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The Gaia-ESO Survey: Probes of the inner disk abundance gradient
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ABSTRACT

Context. The nature of the metallicity gradient inside the solar circle (RGC < 8 kpc) is poorly understood, but studies of Cepheids and
a small sample of open clusters suggest that it steepens in the inner disk.
Aims. We investigate the metallicity gradient of the inner disk using a sample of inner disk open clusters that is three times larger than
has previously been studied in the literature to better characterize the gradient in this part of the disk.
Methods. We used the Gaia-ESO Survey (GES) [Fe/H] values and stellar parameters for stars in 12 open clusters in the inner
disk from GES-UVES data. Cluster mean [Fe/H] values were determined based on a membership analysis for each cluster. Where
necessary, distances and ages to clusters were determined via comparison to theoretical isochrones.
Results. The GES open clusters exhibit a radial metallicity gradient of −0.10± 0.02 dex kpc−1, consistent with the gradient measured
by other literature studies of field red giant stars and open clusters in the range RGC ∼ 6−12 kpc. We also measure a trend of increasing
[Fe/H] with increasing cluster age, as has also been found in the literature.
Conclusions. We find no evidence for a steepening of the inner disk metallicity gradient inside the solar circle as earlier studies
indicated. The age-metallicity relation shown by the clusters is consistent with that predicted by chemical evolution models that
include the effects of radial migration, but a more detailed comparison between cluster observations and models would be premature.

Key words. Galaxy: formation - Galaxy : abundances - Galaxy: disk - stars: abundances

1. Introduction

Ever since the seminal work of Janes (1979), open clusters have
been used to trace the metallicity distribution in the Galactic
disk. In that work, Janes found that the distribution of metallicity
([Fe/H]) with Galactocentric distance (RGC) was consistent with
a gradient with metallicity decreasing with increasing distance
from the Galactic center at a rate of −0.05 dex kpc−1. Such a dis-
tribution has been shown in chemical evolution models to repre-
sent the inside-out growth of the Galactic disk (e.g., Chiappini
et al. 1997). The term “gradient” has come to be used as short
hand to refer to the (azimuthally averaged) change of [Fe/H] as
a function of RGC and has generally been described as a linear
function, as in Janes (1979). However, it has been pointed out
? Based on data products from observations made with ESO Tele-

scopes at the La Silla Paranal Observatory under programme ID 188.B-
3002 and 193.B-0936. These data products have been processed by the
Cambridge Astronomy Survey Unit (CASU) at the Institute of Astron-
omy, University of Cambridge, and by the FLAMES/UVES reduction
team at INAF/Osservatorio Astrofisico di Arcetri. These data have been
obtained from the Gaia-ESO Survey Data Archive, prepared and hosted
by the Wide Field Astronomy Unit, Institute for Astronomy, University
of Edinburgh, which is funded by the UK Science and Technology Fa-
cilities Council.
?? Full Table 2 is only available in electronic form at the CDS
via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/

several times over the decades that the metallicity distribution
with RGC shown by open clusters and other stellar populations
can be described by other functions, as well (e.g., Twarog et al.
1997, Andrievsky et al. 2002). Indeed, as the number of clusters
studied by high-resolution spectroscopy has grown over the past
decade, it now seems clear that the form of the radial dependence
on mean metallicity in the disk changes with Galactocentric ra-
dius. While a linearly decreasing function may well describe the
change in [Fe/H] as a function of RGC through the solar neigh-
borhood out to RGC ∼ 10 − 13 kpc, the clusters in the outer disk
have roughly constant [Fe/H] ∼ −0.3 and remarkably small dis-
persion (e.g., Heiter et al. 2014).

Much work has been done in recent years to better character-
ize the gradient in the outer disk, and the nature of the transition
between the inner and outer disk (e.g., Carraro et al. 2007, Yong
et al. 2012, Bragaglia et al. 2008, Jacobson et al. 2011, Cantat-
Gaudin et al. 2016). It can be said, however, that the gradient in
the inner disk has received comparatively less attention. This is
not surprising given that the line of sight toward the Galactic cen-
ter is much more crowded, confused, and extincted. Neverthe-
less, this is an important part of the Galaxy where the bulge/bar
meets both the thin and thick disks.

There is some evidence that the nature of the gradient
changes inside the solar circle. Some of the first evidence came
from Cepheids: Andrievsky et al. (2002) found that the gradient
inside RGC ∼ 7−8 kpc was steeper than that outside the solar cir-
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cle. Recent work by Genovali et al. (2013, 2014) has reinforced
the increase in [Fe/H] seen in the inner disk to super solar metal-
licities of ∼ 0.4 dex. The Cepheid sample of Martin et al. (2015),
which extends to as close as 3 kpc from the Galactic center, in-
dicates that 0.4 dex is the upper bound of the metallicity range
in the inner disk, and the gradient plateaus at this level inside
of RGC = 5 kpc. In contrast to the evidence from Cepheids, a
study of inner disk red clump stars has found no evidence for a
gradient at all: red clump stars spanning RGC ∼ 4.5 − 6.5 kpc
along a line of sight towards the Galactic center have a mean
[Fe/H] = +0.17 with no sign of a change with RGC (Hill et al.
2012).

Regarding the open cluster population, the number of con-
firmed clusters inside RGC ∼ 7 kpc that we could use to probe the
inner disk gradient is small relative to that in the solar neighbor-
hood and beyond. Many works have noted the dearth of old (>1
Gyr) clusters in the inner region (see, e.g., Bonatto et al. 2006)
and while new surveys in the infrared are revealing promising
candidates for future study (e.g., Froebrich et al. 2007, Borissova
et al. 2014), many of these candidate clusters are embedded and
highly obscured. Relatively few have fundamental parameters
determined, and of those even fewer are accessible to traditional
optical techniques for abundance analysis. However, there have
been efforts to study the known open clusters in the inner disk
specifically to determine whether the older population of open
clusters shows the same steepening of the gradient that is seen
in the younger Cepheids. With their sample of three clusters all
inside RGC ∼ 7 kpc, along with a selection of clusters from the
literature, Magrini et al. (2010) did indeed find evidence that the
gradient rises more sharply towards the galactic center. While
this work greatly increased the number of inner disk open clus-
ters subject to detailed chemical abundance study, the inner disk
cluster sample that has been well studied is still small relative to
that in the solar neighborhood and beyond.

In the last few years, a number of spectroscopic surveys have
been planned and begun, aimed at investigating and constraining
in great detail the chemo-dynamical evolution of the Milky Way:
for example, the extentions to SDSS (York et al. 2000) SEGUE
(Yanny et al. 2009) and APOGEE (Majewski et al. 2015); RAVE
(Steinmetz et al. 2006); the Gaia-ESO Survey (Gilmore et al.
2012; Randich et al. 2013); GALAH (De Silva et al. 2015). Sev-
eral multi-object spectrographs have been designed and/or built
that will also carry out their own spectroscopic surveys: LAM-
OST (Zhao et al. 2006; Cui et al. 2012); WEAVE (Dalton et al.
2012; Balcells 2014); MOONS (Cirasuolo et al. 2011); 4MOST
(de Jong et al. 2014). In particular, the SDSS III APOGEE Sur-
vey (Ahn et al. 2014; Majewski et al. 2015) has done much to
increase our picture of the metallicity distribution of the disk,
based on near-infrared high-resolution spectroscopy of red giant
stars. While the APOGEE Survey includes many open clusters,
their sample predominantly has objects located at RGC & 7 kpc
(Frinchaboy et al. 2013; Cunha et al. 2016), and in some cases
only a few members per cluster were observed. Instead, insight
into the inner disk metallicity distribution comes from a study of
APOGEE field stars, which found that the gradient of ∼ −0.09
dex kpc−1 in the Solar neighborhood transitions around RGC = 6
kpc, becoming shallower interior to that value (Hayden et al.
2014, 2015).

The Gaia-ESO Survey (GES) is a large-scale, high-
resolution spectroscopic survey being carried out with the
FLAMES instrument on the VLT. In addition to probing field
stars in all major stellar components of the Milky Way, the sur-
vey includes a large number of open clusters spanning a wide
range in age and location in the Galactic disk (Gilmore et al.

2012, Randich et al. 2013). Stars of all evolutionary states are ob-
served in GES, from pre-main sequence stars to red giants, and
elements from all groups of the Periodic Table, from Li to the
neutron-capture species, are measurable in the FLAMES spec-
tra. Regarding open clusters, with the complementary capabili-
ties of the GIRAFFE and UVES spectographs, GES stellar sam-
ples can range from 102 to 103 members per cluster (e.g., Donati
et al. 2014b; Cantat-Gaudin et al. 2014; Frasca et al. 2015; Pris-
inzano et al. 2016) allowing not only for robust average measures
of cluster chemistry and dynamics, but also their variations as a
function of stellar evolutionary state (Smiljanic et al. 2016).

Though the survey is far from complete, the first internal
data releases from GES (data releases iDR1, iDR2/3, iDR4) span
roughly 2.5 out of five years of observations and provide an op-
portunity to explore the form of the abundance gradient in the
inner disk from high-resolution spectroscopy of both open clus-
ters and field stars. Complementary studies of the thin and thick
disk gradients and age-metallicity relationships using GES iDR1
data for field stars have appeared in Bergemann et al. (2014),
Recio-Blanco et al. (2014) and Mikolaitis et al. (2014). Berge-
mann et al. (2014) used UVES data of field FGK stars to explore
the age-metallicity relationships and gradients in the thin and
thick disk populations. To obtain ages, they limited their sample
to unevolved stars and so probed only the solar neighborhood at
distances of 7 < RGC < 9 kpc. Recio-Blanco et al. (2014) used
the lower resolution GIRAFFE spectra of FGK stars in the first
data release to study the kinematic and spatial gradients of the
thin and thick disk populations over the range 5 < RGC < 12 kpc.
Mikolaitis et al. (2014) used a subset of the Recio-Blanco et al.
(2014) sample and the distances calculated therein that spanned
a range of 4 < RGC < 12 kpc and found a rather shallow metal-
licity gradient for the thin disk (∼ −0.03 to −0.04 dex kpc−1).

While current sample sizes of field stars in spectroscopic sur-
veys such as GES and APOGEE reveal much about the state
of our Galaxy, open clusters within these surveys are comple-
mentary tracers of the chemistry of the thin disk because their
ages and distances can be precisely determined, they span a wide
range in age and location within the Galaxy, and their chemical
abundances can be robustly measured from large samples of stel-
lar members. In this work, we utilize the iDR4 GES results ob-
tained from UVES observations of stars in 12 intermediate-aged
(> 100 Myr, < 3 Gyr) open clusters. These 12 are from a total
of 26 open clusters included in iDR4. These results are placed in
the context of those of other inner disk populations to explore the
nature of the abundance gradient in this relatively understudied
region of the Galaxy. This paper is organized as follows: Sect. 2
presents the GES observations used in this work; Sect. 3 presents
the discussion of the inner disk metallicity gradient and Sect. 4
compares it to chemical evolution models. A summary and con-
clusions are available in Sect. 5.

2. GES data

The Gaia-ESO survey began on 31 December 2011. The survey
makes use of the FLAMES instrument with both GIRAFFE and
the fiber link to UVES. Here, we used only the UVES spectra
obtained with the 580 nm setup, which have spectral resolution
R ≡ λ/∆λ = 47 000, signal-to-noise (S/N) & 50 and span 4760–
6840 Å. UVES data were processed with the GES pipeline as de-
scribed in Sacco et al. (2014). Stellar parameters and abundances
for FGK-type stars observed with UVES were determined by
up to 14 independent groups, and homogenized in a process de-
scribed in Smiljanic et al. (2014). Results from working groups
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specializing in different stellar types were then combined to re-
sult in a set of recommended parameters utilized by the GES
collaboration (Hourihane et al. in prep). These recommended
parameters, available in the “recommendedastroanalysis” table
within GESiDR4Final, were used in this work.

Analysis has now been completed and the data products for
all survey observations taken before July 2014 have been re-
leased to the consortium as GESviDR4Final. This data release
included some updated analysis methods and homogenization
across multiple working groups. As a result, this release included
newly determined stellar parameters and abundances for the pre-
viously analyzed objects, so the parameters presented here differ
slightly from those in earlier GES publications.

Twelve intermediate-aged clusters inside the solar circle (for
this work we adopted RGC = 8.0 kpc for the Sun) have been tar-
geted with UVES observations and included in GESviDR4Final
(Table 1). Of these, results from earlier internal data releases
were published for the clusters Trumpler 20, NGC 4185, NGC
6705 (M 11) and Berkeley 81. References for these works are
given in Table 1. For these objects, we adopted the ages and
distances determined from those published papers. For five of
the remaining eight clusters we used values from the litera-
ture as given in Table 1. Three of these clusters are nearby and
have distances that rest on Hipparcos measurements (NGC 2516,
NGC 3532, and NGC 6633). Two others (NGC 6005 and Pis-
mis 18) have parameters that rely on traditional methods of fit-
ting isochrones, but with models that are consistent with the
metallicities derived here; we explore the impact of errors on
their distances below. For the remaining three clusters, we esti-
mated new cluster ages, distances, and E(B − V) values taking
into account the new GES metallicities, which are significantly
higher than previously assumed metallicities (Be 44 and NGC
6802), or for which we already had analysis underway (Trumpler
23, Overbeek et al. in preparation). Analysis for these clusters
was intended only to give preliminary values that primarily take
into account the revised metallicity and membership information
from GES; a more complete treatment and redetermination of
cluster parameters will be presented in future publications (e.g.,
Tang et al. in preparation for NGC 6802). For these clusters, we
used radial velocities measured from both UVES and GIRAFFE
observations in the cluster field to determine estimates of cluster
systemic velocities. First, a mean radial velocity was calculated
from all stars in the cluster field. Probable radial velocity mem-
bers were chosen as those stars within approximately 2 sigma
about the mean velocity. Using this indication of membership in
conjuction with published photometry (Janes & Hoq 2011 for Be
44 and NGC 6802 and Carraro et al. 2006 for Trumpler 23), we
fit PARSEC isochrones (Bressan et al. 2012) at the derived GES
metallicities (see below), to obtain estimates of cluster redden-
ing, distance, and age which are summarized in Table 1.

For clusters available in earlier GES releases, we determined
membership independently of those previously published. Not
only have the recommended parameters and abundances var-
ied slightly with each data release as a consequence of the cal-
ibration process, but in the case of some clusters, additional
fields were observed and include more cluster members than
were available in iDR1 and iDR2/3. Mean cluster metallicities
were based on an evaluation of individual star cluster member-
ship using radial velocities and abundances from UVES spectra
in GESviDR4Final. We used the radial velocities in combina-
tion with the derived [Fe/H] values from UVES observations
as a guide for determining membership; cluster members clump
tightly in a diagram of radial velocity versus [Fe/H], aiding the
elimination of potential non-member stars near the cluster veloc-
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Fig. 1. Top panel: locations of the GES open clusters (red triangles)
relative to the Galactic plane (z = 0, solid line), as a function of their
Galactocentric radii. All clusters lie within 150 pc of the mid-plane, and
thus are members of the thin disk. Bottom panel: cluster ages (in Gyr)
plotted as a function of RGC.

ity. The majority of [Fe/H] values came from evolved stars in the
red clump or along the giant branch, but for the closest clusters
NGC 2516, 3532 and 6633, include determinations from dwarf
stars as well. The resulting mean cluster abundances and stan-
dard deviations about the mean and radial velocities, based on
these likely members, are given in Table 1. The GES ID, coordi-
nates, and the GES recommended parameters for all stars consid-
ered cluster members and used in forming the mean metallicities
are given in Table 2.

The location of these inner disk GES clusters relative to the
plane of the Milky Way disk is shown in the top panel of Fig. 1.
All clusters are within ∼ 150 pc of the plane, and appear to be
thin disk objects. The bottom panel of Fig. 1 shows the range of
cluster age as a function of RGC. Clusters at similar RGC can vary
in age by as much as 1 Gyr.

3. Inner disk metallicity gradient

With nine open clusters inside RGC = 7 kpc, the GES sample is a
factor of three times larger than previous homogeneous samples
in this part of the Galactic disk (Magrini et al. 2010) and allows
us to see more clearly the trend of metallicity inside the solar
radius. As shown in Fig. 2, the sample of 12 GES clusters (in
red triangles) shows a steady decrease in [Fe/H] with increas-
ing Galactocentric distance over the range of RGC ∼ 5.5 − 8
kpc. The vertical error bars represent the standard deviations
about the mean abundance determined from those stars judged
to be members, and given in Table 1. As discussed in Magrini
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Table 1. Cluster parameters

Cluster l b Age [Fe/H] RV # stars RGC z Ref.
(◦) (◦) (Gyr) (dex) (km s−1) (kpc) (pc)

Berkeley 44 53.2 +3.33 1.6±0.3 +0.17±0.04 −8.7±0.7 4 6.91±0.12 128±17 This Study
Berkeley 81 34.51 −2.07 0.86±0.10 +0.21±0.06 +48.3±0.6 13 5.49±0.10 −126±7 1,2
NGC 2516 273.8 −15.8 0.16±0.04 −0.06±0.05 +23.6±1.0 15 7.98±0.01 −97±4 3
NGC 3532 289.6 1.35 0.30±0.10 −0.03±0.02 +4.8±1.4 2 7.85±0.01 12±1 4
NGC 4815 303.63 −2.10 0.57±0.07 −0.03±0.06 −29.6±0.5 5 6.94±0.04 −95±6 5
NGC 6005 325.8 −3.00 1.20±0.30 +0.16±0.02 −24.1±1.34 12 5.97±0.34 −141±26 6
NGC 6633 36.0 8.3 0.63±0.10 −0.05±0.06 −28.8±1.5 11 7.71±0.01 52±2 7
NGC 6705 27.31 −2.78 0.30±0.05 +0.08±0.05 +34.9±1.6 27 6.33±0.16 −95±10 8
NGC 6802 55.3 0.92 1.0±0.1 +0.10±0.02 +11.9±0.9 8 6.96±0.07 36±3 This Study
Pismis 18 308.2 0.30 1.2±0.4 +0.11±0.02 −27.5±0.7 6 6.85±0.17 12±2 6
Trumpler 20 301.48 +2.22 1.50±0.15 +0.10±0.05 −40.2±1.3 42 6.86±0.01 136±4 9
Trumpler 23 328.8 −0.50 0.8±0.1 +0.14±0.03 −61.3±0.9 10 6.25±0.15 −18±2 This Study

Notes. References for cluster ages, RGC and z distances: (1) Donati et al. (2014a); (2) Magrini et al. (2015); (3) Sung et al. (2002); (4) Clem et al.
(2011); (5) Friel et al. (2014); (6) Piatti et al. (1998); (7) Jeffries et al. (2002); (8) Cantat-Gaudin et al. (2014); (9) Donati et al. (2014b)

et al. (2014) and Magrini et al. (2015), in light of the highly
uniform abundance scale for the GES determinations and the in-
ternal chemical homogeneity of the clusters, the differences in
metallicity seen among the GES clusters are reliable and sig-
nificant. The current sample reinforces this fact; as can be seen
from the stellar parameters given in Table 2, typical uncertainties
in [Fe/H] for individual stars are 0.10 dex. The rms deviations
about the cluster means, on the other hand, are much smaller,
from 0.02 to 0.06 dex, indicating that there is no evidence of an
internal spread in abundance within each cluster. There is a clear
decrease in mean abundance from the innermost point sampled,
at RGC = 5.5 kpc, out to the clusters close to the solar neighbor-
hood. A linear regression analysis on the GES sample shows a
metallicity gradient with a slope of −0.10± 0.02 dex kpc−1.

In addition to this clear trend, however, there is significant
variation in [Fe/H] around RGC = 7 kpc. The 5 clusters at
RGC = 7 kpc cover a range of 0.2 dex, from Be 44 at [Fe/H] =
+0.17± 0.04 to NGC 4815, with [Fe/H] = −0.03± 0.06, well in
excess of the scatter about the mean cluster metallicities. Since
stars in these two clusters have similar atmospheric parameters
and were analyzed homogeneously, this dispersion in [Fe/H] is
likely real. Of the five clusters around RGC = 7 kpc, two have l ∼
54◦, and the other three cluster around l ∼ 305◦ (Table 1). How-
ever these two groups do not also cluster together in metallicity:
the [Fe/H] dispersion at each Galactic longitude is 0.07 and 0.13
dex, respectively.

As mentioned previously, this homogeneous GES cluster
sample explores the inner part of the disk with considerably
larger statistics than in previous studies. More clusters will be
available in future GES releases, sampling also the outer parts of
the disk. At this stage, in order to study the behavior of the metal-
licity distribution across a wider range of Galactocentric dis-
tances, we also consider the large compilation of high-resolution
open cluster metallicities in Netopil et al. (2016). This compila-
tion is an update to that of Heiter et al. (2014), who determined
weighted average [Fe/H] values for clusters based on rigorous
selection criteria over a limited range of atmospheric parame-
ters of literature measures. Though the numbers of open clusters
observed homogeneously as part of large spectroscopic surveys
(e.g., in GES; APOGEE - Frinchaboy et al. 2013; LAMOST -
Zhang et al. 2015) is growing, the Heiter et al. (2014) sample and
its update is currently the closest one can come to a uniform sam-
ple formed from inhomogeneous literature measurements. Eight
clusters in the current work are also in Netopil et al. (2016); we
use the [Fe/H], age and RGC values given in Table 1 for the clus-
ters in common.

Figure 2 shows the metallicity distribution with RGC for both
the GES inner disk clusters (red triangles), and the Netopil et al.
(2016) sample (open gray squares). We note that though clusters
beyond RGC = 14 kpc have been studied, we limit our discus-
sion to objects inside this limit, as the gradient appears to change
around this Galactocentric radius (e.g., Yong et al. 2005, 2012;
Carraro et al. 2007; Pancino et al. 2010; Andreuzzi et al. 2011;
Donati et al. 2015; Netopil et al. 2016; see also Twarog et al.
1997). For comparison, we also plot open clusters observed as
part of the APOGEE Survey (Frinchaboy et al. 2013) (filled gray
squares)1.

The linear gradient traced by the GES clusters, −0.10 ± 0.02
dex kpc−1 is shown as the dashed red line. The gradient described
by the APOGEE cluster sample is just as steep, if not steeper;
Frinchaboy et al. (2013) reported −0.20 ± 0.08 dex kpc−1 for
clusters inside RGC = 10 kpc2. However, these cluster samples
overlap in a very limited region of RGC ∼ 7−8 kpc, and given the
small sample sizes these slopes may not fully reflect the metal-
licity distribution in the inner disk. Fitting their larger literature
sample Netopil et al. (2016) find a linear metallicity gradient of
−0.085±0.017 dex kpc−1 for the 64 clusters inside 9 kpc, a slope
quite consistent with the relationship traced by the GES clusters.
They note the strong influence of the three clusters with much
higher metallicity at RGC ∼ 7 kpc (NGC 6253, 6583, and 6791)
and omitting those find a more modest slope of −0.061 ± 0.015
dex kpc−1.

We note that, while there is overlap in the distribution of
metallicities of the various samples, the GES abundances appear
on the lower boundary of the distribution of Netopil et al. (2016)
and APOGEE values at the same RGC. The slightly lower [Fe/H]
values for the GES clusters around RGC ∼ 8 kpc may indicate a
∼0.1 dex zero-point offset between the GES and Netopil et al.
(2016) metallicity scales. It is also possible that the small num-
bers of the GES clusters in the solar neighborhood shown here do
not fully reflect its intrinsic abundance distribution, and a larger
sample of clusters would include objects of solar metallicity. For
the eight clusters in common between the GES and the Netopil
et al. (2016) study, the difference in [Fe/H] is only 0.04 ± 0.05
(s.d.), suggesting that the systematic differences are small. Given
these caveats, the metallicity distribution of the GES clusters is
consistent with that of the Netopil et al. (2016) sample.

Also shown in Fig. 2 is the gradient determined from 2× 104

giant stars in the APOGEE Survey (Hayden et al. 2014). Specif-

1 We show only those APOGEE clusters in which more than one star
was observed.
2 Frinchaboy et al. (2013) adopted RGC = 8.5 kpc for the Sun, as op-
posed to 8.0 kpc in this work.
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Fig. 2. Metallicity gradient as shown by the GES open clusters (red tri-
angles)in comparison to literature studies. The open cluster literature
compilation of Netopil et al. (2016) is shown as open gray squares,
while clusters observed by the APOGEE survey (Frinchaboy et al.
2013) are filled gray squares. The solid blue line shows the metallic-
ity gradient as determined by APOGEE field giant stars within 250 pc
of the Galactic mid-plane (Hayden et al. 2014). The red dashed line is
least-squares fit to the GES sample, with the value of the slope given in
the caption. [Fe/H] = 0 is indicated by the solid black line, to guide the
eye.

ically, we plot the gradient determined from a subsample of
APOGEE stars with low [α/Fe] measures, confined to within 250
pc of the Galactic mid-plane (i.e., likely thin disk giant stars). As
mentioned in the Introduction, Hayden et al. (2014) found that
the metallicity gradient of −0.09 dex kpc−1 broke and became
shallower inside RGC = 6 kpc. Only one GES object lies inside
(though on the edge of) this break, and its [Fe/H] value is con-
sistent with both slopes shown by the APOGEE data.

Hayden et al. (2014) also traced the vertical abundance gra-
dients in the disk, finding that they may be steeper in the inner
Galaxy, with values of −0.4 dex kpc−1 for the low [α/Fe] stars
inside RGC = 7 kpc. Figure 1 shows that the GES clusters reach
at most 150 pc from the Galactic plane, so the impact of this
gradient, if it applied to the cluster population, would be at most
∼ 0.05 dex. Correcting for this small effect, though, would serve
to steepen the gradient by a small amount, to −0.12 dex kpc−1

since the two innermost clusters are also among those most dis-
tant from the Galactic plane.

While the importance of homogeneous [Fe/H] measures to
the determination of the metallicity gradient cannot be over-
stated, distances must also be homogeneous. Given that the GES
clusters and the Netopil et al. (2016) sample have different dis-
tance scales (though both adopt RGC = 8.0 kpc for the Sun),
we calculate the GES cluster metallicity gradient again adopting
Netopil et al. (2016) RGC values for objects in common. This is
shown in Fig. 3. The gradient steepens slightly to −0.11 ± 0.02
dex kpc−1, as the Netopil et al. (2016) RGC values are generally
closer to the Sun than our values. We noted earlier that two of
the clusters in the GES sample have larger than typical uncer-
tainties in distance; these have little impact on the derived linear
gradient. Changing their distances by the quoted errors changes
the gradient by at most 0.01. We conclude that, in general, the
metallicity gradients shown by the GES sample, the Netopil et al.
(2016) sample, and the APOGEE field star sample are consistent
with one another.

The motivation of this work was to determine if the GES in-
ner disk objects showed an indication of the metallicity gradient
steepening inside the solar circle as previous studies have indi-
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Fig. 3. Same as in Fig. 2, but with distances determined by Netopil et al.
(2016) for GES clusters in their compilation. Note the magnitude of the
GES cluster gradient has changed by 0.01 dex kpc−1.

cated (e.g., Genovali et al. 2014; Magrini et al. 2010). Given the
consistency of the slopes of the different samples in Fig. 2 and
Fig. 3, there is no indication that the open clusters’ metallicity
gradient changes within the range of RGC ∼ 6 − 8 kpc, and in
fact the APOGEE field star data indicate a shallower slope in the
innermost region studied.

4. Comparison to model predictions

Open clusters have long been used to help constrain chemi-
cal evolution models of the Milky Way disk, through both the
shape of their radial gradients and their evolution with time (e.g.,
Tosi 1982; Chiappini et al. 2001; Cescutti et al. 2007; Magrini
et al. 2009). To date, the observational evidence for the time
evolution of the gradient has been mixed. Generally, open clus-
ter studies have found relatively little evidence of a change of
the gradient with time, though there are some indications that
the younger clusters have a slightly shallower distribution than
the older clusters (a flattening of the gradient with time: Friel
et al. 2002, Magrini et al. 2009, Carrera & Pancino 2011; An-
dreuzzi et al. 2011). However, studies of other objects or com-
binations of different stellar populations have indicated the op-
posite. Stanghellini & Haywood (2010), for example, found evi-
dence that the gradient has grown steeper with time based on an
analysis of disk planetary nebulae.

The chemical evolution model of Minchev et al. (2013, 2014)
allows for the movement of star particles from their birthplace
due to radial migration effects. (We take their work as an ex-
ample; other dynamical models of Milky Way-like galaxies that
trace stellar chemistry do exist, e.g., Roškar et al. 2008; Schön-
rich & Binney 2009; Loebman et al. 2011; Bird et al. 2012;
Kubryk et al. 2013.) Figure 4 shows the metallicity gradients
predicted by their model for different-aged objects within 250 pc
of the Galactic plane (taken from Fig. 10 and Table 1 of Minchev
et al. 2014). We also plot the GES and Netopil et al. (2016)
open cluster samples color-coded with the same age ranges as the
model gradients. The majority of open clusters are < 2 Gyr old
(magenta symbols), and show a steeper gradient than the model
at all age ranges. We note also that the open clusters, almost re-
gardless of age, do not align with the model predictions, either
in the value of the metallicity or the dependance on age. It has
been shown that open cluster metallicity does not correlate with
cluster age as would arise from a general increase in the metallic-
ity of the disk with time (e.g., Friel et al. 2002) and this general
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Fig. 4. GES open clusters (black-lined triangles) and Netopil et al.
(2016) clusters (filled squares), color-coded by age. The colored solid
lines represent the metallicity gradients for different-aged stars in the
chemical evolution model of Minchev et al. (2014). The gradient shown
by the clusters is much steeper than that of the model.

impression is reinforced in Fig. 4; almost all the younger clus-
ters, with ages < 2 Gyr, have lower metallicities than predicted
in the model. Conversely, the oldest of the clusters lie at higher
metallicities than predicted.

Netopil et al. (2016), investigating possible age-metallicity
relationships among their homogenized literature sample, found
evidence, in fact, of an increase in metallicity with age. Com-
paring metallicities of clusters with ages less than 0.5 Gyr to
those with ages between 1 and 2.5 Gyr, corrected for the ra-
dial gradient, they found that the younger group had metallici-
ties ∼ 0.07 dex lower than the older group. This held even when
they only considered clusters within 7 ≤ RGC ≤ 9 kpc. We can
carry out the same exercise with the GES clusters, and find an
identical result. Residuals from the linear gradient show a clear
correlation with cluster age (Fig. 5); the younger clusters are at
systematically lower metallicities, while the older ones are at
systematically higher metallicities. Using the same age group-
ings adopted by Netopil et al. (2016), we find, as they did, that
clusters with ages less than 0.5 Gyr show a mean residual of
−0.021 ± 0.026 while clusters older than 1.0 Gyr have a mean
residual of +0.041 ± 0.037. That this trend is evident in our ho-
mogeneously analyzed (and smaller) cluster sample that extends
to RGC ∼ 5.5 kpc is worth emphasizing.

As Netopil et al. (2016) point out, this increase in metallicity
with age, contrary to what would be expected from simple ex-
pectations of chemical evolution, can be explained by the effect
of radial migration, as more metal-rich and older objects from
the inner disk move outward. An analogous result has been seen
in a comparison of metallicity gradients traced by planetary neb-
ulae and H II regions in M 31: the older nebulae exhibit a flatter
gradient and higher oxygen abundances than the younger H II re-
gions (Magrini et al. 2016). In their comparison to the chemical
evolution model of Minchev et al. (2013), Netopil et al. (2016)
found that the trend of increasing metallicity with age was qual-
itatively consistent with the effect of radial migration, but was
stronger than predicted by the model. The same holds true for
our cluster sample.

However, in the larger context, the exact magnitude and ef-
fect of radial migration on the chemical abundance trends seen
in the Milky Way have yet to be firmly established. Observa-
tionally, evidence appears to be growing that radial migration
effects cannot be ignored. The lack of an age-metallicity relation
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Fig. 5. Residuals in [Fe/H] from the linear gradient as a function of
cluster age.

for stars in the solar neighborhood can be naturally explained by
migration processes, for example (e.g., Haywood 2006). Also,
the shapes of metallicity distribution functions in different radial
bins of APOGEE red giant stars led Hayden et al. (2015) to con-
clude that “migration is of global importance in the evolution
of the disk” (p. 12). Furthermore, some radial migration mod-
els can reproduce observations remarkably well (e.g., Loebman
et al. 2016). However, radial migration models still vary from
one to another on the assumption of initial conditions, as well
as how the bar and spiral arms system are treated. Still more as-
sumptions are made when a chemical evolution model is applied
to a dynamical one (Minchev et al. 2013 are clear on the sensitiv-
ity of their results to assumptions made in their model). Adding
chemistry to a dynamical model introduces additional uncertain-
ties that complicate comparison of models to one another and to
observations.

As a result, different models can produce conflicting predic-
tions. For example, Minchev et al. (2013) found that the Sun
most likely formed near somewhere between RGC = 5.5− 7 kpc,
while Martínez-Barbosa et al. (2015) found the probability that
the Sun formed inside RGC = 8 kpc to be no higher than 30%.
Furthermore, they found that when radial migration effects were
strong, the Sun was more likely to migrate from the outer disk,
and this only occurred in specific cases.

In an analysis of FGK stars near the Sun, Haywood et al.
(2013) argue for the lack of a detectable influence of radial mi-
gration, at least in the solar neighborhood. They argue that the
ellipticity of stellar orbits, plus the Sun’s nearness to the transi-
tion to the metal-poor outer disk (RGC ∼ 10 kpc), are sufficient to
explain the presence of both metal-poor and metal-rich stars in
the solar neighborhood. They furthermore argue that the Milky
Way disk likely formed outside-in, rather than inside-out, based
on the different age distributions of the metal-poor and metal-
rich stars near the Sun.

Finally, it is still uncertain whether the effect of radial mi-
gration on open clusters is the same as that for field stars. Mi-
gration has been proposed to explain the presence of clusters
with [Fe/H] ∼ +0.4 dex near RGC ∼ 7 kpc, such as NGC 6791;
however, a study by Jílková et al. (2012) concluded it was very
unlikely. On the other hand, Fujii & Baba (2012) used N-body
simulations of clusters in a Galactic disk and found a timescale
of ∼ 100 Myr for the radial migration of open clusters. In that
time period, they demonstrated a cluster could move ∼ 1.5 kpc
from its birth location, with minimal mass loss. However, their
simulation did not include the effects of the bar, and so it is not
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clear whether their general conclusions apply to clusters inside
the Solar circle, as we consider here. Martinez-Medina et al.
(2016) demonstrated that spiral arms can lift open clusters > 1
kpc above the Galactic mid-plane, which can explain the ten-
dency of older (> 1 Gyr) clusters to have large z-distances, but
they do not explore variations of cluster RGC in their model.

In conclusion, to fully gauge the impact of radial migration
on the formation and evolution of the disk, the full range of ob-
servations of different stellar populations at different locations in
the disk (correcting for observational biases) must be compared
with multiple chemo-dynamical models that are built upon dif-
ferent assumptions and have different uncertainties. This should
be possible within the next decade, after the many ongoing and
planned spectroscopic surveys of the Galaxy are complete.

5. Summary

We have presented an analysis of the inner disk metallicity gra-
dient based on metallicities of 12 intermediate-aged clusters ob-
served as part of the Gaia-ESO Survey. Our sample triples the
number of clusters inside RGC = 7 kpc compared to previous
homogeneous literature studies, and also spans a wider range in
age (∼ 1.5 Gyr) than other studies of objects in this part of the
disk (e.g., Cepheids in Andrievsky et al. 2002).

The metallicity gradient of our sample, which spans 5.5 <
RGC < 8 kpc, is −0.10±0.02 dex kpc−1, consistent within un-
certainties to the gradient measured by APOGEE red giant stars
(Hayden et al. 2014). As our sample stars all lie within 150 pc of
the Galactic plane, the impact of a vertical metallicity gradient
on our results is expected to be less than 0.05 dex, and would
only change the radial gradient by 0.01 dex kpc−1. The metal-
licity gradient shown by our inner disk sample is also consistent
with that shown by the larger cluster sample of Netopil et al.
(2016) in the range of 6 < RGC < 14 kpc. Therefore, the GES
clusters do not support previous claims in the literature that the
metallicity gradient steepens inside the solar circle.

We have also found that the GES clusters exhibit a trend of
increasing metallicity with cluster age: after correcting for the ef-
fect of the gradient, clusters older than 1 Gyr are 0.06 dex more
metal-rich than clusters aged < 0.5 Gyr. Two clusters that exem-
plify this effect, Berkeley 44 (age 1.6 Gyr, [Fe/H] = +0.17 ±
0.04) and NGC 4815 (age 570 Myr, [Fe/H] = −0.03 ± 0.06),
both reside at RGC = 6.9 kpc, indicating that the dispersion in
[Fe/H] with RGC is ∼ 0.2 dex.

A comparison of the inner disk metallicity gradient to the
predictions of the chemical evolution model of Minchev et al.
(2014) found relatively poor agreement (Fig. 4). The age-
metallicity relation for our sample is consistent with the effects
of radial migration predicted by Minchev et al. (2014), as also
discussed in Netopil et al. (2016), but the slope and temporal
evolution of the gradient predicted by the model is at odds with
the values shown by open clusters in general. We look forward to
a comparison of cluster and model results when the Gaia-ESO
Survey is complete.
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Table 2. Parameters for cluster members. The complete table is available at the CDS. The first few lines are shown here as a guide to its contents.

Star RA (J2000) DEC (J2000) [Fe/H] e([Fe/H]) Teff e(Teff ) log g e(log) g RV
Cluster GES ID (deg) (deg) (dex) (dex) (K) (K) (dex) (dex) (km s−1)
Berkeley44 19170732+1930555 289.2805000 19.5154167 0.11 0.14 4998 233 3.13 0.55 -7.7
Berkeley44 19170911+1933256 289.2879583 19.5571111 0.20 0.12 4943 182 3.06 0.44 -9.1
Berkeley44 19171388+1933333 289.3078333 19.5592500 0.22 0.14 4996 181 2.79 0.46 -9.1
Berkeley44 19172208+1933254 289.3420000 19.5570556 0.15 0.13 4880 222 2.77 0.56 -8.7
Berkeley81 19013537-0028186 285.3973750 -0.4718333 0.27 0.13 5167 142 3.30 0.30 47.5
Berkeley81 19013631-0027447 285.4012917 -0.4624167 0.25 0.11 4991 138 2.79 0.30 47.6
Berkeley81 19013651-0027021 285.4021250 -0.4505833 0.22 0.12 4939 127 3.14 0.24 48.9
Berkeley81 19013910-0027114 285.4129167 -0.4531667 0.12 0.10 5012 117 2.96 0.24 48.8
Berkeley81 19013997-0028213 285.4165417 -0.4725833 0.32 0.10 4970 149 3.27 0.27 48.6
Berkeley81 19014004-0028129 285.4168333 -0.4702500 0.26 0.10 4940 127 2.77 0.24 48.7
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