555076485 

γ1 97.304429700 

γ2 107.25834895 

K 142.53335421 

Q3-1 150.26993955 

A 81.838996126 

H1 413.76605741 

W 88.665784819 

mp10 425.10419581 

mp90 320.10894756 

  

 Like the previous 16 feature models, the images produced 
from the bin-averaged phase folded light curves are used to 
produce a new validation dataset. The same machine learning 
algorithms from the previous validation were applied to this 
dataset generated by the new method. The primary difference 
from the previous models was there were now 2000 input units 
where each one is the value of a specific pixel from a 
concatenated 100x20 image representation vector, -0.5 for an 
off (black) pixel and +0.5 for an on (white) pixel. 

 The random forest model was tuned with the number of 
predictors sampled for splitting at each node hyper-parameter 
valued at 4 like the previous validation. The Neural Network 
was trained using backpropagation on a single hidden layer 
feedforward neural network with 2000 input neurons, 200 
neurons in the hidden layer and 5 neurons in the output layer 
using a softmax classifier. The number of neurons in the 
hidden layer was increased in order to model more complex 
patterns expected to be present in the input features. Potentially 
more might be required but this was limited by the available 
resources. The Hyperbolic-Tangent function was used for non-
linearity and complexity control was introduced through a 
momentum term valued at 0.9. All neurons are initialised with 
a uniform random number between 0 and 0.07. The learning 
rate was set at 0.005. The network was trained using 
backpropagation for 600 iterations. The Support Vector 
Machine was tuned using a grid based search for the best 
performing cost value which was found to be 1 for this 
evaluation. The results of this evaluation are shown in table 6. 

TABLE VI 

AUC OF THE THREE ALGORITHMS ON THE VISUAL FEATURES 

Model Mean AUC 

Random Forest 

Mtry parameter = 4 

0.63483958 

Support Vector Machine 

Linear Kernel, Cost = 1 

0.58861276 

Feedforward Neural Network 

2000-200-5 

0.61050239 

 



 Whilst the AUC results are notably inferior to the previous 
results from Period and Amplitude features from the previous 
study, the result does show that features were automatically 
extracted by the machine learning algorithms and used to train 
to recognise visual shapes for use in a classification task. It is 
also worth noting that this approach may prove better at 
discriminating between two similar subclasses than on an 
overall superclass problem. This network is also extremely 
limited in the visual features it can extract. For example, 
despite attempts to position certain magnitude features at 
specific phases, noise quite often causes these features to be 
placed at slightly different phases. This results in the 
requirement of any visual feature layer to implement 
translation invariance. This can be accomplished by neural 
networks using convolutional layers [16] but this has not been 
implemented in these models, which is a big limitation. Figure 
4 shows the ROC curves from one of the image representation 
random forest models with a multi-class AUC of 0.6386. 

Fig. 4.  ROC curve for the 0.6386 AUC image representation model. Global 
performance is poorer than the 16 features models with the best resolved 
classes remaining the Long Period Variables and the Delta Scuti variables. 

 The image representation performance can be augmented 
through the recognition that significant information is lost 
through the lack of scaling in the images. The Delta Cepheid 
and Long Period Variable folded waveforms can look very 
similar until the realisation is made that the amplitude of the 
Long Period Variables is significantly larger. Therefore we 
included two features that describe the two axes of the images. 
As the horizontal direction shows the phase of the folded light 
curve, the period describes the length of time this phase covers. 
As for the vertical direction, this is by definition the amplitude 
of the light curve as defined above. Including these two 
features along with the 2000 input pixel values produced the 
AUC cross-validation results displayed in table 7. 

TABLE VII 

AUC OF THE THREE ALGORITHMS ON THE VISUAL FEATURES W/ PER AND AMP 

Model Mean AUC 

Random Forest 

Mtry parameter = 4 

0.66047666 

Support Vector Machine 

Linear Kernel, Cost = 1 

0.76388919 

Feedforward Neural Network 

2000-200-5 

0.79524852 

 

Fig. 5.  The Mean Decrease GINI feature importance against pixel numbers 
1000 to 2000 (defined as the phase regime from 0 to 1) for three of the main 
super-classes. The Delta Cepheid variables at the top, RR Lyrae variables at the 
middle and Eclipsing Binaries in the bottom plot. Each pixel individually has a 
low weighting but together can communicate important class knowledge. 



 Figure 5 demonstrates the importance of the individual 
image pixels for the classification task on three of the super-
classes using their mean decrease GINI coefficients. Whilst 
each individual pixel has a minimal weighting, together they 
can identify interesting structures. All three plots show a clear 
rhythm which corresponds to 20 pixels. This is the importance 
varying from low weight at the exterior of the image to higher 
weighting close to the centre which is where important signal 
structures are expected to be found. In the Delta Cepheid and 
RR Lyrae classes we can see a clear secondary structure where 
the importance rises to peaks at pixels near the phase of 0.25 
and 0.75 where major peaks and dips are expected given we set 
the max phase to occur near 0.25 when the light curves were 
epoch-folded. Finally, the Eclipsing Binary plot shows the 
weighting is a fraction of that from the other two classes. It 
appears clear that our new proposed method was struggling to 
resolve usable detail from the eclipsing binary light curves. 
Whilst the reason for this is unclear it may be a result of the 
observational cadence of these objects. If the characteristic dip 
in the light curve due to the transit event is not sufficiently 
observed the resulting folded light curve will exhibit reduced 
amplitude and without this characteristic dip feature except for 
possibly a gap near the expected light curve dip but it would be 
very unlikely for this gap to occur at the same phase location. 

IV. SUMMARY AND FURTHER WORK 

In this paper we presented our work on using visual 
features for light curve classification. We built a number of 
models based on features from Kim et al. and our own visual 
approach using stratified 10-fold cross-validation on 2519 
STILT variable light curves from five object super-classes. We 
showed these features contained important information when 
the light curves were noisy and poorly sampled. Our method 
initially struggled to compete with features engineered from 
previous studies attaining a best AUC of 0.6348 compared to 
the 16 Kim et al. features with a best AUC of 0.8495 until we 
introduced the period and amplitude features into the training 
phase. These features give context to the two dimensions on 
the image representations allowing for an improvement in the 
best AUC to 0.7952. These strengths were offset by limitations 
in the machine learning algorithms we used when applied to 
image based representations especially in the lack of 
translational and scale invariance. This caused test light curves 
of a well-known class but with a different phase alignment to 
be misclassified. We plan to implement convolutional layers in 
our feedforward neural network topology to introduce these 
invariances [16]. 

There are also a number of hyper parameters that haven’t 
been fully investigated such as the optimal pixel ‘resolution’ 
for the light curve images. The horizontal pixels contain the 
majority of the sampling noise and the vertical pixels carry a 
lot of the magnitude noise which is heavily instrumental and 
data-reduction limited. A superior method of determining the 
candidate period to phase-fold the light curve at must also be 
determined or the resulting image carries no useful information 
on the class of the light curve. These efforts will improve light 
curve classification and potentially redefine the limitations of 
survey cadence required for scientific analysis. 
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