LIVERPOOL POLYTECHNIC DEPARTMENT OF PHYSICS

THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

The Effect of Wind Turbulence on Noise Barrier Perfomance

Geoffrey William Burrows, B.Sc.

July 1985

This thesis is submitted to the Council for
National Academic Awards in partial fulfilment
of the requirements for the degree of
Doctor of Philosophy

Course of Advanced Studies

Abstract

Whilst registered as a candidate for the degree for which this thesis is submitted, the author was not a registered candidate or enrolled student for another award of the CNAA or other institution.

In order to gain knowledge in subject areas related to this thesis, the following courses and conferences were attended.

```
Time Series Analysis Course
    (ISVR, Southampton: September, 1981)
```

Microprocessor Applications in Acoustics (Open University: July, 1980)
Institute of Acoustics Autumn Conference (Windermere: 1979, 1980, 1984)

Outdoor Sound Propagation Conference (Bedford College: March, 1982)

- Constant Temperature Anememotery Course
(Cranfield Institute of Technology:
May, 1981)
Figure index V
Abstract viii
1 Introduction 1
1.1 Reasons for Present Work (p1)
1.2 Thesis Structure (p2)
2 Theorectical Aspects of Dutdoor Sound Propagation(Excluding Meteorological Effects)4
2.1 Horizontal Sound Propagation over Open Ground (p4) 2.1.1 Ground Effects - The Shadow Zone 2.1.2 Interfernce Effects 2.1.3 The Ground Wave

2.2 Barrier Effects (p12)

 2.2.1 Transmission through the Barrier

 2.2.2 Diffraction over the Barrier
 (a) The semi-infinite Thin Screen
 (b) Thin Screen Resting on a Rigid Surface
 (c) Screen on Absorptive Surfaces
 (d) Wedge shaped barriers and thick barriers
 2.3 Resume (p27)
3 The Present state of knowledge of Meteorological Effects on Outdoor Sound Propagation28
3.1 Bulk Effects of Ufadt (p28)
3.2 Bulk Effects of Temperatura (p28)
3.3 Vertical Wind.Gradients (p29)
3.3.1 The Effect of Vertical Wind Gradients on Unobstructed Sound Propagation
3.3.2 The Effects of Vertical Wind Gradients on Barrier Performance
3.4 Vertical Temperature Gradients (p33)
3.5 Microstructure of the wind (p34)3.5.1 Wind Turbulence Effects on Unobstructed Sound Propagation3.5.2 The Effect of Uind Turbulance on Barrier Performance3.6 The Microstructure of Air Temperature (p36)
3.7 Resume (p36)
4 The Experimental Design 38

4.1	General Design Requirements (p38) 4.1.1 Summary	
4.2	Realisation	n of the Measurement Requirements (p43)
	4.2 .1	Geometrical Aspects -
	4.2 .2	The Source Signal
	4.2 .3	The Acoustic Source
	4.2 .4	Microphone Measuremant
	4.2 .5	Recording of the Acoustic Signals
	4.2 .6	Calibration of the Acoustic System
	4.2 .7	Wind Velocity Measurement
	4.2 .8	Wind Direction Determination
	4.2 .9	Air Temperature Measurement
	4.2 .10	Mobile Laboratory

4.3 Microphone Control (p49)4.3.1 Microcomputer Interface Development4.3.2 Software Development
4.4 Alternative Measurement Methods (p51)
4.5 Implications of the obove for Scale Model Work (p53)
5 Details of the Measurement System 54
5.1 Source Signal (p54)5.1.1 The Electronic Noise Generator5.1.2 The Pure Tone Source
5.1.3 The Random Pure Tone Source
5.2 The Sound Source (p57)
5.2.1 The Loudspeaker
5.2.2 Equaliser
5.2.3 The Signal Gate
5.2.4 The Power Amplifier5.2.5 The Band Pass Filter
5.3 Microphone Channels (p63)
5.3.1 The Autoranging Device
5.3.2 Automatic Operation of the Microphone Filters
5.4 The Twin Channel Capture Device (p66)
5.5. Anemometer (p68)
5.1.1 Digitisation of the Anemometer Signal
5.6 Wind Direction Indicator (p70)
5.7 The Electronic Thermometer (p71)
5.8 Overall Control of the Automatic Measurement System (p71)
5.9 Calculations (p76)
5.9.1 Sound Pressure Levels
5.9.2 Wind Speeds
5.9.3 Uind Turbulence5.9.4 Uind Direction5.9.5 Air Temperature
5.10 Data Storage (p81)
6 Validation of Measurement System 846.1 Acoustical Measurements (p84)
6.1.1 Calculation Software
6.1.2 Electrical Test Signals6.1 .3 Acoustical Signals
6.2 Meteorological Measurements (p100)
6.2.1 The Anemometer6.2.2 Wind Direction Sensor6.2.3 Electronic Thermometer
7 Modification of the Measurement System for Model Work 109
7.1 Modifications to the Acoustical System (p109)

7.2 Modifications to the Meteorological System (p110)

7.3 Additional Tests Required for Model Work (p110)

 7.3.1 Measuring the Point Source Origin of a loudspeaker

 7.3.2 Polar Diagrams
 7.4 Validation of Automated Acoustical Measurements at Model Work (p121)

7.5 Choice of Covering for the Model Floor (p121)

 7.5.1 Determination of Amplitude and Phase Changes on Reflection
 8 Experiments 135
8.1 Field Experiments (p135)
Q.1.1 Location
8.1.2 Open Propagation
8.1.3 Barrier Experiments
8.1.4 Use of a Tape Recorder with the Automatic Measurement System
8.2 Model Experiments (p165)
8.2.1 Modelling. Wind Conditions
8.2.2 Construction
8.2.3 Model Procedures
9 The Results of Full Scale Experiments $15 \uparrow$
10 The Results of Model Scale Experiments 177
11 Analysis of Results 186

11.1	Analysis	Techniques (p186)	
	11.1 .1		
	11.1 .2	The DEC-20 Computer	
	11.1 .3	The GENSTAT Package	
	11.1 .4	Inspection of Graphical Representations	
11.2	Analysis	of Full Scale	Results (p192)
	11.2 .1	Visible Trends and Tendencies in the Graphical Results of Chapter 9	
	11.2 .2	A Study of th	the high turbulence level difference
		11.2.2.1	Open Propagation
		11.2.2.2	Barrier Present (Octave Bands)
		11.2.2.3	Barrier Present (Pure Tones and Random Pure Tones)
	11.2 .3	The Observed	Scatter of Level Difference Measurements
		11.2.3.1	Low Turbulence Scatter ranges (unobstructed propagation/octave bands of noise)
		11.2.3.2	Low turbulence Scatter Range (Barrier Present/ Octave Bands of Noise/Source and Receivers above ground)
		11.2.3.3	Low Turbulence Scatter Range (Barrier Present/ Octave Bands of Noise/Source and Far Microphone at Ground Level)
		11.2.3.4	Low Turbulence Scatter Range (Barrier Present/ Pure Tones)
		11.2.3.5	Low Turbulence Scatter Range (Barrier Present/ Random Pure Tones)

11.2.4 Resume of the Observations Discussed in 11.2
11.2.5 Model Scale Results
11.2.5.1 Asymptotic Level Difference
11.2.5.2 Low Turbulence Limit of Level Difference Scatter
12 Conclusions and Suggestions for Further Work 217
12.1 Source/Receiver Grometries (p217)
12.2 Development of the Anemometry (p218)
12.3 Temperature Furbulence (p 219)12.4 The Use of an Impulse Sound Source (p219)
12.5 Air Turbulence in the Model (p220)
12.6 Computer Prediction of Observed Effects (p220)
References 221
Acknowledgements 225
Appendix A Control of Measurement Equipment 226
A. 1 The Sound Source (p226)
A.1.2 The Band Pass Filter A.1.3 The Electronic Gate A.1.4 The Attenuator
A. 2 The Digital Event Recorder (p230)A.2.1 The Kemo Analogue MemoryA.2.2 The Datalab DL901 Transient Event Recorder
A. 3 The Wind Direction Indicator (p241)
A. 4 The Electronic Thermometer (p243)
A. 5 Microcomputer Control of the PIA's (p244)
Appendix B Microcomputer Control of the PIA's 247
B. 1 The MSC 6522 (p247)
B.1.1 The Processor Interface
B.1.2 The Peripheral Interface B.1.3 In-built Features B. 2 The MCS 6532 (م260)
Appendix C Hot Wire Probe Calibration 261
Appendix D Typical Raw Data Printouts 263
Appendix E Programme Listing 275

2.1	Propagation Close to the ground (p5l)
2.2	Excess Attenuation for propagation from a point source over moun grass(6q)
2.3	Semi-infinite thin screen (f (lid)
2.4	Four possible ray paths for a thin screen on a rigid ground (p18)
2.5	Thin screen grometrical parameters for Embleton's equation (p21)
2.6	Makaewa's Equivalat Screen (p24)
2.7	Pierce's Equivalent Barrier (p24)
2.8	Kurze's Wide Barrier approach (p2
3.1	Variation of wind velocity and temperature in the vicinity of a plat ground surface (up to 10 m) (p30)
3.2(a)	Refraction downward, (b) Refraction upward (p30)
3.3	DeJong - Stusnick wind effect model (p32)
4.1	Geometries used for Outdoor Experiments (p44)
4.2	Number of Captured Wavelengths (p45)
4.3	The Automatic Measurement System Block Diagram (p52)
5.1	Noise Generator Circuit Diagram (p55)
5.2	Sound Source Block Diagram (p58)
5.3	The Equadiser Circuit (p60)
5.4	Power Amplifier (p62)
5.5	Comparison of two VBF 22/05 filters with Bak Third octave filter set and ANSI Class III standard (p64)
5.6	Filter Set Solenoid Circuit Diagram (p67)
5.7	Wind Direction Sensor (a) Internal View (b) Showing Protective Cover and Battery Box (pp72-73)
5.8	Temperature Sensor Circuit Diagram (p74)
5.9	Flowchart for the RMS routine (p77)
5.10	Memory Map of Commodore System (By Blocks) (p82)
6.1	Integration Limits for standard deviation calculations (p87)
6.2	Standard deviation of pure tones with random phases (p89)
6.3	Sequence of Development of Automatic Acoustical Measurement System (p91)
6.4	Standard Deviation of 356 RMS levels vs. No. of waves measured, for continuous Octave Bands of Noise (Electrical) (p92)
6.5	Electrical Test Signal Standard Deviation Resuts (p94)
6.6	Standard Deviation of 256 RMS levels vs. No. of waves measured, For Gated Octave noise bands (Electrical) (p96)
6.7	Electrical Test Signal RMS Results (p97)
6.8	Standard Deviation vs. No. of waves captured for continuous Octave. Bands of Electrical Noise with Equaliser in Circuit (p98)
6.9	Instrumentation for Acoustic Tests at Leyland (p101)
6.10	Geometries for Acoustic Tests at Leyland (p102)
6.11	Standard Deviation of 256 RMS levels vs. No. of waves for Gated octave noise bands (Acoustical) (p103)
6.12	Anemometer Comparisons (p105)
7.1	On-axis response of electrostatic transducer (p112)
7.2	On-axis response of Piezo-electric tweeter (p114)
7.3	Arrangement used to determine Polar Response of Loudspeakers (p116)
7.3(b)	Polar Response of Loudspeakers (p117)
7.4	Method of mounting loudspeakers for model work (p119)
7.5	Response of Combined Loudspeaker Assembly (p120)
7.6	Response of Loudspeaker Assembly in Quasi-anechoic Laboratory (p122)
7.7	Vector Diagram of Direct and Reflected Wave over a plane reflective surface (p125)

7.8	Arrangement of Model Table for Reflection Coes
7.9	Constant phase triggering circuit for kemo Analogue Memory (p129)
7.10	Results of Reflection Coefficient Measurements for (a) Felt, (b) Foam, (c) Melamine (pp131-132)
7.11	Amphitude Reflection Coefficient vs. Frequency for (a) Felt, (b) Foam (p133)
7.12	Phase Change on replection vs. Frequency for (a) Felt, (b) Foam, (c) Melamine (p134)
8.1	Summary of Open Propagation Ceometries (p138)
8.2	Barrier Construction (p139)
8.2(a)	Summary of Barrier Geometries; Octave Bands of Noise. Source and Receivers above ground (p140)
8.2(b)	Source and Far Recaiver at Ground Level (p141)
8.3	Summary of Barrier Geometries; Pure Tones and Random Pure Tones (p142)
8.4	Nagra Playback Circuit (p146)
8.5	Arrangement for Model Investigations (p149)
9.1	Level difference vs. TN 50 (pp153-157) Full Scale; Octave bands; unobstructed propagation various frequencies
9.2 .1	Level difference vs. TN_{50} (pp158-161) Full Scale; octave bands; barrier present (source and receivers all above ground) Various frequencies and geometries
9.2 .2	Level difference vs. TN 50 (pp162-165) Full scale; octave bands; barrier present (source and far receiver on the ground) Various frequencies and geometries
9.3	Level difference vs. TN_{50} (pp166-169) Full scale; pure tones; barrier present. Various frequencies and geometries
9.4	Level difference vs. TN_{50} (pp170-176) Full scale; random pure tones; barrier present. Various frequencies and grometries.
10.2	Level difference vs TN_{500} (pp178-181) Model scale; octave baños of noise; barrier present various frequencies and geometries
10.3	Level difference vs. $\mathrm{TN}_{50 \mathrm{p}}$ (pp182-185) Model scale; pure tones; barrier present Various frequencies and geometries
11	A typical PET printout of results (p187)
11.1	Level difference vs. Frequency for Octave bands of noise propagated over unobstructed grassland (p204)
11.2	Level Difference vs Frequency for Octave bands of noise propagated over a barrier (p205)
11.3	Level Difference vs. Frequency for Octave bands of noise propagated over a barrier (p206)
11.4	Level Difference vs. Frequency for pure tones propagated over a barrier (p207)
11.5	Level Difference vs. Frequency for random pure tones propagated over a barrier (p208)
11.6	Low turbulence scatter range vs. Frequency for octave noise bands propagated over unobstructed grassland (p204)
11.7	Low turbulence scatter range vs. Frequency for octave noise bands propagated over a barrier (p210)
11.8	Low turbulence scatter range vs. Frequency for octave noise band propagated over a barrier (p211)
11.9	Low turbulence scatter range vs. Frequency for pure tones propagated over a barrier (p212)

11.10	Low turbulence scatter range vs. Frequency for random pure tones propagated over a barrier (p213)
11.11	Model Scale: Level Difference vs. Full Scale equivalent frequency for Octave bands of noise propagated over a barrier (p214)
11.12	Model Scale: Level Differences vs. Full scale equivalent frequency for pure tones propagated over a barrier (p215)
11.13	Model Scale: Low turbulence scatter range vs. Full scale equivalent frequency for pure tones propagated over a barrier (p216)
A. 1	Servicing of Kemo Analogue Memory (p234)
A. 2	Analogue memory connections to PIA (p235)
A. 3	Independant Iriggering Modification to Kemo Analogue Memory (p236)
A. 4	Servicing of Datalab DL901 Event Recorder (pp238-239)
A. 5	Signals for Datalab DL901 Event Recorder (p240)
A. 6	Wind Dirstion Sensor Flowchart (p242)
A. 7	Electronic Thermometer Flowchart (p243)
B. 1	System RESET circuit (p250)
C. 1	Tÿpical Hot wire anemometer Calibration Curve (p262)

Abstract

The Effect of Wind Turbulence on Noise Barrier Performance

G W Burrows

An investigation has been carried out into the effect of wind turbulence on the propagation of sound over open grassland both with, and without, a 2.4 m high barrier present.

Sound bursts, derived from a variety of original signals, were generated using a horn loudspeaker and the resulting levels were measured using two variably positioned microphones, the further of which was placed at distances of up to 24 m from the source. Simultaneous measurements were made of a variety of meteorological parameters. A microcomputer-based system was developed to control the experiments. and store the measured data for subsequent retrieval and analysis.

As one of the approaches adopted in a search for visible evidence of correlation between various acoustical and meteorological parameters, the measured level difference for each sound burst was displayed graphically against the corresponding value of a particular measure of wind turbulence. For many combinations of measurement geometry and acoustic signal type, the data points fell, with a noticeable degree of consistency, within an envelope of characteristic shape. The shape implied that when the instant of transmission of a sound burst coincided with a low value of the measure of local turbulence, the apparent level difference was subject to considerable statistical fluctuation. This was the case both with and without the barrier present. As the turbulence increased, however, the propagating medium appeared to behave as a progressively more uniform and stable one and the abserved scatter correspondingly reduced. The origin of this behaviour remains unclear; however the presence of the barrier, it was concluded, did not appear to modify this effect.

1 to 16 laboratory scale model experiments have been carried out to investigate the replication of the above effects and the results are reported.

Introduction

Acoustical barriers are important in noise control engineering especially if the reduction of the noise level at source is difficult or impossible. They are designed to reduce the received noise by eliminating the direct path of sound from source to receiver, leaving the sound arriving by reflection from surrounding objects, refraction through the atmosphere and by diffraction around the barrier to contribute to the sound pressure level at the receiver.

Applications have been found indoors, for example, to separate operators from noisy machinery or in the lay-out of open-plan offices, and outdoors to limit motorway, airport or factory noise. In addition, built-up environments, local topography etc., may produce a barrier-like shielding epfect.

With the aid of methematical formulae and acoustical scale model studies the physics of the diffraction of sound around noise barriers is well understood and can lead to confident prediction of indoor barrier performance especially for the case of a simple thin screen barrier.

1.1 Reasons for Present Work

There is evidence to show that the effects of wind and temperature profiles above the ground, coupled with atmospheric turbulence, significantly reduce the predictability of outdoor barrier performance.

There is a need to investigate the processes by which barrier performance can be degraded in outdoor applications. It is to be expected that such processes could then be taken into account in barrier design in order to predict their effectiveness more accurately. This requires that any phenomena which emerge as having significance in addition to the well-known effects of diffraction and transmission should be quantified, and if possible, reproduced to a representative degree in scale models.

At the time of writing, little work has been done on the effects of meteorological conditions on barrier performance so this project is primarily concerned with identifying anomolies in horizontal sonic propagation outdoors with and without a barrier in the propagation path. Such effects as are identified may, it is hoped, be relevant to particular meteorological phenomena in a qualitative or quantitative way. The intention is alsa to investigate the degree to which the effect is replicated at model scales. This would be expected to point the direction in which further more rigorous investigation lies.

1.2 Thesis Structure

This thesis is organised as follows. The second chapter contains a review of previous work pertaining to the current study. including the theoretical background, concerning outdoor sonic propagation both with and without an obstructing noise barrier under static atmospheric conditions. Chapter 3 reviews the current understanding of how meteorology affects the phenomena discussed in Chapter 2.

In Chapter 4 the rationale for the approach adopted in this study is discussed and the requirements for the experimental system arising from that approach are outlined. Chapter 5 details the physical realisation of the requirements and Chapter 6 documents the evidence produced to ensure that the requirements of the experimental system were met.

The modifications to the above measurement system needed to perform scale model experiments are given in Chapter 7, which also contains descriptions of the additional vaildation tests required at model scale.

Chapter 8 includes details of the experiments performed at both full and model size, and the results of these are given in Chapter 9 and Chapter 10 respectively. The analysis of the results is discussed in Chapter 11. Chapter 12 suggest further work that could build on the present study and its findings.

Appendices are included to give details of the measurement system and how it was controlled that would be cumbersome in the main body of the thesis.

Relevant acknowledgements and a list of references are provided.

Theoretical Aspects of Outdoor Sound Propagation
 (Excluding Meteorological Effects).

Sound propagation between a transmitter and receiver above the ground in the neighbourhood of a noise barrier, clearly involves the wellunderstood phenomena of transmission through the barrier, diffraction at the edges of the barrier, refraction through the air and reflections at the various surfaces involved, (i.e. the ground, barrier or nearby buildings) with the consequent introduction of interference fefects. These are in addition to beam-spreading and other phenomena associated with horizontal propagation close to a finite-impedance surface that can give rise to the formation of shadow zones.

This chapter reviews in outline the present state of knowledge of these phenomena under static atmospheric conditions. The effect of meteorology on these phenomena is reviewed in the next chapter.
2.1 Horizontal Sound Propagation over Open Ground This section reviews the present understanding of propagation phenomena in the absence of a barrier for a. sound source and receiver close to the ground. The review paper by Piercy, Embleton and Sutherland (1) and by Embleton, Piercy and Olsen (2) are helpful references for this section. 2.1.1 Ground Effects - The Shadow Zone

Consider the case of a point source and.receiver close to the ground as shown in Figure 2.1. The pressure, p, at the receiver, R, is given by the so-called Weyl-Van der Pol solution (3):

Fig. 2.1 Propagation close to the ground.

$$
\frac{p}{P_{0}}=\frac{1}{r_{1}} \cdot e x p-i k_{1}+\frac{R_{p}}{r_{2}} \cdot e x_{p}-i k_{2}+\frac{\left(1-R_{p}\right)_{F}}{T_{2}} \cdot \exp -i k_{2}
$$

where $P_{0}=$ pressure at unit distance from the source $R_{p}=$ plane wave reflection coefficient
The amplitude factor, F, in the third term will be discussed later. The first term represents the direct ray from source to receiver. The I in the denominator gives the classical attenuation due to spherical beam spreading of 6 dB per doubling of distance.

The second term represents the reflected ray notionally from an image source in the ground, travelling a distance r_{2} to the receiver. The plane wave reflection coefficient in this term is given by:

$$
\begin{equation*}
R p=\frac{\sin \psi-z_{1} / Z_{2}}{\sin \psi+z_{1} / z_{2}} \tag{2.2}
\end{equation*}
$$

where $\boldsymbol{\psi}=$ grazing angle (see Fig. 2.1)
$Z_{1}=$ characterisitic impedance of air
$Z_{2}=$ specific impedance of the ground.

In order to accommodate phase and amplitude change on reflection Z_{2} and R_{p}. are represented as complex variables.

It can be seen that for an acoustically hard surface when Z_{2} approaches oo, at normal incidence R_{p} can approach unity. This gives rise to pressure doubling if the source is placed directly on the surface giving coherent reflection at all frequencies. Although Z_{2} can be very large it can never reach infinity. This means that in the limit of very small grazing angles R_{p} will equal -1.

This gives a reflected wave that is 180° out of phase with the incident wave with no loss of amplitude. A cancellation of direct and reflected wave results and so the propagation of plane waves at grazing incidence to an impedance boundary is forbidden and a shadow zone is formed.

From equations (2.1) and (2.2) the attenuation in the shadow zone in excess of geometrical spreading is given by:

$$
A_{e}=20 \log \left[2 \sin \psi\left(Z_{2} / Z_{1}\right)\right], d B
$$

Such a shadow zone is also farmed for point sources at distances where spherical wave fronts approximate plane waves.

2.1.2 Interference Effects

If the source and receiver are both above ground then there is a phase change between direct and reflected rays caused by a difference in path lengths which is additional to the phase change on reflection as described above. A simple geometric analysis of Fig. 2.1. reveals that the path length difference is given by:
$P L D \approx 2 h_{s} h_{r} / d$
If the phase change on reflection is neglected (this would be valid only for acoustically hard surfaces) interference minima will occur when the path length difference is an odd number of half wavelengths. The frequency
of the first minimum will increase with increasing separation or decreasing transducer height.

However, above about 1 kHz grassland is effectively soft giving a phase change on reflection approaching 180° and so the interference minima appear at an even number of wavelengths. Below about 150 Hz the ground becomes refiective giving coherence of direct and reflected beams. Between the two regions is a broad minimum at $\sim 500 \mathrm{~Hz}$ characteristic of propagation over grassland. It is due to the shadow zone postulated above for source or receiver close to the ground. See Fig. 2.2.

Rasmussen (4) has compared theoretical predictions of sound pressure levels with results of measurements of sound propagation from a point source over grassland. He compares models for locally reacting ground that use one parameter (5,6), his oun proposed model using two parameters and Thomassen's four parameter model (7).

All three models give reasonable agreement with measured data although it is noted that the two and four parameter models, both of which assume a porous ground surface backed by an acoustically hard sub-surface layer, predict interference minima more satisfactorily than the single parameter model. However, the two-layer models are less satisfactory at low frequency.

2.1.3 The Ground Wave

The third term in equation (2.1) is not as readily recognisable as the first two terms. It arises from the fact that the curvature of the wavefront changes with distance. The amplitude factor, F, in this term

Fig. 2.2 Excess attenuation calculated for propagation from a point source over mown grass for $h_{S}=1.8 \mathrm{~m}, h_{r}=1.5 \mathrm{~m}$, and the distances of propagation, r_{1}, indicated. The excess attenuation is relative to that for the point source placed on a perfectly hard surface (Ref.
is a complicated function dependant on a variable known as the numerical distance, w, which is given by:

$$
W=\left(\frac{1}{2} i k r_{1}\right)\left(\sin \psi+\frac{z_{1}}{z_{2}}\right)^{2}
$$

The numerical distance is the propagation distance scaled to the impedance of the ground for a given frequency and grazing angle.

This third term predicts the existence of a ground wave capable of penetrating the shadow zone described earlier. Although the nature of the ground wave is as yet unclear, its dependence on physical variables is well understood from studies of radio wave propagation. For instance, for source and receiver on the ground it is well known (2) that at short distances $(W \ll 1)$ the ground wave suffers no excess attenuation but at longer distances ($W \gg 1$) there is an attenuation of 6 dB per doubling of distance. However if the ground acoustic impedance has a finite phase angle, the amplitude of function E increases from the infinitely hard ground case in the area of $\mathbb{W} \approx 1$. This is dye to a surface wave which is coupled to the surface due to its reactive impedance but actually propagates in the air. The amplitude of the surface wave decreases exponentially with height according to:

$$
p=p_{0} \exp \left[-x_{2}^{2} k z /\left(R_{2}^{2}+x_{2}^{2}\right)\right]
$$

It can be seen that for small propagation distances the surface wave is very small. For $W \gg 1$ the amplitude again decreases because of the boundary losses which have an exponential dependance on distance. At $W=1$ the surface wave adds to the ground wave giving an increased amplitude.

It should be noted that, for transducer heights of about 1-2 M, the ground wave needs only be considered for propagation distances greater than about 100 M. See for example Fig. 11 of Ref.(1).

The described effects for near-horizontal propagation above a finite impedance boundary have been used to predict the excess attenuation in practical situations. Attanborough (8) has used the theory to predict. A-weighted excess attenuation of traffic over various surfaces including grassland, snow and sand. This work includes a review of available measurements of normal impedance for various surfaces.

Attention has been paid to propagation over ground on non-uniform composition. A numerical evaluation of the field above an impedance boundary has yielded predictions of excess attenuation when the surface beneath the propagation path comprises both hard and soft arsas with a distinct boundary line separating the two areas, (9), and boundary integral equation methods have produced equations for sound propagation above an imhogeneous impedance plane (10).

This section reviews the published literature concerned with the phenomena associated with the introduction of a barrier in a sound propagation path such as that discussed above.

2.2.1 Transmission through the Barrier

The transmission loss (TL) of a panel is defined as the ratio of the incident power to the transmitted power and is Lelated to the transmission coefficient, τ, a frequency-dependent characteristic of the panel, by

$$
T L=10 \log \left(\frac{1}{\tau}\right)
$$

Below a frequency known as the critical frequency the transmission is largely dependant only on the surface mass, M_{s}, of the panel (i.e. the product of its density and thickness). The transmission loss for low frequency and normal incidence can be predicted by a version of the socalled "Mass Law" (11).

$$
T L=10 \log _{10}\left(1+\left(\frac{\omega \eta_{s}}{2 \rho c}\right)^{2}\right)
$$

It can be sean that transmission loss increases by 6 dB per doubling of surface mass and, for a given mass, by $6 d B$ per doubling of frequency.

At the critical frequency the velocity of bending waves within the panel equals the velocity of sound in air. Incident sound at grazing incidence and at the critical frequency can, therefore, induce bending waves which radiate efficiently causing a dip in transmission loss. Bending wave velocity is inversely proportional to the panel thickness and so increasing barrier thickness will both increase surface mass and decrease the critical
frequancy.

Above the critical frequency the effect of surface mass is reduced, with transmission loss increasing only by 3 dB per doubling of mass. Instead stiffness and internal damping become increasingly important.

2.2.2 Diffraction over the Barrier

The conventional study of diffraction of waves around obstacles is based on the Huygens-Fresnel principle first encountered in optics. Developments and extensions of this theory form the basis of the treatises discussed below. The review paper by Kurze (12) is a convenient primary source on this topic.

(a) The semi-infinite Thin Screen

This hypothatical barrier extends into infinity in depth below the free edge and length and is suspended in otherwise unobstructed space. It therefore represents the simplest physical situation since sound can arrive in the shadow zone of the barrier only by diffraction over the free edge at the top of the barrier. (See Fig. 2.3). Sommerfield produced an exact solution to the diffraction of a plane wave incident on a wedge; from this Kirchoff (13) and others derived an approximation for the case of a semi-infinite thin screen.

Keller produced another approximate solution from his geometrical theory of optics:

$$
\begin{align*}
\Delta_{k}= & -10 \log \left(8 \pi^{2} \frac{h}{\lambda} \tan \frac{\phi}{2}\right)-10 \log \left[\frac{d^{2}}{d(A+B)}\right] \tag{2.7}\\
& -20 \log \left[1+\frac{\sin \phi / 2}{\sin (\theta+\phi / 2)}\right]
\end{align*}
$$

where the dependant variables are defined in Fig. 2.3. Stated in this form Kurze was able to demonstrate some potentially major errors in a chart developed by Redfearn (15) relating barrier attenuation to effective barrier height, h / λ, with diffraction angla as a parameter (See Ref 12 Fig 1). The family of curves can be approximated to within 1 dB by:-

$$
\begin{equation*}
\Delta L_{R}=20 \log \left\{2 \frac{\pi[(2 h / \lambda) \tan \phi / 2]^{1 / 2}}{\tanh \pi[(2 h / \lambda) \tan \phi / 2]^{1 / 2}}\right\} \tag{2.8}
\end{equation*}
$$

By extending Kirchoff's diffraction theory Makaewa (16) replaced this family of curves with a single curve based on the so-called Fresnel number N, which relates barrier attenuation to the path length difference in terms of half wavelengths between a sound ray travelling directly from source to receiver and a sound ray diffracted over the top of the barrier:

$$
\begin{equation*}
\Delta L_{M}=\left[10 \log \frac{\sqrt{2 \pi N}}{\tanh \sqrt{2 \pi N}}+5\right] d B \tag{2.9}
\end{equation*}
$$

$$
\approx 10 \log (20 N) \quad d B
$$

$$
\text { where } N=\frac{2 \delta}{\lambda}=\frac{2}{\lambda}(A+B-\alpha)
$$

It can be seen that equation (2.9) is equivalent to the first term in (2.7). The second term in Keller's expression is significant if $A+B \gg d$, i.e. if the diffracted path length is much longer than the direct path length. The third term is small for small diffraction angles, but can reach a value of 6 dB for source and receiver close to the barrier.

Makaewa's curve finds widespread application as a design guide and also as the basis for further modification, such as Kurze and Anderson's chart for an incoherent line source (17).
(a)

(b)

Fig. 2.3 Semi-infinite thin screen
(a) perspective view (b) projection on the $Z=c o n s t a n t$ plane

(b) Thin Screen Resting on a Rigid Surface

The preceding section gives an insight into basic diffraction phenomena. -

The case to be discussed now is a step towards a more practical case, for instance, when a screen is erected on concrete, tarmacadum or other rigid surfaces.

In the case of a simple, practical barrier sound may arrive at a receiver by four ray paths, that is with and without reflection from the ground on. either_side of the barrier. See Fig. 2.4. It is interesting to note that in a barrier-free situation, the introduction of a perfectly reflective ground will increase the level at the receiver at 6 dB , assuming coherence between direct and reflected rays. Now, with a barrier interposed, the receiver level increases by 12 dB on the introduction of the reflective plane. Therefore, the attenuation is 6dB less than the value predicted for a semi-infinite thin screen. That this is so can be appreciated by considering that a hypothetical screen of zero height above a reflective surface gives no attenuation but there is 6 dB attenuation when the top of a semi-infinite screen lies on the direct ray path between source and recaiver.

In order to simplify the analysis of barrier attenuation in the presence of a hard ground it is useful to consider the case of the source on the . ground and the receiver near the ground and in the shadow zone. This reduces the rays arriving at the receiver to two, i.e. one directly from the top of the barrier and the other reflected from the ground. The Fresnel number introduced in the previous section pertains to the direct ray only. If the extra path length travelled by the reflected ray is δ^{\prime}, , then the additional Fresnel number is given by $N^{\prime}=2 \delta^{\prime} / \lambda$, and the total Fresnel number is $N+N^{1}$.

Fig. 2.4 Four possible ray paths for a thin screen on a rigid ground.

If the difference in attenuation due to beam spreading is negligible, then the pressure, p, at the receiver relative to a free-field pressure of peis given by:

$$
\begin{equation*}
\frac{P}{P_{0}}=10^{-\Delta L(N) / 20}\left\{1+10^{\left[\Delta L(N)-\Delta L\left(N+N^{\prime}\right)\right] / 10}\right. \tag{2.10}
\end{equation*}
$$

$$
\left.+2 \times 10^{\left[\Delta L(N)-\Delta L\left(N+N^{\prime}\right)\right] / 20} \cos \left(\pi N^{\prime}\right) \frac{\sin \left[(\Delta f / f m) \pi N^{\prime}\right]}{(\Delta f / f m) \pi N^{\prime}}\right\}^{1 / 2}
$$

where $\mathrm{fm}=$ centre frequency and $\Delta f=$ bandwidth of noise. The autocorrelation functions of a plane wave and band-limited noise appear as $\operatorname{Cos}\left(\pi N^{\prime}\right)$ and $\operatorname{Sin} X / X$ respectively.

This equation has the disadvantage that the free-field pressure may not always be known. Makaewa (16) proposed to overcome this problem by relating the receiver level to the level at the position of the top of the screen in the absence of the screen, however, experiments performed by Makaewa show fluctuating levels inconsistent with predictions. These have been attributed to interference effects at the top of the barrier causing erratic reference levels (12). It is, therefore, necessary to avoid sources of pure tone or even narrow band naise ($1 / 3$ octave, say) if this procedure is to be adopted. Broader bandwidths are needed for sufficient cancellation of interference effects, to reduce noise level fluctuations to about 2d日.

(c) Screan on Absorptive Surfaces

It is probable that the location of a noise barrier in a practical situation will involve, to some degree, reflections from a ground that cannot be considered as perfectly rigid. For instance, above about 150Hz grassland should be considered as having finite impedance.

Predictive procedures are similar to the case of a perfectly reflective ground but involve consideration of a complex reflection coefficient, affecting both amplitude and the phase of the reflected wave.

Under such conditions the introduction of a noise barrier can have adverse effects by interfering with the formation of a. shadow zone (see section 2.1.1). For instance, if a barrier is placed such as to interrupt the ground reflection without substantially attenuating the direct ray it could, paradoxically, increase the level at the receiver.

Addressing the problem of the prediction of barrier performance in the presence of a locally reactive ground, Embleton (18), adapted the YoungRubinowicz diffraction formula, which was originally concerned with the field from a point source arriving behind an opaque screen containing a circular aperture, for use with a semi-infinite barrier. Referring to Fig. 2.5 Emblaton's formula is:

$$
\begin{equation*}
\Psi(R, t)=-\frac{k}{2 \pi} \exp (-i \omega t) A \sin \phi \int_{0}^{\pi / 2} \frac{\exp \{i k \sec \beta[A+\alpha]\} \cos ^{2} \beta \delta \beta^{2}}{\left.\alpha-\alpha+A \cos \phi \cos ^{2} \beta\right]} \tag{2.11}
\end{equation*}
$$

where $k=$ pressure amplitude α unit distance

$$
\beta=\text { angle LRB } \quad \alpha=\left[A^{2} \cos ^{2} \beta+B^{2} \sin ^{2} \beta\right]^{1 / 2}
$$

The effects due to the presence of a finite impedance ground on the source side of the barrier can be taken into account by incorporating the amplitude coefficients of the Weyl-Van der Pol solution (2.1) into the pressure amplitude factor, K.

Similar expressions can be used to determine $K r$, the amplitude of the reflected wave on the receiver side of the barrier.

Fig. 2.5 Thin screen geometrical parameters for Emblaton's equation (2.11.). (a) perspective view (b) projection on $z=$ constant plane, (c) projection on $y=$ constant plane.

This solution has the advantage that it is suitable for computational techniques and can easily accommodate the effects-of a ground wave and complex reflection coefficients. Oblique angles of incidence can be accounted for with the introduction of a linear offset term in the geometrical calculations.

Embleton's approach is one of five techniques used to predict diffraction of sound over barriers that are reviewed and compared in a paper by Isei, Embleton and Piercy (19). Particular attention is paid to the effect of a finite impedance ground on barrier performance. The theories compared are Keller, (14) and Kirchoff-Fresnel diffraction theories (13, 20), a.modification of Macdonald's diffraction theory due to Kawai et al (21), a theory proposed by Thomasson (7, 22) based on Babinets Principle and Embleton's theory. The ground impedance model used in the calculation schemes other than that of Thomasson was that based on the work of Delaney and Bagley (5, 23), and developed by Chessell.(6). Thomasson uses a four parameter model for ground impedance. Embleton's paper (18) gives details of the modification of a diffracted wave to include a ground reflection wave. It was found that the theories of Embleton and of Kawai were in close agreement with each other and with measured data for the case of a point source emitting pure tones and a particular geometry of source, barrier and receiver on an acoustically hard surface. Since the Kawai-Macdonald technique has a faster computing speed than that of Embleton, the former was developed to predict linear and A-weighted broadband sound pressure levels for line sources which gave good agreement with experimental data, especiallycompared with theories such as Makaewa's that take no account of interference phenomenon.
(d) Wedge shaped barriers and thick barriers

Continuing to move the discussion towards more practical barrier configurations, Makaewa (24), Pierce (25) and Kurze (12), have produced prediction techniques for wide barriers. Makaswa's approach was to replace a thick barrier with a notional equivalent thin screen such that the tangential raypaths to the barrier become the direct raypaths between the top of the screen and the source and the receiver, see Fig 2.6. There is no theoretical background for such an approach and clearly the technique is dubious for source and receiver close to the barrier.

Pierce approached the problem by first deriving a formula for the attenuation of a wave by a wedge. He then extended this to consider double-edged diffraction and hence proposed that an equivalent barrier used in assessing noise reduction by earth berms, hills, buildings etc. should be of trapezoidal cross-section and fit within the physical bounds of the real barrier using the grazing rays to derive the geometry, see Fig. 2.7.

His single-edged diffraction formula used, as a starting point, the geometrical optics theory of Keller, as stated in Part (a) of this section and yielded, for the receiver in the shadow zone:
$\Delta L_{p}=\left(3-10 \log \left\{\left[f\left(x_{+}\right)+f\left(x_{-}\right)\right]^{2}+\left[g\left(x_{+}\right)+g\left(x_{-}\right)\right]^{2}\right\}\right) d B$
where $f(x)$ ard $g(x)$ are auxiliary Fresnel functions and $x_{+}(-)=\left(\frac{2 r_{r} r_{s}}{\lambda L}\right)^{1 / 2}\left|\frac{\cos \left(\pi^{2} / \beta\right)-\cos \left[(\pi / \beta)\left(\theta_{r}+(-) \theta_{s}\right)\right]}{\pi / \beta \sin \left(\pi^{2} / \beta\right)}\right|$
and $L=\left(\left(r_{1}+r_{s}\right)^{2}+\left(z_{r}-z_{s}\right)^{2}\right)^{1 / 2}$
$\beta=$ free wedge angle
r_{r}, θ_{r}, z_{r} and r_{3}, θ_{3}, z_{s} are the cylindrical coordinates of source and receiver respectively.

Fig. 2.6 Maokawa's Equivalent Screen

Trapezoidal Cross Section

Earth Borm

Fig. 2.7 Pierce's Equivalent Barriar

Direct Application

Equivalant Earth Borm Barrier

Fig. 2.6 and Fig. 2.7

The asymptotic expansion of this formula is similar to a result obtained by Jonasson (26).

For the special case of $\beta=2 \pi$ i.e. a thin screen, Pierce's results are in agreement with Redfearn's chart to within 1dB.

For the case of a three-sided wide barrier Pierce's equation becomes:

$$
\Delta L_{p}=20 \log \frac{\hbar}{d}-10 \log \left[f^{2}\left(y_{>}\right)+g^{2}\left(y_{>}\right)\right]\left[f^{2}\left(B Y_{<}\right)+g^{2}\left(B Y_{<}\right)\right] d B
$$ where B is a parameter characterising the barrier with and $Y_{>}$and Y_{K} are the greater and smaller parts of the quantities Y_{s} and Y_{R}, parameters for diffraction of sound over wide barriers.

Kurze proposed a double-diffraction formula which considers two single edge diffractions, one for a ray travelling from the source to a hypothetical receiver in the plane of the top of the barrier and at the same distance from the barrier top as the real receiver, and one for a similar ray travelling from a hypothetical source to the receiver (see Fig. 2.8).

In a model study by Ives, et al, (27), the formulae of Pierce and of Kurze are compared. It is found that the more rigorous solution by Pierce is closer to the measurements.

In another scale model by Masiak (28) the prediction technique of Makaewa and of Pierce were compared. Below a Fresnel number of about 3, both these theories and experimental data are in good agreement. At higher Fresnel numbers it is shown that Pierce overestimates and Makaewa underestimates barrier attenuation, the discrepancy in each case being 2 or 3 dB for $N \approx 20$.

Fig. 2.8 Kurze's Wide Barrier approach.
2.3 Résumé

It is clear that there is a weal th of literature investigating sound propagation over open ground and barrier performance in static atmospheric conditions. The physical principles involved are well understood.

The Present state of Knowledge of Meteorological Effects on Outdoor Sound Propagation

It is generally accepted (1) that wind and temperature effects can give rise to anomolies in sound propagation. The physical variables known to influence acoustical behaviour are the overall wind and temperature conditions, the gradient of wind and temperature with height above the ground and the microstructure of wind and temperature (i.e. atmospheric turbulence). Air humidity is neglected since there is no evidence to suggest that propagation of sound frequencies lower than about 15 kHz is affected by humidity.

This section outlines the known effects of each of the above meteorolgical phenomena on sonic propagation.

3.1 Bulk Effects of Wind

Wind velocity adds vectorially with the velocity of sound and, therefore, changes the wavelength of a sound signal of a fixed frequency. This implies that diffraction and interference phenomena will be affected. However, even a strong wind of about $30 \mathrm{~ms}^{-1}$ adds less than 10% to the speed of down wind propagation. Such a small change would only be evidenced in the position, but not the nature, of interference fringes. As long as the wind velocity is constant a non-fluctuating received sound pressure level is predicted.

3.2 Bulk Effects of Temperature

The speed of sound is proportional to the square root of absolute temperature and so a change in temperature can be expected to alter the wavelength of a sound wave of a certain frequency.

If the ambient temperature is $300^{\circ} \mathrm{K}$ then a $10^{\circ} \mathrm{K}$ fluctuation is a change of 3% giving a 1.7% change in wind speed. Although this will cause interference patterns to be shifted slightly, diffraction effects can not be reasonably expected to alter noticeably.

3.3 Vertical Wind Gradients

Piercy, Embleton and Sutherland, in their helpful review paper of 1977 (1) refer to the fact that wind velocity increases with increasing height within the boundary layer close to the ground according to the equation (29)

$$
\begin{equation*}
v_{u}=K_{v} \log \frac{z}{Z_{0}} \tag{3.1}
\end{equation*}
$$

This logarithmic variation of wind velocity, V_{w}, with height above the ground, Z, is caused by viscous drag with the constant, K_{v}, determined by the surface roughness and the mean wind velocity above this layer. The constant, Z_{0}, is a linear dimension representative of the size of obstacles on the surface.
3.3.1 The Effect of Vertical Wind Gradients on Unobstructed Sound Propagation With a vertical wind profile as described above (see Fig. 3.1) geometrical (Or ray) acoustics, as applied to the study of underwater acoustics, satisfactorily predicts refraction of the sound rays downwards for down wind propagation or upwards for upwind propagation with the consequent formation of shadow zones or focal points, $(30,31)$ see Fig. 3.2. There is no evidence to suggest that geometrical acoustics is inappropraite in this case. Clearly if even high wind velocities are about 10% of the velocity of sound the radius of curvature of refracted rays will be large and the effects will be significant only over large propagation distances, may be of the order of kilometres.

Fig. 3.1 Variation of wind velocity and temperature in the vicinity of a flat ground surface (upto $\sim 10 \mathrm{~m}$)

\qquad

SHADOW NEAR

Fig. 3.2 (a) Refraction downward-inversion or downwind propagation. (b) Refraction upwards- lapse or upwind propagation.

In the study by Dejong and Stusnick (32) a model barrier was constructed in a wind tunnel that was designed to simulate typical outdoor vertical wind profiles and degrees of wind turbulence as translated to the model
scale. They primarily considered the refraction due to vertical wind velocity gradients causing measured barrier attenuations that differed from the wind-free condition, the effects of turbulent scattering being considered negligible.

They replaced the straight ray paths between source, barrier and receiver as they would appear in wind-free conditions with curved ray paths, the radius of curvature being given by $I=2 C_{0} Z / U$, where $C o=$ speed of sound and $u \quad=$ wind speed (see Fig. 3.3) Drawing tangential rays to this curved path gives the locations of an image source and an image receiver allowing an equivalent Fresnel number to be derived for the wind-affected ray paths.

The derivation of wind corrected narrier attenuation requites that the Fresnel number be approximated by:

$$
\begin{equation*}
N \approx \frac{1_{s} 1_{r}\left(M_{s}+M_{I}\right)^{2}}{\lambda\left(1_{s}+1_{r}\right)} \tag{3.2}
\end{equation*}
$$

where $m_{S}=\left(h_{B}-h_{S}\right) / 1_{S}$ and $m_{I}=\left(h_{b}-h_{I}\right) / l_{I}$ If m_{s} and m_{r} are less than 0.5 then the above approximation for N is valid.

It was found that barrier attenuation is increased for upwind propagation and decreased for downuind propagation, an effect that is greater at higher wind velocities. The results of this model scale study and the ensuing theory that is developed, are in good agreement with the field measurements made by

Fig. 3.3 DeJong-Stusnick wind effect model.

Scholes, Salvidge and Sargent (33, 34). A second conclusion of that work was that instantaneous measured levels of the barrier reduction with the wind blowing fluctuated widely from the mean value, with the deviations often reaching a value comparable with the mean.

3.4 Vertical Temperature Gradients

Under normal daytime conditions, temperature decreases with increasing altitude as a result of surface heating by the sun. Again from the review paper by Piercy, et al, (1), the temperature, T, at some height, Z, within " Sowe s. ${ }^{2}$ the boundary layer under these conditions is given by:

$$
T=T_{0}-K_{t} \log \left(\frac{z}{z_{0}}\right)
$$

where $T_{0}=g r o u n d ~ t e m p e r a t u r e ~$
K_{t} is a constant. characteristic of the surface, and Z_{o} is linear dimension representative of surface obstacles.

Since the velocity of sound is temperature-dependant, sound rays will be rafracted upwards in a manner similar to upwind propagation as discussed in 3.3 above.

The situation when temperature increases with increasing altitude is known as temperature inversion and may typically occur at night when the surface radiates stored heat energy. This causes downward refraction similar to downwind propagation.

Note that the effects of temperature, a scalar quantity, are omnidirectional unlike the vertical wind gradient effects described in. 3.3.

In a study of jet noise at an airport, Parkin and Scholes (35) concluded that the refractive effects of vertical wind and temperature gradients are both equivalent and additive.

As is the case for refraction caused by wind gradients, the radius of curvature of sound waves refracted by temperature gradients is large and focii or shadow zones will only be evident over large propagation distances.

3.5 Microstructure of the Wind

At all times wind is turbulent in nature due to instabilities in the thermal viscous surface boundary layer inducing the formation of eddies (29, 36). The eddies grow progressively smaller until they are about 1 mm in diameter when the energy is dissipated by viscosity and so the statistical distribution of eddy size is variable and characteristic of the wind conditions. Since the wind velocity on a microscopic scale is proportional to.the eddy size turbulence can be represented by a spectrum, obtained from the output of a small, low-time constant anemometer.

3.5.1 Wind Turbulence Effects on Unobstructed Sound Propagation

The effect of atmospheric turbulence on light and microwave propagation has been extensively studied. However, some studies have considered sound waves (36). Vertical propagation has been of greatest interest since this permits the sounding of the atmosphere to indicate meteorological conditions. (37) a

For near-horizontal propagation (a condition which is of interest to this study) the effect of atmospheric turbulence has been approached by considering turbulence to cause a loss of energy from an acoustical beam by a scattering process. (38).

This is caused by inhomogeneities in the atmosphere and scattering is mostly in the forward direction through a small solid angle. The superimposition of primary and scattered waves produce fluctuations in the phase and amplitude of a pure tone. Such fluctuations increase with distance until a point is reached ($\sim 70 \lambda$) where the signal is uncorrelated with the source and amplitude fluctuations are limited to a $\pm 6 \mathrm{~dB}$ standard deviation (1).

It is evident that the effect on phase fluctuations can cause the sound field in areas of interference maxima and minima to be unpredictable. Ingard and Malling (39) studied the effect of turbulence on the interference between direct and reflected waves for distances up to 75 m .

They assumed plane waves, uncorrelated between direct and reflected waves. Meteorolgical data was not measured but fitted to the acoustical data. Daigle, et al, (40), have developed this work by treating the direct ray and that reflected off the ground as being partially correlated. They produced a theory that is valid for spherical waves since they used a point source with sufficiently small receiver distances to consider the waves as spherical. Wind and temperature spectra were measured and used quantitatively when comparing predicted and measured sound levels.

The effects of meteorologically induced refraction are only noticeable over large distances. Turbulence, whether viewed as a scattering process or as a randomising process is likely to be of more importance in the study of outdoor barrier performance over moderate propagation distances.

The effect of atmospheric turbulence on barrier performance has been studied by Daigle (41). He reports that measurements of traffic noise behind a barrier and the results of a more idealised experiment using a point source and rigid thin screen, reveal discrepancies with diffraction theory, especially at higher frequencies. Energy arriving behind the barrier, in excess of that expected from diffraction alone, is calculated as being largely due to the forward scattering of energy from the atmosphere directly above the barrier.

3.6 The Microstructure of Air Temperature

Since wind turbulence is a consequence of viscous mechanisms it is reasonable to expect that temperature in a microscopic scale will vary temporally and spatially in a similar manner to that described above for wind turbulence. Consequently the work of Daigle et al. (40) and Daigle (41) treat temperature fluctuations in a similar way to wind fluctuations, referring to the joint effect as atmospheric turbulence.

3.7 Résumé

From the evidence presented in the above sections only turbulence effects predicts a temporally fluctuating received sound level, bulk and refractive effects of wind and temperature being constant over extended periods.

The results of an investigatory experiment by the author revealed that the sound pressure level of octave-band noise propagated horizontally 1.4 m above open grassland fluctuates temporally in a manner that increases with propagation distance and frequency.

This indicated that atmospheric turbulence was influencing the received sound pressure level and may therefore be a contributory factor in the reduced

Abstract

predictability of outdoor noise barrier performance as mentioned in the introduction to this thesis. For this hypothesis to be examined further it was necessary to investigate the mechanism by which turbulence affects sonic propagation. Although several papers have been cited concerned with turbulence effects, the results published have dealt with long time-averaged measurements which do not reveal anything of the physical processes concerned.

It was therefore essential in this thesis to measure instantaneous meteorological and acoustical data for both open propagation and in the neighbourhood of a barrier. In Chapter 4 the design of experiments intended to collect relevant data is described.

4.1 General Design Requirement

It was noted in comments on the references cited in Chapter 3 that little is known of the instantaneous effects of meteorological conditions on sound propagation in the open air, both in the case of unobstructed propagation and also with a barrier present. Such relevant previous warks as exist relate instead to some form of averaged effects of wind as determined for example through the measurement of some form of time averaged received signal levels.

Precisely which meteorological parameters, or statistical derivatives of these parameters, would or might show any degree of correlation with fluctuation in propagation constants is thus a matter of speculation. It is not even possible, it is argued, to attempt an inspired guess at what might experimentally turn out to be significant. The overall experimental design, therefore, had to take this fully into account. This was done by arranging for the collection of data of a wide variety of types, both meteorological and acoustical. Thus, and bearing in mind the normally expected limits of feasibility in experimental techniques, arrangements were made to measure or record in a manner suitable for subsequent data handing and analysis, the following information:

Meteorological:
(i) Instantaneous wind speed covering the time taken by the passage of a burst of sound between a source and the further of two microphone measurement positions.

```
(ii) Wind direction
(iii) Air temperature
```


Acoustical:

Abstract

The acoustical signal received at each of two spatially separated microphones following the release of an appropriate sound burst from the source.

It is in the essential nature of the work of this thesis that a pilot experiment to provide an initial investigation of the role of significance of various possible parameters was not feasible. Any measurement of worthwhile significance could only come through the full development of the complete experimental set-up. Effects sought were in any event likely to be slight and therefore only likely to show up as a result of rigorous experimentation anyway. The experimental design had to accommodate this fact and did so by building in a considerable degree of operational flexibility. Thus the nature of the acoustical signal used could be selected on demand from:
(i) Pure tones of a known frequency
(ii) Octave bands of noise
(iii) Pure tones of frequency arbitrarily chosen from within an octave band

It was appreciated that measurements would have to be made subject to a wide range of factors that are within experimental control. Examples of these are:
(i) Nature of acoustical signal, as
stated above
(ii) Frequency of acoustical signal
(iii) Source/receiver geometries (with and without a barrier present) in respect of horizontal and vertical aspects.

The experimental design had also to allow for the whole range of the meteorological conditions which in the circumstances of the natural environment are, of course, beyond the control of the experiment and clearly a matter of the reality of the moment.

The major consideration to be derived from the above was that it pointed to the requirements for a system to reliably, accurately, flexibly and conveniently make a large number of measurements as an exercise, initially, of collecting experimental data.

Thus the logical requirement for an automatic, microcomputer-based measurement system in which appropriate variables could be selected under programme control became clear.

Abstract

At the outset it was unclear whether open air sites that were satisfactorily free of vertical reflecting surfaces would be readily available. Such surfaces would naturally lead to acoustic reflections which could potentially modify any received signal. For instance, a reflected signal adding 10% in X amplitude to the direct signal over half of the measurement period will give about 0.5 dB apparent increase in sound pressure level. Accordingly it was decided at an early stage to use time limited signals and to discriminate against unwanted reflections in the time domain.

The value of having additional information derived from a 16:1 laboratory : obtained at full-scale became evident in the initial stages.

Scale model techniques originally developed for auditorium design (see Ref.(42) for instance) are increasingly used in barrier añ free propagation experiments, ($27,28,32,43$) due to the ease of testing theoretically feasible proposals or for experimentation on a trial and error basis at a design stage without the inconvenience in erecting full size structures that may be found to be unsuitable. It also permits a rigorous study of an existing situation, perhaps with a view to some remedial action,using artificial test conditions since measurements at the actual site may be inconvenient or even impossible, (e.g. motorways, airports, factories etc.).

The fact that the measurements were primarily directed at the open air situation pointed to the desirability of creating a mobile laboratory which could be conveniently moved on site when weather conditions made measurements possible.

Certain steps must be taken for a model to equate to the corresponding full size situation. Since linear dimensions are scaled, sonic wavelengths and pulse lengths must also be reduced to preserve diffraction and interference effects. Model materials must be carefully chosen to give absorption and reflection coefficients at the increased frequencies that are similar to the values of the actual material in the real situation. The absorption of acoustical energy by the atmosphere becomes increasingly significant as frequency increases and this must be either allowed for in the measurements or minimised by performing model experiments in low humidity air or in a less absorptive atmosphere, such as freon.

To permit scale-modelling, an additional constraint on the experimental design was the requirement, if it was instrumentally possible, to use the same developed equipment under 16:1 frequency enhanced conditions in the laboratory.

4.1.1 Summary

It was necessary for the selected experimental design to fulfill the following requirements:
(i) A source and two measurement microphones complete with associate electronics to create and measure sounds, in open air conditions and with selectable measurement geometry.
(ii) To provide a facility for the recording of these signals in such a way that quantative data could be extracted at the time or later.
(iii) To provide a means of measuring instantaneous wind speed, wind direction and, should it be subsequently be found of interest, air temperature. Again the requirement is esentially to record the values concerned for subsequent computation.
(iv) To allow for calibration of the above, preferably in a manner which may be carried out automatically into the computation process.
(v) To allow for the automatic operation of the above under, for example, micro-computer control.
(vi) To permit portability to site for open air work
(vii) To permit operation at a 16:1 reduced time scale so that direct transfer of the equipment to scale-model experimentation in the laboratory is possible.
(viii) To undertake and complate the above with the resources available for the experiment, in terms of both hardware and personnel.

The development, and the rationale underpinning it, of the various elements outlined above are separately discussed further in the sections that follow.
4.2 Realisation of the Measurement Requirements

This section forms a description of the general outline of the experimental set-up selected as suitable to implement the individual design requirements set down in section 4.1, in particular 4.1.1.
4.2.1 Geometrical Aspects

The requirements regarding the need to be able to handle a range of measurement geometries was satisfied by envisaging lay-out arrangements as indicated in Figs. 4.1 a - c and where all the spatial parameters indicated are considered open to variation over reasonable ranges without undue practical difficulty.
4.2.2 The Saurce Signal

The need to avoid the effects of interfering reflections, it has already been noted, is to be achieved using time-limited signals. It is a matter of further experimental detail (see Section 4.2.5) that a particularly convenient duration of acoustical signal is 28.7 ms which, for propagation in air at 20° and atmospheric pressure ($c=344 \mathrm{~ms}{ }^{-1}$) corresponds to a sonic path of 9.9 metres. Furthermore, this path corresponds to the following number of wavelengths at the frequencies subsequently chosen far investigation.
(a)

(b)

d
(c)

Fig. 4.1 Geometries used for Outdoor Experiments.

Frequency (Hz)	No. of Captured Wavelengths
250	7.2
500	14.4
1000	28.7
2000	57.4
4000	114.8

Fig. 4,2 Number of Captured Wavelengths

The role of interference caused by reflections from the ground plain was initially very much an unknown issue. Accordingly a conscious decision was taken at an early stage that the sound burst should be derived by time-wise gating of a variety of types of source signal. The first and most obvious choice was that of pure tone of fixed frequency. The second source signal was $1 / 1$ octave-band limited white noise. (1/1 octaves were selected as the relevant frequency band primarily because of the availability of commercial precision filtering equipment. $1 / 3$ octave bands were rejected at the outset because of known transient response problems when signals of the time duration of those envisaged here are being measured).

To provide potential information, should this subsequently become desirable, about the role of interference from ground plane reflections, the possibility of using a third kind of source signal was envisaged. These were again in the form of pure tones, but instead of being at fixed frequencies, were of
variable frequency selected, for a particular sequence of tests, randomly from within an octave band.

In terms of actual frequencies chosen when using pure tones these were $250 \mathrm{~Hz}, 500 \mathrm{~Hz}, 1 \mathrm{kHz}, 2 \mathrm{kHz}$ and 4 kHz because these were the centre frequencies of the octave bands and their respective filters used with noise signals.
4.2.3 The Acoustic Source

The basic requirements here were for a source of adequate frequency response, officiency, acoustic power output, stability and portability.

These properties were considered, after experimentation discussed in Section 5.2 .1 to be optionally satisfied with a folded-horn loudspeaker. The cut-off frequency for the unit used in this work was known from prior experiments to be about 160 Hz but this was thought adequate for satisfactory implementation of the 250 Hz octave band. The frequency-dependant sensitivity of the instrument was such as to require the introduction of a frequency-selective compensation in the source signal path.

4.2.4 Microphone Measurement Systems

Proprietary $\frac{1}{2} " B$ \& K condenser microphones were selected as having, by common experience, adequate sensitivity, stability and frequency range for the purpose.

Amplification was provided by instrumentation quality microphone amplifiers with some signal conditioning facilties available, and wi.th adequate bandwidth (2-200, 000 Hz) and gain stability.

PAGE

NUMBERING

AS ORIGINAL
allowed the onset of the capture phase for each channel to coincide with the arrival of the acoustic signal at each microphone.

This meant, in experiments where the barrier was to be used for example, the captured signal from the first microphone was separated from the signal reflected by this barrier providing that the microphone was no closer than 4.4 metres from the barrier.

4.2.6 Calibration of the Acoustic System

Arrangements were made to introduce standardised acoustic signals to each channel. These were handled in precisely the same way as the genuine signals to become internal references for all signals that follow.

4.2.7 Uind Velocity Measurements

The requirements for instantaneous wind velocity measurements relating to the time episode during which the acoustic signal is travelling the selected path was considered best satisfied by the use of a hot wire anemometer and associated circuitry. The circuitry maintains the hot wire at a constant temperature and the time-varying voltage that is required for this to happen is available as an output which is related through a known transfer characteristic to the instantaneous wind speed at the probe.

The device handles wind speeds on the range $0-10 \mathrm{~ms}^{-1}$ and over this range the output varies typically over the range one to two volts.

The overall bandwidth of the selected device (i.e. $0-10 \mathrm{kHz}$) was considered adequate to preserve information about particular local changes in wind speed. 8-bit digital conversion under system command using a separate proprietary

8-bit transiant capture device made i.t possible to store wind velocity signal for subsequent analysis.

4.2.8 Wind Direction Determination

There was at the time of the original design no commercial wind direction meter available with output suitable for electrical recording. A device was, therefore, designed and constructed to perform this function producing a direct measurement of wind bearing in computer intelligible digital form with an angular resolution of 2°.
4.2.9 Air Temperature Measurement

A particular ecperimental approach was adopted to harmonise with the rest of the equipment. A temperature dependant current source produced a signal which was converted to a frequency modulated signal for subsequent decoding.
4.2.10 Mobile Laboratory

A redundant motor caravan was converted for use as a mobile laboratory. All equipment was, or was modified to be, capable of being powered by either high capacity lead-acid storage cells, or else by these cells via a 240 V inverter. Operation of sites distant from mains electric supplies was thus guaranteed.

4.3 Microcomputer Control

Complexity of the fully developed system, of which the component parts are described in outline above, together with the desirability of operating the system in a programed manner highlighted the value of designing the entire experiment to be run under microcomputer contral. It was clear from an early stage that such a system would also be particularly valuable for storage and
intermediate processing of experimental data and also, potentially, for convenient transfer of partially processed data to a mainframe computer at a later stage.

At an early point in the investigation in this report it was claar that there was a choice between two basic methodologies. The first approach was to develop a comprehensive purpose-built system from readily aailable small scale electronic components. In this way, in principle, a system tailored to the precise requirements of the system would result, although it was acknowledged that the effort involved in such an action would be considerable.

The second approach was, clearly, to utilise as far as was practicable, the benefits offered through the incorporation of a developed system.

Considered opinion leant towards the view that the benefits in terms of convenience offered by the second approach outweighed any problems that were likely to arise from a lack of flexibility.

Accordingly, a control and computational system was developed around a Commodore PET microcomputer since at the time, admittedly one of extraordinarily rapid developments in the subject, that instrument was the most readily available and one which incorporated particularly attractive high level and machine code language facilities.

[^0]peripherals. The overall system is shown in the block diagram of Fig. 4.3.

4.3.2 Software Development

Software was developed to permit the carrying out of the entire experiment on an automatic basis. For example, acoustic frequencies were selected, time-limited source signals were generated, auto-ranging received channel sensitivities adjusted the associated time-dependant acoustical and meteorological data captured.

In order to do this, and bearing in mind the importance of achieving the required speed in various elements of this process, a particularly convenient blend of high level and low level programming was used. Thus, the operating software comprised a number of segments of machine code programme set into a framework of a high level language programme. The high level language interprated by the PET is BASIC.

In this way it was envisaged that a whole series of experiments could be undertaken for a particular measurement geometry with a minimum of human intervention.

The software developed also allowed initial calculation to be performed on the received data, the results of these calculations being stored in a way suitable for transfer to a larger, laboratory-based computer for further analysis.
4.4. Alternative Measurement Methods

Arrangements were built into the system, in the event that for practical reasons this became desirable, to substitute a method of on-site analogue

Fig. 4.3 Ths Rutomatic Measurement System Block Diagran.
recording using a Nagra IV SJ instrument quality tape recorder with two direct recoding channels being used to record the acoustic signals and the single FM channel for wind velocity data.
4.5 Implications of the above for Scale Model Work

Section 4.2 stated the desirability for designing a system with such flexibility that it could, with the minimum of modification (transducess are an obvious example), be used for parallel experiments at model scale (1:16) for example.

In the system of which the component parts are described in outline above, the analogue acoustic equipment possessed adequate bandwidth without modification. It was inherently impossible to reduce the temporal, and hence the spatial, extent of the acoustic signal as such. However, this was effectively achieved in part by using only the first quarter of the 4096 sampled points for each channel.

The signal source, and the circuitry driving it, together with two microphones, had to be changed to cover the increased frequency range.

Details of the Measurement System

In this chapter the individual components of the measurement system, introduced in Section 4.2, are discussed in more detail. Where the inclusion of certain aspects of the description, programme listings for instance, would become cumbersome they are mentioned here but actually appear in Appendix A for reference.

5.1 Source Signal

As discussed in Section 4.1, the requirements were for a signal source capable of producing noise (to be filtered into octave bands), pure tones of a single frequency or pure tones of random frequencies within an octave band. A single signal generator capable of producing all three types was not available and so they were treated separately.

5.1.1 The Electronic Noise Generator

This was purpose built for this project and the circuit is shown in Fig. 5.1. It consisted of a back-biased diode (actually half of a transistor) producing the noise signal which was passed through two stages of amplification. An optional filter stage was included to shape the spectrum of the noise output to be attenuated by 3 dB per octave to give equal energy per octave band, known as "pink noise".

5.1.2 The Pure Tone Source

For reasons of stability, precision and purity of signal, the Beat Frequency Oscillator (BFO) of a heterodyne analyser, B \& K type 2010, was used to produce pure tones.

Abstract

5.1.3 The Random Pure Tone Source

This facility was provided by the BFO mentioned above. The signal frequency could be selected either by manipulating knobs on the front panel of the analyser or, as utilised in this case, by applying a DC voltage to a socket at the rear of the instrument.

The logaritinm of the signal frequency is directly proportional to the applied voltage, 20 Hz to 20 kHz being covered by 0 to 10 volts. The voltage signal applied to the analyser consisted of two components:-
(i) a static voltage set to select the lower limit of an octave band
(ii) a linearly ramped voltage covering a range from 0 volts to a voltage such that the frequency of the $B F O$ attains the upper limit of the octave band.

The static voltages wers obtained by dividing the output of a DC power supply using a set of five potential divider networks (one for each frequency band used), housed in a box with a five position select switch for convenience of operation. The ramp voltage was provided by a proprietery signal generator, the extent and rate of the ramp being set by preliminary experiments. The ramp rate had to be such that the signal frequency was effectively constant during the 28 ms duration of a sound burst, yet was able to cover the octave range a number of times, perhaps 5, throughout the course of the measurement period for each frequency.

Note that, due to logarithmic dependancy of frequency on voltage, once the ramp characteristics are set for one octave band they then apply to octave bands centred on other frequencies.
5.2 The Sound Source

This is shown in block diagram form in Fig. 5.2. The source actually comprises the source signal which has already been discussed in Section 5.1 above. The remaining units are now described.

5.2.1 The Loudspeaker

The requirements stated in 4.2 .3 pointed towards the need for a horn-loaded loudspeaker. However, it was known that a previous worker (44) had adapted a pressure unit to approximate a point source by adding a uniform crosssection tube with a length carefully chosen to minimise resonance peaks in the desired frequency range.

The choices available were, then:
(i) a point source, as described above
(ii) a folded exponential horn
(iii) a straight exponential horn

An example of each of the above was investigated under anechoic conditions for efficiency, extent of frequency range and flatness of frequency response.

Despite the usefulness of having a near-ideal point source, the pressure unit-plus-tube option was rejected since it was predicted on the basis of the anechoic measurements that the sound field would be indistinguishable from background at a distance of about 20 m from the source, even allowing for the maximum permissable applied voltage signal.

Although the straight horn was more efficient than the point source, the cut-off frequency was found to be at about 200 Hz . This was considered to be too high to provide a sufficient bandwidth in the 250 Hz octave.

Fig. 5.2 SOUND SCURCE glock oiagram

The folded horn had an effective length of about 1.8 m and an experimentally determined cut-off frequency of 160 Hz . Due to the efficient radiation impedance matching characteristic of the horn, it was expected that the signal would be measurable at the maximum source/reciever distance envisaged in this work. For these reasons the folded-horn loudspeaker was used throughout this work.

5.2.2 Equaliser

The circuit was required to compensate for frequency dependant changes in the efficiancy of the loudspeaker and is shown in Fig. 5.3.

The analogue signal is attenuated'in non-linear proportion to the value of R_{A}. One of eight resistors can be selected under computer control by closing one of the eight analogue switches.

The resistors were in fact screwdriver adjustable multi-turn potentiometers which were set up in a preliminary experiment in the following manner for full-size experiments:
(i) the first switch is closed
(ii) continuous 250 Hz octave noise is emitted from the loudspeaker
(iii) the first potentiometer is adjusted until the signal received from the microphone occupies as much of the input range of the appropriate channel of the capture device without causing overloads. The overload LED's on the capture device are a useful indicator in this procedure.
(iv) the process is repeated for the second to fifth resistors corresponding to the 500 Hz to 4 kHz octave band.

Fig. 5.3 THE EQUALISER CIRCUIT

A similar set-up procedure is used for model work, the frequency range being transposed to 4 kHz to 63 kHz .

5.2.3 The Signal Gate

A quad bilateral switch integrated circuit, type CD4016B was used to gate the source signal to provide the required noise burst facility. This device had the attraction of being digitally controlled whilst capable of passing analogue signals.

5.2.4 The Power Amplifier

It was necessary to amplify the small signals from the signal source to produce a voltage to excite the loudspeakers.

The loudspeaker had a low DC resistance (4Ω) and so the requirements were for a high input impedance, so that the signal source and associated electronics was not unduly loaded, and a low input impedance. Additionally, it was important that the amplifier did not distort the signal or introduce noise.

A suitable device satisfying the above requirements was the quad 33/303, a high quality audio amplifier. However, the many additional features on this device, such as stereophonic capability, and various signal processing features were unnecessary in this application and resulted in an undesirably high power consumption, considering the limited power available in the mobile laboratory.

It was, therefore, decided to construct a purpose-built amplifier from proprietary modules, and some associated electronic circuitry to provide a DC power supply.

Fig. 5.4 Power Amplifier

The circuit diagram for this device is shown in Fig. 5.4. The performance of the amplifier was assessed by visual inspection of microphone signals as displayed on an oscilloscope.

5.2.5 The Band Pass Filter

Ideally, the requirements would be met by an octave band pass filter set with computer-selectable frequencies. Alternatively, a computer-controlled filter with a fast roll-off approximating that of a standard octave filter could be used if the cut-off frequency could be digitally controlled.

The chosen band pass filter consisted of two Kemo filters, type VBF 22, configured as a low-pass and high-pass in cascade to provide a band-pass characteristic. These were 6-pole elliptical filters which provided a characteristic as shown in Fig. 5.5. which was considered to be a good approximatimn of a third octave filter when compared with a B \& K filter. The cut-off frequency of each filter is sat by three rotary knobs to specify two significant digits and a decade multiplier between . 1 and 1000. It is also possible to set the cut-off frequency digitally via an interface at the rear of each filter. The two significant digits are required in a Binary Coded Decimal (BCD) format whilst the decade multiplier is specified by setting a logic high level on one out of five possible inputs. (See Appendix A).

5.3 Microphone Channels

As stated in Section 4.2 .4 the microphones used in the full-sized experiments were $\frac{1}{2}$ " 日 \& K microphones or $\frac{1}{8}$ " $\& \& K$ microphones in madel experiments. Associated with each microphone was a B \& K 2606 measuring amplifier, including a $\mathrm{B} \& \mathrm{~K}$ octave filter set.
Attenuation

5.3.1 The Autoranging Device

An autoranging device was included in the signal channel that serviced the microphone nearest to the sound source. In terms of construction and operation this device was the same as the equaliser circuit discussed in Section 5.2.3 and shown in Fig. 5.3.

The purpose of the device was to prevent the received signal from the microphone from overloading the input range of the twin channel capture device (See Section 5.4 below).

The eight resistors were preset in the laboratory to produce a constant attenuation, either 1 or 2 dB , between adjecent resistor settings. The attenuation was automatically set by the microcomputer when a series of measurements at a new frequency was to begin. The sequence of events is as below:
(i) The final measurement at a particular frequency is made. (Clearly this step is omitted for the first frequency).
(ii) All filters and the equaliser are set for the next frequency
(iii) The autorange device is set to minimum attenuation.
(iv) A continuous sound of the new frequency is emitted by the loudspeaker.
(v) The output of the near microphone channel of the capture device is inspected by the microcomputer for an overload condition (that is a 0 or 255).
(vi) If an overload occurs then the attenuation of the autoranger is increased by one attenuation step and the process repeated from step (v).
(vii) If no overload condition occurs while the memory is filled ten times over then the autoranger is considered to be set.

The final setting of the autoranger was stored with the measured data in order to calculate the received level.

The autoranger and equaliser together should provide good-sized signals at both microphones. However, if an overload does occur during the course of the measurements, this is flagged by storing the measured RMS level as a negative number.

5.3.2 Automatic Operation of the Microphone Filters

Although these filters, 日 \& K Type 1615, could not be set digitally in the same way as the source filter, it was possible to energise an internal solenoid that produced the mechanical quivalent of manually operating the front panel knob that selects centre frequencies.

The circuit used to achieve this is shown in Fig. 5.6. On receiving a pulse from the microcomputer the solenoid will be moved once which will advance the filter by one third octave. Clearly, to advance by one octave requires three consecutive pulses.

The opto-isolation device was used to prevent electrical interference caused by the energising of the solenoid from affecting the microcomputer.

5.4 The Twin Channel Capture Device

The digitisation of the microphone signals was performed by a Kemo twin

Fig. 5.6 filter set solenoid circuit diagram
channel capture device known as an analogue memory. This device performs the analogue to digital conversion (ADC) and stores the information in a semiconductor memory, from which it can be transferred on demand to the microcomputer.

This operation could alternatively be performed by straight forward analogus to digital conversion and either storing the data in the microcomputer random access memory (RAM) or performing the necessary calculations on the data in real time. However, to store the data could occupy a major part of the available RAM and impose a restraint on the software (the Kemo device has 2×4096 bytes of memory). Also the management of memory allocation would be a relatively time consuming operation. Real-time processing would also be time-consuming bearing in mind that the various conditions should be measured as near instantaneously as possible in order to have confidence in any correlations uncovered when the data is analysed.

The use of the capture device permits the servicing of other transducers immediately after the microphone signal is recorded. The calculations on the captured signals can then take place some time later. It also facilitated overload indication, used in setting the equaliser (section 5.2.3) and routine background sampling. (Section 5.8).

5.5 Anemometer

The hot wire system used was a DISA battery operated constant temperature anemometer (CTA) type 55D05.

The system used a probe consisting of 0.5μ diameter wire, about 1 cm in length, suspended across two supporting metal conductors of a streamlined shape
to minimise induced turbulence. The probe is connected by a coaxil cable to a remote box containing a wheatstone bridge circuit in which the probe forms one resistive element.

An imbalance in the bridge is detected by a servoamplifier which automatically adjusts the voltage at the top of the bridge to redress the balance. The probe therefore remains at a constant temperature. In no-flow conditions an equilibrium voltage will be attained. If the probe is now subject to a flow of fluid the probe will be cooled causing its resistance to drop and the servoamplifier to inject a higher voltage to keep the bridge balanced, (i.e. to keep a constant probe temperature). Consequently, the servoamplifier output is representative of the fluid flow rate.

The relationship between fluid velocity and output voltage is given by King's Law:-

$$
v=v_{0}+B u^{n}
$$

$$
\text { where } \begin{aligned}
V & =\text { output voltage } \\
V_{0} & =\text { no flow voltage } \\
u & =\text { fluid velocity }
\end{aligned}
$$

The coefficients B and n are specific to a particular probe and so a probe requires calibration as shown in Appendix C.

5.5.1 Digitisation of the Anemometer Siqnal

This was achieved using a single channel capture device, the Datalab DL 901 Transient Event Recorder. It is similar in principle to the Kemo capture device used in the microphone channel (section 4.2 .5 and 5.4). The capture phiase was triggered by the same microcomputer signal that initiated the sound burst, and so acoustical and wind speed data were recorded simultaneously.

Since the no-flow voltage of the anemometer was a finite DC voltage the offset gain controls of the capture device were adjusted to optimise the 8-bit dynamic range. Typically, the voltage range covered was from 1 to 2 volts.

The use of a capture device for the anemometer was consistant with the technique adapted for the microphone signals and served to optimise the correlation between the two forms of measurements.

5.6 Wind Direction Indicator

This device consisted of a conventional wind-vane mounted on an electromechanical assembly designed to sense the direction of the wind-vane and convey the information to the PET in a suitable digital form, this being achieved as follows:- A drum, a few inches in diameter andlength, is rotated about a common axis with the wind-vane by a battery-driven motor. On its curved surface are alternate black and silver stripes spaced at 1^{0} intervals. When these pass a reflective optoelectronic sensor it emits a train of pulses with a periodicity equivalent to 2^{0} of drum rotation. If the microcomputer counts these pulses between a reference direction and the direction of the wind-vane then the wind direction can be obtained to within $\pm 1^{0}$. The reference direction is flagged to the PET by the interruption of the infra-red beam in a fixed optoelectronic switch by a radial projection fixed to the drum. Directly above this projection is an optical fibre which carries an infra-red beam from an LED housed on the drum. The open end of the fibre points upwards towards the wind-vane. A second optical fibre is mounted below the wind-vane and rotated with it. Uhen the two ende of the fibres align, the infra-redbeam passes along the second fibre and is detected by a phototransistor which signals to the PET to stop counting pulses.

For field experiments the equipment was mounted in plastic weather-proof shielding at the top of a stand some 9 feet off the ground.

Fig. 5.7 illustrates the equipment with the shielding removed. Details of the computer interfacing and processing appear in Appendix A.

5.7 The Electronic Thermometer

A temperature-dependant current source was the basis of this device. It was housed in a transistor-type metal casing and had an output of $1 \mu \mathrm{~V}$ per -K. It was incorporated in an amplifier circuit such that an output of 0.1 v per ${ }^{0}{ }_{c}$ was obtained and this was fed to a voltage to \because frequency converter integrated circuit which, since the microcomputer with its added interfacing could count pulses in a given time, allowed the temperature to be read.(Fig. 5.8).

5.8 Overall Control of the Automatic Measurement System

This section describes how the measurement techniques, so far discussed individually, are combined to make the complete automatic measurement system for any single geometry of source and receivers.

The machine code program. used to service the individual devices are linked by means of a BASIC program which controlled the sequence of events as described below.

1. The first frequency, 250 Hz , is chosen and the sound source filter set for the octave band centred on the frequency and the attenuator set to the first setting.
2. The attenuator associated with the near microphone is set by closing the electronic switch in the sound source to produce continuous sound. The signal from the microphone is sampled, and if an overload is detected, the attenuation is increased. The overlaad is detected if a part of the signal is digitised

Wind Direction Sensor - Internal View
Fig. 5.7 (a)

Wind Direction Sensor - Showing Protective Cover and Battery Box
Fig. 5.7 (b)

Fig. 5.8 Temperature Sensor Circuit Diagram.
as 0 or 255, that is either extreme of the B-bit range of the ADC in the event recorder. The attenuation is considered to be sufficient if no overloads are detected when the event recorder fills ten times over at which point the sound busst is terminated by closing the electronic switch in the sound source. 3. The microphones event recorder is armed with no sound issuing from the loudspeaker. If the recorder subsequently triggeredi it must be due to an excessive background level. If no trigger occurred for at least one second it was assumed that the background noise level was sufficiently low to make a meaningful acoustic measurement. This method proved to be efficient on numerous ocassions when overflying aircraft or approaching machinery temporarily inhibited the measurements until the noise had diminished.
4. Immediately after this background sampling the electronic switch in the sound source is opened and the ensuing microphone signals are sampled via the event recorder. The same pulse that initiates the sound burst alsa triggers the event recorder associated with the anemometer in order that the acoustical and wind speed measurements are as nearly simultaneous as possible. At this point, the data is left in the event recorder memories whilst the other devices in the system are serviced.
5. The wind direction sensor is srviced and the angular difference between the reference and the wind-vane direction is stored.
6. Pulses from the electronic thermometer are counted for one second and the result stored.
7. Acoustical data is transferred to the microcomputer which subsequently calculates the RMS level for each channel and stores the results.
8. Uind speed data are transferred to the microcomputer and the mean and the standard deviation of the signal is calculated and stored.
9. The process is repeated from step 3 for a chosen number of passes. Twenty was a usual compromise between statistical validity and excessive experiment duration.
10. The above sequence is repeated for frequencies up to 4 kHz .
11. The data accrued in the microcomputer's memory during the course of the measurements is transferred on to a floppy disc in order to make a permanent record for future analysis in the laboratary. The experimenter is prompted by the PET to enter a unique identifier for the data file for classification purposes.
5.9 Calculations

This section describes the calculations performed by the microcomputer at the time of the experiment to obtain RMS levels, standard deviations, etc., and in the laboratory to obtain sound pressure level, wind turbulence factors日tc.

5.9.1 Sound Pressure Levels

The RMS levels of each microphone signal were to be calculated so that the sound pressure level could be found by referencing the individual RMS levels to that of the calibration tone. At the time of the experiment the 4096 digits representing a captured signal were treated in the following way to obtain the mean square value (see the flowchart of Fig. 5.9).

Knowing the zera volts level to be equivalent to a digital representation of 127, the signal was full-wave rectified in software by finding the modulus of the: numerical value of every point minus 127.

The results were squared and accumulated in a floating point accumulator.

Fig. 5.9 FLOWCHART FOR THE RMS ROUTINE 77^{-}

After all points had been processed the contents of the floating point accumulator were divided by 4096 to give the mean square value which was then stored.

In the laboratory these mean sqaure levels were compared with the mean square level from a 94 dB microphone calibration tone. The sound pressure level can be calculated by:

$$
\begin{equation*}
S P L(d B)=20 \log \frac{R}{R_{\text {cal }}}+94+L \tag{5.2}
\end{equation*}
$$

Where $R=$ root mean square of a measurement
$R_{\text {caI }}=$ root mean square of the calibration tone
$L \quad=$ the attenuation introduced by the autoranger (zero for the far channel).

The standard deviation of the RMS measurements could be calculated from:

$$
\begin{equation*}
\sigma=\sqrt{x^{2}-x^{2}} \tag{5.3}
\end{equation*}
$$

If x is RMS lavel then

$$
\begin{equation*}
\sigma=\sqrt{\frac{\Sigma R^{2}}{N}=\left(\frac{\sum R}{N}\right)^{2}} \tag{5.4}
\end{equation*}
$$

where N is the number of measurements at a particular prequency, usually 20. The standard deviation was usually quoted in dB units.

5.9.2 Wind Speeds

Wind speed was determined from the mean value of the output of the anemometer as recorded by the transient capture device. The calibration of the probe relates the output voltage of the anemometer to the wind speed and so the calculation invalved twa stages: Ta recover the voltage from the digitised data and then to use King's Law with the calibration parameters in order to obtain the wind speed (see Section 5.5.). The digitised numbers were related to the ooltage at the input of the capture device by a linear trnsfer function:

$$
\begin{equation*}
N=G V-0 \tag{5.5}
\end{equation*}
$$

where G is the gain and 0 is the offset. The device was set up to digitise signals in the range 1 to 2 volts as 0 to 255, therefore, $G=0=255$.

If the digitised numbers are averaged we obtain:

Prom which the required $\overline{\mathrm{V}}$ can be obtained. It should. be noted, that for reasons to be discussed in 5.9.3 below, the offset is eliminated by adding to every digit before summation.

5.9.3 Wind Turbulence

Wind turbulence was represented by the quantity known as Turbulent Intensity defined as the ratio of the standard deviation of the wind speed over the time average of the wind speed expressed: as a percentage:

$$
\begin{equation*}
T I=\frac{d u}{\bar{u}} \times 100 \tag{5.7}
\end{equation*}
$$

It can be shown (46) that this can be approximated by:

$$
\begin{equation*}
T I=\frac{4 \bar{V} v}{\bar{V}^{2}-V_{0}^{2}} \tag{5.8}
\end{equation*}
$$

where $\bar{V}=$ average anemometer

$$
\begin{aligned}
& v=\text { standard deviation of anemometer voltage } \\
& v_{0}=\text { no flow voltage. }
\end{aligned}
$$

This approximation is valid for turbulent intensities up to 10%. $\overline{\mathrm{V}}$. is obtained from (5.4) above and so it only remains to determine v. As a first step the standard deviation of the numbers about zero can be found.

$$
\begin{equation*}
\sigma^{2}=\frac{1}{1024} \sum_{i=1}^{1024}\left(G V_{i}-0\right)^{2} \tag{5.9}
\end{equation*}
$$

Clearly the product term makes the recovery if Vi^{2} difficult, and so the offset value is added to every digit before squaring and adding. The result of this procedure then gives:

$$
\begin{equation*}
\sigma=G^{2}{\overline{V_{i}^{2}}}^{2} \tag{5.10}
\end{equation*}
$$

The standard deviation about the mean is then found:

$$
\begin{equation*}
V=G \sqrt{\left(\bar{V}^{2}-\bar{V}^{2}\right.} \tag{5.11}
\end{equation*}
$$

Turbulent intensity could alsa be computed from tre definition (5.7). In this case the digitised values were Iinearised using a. "look-up" table which was produced from a knowledge of the transfer characteristic of the probe used.

The inverse tranisfer function was computed as a series of equivalent digits stored in a "look-up" table in microcomputer RAM. In this way the anemometer signal was linearised on entry to the microcomputer and the conventional mean and standard deviation formulae were then available.

5.9.4 Wind Direction

In a particular mode of operation of peripheral interface adaptor type MCS 6522 it is possible to allow pulses applied to a control line to decrement the number stored in a. register within the device (See Appendix 日). One of the MCS 6522 circuits added to the microcomputer was used to count the pulses emitted by the wind direction sensor starting from the detection of the reference pulse, when the register is loaded, to the detection of the coincidence pulse, uhen the value in the register is subtracted from the original value.

This gives the angular displacement from the reference direction to the wind direction in units of 2^{0}. That number is stored, but doubled when recalled in the laboratory.

5.9.5 Air Temperature

An MCS 6522 in pulse counting mode (see Appendix B) was used to count pulses from the electronic thermometer for one second, this being timed using the microcomputer's internal clock. The value of the count was stored. On recall in the laboratory the air temperature was calculated by:

$$
\begin{equation*}
T=n / 2500 \quad{ }^{O_{C}} \tag{5.12}
\end{equation*}
$$

where n is the number of counts in one second, since 100 kHz is the maximum frequency from the V / F converter and corresponds to a temperature of $40^{\circ} \mathrm{C}$.

5.10 Data Storage

This covers two stages: firstly in RAM and then on floppy disc. ..."

Random access memory in the Commodore microcomputer used in this work is contiguaus between memory locations 0000_{16} to 4000_{16} (the 16 suffix indicates hexadecimal notation). The top 1 k of this (i.e. from 3COO 16 upwards) was used for the anemometer data. The results of the data collection described in this chapter were stored immediately below $3<00_{16}$ downwards. (See Fig. 5.10)

The BASIC program was located by the operating system from address 040016 upwards and the machine-code program above this at 1000_{16} upwards. Although the data could ultimately corrupt the top of the machine-code program, the amount of data collected at any one time was insufficient for this problem to occur.

HEX	ADDRESSES		DECIMAL ADDRESSES
	FFFF	- -	- 65535
	$F 000$.
	E000	SYSTEM R.O.M.	
	0000	$\begin{aligned} & \& \\ & I / 0 \end{aligned}$	
	0000		49152
	8000		
		EXPANSION	
	AOOD		
	9000		
	8000	Screen	32768
	7000		
	6000	EXPANSION	
		R.A.M.	
	5000		
	4000		
	3 COO	ANEMOMETER DATA	16384
	3000	DATA STORAGE	12188
	2000	$\downarrow^{\text {----------- }}$	8192
	1000	PROGRAMME	4096
	0400	storage	1024
	0000	271717171717171717	0000
SYSTEM R.A.M.			

Throughout the execution of an experiment two memory locations were used to point to the current address to which data should be sent. This pointer was originally set to $3 \mathrm{COO}_{16}$ and was successively decreased as data was added to the stack throughout the course of an experiment.

At the completion of the experiment, a permanent record of the data was made by saving all memory locations from that in the current address pointer up to $3^{200}{ }_{16}$ on floppy disc.

The experimenter was prompted by the microcomputer to enter a unique indentifier for the data file in order that it could be recalled in the laboratory. It was usual for such an identifier to comprise a page number in a log book and some simple numerical index to indicate the geometry used.

CHAPTER 6

Validation of Measurement System

Due to the unconventional nature of the automatic measurement system described in Chapters 4 and 5 it was essential to prove that the data collected was consistently accurate and precise in order to have faith in the conclusions drawn from the analyses, as discussed in Chapter 11.

This chapter describes the validation of the automatic measurement system by direct comparisons with either established measurement techniques or theoretical predictions.

6.1 Acoustical Measurements

The acoustical measurement system was validated by checking the proposed calculation software against theoretical values, using precisely defined electrical test signals throughout the various stages of development and finally by using acoustical signals under test-cell conditions in the fully-developed system.

6.1.1 Calculation Software

The accuracy of the root mean square calculation was essential to the dependability of the acoustical measurements. Another calculation performed was the standard deviation of a set of RMS measurements. This was used to test the hypothesis that the summation of many short segments of a truly random noise signal was statistically equivalent to a single long segment. That is, the mean and standard deviation of a set of short-time constant measurements could be as representative as the mean and standard deviation of one long time constant measurement.

Root Mean Square Calculations

This was tested by using various DC levels captured in the KEMO analogue memory and transferred to the microcomputer and by producing programmed signals stored in the microcomputer's internal RAM.

The DC levels were created by short circuiting the input to the analogue memory and adjusting the offset using a graduated potentiometer numbered from 0 to 5 in steps of 0.01 . The offset could be selected either positive or negative such that the full scale input sensitivity was covered by -5.00 to +5.00. The following results were obtained:

Offset	Digitised Value	Calculated RMS	Expected RMS	Error \%
$+5.00$	255	127.98	128.00	. 02
$+2.50$	191	63.99	64.00	. 02
$+1.25$	159	32.01	32.00	. 03
- 1.25	96	30.99	31.00	. 03
- 2.50	65	61.99	62.00	. 02

The digitised values were rectified about a zero level of 127 and so the negative offset RMS values are one less than the corresponding positive offsets.

The erros between calculated and expected RMS levels is small compared with the precision of the offset potentiometer. Indeed, the error appears to be systematic and probably attributable to the potentiometer.

The RMS calculation procedure was further verified by creating "signals" in software and storing the digital values in a 4 K segment of the microcomputer's
internal RAM, so forming a mimic of the capture device. Square waves and sine waves of an integral number of period and of various amplitudes were used. Since the waveforms were ideal, exact agreement between calculated and expected RMS was achieved.

Standard Deviation Calculations

The next experiment was an investigation into the effects of using very short time constant measurements by finding the standard deviation of a set of such measurements, and comparing them with theoretical standard deviations as described below.

Consider the RMS level of a sine wave measured for a duration very much less than its periodicity. The RMS of a sine wave is given by:

$$
\begin{align*}
& (R M S)^{2}=\frac{1}{P} \int_{Q}^{Q+P} \sin ^{2} x \cdot d x \quad(\text { see Fig 6.1) } \tag{6.1}\\
& (\text { RMS })^{2}=\frac{1}{P}\left\{\frac{P}{2}-\frac{1}{4}(\sin (2 Q+2 P)-\sin (2 Q))\right\} \\
& \text { RMS }=\sqrt{\frac{1}{2}-\frac{\cos \left(.02 \pi\left(P^{\prime}+2 Q^{\prime}\right)\right) \sin \cdot 02 \pi P^{\prime}}{\cdot 04 P^{\prime}}} \\
& \text { where } P=\frac{2 \pi P^{\prime}}{100} \text { and } Q=\frac{2 \pi Q^{\prime}}{100}
\end{align*}
$$

Fig. 6.1 Integration Limits for standard deviation calculations.
area under the wave should be the same for each period irrespective of the starting point, Q^{\prime}, and so the standard deviation will be zero. This effect is seen when the results of the above calculations are plotted as in Fig. 6.2.

As the measurement period increases past one half wavelength the standard deviation will increase again since the additional area under the curve will be dependant on the starting point of the measurement period. The sequence of maxima and minima continues, although the maxima become increasingly small since the proportional addition of the area under the curve beyond an integral number of half wavelengths decreases.

Note that the theoretical intercept of the graph at $\mathrm{P}^{\prime}=0$ is the standard deviation of a sine wave measured over half"a-wavelength, calculated as follows:

$$
\mu_{0}=\frac{2}{T} \int_{0}^{\frac{T}{2}}\left(\sin \cot =\frac{2}{\pi}\right)^{2} d t
$$

$$
\because \sigma_{0}=0.308
$$

This value fits in well with the graph and provides confidence that the theoretically derived equation (6.1) is correct.

The theoretical behaviour can now be used to verify actual measurements of electrical sine waves. By varying the capture rate and the signal frequency it is possible to cover the range of measurement periods used in Fig. 6.2.

For each point the standard deviation of 256 measurements was made ($256=2^{8}$, a convenient count limit for machine code programmes on 8-bit computers).

When the results are plotted with the theoretical values a good agreement is achieved, (see Fig. 6.2). Note that whereas standard deviation for

Fig. 6.2 Standard deviation of pure tones with random phases.
integral numbers of half wavelengths is expected to approach zero, in reality the value is limited by the electrical- noise and the quantisation noise.

6.1.2 Electrical Test Signals

The envisaged acoustical measurement system involved the interaction of several devices and so it was necessary to test the system at various stages of complexity. In the early stages of development, before the inclusion of acoustical transducers, electrical signals uere used as pseudo-acoustical signals.

The electrical signals were used in the series of system configurations shown in Fig. 6.3.

The system in Fig. 6.3.(c) becomes the eventual acoustical measurement system when a loudspeaker. and microphone is inserted in the signal path between the auto-attenuator and the measuring amplifier.

In the first instance electrical signals were applied directly to the microcomputer via one channel of the capture device. It was envisaged that such an arrangement would be equivalent to a measurement amplifier or voltmeter (see Fig. 6.3 (a)).

The use of sine waves has been covered in testing the standard deviation calculation software. Dctave bands of noise were also used in which case the signal generator comprised a noise generator, B \& K 1024, a measurement amplifier, $B \& K$ 2607, and an octave filter set, $B \& K 1615$.

The measurement amplifier, 日 \& K 2606, was used to provide a comparison with the RMS levels computed by the microcomputer. The latter could be converted
(a)

a\&K 2608

(e)

FIG. 6.3 Sequence of Development of Automatic Acoustical Measurement System.

STD. DEV. of 256 RMS levels vs No. of waves measured.
for continuous octave bands oe noise (eléctrical)

Fig. 6.4

92
from ADC digits to an equivalent valtage knowing that, in the setting used, the 8-bit range of the ADC was covered by 20 volts.

For each of the several signal amplitudes the mean and standard deviation of 256 measurements was reported. The mean was compared with the 2606 reading and the standard deviation compared with the theoretical error in noise measurements. This is given by:

$$
\begin{equation*}
E=\frac{1}{2 \sqrt{B T}} \tag{6.2}
\end{equation*}
$$

where B is the bandwidth, and T is the measurement time comstant.

The results are plotted in Fig. 6.4 and can be seen to agree with theoretical predictions for the most part with a slight departure from predicted at fractional waves per capture where assumptions in the deviations of the formula are contravened.

The system used above is modified to include the gating switch and a "microphone" measurement amplifier and filter set. See Fig. 6.3 (b).

In this arrangement the transient response of the octave band filter is under investigation. It is known that the output of the filter, a 6-pole Butterworth, reaches a steady state after about seven cycles of pure tone within the relevant octave band. From the table of Fig. 4.2 in Section 4.2.2. it can be seen that probably all of the captured 250 Hz signal will be within the transient response. If ane assumes an exponential rise in output amplitude to steady state, this means that the calculated mean will be about 37% down on the true value at 250 Hz or $37 \times 7 / 112 \cong 2 \%$ doun at 4 kHz . However, it is conceivable that the standard deviation of a set of measurements is unaffected
by the transient response.

To investigate these predictions measurements were taken with all permutations of:-

- pure tone or octave noise generated signal
- "microphone" filter in or out
- gated or continuous signal

The signal frequency was 1 kHz .

For each permutation a set of 256 measurements was made and the mean and standard deviation calculated.

The results are as follows:

Signal	Filter	Standard Deviation dB	
	continuous	Out	.023
	gated	Out	.017
	continuous	In	.016
Noise Band	gated	In	.026
	continuous	Out	.72
	gated	Out	.76
	continuous	In	.92

Fig. 6.5

The standard deviation for pure tones is predictably small and is the same, within statistical variation, for continuous or gated signals, with or without the filter in circuit.

For the band limited noise it can be seen that the introduction of the filter increases the spread of the measurements. However, the spread does not differ
between the transient and continuous case.

The evidence of this experiment is that the standard deviation of a set of measurements is independent of whether the transient response of an octave filter is evoked or not.

As a further verification of this conclusion, the standard deviation of gated octave bands of noise at centre frequencies from 250 Hz to 4 kHz were calculated from measured data aad plotted in Fig. 6.6 with $1 / 2 \sqrt{8 T}$ for comparison. The two curves can be seen to be in good agreement although the calculated values appear to be significantly higher than the formula at 4 kHz .

The system was further developed to include the equaliser as described in Section 5.2 .3 see Fig 6.3 (c).

The $B \& K 2608$ measuring amplifier is used to boost the signal which is limited to 0.5 volts RMS input to the equaliser. When the loudspeaker/microphone link is used this will be repleced by a power amplifier. See fig. 6.3 (d).

The band pass filter at the signal generator is now the Kemo filter described in Section 5.2.6.

For comparison purposes steady-state signals were measured with B \& K 2606 measuring amplifier placed in parallel with the capture device.

Octave bands of noise between 250 Hz and 4 kHz were generated and the microcomputer used to calculate the mean and standard deviation of 256 messurements at each frequency.

Fig. 6.6 Standard deviation of 256 RMS lavelsvs No of waves measured for Gated Dctave noise bands (Electrical).

The results are shown below with standard deviation normalised to the mean level.

$\begin{aligned} & \text { Centre } \\ & \text { Frequency } \\ & \text { (Hz) } \end{aligned}$	Normalised Std. Dev.	Computed RMS	Computed RMS volts	$\begin{aligned} & 2606 \\ & \text { Reading } \end{aligned}$
250	0.251	13.43	1.05	1.5
500	0.233	24.76	1.93	r 2.0
1000	0.207	24.31	1.90	2.0
2000	0.125	22.71	1.77	1.8
4000	0.086	21.88	1.71	1.70
	6.7			

The standard deviation against number of capture waves is plotted in Fig. 6.8 and can be seen to reassert the trend found in the previous test in that a significant departure from the formula is seen at 4 kHz .

Abstract

As expected, the computed voltage lavels for transient signals are lower than the measured voltage for stationery signals at low frequency. At 250 Hz the discrepancy is 30% and at 1 kHz it has reduced to 5% which is consistent with the assumption that the rise in amplitude of the filter output is broadly exponential, as stated earlier.

Since the acoustica measurements proposed in this thesis were concerned with level difference between two microphones the discrepancy shown above should have no detrimental effect since the symmetry of the reception channels makes it equally applicable to both microphone signals.

6.1.3 Acoustical Signals

Having calculated the mesurement system using electrical test signals it was then necessary to ensure that the introduction of an acoustical link in

Fig. 6.8 Standard Deviations vs. No. of waves captured for Continuous Octave Bands of Electrical Naise with Equaliser in Circuit.
in the signal path produced no anomolies.

Pure Tones
The apparatus as in Fig. $6.3^{(}(e)$ was used. The loudspeaker and the two microphones were erected in a small anechoic chamber, used to prevent interference effects from occluding the interpretation of the results of this test. The microphones were placed as close to each other as possible. The Autoranger circuit, described in Section 5.3.1 was included in one of the reception signal paths and set to a minimum attenuation. The signal gate was permanently closed to produce a continuous signal, which was a 1 kHz pure tone.

The system was calibrated by capturing a 1 kHz test tone from a microphone calibrator.

The mean sound pressure level of 256 measurements at the microphones was repoized to be 90.32 dB and 90.35 dB . The B \& K 2606 measuring amplifiers each gave a reading of 90.3 dB .

The experiment proved that the inclusion of the acoustical link did not cause any loss of precision and that the inclusion of the autoranger in one reception channel did not result in a difference between the two channels.

Octave Bands of Noise

This experiment invoked the fully developed acoustical measuring system with attendant software. It was considered as a 'Ury-run" test, taking place in the semi-anecfoic chamber at the British Leyland Test Facilfty, Leyland, Lancashire.
The signal processing arrangements are shown in Fig. 6.9. Two different
source/receiver geometry were used as shown in Fig. 6.10.

RESULTS

Geometry 1

	250	500	1 K	2 K	4 K
Level diff.	3.3	8.8	3.9	3.9	2.1
Standard Deviation (dB)					
Near mic.	1.9	1.3	0.9	0.9	0.6
Far mic.	1.6	1.4	0.9	1.0	0.7

Geometry 2

$$
\begin{array}{llllll}
\text { Level diff. (dB) } & 1.4 & 3.1 & 3.2 & 2.7 & 5.5
\end{array}
$$

Standard deviation (dB)

Near mic.	2.5	1.3	0.9	0.7	0.6
Far mic.	1.5	1.1	0.8	0.8	0.6

When standard deviation is plotted against the number of captured waves of the centre frequency of each band as in Fig, 6.11 close agreement with the theoretical $1 / 2 \sqrt{\mathrm{BT}}$ is observed. As was the case with the earlier tests involving electrical signals, at higher frequencies the standard deviation is above $1 / 2 \sqrt{B T}$. It should be noted that within statistical fluctuations, the same value for standard deviation is obtained for near and far microphones, independantly of which of the two geometries is used. This indicates that, as expected, the percentage dispersion from the mean is independant of the mean itself.

6.2 Meteorological Measurements

6.2.1 The Anemometer

The determination of wind turbulence by the computer was compared with measurements

Fig. 6.9 Instrumentation for Acoustic Tests at Leyland. 101

Fig. 6.10 Geometries for Acoustic tests at Leyland.

$\begin{aligned} & \text { Fig. 6.11 Standard deviation of } 256 \text { RMS levels vs. No of waves } \\ & \text { for Gated octave noise bands... (Acoustical). }\end{aligned}$
made by a Laser-Doppler Anemometer (LDA).

In essence this technique involves intersecting two laser beams, split from a single beam, at a point of interest in a fluid flow.

An interference pattern will be in evidence at a receiver. This pattern will shift depending on the vector addition of the velocity of light and the fluid. Dedicated microelectronics associateduith the receiver uses this information to determine fluid velocity. After sampling for an appropriate time the mean and standard deviation of the fluid velocity and the turbulent intensity (defined as the ratio. of these two) is printed.

Air flow in a perspex tube was measured with the LDA and the hot-wire probe was placed at the end of the tube and connected to its associated electronics and the microcomputer. The hot-wire anemometer was also output to either an RMS meter (supplied with the hot-wire anemometer) or a DC voltmeter. With these it was possible to read the average voltage and the standard deviation of the voltage. This was used in verifying the approximate formula (45):

$$
T I(\%)=\frac{4 v v}{v^{2}-v_{0}^{2}} \times 100
$$

where V is the average output voltage
v is the standard deviation of the output voltage
V_{0} is the no flow voltage
Note that this formula does not require the hot-wire probe to be calibrated. It is claimed to be a good approximation for turbulent intensities up to about 10%.

The table overleaf (Fig. 6.12) shows the results of the three measurements

WIND SPEED (m.s ${ }^{-1}$)			STE.DEV (m. s^{-1})			TURBULENT INTENSITY \%						
LDA	PET	ERR\%	LDA	PET	ERR\%	LDA	- ${ }^{\text {T }}$	ERR\%	MANU.	ERR\%	FORM.	ERR\%
3.18	2.71	-14.77	. 19	. 16	-16.40	5.97	5.36	-1.92	6.68	11.78	6.11	2.30
3.24	3.15	-2.77	. 19	. 17	-9.76	5.86	5.44	-7.19	5.68	13.89	5.68	-3.11
3.83	4.25	11.06	. 20	. 23	11.89	5.35	5.39	. 75	5.99	11.86	5.63	5.17
4.92	5.48	11.45	. 24	. 29	22.30	4.86	5.33	9.73	5.72	17.82	5.56	14.53
5.89	6.66	13.55	. 30	. 32	7.40	5.04	4.77	-5.41	5.48	8.66	4.98	- - . 13
8.16	8.63	5.86	. 39	. 43	10.86	4.78	5.01	4.72	5.27	10.23	5.23	9.36
10.47	9.72	-7.21	. 52	. 49	-5:89	4.97	5.04	1.42	5.21	4.83	5.26	5.90

Fig 6.12 Anemometer Comparisons
used averaged over similar time scales. The microcomputer calculated turbulent intensity using both the approximate formula and by the true definition, which required knowledge of the calibration parameters. The results table shows the mean wind speed in ms^{-1}, the standard deviation of the wind speed in ms^{-1} and the percentage turbulent intensity for both the laser Dopler anemometer (LDA) and the hot wire anemometer interfaced to the microcomputer (PET). For each of these three headings the percentage deviation of the PET result from the LDA result is shown (ERR\%). Under Turbulent Intensity the results obtained from manually reading the output of the hot wire anemometer with the DC Voltmeter and RMS meter, and the results using the PET results in the approximate formula are also quoted (MANV. and FORM.) together with the percentage error of each from the LDA result.

It can be seen that the PET system underestimates low and high wind speeds and overestimates within these extremes. This is most likely to be due to some inaccuracy in the calibration procedure for the hot wire probe. The standard deviations also exhibit this pattern.

Despite these apparent inaccuracies the turbulent intensity measured by the PET system is always within 10% of that obtained using the more sophisticated LDA system. With the exception of one high result in the middle of the wind speed range, the same can also be said of the turbulent intensity derived from the approximate formula.

The manual results appear to be systamatically too high, which is likely to be due to the fact that the mean and the standard deviation of the
hot wire anemometer output were measured on two different instruments whose characteristics (e.g. sensitivity, input impedance, etc.,) may be poorly matched.

It was concluded that the PET system gave acceptable results in view of the attractiveness of the high degree of portability and the low cost of the battery operated hot wire anemometer.

6.2.2 Wind Direction Sensor

This was evaluated simply be adjusting the position of the wind-vane manually in the laboratory.

The sensor was repeatedly interragated by the microcomputer and "wind direction" displayed on the microcomputer screen. This was compared with the known direction. Directions of $0^{\circ}, 90^{\circ}, 180^{\circ}$ and 270° were used.

6.2.3 Electronic Thermometer

The thermometer was evaluated by direct comparison with good quality mercury-in-glass thermometer.

The bulb of the mercury thermometer and the current source of the electronic thermometer were placed together in a beaker of melting ice. The beaker was gradually heated on a hot plate to $40^{\circ} \mathrm{C}$. The electronic sensor was constantly interrogated by the microcomputer and the temperature displayed on the screen.

The gain and offset were adjusted until the two thermometers agreed to within $1^{\circ} \mathrm{C}$ throughout the range 0° to $40^{\circ} \mathrm{C}$.

This exercise was repeated at intervals of about two weeks for maintenance purposes.

Modification of the Measurement System for Model Work

This chapter describes the changes to the measurement system for scale modelling brought about by the decrease in linear dimensions, with a corresponding increase in acoustical frequency, and by the move to a more controlled atmosphere.

A 16:1 scale was used for the model since this implied a model barrier of a manageable $6^{\prime \prime}$ height whilst the transposed acoustical frequencies would remain within the capability of the filters, measuring amplifiers etc. $(250 \mathrm{~Hz}$ to 4 kHz range becomes 4 kHz to 64 kHz). Wind was simulated using a wind cabinet fitted with a honeycomb flow-straightener.

7.1 Modifications to the Acoustical System

Smaller loudspeakers and microphones were required to cope with the higher frequencies used in the model. The half-inch microphones of the field experiment were replaced with eighth-inch versions. At normal incidence these microphones have an increased sensitivity in a narrow band around - 60 kHz . However, if the angle of the incidence is 90° a flat frequency is obtained over the required frequency range.

A single loudspaaker to cover the frequency range 4 kHz to 64 kHz could not be found. Instead a piezo-electric tweeter was used up to 16 kHz and a solid dielectric capacitance transducer beyond that frequency. It was also necessary to replace the power amplifier, designed for audio-frequency work, with the amplifier section of a wide frequency range signal generator in conjunction with a $B \& K$ measuring amplifier used as a pre-amplifier. Conveniently, the signal generator had a 5 ohm and a 600 ohm output which could be used for the
tweeter and the ultrasonic transducer respectively. In operation this required a pause to be inserted in the microcomputer's programme at the appropriate point so that the experimenter could unplug the leads to the tweeter and plug in the other leads before allowing the programme to continue.

A further modification to the measurement system was that only the first 1 K of the full 4 K of data stored in the event recorder was used for each channel. This was equivalent to a duration of sound burst of 7 ms , or about 2.4 m in length. Therefore reflected sound which travels from source to receiver over a greater distance than this can be ignored, allowing the laboratory, treated in certain areas with proprietary rockwool absorbers, to have anechoic characteristics, similarly to the open. grassland site in the field experiments.

7.2 Modifications to the Meteorological System

In determining the atmospheric conditions it was only necessary to use the hot-wire anemometer since the wind direction was set for any one geometry and the ambient temperature showed negligible drift over a period of time similar to the duration of a typical experiment. Wind direction and temperature were entered into the programme by the experimenter.

7.3 Additional Tests Required for Model Work

The use of two loudspeakers essentially acting as one required that the equivalent point source position and the polar response for each loudspeaker should be known in order that, if necessary, corrections could be made to levels measured at different frequencies.
7.3.1 Measuring the Point Source Origin of a Loudspeaker

For this exercise, an optical bench, of the type used for experiments involving
lenses, diffraction gratings etc., was erected in an anechoic chamber and covered with foam rubber to minimise acoustical reflections. This allowed microphone and apeaker to be placed at various separations but always in a plane parallel to the floor.

A pure tone of a certain frequency was played through the loudspeaker and the microphone response noted for various source-receiver separations up to 1 m .

A graph of sound pressure level at the microphone against the logarithm of the separation was plotted. It can be expected that this will give a curve that has three separate regions. Since the source is of finite size and the effects from separate elements can produce complex interference patterns at close quarters, sound levels near to the speaker are difficult to predict, although the general trend is a decreasing level with increasing separation. This region is known as the near field. If separation is increased further the far field region is reached where the source appears to act as a single unit, increasingly similar to a point source emitting spherical waves. Attenuation, due to beam spreading, is proportional to the square of the separation giving a straight line on a log. separation plot-6 dB per doubling of distance. The third region occurs at large separations when the sound pressure level is indistinguishable from background.

The points plotted on the graph should be corrected for air absorption (47) which produces an attenuation directly proportional to distance, giving the log. separation plot a curve of increasing negative gradient. For the distances up to 1 m used in this experiment, air absorption is only significant above 16 KHz 。

The results of.. the experiment for the electrostatic transducer and the piezo-

Fig. 7.1 On-axis response of electrostatic transducer
S.P.L. vs Source/Receiver separation.
electric device are shown in graph 7.1 and 7.2 respectively.

The Electrostatic Transducer

After correction for air absorption (using figures published by Bazley (47))
all the points can be seen to lie on a line of gradient - 6 dB per doubling of distance.

This indicates that the near field is not shown, although the interpolated level for 5 cm separation does not agree with measured values, indicating that the near field/far field boundary lies between 5-10 cm from the source.

The separations were measured from the face of the electrostatic transducer which, it can be concluded, appears to be the source of the waves when received in the far field.

The Piezo-electric Tweeter

Even after correction for air absorption the points lie on a straight line of a steeper gradient than expected. It was assumed, therefore, that the separation was not measured from the apparent point-source position, so there would be greater fractional error at close microphone positions, giving a curve of incorrect gradient. To decrease the gradient as required would indicate that the measured separations are too small. They wers taken as being from the microphone grid to the tip of the horn on the tweeter. If the origin was, not unreasonably, at the junction of the pressure unit and the horn, a correction of 6 cm would be required.

Such a correction is shown on the graph of Fig. 7.2 and can be seen to bring the points considerably nearer to the required line. The fact that they

Fig 7.2 On-axis response of piezo-electric tweeter
do not all fall on the line within experimental error implies that the wave does not simplify to a spherical wave over the range of distances investigated.

7.3.2 Polar Diagrams

A microphone was placed 30 cm from the loudspeaker under test. The received sound pressure level for a pure tone emitted from the speaker was measured for a range of source-receiver angles.

To produce the different angles the loudspeaker was rotated. The angle was measured using a protractor rigidly mounted on the stand that holds the speaker, with the 90° line pointing away from the speaker but parallel to a line drawn through the axis of symmetry of the speaker. The origin of the protractor was vertically above the speaker origin as determined in the previous test. (See Fig. 7.3). ,

The source-receiver angle was read off the protractor according to a pointer suspended by a thread from the ceiling of the anechoic chamber.

The results of this experiment indicate that the polar diagram of the electrostatic speaker is narrower than that of the piezo-electric device.

This is to be expected since the directivity factor (48) is dependant on the ratio of the emitted wavelength to the dimensions of the source, and the elctrostatic speaker has the bigger cross-sectional areas of the two devices but is emitting the higher frequency sounds.

Assembling the Speakers for Model Work
The most convenient geometry for the mounting of the two speakers for scale model experiments was with the electrostatic device clamped to the periphery

Fig. 7.3. Arrangement used to determine Polar Response of loudspeakers

Fig 7.3 (b) Polar Response of Loudspeakers
Attenuation re axial response vs Angular deviation.
of the horn of the piezo-electric tweeter using one of the four holes intended for screws to mount the tweeter on a baffle (See Fig. 7.4).

The assembly was so positioned that the electrostatic transducer and the axis of symmetry of the tweeter lay on a plane parallel to the floor.

Because the directivity of the electrostatic device is narrower than that of the tweeter the microphone should be placed opposite the face of the former when measurements are to be taken.

The two speakers were assembled as described above and placed on the optical bench with a $\frac{1}{6}$ " microphone initially at 30 cm from the diaphragm of the electrstatic unit and directly opposite it. Sound pressure level at the microphone was measured for a 16 kHz tone from the piezo-electric tweeter and 50 kHz for the electrostatic device at several microphone distances between 30 cm and 100 cm . The result can be seen in Fig. 7.5, including corrections for air absorption (at 50 kHz) and angle of incidence for the 16 kHz tone.

Fig 7.5 Response of Combined Loudspeaker Assembly.

The model experiments were to take place in a somewhat enclosed laboratory area since the only available anechoic chamber was prohibitively small. However, wave trains on only about 3 m in length were to be used (as described previously in this chapter) and in view of the high frequencies required it was reasonable to expect that the judicious placing of rockwool absorbers could produce quasi-anechoic conditions. The abosorbers were placed around the proposed model site to prevent reflections from objects less than 1.5 m away from the line of propagation from the speaker to the microphones. The automatic measurement system was used with the speaker assembly at a certain position with the near microphone at a distance of 30 cm away and the far microphone at a series of distances ranging from 1 to 6 times the above. The results are shown in Fig. 7.6.

The results show that, after correction for atomic absorption and origin position as determined in the previous tests, the response at all frequencies of interest approximate to the $-6 \mathrm{~d} 日 /$ doubling line achieved in the anechoic chamber. This was taken as evidence that the measurement system was still valid at model scale and that the model surroundings had been adequately treated to produce an essentially anechoic environment as far as the automatic measurements were concerned.

7.5 Choice of Covering for the Model Floor

Preliminary experiments showed that reflections from the model floor had a significant effect on acoustical measurements and so the material for the floor had to have similar properties as the grassland used in the full-sized experiments. That is to say, the amplitude reflection coefficients and phase change on replection had to be similar at the transposed frequency region as the grass

Fig. 7.6 Response of Loudspeaker Assembly in Quasi-anechoic Laboratory.
S.P.L. vs Source/Receiver Separation.
surface has at the original frequency region.
7.5.1 Determination of Amplitude and Phase Changes on Reflection The procedure was basically one of camparison of pure tone microphone signals with and without the model floor in position, the speaker to microphone separation remaining constant. A number of ways of achieving this were tried.

A convenient method of comparing two signals taken under the two different conditions was as follows: capture the signals in the analogue memory (Section 5.4) one in each channel, so that they can be displayed on a doublebeam oscilloscope. The relative amplitudes can be read from the oscilloscope graticule and the relative phases can be determined using the following facility of the event recorder. By activating a spring-loaded switch the digitised signal in the associated channel is rotated by one memory location. The signal is shifted a number of times until the two traces on the oscilloscope appear to have the same phase. Knowing the sampling frequency of the event recorder, the signal frequency and the number of memory locations shifted, the phase difference between the signals is calculated.

The data from such measurements can be used to determine the amplitude and phase changes on reflection by considering the vector diagram of waves reaching the microphone. Fig. 7.7 shows the vector addition of a direct wave and the wave reflected from the model floor.

whers $\Delta=$ path length difference between direct and reflected waves
$I=$ direct path length

$$
\begin{aligned}
& k=\text { wavenumber } \\
& \not \emptyset=\text { phase change on reflection }
\end{aligned}
$$

The measurement sequence described above yields the ratio B / A and the angle \varnothing. The Δ term is small enough compared with r that $r /(r+\Delta) \approx 1$.

The triangle SRX can be solved using the cosine rule to find K:

$$
\begin{aligned}
K^{2} A^{2} & =A^{2}+B^{2}-2 A B \cos \theta \\
K^{2} & =1+\frac{\dot{B}^{2}}{A^{2}}-\frac{2 B}{A} \cos \theta
\end{aligned}
$$

or to find ϕ :

$$
B^{2}=A^{2}+K^{2} A^{2}-2 K A^{2} \cos (\pi-(k \Delta+\not \emptyset))
$$

$\operatorname{Cos}(K \Delta+\not \varnothing)=\frac{1}{2 K}\left(\frac{B^{2}}{A^{2}}-1-K^{2}\right)$

$$
\phi=\cos ^{-1}\left(\frac{1}{\left(\frac{K^{K}}{2}\right.}\left(\frac{\theta^{2}}{A^{2}}-1-K^{2}\right)-k \Delta\right.
$$

The first attempt to produce the measurements involved positioning the loudspeaker assembly and the microphone 9 cm above the model floor in a horizontal plane and then reproducing the loudspeaker-microphone geometry in a vertical plane to make the direct-only measurement.

This proved impractical since it was impossible to reposition the loudspeaker and microphone whilst still maintaining the original separation of the required accuracy (wavelengths are of the order of millimetres).

It was then decided to leave the geometry, once arranged, and remove the floor of the model from in between the loudspeaker and microphone. This was parsible by arranging for the ploor to be made up of strips of wood suspended across

Fig 7.7 Vector Diagram of Direct and Reflected Wave over a plane reflective surface.

Fig 7.8 Arrangement of Model Table for Reflection Coefficient Determinations.
brackets running the length of the model site and mounted between two trestles, as in Fig. 7.8.

The only problem with this technique was that removing the strips of wood often caused the microphone or loudspeaker to be moved accidentally.

The eventual solution is now described in some detail.

To avoid moving the microphone when lifting the boards on and off it was decided to capture the sine bursts in the event recorder without the boards for a whole series of frequencies and separations, each time transferring the full $4 K$ of data to a floppy disc via the microcomputer. When the boards are replaced the relevant set of data can be returned to the event recorder for comparison, as described previously. The same data can be re-used for investigations of several floor coverings.

A requisite of this technique was that the microphone and loudspeaker should be placed in the same position for each set of measurements to within a very small tolerance.

This was arranged by marking the correct positions by three taut langths of string, one running centrally along the length of the model and the other two crossing the model, suspended across the brackets that support the boards.

The two points at which the strings crossed were to mark the position of the loudspeaker and the microphone.

The loudspeaker was positioned by lining up the face of the loudspeaker
opening with one crossing point. In order to position the microphone, two pointers were made. These were pointed straight lengths of thin metal rads with an eye at one end. One fits over the grill of the microphone and the other over the pre-amplifier. The microphone grill is positioned over the second crossing point as indicated by one pointer, the second being used to ensure orthogonality. The pointer on the grill is removed during measurements whilst the other is slipped back over the cable, taking care not to move the microphone.

Both transducers are mounted on small laboratory stands positioned on boards suspended across the model. Extended metal rods are used to hold the transducers away from these boards. The floor underneath the model is covered with rockwool absorber.

In total five source-receiver separations were used and the appropriate positions on the brackats were marked.

Initially data was captured when the microphone signal level rose above the trigger level set on the event recorder. This proved unsatisfactory since the starting phase of successively captured signals could vary. To overcome this an electronic circuit was made that produced a trigger pulse to the event recorder when the electrical signal fed to the loudspeaker passed through a certain voltage. The result was that successive captured signals had the same starting phase when inspected on the oscilloscope. The diagram of this circuit is shown in Fig. 7.9.

The experiment was carried out using foam and felt as floor materials as well as melamine (i.日. the uncovered boards). The foam and felt were attached to

Fig 7.9 Constant phase triggering circiuit for Kema Analogua Memary
opposite sides of the boards using double-sided sticky tape. The choice of these materials was made because previous scale model studies (49) indicated that a soft and/or fibrous material was required.

The results are shown in Fig. 7.10 and graphs in Fig. 7.11 and 7.12., which show the phase change on reflection and amplitude reflection coefficient as a function of frequency for the five source-receiver separations used.

Fig 7.10 Results of Reflection Coefficient Measurements for (a) Felt, (b) Foam

Fig 7.10 (continued) Results of Reflection Coefficient Measurements for (c) Melamine

Fig 7.12 Phase Change on Reflection vs. Frequency for (a) Felt, (b) Foam;

Experiments

The field experiment initially involved a fact-gathering exercise on the effect of various meteorological parameters on unobstructed acoustical propagation, leading to a study of how any observed effects modify barrier performance.

The variables between experiments were the signal type and the geometry of the transducers and, if present, the barrier. The desirability of using different signal types has been discussed in Section 4.1 . Model experiments used a 16:1 scaled-down version of the experiments in the outdoors.

This chapter discusses the choice of outdoor. location and documents details of the geometries and source signals used in each experiment, as already introduced in general form is Section 4.2.1.

The analyses of the results are discussed in Chapter 11.

8.1 Field Experiments

8.1.1. Location

The location for the field experiments was dictated by several factors:
(i) Avoidance of high background noise levels, such as main roads, factories, etc.
(ii) Accessibility for the mobile laboratory
(iii) Regular availability over prolonged periods.
(iv) Ease of barrier erection
(v) Lavel ground with a uniform covering

The following alternatives were considered:

Site 1 was an unused field attached to F L Calder College, an annexe of Liverpool Polytechnic. The field was on a steep slope and drainage was poor. This meant that the field often became water-logged and therefore inaccessible to the mobile laboratory.

Site 2 was the sports field of I M Marsh College, another annexe of the Polytechnic. This site was remote from the college buildings and was on firm, level ground. Additional advantages were the possibility of mains power from an outbuilding using long extension cables and the possibility of storage for the barrier materials.

Site 3 was a small piece of waste land belonging to Lancashire County Council and was the site of a disused railway. The ground ranged from being hard and barren to being covered in long uncultivated grass.

Site 4 was part of the disused Air Force Base at Burtonwood, near Warrington Cheshire. The ground was made up of concrete slabs and starage facilities were readily available.

A hard surface was acceptable from an acoustical viewpoint since its reflective characteristics are well documented in the literature. However, the erection of a barrier on a temporary basis would entail scaffolding which would be timeconsuming, especially if the barrier had to be dismantled after each day's experiments, and would require a certain amount of skill.

A further handicap was that the site was within 1 Km of a motorway which might produce a high background noise level of an irregular nature.

After consideration of all the alternatives, Site 2, I M Marsh College sports field, emerged as a clear choice.

8.1.2 Open Propagation

The initial acquaintance with horizontal propagation through the atmosphere was made by monitoring the loudspeaker output with a microphone at a distance of 4.8 m and a second microphone at one of the series of distances, each of which was an integer multiple of 4.8 m . The loudspeaker and two microphones, referred to as the near and far microphone, were all at a height of 1.4 m . Octave bands of noise were used exclusively in these experiments.

The anemometer was placed near to the loudspeaker mouth (without obstructing the line of sight between source and receivers) since it has been postulated that turbulence at the start of an acoustical path has the greatest influence on a received signal (38).

The wind direction indicator was placed a few metres behind the loudspeaker with the reference direction pointing along a line joining the source and receivers, so that a direction of 180° is downwind propagation, 0° is upwind propagation and 90° or 270° represents a cross-wind.

The temperature probe of the electronic thermometer was suspended in the air near the mobile laboratory shaded from direct sunlight.

A summary of the source/receiver geometries is given in Fig. 8.1.

8.1.3 Barrier Experiments

Initially the geometries used with a barrier in place were chosen to provide a direct comparison with the open propagation experiments descriebd in 8.1.2. The near microphone was at 4.8 m and the barrier at 9.6 m from the loudspeaker. The far microphone was placed beyond the barrier at one of a series of distances each of which was an integer multiple of 4.8 from the barriar. The loudspeaker and microphone were all at 1.4 m high. See Fig 8.2 and Fig $8.2(\mathrm{a}) \ldots \ldots$

Fig 8.1 Summary of Open Propagation Geometries 138

Fig 8.2 Summary of Barrier Geometries; Dctave Bands of Noise.
(a) Source and Receivers above ground 140°

(b) Source, and Far Receiver at Ground Level.

Fig Summary of Barrier Geometries; Pure Tones and Random Pure Tones.

For these two series of geometries the anemometer and temperature probes and the wind direction sensor were positioned as described in 8.1.2. Octave bands of noise were used.

In a development of this system the near microphone and anemometer were placed above the barrier which was at a distance of 5 m from the loudspeaker. The far microphone was beyond the barrier at a distance of 1 m or 3 m , and either 1.4 m high or at ground level. Fig. 8.3 summarizes these geometries.

For these experiments the source signal was pure tone, either of a fixed frequency or of random frequencies within an octave band, as. described in Section 5.1.
8.1.4 Use of a Tape Recorder with the Automatic Measurement System At one atage the throughput of data was increased by using a Nagra IV SJ tape recorder to monitor the signals from both microphones on direct recording channels and the anemometer on the frequency modulated channel. of necessity, this technique neglected the air temperature sensor and the wind direction sensor.

Sound bursts could be measured in this manner at 1 second intervals instead of the approximately 8 seconds of the previous system. The recordings were taken to the laboratory and replayed through the original measurement system as if they wers elements of data collected and analysed in real time. A calibration tone from each of the microphones was recorded before commencement of the experiment in order to relate the RMS levels measured from the recorded sound bursts to S.P.L. This is a similar procedure to the calibration performed in the real-time situation.

Once a recorded sound burst was captured in the event recorder the microcomputer processing time was about eight seconds; which includes the transfer of individual elements of the data to the mainframe computer (see Section 12.1.2). Since the sound bursts were recorded every second, the programme on the microcomputer only used every tenth recording. To process all the data the tape was re-run ten times with a different "offset" each time. That is, on the first pass every tenth burst starting with the first burst was used; on the second pass the process started on the second burst etc.

Recording the Anemometer Signal

It was necessary to ascertain the DC transfer characteristic of the FM channel of the tape recorder in order to calculate the true output voltage of the anemometer at the time of recording.

The output of stabilised DC power supply was applied to the parallel combination of a digital voltmeter and the FM channel of the tape recorder. The output was varied between 1 and 2 volts, which covers the range of a typical anemometer output. Each voltage setting was recorded for approximately ten seconds at 15 inches per second. Between settings the tape was stopped.

After the range of input voltages was recorded, the DVM was placed on the output X of the FM channel and the recording replayed. A steady voltage was reached about 2 seconds after the start of each voltage setting.

The results showed a linear transfer characteristic with 1 volt recorded becoming -3.35 volts on play-back and 2 volts recorded becoming $-2 . .42$ volts on play-back. To counteract this voltage shift the FM channel output was replayed across a 3.35 DC voltage obtained from a stabilised power supply
and then into the event recorder which had an offset control adjusted to allow the 1 to 2 volt range to occupy its dynamic range. A low pass pilter with a cut-off of 1500 Hz was included in the signal path before the event recorder to remove some of the high frequency tape hiss. See Fig. B.4.

The validity of this process was checked by recording a sine wave which varied between 1 and 2 volts obtained from a function generator. As required, this sine wave was digitised in the event recorder between the values 0 and 255 with no overload at either maximum or minimum.

The overall transfer function of the above system was incorporated in the algorithm for converting anemometer voltage to equivalent wind speed.

3.2 Model Experiments

To a large extent the experiments performed in the laboratory were a scaleddown version of those performed outdoors and described in Section 8.1. This Section details the model experiments and discusses the similarity, or otherwise, between the model and full-size situations.

8.2.1 Modelling Wind Conditions

Two conflicting criteria could be used to model typical wind conditions. Since linear dimensions are reduced in the model then an equivalent wind speed would be achieved if the model air flow equalled the outdoor wind speed divided by the scaling factor. It would then remain to produce similar degrees of turbulence in the model as existed in the outdoor situation. This is the approach adopted by Stusnick and Dejong. (32). However, this doss not take into account barrier-induced wind turbulence. Fluid dynamics considerations indicate that, if similar degrees of fluid turbul-

Fig 8.4 Nagra Playback circuit.
ence are to be produced in different systems, then a dimensionless quantity known as the Reynolds Nymber (Re) must have similar values in each system. (50).

The Reynolds number is given by:

$$
\operatorname{Re}=\frac{\rho U L}{\mu}
$$

where $\rho=$ fluid density
$U=a$ representative velocity scale
$L=a \operatorname{representative~length~scale}$
$\mu=$ fluid viscosity

If the model is in air, then ρ and μ are constant in each system, so decreasing linear dimensions would paradoxically indicate that air flow rate in the model system should be increased by a factor equal to the scaling factor. A 16 : 1 scale, as dictated by acoustical considerations, would mean such high air flow rates that a wind tunnel would be required. The size of wind tunnel needed to produce high flow rates over a floor area of the size required to mount an acoustic model generally have high acoustic emission which could produce a poor signal to noise ratios. Such a structure was not readily available and the designing and building of one specifically was beyond the intended scope of this project.

It was reasonable, therefore, to investigate the case in which ambient wind conditions are modelled, leaving the modelling of barrier-induced turbulence as a passible development.

To produce the required slow air flow above the model surface a so-called wind chest was used.

This apparatus composed a variable speed electric fan in a chipboard box of dimensions approximately $1.5 \mathrm{~m} \times 1.5 \mathrm{~m} \times 0.3 \mathrm{~m}$.

One of the large area surfaces contained two square intakes near the bottom of the box, each about 0.3 m square, and covered with a square grid. Occupying the top half of the same surface was the opening that acted as the exhaust. It was filled with a honey-comb shaped structure constructed from thin metal foil which aided the production of laminar flow from the wind-chest.

With the fan. rotating at its fastest an air flow of about 1 mos is produced with a ., turbulent intensity of about 10%, which is representative of a wind speed of $16 \mathrm{~ms}{ }^{-1}$ (i.e. 36 miles per hour) the turbulent intensity figure being the same in model and full-size conditions. It was concluded that the wind chest could model a range of wind speeds adequately covering the range that could be expected in the field.

8.2.2 Construction

The base upon which the model experiments were carried out comprised six melamine-clad boards each of a length 60 cm and thickness 1.3 cm . The depths were $15 \mathrm{~cm}, 22 \mathrm{~cm}$, or 30 cm ; two boards of each depth. The material covering for the boards was the subject of investigation as reported in Sec 7.5

The boards were laid lengthways across two parallel right-angle section brackets and assembled to form one continuous surface. The brackets were supported at a height of about 1 m by two trestles. See Fig. 8.5.

The above construction was placed in front of the wind cabinet so that the air flow. was parallel to the angle brackets.

Fig. 8.5 Arrangement for Model Investigations.

The barrier was a thin sheat of aluminium measuring 60 cm by 15 cm .

8.2.3 Model Procedures

The series of geometries in the full-size experiments, see Sections 0.1 .2 and 8.1 .3 were reproduced in the model using a scaling factor of $1: 16$. The signal source emitted either a pure tone or octave band of noise.

In the outdoor experiments the meteorological conditions were beyond the control of the experimenter and so each procedure was repeated on a number of days to provide a range of conditions. In the model, however, conditions were not so variable. The ambient temperature remained constant throughout the course of one set of measurements to within $1^{\circ} \mathrm{C}$ and the wind direction was set by the orientation of the transducers to the wind cabinet. These parameters were edited into the programme as data by the experimenter.

Model experiments involving air flow were limited to downwind propagation only.

CHAPTER 9

The Results of Full Scale Experiments

The results of the experiments of Chapter 8 are presented here in a series of graphs of level difference between near and far microphones in dB verses Turbulence Number; an index based upon the definition of turbulent intensity. Each point represents a measurement of a single sound burst.

Turbulence number was calculated from either a 50 ms or 500 ms capture of anemometer data and this is shown on the axis of the graphs as TN_{50} or TN500 respectively. This change was made since typical turbulence spectra (40) show a significant component below 20 Hz (i.e. the lower frequency cutoff imposed by a 50 ms data capture). Additionally, $T N_{50}$ used the approximate formula for turbulant intensity (equation 5.8.) which is reported to be a reasonable approximation only for turbulent intensities up to about 10%. However, some of the data shows $T N_{50}$ values of up to 18% and so the $T N_{500}$ measurements wera based on the definition of turbulent intensity (i.e. $\mathrm{TN}_{500}=$ $(d u / \bar{u}) \times 100)$.

Only turbulence is considered in the following graphs to the exclusion of such parameters as wind velocity, air temperature, wind direction, etc., since only whan level difference was plotted against a $T N$ value did the trends and tendencies to be discussed in Chapter 11 appear. In each of the figures that follow there are either four or, more usually, five graphs, aseparate graph for each frequency used in a particular geometry. The figures are indexed as follows:
9.1a-9.1e Octave noise bands propagated over open grassland for five far microphone ppsitions (See Fig 8.1)

Figs 9.2.1 and 9.2 .2 start from latter b in order to ease cross-referencing to the geometrically similar arrangements of Figs 9.1b-c.

In the analysis discussion the above figures are referred to as representating a particular source/receiver geometry.

Fig 9.1a Full scale; Octave bands; unobstructad propagation. Level difference vs TN_{50}; various frequancies.

Fig 9.1c Full scale; Octave bands; unobstructed propagation. Level diffarence vs $T N_{50}$; various frequancies.

Fig 9.14 Full scale; Octave bands; unobstructed propagation.
Level difference vs TN_{50}; variaus frequencies.

Fig 9.1e . Full scale; Octave bands; unobstructed propagation. Level difference vs $T N_{50}$; various frequencies.

Fig 9.2.1b Full scale; Octave bands; barrier present (source and receivers all above graund). Lavel diffarance vs TN_{50}; various Prequencies.

158

Fig 9.2.id . Full scale; Octave bands; barrier present (source and receivers.
all above ground).
Level difference vsi $T N_{50} ;$ various frequencies.

Fig 9.2.1e Full scale; Octave bands; barrier present (source and receivers $\begin{gathered}\text { all above ground). }\end{gathered}$
Level difference ve TN_{50}; various Prequancies.

Fig 9.2.2b Full scale; Octave bands; barrier present (source and far receiver on the ground)

Fig
Full scale; Octave bands; Barrier present (source and Par receiver on the ground).

Level difference ve $T N_{50}$; variaus frequancies.

Fig $9.2 .2 d$ Full scale; Octave bands; barrier present (source and Par receiver
on the ground).
Level dipference vs $T N_{50}$; various frequencies.

Fig 9.2.2e Full scale; Octave bands; barrier present (source and far recei ver
Lavel differenca vs TN_{50}; various fréquencies.

Fig 9.3.a Full scala; pure tones; barrier present; Level difference va $T N_{500^{\prime}}$. various frequencias.

Fig 9.3 b Full scale; pure tones; barrier present; Leval difference vs $T N_{500}$; various Prequencies.

$T N_{500}$
Fig 9.3 c Full scale; pure tones; barriar present; Level difference vs $T N_{500}$; variaus Prequencies.

Fig 9.3 d Full scale; pure tones; barrier present;

Level difference vs $T N_{500}$; various frequencies.
169

Fig 9.4 a \quad full scale; random pure tones; barrier present;
. \quad Level dipperence vs $T N_{50} 0^{\prime}$ various frequencies.

Fig 9.4 a Cantinued

Fig 9.4 b Full scale; random pure tones; barriar present;
Lavel diffarance vs $T N_{50 \text {; }}$ various frequencies.

Fig 9.4 b Continued

Fig 9.4 c Full scale; random pure tönes; barrier present; . Level differance vs TN_{500}; various irequancies.

Fig 9.4 e Continued

Fig 9.4 d Full scale; random pure tones; barrier present; Lavel difference vs $T N_{500}$; variaus frequencias.

CHAPTER 10

The Results of Model Scale Experiments

Because of similarities of source/receiver geometry and signal type the figures showing the results of model scale experiments are numbered 10.2a to 10.2 d and 10.3 a to 10.3 d to ease cross-referencing.

It should be noted that the geometries of Figs 10.3a - d are $1 / 16$ scaled versions of those in Figs 9.3a - d. Figs 10.2a - d are similar to 9.2.1a - d, however, the equivalence is not exact as in Figs 10.3 and 9.3.

Fig 10.2 a Model scale; octave band noise; barrier present; Lavel difference vs $T N_{500}$; various frequencies.

Fig 10.2 b Model scale; octave band noise; barriar present; Level diffarence vs TN_{500}; various frequencies.

Fig 10.2.c Model scale; octave band noise; barrier present;Level difference ve. TN_{500}; various Prequencies

180 .

$0.10203040 \begin{gathered}5060708090 \\ \mathrm{TN}_{500} \\ 0\end{gathered}$

Fig 10.2 d Model scale; octave band noise; barrier present; Level differance va TN_{500}; various frequencies.

Fig 10.3 b Model scale; pure tones; barrier present; Level difference vs TN_{500}; various frequencies.

Fig 10:3 c Model scale; pure tonas; baríier present;
Lavel difference vs TN_{500}; various Praquancias..

fig 10.3 d Model scale; pure tones; barrier present;
Level difference us $\mathrm{TN}_{500^{\circ}}$ various frequencies.

CHAPTER 11

Analysis of Results

In this chapter the techniques used in analysing the data acquired in fullsize and model experiments is described. The conclusions drawn from these results are then discussed.
11.1 Analysis Techniques
11.1.1 PET Printouts

Raw data collected by the automatic measurement system during experiments, model or full-sized, is stored on floppy disc to be ra-accessed by a PET in the laboratory which then calculates more meaningful quantities such as sound pressure level, turbulent intensity, etc. In the first instance, data analysis was a simple inspection of the tabulated results from this procedure.

```
A typical table of results is shown in Fig. 11. It comprises the sound
pressure level for the near and far microphones for each pass, together with a running average and a running standard deviation.
```

The wind turbulence wind direction and air temperature are also printed for each pass.

A separate table is produced for each frequency band measured. Before the first of these tables the name of the data file is printed and the calibration levels for each microphone, in terms of event recorder digits, corresponding to the 94dB calibration tones is also printed.

The facilities for formatting output data on the PET are somewhat limited
0. 1MM157/3
FAR CHANHEL CALIERATIUN $=84.8547832$
NO. of passes $=20$

and consequently the technique for producing the table is involved.

Inspection of these tables revealed no obvious trends in sets of measurements between, say, microphone level and wind turbulence etc. It was therefore desirable to extend the table to include other parameters, perhaps level difference, wind speed, etc., which would prove inconvenient as almost the full width of the paper was needed to produce the existing table. Additionally, the need for graphical representation and statistical testing of large amounts of data on a routine basis became increasingly obvious. The PET has no facility for printed graphics and to develop software for this purpose would have been time-consuming, as would the development of a comprehensive and versatile statistical package. The need to work with data acquired over perhaps many days would require the constant use of disc storage as virtual memory, since it was known that data from one geometry of one experiment would use nearly all the internal random access memory of the PET. The use of disc files on such a regular basis would produce unreasonably long execution times because of the relatively slow data transfer rate between disc and microcomputer.

It was decided to look to more powerful computers with ready-developed statistics packages to perform the data analysis in earnest.
11.1.2 The DEC - 20 Computer

The mainframe computer at Liverpool Polytechnic, a DEC - 20, has the ability to handle data files of such a size that data from many days worth of experiments could be stored at once. Also, developed statistics packages ideally suited to the analysis of scientific data were available.

The computer can be simultaneously accessed by many users throughout the Polytechnic by a time-sharing procedure using terminals connected to the computer via telephone cables. The data acquired during this study could be transferred to the computer using one of these terminals by manually typing in the results tabulated by the PET. This was unacceptable since it would still require the printing of results from the PET, typographical errors would be prectically unavoidable and the process would be prohibitively timeconsuming.

A solution would be for the PET to communicate directly with the mainframe computer sending results as they were calculated.

Data Communications

A system was devised by which the PET appeared as a conventional terminal to the mainframe computer and data was transferred between these devices on a hand-shaking basis. Use was made of a commercial electronic circuit board known as the "Netkit" designed to allow the PET to transmit and receive data according to the RS232 standard by which the mainframe computer communicates with all its terminals.

It was necessary to devise a means of running programmes simultaneously on the two computers by which a data fils could be constructed on the mainframe computer.

11.1.3 The GENSTAT Package

The statistics software used to analyse the data was known as GENSTAT (a General Statistical language) (51). Other statistics packages were available but this choice offered the advantages that the construction was such that
performing operations on sets of data involved simple instructions; it was developed specifically for scientific applications and the facilities available provided the degree of sophistication required to fully investigate the experimental data.

The following Section describes the statistical techniques used in the analysis of data.

(a) Analysis of Variance

This technique, often abbreviated to ANOVA, is used to determine to what degree variances in sets of data are related and can be classed as either a one-way or a two-way analysis. (51).

ONE $-W A Y$ analysis attempts to quantify the variancebatween groups of data compared to the variance within the groups. In this project such an analysis might relate the variance of sound level difference from day to day to the variance during each different day.

The technique measures the total variability and breaks this down into the two components mentioned above. A within-days and between-days mean square value is calculated and the ratio of these two is used as a test statistic to accept or reject the hypothesis that there is a significant long-term variation from one day to another by using the one-sided F table.

TWO-WAY analysis permits the introduction of a further variable. For instance, the level difference measurements could be classified by frequency as well as by days. In this way measurements are formed into "cells", each cell containing data from one day and one frequency only.

The between-cells variation is now made up of between-frequencies and between-days variation with an additional interaction variance. The sum of these three sources of variance is then subtracted from the total variance. The result is known as the residual and is actually the withincells variation.

Covariates

The declared variate in the above analyses is level difference. It is possible to include other parameters known as covariates, such as wind turbulence, wind speed, temperature, etc. The analysis of covariance technique (ANCOVA) attempts explain the variation in the main variate by similar variation in one or more of the covariates. The effect of adjusting for covariates should be to reduce the within-cells variance if variate and covariate are related. In the analysis of variance table a covariance efficiency factor (labelled COV EF) is printed. Ideally this should be unity.

(b) Regression Analysis

In this technique an attempt is made to relate two stated parameters by a polynomial equation. The efficiency of the fit is indicated by a statistic called the correlation.coefficient. This is formed from the sum of squares of the x and y variates and the sum of the cross products. Perfect correlation is indicated by an absolute value of unity, total uncorrelation being shown by a zero value. The sign of the value shows the gradient of the fitted line.

11.1.4 Insoection of Graphical Representations

In parallel with.the formal statistical analysis described above, it was necessary to look for emerging trends by displaying the data in whatever
graphical forms seemed appropriate. Typical examples are:
a) graphs of near or far level, or level difference, plotted against each of the calculated meteorological parameters drawn separately for each of the five frequencies used.
b) Mean levels of sets of measured attenuation plotted against frequency for a set of curves covering the geometries used in a set of experiments.

11.2. Analysis of Full Scale Results

The application of the GENSTAT techniques discussed above proved inconclusive in that no clear evidence of a statistical relationship between the acoustical parameters and the selected meteorological variables emerged. 11.2.1. Visible Trends and Tendencies in the Graphical Results of Chapter 9. Notwithstanding the comments above, an inspection of the graphed results presented in Chapter 9 indicates patterns and consistencies which appear unmistakable and which would not have been identified by the GENSTAT procedures already referred to. The patterns under discussion in this section were found in fact only to appear when level difference between the near and far microphones were plotted against one or other of the two selected turbulence numbers, $T N_{50}$ or TN500 (By way of reminder $T N_{50}$ and $T N_{500}$ refer to a statistical representation of the fluctuation in instantaneous measured wind velocity, as defined in section 6.2, based upon a sample time of 50 and 500ms respectively.) When considering the significance of the apparent trends being discussed here it is important to remember that the experimental points shown on the graphs of Chapter 9 represent the measured level difference and $T N$ value for a single sound burst and that in each case measurements taken on five separate days have been aggregated on to each graph.

The patterns and trends referred to may be summarised as follows:
(i) The amplitude of scatter in level difference values at a given $T N$ number is generally large at low TN values.
(ii) The scatter at the low TN limit varies with acoustic signal and measurement geometry.
(iii)There is a strong tendency, irrespective of acoustic signal and geometry, for the scatter to reduce, following a common pattern, to a very small value at high TN values.
(iv) The limiting value of level difference in (iii) above, the so-called asymptotic limit, also varies with signal and geometry.
(v) - The frequently encountered triangular pattern of measurement points is not a consequence, as might initially be thought, of the reduced number of occurances in which high TN values were returned. (vi) The above observations appear equally true of unobstructed propagation and when the barrier was present.
(vii)The total independance of the acoustical and meteorological measurement channels encourages the belief that the above are observations of real effects.

With the comments of this section in mind some of the data presented graphically in Chapter 9 have been extracted and presented in an alternative form for discussion below.
11.2.2. A Study of the high-turbulence level differences.
11.2.2.1. Dpen Propagation

In Figs 11.1 to 11.5 asymptotic (ie high turbulence limit) level differnces are plotted against frequency and for the various geometries including unobstructed propagation. Broken lines have been.included as a guide to
the eye in discerning trends rather than to imply any precise knowledge of the variations involved.

The behaviour shown in Fig 11.1 (unobstructed propagation) appears consistent with the results of Rasmussen (4) and Piercy etal (1) which relate to measurements of open propagation without consideration of turbulence. The reasons for this assertion are as follows:
(i) On four of the five curves (viz b, c, d, e) there is an increase in level difference which may be associated with the 500 Hz dip characteristic of propagation over grassland and wide enough, in frequency terms, to be discernable even in the presence of the averaging effects expected from dealing with full octave noise bands.
(ii) A second local maximum appears on curves a, b and c which progresses to higher frequency with increasing propagation distance (i.e. decreasing path length difference) indicative of an additional interference offect. The parts of curves d and e available continue that trend. The maximum lies close to the frequency at which the path length difference is three halfwavelengths. This would suggest that the ground should still be considered acoustically hard at these frequencies. (The surface was indeed a grassed, hard packed top soil backed by a solid sandstone base).
(c) Additionally for the near microphone the same interference dip occurs at 680 Hz which is within the 500 Hz octave band producing a low near microphone level in that octave band. This may explain why the 500 Hz dip is not seen at a far microphone distance of $9.6 m$ (curve b) where this dip is still moderately shallow when averaged over an octave band.

The above observations are considered to establish confidence in the overall measurement system and to characterise, acoustically, the ground at the
experiment site. They also serve to emphasise that even unobstructed propagation over open grassland is a complicated matter.

11.2.2.2 Barrier Present (Octave Bands)

Fig 11.2 and 11.3 show the asymptotic level difference plotted against frequency for the two sets of geometries (9.2.1. and 9.2.2.) comparable with those used for open propagation discussed above. (For 9.2.2. the speaker and far microphone are at ground level).

In all cases the trend is an increase in level difference with increasing frequency and with increasing distance to the far microphone. The indication is that the interference dips observed for open propagation have either become more frequency selective, due to the increased multiplicity of possible propagation paths, and so are smoothed out over an octave band, or have disappeared.

The fact that level difference is greater for far microphone distances where the microphone is on the ground could be attributable to one or a combination of the following:
(i) A plane wave shadow zone is being formed behind the barrier, although the propagation distances are rather short.
(ii) The diffraction angle is increased by a factor of about 2.3 when the speaker and far microphone are lowered from $1.4 m$ above the ground down to ground level.
(iii) There are four ray paths above the barrier for the case of the far microphone and speaker above the ground but only one ray path for the speaker and far microphone on the ground.

The pronounced maximum of the curves in Fig 11.3 occurs at 2 KHz irrespective of far microphone distance which tends to rule out a ground reflection type interference effect, which is reasonable since the far microphone is on the ground. However, 2 KHz is approximately the critical frequency of the barrier and so the results of Fig 11.3 may be an indication of a cancellation effect between diffracted and transmitted sound. It is not clear why normally incident sound of the critical frequency should be so enhanced. 11.2.2.3 Barrier Present (Pure Tones and Random Pure Tones)

The experimental results for pure tones presented in Fig 9.3 a-d and summarised in Fig 11.4 and 11.5, exhibit clear similarities in cases a and c (Far microphone is on the ground) and in cases b and d (Far microphone is1.4m above ground). The 2 kHz maximum noted above is again evident for three of the geometries; there is a suggestion of some fine structure among measurements taken at a fixed frequency, but as suggested above, is least within 2 kHz octave band. (The one exception is for the microphone on the ground and 1m behind the barrier giving a diffraction angle of 83°. In such a case there would be little diffracted sound, leaving only transmission through the barrier as significant)

The curvestend to reinforce the idea that special transmission conditions apply at 2 kHz , possibly a partial cancellation of the diffracted and transmitted sound.
11.2.3. The Observed Scatter of level difference measurements

Variations in the overall magnitude of the scatter in measured level differences exhibited from graph to graph in Chapter 9 are clearly noticable.

It has been remarked above that the distribution of measurement points frequently follows a general pattern of a wedge shape indicating that the scatter reduces as the measured turbulence increases to yield the so called asymptotic level with the fall from high values being at a someuhat faster rate, in decibel terms, than the rise from below.

For further investigation an attempt has been made to quantify the magnitude of the scatter by extracting from the graphs of Chapter 9 a measure which might be called the low turbulence scatter which is the notional decibel range within which the level differences of some 90% of the measured points would fall at low TN values. These have been plotted in Figs 11.6-11.10 with Fig 11.6 being for unobstructed propagation.

11.2.3.1. Low Turbulence scatter ranges(unobstructed propagation/octave bands of noise)

A pattern can be discerned in Fig 11.6. At low frequencies scatter rises in a manner that is not unexpected when time sampling a low frequency noise signal. Beyond a minimum at 1 to 2 kHz , and depending on geometry, the scatter rises again as frequency increases towards 4 kHz . The extent of that rise varies, in a broadly sensible manner, with increasing acoustic path - if it is assumed that the process giving rise to this increased scatter operates along the acoustic path rather than being associated, for example, with conditions at the ground surface.
11.2.3.2 Low Turbulence Scatter Range (Barrier Present/Octave Bands of

Noise/Source and Receivers above Ground).
The data here is extracted from Figs 9.2.1b - e and presented in Fig 11.7. There is less variation of scatter range with frequency and geometry than the open propagation case as seen in Fig 11:6. However, with the exception of curve b which pertains to the far microphone close to the barrier, the trend is still a decreasing scatter range from 250 Hz down to 1 kHz and an increase again at the high frequency end.

It is unclear why the variation in scatter range should reduce overall compared with open propagation in this fashion.
11.2.3.3 Low Turbulence Scatter Range (Barrier Present/Octave Bands of Noise/
Source and Far Mícrophone at Ground Level).

The graph of Fig 11.8 shows the scatter obtained from Figs $9.2 .2 b-e$ and can be compared with Fig 11.6 which shows the turbulent scatter for unobsturcted propagation of octave noise. Again the scatter level firstly decreases with frequency to a minimum at 1 kHz to 2 kHz in a manner that is similar for all geometries. The rise in scatter at 4 kHz is greater than that of figs 11.6 and 11.7. With the exception of curve e, the high frequency scatter can be seen to increase with increasing far microphone distance, as also observed in Figs 11.6 and 11.7.

The indication is that the obsence of interference phenomon due to the geometry chosen in this case limits the scatter at low frequencies to that expected of noise.
11.2.3.4 Low Turbulence Scatter Range (Barrier Present/Pure Tones). The variation of scatter range with frequency and geometry is shown in fig 11.9. The scatter is predictably lower than for octave bands, with a noticeable
feature being the absence of the low frequency increase in scatter range. This indicates that where this increase has been seen in previous graphs (Figs 11.6 to 11.8) it was due entirely to the nature of the signal being octave bands of noise, the scatter being influenced by $1 / 2 \sqrt{B T}$. consideration.

Additionally it indicates that the effect of turbulence on sound is frequency dependant with 250 Hz up to about 1 kHz being relatively unaffected. There is support for this in the literature (41).
11.2.3.5 Low Turbulence Scatter Range (Barrier Present/Random Pure Tones) The data here is presented in Fig 11.10. Although this graph initially appears not to exhibit the previously noted structures, a closer inspection does reveal understandable behaviour.

With the exception of the 500 Hz points for curves a and c , and the 2 kHz point for curve b, the underlying trend is again one of increased scatter at high frequency with the base line scatter of about 4d日 being comparable with that obtained with octave bands of noise (compare with Fig 11.7, for instance). However, if the asymptotic level difference between near and far microphones varies within a particular octave band this will add to the base line scatter. In the case of the exceptional points noted above a change in asymptotic level difference of about 6dB is implied which, it isargued, is not unreasonabler
11.2.4 Résumé of the Observations Discussed in 11.2

The above findings may be drawn together as follows:
(i) The scatter in level difference between near and far microphones reduces as turbulence number increases.

It is not unreasonalbe that turbulence induced effects should be absent at large $T N$ values if it is assumed that high turbulence infers a predominance of turbulent eddies of a size that is small compared with the wavelength of the 199
sound. This idea is supported in the paper by-Piercy (1) which states that the inherent instability of turbulent eddies will cause them to continuously break down into smaller eddies until a minimum diameter of $\sim 1 \mathrm{~mm}$ is reached when the eddy disappears due to viscous losses. This size can be compared with a wavelength of 86 mm for a 4 kHz tone in air at $20^{\circ} \mathrm{C}$ ($\mathrm{c}=344 \mathrm{~ms}^{-1}$)
(ii) The low turbulence limit level difference scatter is a complicated function of wavelength and geometry. It is probably too difficult to suggest a model, at this stage, to fully account for the observed effects. It has been observed in results not presented here, houwever, that large scatter in level difference corresponds to large scatters in both the near and far received levels and that small scatter in level difference is a result of small scatter in near far-received levela. Intermediate ranges of scatter could be a result of either a low scatter at the near receiver with large scatter at the far microphone, or vice versa. Examples of this can be.seen in the low scatter at 1 kHz in Fig 9.1 a (unobstructed propagation of octave bands) and in the large scatter at 4 kHz in Fig 9.3b (pure tone propagated over a barrier). For the latter case a near scatter. range of 9dB coupled with a far scatter range of 15 dB produces a level difference scatter of about 9dB.

The low scatter at 1 kHz in Fig 9.1 a is worthy of closer inspection. It seems circumstancial that this particular geometry and frequency should result in a small degree of scatter of the instantaneous near microphone levels. That the same particular conditions should also apply at the far microphone may be linked,in a manner that is as yet unclear, to the fact that the path length j difference between direct and ground-reflected rays changes from 0.76 m for the near microphone to $0.4 m$ for the far microphone, giving an additional path length difference for the near microphone over that for the far microphone of about the wavelength of a 1 kHz tone $(\lambda=0.34 \mathrm{~m})$.

In section 11.2.3.4. it was proposed that only the high frequency scatter was a consequence of turbulence. There appears to be two possible explanations for this. Firstly, turbulence scatters energy out of the acoustical beam as it propagates through the atmosphere. This is evidenced by the general increase in low turbulence limit scatter as far microphone distance increases and is supported by the findings of Brown and Clifford (38) and Daigle, et al (40) The effect that this scatter has on amplitude and phase of the acoustical beam can give rise to widely fluctuating levels at points where interference maxima or minima between direct and reflected pure tone sound occur since such conditions are highly phase dependant.

It is argued that for geometries were the far microphone is closest to the speaker (e.9. 9.1a, 9.2.1b, etc.) that the propagation path is too short to account for all the observed scatter. A second mechanism may be one that modifies the ground reflection conditions in a way that may in some cases decrease the correlation between direct and reflected waves and in other cases may cause little or no decrease in correlation.

Since it is stated elsewhere that the reflection coefficient of grassland is influenced by the pockets of air trapped within the grass and the top layer of soil that is broken up by the grass, (Ref (1), page 1408) it is possible that the wind turbulence affects these pockets causing theproposed change in reflection conditions.
(iii)There is no evidence to suggest that the observed effects of wind turbulence are significantly modified by the barrier chosen in this work.

11.2.5 Model Scale Results

11.2.5.1 Asymptotic Level Difference

Fig 11.12 summarises the results of Figs $10.2 a-d$ which show the lavel differnce at tua receivers when octave bands of noise propagate over a thin
barrier.
With the exception of curve d the level difference vs. frequency curve is approvimately the seme for all geometries and exhitit a decrease of about 1 dB from 250 Hz to 500 Hz and an increase of about 4 dB as frequency rises to 4 kHz . Curve d also shows this trend with the exception of the 32 kHz (三 $=2 \mathrm{kHz}$ full scale) point. This may be due to interference between the direct sound and that reflected off the absorber placed behind the far microphone. Due to the timelimited source signal this will not be observed at the other geometries were the far microphone is closer to the speaker.

The data from Figs 10.3a - d is presented in Fig 11.13 which deals with pure tones propagated over the model barrier. This is directly equivalent to the full scale results shown in Fig 11.4.

All curves exhibit a maximum at 32 kHz ($\equiv 2 \mathrm{kHz}$ full scale) as in the full scale equivalent. In section 11.2 it was proposed that this effect may be indicative of a cancellation of diffracted and transmitted sound since the critical frequency for the full scale barrier is about 2 kHz . However, it seems unlikely that the model barrier, a thin aluminuim strip, should exhibit similar transmission irregularities at a transposed frequency. It is more likely that it is due instead to diffraction and interference effect since the relative linear of wavelength and geometry have been preserved.
11.2.5.2 Low Turbulence Limit of Level Difference Scatter. .

From Figs 10.2a - d it can be seen that for all geometries used with octave bands of noise propagated over the barrier the variation in the level difference between near and far receivers falls from about 3dB at 250 Hz equivalent to about 1 dB for the remaining octave bands.

The implication is that the only scatter observed. is due to the statistical nature of the acoustical signal and that the turbulence produced by the wind
chest was not of the same nature as the turbulence in the atmosphere. It was found experimentally, in results not presented here, that outdoors low turbulent intensity occurs at low wind speed, implying that the fluctuating component of the wind is also low since turbulent intensity $=\mathrm{du} / \mathrm{u}$. However, a low turbulence was produced by the wind chest at high wind speeds, from which it is assumed that the air flow is more laminar at high flow rates. Without the use of surface obstructions to induce a more turbulent air flow, the wind chest does not produce model winds representative of typical outdoor situations.

For pure tones propagated over the barrier and a far microphone close to the barrier. in its shadow (see Figs 10.3a - d and the summary in Fig 11.13) the scatter does become significant for all four geometries at 2 kHz to 4 kHz . One possible explanation is that a small degree of turbulence is produced in the wake of the barrier which could reasonably expected to affect the sound diffracted over the barrier. At low frequencies where there is little diffracted sound the effect is minimal.

There is no evidence to suggest that a similar phenomonon occurs with the full scale outdoor situation.

Fig 11.1 Level Difference*vs. Frequency for octave bands of noise propagated over unobstucted grassland. Geometry 9.1a (X), $\mathrm{b}(\mathrm{\Delta}), \mathrm{c}(\mathrm{\bullet}), \mathrm{d}(\mathrm{m}), \mathrm{\theta}(\mathrm{O})$.

* asymptotic (high turbulence) limit

204

Fig 11.2. Level. Difference * vs. Frequency for octave bands of noise propagated over a barrier. Geometry 9.2.1 b(Δ) , $c(0), d(\pi), ~ a(0)$. *asymptotic (high turbulence) limit

Fig 11.3 Lsvel Difference * vs. Frequency for octave band of noise propagated over a barrier. Geometry 9.2.2 $b(\Delta), c(e), d(\Delta), e(0)$. * asymptotic . $($ high turbulence) limit

Fig 11.4 Level Difference *vs. Frequency for over a barrier.
Geometry $9.3 \mathrm{a}(\mathrm{X}), \mathrm{b}(\Delta), \mathrm{c}(\theta), \mathrm{d}(\mathrm{t})$.

* asymptotic (high turbulence) limit
pure tones propagated

Fig 11.5 Level Difference *us. Frequency for random pure tones propagated over a barrier. Geometry $9.4 a(x), b(\Delta), c(\bullet), d(\Xi)$. * asymptatic (high turbulence) limit

Fig 1,1.6 Low turbulance scatter range vs. Frequency for octave noise bands propagated over unobstructed grassland: Geametry $9.1 \mathrm{a}(\mathrm{X}), \mathrm{b}(\mathrm{\Delta}), \mathrm{c}(\mathrm{e}), \mathrm{d}(\mathrm{B}), \mathrm{e}(0)$.

Fig 11.7 Low turbulance scatter range vs. Frequency for octave bands of noise propagated over a barrier. Geometry 9.2.1 $b(\Delta), c(0), d(\boldsymbol{A}), \quad \theta(0)$.

Fig 11.8 Low turbulence scatter range vs. Frequency for octave bands of noise propagated over a barriar. Geometry $9.2 .2 b(\Delta), c(0), d(E), e(0)$.

Fig 11.9 Low turbulence scatter range vs.- Frequency for pure tones propagated over a barriar. Geometry $9.3 \mathrm{a}(\mathrm{X}), \mathrm{b}(\Delta), \mathrm{c}(0), d(\mathrm{~m})$.

Fig 11.11 Model Scale: Level Difference* vs. FuIl Scale Equivalent Frequency for octave bands of noise propagated over a barrier.
Geometry $10.2 a(X), b(\Delta), c(0), d(\square)$.
*asymptotic (high turbulance) limit

Fig 11.12 Model Scale: Level Difference* vs. Full scale equivalent Frequency for pure tones propagated over a barrier. Geometry $10.3 \mathrm{a}(\mathrm{X}), \mathrm{B}(\Delta), \mathrm{C}(\bullet), \mathrm{d}(\mathrm{B})$ 。

Fig 11.13 Model Scale: Low Turbulence Scatter Range vs. Full scale equivalent frequency for pure tones over a barrier. Geometry $10.3 \mathrm{a}(\mathrm{X}), \mathrm{b}(\Delta), \mathrm{c}(\bullet), \mathrm{d}(\mathrm{D})$.

Conclusions and Suggestions for Further Work

The conclusions of this thesis can be summarised as follows:
(i) Wind turbulence gives rise to a fluctuation in the instantaneous
level difference between two receivers. The fluctuation reduces as turbulence increases.
(ii) The low turbulence limit of level difference is a complicated function of wavelength and geometry. It is probably too difficult to suggest a model to account for this.
(iii)There is no evidence to suggest that the effects of wind turbulence on received level are significantly modified by the presence of a barrier of the type used in this work.

The work of this thesis has highlighted the need for further investigation of the effect of turbulence on acoustic propagation, both for unobstructed atmospheric propagation and for propagation in the presence of a noise barrier.

The present study could be developed in the following ways:

12.1 Source/Receiver Geometries

It has been shown that the prediction of received sound pressure level at a point above open grassland is a complicated matter and the analysis of level difference between two microphones both above grassland is further complicated by the multiplicity of ray paths involved. It would, therefore, be beneficial to use one microphone only, the output of which could then be referenced to that expected from a standard acoustical condition such as for source and receiver above a perfectly reflective or a perfectly absorbent surface.

The loudspeaker output would need to be characterised for the appropriate range of frequency, propagation distance and input power for the chosen reference condition, since the horn loudspeaker is neither a point source nor could be guaranteed to give perfectly plane waves.

A second alternative would be to retain the use of a reference and a sample microphone but to perform the experiments above a perfectly hard surface such as ashphalt or concrete.

12.2 Development of the Anemometry

The results obtained in this work assumed that the output of one judiciously placed anemometer was representative of the wind turbulence conditions over the whole propagation path. It may prove to be more comprehensive to use an array of anemometers placed at various points on the propagation path and, possibly, at various heights (i.e. to yield the vertical turbulence profile above the ground). Clearly each additional anemometer requires a separater measurement channel, although time multiplexing units are readily available, and the amount of stored data would increase unless experimentation should indicate a suitable single descriptor to represent the combined outputs.

A further development may employ the "post trigger" facility of the DL901 event recorder in order to capture anemometer output before, during and immediately after the acoustical event.

With the recent advent of sophisticated signal processing instumentation it is now feasible to analyse anemometer output in the frequency domain in order to determine the turbulence spectrum and,therefore, allow a meaningful comparison with the results of ather workers (40,41). This may invlove the continued use of the Nagra tape recorder if the relevant instumentation is unable to work from the mobile laboratory.

12.3 Temperature Turbulence

This variable was excluded from consideration in this thesis, the emphasis being on wind turbulence. However, if a thermometric system of sufficiently short time constant is used its output could be treated in a similar manner to that of the anemometer to yield a more complete knouledge of atmospheric turbulence. The comments of 12.2 would also apply to the spatial sampling of temperature turbulence.

12.4 The Use of an Impulse Sound Source

A high energy, short duration impulse contains energy over a broad band of frequencies . An impulse sound source, such as a starting pistol, could be used in outdoor experiments to give the advantage of an increased throughput of data, especially if a multi-track tape recorder such as the Nagra IVSJ is used to record microphone responses for subsequent analysis in the laboratory.

The recorded impulses could then be studied in the time domain to identify the energy arriving directly from the source or from other reflective paths. This would allow the meteorological effects on sound following these various paths to be studied separately and so isolate the complication of a finite impedance ground plane.

In the model scale the impulse source may be conveniently provided by a spark produced by the discharge in air of a high potential which may be obtained from a car ignition coil or a charged high voltage capacitor (42).

12.5 Air Turbulence in the Model

No attempt was made in the work reported here to modify the turbulent structure of the air flow produced by the wind chest. However, it may be possible to represent typical outdoor day-to-day variations in wind turbulence by the use of various-shaped small scale obstuctions placed on the surface of the model table upwind of the measurement site.

12.6 Computer Prediction of Observed Effects

The review papers by Piercy, et al on noise propagation in the atmosphere (i) and by Kurze on noise reduction by barriers (12), amongst others, indicated that there are a number of algorithms designed to predict sound levels in situations relatable to some extent to the experimental situations of this work. It may be insturctive to implement some of these techniques on the mainframe computer. A model to explain the observed effects discussed in Chapter 11 may them be formulated by development and manipulation of particularly suitable algorithms to fit the data obtained.

REFERENCES

(1) J.E.Piercy, T.F.W. Embleton and L.C. Sutherland, "Review of Noise. Propagation in the Atmosphere", J.Acoust. Soc. An. 61(6), 1403-1418 (1977).
(2) T.F.W. Emblaton, J.E. Piercy and N.Olsen, "Outdoor Propagation over Ground of Finite Impedance", J. Acoust. Soc. Am. 59, 267-277 (1976).
(3) K.V.Ingard, "On the Reflection of a Spherical Wave from an Infinite Plane", J. Acoust. Soc. Am. 23, 329-335 (1951).
(4) K.B.Rasmussen, "Sound Propagation over Grass Covered Ground", J. Sound Vib. 28(2), 247-255 (1981)..
(5) M.E.Delany and E.N. Bazley, "Monopole Radiation in the Presence of an Absorbing Plane", J. Sound Vib. 13, 269-279, (1970).
(6) C.I. Chessel, "Propagation of Noise along a Finite Impedance Boundary", J. Acoust. Soc. A. 62, 825-836. (1977).
(7) S.I. Thomasson, "Sound Propagation above a layer with a Large Refractive Index", J. 'Acoust. Soc. Am. 61, 659-674, (1977).
(8) K. Attanborough, "Predicted Ground Effect for Highway Noise", J.Sound Vib. 81(3), 413-424 (1982).
(9) S.Simpson and D.C. Hathersall, "Sound Propagation over Surfaces Consisting of Hard and Soft Areas", Proc. Inst. Acoust. (Outdoor Sound Propagation), 5-8 (1981).
(10) S.N. Chandler-Wilde and D.C. Hathersall, "Diffraction at an Imhomogeneous Plane: The Boundary Integral Equation Method", Proc. Inst. Acoust. 6(4), 181-187 (1984).
(11) S.A. Petrusewicz and D.K. Longmore (Eds), "Noise and Vibration Control for Industrialists" (Elek Science, London, 1974), Chapter 5.
(12) V.J:Kurze, "Noise Reduction by Barriers", J. Acoust. Soc. Am., 55(3) 504-518 (1974).
(13) E. Skudrzyk, The Foundations of Acoustics, (Springer, New York, 1971), Chapter XXIV.
(14) J.B. Keller, "Geometrical Theory of Diffraction" J. Opt. Soc. Am., 52, 116-130 (1962).
(15) S. W. Redfearn, "Some Acoustical Source-Observer Problems", Phil. Mag. Ser. 7, No. 30, 223-236 (1940).
(16) Z. Makaewa, "Noise Reduction by Screens", Mem. Faculty of Eng. Kobe Univ. 11, 29-53 (1965).
(17) V.J. Kurze and G.A. Anderson, "Sound Attenuation by Barriers", Appl. Acoust. 4, 35-53 (1971).
(18) T.F.W. Embleton, "Line Integral Theory of Barrier Attenuation in the Presence of the Ground", J. Acoust. Soc. Am. 67(1) 42-45 (1980).
(19) T. Isei, T.F. W. Embleton and J.E. Piercy, "Noise Reduction by Barriers on Finite Impedance Graund", J. Acoust. Soc. Am., 46-58, 1980.
(20) W.C. Elmore and M.A. Heald, "Physics of Waves" (McGraw-Hill-Kogakusha, Tokyo, 1969).
(21) T.Kawai, K. Fujimoto and T. Itow, "Noise Propagation around a thin halp plane", Acustica, 38, 313-323 (1978).
(22) S-I. Thomassen, "Diffraction by a screen above an Impedance Boundary", J. Acoust. Soc. Am. 63(6), 1768-1781 (1978).
(23) M.E. Delany and E.N. Bazley, "Acoustical Properties of Fibrous Absorbent Materials", Appl. Acoust. 3, 105-116 (1970).
(24) Z. Makaewa, "Noise Reduction by Screens", Appl. Acoust. 1, 157-173 (1968).
(25) A.D. Pierce, "Diffraction of Sound Around Corners and over Wide Barriers", J. Acoust. Soc. Am., 55(5), 941-955 (1974).
(26) H. G. Jonassen, "Diffraction by Wedges of Finite Acoustic Impedance with Application to Depressed Roads", J. Sound Vib. 25, 577-585 (1972).
(27) E.S. Ivey and G.A. Russell, "Acoustical Scale Model Study of the Attenuation of Sound by Wide Barriers", 62(3) 601-606 (1977).
(28) J.E. Masiak, "Model Studies of Acoustical Barriers", Master Thesis MIT, Cambridge, Mass., 1973.
(29) J.L. Lumley and H.A. Panofsky, "The Structure of Atmospheric Turbulenca", (Wiley, New York, 1964).
(30) V. Ingard, "A Review of the Influence of Meteorological Conditions on Sound Propagation", J. Acoust. Soc. Am., 25, 405 (1953).
(31) A.R. Kriebel, "Refraction and Attenuation of Sound by Wind and Thermal Profiles over a Ground Plane", J. Acoust. Soc. Am., 51(1), 19-23 (1971).
(32) R. DeJong and E. Stusnick, "Scale Model Studies of the effects of Wind on Acoustic Barrier Performance." Noise Control Engineering 6(3) (1977).
(33) W.E. Scholes, A.C. Salvidge and J.W. Sargent, "Field Performance of a Noise Barrier", J. Sound Vib. 16, 627-642 (1971).
(34) W.E. Scholes, A.C. Salvidge and J.W.Sargent, "Barriers and Traffic Noise Peaks", Appl. Acoust. 5, 205-222 (1972).
(35) P.H. Parkin and W.E. Scholes, "The Horizontal Propagation of Sound from a Jet Engine Close to the Ground at Hatfield", J. Sound Vib. 2, 353-374 (1965).
(36) V.I. Tatarski, "The Effects of the Turbulent Atmosphere on Wave Propagation", (Ketor, Jerusalem, 1971).
(37) C.G. Little, "Acoustic Methods for the Remate Probing of the Lower Atmosphere", Proc. IEEE 57. 571-578, (1969).
(38) E.H. Brown and S.F. Clifford, "On the Attenuation of Sound by Turbulence," J. Acoust. Soc. Am., 60, 788-794 (1976).
(39) V. Ingard and G.C. Malling, Jr., "On the Effect of Atmospheric Turbulence on Sound Propagated over Ground", J. Acoust. Soc. Am. 35, 1056-1058 (1963).
(40) G.A. Daigle, J.E. Piercy and T.F.W. Emblaton, "Effect of Atmospheric Turbulence on the Interference of Ground Waves near a Hard Boundary" J. Acoust. Soc. Am., 64, 622-630 (1978).
(41) G.A. Daigle, "Diffraction of Sound by a Noise Barrier in the Presence of Atmospheric Turbulence", J. Acoust. Soc. Am., 71, 847-854 (1982).
(42) M.Barron, "The Feasibility of Objective Acoustic Testing in 1:50 Scale Models of Auditoria", Acoustics Letters, 1, 44-48, (1977).
(43) N.山 Heap, "Scale Modelling of Sound Propagation over Flat Unobstructed Absorbing Terrain".
(44) J.E. Piercy and T.F.W. Embleton, "Effect of Ground on Near-Horizontal Ground Propagation", Trans. Soc. Auto. Eng., Section I 83, 928-936 (1974).
(45) W.J. Weller, "Assembly Level Programming for Small Computers", (Heath, Massachusetts, 1975), Chapter 9.
(46) Course Notes, "Constant Temperature Anemometer", Hot Wire Anemometry, Cranfield Institute of Technology, 1980.
(47) E.N.Bazley, "Sound Absorption in Air at Frequencies up to 100 kHz ", NPL Acoustics Report AC 74 (1976)
(48) Ma. Gayford, "Acoustical Techniques and Transducers" (Macdonald and Evans, London, 1961).
(49) H.Davies, "Modelling Matarials for Acoustic Scale Models", MIT Dept., Mech. Eng. Report, (1974).
(50) D.J. Tritton, "Physical Fluid Dynamics", (Van Nostrand).
(51) Rothamstead Experimental Station "GENSTAT: A General Statistical Language", (REF, 1980)
(52) N. Hampshire, "The PET Revealed", (Nick Hampshire Publications, 1978)

ACKNOULEDGMENTS

Abstract

The author wishes to thank the Science and Engineering Research Council for the funding through a Research Studentship, of the work reported in this thesis, and Liverpool Polytechnic Physics Department for the use of equipment and facilities.

Appendix A. Control of Measurement Equipment

This appendix details the requirements for the control of the equipment used in data acquisition, how data is read into the PET and in what way the data is processed. Constructional details of specially made devices are also included here.

Each item is treated separately at first and an overall scheme discussed later.

Throughout this appendix reference is made to peripheral interface adaptors (PIA). These devices are discussed in Appendix B.

A. 1 The Sound Source

The control of individual components of the sound source (see section5.2) is detailed here.

A.1.2. The Band Pass Filter

This actually consists of a low pass and a high pass Kemo filter type VBF22, placed sequentially in the signal path. These devices can give a cut-off frequency in the range of 0.1 Hz to 100 KHz , which is either manually selectable, using front panel knobs, or computer selectable, using TTL gates accessed through a rear-panel connector.

Cut-off frequencies are specified in tens, units and the appropriate base ten exponent (from 10^{-1} to 10^{3}). The tens and units are in the form of

Binary Coded Decimal (BCD) words, whilst the multiplier is set by applying a logic law to one pin out of the choice of five.

The required cut-off frequencies are most officiently calculated using BASIC. Firstly the centre frequency is determined as double the previous centre frequency, originally set to 250 Hz , and then the lower and upper cut-off frequencies are calculated from:

$$
\begin{aligned}
f_{1} & =f_{c} \cdot 2^{-\frac{1}{2}} \\
\text { and } f_{u} & =f_{c} \cdot 2^{\frac{1}{2}}=2 f_{1} \\
\text { where } \quad f_{c} & =\text { centre frequency } \\
f_{1} & =\text { Lower cut-off frequency } \\
f_{u} & =\text { Upper cut-off frequency }
\end{aligned}
$$

The first two significant digits of these values are then found by repeated divisions by 10 until the number is less than 100.

Using the POKE instruction the BASIC interpreter of the PET places a specified decimal number in a memory cell in 8 bit hexidecimal form. However, it is required to produce two 4-bit BCD codes so the most significant digit of the decimal number is multiplied by sixteen then added to the second significant digit before being used in the POKE instruction.

The operation is illustrated here for the lower cut-off frequency corresponding to a centre frequency of 1 KHz .

$$
\begin{aligned}
& f_{c}=1000 \\
& f_{1}=1000 \times 2^{-\frac{1}{2}}=707.107 \\
& f_{1} / 10=70.7107
\end{aligned}
$$

Rounded integer of $\mathrm{f}_{1} / 10=71$
Required BCD codes are:

High order 0111
Low order 0001
Therefore the correct POKE instruction is
POKE memory, $7 \times 16+1$
where "memory" = the address of the register in an MCS 6535 peripheral interface adaptor, PIA (see Appendix B). The 16-bit binary word stored in the register will be 01110001.

The filter contral input ENTER STROBE should be low for the data to be input to the filter. An output, ACKNOWLEDGE RESPONSE, reflects the state of the ENTER STROBE.

Each filter has a four-bit address selected by switches at the rear of the filter. Since only two filters were used the awi.tches were set to all zero or all one and the address lines on each filter connected together. In this way only one line from the PIA was needed to address one filter or the other.

The PIA is configured so. that the data Part A outputs the units and tens whilst data Port B outputs the range multiplier and controls the strobe and address line:

PAD - PA3	Units
PA4 - PA7	Tens
PB \varnothing	ENTER STROBE
PB1 - PB5	Range Multiplier
PB6	Address
PB7	ACKNOWLEDGE RESPONSE

A.1.3. The Elactronic Gate

This integrated circuit, type AD7512, is capable of passing an analogue signal (i.e. one that may go above or below signal ground), but is switched using TTL levels of +5 volts or 0 volts. This makes it possible for a signal from the microcomputer to allow or inhibit the signal to the loudspeaker.

A.1.4 The Attenuator

The basis for this circuit was the Motorola electronic attenuator integrated circuit, type MC3340. It is possible to configure this device as an AC amplifier with gain controlled by an extemal resistor. Using integrated circuit analogue switches, different values of gain resistor can be incorporated into the circuit, therefore digital signals derived from the microcomputer can be used to control the attenuation of the noise signal. See: Section (5.2.3.). The eight analogue switches were controlled by the eight lines of a data port from a MCS 6532 PIA. The resistor to be included in the attenuatar circuit could then be chosen by applying a high level from the data port to the appropriate switch.

It was normal practice to pre-set the eight resistors in such a way that moving from one resistor to the adjacent one increased the attenuation of the analogue signal by a constant number of decibels, either one or two, depending on requirements. Therefore, to increase attenuation a logic 1 was stepped through the register from bit 0 to bit 7(i.e. a decimal value of 1 to 128).

Note that it is possible to have more than one data line high at a time, causing two parallel reistors to be included in the attenuator circuit. However, due to the non-linear fashion in which parallel resistors combine, coupled with the non-linear attenuation/resistor characteristic of the attenuator circuit,this feature was not used.

A. 2 The Digital Event Recorder

A.2.1 The Kemo Analogue Memoryy

This device is designed to digitise an electronic analogue signal over a set time and store the resulting eight bit binary numbers in a semiconductor memory consisting of a fixed number of elements. This data can then be repeatedly remconverted to an analogue signal allowing for inspection of transient signals on an oscilloscope, $X-Y$ plotter or . chart-recorder. It is also possible to obtain the digital data in a bitparallel, byte-serial mode.

The clock rate of the analogue to digital converter (ADC) is provided by either an internal clock, variable in fixed steps, or by an external clock. The initiation of the digitisation process can be triggered
internally when the input signal exceeds a pre-set level, or by an external TTL pulse. The control signals available are listed below:

SIGNAL	INPUT OR OUTPUT	DESCRIPTION
RECORD	IN or OUT	Normally high. A low arms the device ready for data capture.
PLAYBACK	IN ar OUT	Normally high. A low places the device in a mode to display the stored data on CRO OR X-Y plotter etc.
EXT TRIGGER	IN	If external trigger has been selected on the front panel a transition on this line will initiate the recording of data. The effective transition (positive or negative) is also front panel selectable.
EXT CLOCK	IN	If external clock has been selected, then the rate of pulses on this line dictates the analogue to digital conversion rate in record or the display rate in playback.
STATUS	OUT	High during record and low during playback.
DATA VALID	OUT	This line gives a low pulse after a byte of data has been placed on the data bus.
TRIGGER	OUT	Low when armed. High after a trigger.
$\left.\begin{array}{ll} \text { SEL } & 1 \\ \text { SEL } & 2 \end{array}\right)$	IN	A low determines which channel is output to the data bus.
PEN LIFT	OUT	High for duration of output sweep.
REFERENCE IN) REFERENCE OUT)	-	A single bit channel which passes through the 4 K memory.

An MCS 6522 was used to interface the Analogue memory to the microcomputer, primarily for the ability to produce an-automatic low pulse on the CA2 control line for one machine cycle after reading or writing the Input Register A. The CLOCK on the Analogue Memory was connected to the CA2 line and the data port to the peripheral Register A. Peripheral Register B was then used to manage the variaus control lines and to allow for override of the independent triggering modification (Section A.2.1), which will be necessary when setting the auto-attenuator (Section 5.3.1). Because the duration of the CA2 pulse was only one machine cycle ($1 \mu s$.$) a pulse$ stretcher circuit was added to the auxiliafy board. The clock pulses were taken in through a spare pin on the rear 37-way connector and into the auxiliary board. It then formed the input to a 74121 integrated circuit, used as an astable multivibrator. Because of the shortage of spare positions on the auxiliary board edge connector, the output of the astable was connected to the vacant fourth channel output. This meant that the modified clock pulses were brought out to a front panel BNC connector. This was linked to the front panel external clock input.

It was essential that on recording data the clock rate should be as high as possible in order to comply with sampling theorem, i.e. that the Nyquist rate should be achieved for the maximum frequency in order to avoid signal aliasing. A programme loop is required to give clock pulses until the memory is full. If a software counter is updated on each pass through the loop, the counter can be repeatedly checked and a "jump out of loop" instruction given when 4096 pulses have been delivered. However, this technique has the problem that the counter must cross (1 page $=256$ memory cells) producing a long pulse at each page boundary, in addition to which, updating and interrogating the
counter reduces the clock frequency. The following alternative method was devised to overcome these problems.

A high to low transition on the status control line indicates the completion of a data capture. This was detected by the MCS 6522, through its CA1 line which then interrupts the microprocessor. The clock pulses can then be delivered by an uncontrolled loop which is halted by this interrupt, Im -this way a clock period of $7 \mu \mathrm{~s}$ (equivalent to 143 kHz) was attained. See the flowchart in Fig. A. 1.

Independent Triggering of the Analogue Memory Channels

After placing the analogue memory in the RECORD mode the capture of data in each channel is initiated by an externally derived trigger pulse or by the input exceeding an operator-defined voltage level. In the original design a trigger level on either channel causes both to start recording data. Because of the time doscrepancy between the acoustical signal arriving at the two microphones in a typical geometry used in this work the channel associated with the far microphone would be part $f i l l e d$ with background information. Independent triggering was arranged by adding the circuit of Fig. A. 3 to the near microphone channel. It was located in the auxil iary board position of the equipment.

The output of the existing trigger level comparator is connected to a spare position on the rear edge connector. (a22). It is then used to reset a counter which then counts 4096 clock pulses before applying a logic low to the clock control circuitry of the near channel. This is done by wiring to the switch at the top left side of the front panel at the side labelled "Hold on Playback". The channel will thea be placed in PLAYBACK mode.

Fig. A. 1 Servicing of Kema Analogue Memary

Note that the switch must be kept in its central position to avoid the outputs of two logic gates being connected together.

The REFERENCE IN input was used to over-ride the action of this modification, such as required in the setting up of the auto-attenuator.

A.2.2 The Datalab DL901 Transient Event Recorder

The output from the hot wire anemometer was captured in a Datalab DL901 transiant event recorder in coincidence with the capture of the acoustic data in the Analogue Memory. In order to achieve this the DL901 was armed prior to applying the external trigger from the microcomputer which was also responsible for initiating the sound burst. The captured data could then be transferred to the microcomputer in a separate subroutine. See flowchart in Fig. A.4.

Digital data is taken from the DL901 using the handshaking control lines available at a 24 way rear mounted connector, which are indicated in Fig. A.5. below.

The PIA used for this was a MCS6535, using port A for the data bus and port B for the control signals.

Because the event recorder has a dynamic RAM the time between consecutive ward requests must be less than 1 ms or the refresh cycle will cause a time-out of about a second. To overcome the possibility of word requests greater than 1 ms the data was transferred in a block of 1024 bytes, rather than requesting and processing the data a byte at a time. The top

DATA TRANSFER SUBROUTINE

Fig. A. 4 Servicing of Datalab DL901 Event Recorder.

DL 901 Signal	Input or Output	PIA Connection	Remarks
Word Request	In	PBø	Requests new data to be put on the bus.
Data Ready	Out	P日1	Indicates valid data on the bus.
Cycle	Out	PB2	Indicates recording in progress.
Digital Output Flag	Out	PB3	Indicates digital output mode in progress.
Digital Trigger	In	PB4	Triggers the recording made if DL901 is armed.
Digital Output enable	In	PB5	Allows data to be output to data bus.
Digital Output request	In	PB6	After enable, this initiates output.
Digital Arm	In	PB7	Arms DL901 ready for triggering.

Fig. A. 5 Signals for Datalab DL901 Event Recorder.

1 K of the microcomputer memory was used to house the captured data and was protected against encroachment from the operating system be re-defining the top-of-memory vectors.

A. 3 The Uind Direction Indicator

The description of this device appears in Section 5.6. Using an MCS 6522 PIA the reference pulse is detacted on the CB2 control line after which the pulses from the replective optodevice are allowed to decrease a preset value stored in timer 2 of the PIA through the PBG line. The pulses are counted until the coincidence pulse is detected on the CB1 control line. The value in timer 2 is then subtracted from the pre-set value, the result being halp the angular displacement in degrees from the raference point to the wind direction. (The pulses appear every 2°). This value is stored, but doubled on recall in the calculation programme.

Fig. A. 6 Wind Direction Sensor Flowchart.

A.A The Electronic Thermometer

As for the wind direction sensor, an MCS 6522 in a pulse counting mode was employed to record the frequency of the output of the thermometer. Pulses were counted for one second, the duration of which was timed by counting 60 (i.e. sixtieths of a second) "jiffies" on the microcomputer's timer.

Fig. A. 7 Electronic Thermometer Flowchart.
A. 5 Microcomputer Control of the PIA's

The PIA's were incorporated into the PET system by using the Memory Expansion Port, which makes available the address and data bus and the various control lines used by the microprocessor.

As with the pIA's already used by the microcomputer, the additional ones were incorporated into the memory map in order to appear as RAM to the microprocessor. A convenient area was that reserved for expansion (See Fig. 5.9), although certain modifications to the microcomputer's logic circuitry were necessary in order to achieve this: Data is transferred between RAM and the microprocessor through tri-state buffers. When RDM is addressed, logic circuitry holds these buffers in a ploating state, allowing data to be read directly from the addressed memory cell. The extra logic circuitry was needed to open up a block of expansion ROM in order to provide bi-directional communications for PIA's. Block 9 (i.e. memory locations 9000_{16} to $9 F F F_{16}$) was used, leaving blocks \dot{A} and B for expansion ROM to allow for the use of commercial ROM chips, such as Kingston Computer's NETKIT which was required to communicate with the DEC 20 mainframe as discussed in Section 12.1.2.

Addressing the PIA's

On connecting the data part of the PIA to the system data bus, two-way communications between the various internal registers and central processor unit (CPU) are possible only if the required register is correctly addressed. Depending on the type to be used (in this project either the MCS 6535 or MCS 6522) the PIA has two or three chip select (CS) lines, to which must be applied the specified logic high or low before the individual registers
internal to the PIA are addressed using register select (RS) lines.

Within the Commodore system the top four of the sixteen address lines are connected to the inputs of a so-called "1-out-of-16" multiplexer integrated circuit type SN74150. Only one of the sixteen outputs on the device will go low, a different one for each of the 16 possible combinations of input signals. These outputs then form the "block select lines" used in selecting various memory circuits, the low output indicating in which 4 K block the addressed memory resides. They are available in a buffered form on the memory expansion port. Because the additional PIA's were to be located in block 9, then signal called "BSg" was connected to one of the chip select lines on each PIA added. This circuitry was duplicated externally using the next four most significant address lines as inputs. The low output of the demultiplexer indicates in which page within a block the addressed memory resides. Connecting one demultiplexer output to the spare chip select line, up to sixteen additional PIA's could be supported within the memory block 9, leaving the eight least significant address lines to select individual registers. It should be noted that, although the MCS6535 requires all of the eight least significant lines, the MCS 6522 needs only four and so this system can be wasteful of memory capacity. However, once block 9 has been committed to input/output facilities it can not easily be partly used for anything else, and sixteen PIA's were more than sufficient for the work reported here.

Nine interface adaptors were added to the PET system and housed in a 19" rack modula connected to the Memory Expnasion Port by overall screaned multicore cable. Each PIA was housed on a printed circuit board which slotted into the rack and engaged with a back plane via its edge connectors.

One of these boards also contained the "page select" demultiplexer circuit and so had to be in place in the rack at all times. That board also contained the Reset circuit shown in Appendix B, Fig. B.1.

Appendix B Microcomputer control of the PIA's

Two types of interface adapter are used in the measurement system reported in this thesis: the MCS 6522 and MCS 6532. These are both in the same family of support chips for the MCS 6502 which is the microprocessor used in the PET. The reader is referred to data sheets published by MOS Technology Inc., for details of DC and timing characteristics. for these devices. In addition interface adapters,including the MCS 6522, are discussed in more detail in the "PET Revealed"(52).

B. 1 The MCS 6522

The structure of this device can be broken doun into three main parts: a processor interface, a peripheral interface and a series of internal registers controlling some inbuilt features of this chip.
B.1.1. The Processor Interface.

This consists of an eight bit bi-directional data bus, some control lines and addressing lines. In general the data bus and control lines are connected directly to the corresponding system lines available at the Memory Expansion Port. They are summarised below.

DBO-D日7 The bi-directional data bus. The direction of data flow is controlled by the R/W line.

R/W Read/Write line. If this is low data will be transfarred into the addressed register (Write operation), or if it is high data will be transferred out of the MCS 6522 (Read operation).
$\overline{I R Q}$ Interrupt Request. This will go low if one of several events occur, (see later), signalling to the microprocessor that the MCS 6522 needs service.

Reset. This clears all internal registers to zero, putting peripheral interface lines in the input state. A reset circuit was added to the PET system, see Fig. B.1, as a means of resetting the computer without the need to power down. Phase two clock. Data transfers take place when the phase two clock is high. It also forms a time base for the chips internal timers and shift registers, etc. (see later).

The chip is addressed by means of two chip select lines (CS1, $\overline{\operatorname{CS2}}$) with four register select lines (RSpl-RS3) to address one of the sixteen internal registers. Addressing of the PIA's is discussed in Appendix A, Section A.G.

日.1.2 The Peripheral Interface

This contains two eight bit bi-directional data ports (PAO-PA7 and PBO-PB7), each line being configured as an input or output under the control of data direction registers (DDRA and DDRB). Each line represents one TTL load in the input mode or will drive one TTL load in the output mode, although the port B lines will also drive a Darlington transistor switch.

Each port has two control lines CA1, CA2 and CB1, CB2 which act as interrupt inputs of handshaking outputs. Port A lines can handshake data on both a read or write operation and the Port B lines can handshake data in a write
operation only.

B.1.3 In-built Features

The special features of this chip include two internal timers, a shift register and two interrupt control registers. The facilities are under the control of the Auxiliary Control Register (ACR) and the Peripheral Control Register (PCR).
(a) The Serial Register

It is possible to configure the shift register (SR) to accept input data or to output its contents. Data movement is clocked under the control of Timer 2, at system clock rate or by external pulses. The shift register mode is controlled by bits 2 to 4 of the auxiliary control register. (b) Timer 1

Timer 1 has two eight bit latches and a 16 bit counter, the latches being used to store data to be loaded into the counter which then decrements at system clock rate. Upon reaching zero an interrupt flag may be set and the timer will then disable further interrupts (one-shot mode) or will transfer the contents of the latches into the counter and will continue to decrement. In addition the timer can be instructed to invert the output on P日7. The mode of Timer 1 is controlled by lines 6 and 7 of the Auxiliary Control Register.
(c) Timer 2

Under the contral of bit 5 of ACR, Timer 2 can act in the "one-shot mode" as Timer 1 or can count pulses applied to PB6. In each case an interrupt will occur on reaching zero.
(d) Interrupt Control

There are six events capable of causing an interrupt to the processor. Should one of these events occur a bit is set in the interrupt flag register (IFR)

Fig. B. 1 System RESET circuit.

However, the IRQ line is not pulled low unless the corresponding bit in the interrupt enable register (IER) has been previously set (under programme control).

The possible interrupt events and the bit in the IFR are:

IFR』 Active transition on CA2
IfR1 " " " CA1

IFR2 Complation of eight shifts in the shift register.
IFR3 Active transition on CB2
IFR4 " " n CB1
IFR5 Time-out of Timer 2
IfRG " " Timer 1
IFR7 IRQ. Set if an interrupt event occurs and the corresponding Interrupt Enable bit is set.

An active transition on the control lines defined by the Peripheral Control Register.

B. 2 The MCS 6532

This chip has processor and peripheral interfaces similar to those described for the MCS 6522. It does not have the in built facilities of that chip but has instead 128 bytes of RAM. In order to address the two peripheral ports, their data direction registers and the RAM there are eight register select lines.

PAGE

NUMBERING

AS ORIGINAL

The output voltage from the anemometer is related to the fluid velocity across the hot wire probe according to King's Law:

$$
\begin{gathered}
v^{2}=v_{0}^{2}+B U^{n} \\
\log \left(v^{2}-v_{0}^{2}\right)=\log B+n \log u
\end{gathered}
$$

Where V_{0} is the "no-flow" voltage and B and n are constants for a particular probe. Each probe used was calibrated by plotting $V^{2}-V_{0}^{2}$ against U on logarithmic axes, giving a slope of n and an ordinate intercept of log B. The source of variable air flow was a standard laboratory device consisting of a fan drawing air into a 0.2 m diameter cylinder, uniform for 4.5 m and then decreasing by 30% at the mouth of the tube to provide laminar flow. The hot-wire probe of the anemometer was centrally placed within 0.01 m of the probe, and connected to an inclined manometer, was used to determine the wind speed, U, whilst the anemometer output voltage. V was read from a digital voltmeter. A typical calibration appears in Fig C. 1.

dB Level	Wind Turb.	Wind Speed	Temp.	Wind DíI	dB Level	Wind Turb.	Uind Speed	Temp.	Wind Dir.
Diff.					_Diff				
0.2365	1.3398	2.6903	25.6152	134	$\begin{aligned} & 11.40 \mathrm{O} \\ & 12.40 \mathrm{O} \end{aligned}$	1.3575 2.3687	4.9480 5.1478	0.4192	192
1.8665	3.5226	4.5541	0.0288	54	12.4081 10.0454	2.3687 1.3821	5.9478 4.9804	26.1412	166
0.2135	2.0055	5.0715	25.7672	50	11.0862	2.6895	4.7874	7. 28.70	218
2.7033	1.2314	7.8954	25.8932	28	9.9019	2.6978	6.7274	0.0220	178
1.0629	4.1409	7.2091	26.1988	$\therefore 38$.		2.6978 1.9900	6.0857	? A .1076	194
2.0723	4.8310	5.0558	0.2908	- 38	250 ${ }_{11}^{12,1847} \times$	1.9900 9700	$4.507 ?$	0.6144	198
0.5872	4.9659	3.2977	1.0616	-. 72	0.1409		2.9780	19.5869	
-0.2211	1.5119	1.8418	0.9136	102	0.14040	4.930\%	2.9380	17.5468	224
4 K 0.6438	1.3558	1.5316	1.2856	108.	0.4866	4.9297	9.1696	19.5428	248 278
4 C 1.8938	5.5824	2.8652	1.4416	.1061	1.4345	1,5561.	4.7863	19.7852	278 276
2.0679	14.8644	1.9215	1.1368	166	1.8200	1.44te	4.8363 4.0905	19.5708 19.4684	276 264
1.7614	9.5383	1.9381	1.5808	168	0.5851	5.581\%.	2.8909	19.3248	264
0.8980	5.2240	5.2156	0.3140	168	1.3 .379	2.4974	5.5944	18.9452	
1.3407	3.1956	4.9511	26.0312	1681	0.2561	2.5053	5.5964 4.349 H	18.9452 18.8048	206 208
0.4823	18.2474	1.8519	25.8448	154	2.8338	$2.905{ }^{\circ}$	7.93 .71	18.8048 14.6188	292
1.2756	1.0801	4.9780	25.9040	186	1.3482	4.1431	9.7378	18.4 A 68	244
1.1319	1.4773	6.6469	26.1380	172	4K-1.5929	1.9124.	10.7669	18.8928	232
1.4707	12.5561 13.8172	3.1404	26.0612	168	i. 2.696?	6.7491°	5.1689	19.1720	278
1.0982	13.8172 10.720	4.8308 6.7767	26.1232	172	$\therefore \quad 0.9998$	4.2565°	h. 0050	19.2332	236
- 1.1660	12.794n	6.7762	$\frac{26.1672}{0.0296}$	178	$\cdots \quad 0.584 \mathrm{~h}$	3.1780	11.0482	19.3040	236 234
7.6511	14.9936	5.8606	25.9132	189	0.3584	7.1955	3.8750	19.3280	14
6.9741.	2.1333	7.6457	25.9204	170	0.8806	6.10414. 5.8479	3.7450 6.2757	19.6916 19.7984	296
6.7138	7.7200	5.7794	25.8236	156	0.8554	25.8479	6.2257	19.7984	324 34
6.2883	15.3062	4.7911	25.9304	244	0.8554	25.5672 10.5857	2.3461 2.2478	19.6356	34 50 50
\| 7.3447	4.1857	5.6132	25.9856	228	1.3044	4.2980	2.2478 6.9797	19.5412 19.7046	350"
7.0803	4.5054	8.1348	25.2312	222	0.0585	1.5537		19.4.932	304
7.0053	2.0343	7.6476	25.2732	160	5.5764	16.7070	3.7150	19.47.32	304 238
7.9346	9.0194	2.4979	25.5800	160	4.7621	5.8232	3.7524	19.6084 19.6154	238 262
7.0211	1.4767	1.8712	25.7016	160	5.7354	8.7711	5.6595	19.6156 19.6352	262 194
4.988?	1.2148	2.3850	25.8464	188	5.6521	5.1732	S. 0178	19.6352 19.9784	194 206
7.0956 6.5207	1.158h.	4.0842	25.6440	204	5.4014	2.7914	5,7428	20.3136	784
6.5207 $2 K^{6.2265}$	2.9916 -5.5214	5.6697 -6.3852	25.6080 25.2008	214	-5.6507	1.4013	5.8412	20.0044	246
2K6.9895	2.6316	7.3496	25.5684	$174 i$	5.9342	2.7042	7.3111	19.7136	258
7.4945	1.6520	3.7639	26.0520	-200	5.8602	4.4484	5.2887	19.4764	256
5.4738	2.8948	5.286	25.5192	2001	2K 6.4065	2.4650	7.9077	19.2848	266
6.2105	1.4868	6.3722	25,6900	204	5.4356	5.8557	7.8077	19.3640 14.2208	2 CO
7.4170	3.0558	5.4680	25.5580	208	4.6305	14.3560	6.6104	19.2308	254
R.5781	3.8517	4.7594	25.2048	210	5.5487	3.308	\%. 2.280	19.1112	260 258
$6.88{ }^{\text {a }}$	F.1119	9.3212	25.5940	210	5.4170	3.4513	11.3888	18.9912	278 270
7.4963	2.7342^{\prime}	6.5524	25.4724	186	4.8842	4.0687	7.5795	18.8524	276
7.3824	1.7772	6.6588	25.7200	172	5.5380	5.3165	¢. 9912	18.9420	284
7.1715	3.4754	6.6304	0.1588	194	5.8433	2.7512	6, 1364	19.1596	266
7.7643	1.0927	6.1053	0.0316	200	5.3183	1.5771	8.1788	18.9628	252
7.2277	10.2957	6.2089	0.2380	218	4.3n91	2 19n4	6.2930	18, 18.18	278
7.6355	3.0582	6.6720	0.1364	194	7.9825	1.9545	11.4607	18.8376	244
7.8270	3.3315 .	6.1787	0.0720	186	7.1983	11.1359	8.2607	19.2076	270
7.1669	3.0448	6.4902	0.3408	208	7.4434	1.9106	6.5980	19.5116	248
7.4469 8.2247	1.4390 2.5696	6.4090 4.1492	0.3008 0.2252	198	7.9230	2.8129	7.5469	19.7274	240°
8.2247 7.7365	1.6691	6.2691	0.2252	212	6.6911	2.1994	6.0028	19.6500	246
7.9494	1.1018	4.0695	0.1924	208	7.4997	9.17?1	5.1002	19.5888	234
6.9648	2.2150	5.2894	0.4024	208	6.7466 7.5318	4.1282	8.5869	19.3296	218
1 k 8.0926	0.9404	4.9943	25.8252	258	7.4502	9.7817	7.5188	19.0968	202
7.2777	1.8501	4.9572	25.5460	260	8.4502	9.0627	9.0445	19.0956	242
7.5028	1.4510	3.8391	25.9516	176	$11 \mathrm{~K} \quad 3.6567$	5.6610	8.4515	18.9700	252
7.0111	0.7952	5.0271	25.6228	208	$1 \mathrm{H} \quad 7.0522$	1.9647 4.2883	5.9557	19.3260	238 246
7.6451	0.4038	3.2625	0.0996	208	7.1319	4.2883 6.8446	5.4516	19.3404 19.3580	246 258
9. nal	1.7673	4. 2185	25.5684	210	! 6.6751	6.84461 5.9503	6.3755 6.0007	19.3580 19.4396	258 178
7.3121	$5.274{ }^{5}$	4.0319	25.7760	190	7.5584	3.6787	2.8721	19.2272	178
5.5528	1.4601	5.9558	25.6196	214	7.9651	3.2161	6.5080	19.3056	234.
8,9467	3.0816	5.7336	25.9020	212	7.6078	6.2904	8.6159	19.2832	242°
6.022A	3.5 .327	7.4521	0.1448	226	6.8666	5.7535	8.6518	18.9508	152.
6.7454	1.4898	5.0761	26.1492	222 +	7.1004	5.1101	9.1543	18.9900	102
7.7424	0.7852	4.6256 6.4769	25.6460 25.7784	$\begin{array}{r}234 \\ 254 \\ \hline\end{array}$	6.354.	9.4117	10.8805	18,99800	298.
4.2748	5.1314	6.4769 7.8428	25.7784 26.1464	254 262	2.2650	5.5322	4.6677	19.4560	100
6.1094 5.1160	0.9074 3.9286	7.8428 6.9568	26.1464 0.7748	262 266	5.9966	3.2093	7.2721	19.4568	332
6.0638	2.0586	10.9719	0.9648	264	- 5.1559	7.4577	6.0062	19.8396	346
2.9243	2.9096	9.5030	0.6020	248 :	6.0177	12.6497 8.5959	4.5387 9.3118	19.4797 19.3044	214
5006.6513	2.8297	5.1941	0.6728	214	3.4584	- 3009	9.3118	19.3044	104
5.5082	3.3142	3.9558	0.1484	206	5006.7709	5.2909	5.5007	19.1392	-204.
5.0048	2.3727	5.1778	25.9868	184	8.0497	2.4755	4.0095 2.6918	19.1368 $20.0 n 48$	264 .236
6.1534	4.0239	2.2868	25.6908	218	6.0497				4.236 ?
7.0916	5.4149	3.0128	25.3976	218	4.5893	2.3717	5.2053 5.9680	20.3592	208
5.2173	1.4064	6.3114	25.5484	208 :	7.3459	4.2375 1.6108	5.9680 5.6480	21.3960 22.3140	224 212
5.4744	1.8804	6.8129	25.2420	202	6.4946	1.76108 4.7093	5.6480 7.8069	?2.31464	228
5.1482	6.0281	4.1849	25.6160	178	7.8225	5.3900	3.8069 3.0286	22.3464	228
- 4.1426	\%.0974	7.9305	25.6308		6.9450	1.2018	3.0928	?1.8592	292 204
9.9747	T.7208.	6.6406	26.0500	246	5.7111	2.1511	5.3564	22.0074	222
12.9275	1.8217	6.2067	25.6524	206	7.6565	1.8114	6.5049	22.0984	320
17.1793	1.4308	6.1114	25.3980	184	5.2476	7.9351	A.8097	22.394?	322
15.7448	0.7069	4.9153	25.6544	178	5.1674	4.889.	9.8660	22.1724	226
12,0820	19.7373	2.9166	25.3576	164	4.7905	7.4382	4.3314	22.0396	238
${ }^{8.5036}$	2.2496	2.9656	25.5568	164	6.970日	R.19n3	5.7444	31.754.9	297
25015.2416	1.3614	2.9008 2.4015	25.2796	164	T1.013 ${ }^{\text {a }}$	$\cdots 8881$	5.5197	21.9552	352
13.9677	1.3585 1.8776	2.4015 3.0932	25.1612 25.7404	168 182	11.1310	7.43650	9.3342	?1.6798	236
12.2127 11.7176	1.8776 8.9124	3.0932 1.5985	25.7404 25.3668	182 186.	12.6305	4.716 K	5.1208	21.6948	138
11.7176 13.7691	8.9124 15.4315	1.5985 2.0773	25.3668 25.3992	186 180	17.1239 12.0471	3.5217	9.9249	21.6792	226
13.2794 14.279	1.5803	$4.892{ }^{\circ}$	25.8948	174	12.0471 16.4569	9.1075	9.1258	21.6656 :	246
10.7771	2.0684	5.3786	25.973/	198	12*カn¢	4.0100	6.4549	$21.83 \mathrm{n4}$	254
11.4080	1.3575	4.9480	0.4192	192				21.6080	

				Temp.	Wind Dir.
	Level	Turb.	Speed		
	Diff.				
	yosiss	ü.ügù ${ }^{\text {a }}$	25.3210	18.1436	234
	463116	9.8863	20.5897	18.2360	216.
	5.6188	0.0000	25.5216	17.9572	236
	5:1216	13.0330	23.4397	18.7044	250
	3:9879	0.0000	25.5216	17.8880	226
2K	4.0435	13.3733	17.7647	18.1364.	238
	5,2660	3.6006	23.4014	18.4056	2041
	S.9300	0.0000	25.5216	18.0852	256
	7.3001	$4 \cdot 1744$	23.6898	19.1652	$\frac{226}{}$
	6.7227	19.0139	16.1672	18.3180	296
	7.4117	8.3526	24.0750	18.0684	288
	7.2165	11.7298	11.6456	18.5552.	312;
	7.0821	10.5990°	15.5437	$18.1244{ }^{\text {. }}$	286
	6.7540	6.4009	21.6827	19.1120	262
	7.2862	23.2885	19.9660	18.2564	260
	8.8418	0.0000	25.5216	18.3812	302
	6.7053	18.6718	12.1447	18.5488	326
	10.0031	8.2260	24.0068	18.5676	340
	7.8296	0.0000	25.5216	19.1632	192
1K	7:1843	15.8117	14.0595	18.4360	324
	-8.0769	1.6812	8.4194	19.0004	318
	7.3788	8.6543	11.0877	19.0696	234
	6.8649	13.0258	12.7301	18.9648	270
	7.0784	13.3945	19.9316	19.8512	250
	7.4001	22.2963	17.6593	18.6452	274
	6.8373	17.1127	16.4089	18.7900	278
	6.6202	2.7143.	25.1643	18.8480	248
	2.4895	9.3847	18,4921	19,6279	
	6.0845	3.7882	24.5922	19.0132	230
	6.5032	0.0000	25.5216	18.7748	244
	10.1807	11.2325	16.2684	19.2956	236
500	6.1154.	ת.0008	25-5216	12.e25	240
	8.6339	0.0000	25.5216	19.3028	244
	5.8073	1.3433	25.4349	18.9892	, 2341
	9.1988	0.0000	25.5216	19.1096	. 250
	8.7744	11.9779	19.8858	18.9768	258
	10.2723	4.2929	25.1198	19.4580	260
	8.8388	20.1774	16.8136	19.2280	246
	7.0758	13.0818	18.4328	19.0972	232
	6.7081	6.3654	10.7780	19.2184	232
	9.3145	8.8070	8.6894	19.4340	260
	8.8259	3.9899	21.6672	19.6484	278
	6.2149	12.6111	15.8590	19.9416	224.
	5.0076	20.9550	16.7062	19.5672	254
	7.0872	2.0436.	16.9917	19.9168	282
	9.1272	10.5446	19.5543	20.0592	252
	7.2376	10.2556	14.5978	19.8512	264 :
	$\frac{4.9121}{8.2135}$	6.4004	11.3443	19,2124	326
		3.3044	17.9781	20.3836	300
11.50549.7132		2.0757	18.8017	20.1832	292
		4.2617	20.8112	20.5340	314
	10.3169	5.5662	17.0601	20.0324	336
2508.1267		2.0691	21.3433	19.9940	268
250.122158.1412		5.5673	18.8041	20.6060	320
		5.2859	16.5430	20.7300	232
$\begin{array}{r} 8.1412 \\ 12.3677 \end{array}$		8.6085	10.7503	20.7792	2
14.313610.6842		2.9677	12.5408	20.2864	8
		1.4000	10.8848	20.9956	262
10.684210.3578		5.7341	16.6515	21.1524	292
8.6470		11.8599.	12.6195	20.8568	326
		$4.3499{ }^{\circ}$	16.0796	21.0740	210
6.93938.4225		10.0568	18.1574	21.4968	288 \|
16.376110.5628		5.8033	24.3740	21.6668	3201
		3.3933	20.0545	21.8276	310
10.5628		12.8395	14.8722	21.5052	272 '
10.138410.2418		3.4940	24.8584	22.2620	324
11.3488		14.1490	18.3342	21.9728	344
13.4780		18.726	10.5354	22.4000	262

dB Wind Wind Wind
Level Turb．Speed Temp．Dir． Diff．

	$\begin{aligned} & 12 .-413 z \mathrm{Z} \\ & 21.8470 \end{aligned}$	2.21729 0.2547	n .84 Sn $3.24 n 0$	1.1548 0.6412	300
	＜ 5.2473	1．11．1e	14.0091	0.0012	228
	22.70818	4.0817	10.2047	0.6412	244.
	42.2134	2．xy38	14．3219	0.0012	248
	＜1．0diw	4．0818	9.0305	0.6012	234
	＜2．3511	2.9482	0.5747	U． 6012	286
	＜1．18世0	2.1302	0.2150	0.0012	258
	＜\＆．8＊）	4.0634	4.4317	4.0012	258
	＜＜．24\％	3．407n	4.2008	4.6012	242
	＜1．12dy	1．116\％	5.7024	0.6012	254
	41.0454	1．971，	4.2460	N．0612	242
4K	29.0110	2.0901	W． 3077	0.0612	242
	＜2．3115	1.2981	12.1401	0.0012	368
	$4 \rightarrow$－${ }^{\text {¢ }}$	2.150	11.1014	4.0612	268
	2ذ． 59 ¢	1．044）	－．3982	0.0012	246
	＜2．3120	2．tat 29	0.4909	v．nul2	202
	17．7t3v－	2.6143	7.2195	0.0612	242
	23．6世ど	2．54ns	8.1764	0.0012	224
	2－9ndot	geltal	4.3214	0.0412	232
	c． 6 （4y）	3.73×5	＊．76゙ロ	0．0012	244
	11.1640	＜．dtol	－．5018	n．0012	324
	LSANOO	c．14t1	H．s）102	0.0612	272
	$14.0 y 11$	＜．13）	8.1711	6.0612	．． 252.
2K	¢4003s	7．1305	3.4004	M．0412	290
	11．1531	0.0241	－．3304	－0612	220
	14.9 ¢	1．357y	$7.25 y 7$	0.0012	184
	12．6154	1.1227	l．hlws	0.6012	202
	1く．3＊＊	2．とeつ4	－24ys	6.0412	250

Appendix E: Programme Listings

This appendix shows the BASIC and Assembler programmes used in the work reported in this thesis. They are:

MASTER SRC. Source code listing of the individual service routines called from a BASIC control programme.

MASTER SRC/4 Version of the above for use with scale models.

MASTER BSC BASIC control programme for full size outdoor experiments. Uses MASTER SRC.

DATA BSC Picks up data stored on floppy disc at the time of an outdoor experimet \mathfrak{t} and prints results to a local printer.

DEC BSC Calculates results from floppy disc but transfers the data to the DEC 20 mainframe via the NETKIT system. It executes a Forbran programme on the DEC 20 called PETP.FOR.

DEC 20/5SRC Source code listing of the Assembler routine to transfer data via the NETKIT system to the DEC 20. This is used by DEC BSC, above. Note that the NETKIT ROM is located in Block A of the PET memory map.

O:DEC20/SSRC \qquad .PAGE 0002

LINE LOC CODE LINE

OAMASTERSRC.......PAOE 0002
LIME: LOC CODE LIME

0075	1076	8566		STA EXP2	
0076	1078	8561	JUAPG	STA EXP2+5	
0077	107A	20 FC 10		JSR SUK	;ACCI $=($ SIGMA $X * X)$
0878	1078	A) 10		LDA 1810	
0079	1075	26 OD 96		IIT IfR	;TEST FOR AK COMPLETED (PEM LIFT HIGH TO LOU)
0080	1082	FO 05		BEQ RHS	
0081	1084	AS 5F		LDA EXP1+1	
0082	1086	3000	L0095	BIL JUKP7.	:IEST FOR.MON-MORMALISED RESULT
0083	1088	C6 5E		DEC EXPI	
0084	108A	0662		ASL EXPI+4	-
0085	108C	2661		ROL EXP1+3	
0086	108E	2660		ROL EXP1+2	
0087	1090	2657		ROL EXPI+1	
0088	1092	4C8610		JKP LOOPS	
0889	1095	38	JUMP7	SEC	
0090	1096	AS 5E		LDA EXPI	
0091	1098	E9 OC		SBC \#SOC	;DIVIDE BY 4096
0492	109A	$855 E$		STA EXPI	
0093	1095	60		RTS	
0094	1098	48	ERR	PHA	
0095	109E	1208		LDX 1808	
0096	10A0	181110	ERR3	LDA ERRI, X	
0097	10A3	$20 \mathrm{D2} \mathrm{FF}$		JSR :FFD2	;OUTPUT A CHARACTER
0098	1046	CA		DEX	
0499	1047	D0 F7		BNE ERR3	
0100	1049	A9 FF	ERR2	LDA ISFF	
0101	10as	8563		STA 863	;O/L ImDICATIOM gY NEGATING RESULT
0102	10ad	68		PLA	
0103	10AE	4C 618		JHP RHSP	
0104	1081	00.	ERR1	. PYTE 300	
0105	1032	44		.2YTE 144	
0106	1083	41		. PYTE 141	
0107	1084	45		. BYTE \$4F	
0108	1035	4C		.BYTE \$4C	
0109	1036	52		- BYTE 152	
0110	1087	49		. IYTE $\$ 45$	
0111	1088	56		. PYTE \$56	

OBMASTERSRC.......PAGE 0004
LIME: LOC CODE LIME

\bigcirc		
3112	1089	$4 F$
0113	10BA	
0114	10BA	38
0115	1088	19 00
0116	1030	8589
0117	108F	E4 8F
0118	1061	DO FC
0119	1003	78
0120	10 C 4	60
0121	1053	
0122	10c5	A9 90
0123	$10 C 7$	8594
0124	10C9	A9 10
0125	10C8	8595
0126	10CD	A9 OA
0127	10CF	88 OC 96
0128	1002	A9 B8
0129	1084	81 0296
0130	1007	1982
0131	1009	80 OE 96
0132	1006	A9 3A
0133	10DE	680096
0134	10E1	as 0196
0135	10E4	A988
0136	10E6	800096
0137	1059	78
0138	10EA	at 0196
O139	10ES.	4C Ea 10
0140	1050	A9 89
0141	1052	9594
0142	1054	A) CJ
0143	1056	8595
0144	1058	68
0145	10F9	68
0146	10FA	68
0147	10F:	60
0148	10FC	

;DElay DELY	SUBROUTINE	
	CLI	
	LDA MSOO	
	STA 38F	
Whati	CPX 88 F	
	BNE WAITI	
	SEI	
	RTS	
;record data in amalogue memory		
REC	LDA \# ${ }^{\text {CHIL }}$	
	STA 194	
	LDA MMMI	
	STA 895	
	LDA WSOA	
	STA PCR	;CA2 PULSE ON READ IRA
	LDA MABE	
	STA DDRE	
	LDA 1882	
	STA IER	;CAI IMTERRUPT EMADLE(STATUS HIGH TO LOW)
	LDA M200111010	
	STA ORE	;GATE OPEM
	lda ira	;SINGLE PULSE
	LDA WE10111011	
	STA ORI	
	SEI	: 10 PREVENT SERVICE EVERY 1/60 SEC.
600Pt	LDA IRA.	
	JHP LOOPI	;6IVE CLOCX PULSES IILL IMTERRUPT OCCURS
WHI	LDA 1889	;RESTORE VECTOR
	STA 894	
	LDA Mic3	
	STA 193	
	PLA	;RESTORE STACK FOR RTS INSTRUCTION
	PLA	
	PLA.	
	RTS'	
;SUBROU	STIEE TO ACCUMUL	ate squared data in accil

0149	10FC	A9 00	SuM	LDA 1900	;RESET RESULT STORES
0150	10FE	8567		STA Exp2+1	; RESULT HIGH
0151	1100	8568		STA EXP2+2	;RESULT LOW
0152	1102	1208		LDX \#\$08	
0153	1104	18	L00P2	CLC	
0154	1105	4686		LSR EXP2	;DATAT
0155	1107	9006		BCC JUMPI	
0156	1109	A5 63		LDA EXP2+5	; dataz
0137	1108	18		CLC	
0158	1100	461111		JMP JUMP2	-
0159	110F	A9 00	JUMP 1	LDA MS00	
0160	1111	6567	JUMP2	ADC EXP2+1	
0161	1113	6A		ROR A	
0162	1114	8567		STA EXP2+1	
0163	1116	6668.		ROR EXP2+2	
0164	1118	Ca		DEX	
0165	1119	DO E9		BNE LOOP2	
0166	1118	A9 00		LDA \#S00	
0167	1110	8569		STA EXP2+3	
0168	11 F	836 A		STA EXP2+4	
0169	1121	1290		LDX 1890	
0170	1123	E1 SE	L00p3	CPX EXPI	;ADJUST ACC2 TO ACCI
0171	1125	FO OC		BEO JUMP3	
0172	1127	E8		INX	
0173	1128	4687		LSR EXP2+1	
0174	112A	6668		ROR EXP2 2	
0175	112C	6669		ROR EXP2+3	
0176	112 E	66 6A		ROR EXP2+4	
0177	1130	4C 2311		JMP LOOP3	
0178	1133	1204	JUMP3	LDX \#\$04	
0179	1135	18		CLC	
0180	1136	85 5E	20094	LDA EXPI, X	;ADD ACC2 to acci
0181	1138	7566		ADC EXP2, X	
0182	113A	95 5E		STA EXPI, X	
0183	1136	Ca		DEX	
0184	1130	8057	-	DNE LIOOP4	
0185	1135	90 OA		BCC JUNP4	;TEST FOR OUERFLOU

oimastersre \qquad PAGE 0006
LIME\# LOC CODE LIME

0186	1141	E6 $5 E$		INC EXPI	
0187	1143	$665 F$		ROR EXPIti	
0188	1145	6680		ROR EXP $1+2$	
0189	1147	6681		ROR EXPIt3	
0190	1149	6662		ROR EXPI+4	
0191	1148	60	JUMP	RTS	
0192	114C			. END	
0193	114C			-LIE OBMFILTSR	
0194	1146		PaEs 9		
0195	1146		PADD	9181	
0196	1146		$\mathrm{PB}=59$		-
0197	1146		PBDD	9183	
0198	114C	00	LF	. BYTE 0	
0199	1140	00	LRGE	.BYTE O	
0200	$114 E$	00	UF	. PYTE 0	
0201	114F	00	URGE	. BYTE 0	
0202	1150	78	FILT	SEI	
0203	$115 t$	19 FF		LDA \#SFF	
0204	1153	858191		STA PADD	; PAO-7*0/P
0205	1156	A9 78		LDA ESTF	
0206	1158	8 83 91		STA PBDD	
0207	1158				;SET UPPER CUT-DFF FREQUENCY
0208	1158	38		SEC	
0209	1156	A9 FF		LDA MSFF	
0210	1155	ED AE II		SBC UF	
0211	1161	808091		Sta Pa	
0212.	1164	38		SEC	
0213	1165	A9 FF		LDA MSFF	
0214	1167	ED 4F 11		SBC URGE.	
0215	116A	OA		ASL 1 A	;RANGE-PBI-S
0216	1161	0941		ORA \#YO100000t	;P16=ADDRESS
0217	1160	858291		STA PB	;PBO=STROBE
0218	1170	CE 8291		DEC PB	; EMTER STROBE
0219	1173	AD 8291	WAITJ	LDA PA	
0221	1178	${ }^{30}$ FE881		BhI UAIT3	;ACKNOULEDGE RESPOMSE
0222	1178			ING PO	;SET LOUER CUT-OFF FREQUENCY

OIMASTERSRC. PAGE 0008

LIMER LOC CODE LINE

0260	1169	AD 0196		LDA IRA	IMGLE PULSE
0261	11CC	A9 10	EAT3	LDA isad	
0262	lice	809996		STA 12CH	;inITIALISE COWnter for mo. of underloaded samples
0263	1101	AB 0196	EA12	lda ira	;SIMGLE PULSE
0264	1104	5015		DEQ EATI	;IEST FOR 800
0265	1106	18		CLC	
0266	1107	6901		ADC \#S01	
0267	1189	F0 10		PEQ EATI	;TEST FOR SFF
0268	1108	4920		LDA 1800100000	
0269	110D	2C OD 96		IIT IFR	; TEST FOR 12 Interrupt
0270	11E0	FO EF		BEQ EAT2	
0271	$11 E 2$	A9 38		LDA ME00111011	; gate closed,over-ride inactive
0272	$11 E 4$	90 0096		STA ORE	
0273	$11 E 7$	AD 0196		lda ira	;Single pulse
0274	IIEA	60		RTS	
0275	1168	OE 8292	EATI	ASL RATM	;imcrease attenuation
0276	11EE	AD 0196		LDA IRA	;SINGLE PULSE
0277	1181	A2 80		LDX \$880	;2 SEC. DELAY
0278	1153	20810		JSR DELY	;1 SEC. delay
0279	1156	$4 C$ CE 11		JMP EAT3	;RE-INITIALISE COUNTER AND CONTINUE
0280	11F9			.END	
0281	1159			-LI) 0:ACCSRC	
0282	1159		PoIM	10FF3	
0283	1179		Point	10FF4	
0284	1159	A9 15	SDI	LDA \#815	; Y2 SELECT (I.E. NEAR MICROPHONE)
0285	11Fs	261925		BIt 25A9	;2ND EMTRY- YI SELECT
0286.	11FE	850096		STA ORE	
0287	1201	12 Of	S08	LDX 1sof	
0208	1203	1900		LDA \#soo	
0289	1205	95 5E	589	STA EXPI,X	
0290	1207	CA		DEX	
0291	1208	DO Fi		BNE SD9	
0292	1201	1990		LDA 1990	
0293	120 C	85 5E		STA EXPI	
0294	120E	AD 0196		LDA IRA	;SYNCHRONISING PULSE
0295	1211	AD 0096		LDA ORI	;SVCHRONISJWO PULSE
0296	1214	0902		ORA	

0297	1216	210096		STA ORE	;RESTORE PE.PULSE	
0298	1219	A0 01		LDY 1801		
0299	1218	205910		JSR RHS	;ACCMIERMS***	
0300	$121 E$	AB 5308		LDA POIMTL		
0301	1221	38		SEC		
0302	1222	E9 05		53C MS05		
0303	1224	$81 \mathrm{f3}$ Of		sta poimil		
0304	1227	A ${ }^{\text {a }}$		TAX		
0305	1228	3003		BCS SD10		
0306	122A	CE F4 OF		DEC POINTH	,	
0307	1228	AC F4 OF	5010	LDY POIMTK		
0308	1230	20 E3 DA		JSR SDAE3	;RHS TO STORE	
0309	1233	60		RTS		
0310	1234			. END		
0311	1234			-LIE O: BGRO		
0312	1234		;TEST	background l		
0313	1234	A9 13		LDA MSBE		
0314	1236	810296		STA DDRE		
0315	1239	4908		LDA \#308		
0316	1238	68 OE 96		STA IER	;INHIBIT CB2 INTERRUPT	
0317	123E	A9 4A		LDA IBAA		
0318	1240	88 OC 96		STA PCR	;CB2 +UE TRANS,CA2 PULSE 0/P	
0319	1243	A9 3A	B681	LDA M:3A		
0320	1243	81 0096		STA ORB	;aRM KEHO IY SETtIMG RECORD MODE	
0321	1248	AD 0196		LDA IRA	;SINGLE CLOCK PULSE	
0322	1241	4938		LDA Li3s		
0323	1240	880096		STA ORE	;RESET RECORD PULSE And CLEAR CB2	INTERRIM
0324	1250	58		CLI		
0325	1251	A) 00		LDA 1800		
0326	1253	8585		STA 18F	;RESET JIFFY CLOCK	
0327	1255	A9 08	3682	LDA IS08		
0328	1257	2CAE*		IIT XET ?	itest for trigger	
0329	125A	do E7		BME 1 GDI	;if trigger then restart	
0330	125C	A9 36		LDA M3C		
0331	125E	C5 85		CMP 865		
0332	1260	10 F3		8CS 1602	;1F JIFFY < ISEC. THEN RETEST FOR	IRIGGER
0333	1262	78		SEI		

OIMASTERSRC.......PAGE 0010
limei loc code lime

12

0334	1263	60
0335	1264	
0336	1264	
0337	1264	
0338	1264	
0339	1264	
0340	1264	
0311	1264	
0342	1264	
0343	1264	A9 08
0344	1266	81 OC 90
0345	1269	A9 03
0346	1261	O1 OE 90
0347	126E	A9 36
0348	1270	95 57
0349	1272	93 35
0350	1274	A9 00
0351	1276	85 FE
0352	1278	8534
0353	127 A	1000
0354	1275	AB 0190
0355	1278	1902
0356	1281	$2 C 0090$
0337	1284	FOFl
0358	1286	AB 0190
0359	1289	91 FE
0360	1281	C8.
0361	1286	D0 Fi
0362	128E	E6 FF
0363	1290	AS FF
0364	1292	c9 40
0345	1294	DO E9
0346	1296	
0367	1296	
0360	1296	
0365	1294	
0370	1296	A9 00

RTS
-EMS
.lIB oimadataskc
;take data fron the ade and store at bjcoo - bjfff
PCRA=1900C
IFRA=5900D
base:s3C00
IERA=6900
IRAA=19001
LDA 1808
STA PCRA
lon isos
sta IERA
LDA İBASE
STA SFF
STA 335
LDA I<BASE
sta bfe
STA 334
Loy 11900
ADI LDA $\$ 102$
ad2 IIt IfRA
BEA AD2
lda iran
STA (BFE), Y
IMY
BME ADI
IMC $\mathbf{3 F F}$
LDA 15 FF
CHP 1540
DME ADI
.EMD
-lib oimavesrc
;subroutine to Calculate the mean of ik of datá (s3C00-83fff) TOTAL-50054
lda albase $^{\circ}$

OIMASTERSRC
 \qquad .page 0012

limei loc code lime

DIMASTERSRC.......PAGE OAIA

Ldues loc cobe line

Luge loc cose hine

0535	1352	181080		874 12Lls	
OSS 4	1353	as 40		184 1840	
0557	1357	110690		STA PCRD	;CB2 +VE TRANS.,C81 -VE
0851	138a	19 20		lan 1820	
0sst	13FE	12119		sta ACRA	;T2 PULSE COUNT MODE
0584	1355	as 1090		LDA 0R30	iCLEAR IFR
0861	1402	as 18		13 Alsog	
0862	1184	26119	1121	317 IFR	
0563	1487	1018		EEQ JIRI	;WAIT FOR CB2 - I.E. START COUNT PULSE
0864	1489	a) 010		L8A 1800	
0865	1418	181990		STA 12CH)	;T2=t00FF - Start count
0886	1405	1) 109		LBA ORIE	; Clear IfR
0867	1111	a) 10		LBA 1310	
0s68	1113	261191	1182	311 ifRe	
0819	1116	81 18		3E0 1182	;UAIT FOR CEI - I.E COINCIDENCE PULSE
0878	1418	at 1890		LBA T2LL	;CET CDUNT
0871	1418	11 [a 13		sta COUNTL	
0872	1118	A) ff		LIA Ifff	
0373	1120	18		SEC	
0874	1421	[8 [a is		SBC COUMTL	©COMPLIMEMT COUNT
0878	1421	$83\{13$		s7a COUNTL	-
0576	1427	1010		LIP 1100	,
0877	1129	31		SEC	
0878	112A	as 33 of		LBA POIMTL	
0879	1428	E) 11		SBC It01	- -
0989	142F	1383 of		STA POINTL	
0881	1432	15 if		STA PIF	
0312	1434	AB f4 Of		LIA POINTM	
0983	1437	ct 0		SBC 1800	
0814	1139	18 ft Of		STA POIMTH	-
0883	1135	1520		s7a 820	
0886	143E	al ${ }^{\text {ca }}$ if		lBA COUnTl	
0887	1441	11 if		Sta (SIF), Y	'
0388	1143			-ENP	
0389	1413			-LIE OBMTEM	
0898	1443		;COUN	PULSES EROM	PERATURE SENS USIMG 6522 - 89700 - 8970 F
0391	1143		ORET0	7700	

0592	1443	$4 C 4814$		JMP TEMO	
0593	1446	00	TEMPL	. BYTE 00	
0594	1447	00	TEMPH	. BYTE DO	
0593	1448	58	TEMO	CLI	
0396	1449	A9 20		LDA \#320	
0597	1443	880897		STA ORBT+11	;ACR-T2 PULSE COUNT MODE
0598	144E	A9 FF		LDA Miff	
0599	1450	880897		STA ORET+8	;1246
0600	1453	1236		LDX If3C	if SEC. DELAY
0601	1435	A9 5F		-	
0602	1457	800997		STA ORBTt9	:START COUMTINS
0603	145A	20 3n 10		JSR DELY	
0604	1450	A) 0397		LBA ORBT+II	
0605	1460	29 DF		AND EXIIO11111	-STOP PULSE COUKTINE
0506	1462	AD 0897		LDA ORAT+8 ${ }^{2}$.	, $\because \cdots \because$
. 0607	1465	8D 4614		Sta TExpl	
0108	1468	AB 0997		LDA ORIT+9	
0009	1468	814714		STA TEMPH	
0610	146E	38		SEC	;SUBTRACT FROM IFFFF
0611	1465	A9 FF		LDA MSFF	
0612	1471	E) 4614		SBC TEMPL	
0613	1474	881614		- STA TEMPL	
0814	1477	A9 FF		LDA \#SFF	
0415	1479	ED 4714		SBC TEMPH	
0616	1475	884714		STA TEMPH	
0617	1478	38		SEC	
0618	1480	AD 5305		LDA POIMTL	
0619	1483	E9 02		SBC 1802	
0420	1485	$88 \mathrm{F3}$ OF		STA POINTL	
0621	1488	85 IF		sin $31 F$	
0622	148A	as F4 Of		LDA POIMTH	
0623	1480	E) 00		SBC 1800	
0624	148F	89 F4 Of		STA POINTH	
0625	1492	8520		STA 820	
0626	1494	A0 01		LDY \#801	
0627	1496	A8 4614		LIA TEMPL	
0628	1499	9115		STA (81f). 7	

O\&MASTERSRC.......PAGE 0018

SYMBOL TAILE
STMBOL VALUE

POJMIL	OFF3	Ratm	9282	REC	10C3	RHS	1059
insi	1065	RHSA	1068	RHS	1063	501	1159
8810	1228	\$58	1201	589	1203	SUn.	10FC
12 CH	9609	12CHI	9009	T2LL	9608	T2LE	9008
IEMO	1448	TEMPH	1447	TEMPL	1446	TOPAL	0054
yF	. 1148	URGE	1145	yAITI	101F	40112	1195
dalt3	1173						
EXP Of	SEMBLY						

OBMASTERSRC/4.......PA6E 0402
LIME LOC CODE LIME

0075	1078	$8{ }^{68} \mathrm{FB}$			OVER		
0076	107F	A9 OA		LDA	HSOA		
0077	1081	80 DA 10		STA	RHSC+1		
0878	1084	A9 00	RHSE	LDA	1900		
0079	1086	85 FF		STA	\$FF		
0080	1088	98	RHSD	IYA			
0081	1089	50 OC		BEd	RMSA		
0082	1088	A1 0196		LDA	IRA	;GET A- BYte of data	
0083	108E	FO 01		BER	RHSt	;TEST FDR -VE OUERLOAD	
0084	1090	C9 FF		CHP	\#sff	; * -UE	
0085	1092	0006		BNE	RHS		
0186	1094	AC DE 10	RHS 1	JMP	ERR		
0087	1097	A) 0196	RHSA	LDA	IRA		
0088	1094	38	RMS	SEC			
0889	1091	E9 80		SBC	1880	;Subtract gnd level	
0090	1098	8566		STA	EXP2		
0191	109F	3006		BCS	JUMP6	;TEST FOR RESULT -UE.	
0192	1041	A9 01		LDA	\#s01	;2'S COMP.	
0093	10A3	E5 66		SBC	EXP2		
0194	10a5	8566		STA	EXP2		
0193	1047	8561	Junp6	STA	EXP2+5		
0096	10A9	204511		JSR	SUM		
0197	10AC	E6 FF		INC	\$FF		
0198	IOAE	DO D8		BNE	RHSD		
0199	1030	C6 FE		DEC	SEE		
0100	1082	DO 04		BME	RMSD		
0101	1034	AI Fi OF		LDA	OVER		
0102	1037	FO OC		BEE	RHSF		
0103	1019	AS 0196	RHS6	L.DA	IRA		
0104	1086	Eb FF	*	INE	SFF		
0105	108E	D0 F9	*	BHE	RHSG		
0106	1060	CE Fi Of		DEC	OVER		
0107	10C3	d0 F4		GNE	RMSO		
0108	10 CS	AS 5F	RHSF	LDA	EXPt+1		
0109	$10 C 7$	30 OD	L00P5	BHI	JUMP7	;TEST FOR NON-NORMALISED	RESULT
0110	$10 C 9$	C6 3E		DEC	EXP1		
0111	10C)	0662		ASL	EXPI+4		

OIMASTERSRC/4.......PAGE OOO4
LIME: LOC CODE LINE

0112	10CD	2661		ROL EXPI +3		
0113	10CF	2660		ROL EXPI +2		
0114	1001	2655		ROL EXP1+1		
0115	1083	4C C7 10		JHP LOOPS		
0116	1006	38	JUMP7	SEC		
0117	1007	A5 5E		LDA EXPI		
0118	1009	E9 On	RHSC	SBC HSOA		
0119	1001	$855 E$		STA EXPI		
0120	1000	60		RTS		
0121	10DE	48	ERR	PHA		
0122	100F	1208		LDX \#308		
0123	10E1	30 F2 10	ERR3	LDA ERRI, X		
0124	10E4	2082 FF		JSR SFFD2	;OUTPUT A Character	
0125	10E7	CA		DEX		
0126	10E8	30 F7		BHI ERR3		
0127	10EA	A9 FF	ERR2	LDA ASFF		
0128	10EC	8563		STA \$63	;O/L INDICATION BY NEGATIN	RESULT
0129	10EE	68		PLA		
0130	10EF	46 9A 10°		JMP RHS3		
0131	1052	20	ERRI	. BYIE 120	,	
0132	10 F 3	44		- BYTE 144	,	
0133	1054	41		. BYTE 341	1	
0134	10F5	$4 F$. ${ }^{\text {PYTE } 34 F}$		
0135	1056	16		. AYTE 816		
0136	1057	52		. 3 TTE $\$ 52$		
0137	1058	45		. BYTE 345		
0138	10F9	56		- AYTE \$56		
0139	10FA	$4 F$. BYTE SAF	.	
0140	10FI		; DELAY	SUBROUTINE	-	
0141	10 Fs	58	DELY	CLI	+ -	
0142	1056	A9 00		LDA 1800	-	
0143	10FE	85 9F		STA \$8F		
0144	1100	E48F	yalti	CPX 88F		
0145	1102	DO FC		BME VAITI		
0146	1104	78	-	SEI		
0147	1105	60		RTS		
0148	1106		;RECORD	data in an	e memory	

0149	1106	AP 31	REC	LDA MSNMI	
0150	1108	8594		STA 194	
0151	110A	A9 11		LDA İNMI	
0152	110C	8595		STA 195	
0153	110E	AP OA		LDA ISOA	
0154	1110	80 OC 96		STA PCR	;CA2 pulse on reab ira
0155	1113	A9 18		LDA 13BB	
0156	1115	890296		STA DDRB	
0157	1118	1982		LDA 1582	
0158	1114	81 OE 96		STA IER	;Cat interrupt enable (status high to lous)
0159	1118	A9 3A		LDA \$200111010	
0160	111F	850096		STA ORI	;6ATE OPEM
0161	1122	AB 0196		LOA IRA	;SINGLE PULSE
0162	1125	A9 31		LDA \#210111011	
0163	1127	88 0096		STA ORE	
0164	112A	78		SEI	ito Prevent service every $1 / 60$ SEC.
0165	1121	AB 0196	L00P 1	LDA IRA	
0166	112E	4C 23 11		JMP LOOP 1	;GIVE CLOCK PULSES IILL IMTERRUPT OCCURS
0167	1131	A9 99	HMI	LDA 1889	;RESTORE UECTOR
0168	1133	8594		STA 894	
0169	1135	19 CJ		LDA MIC3	
0170	1137	8595		STA 195	
0171	1139	68		PLA	;RESTORE STACK FOR RTS IMSTRUCTION
0172	113A	68		PLA	
0173	1138	68		PLA	
0174	1136	4938		LDA 1338	iclose gate
0175	113E	810096		STA ORS	
0176	1141	AB 0196		LDA IRA	;CLOCK PULSE
0177	1144	60		RTS	
0178	1145		; SUBro	SIINE to accunul	te squared data in accmi
0179	1145	A9 00	SUM	LDA \#S00	;RESET RESULT Stores
0180	1147	8567		STA EXP 2+1	;RESULT HIGH
0181	1149	9568		STA EXP2+2	;RESULT LOW
0102	1141	A2 08		LDX \#808	
0183	1148	18	L00P2	CLC	
0184	114E	4666		LSR EXP2	;DATA1
0185	1130	9006		BCC JUMPI	

OBHASTERSRC/4.......PAGE 0006

LIMEI LOC CODE LINE

0186	1152	AS 41
0187	1154	18
0188	1155	465411
0189	1158	1900
0190	115A	6567
0181	1156	6 6
0192	1158	8567
0193	115F	6468
0194	1181	CA
0195	1162	10 E9
0196	1164	A9 00
0197	1166	8569
0198	1168	8561
0199	116A	1290
0200	116C	54 5E
0201	1165	50 OC
0202	1170	$E 8$
0203	1171	4667
0204	1173	6668
0205	1175	6619
0206	1177	66 6 ${ }^{6}$
0207	1179	466611
0208	1176	1204
0209	$117 E$	18
0210	117F	35 5E
0211	1181	7566
0212	1183	9555
0213	1185	CA
0214	1186	10 F7
0215	1188	90 On
0216	118n	Et 5E
0217	1186	46 5F
0218	1185	6660
0219	1170	64. 61
0220	1192	6662
0221	1194	68.
0222	1895	

\because

OBMASTERSRC/4........PAGE 0008
LIME: LOC CODE LIME

OZHASTERSRC/4.......PAGE 0010
LIMEI loc code lime
\because

OZHASTERSRC/4.......PAGE 0012
line: loc code lime
34

0408	1253	100078		LDA \$7800, X	
0409	12 F 6	CD FD OF		CHP MOST	
0410	12 F 9	9003		BCC AVEIO	;BRANCH IF A < MOSt
0411	12F3	$80^{\text {F }}$ OF		STA MOST	
0112	12FE	CD FC OF	AVE10	CAP LEAST	
0413	1301	1003		JCS AVEII	;BRANCH IF A >e least
0414	1303	88 FC OF		STA LEAST	
0415	1306	8567	AUEII	STA EXP2+1	
0416	1308	1288		LDX 1888	
0417	130 A	E4 5E	AVE3	CPX EXPI	
0118	1306	F9 OC		BEQ AVE2	
0419	130E	4667		LSR EXP2+1	
0420	1310	6668		ROR EXP2+2	
0421	1312	6669		ROR EXP2+3	
0422	1314	6664		ROR EXP2+4	
0423	1316	E8		INX	
0124	1317	460413		JHP AVEJ	
0425	131A	A2 04	AUE 2	LDX \$504	
0426	1316	18		CLC	
0427	1310	15 5E	AUE4	LDA EXPI, ${ }^{\text {a }}$	
0428	131F	7566		ADC EXP2,X	
0429	1321	95 5E.		STA EXPI,X	
0430	1323	CA		DEX	
0431.	1324	D0 F7		bne aves	
0432°	1326	90 On		BCC AVE7	;TEST FOR OUERFLOU
0433	1328	E6 5E		INC EXPI	
0134	132A	6658		ROR EXPI+1	
0435	1326	6660		ROR EXPIt2	
0436	132 E	6661		ROR EXPI+3	
0137	1330	6662		ROR EXPIt4	
0438	1332	c8	AUES	INY	
0439	1333	DO 13		BME AVES	
0440	1335	E6 FF		INC PFF	
0441	1337	A5 FF		LOA PFF	
0442	1339	C9 80		CMP 1s80	
0443	1338	90 Al		BCC AVES	
0144	1330	AS 57		LDA EXPIti	

0445	133F	3000	AVE8	BMI AVES	;TEST FOR NON-NORMALISED RESULT
0446	1341	C6 5E		DEC EXP 1	
0447	1343	0662		ASL EXP1+4	
0448	1345	2661		ROL EXP1+3	
0449	1347	2660		ROL EXP1+2	
0450	1349	$265 F$		ROL EXPIt1	
0451	1348	4C 3F 13		JMP AVE:	
0452	134E	AS 5E	AVE 6	LDA EXPI	
0453	1350	38		SEC	
0454	1351	E9 OA	-	SBC \#SOA	;DIUIDE BY 1024
0455	1353	85 5E		STA EXP1	
0456	1355	38		SEC	
0457	1356	AD FE OF		LDA POINTL	
0458	1359	E9 05		SBC \#SOS	
0459	1358	8D FE OF	.	Sta pointl	
0460	135 E	- $\mathrm{BO}^{0} 03$		BCS AVE9	
0461	1360	CE FF OF		dec Pointh	
0462	1363	AE FE OF	AVE 9	LDX POINTL	
0463	1366	AC FF Of		LDY POINTH	
0464	1369	20 E3 DA		JSR SDAE3	
0465	136C	18		CLC	
0466	1360	A5 2A		LDA \$2A	
0467	136F	$691 E$		ADC \#SIE	
0468	1371	8515		STA :1F	
0469	1373	AS 28		LDA 32B	
0470	1375	6900		ADC \$500	
0471	1377	8520		STA $\$ 20$	
0472	1379	20 E7 DA		JSR \$ DAE7	
0473	1376	38		SEC	; Calculate ris of ik of data
0474	1370	AD FE OF		LDA POINTL	
0475	1380	E9 05		SBC \$505	
0176	1382	8D FE OF		Sta pointl	-
0477	1385	B0 03		BCS AUEI8	
0478	1387	CE FF OF		DEC POIMTH	
0479	1384	A2 04	AVE18	LDX 1804 -	
0480	1386	A9 00		LDA \#soo	
0481	138 E	9354	AVE24	sta total, X	

O\&HASTERSRC/4.......PAGE 0014
lime: loc code lime
\pm.

0482	1390	CA		DEX	
0483	1391	DO ${ }^{\circ} 8$		BNE AVE24	
0484	1393	A9 90		LDA \$990	
0485	1395	8554		sta total	
0486	1397	A9 00		lda \#<base	;CALCULATE SIBMA $(X * X)$
0487	1399	85 FE		STA SFE	
0488	1398	A9 7C		LDA ITBASE	
0489	1390	85 FF		STA :FF	
0490	139F	A 00		LDY \$800	
0491	13A1	A9 00	AVE12	LDA MSOO	
0492	13a3	8566		STA EXPZ	
0493	13as	8560		STA EXPI +2	
0494	13A7	8568		STA EXP2+2	
0495	13A9	8561		STA EXP1+3	
0496	IJAB	8569		STA EXP2+3	
0497	13AD	8562		STA EXP1+4	
0498	13AF	85 6A		STA EXP2+4	
0499	1381	${ }^{\text {B }}$ FE		LDA (SFE), Y	
0500	1383	AA		TAX	
0501	1384	800078		LDA \$7800, X	
0502	1387	8567		STA EXP2+1	,
0503	1389	8559		STA EXP1+1	
0504	13BB	A9 90	AUE2S	LDA \$990	
0505	1380	$835 E$		STA EXPI	
0506	138F	98		TYA	
0507	13C0	48		PHA	
0508	1361	$2035 \mathrm{D9}$		JSR \$193F	;ACCH1 $=\mathrm{X}$: ${ }^{\text {a }}$
0509	13 C 4	68		PLA	
0310	13 CS	A8		tay	
0511	13C6	A6 5E		LDX Expl	
0512	13C8	E4 54	AVE20	CPX TOTAL	;COMPARE ACCWI UITH TOTAL
0313	13 CA	FO OC		8EQ AVE19	
0514	13C6	4655		LSR EXPI+1	-
0515	13CE	6660		ROR EXPIt2	- •
0316	1380	6661		ROR, EXPIt3	
0517	1382	6662		ROR EXPIt4	
0518	1384	E8		INX	

0519	1305	$46 \mathrm{C8} 13$		JMP AVE20	
0520	1308	A2 04	AVE19	LDX 1504	;ADD ACCM1 TO TOTAL
0521	13DA	18		CLC	
0522	1308	8558	AVE21	LDA EXPI,X	
0523	13DD	7534		ADC TOTAL, X	
0524	13DF	9554		STA TOTAL, X	
0525	13E1	CA		DEX	
0526	1322	D0 57		BNE AVE21	
0527	13 E 4	90 OA		BCC AVE23	;TEST FOR OVERFLOU
0528	1356	E6 54		INC TOTAL	
0529	$13 E 8$	6653		ROR TOTAL +1	
0530	13EA	6656		ROR TOTAL +2	
0931	13EC	6657		ROR TOTAL 3	
0932	13EE	6638		ROR TOTAL +4	
0933	1350	C8	AVE23	INY	
0534	13F1	do AE		BRE AVE12	; TEST FOR END OF PAGE
0535	13F3	E6 FF		INC \$FF	
0336	1355	AS FF		LDA \$FF	
0537	1357	C9 80		CHP \#\$80	; IEST FOR END OF 1 K
0538	1359	90 A6		BCC AVE12	
0539	13FB	AS 55		LDA TOTAL+1	;TEST FOR MON-NORMALISED RESULT
0540	1350	3000	AUEI4	bhi avel3	
0541	135 F	C6 54		DEC TOTAL	
0542	1401	0658		ASL TOTAL +4	
0543	1403	2657		ROL TOTAL +3	
0544	1405	2656		ROL TOTAL +2	
0545	1407	2655		ROL POTAL+1	
0546	1409	4C FD 13		JMP AUE14	
0547	140C	38	AVE13	SEC	
0548	1400	AS 54		lda total	
0549	140F	E 9 OA		SBC HSOA	;DIUIDE BY 1024
0550	1411	8554		Sta total	
0551	1413	AD FE OF		LDA POINTL	
0552	1416	85 IF		STA \$1F	
0553	1418	AD FF OF		LDA POIMTh	
0554	1418	8520		STA \$20	
0555	1410	18		CLC	

OINASTERSRC/4.......PAGE OO16
LIME LOC CODE LINE

;DEUICE NO.. (8 FOR DISC)

\cdots				
0593	1467	CA	DEX	
0594	1468	8684	STX $\$ 84$; BUFFER CHARACTER (SIMULATES SAVE INSTRUCTION)
0595	146A	A9 00	LDA 11500	
0596	146C	8590	STA 890	;LOAD/VERIFY FLAG
0597	146E	18	CLC	
0598	146F	A5 2A	LDA \$2A	
0599	1471	6926	ADC \#82C	-
0300	1473	8517	STA sif	
0601	1475	AS 21	LDA 32B	
0602	1477	6900	ADC 1500	
0803	1479	8520	STA $\$ 20$	
0604	1478	A0 00	L3Y 1500	
0605	1470	18	CLC	
0606	147E	31 if	LDA (\$1F), Y	
0607	1480	6902	ADC \$802	
0808	1482	85 DI_{1}	STA $\$ 01$;file name length
0609	1484	C8	INY	
0610	1485	38	SEC	
0611	1486	B1 if	LDA (115), Y	
0612	1488	E9 02	SBC \#s02	
0613	148A	85 DA	Sta sda	;FILE MAME Address lou
0614	148C	C8	INY	
0615	1480	11 if	LDA (\$1F).Y	
0616	1485	E9 00	SBC \# 300	
0617	1491	85 D8	STA 508	;FILE NAME ADDRESS HIGH
0818	1493	AO 00	LDY 1800	
0619	1495	A9 30	LDA \#'0	;FOR DISK DRIVE NO. 0
0620	1497	91 DA	STA (\$DA), Y	
0621	1499	C8	INY	
0622	149A	A9 3A	LDA M:	;DELIMITER
0623	1496	91 DA	STA (SDA), ${ }^{\text {P }}$	
0624	149E	AD FE OF	LDA POINTL	
0625	$14 A 1$	85 FB	STA SFB	;Start address lou
0626	.14A3	AD FF OF	LDA POINTH	
0627	14Ab	85 FC	STA SfC	;START ADDRESS HIGH
0628	.14A8	A9 00	LDA MSOO	
0629	14AA	85 C9	STA \$C9	;END ADDRESS LOW

OAMASTERSRC/4.......PAGE 0018
LINE: LOC CODE LINE
:

0630	14AC	A9 76	LDA \#87C	
0631	14AE	85 CA	StA ICA	;EMD AdDress high
0432	1480	20 A4 56	JSR SF6A4	;PERFORK SAVE
0633	1483	60	RTS	
0634	1484		.EMD	
0635	1484		.END	

ERRORS = 0000

SYKBOL TABLE
symbol value

ACR	9608	ATTI	1160	ATt2	1187	ATT3	1197
MTT4	1102	AVEI	120D	AVEIo	12FE	AVEII	1306
AVE12	13A1	AVE13	140C	AUEIA	1350	AUE18	138A
AVEIP	1308	AVE 2	131A	AUE20	13 cg	AVE21	1308
AVE22	1436	AVE23	1350	AUE24	138 E	AUE2S	1388
NUE3	1304	AVE4	1310	Aves	12 EB	AVE 6	134 E
AVE7	1332	AVE8	133F	AVE9	1363	BASE	7 COO
1601	1201	BGD2	1213	dDRA.	9603	DDRAB	9381
JDRB	9602	DDRBE	9383	DELY	10F:	ENTI	1008
ERR	10DE	ERR1	1052	ERR2	IOEA	ERr3	10EI
EXP1	$005 E$	EXP2	0066	IER	960E	IFR	9600
IRA	9601	JUMPT	1158	JUHP2	115A	JUKP3	1176
JUMP4	1194	JUKP6	1047	JUMP7	1006	LEAST	OFFC
LOOP 1	1128	10092	1140	L0093	1165	LOOP 4	1175
L00P5	1007	L00P6	12A5	HOST	OFFD	MMI	1131
ORB	9600	OYER	OFFB	PAl	9380	PBB	9382
PCR	960 C	POIMTH	OFFF	POIMTE	OFFE	RATM	9262
REC	1106	RHS	1076	RMSI	1094	RHSA	1097
RHSB	109A	RHSC	1089	RHSE	1098	RHSE	1084
RHSF	1063	RHSG	1089	581	1222	SD10	1269
\$02	122D	S08	1238	SD9	1241	SUM	1145
T2CH	9609	T2L6	9608	total	0054	WAITI	1100

```
    1800 A5="*
    1100 F-F+1:IFF)100T01300
    1200 LOAB"1&MASTERMC",8
    I300 PRIMT"JO YOU REQUIRE A CMLIJRAIION*
    1400 0ETABIIFAF="-60TO1400
    1500 IFAS""Y`THEM GOSUB7400
    1510 PRIMT"SET FILIERS TO 25OH2."&PRIMT"SET TIOGER TO "INT"*
    1600 IMPUT'HOU MAMY PASsES AT EMCH OCTANE JANS (1 T0 80)";M
    1700 IFW<IORM>SOTHEMPRINT"OHT OF RAMOE":00T01600
    1800 POKE4083,0, POXE40S4,60
    1900 FORX=0T04
    2000 POKE37505,233,PBXE37504,2*(4-x)
```



```
    -. -2200-1Fi>F60T02400
            2300 FaF/Itifafo2ac0T02200
            2400 8-IMT(F0100)
            2500 G-IMT(0/10)-16+IMT(0-1MT(0/10)-10)
            '2600 POKE4429+Y,G:POKE4429+Y,D/2
            2700 IFY=200702900
            2800 FaF*2:Y=2:60T02200
    -2900 SYS(4432)IREN FILTER
    3000 SYS(4510)&REN ATTENUATOR
    3100 POKE38400,PEEX(38400)AN1253
    3200 2=PEEK(38401)
    3300 POKE39400,PEEX(38400)OR2
    3400 2=PEEK(38401)
    3500 FORZ=0TO1000:MEXT
    3600 FORZ-ITOM
    3650 SYS(4660);REK BACXGROUN:
    3700 SYS(4293):RER RECORS
    3800 SYS(4601)IRER MEAR CHAMNEL
    3900 EYS(4604):REM FAR CHANHEL
    4000 SYS(4708)IREN HET. DATA
    4100 F=PEEK(4083)-2
    4200 IFF<OTHEMF=256+F,POKE4CA4, (PEEX(4004)-1)
    4250 POKE(4083),F
    4300 POKE(PEEK(4084)*256+PEEX(4013) +1), PEEK(37504)&REM RECORD FILTER SETTIMG
    4400 POKE (PEER(4094)*256+PEER(4013));PEER(37506)/REN RECORB'ATTEM.- SETTIRB
    4500 MEXT
    %.4600 POKE36866,1
    4700 FORA={TOS
    4800 POXE36864,(PEEX(36864)AM3254)
    4900 FORZ=OTOJOSNEXT
    3000 POKE36864,(PEEK(36864)OR1) /
    5100 FORZ=0TO30BMEXT
    5200 HEXT
    3300 MEXT
    5400 A=PEEX(4094):256+PEEK(4083)-10IREMSAVE CALIBRATIOMS
    5500 F0RZ=0T08
    5600 POKE( }\alpha+2),\mathrm{ PEEK(1086+2)
    3700 MEXT
    3800 POKE(A-1),M
    5900 60Sus6700
    4000 F = PEEK(4003)-11
    6100 IFF<OTHEMF=256+FIPOKE4084,(PEEX(4084)-1)
    6150 POKE(4003),F
    6200 POKE32,0&POKE53,64
    4300 POKE48,0;POKE49,64
    6400 IMPUT"INPUT BATA FILEMAHE";AS
    l }4500\mathrm{ SY8(5282)
    600 ENP
    G700 FORA=OTOJA&REM FILTER SET 4K TO 250 Hz
    6800 POKE36864,(PEEK(36864)AMD254)
    6900 FOR2=0TOJOINEXT
    7000 POKE36864, (PEEK(36864)0R1)
    7100 FORZ=STOSO:MEXT
    7200 NEXT
    7300 RETURM
    7400 PRIMT"SET FILTERS 10 UK'aPRINT"SET TRIGOER TO 'EXT'N
    7410 PRIMTOMEAR HIC. FIRST. 'PRESS A KEY TO CONTINUE"
    7500 GETAB&IFA&=*"60T07500
    7600 8Y8(4293)
    7700 8Y8(4096)IREM CALIJRATE MEAR MIC.
    7800 PRIMT=NOM 2WD. MIC. PRESS A KEY TO CONTIME*
    7900 GETA&:IFAS="0ger07900
    9000. 5YS(4293)
    8100 8YS(4105)
    |200 RETURM
    REABY.
```

```
-. T000 CN=0:CF=0:TU=0;US=0;RF=0:RN=0
    1010 IMPUT"CALIBRATIOM LEVEL OM FAR CHANMEL";L
    1020 IMPUT"HOU HANY PASSES PER BAND";P
    030 P=15360-P:125-1}
    040 OPEN4.4
    1050 NaPEEX(P):REH**:*******NO. PASSES/BAND
    1060 PaP+18REME日sese日e***E**POIMTER TO DATA
    1062 PRIMT"IMPUT CALIBRATIOMS (Y OR M)"
    1064 GET ABSIFAB="-60TO1064
    067 IF As="Y"60T01094
    1070 FORICOTO7STEP7
    080 g0SUB50003REM&*mactecenCALIBRATIOM
    090 NEXT
    0926070 1100
    1094 P=P+10
    1097 IMPUT`MEAR CHANMEL,FAR CHANNEL";CN,CF
    IIOO PRIMTA4,"MEAR CHAMMEL CALIBRAIION=";CN,"FAR CHAMNEL CALIBRATION"";CF
```



```
    -1205 C=0:D=0,MM=0:MF=0
    1210 PRIMTIAIPRIMTI4
    - 1250 PRIMTIA,CHRS(13):G0SUP8000
    1260 PRIMT14,CKR&(124);" CEMTRE FREQUEMCY="250*2^(4-X);TA)(10);
    1265 PRIMTA4,"NO. OF PASSES =";N;TAL(74);CHRS(124)
    267 60SUB8000
    1270 PRIMTE4,CHR&(124);" MEAR CHAMMEL`;TAD(28);CHR&(124); - FAR CHANMEL":
    1275 PRIMTI4,TAD(29);CHRS(124);" MET. DATA";TAB(31);CHRS(124)
    1277 60SUB8000
    1280 PRIMTM4,CHRE(124);" RMS (DB)";TAB(4);CHROA124);" RUN.AUE (DJ)";
    1285 PRIMTIA,CHR&(124):* STD.BEV (DB)":
    1290 PRIMTH4,CHRS(124);* RHS (13)^;TAB(4);CHRS(124);" RUN.AUE (DI)";
    1295 PRINTHA,CHR&(124);" STB.DEV (DE)":
    1297 PRIMT14,CHR&(124):" &TURDULEMCE ©:CHRS(124):" TEMP(C)";TAI(S);CHRI(124):
    1298 PRIMTM4," V.IIR.(PEB) #;CHRS(124)
    1299 60SUB8000
    1300 FORZ=1TOM
    1400 AT-PEEK(P)-1/P=P+1/REENE&O*ATTEMUATOR SETTIMS
    1500 IFPEEX(P)<>2*XTHEMPRIMTOERNOR*
    1600 P-P+1
    1610 TP=(PEEX(P) 256+PEEK(P+1))/2500:P=P+2&REM*&TEMP. IM REE.C
    1700 UD=PEEK(P)&2IP &P+1IREMOSQANINS DIRECIIOM IM DEGREES
    1800 FORI=14T035STEP7
    7900 60SUB5000
    2000 HEXT
    2100 IFRM<OTHEMPRIMTIA, "OUERLOAS OM MEAR CHAMMEL':RN=-RN
    2200 IFRF<OTHEMPRIMTE4,"OUERLOAD OM FAR CHAMMEL";RF-RF
    2600 RMaSQR(RH)IRF=SQR(RF)
    2700 BM=200LO0(RN/CN)/L08(10)+94
    2800 BF=20&LOG(RF/CF)/LOC(10)+L+AT
    2050 IFF<060T03800
    2900 C=(ctaN)
    2910 MM=(MN+RM*RM)
    3000 Do(1+RF)
    3010 MF=(MF+RF*RF)
    3100 AN=20-LOB(C/(Z*CN))/LOE(10)*94
    3200 AF=20*L08(D/(2*CF))/LOB(10)+L+AT
    3250 IF2=160T03770
    3300 SN=6aR((MM/Z)-(C/Z)*2)
    3400 SN=-200LOG(1-(SNEZ)/C)/LOB(10)
    3600 SF=SQR((MF/Z)-(D/Z)`2)
    3700 SF=-20:LOB(I-(SF*(Z+F))/D)/LOG(10)
    3750 60703800
    3770 5W=01SF=0
    3800 TV=SQR(-TU-USaUS)
    3805 TR=400=US*TN/(US*US-346:346)
    3810 Y=DN:60SUB7000;Y=AN;60SU17000; Y=SN:80SUB7000
    3820 Y=DFig0SUD7000iY=AFi60SUB7000:Y=5F;G0SUB7000
    3830 Y=TR:GOSUB7000:Y=TP:60SUB7000:Y=WDI60SU87000
    3900 PRIMTA4,CHR&(124);CKR!(27);CHRS(120);CHRS(13)
    4000 NEXT
    4050 F0RO=0T02000:NEXT:60SU28000
    -4100 HEXT
    4 9 0 0 ~ E N B ~
    5000 FORA=2TOC
    3200 POKE(PEEK(43)-256+PEEK(42)+A+8),PEEK(P):PuP+1
    S300 MEXT
    5600 RETURM
    7000 PRIMT:4,CHRS(124);CHRS(27);CHRS(108);IMT(Y)1000)/1000;CHRS(13);TA)(13);
    7100 RETURM
    1000 FORO=0TOI27;PRINTIA,"-";sMEXTIPRIMTI4,CHRS(13),
    B100 RETURN
REABY.
```

```
    500 IFDA.20G0T0905
    600 CN=0:CF=0: TU=0:US=0:RF=0:RH=0
    700 REK VERSIOM - TO PRODUCE DATA.FILE :2OPASSES,5FRERS,NDAYS
    800 DA=1
    810 IMPUTDDRIVE NO. (3EEMD)";As
    15 IF A&="J"THEN END
    820 IMPUT"FILE MAME";B!
    30 A$=AS+"&"+1SILOADAB,8
    905 REH EXE PETP.FOR
    110 DATA 69,88,69,32,80,69,84,80,46,70,79,82,13,-1
    20 READA
    30 IFA<OTHEM970
    40 POKE165,A
    50 SYS(41889)
    60 6050920
    970 SYS(805)
    900 POKE1,0IPOKE2,3
    1010 INPUT"CALIBRATION LEVEL ON fAR CHANMEL";L
    1020 INPUT"NO. PASSES/DAND*;XX
    1030 REMP=128498REK START OF DATA
    1040 P=3*4096+12*256-XX*125-11
    1050 NaPEEK(P):REH**********NO. PASSES/BANB
    1060 PaP+1;REK**E*&*********POIMTER TO DATA
    1062 PRIMT"IMPUT CALIDRAIIONS (Y OR M)*
    1064 GET ASBIFASENCGOTO1064
    1067 If Af="Y"G0101094
    1070 FORBEOTO7STEP7
    1080 GOSUB5000IREM*&********CALIBRATIOM
    1090 NEXT
    092 60TO }110
    1094 P=P+10
    1097 INPUT"NEAR CHAMNEL,fAR CHAMNEL";CM,CF
    100 PRINT"MEAR CHANMEL CALIBRATIOM=";CN,"FAR CHANMEL CALIBRATION=";CF
    1200 FORX=OTO4BREN**:8*:*:***FILTER COUHTER
1205 C=0&&=0:KN=0:MF=0
    1300 FDRZ=1TO10
    1400 AT=LOG(PEEX(P))/LOG(2):P=P+1:REM*日***ATTENUATOR SETTIMB
    1500 IFPEEK(P)<>2*(4-X)THEMPRINT"ERROR"
    1600 P=P+1
    1608 REH TP=(PEEX(P)*256+PEEK(P+1))/2500
    1610 P=P+2:REN BY-PASS TEMP.DATA
    1800 FORB=14TO3SSTEP7
    900 GOSUA5000
. .2000 MEXT
    -2040 REM UD=PEEK(P)*2;REK****UIMD DIRECTIOM IN DEGREES
    2050 P=P+1:REK BY-PASS U.DIR. DATA
    2100 IFRN<OTHEMPRIMT"OUERLOAD ON NEAR CHANNEL"IRN=-RN
    2200- IFRF <OTHEMPRIMT"OUERLOAD OM FAR CHAMMEL"RFm-RF
    2600 RH=SQR(RW):RF=SQR(RF)
    2700 DN=20*LOG(RH/CN)/LOG(10)+94
    2800 DF=20*LOG(RF/CF)/LOG(10)+L4AT
    3800 TU=SQR(-TU-US*US):TV={US*US-346*346)
    3005 TR=400*US*TU/TV
    3810 VV=(TV/(.44:309:309))*2
    3820 D=USR(DN-DF):D=USR(TR):D=USR(NU):REM:D=USR(UD):D=USR(TP)
    3830 SY5(3:256+26)
    3840 SYS(805)
    4 0 0 0 ~ N E X T ~
    4 1 0 0 ~ N E X T
    4200 60T0810
    5000 FORA=2TO
    5200 POKE(PEEK(43)*256+PEEK(42)+A+B),PEEK(P):P=P+1
    5300 MEXT
    $600 RETURN
READY.
```


[^0]: 4.3.1 Microcomputer Interface Development

 Comprehensive interface circuitry was designed, developed and evaluated to permit efficient communication between the microcomputer and its various

