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A Novel Multi-Agent Planning System for Digital Interactive 

Storytelling 
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PROF. MADJID MERABTI, Liverpool John Moores University 
 

Digital Interactive Storytelling (DIS) is a relatively novel area of computer entertainment which aims at 

investigating interactive applications capable of generating consistent, emergent and rich stories. To 

provide new solutions for DIS, we designed and are implementing and evaluating a novel multi-agent DIS 

framework, DIEGESIS, which includes agents' coordination and new planning and re-planning solutions. 

In this paper, we discuss the design and implementation of DIEGESIS, explaining in detail the 

mechanisms of our planning algorithms, and the story execution and agent coordination algorithms, along 

with a planning methods evaluation, and agent planning and coordination examples. We are currently in 

the process of creating a large DIS scenario, involving the story of Homer’s Troy, with several levels which 

will allow us to further evaluate and expand our system. 

 

CR Categories: I.2.8 [Problem Solving, Control Methods, and Search]: Plan execution, formation, and generation—

Heuristic methods I.2.11 [Distributed Artificial Intelligence]: Multiagent systems—Coherence and coordination; 

Keywords: Interactive Storytelling; Planning Algorithms; Multi-Agents 

 

 INTRODUCTION 1.

Video games are becoming more complex and so their use as a storytelling medium is 

growing in importance and popularity. The unique interactive nature of games 

means that stories and characters can become more personal and involving. 

Computer game stories can be implemented in different ways: either linear, 

branching, parallel, or threaded. Most games typically follow a linear storyline, 

where the events of the story are presented in a predefined sequence. It can be 

argued that making a player follow a defined story can diminish the interactivity 

level of a game; the player is, after all, following a pre-set path already laid out for 

him by the author. In order to still convey a story and allow the player to feel a high 

degree of interactivity, the concept of interactive or non-linear storytelling has to be 

introduced. Simply put, Interactive Storytelling (IS) presents the opportunity for 

players to have a direct choice on what is happening in the game world in which they 

are placed, to be the ones who dictate how certain events may come to pass within 

the constraints set by the story author. Similar to other entertainment media, stories 

in games play a big role in increasing immersion, building tension and adding 

interest to the player. However, one main difference from the games to those other 

media is that games are interactive; they expect participation from the player and in 

turn, players expect to participate and get involved in the events the game is 

presenting and the outcomes of those events. 

Many techniques, including Spierling [2005], Fairclough and Cunningham [2004], 

and Bangso et al. [2004], have been developed to generate the characters plan of 

actions. Indeed, in order to progress the story, a plan of actions must be created for 

the characters to follow; each action is composed of a precondition, used to decide if 

the action is coherent given the current state of the world, and an effect, which 

indicates the consequences of performing the action. 

 

 



 
 

As we have discussed in Goudoulakis et al. [2011], although planning systems 

have been used intensively in DIS for many years, there has been no much novel 

solutions for DIS research with respect to planning algorithms. The most common 

approach is to use a general Artificial Intelligence (AI) planning algorithm but, as we 

have advocated in Goudoulakis et al. [2011], a new planning algorithm (combining 

features from existing algorithms with novel ideas) needs to be created specifically 

with DIS systems characteristics in mind. 

To provide new solutions for DIS, we designed and are currently implementing 

and evaluating, a novel multi-agent DIS framework, DIEGESIS, which includes 

agents' coordination and new planning and re-planning solutions. We use constraints 

in the planning/re-planning solutions which enable us to extend the expressiveness of 

the representation language we use, which is one of the most important suggestions 

for the new planning algorithm we proposed in Goudoulakis et al. [2011].  

Our proposal for re-planning aims to interleave plan generation and opportunistic 

plan execution, to re-plan when unexpected changes occur in dynamic environments 

whilst introducing minimal disruption to the original plan. In addition planning and 

re-planning for characters organised as a multi-agent system, requires managing and 

controlling the coordination of these characters’ actions. 

In this paper, we briefly discuss the design and implementation of DIEGESIS 

(documented in Goudoulakis et al. [2012a; 2012b], explaining in details the 

mechanisms of our planning algorithm, and our story execution and agent 

coordination algorithm. We also discuss two different approaches for the planning 

process, and evaluate them using a new scenario. Finally, we show an example of 

characters’ coordination. 

The remainder of the paper is organized as follows: in section 2, we briefly discuss 

the state-of-the-art in DIS systems, planning, and Multi-Agent Systems (MAS); in 

section 3, we discuss the design and implementation of DIEGESIS, paying particular 

attention to the planning and multi-agent coordination aspects of it; in section 4, we 

introduce a case study featuring a coordination example, we briefly summarise the 

scalability evaluation of our previous work [Goudoulakis et al. 2012b], and present an 

evaluation of two planning methods along with a discussion of its outcome; in section 

5, we discuss possible routes for the framework research by extending it with other 

components, and finally, in section 6 we conclude the paper. 

 STATE-OF-THE-ART IN DIS, PLANNING AND MAS 2.

In this section we discuss the related work in digital interactive storytelling, in 

planning, in multi-agent system, and we discuss the key features of DIEGESIS. 

 
 Digital Interactive Storytelling 2.1

Recently there has been an increase in the development of high level behaviour 

planning for storytelling. Recent examples of DIS systems include Fabulator [Barros 

and Musse 2005], Gadin [Barber and Kudenko 2009], I-Storytelling [Charles et al. 

2003], and Othello [Chang and Soo 2009], each including its own feature set. 

For example, in Fabulator, a planning algorithm is used to generate a sequence of 

actions (an actual story) performed by characters that is capable to transform the 

system’s world. 

The player controls one character (the protagonist) and every other character is a 

Non-Playing Character (NPC). All NPC’s actions are determined by the system. If an 

action of the player renders the current plan invalid the system uses the planning 

algorithm to create a new plan (re-planning). This way, the story is adapted to the 

player’s actions. 



 
                                                                                                                                         

In DIEGESIS, there is not a main character that the player controls/observes; 

instead, the user can make choices (selected by the storyteller) for actions that can 

affect every character in the active story. Also, we plan to allow the user to select and 

view the story from the perspective of any of the characters, and to be able to switch 

between them. 

Fabulator implementation treats the planning problem as a state space search 

problem and it uses the A* algorithm to solve it. The authors of Fabulator state that 

there are several planning algorithms specific for STRIPS-like domains that can 

achieve better performance than A* but for small storyworlds (the result of authoring 

process in DIS), performance is not an issue. They also state that the most important 

shortcoming of their work was its reliance on predicate logic to represent the world 

state. 

The generator of adaptive dilemma-based interactive narratives (GADIN) 

dynamically generates interactive narratives which are focused on dilemmas to 

create dramatic tension. Its authors claim that the system addresses two open 

challenges: maintaining the dramatic interest of the narrative over a longer period 

and (story) domain independence. Its planner (which is based on the Graphplan 

[Blum and Furst 1997] algorithm) creates sequences of actions that all lead to a 

dilemma for a character (who can be the user). “The user interacts with the 

storyworld by making decisions on relevant dilemmas and by freely choosing their 

own actions. Using this input, the system chooses and adapts future storylines 

according to the user’s past behaviour.” The main problem of the planner is that as 

more characters and actions are included, the time spent planning becomes 

unreasonably long. The time increases exponentially with the number of characters 

and the number of actions. On the other hand, neither the number of locations nor 

the number of dilemmas has an impact on the speed. The authors of Gadin claim that 

a potential solution would be the use of a form of hierarchical planning. 

 
 Planning Algorithms 2.2

A review of planning algorithms that are commonly used in DIS systems such as 

Graphplan, can be found in Goudoulakis et al. [2011]. The following are some of the 

planning algorithms that have been extensively used in DIS systems. 

 

2.2.1 Graphplan 

Graphplan was the first planning algorithm that converted the planning problem into 

an intermediary data structure called a planning graph. Graphplan have moved the 

field of planning forward by obtaining impressive gains in performance compared to 

previous planning approaches, based on the experimental results documented in 

[Blum and Furst 1997]. Graphplan’s main drawback is that although it is an optimal 

partial-order planner, its input language is quite limited. [Russel and Norvig 2010] 

In Graphplan a plan is extracted from a graph. The graph consists of levels of 

literals which could be true and levels of actions of which the preconditions could be 

true. The graph is constructed starting at level 0 where all literals that are currently 

true are represented, these are true or false depending on the initial state and there 

are no other possibilities. Then a level of actions for which the preconditions hold in 

first level is added. This is followed by another level of literals that could hold if an 

action makes it true. Each level of literals gives the literals that could possibly be 

made true at that level depending on choices made earlier. Each level of actions gives 

all actions that could be used at that level depending on earlier choices. The 

Graphplan algorithm creates the graph in steps; if at the current level of literals all 

literals from the goal are present without mutex relations between them a solution 



 
 

plan may exist in the current graph. Otherwise the graph is expanded by adding a 

new level of actions and a resulting literals level. If the graph possibly contains a 

solution the algorithm tries to find it. 

2.2.2 Hierarchical Task Network (HTN) Planning 

HTN-based planning [Cavazza et al. 2002], which is also known as task-decomposition 

planning, is among the oldest approaches for providing domain-specific knowledge to a 

planning system. 

An HTN planner solves problems by decomposition. The initial problem statement, 

the initial state and goal are viewed as a single action that must be decomposed into 

lower level actions. On the lower levels actions are decomposed further until only 

primitive actions remain. There will often be choices available to the planner when 

choosing decomposition for an action. Action decomposition specifies a way to turn an 

action into a plan. 

HTN is based on forward search, and thus can be searched to extract a task 

decomposition corresponding to a solution plan. It is also goal-directed at the same 

time, since the top-level task is the main goal. This brings the unique property that 

during planning itself the state of the world is known at all times. [Charles et al. 

2003]. 

2.2.3 Heuristic Search Planner (HSP) 

HSP uses a STRIPS-based representation for problem description and searches the 

space of states from the initial state, using a traditional heuristic search algorithm 

and a heuristic automatically extracted from the STRIPS formulation [Charles et al. 

2003]. 

HSP is a state space planning approach that can run either forward or backward 

and is much like path-finding. According to Russel and Norvig [2010], HSP was the 

first state-space searcher that made state-space search practical for large planning 

problems. 

2.2.4 FF (Fast Forward) 

FF is a forward state-space searcher that uses the ignore-delete-lists heuristic, 

estimating the heuristic with the help of a planning graph. It then uses enforced hill-

climbing search (modified to keep track of the plan) with the heuristic to find a 

solution. When it hits a plateau or local maximum – i.e. when no action leads to a 

state with better heuristic score- then FF uses iterative deepening search until it finds 

a state which is better, or it gives up and restarts hill-climbing [Russel and Norvig 

2010]. FF was created by mixing some novel ideas with features of HSP and 

Graphplan among others [Barros and Musse 2007].  

In this section we have reviewed some of the most commonly used planning 

approaches in DIS. We introduce now some Multi-agent system concepts applicable to 

DIS. 

 
 Multi-Agent System 2.3

A multi-agent system (MAS) is a system designed and implemented as a group of 

agents interacting with each other (i.e. cooperating, coordinating, negotiating and so 

forth). In such systems, the agents either work individually exchanging information 

and/or services with other agents trying to succeed to their individual goals or work 

together solving sub-problems so the combination of their solutions become the final 

solution. [Vlachavas et al. 2005]. 



 
                                                                                                                                         

As explained in Russel and Norvig [2010], when there are multiple agents in the 

environment, each agent faces a multi-agent planning problem in which it tries to 

achieve its own goals with the help (or not) of the others. As discussed in Vlachavas 

et al. [2005], in multi-agent planning, agents are generating a plan of actions and 

they will solve the problem based on that plan. During the execution, the plan is 

revised based on the new details and results. 

Based on Vlachavas et al. [2005], there are two types of multi-agent planning: 

 Centralised multi-agent planning, in which a central agent is responsible to 

collect the partial or local plans of the other agents, to combine them in one 

plan and solve any conflicts that may occur. 

 Distributed multi-agent planning, in which all the agents communicate with 

each other to generate their plans and to negotiate any possible conflicts. 

In this section we have introduced some MAS oriented concepts applicable to DIS. 

In the next section, we discuss the contrast of the related work with DIEGESIS. 

 

 Key Features of DIEGESIS 2.4

For our framework, we have created a planning algorithm based on the principles of 

Graphplan, extending it to be able to interpret and use language constructs which 

add to the extension of the expressiveness of the representation language used, 

PDDL [International Planning Competition 2001], and also including constraints 

such as time and importance of actions (i.e. salience). 

Some of the relevant DIS systems include Mateas and Stern [2003], Spierling 

[2005], Fairclough and Cunningham [2004], and Bangso et al. [2004]. 

More details about the related systems, I-Storytelling, Façade, and Othello, and a 

brief discussion of their features can be found in Goudoulakis et al. [2011]. 

The main difference between the above mentioned systems and DIEGESIS is that 

we focus on creating and implementing new planning and re-planning solutions 

specifically designed for DIS, where the existing systems use generic AI planning 

algorithms to achieve their goals. 

One other difference is that in some of the systems [Barros and Musse 2005; 

Charles et al. 2003; Mateas and Stern 2003] there is a main character/agent and the 

whole story is generated around him/her. In contrast, our system (as discussed 

earlier in this section) is independent of a main agent, with all of the agents being 

able to contribute equally to the story based on the storyteller’s modelling and the 

user’s choices. 

In DIEGESIS, each agent is planning individually considering its knowledge of 

the current state of the world, and then, during execution, the framework is 

responsible of coordinating the agents, resolving any conflicts between their actions, 

and instructing them to wait or re-plan when needed. 

 DIEGESIS – DESIGN & IMPLEMENTATION 3.

DIEGESIS is composed of several components. Figure 1 depicts the high level 

architecture, highlighting its main components. In the following we discuss some of 

these components in a sequence that shows how they work together. 

A more detailed description of most of the components can be found in 

Goudoulakis et al. [2012a; 2012b]. 



 
 

 Platform, Representation Languages, Parsing Component, and Game World 3.1

As an implementation platform, we have chosen to use Java, a language which is 

cross-platform (i.e. runs in any operating system) and includes all the modern 

programming techniques that we need. As a representation language, we use PDDL 

[International Planning Competition 2001]. More details about this choice and the 

aspects of PDDL that we find important to be used in DIS systems representation, 

can be found in Goudoulakis et al. [2011]. 

The author of the story (i.e. the Storyteller) is responsible of modelling the story 

world including locations, items, characters, goals, milestones, available actions, etc. 

and stores it in several PDDL & XML files. For the generation of the PDDL files, we 

use the PDDL editor from Cooper et al. [2011]. The Parsing Component analyses 

these files, creates a representation of the Game World, and communicates it to the 

World Manager so the Knowledge Base (KB) can be populated. 

The Game World is organised in a hierarchical manner; each level is capable of 

including an “infinite” number of sub-levels, each involving their own sets of 

characters, locations, and resources. 

 

 
Fig. 1. DIEGESIS architecture. 

 World Manager & User Manager Components 3.2

The World Manager (WM) is the main component which coordinates the whole 

system. It has direct access to the KB and is responsible for keeping track of and 

updating the current world state, the state of the resources, and the environment 

that the agents are aware of. 

The WM is also responsible for allocating resources to the planner (therefore to 

the agents) and retrieving each agent’s plans, solving any conflicts between the 

agents, so they can be coordinated and the story can be generated and progress. 

The communication between the WM and the agents is being done via a 

Blackboard system, which is a centralised component within the WM component. In 

our implementation of a Blackboard system, every agent communicates with the WM 

to access and update the shared knowledge base and coordination information, and 

not directly with each other. The WM continuously and in turns, updates each 

agent’s knowledge of the current state of the world for any updates, and then asks 

them if there is an action to execute. Other communication includes to check if an 

agent is busy, to instruct an agent to plan/re-plan, or wait, and to inject a new goal 

based on executed actions. 



 
                                                                                                                                         

Our current implementation of the WM component uses an instance of the Parser 

(controlled by a WM module called Domain Manager) to parse the files of a level and 

is able to populate the KB using this data.  

It uses an instance of the Planner to generate a number of high-level plans, which 

is still under development, and populates the Resource Pool with the state of the 

resources of the currently active level, while keeping an instance of it. Using this 

data, it also updates the environment that the agents are aware of. 

The WM can also track the current time of the world, and is able to activate the 

agents which are active in the currently active level, coordinate and resolve conflicts 

between them so the story can be generated and progress properly. 

Another responsibility of the WM is to send messages to the User Manager (UM) 

so they can be displayed to the user, as well as to process the user’s input received by 

the UM. Figure 2 shows a screenshot of the current implementation of the UM’s User 

Interface (UI). The generated story is displayed at the left half of the UI. The user 

can progress the story, view at any point during execution the current plan and goals 

for any of the activated characters in the level, and, when is required, make choices 

for the outcome of the story. 

The story is executed in a turn-based way, based on the agents’ plans. For each 

action an agent tries to execute, the WM queries the Resource Pool and checks the 

current state of the world to determine if it’s applicable. If it is, then the Resource 

Pool and the current state of the world (and therefore the environment that the 

agents are aware of) are updated, to illustrate the changes made by the execution of 

the action. If it’s not, depending on the conditions, the agent will be instructed to 

either wait for the next turn to try again, or re-plan. 

The storyteller has the ability to mark actions as choices. When such an action is 

set to be executed, a decision needs to be made; either the action is going to be 

executed or not. Based on the storyteller’s selection, either the system will make a 

yes/no/later decision, or the UM will be instructed to stop the execution of the story 

and ask the user to make this decision. Based on the outcome the decision, the action 

is either going to be executed, or not. 

 

 
Fig. 2. Screenshot of User Manager’s User Interface. 

 

While the story is executed, the Milestone Manager module constantly monitors 

the current state of the active level to identify if some (or all, depending of the level) 



 
 

of the milestones of the level, which are specified by the storyteller, are met. If they 

are, the Transition Manager module is used to perform a dynamic transitioning 

between two levels. Based on the milestones that are met and the current state of the 

current level, it activates a new level with the help of the Domain Manager, and 

dynamically transfers all the knowledge that needs to be transferred from the 

currently active level, to the newly activated one. The information that is not 

relevant to the new level is being kept in the KB since it may be used in domains that 

will be activated in the future while the story progresses. 

 Planner Component 3.3

The planner consists of a new planning and a new re-planning algorithm, able to 

generate plans of actions based on each agent’s state and context, considering both 

the current world state and the available resources. The planning algorithm is based 

on Graphplan for solutions expansion, and backtracking heuristic search enriched 

with constraints satisfaction and dynamic opportunistic restart when required. By 

the term “planner” we refer to the component which deals both with the planning and 

the re-planning process. 

A planner requires a domain definition, which lists the facts about the initial state 

of the world, its actions or operators, requirements and constraints. Actions are 

usually made up of three parts: parameters, preconditions and effects. 

For the current implementation of the Planner, a planning agent based on the 

basic principles of the Graphplan algorithm is being used. The agent has a list of 

goals and tries to find opportunistically a valid plan considering the current world 

state (provided by the WM). We also consider a new approach, where the agent 

generates plans only for individual goals, prioritising them by a salience value 

specified either by the storyteller if the goal was specified as an initial part of the 

domain, or by the system, if the goal was injected during the story generation. 

Each possible action has a specific duration and each goal has an “importance” 

(salience) value specified by the storyteller. The WM informs the agent of the 

available time at any stage during the execution, and the agent passes the 

information to the planner. The final plan cannot exceed the available time. 

Since Graphplan is unable to interpret and use the language constructs that we 

consider key for DIS (introduced in Goudoulakis et al. [2011]) such as conditional 

effects, we have improved its graph generation and plan extraction processes to be 

able to interpret and use them properly. This adds to the extension of the 

expressiveness of the language that is being used (PDDL). 

The planning process is illustrated in figure 3, and presented in Algorithms 1-4. 

The planner receives as an input a list of goals G, and its first step is to expand the 

layers of the planning graph until all the goals are present in the planning graph, or 

the algorithm has levelled-off, considering the constraints (mutexes) between them. 

This is shown in Algorithm 1 – lines 3-6. Two actions in the same level are considered 

mutex when their preconditions and effects are inconsistent. If two consecutive 

layers are identical (the algorithm has levelled-off) and the goals are not present and 

mutex free in the layers, the expansion stops. 

ALGORITHM 1. Planning Algorithm 

Input: G: a list of goals 

Output: The generated plan P 

 

1:    L: layer 

2:    initialise L to 0; 

3:    while (G not present in L OR G not mutex-free in L) AND algorithm not levelled-off do: 



 
                                                                                                                                         

4:            expand L; 

5:            increment L; 

6:    end while 

 

7:    if G not present in L OR G not mutex-free in L then: 

8:            return P = FAILURE; 

9:    end if 

 

10:   P = extract G from L; 

 

11:   if P = TIME_FAILURE  then: 

12:           while P = TIME_FAILURE AND G not empty do: 

13:                   select goal from G with lowest salience value; 

14:                   remove goal from G; 

15:                   search for L where G present in L; 

16:                   P = extract G from L; 

17:           end while 

18:   end if 

 

19:   return P; 

 

The complete extraction phase is documented in Algorithm 2. The algorithm 

receives as an input a list of goals G, and the layer of the planning graph L which 

needs to be expanded. As it is shown in Algorithm 2 – lines 1-9, if the algorithm is not 

levelled-off, then the facts (possible states of the world) of layer L are retrieved, and a 

logical or is applied with the facts of the previous layer (L-1), so the previously 

applied actions can be copied. 

 
Fig. 3. The planning process. 

Afterwards, a check is being performed to identify which actions are applicable in 

L, the facts of the layer L are updated with the effects of these actions, the mutexes 

between the actions are calculated and stored, and the resolvers (used to speed up 

the search process) are updated. In the case that the algorithm is levelled-off, 



 
 

Algorithm 2 – lines 10-15, all the information for layer L is the same with the layer 

L-1. 

ALGORITHM 2. Expand function 

Input: G: a list of goals; L: planning graph layer 

Output: The data in the expanded layer L 

 

1:    if algorithm is not levelled-off then: 

2:            get facts of L; 

3:            if L > 0 then: 

4:                    apply logical or with facts in L-1 to copy results of previous actions; 

5:            end if 

6:            check which actions are applicable in L; 

7:            update facts of L based on positive & negative effects of applicable actions; 

8:            calculate mutexes of actions in L; 

9:            update resolvers of actions in L (to speed up the search process); 

10:   else 

11:           facts of L = facts of L-1; 

12:           applicable actions in L = applicable actions in L-1; 

13:           mutexes in L = mutexes in L-1; 

14:           resolvers in L = resolvers in L-1; 

15:   end if 

 

After the planning graph is created, the extraction phase begins, where a 

backward search is being performed starting from the last generated layer 

(containing all the goals) until a valid plan is discovered. This is shown in Algorithms 

3 and 4. The search function searches iteratively for a set of actions that resolve a set 

of goals G in a layer L. These sets of actions form a complete plan. While searching, 

the total time that the plan needs to be performed is calculated (Algorithm 4 – line 

21). If at some point the plan time exceeds the available time, the search stops. 

ALGORITHM 3. Extract function 

Input: G: a list of goals; L: planning graph layer 

Output: A plan P 

 

1:    if L = 0 then: 

2:            return P = EMPTY; 

3:    end if 

 

4:    P = search for G in L; 

 

5:    return P; 

 

Then, as it is shown in Algorithm 1 – lines 11-18, the planner chooses the least 

important goal from the list (based on the “importance” value of the goals), removes it 

and restarts the search process from the level that all the remaining goals are 

present. This happens until a valid plan within the time constraints has been 

discovered. 

ALGORITHM 4. Search function 

Input: G: a list of goals; L: planning graph layer; A: a set of actions; M: a set of mutexes 

Output: A plan P 

 

1:    if G not empty then: 

2:            select goal from G; 



 
                                                                                                                                         

3:            get actions that resolve goal; 

4:            while actions not empty AND P = NULL do: 

5:                    select action from actions; 

6:                    remove action from actions; 

7:                    select mutexes for action; 

8:                    newA = A + action; 

9:                    newM = M + mutexes; 

10:                   newG = G – positive effects of action; 

11:                   P = search for newA, newM, newG, in l; 

12:           end while 

13:   else 

14:           for each A as action do: 

15:                   add action’s positive precondition in G; 

16:           end for each 

17:           P = extract for G in L-1; 

18:           if P is not FAILURE OR TIME_FAILURE  then: 

19:                   for each A as action do: 

20:                           add action to P in layer L-1; 

21:                           calculate duration of P; 

22:                           if duration of P > available duration for P then: 

23:                                   P = TIME_FAILURE; 

24:                           end if 

25:                   end for each 

26:           end if 

27:   end if 

 

28:   P = search for G in L; 

 

29:   return P; 

 

In the re-planning phase, the planning graph which provided the valid plan in the 

planning phase is kept. When a re-planning process needs to be performed, the 

previously generated planning graph is used to identify the action(s) needed to be 

changed to generate a new valid plan and to achieve the new goal(s). This approach 

helps to achieve the minimal possible disruption to the original plan. 

Our proposal for re-planning in DIS aims at the following: to interleave plan 

generation and plan execution; to be able to re-plan when unexpected changes occur 

in dynamic environments; and to make minimal disruption to the original plan. 

Our re-planning algorithm is illustrated in Algorithm 5. The first step is to get the 

set of actions related to the step of the plan which failed. The effects of each action 

which is either failed or not executed yet are added as the goals of the new plan. If 

there are more steps in the plan, then the effects of the actions of the next step are 

also added in the goals list. 

ALGORITHM 5. Re-planning algorithm 

Input: P: an existing plan; S: step of the plan which failed; 

Output: A new plan P 

 

1:    A: set of actions; p: partial plan; G: goals list; 

 

2:    get A from P for S; 

3:    for each A as action do: 

4:            if action is failed OR action is not complete then: 

5:                    get effects of action; 

6:                    add effects in G; 

7:            end if 



 
 

8:    end for each 

 

9:    if size of P > S then: 

10:           get A from P for S + 1; 

11:           for each A as action do: 

12:                   get effects of action; 

13:                   add effects in G; 

14:           end for each 

15:   end if 

 

16:   p = generate plan for G; 

17:   if size of P > S then: 

18:           remove actions of S + 1 from P; 

19:   end if 

20:   remove completed and failed actions from P; 

21:   add actions of p at the beginning of P’s actions list; 

 

22:   return P; 

 

Afterwards, a new partial plan is generated for these goals via our planning 

algorithm. After the generation of the new partial plan, the completed and failed 

actions (as well as the actions of the step right after the failed step, if such a step 

exists) of the existing plan are removed, and the two plans (the existing and the new 

partial plan) are merged into one, which is returned to the agent for execution. 

 Agent Component and Multi-Agent Coordination 3.4

The system is a multi-agent solution. Each agent represents a character in the game 

world and uses an instance of the planner to be able to generate plans of actions and 

regenerate them if needed. 

The agent’s architecture, which is illustrated in a part of figure 1, follows a hybrid 

approach; it includes elements of reactive agents (the agent receives input, processes 

it and produces an output), elements of deliberative agents (holds an internal view of 

its environment) and elements of BDI agents (Beliefs – the agent’s view of the world, 

Desires – the agent’s goals, Intentions – the agent’s plans) [Vlachavas et al. 2005]. 

In more detail, using its Communication Module, the agent receives the current 

state of the world relevant to it by the WM and stores it in its own KB, along with its 

own list of goals and generated plan(s). A set of sensors is able to monitor the agent’s 

Area of Interest (i.e. the environment which the agent is aware of, which is updated 

by the WM), to be able to recognise other agents and resources, and to be able to 

report back to the agent (via communicating with the WM) any problems in the 

execution of the plan that needs to be resolved by re-planning. The planner is used 

both for planning and for re-planning purposes. 

The agents communicate with each other using a centralized Blackboard system 

located in the WM. At some point during the implementation phase, this could 

change to become a decentralized direct messaging system. Regarding the 

communications between the agents, we will use a generic communication language 

such as ACL [Vlachavas et al. 2005]. 

We will not deal in much detail with the negotiation problem between the agents, 

since most of the potential conflicts are solved by resource reservation. That is, when 

an agent is asked to execute a set of actions in a time step, the system reserves the 

resources that are need to complete the actions (if they are available), so most of the 

conflicts are resolved before they occur since the agents need to make the resource 

reservation before trying to complete an action. Upon the completion of each action, 



 
                                                                                                                                         

the resources reserved are released, unless they have been consumed. The actions are 

therefore atomic and uninterruptable.  

The agents receive a list of goals which correspond to the currently active level by 

the WM. Each goal has a salience value which is used to specify a hierarchy which 

can be extended by the storyteller, by also adding preconditions for them. Each agent 

will set as its current goals only the goals that have their preconditions met. After a 

plan is executed (or failed), the agent checks which of the goals are complete and re-

populates its list of current goals, also considering any injected goals based on 

executed actions. 

Algorithm 6 presents the execution of the agents’ plans in a given time step. In 

brief, the WM queries all the agents one by one to identify if they have an active plan 

from which they want to execute a specific action, and if not instructs them to 

generate one. 

If the agent is not busy at the given time step (i.e. if it is not involved in another 

action already), identifies if any other agents are involved in the action, and checks 

their availability as well. 

ALGORITHM 6. Multi-agent execution of plans 

Input: A: a list active agents; T: a time step; C: the current state of the world 

Output:  

 

1:    for each A as agent do: 

2:            if agent has plan do: 

3:                    get next set of actions from plan; 

4:            else 

5:                    generate new plan; 

6:                    get next set of actions from plan; 

7:            end if 

8:            if agent not busy at T do: 

9:                    for each actions as action do: 

10:                           identify agents involved in action; 

11:                           if agents not busy at T do: 

12:                                   if preconditions of action exist in C do: 

13:                                           if action marked as choice do: 

14:                                                get choice result (YES/NO/LATER) either from user or from  

                                                     system; 

15:                                           else 

16:                                                choice = YES; 

17:                                           end if 

18:                                           if choice = YES do: 

19:                                                set involved agents busy at T; 

20:                                                mark action as executed; 

21:                                                update C with action effects; 

22:                                                inject new goals based on action; 

23:                                           else if choice = NO do: 

24:                                                mark action as failed; 

25:                                                remove agent’s goal corresponding to action; 

26:                                                stop execution of all actions; 

27:                                                instruct agent to re-plan; 

28:                                           else if choice = LATER  do: 

29:                                                instruct agent to wait; 

30:                                           end if 

31:                                   else 

32:                                           mark action as failed; 

33:                                           stop execution of all actions; 

34:                                           instruct agent to re-plan; 



 
 

35:                                   end if 

36:                           else 

37:                                   instruct agent to wait; 

38:                           end if 

39:                   end for each 

40:           else 

41:                   instruct agent to wait; 

42:           end if 

43:   end for each 

 

Afterwards, the preconditions of the action which is set to be executed are checked 

against the current state of the world, which is updated after every successful 

execution of an action. If the preconditions are met, then the system checks if the 

action is marked by the storyteller as a choice. 

If it is, the system deals with the choice, and then, based on all the previously 

mentioned conditions, proceeds with one of the following: 

 Executes the action, updates the current state of the world, and injects new 

goals if needed; 

 Marks the action as failed, stops the execution of other actions for the specific 

agent, and remove the goal in which the action is related to if needed; 

 Delays the execution of the action for the next time step, instructing the 

agent to wait. 

As already mentioned, the storyteller is able to mark specific actions as choices, 

and select if the decision will be made by the system or the user. There are three 

different outcomes to a choice: 

 Yes, where the action is set to be executed as usual; 

 No, where the action is not going to be executed at all, and the goal related to 

this action is going to be removed from the agent’s goal list; 

 Later, where the action will fail for now, but the agent is free to try and 

execute it again at a later time step. 

The storyteller is also able to assign a list of futile goals that are applicable in a 

level and they are controlled by a component called Futile Goals Manager. As a futile 

goal, we consider a goal that does not add something really useful to the story, but 

can keep an agent busy if there nothing important to do. Therefore, if at some point 

of the story an active agent does not have any goals, a futile goal is injected and a 

plan is generated for the goal to be complete. 

 CASE STUDY AND PLANNING METHODS EVALUATION 4.

 Troy Story Scenario 4.1

We are currently in the process of creating a large DIS scenario with several levels 

which will allow us to further evaluate and expand our system.  

A brief summary of our scenario: It models the story of Troy (derived from 

Homer’s epic poem, “Iliad” [Homer 2003]), where Paris, the Prince of Troy (brother of 

Hector; son of Priam) falls in love with Helen, the Queen of Sparta, seduces her and 

convinces her to join him and flee together to Troy. Menelaos, the King of Sparta and 

husband of Helen, along with his brother Agamemnon (King of Mycenae) decides to 

gather an army of great Greek warriors (such as Achilles, who despises Agamemnon) 

to attack and conquer Troy, each of them for their own reason. Menelaos because he’s 



 
                                                                                                                                         

angered that Helen left him and Agamemnon because he always wanted to find a 

reason to conquer Troy. 

The story is very rich in relations between characters, actions, choices, possible 

constraints and outcomes, making it a suitable setup for rich emerging narratives to 

be developed in a DIS system. 

 Troy Scenario Coordination Example 4.2

In this section we introduce as example, a scenario which includes characters’ action 

sequence, agents’ coordination and injection of goals. This scenario involves the 

following: 

 Characters: Achilles, Odysseus, Patroclus, Hector, Paris, and Priam;  

 Locations: Achilles’ tent, Greek Camp, Greek Camp’s Beach, Battlefield, and 

Troy Palace;  

 Actions: go to, pick up, drop, ask for, allow to take, wear, talk to, tell, kill, 

prepare for funeral, perform funeral, attend funeral, find, wait. 

The characters, locations, and actions vary in each level of our complete scenario, 

depending on the nature and context of the level, which can help managing the 

complexity of the scenario, for example by reducing the number of actions considered 

in the planning and re-planning phases. 

Achilles and Priam are initially located at Achilles’ tent and Troy palace 

respectively. Odysseus, Patroclus, Hector, and Paris are located at the battlefield, 

and they are in the middle of the battle. 

At some point, Hector kills Patroclus. This triggers a goal injection for Odysseus, 

which now has the following goals: To bring Patroclus’ body back to the Greek camp; 

and to inform Achilles that Patroclus was killed by Hector. So, Odysseus leaves the 

battle, picks up Patroclus’ body, and brings it back to the Greek camp. Afterwards, he 

goes to the tent where Achilles is located, and shares the news about Patroclus’ death. 

Achilles now has the following goals: To prepare for battle, to find and kill Hector 

as well as to defile his body by taking it with him to take revenge for Patroclus’ death, 

and, finally, to perform Patroclus’ funeral. He gears up, goes to the battlefield where 

he joins the on-going battle (Odysseus does the same as well), and kills Hector. When 

he does, that triggers the end of the battle, and he takes Hector’s body with him, and 

returns to the camp (Odysseus returns as well) to prepare for Patroclus’ funeral. 

When the preparation starts, the goal to attend the funeral is injected to Odysseus. 

The death of Hector triggers a goal injection for Paris. He has the task to return to 

Troy and give the bad news to Priam. When he does, Priam decides to find Achilles 

and ask him to allow for the body of Hector to return to Troy to have a proper funeral. 

So, he wears a disguise to be able to infiltrate the Greek camp, and goes there. He 

finds where Achilles’ tent is, but since Achilles is at Patroclus’ funeral, he waits there 

until it’s over. 

When Achilles returns, the two men have a discussion, and Priam convinces 

Achilles to let him take Hector’s body with him. Priam does that, returns to Troy, and 

performs a funeral for Hector, with Paris attending it. 

Figure 4 displays the complete combined plan of Achilles. 

 



 
 

 
Fig. 4. Achilles’ combined plan. 

 

Figure 5 illustrates all the interactions, coordination, and goal(s) injections 

between the characters involved in the scenario. 

In future work, we will use Petri Nets [Hussein 2012] for the modelling of actions’ 

execution, as well as agents’ coordination, synchronisation, and communication. 

 

 
Fig. 5. Troy characters coordination. 

 Planning Methods Evaluation 4.3

In this section we discuss our planning methods evaluation for multi-agents and for 

individual agents with the different algorithms discussed in section 3. 



 
                                                                                                                                         

4.3.1 Planning Performance for MAS 

In our previous work [Goudoulakis et al. 2012b], we have introduced experiments to 

highlight the performance of our MAS when considering agents sharing the domain 

knowledge, versus agents each having their own domain. 

The results revealed that when the domain knowledge is shared between the 

agents, there is a significant increase in performance. As an example, there was a 

93.66% reduction in the total time needed to activate 100 agents and generate a plan 

for each one of them when the agents were sharing the domain knowledge, from 

when they did not. 

In our current implementation, and in the following experiments, we are using 

this approach (i.e. all agents which are active in a given level share the domain 

knowledge), but in case we need to switch to the other approach sometime in the 

future, we solved its scalability issue by implementing a multi-threaded version of 

agent activation and initial planning. That reduced the activation and planning time 

by 62.18% comparing it with the non-sharing approach. 

4.3.2 Planning Algorithm Performance 

As we have discussed in section 3.3, we have considered two different planning 

methods. In the first one, each agent has a list of goals and generates a plan for all 

the goals at the same time, whilst in the second method a plan is generated only for 

the most important goal (based on the goal’s “salience” value), and when the goal is 

complete (or not applicable any more), a plan for the next goal is generated, and so 

forth. 

In this section we will discuss the evaluation we performed to identify which of 

the two approaches is better for our needs. To perform the evaluation, we used a 

scenario which includes the following: 

 Characters: Paris, Hector, Menelaos, Helen, Agamemnon; 

 Locations: Throne room, guest room, royal bedroom, kitchen, armory, dock, 

stable, and garden (all located in Sparta), as well as Troy’s dock; 

 Actions: talk to, walk to, travel to, pick up, drop, ask to give, give, kill, seduce, 

convince to follow, board, negotiate peace, drink, eat. 

We are using Paris and Hector as our main characters, and the rest as “dummy” 

characters (they don’t have any initial goals; the system injects goals to them during 

the execution based on other agents’ actions, or just futile goals). 

Hector has the following goals: first to give a present brought from Troy to 

Menelaos (since he is his guest), then to negotiate peace between Troy and Sparta, 

and finally to return back to Troy. Figure 6 displays a possible plan for Hector which 

achieves all his goals. 

 

 
Fig. 6. Hector’s plan. 

 

Paris’ goals are to give a present to Menelaos as well, but then to seduce Helen, 

convince her to follow him back to Troy, catch-up with Agamemnon who is around at 



 
 

the palace, and finally return to Troy. Figure 7 displays a possible plan for Paris 

which achieves all his goals. 

 

 
Fig. 7. Paris’ plan. 

 

We measured the following, for both agents for both of the approaches: the total 

planning time needed (in seconds), the average time needed to generate a single plan, 

the total number of nodes in the planning graph, the average number of nodes for 

each plan, and the number of successful, failed, and wait actions during the scenario 

execution. 

The data is an average of five runs for each case in a PC featuring 4GB of RAM, 

and a Quad-core CPU @ 2.83 GHz, running Windows 7. 

Figure 8 illustrates the total planning time for each approach, for each agent, as 

well as the average planning time for each plan. (a) is the case where a plan is 

generated for all the goals at the same time, where (b) the case where a plan is 

generated for only one goal at a time. 

 

 
Fig. 8. Total and average planning times. 

 

The total planning time for both of the agents in case (a) was 6.388 seconds, where 

in case (b) was only 1.703 seconds, a 73.34% decrease. 

In case (a), the highest planning time that appeared was 2.216 seconds, and the 

lowest 0.735 seconds. In contrast, in case (b), the highest was 0.486 seconds, and the 

lowest 0.017 seconds. 

The total average for both of the agents in case (a) was 1.2524 seconds, and in case 

(b) 0.1703 seconds, a decrease of 86.4%. 

Based on the above numbers, it’s clear that there is a significant performance 

increase using the case (b). 

Figure 9 illustrates the total and average number of nodes generated in the 

planning graph while planning, for both agents, in both cases. 

 



 
                                                                                                                                         

 
Fig. 9. Total and average number of nodes in planning graph. 

 

The reduction in the number of nodes is consistent with the reduction in time. 

More specifically, the total number of nodes in case (b) is 80% less than in case (a), 

and the average number of nodes of case (a) are showing a 90.38% reduction 

comparing them with the average of case (b). 

Figure 10 displays the successful actions execution, the failed actions, the number 

of times each agent was instructed to wait, and the total number of plans generated 

by each agent throughout the previously mentioned scenario. In case (a) the number 

consists of the initial plan plus the re-planning because of failures, and in case (b) 

consists of the plans for each individual goal, plus the re-planning because of actions' 

failure. 

 

 
Fig. 10. Successful and failed actions, times instructed to wait, and numbers of total generated plans. 

 

There were more plans generated in case (b), something which was expected since 

the agents needed to generate a plan for each individual goal, but since the 

complexity of each plan was quite lower than the plans of case (a), the planning times 

were quite lower as discussed before in figure 8, therefore the increased number of 

plans was not a negative impact on the performance. 

The rest of the metrics in figure 10 are similar to each other between the two 

cases. The times an agent was instructed by the system to wait a turn before trying 

to execute its action again were identical, as well as the failed actions. There was a 

slight increase in the successful actions in case (b), which can potentially add to the 

emergence of the generated narrative. 



 
 

 DISCUSSION 5.

Apart from implementing and evaluating the DIS framework and its algorithms, 

we are also considering alternative routes for it, such as extending it with other 

components. 

One route would be to be connected with a 3D engine, able to visualise the 

outcome of the generated narrative. One potential candidate is the DISE framework 

developed in our previous work [Cooper et al. 2011]. 

For the game engine and implementation development aspect we will use our 

Homura Game Engine and development Framework [El Rhalibi et al. 2009]. We 

created the Homura project's game development framework to provide an Open 

Source (LGPL-Licensed) API for the creation of Java and Open GL based hardware-

accelerated 3D games applications, which support cross platform, cross-browser 

deployment using Java Web Start (JWS) and Next-generation Applet technologies. 

Our framework bundles together several example applications and technical demos, 

which demonstrate and explain how to implement common games functionality in 

our applications; An application template, which acts as a great starting point for 

developing research applications and Homura related games; The APIs of both 

Homura and the key open-source projects it builds upon including the Java Monkey 

Engine scenegraph API, jME Physics Library, MD5 Model Importer, GBUI User 

Interface Libraries and many more; External Tools for the creation of Font Assets, 

Particle Effects and Levels for the games. 

 

 
Fig. 11. DISE architecture diagram shows the components which make up the system and the 

player/author interaction. [Cooper et al. 2011] 

 

Another possible route is the integration with a system capable to generate a 3D 

facial model animation which will act as a narrator for the stories which our 

framework produces. A system which could be used for this purpose is our current 

work on developing a framework for MPEG-4 Based 3D Character with co-

articulation and TTS - Charisma [El Rhalibi et al. 2010]. 

 



 
                                                                                                                                         

 
Fig. 12. Charisma. [El Rhalibi et al. 2010] 

When integrated with Homura [El Rhalibi et al. 2009] and Charisma [El Rhalibi 

2010], our digital interactive storytelling system will provide a modern solution to 

develop interesting narratives. 

 CONCLUSION 6.

In this paper, we briefly discussed the design and implementation of our framework, 

and then presented an agent coordination example, as well as a planning methods 

evaluation. 

Some of the novel aspects of our framework are: the introduction of constraints in 

the planning/re-planning solutions that allows us to extend the power and 

expressiveness of the representation language that we use; and our proposal for re-

planning, which aims to interleave plan generation and opportunistic plan execution, 

to be able to re-plan when unexpected changes occur in dynamic environments whilst 

introducing minimal disruption to the original plan. 

In our future work we will continue the extension of our DIS framework and we 

will continue refining the planning and re-planning algorithms. We will proceed with 

a further evaluation of our framework and of the algorithms, using the complex DIS 

scenario that we will complete. We will also use Petri Nets for the modelling of DIS 

scenario to evaluate the properties of our coordination model, enabling actions’ 

execution, agents’ coordination, synchronisation, communication, and story resources 

sharing. 
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