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ABSTRACT 

Fire has been a major cause of ship's accidents throughout maritime history. It is by 

far the most serious threat to life and the environment as passenger ships get larger 

and more sophisticated. It is also impossible to protect a passenger vessel against all 

hazards. Despite the fact that a passenger ship contains potential fire hazards in the 

engine room space, accommodation zone and electrical systems, etc, the single most 

important fire hazard onboard a ship may be the man himself, either unintentionally or 

intentionally. 'Fire safety on passenger vessel' has continued to be the focus of 

attention on passenger ships. 

The work described in this thesis is concerned with the application of Formal Fire 

Safety Assessment to passenger ships. The traditional way of conducting a Formal 

Safety Assessment (FSA) employs typical fire safety analysis methods that require a 

certain amount of data. Most fire accident data available for passenger vessels is 

associated with a high degree of uncertainty and considered to be unreliable. As such, 

the research carried out in this thesis is directed at the development of novel fire safety 

analysis methods to address this problem. 

This thesis proposed several subjective fire safety analysis methods for passenger 

vessels within the FSA methodology. Also, it concentrates on developing an advanced 

approach for passenger ships. 

A few novel safety analysis and synthesis methodologies are presented to integrate 

fire safety assessment with decision-making techniques so that fire safety can be taken 

into account from the concept design /operation stages of passenger ships. This is to 

ensure a more controlled development process permitting decisions regarding design 

and operation to be made based on fire safety assessment. 

Finally, this thesis is concluded by summarising the results of this research project and 

the areas where further effort is required to improve the developed methodologies. 
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CHAPTER 1 - INTRODUCTION 

Summary 

This chapter describes the concepts of fire safety assessment and reliability analysis 

with some problems encountered in applying the existing reliability and safety 

analysis methods in quantitative safety appraisal studies. especially in the early 

concept design stage. This chapter also outlines a philosophy aimed at facilitating the 

development of a formalised environment for safer ships by adopting an integrated 

approach, involving the incorporation of fire safety assessment with technological 

design and development in an iterative manner. Finally, the objectives of this work are 

described and the scope of this thesis is outl ined. 

1.1 Background in Fire Safety 

Statistics indicate that a ship is lost to fire every ten days [LR, 1988]. The history, 

philosophy and development of marine fire protection are best traced by focusing on 

passenger ship. Passenger vessels have the largest potential for loss of life and are the 

subject of long-standing international attention and regulatory effort [Ohnstad, 1991]. 

Therefore, the following overview primarily regards such passenger vessels and 

should aid readers in understanding the philosophy that was employed in developing 

the current international requirements. 

The tragic sinking of the Titanic on the 14th April, 1912 focused international concern 

on the Safety Of Life At Sea (SaLAS), and in 1914 the first international conference 

was held to discuss shipboard safety [Ohnstad, 1991]. This conference focused on 

subdivision and lifesaving. Concerns regarding fire safety were not addressed until 

1929 when a second conference was held. This conference produced the Convention 

for SaLAS that was later ratified in 1936. 

A tragic fire aboard the US flag passenger vessel Morro Castle in 1934 claimed the 

lives of 124 persons and fuelled public sentiment to improve vessel fire safety. The 



US Senate Committee on Commerce formed a special subcommittee on fireproofing 

and fire prevention to develop recommendations for fire safety standards on ships. 

The subcommittee noted the vulnerability of complex automatic and manually 

controlled fire detection, extinction systems and agreed that the most fool-proof 

approach would be construction of such nature that it would confine any fire to the 

space in which it originated. This remains a key principle in the current international 

regulations. The latest Convention, SOlAS 1974, came into effect internationally in 

May, 1980. It has been amended several times since then. 

As far as the marine industry is concerned, tragic accidents have focused world 

opinion on ship safety and operation. This demand for improved fire safety requires 

comprehensive fire safety analyses to be developed in order to identify ways to 

control risks. Such fire safety analysis models will ensure efficient, economic and safe 

ship design and operation. 

1.2 Background to Fire Safety Assessment 

It is becoming necessary to develop and apply more rational techniques which permit 

quantification of safety, reliability and risk of failure [Aldwinckle & Pomeroy, 1982]. 

By using a rational approach based on reliability techniques and the novel techniques 

as proposed in this thesis, fire safety assessments can be conducted for any project at 

the concept design stage, the later design stage and operational stage. The author does 

not wish to suggest that these novel techniques should replace the well-proven 

methods used in maritime and other industries for safety assurance but they might be 

used as an enhancement where circumstances dictate, in particular at the early concept 

design stage. These novel techniques can assist designers and operators in analysing 

the effects of failure on safety and operability, especially for systems with a high level 

of innovation. 

Some commercial institutions have focused on developing databases of maritime 

accidents [Hill, et aI., 1994] [OREDA, 2002] [P & I Club, 2003]. Unfortunately, 

accident statistics were not gathered systematically in the past and there is a lack of 

data. Furthermore, the available information is often not gathered consistently and as a 
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result its users cannot often be sure whether a set of data is really applicable to the 

situation in question. 

The reliability and safety assessment methods are well established and universally 

applicable being a combination of logic and statistics. It is anticipated that ships, and 

especially those passenger vessels will become more dependent on complex systems 

of integrated components and such methods of analysis will not only be more relevant 

but also become a necessary part of both design and operation. Owing to the growing 

level of innovation of the modern engineering products such as passenger ships, novel 

methods are required to deal with the reliability and fire safety aspects, in particular, 

at the early concept design stage. 

Fire safety analysis is a very complicated subject where safety is determined by 

numerous factors including fire. Many fire safety assessment techniques currently 

used in maritime industries are comparatively mature tools. However, in many 

circumstances, the application of these tools may not be suitable or give satisfactory 

results due to the lack of safety related data or the high level of uncertainty involved 

in the safety data available. Novel fire safety analysis methods are therefore required 

to identify major hazards and assess the associated risks in an acceptable way in 

various environments where mature tools cannot be effectively or efficiently applied. 

The literature search carried out by the investigator indicates that although some work 

has been conducted in this area, very limited formal safety based decision support 

tools have been developed and applied to a stable environment in the maritime 

industry. Fire safety based decision support techniques may help the designers in 

determining where risk reduction actions are required, defining appropriate risk 

reduction measures and reducing cost without increased risks to the maritime system. 

Some novel fire safety assessment methods and safety-based decision support tools 

will be developed to facilitate fire safety analysis in such situations. 

3 



1.3 Aim and Objectives 

The main aim of this project is to develop an environment that adopts an integrated 

approach to the management and control of the passenger vessel design and fire safety 

issues involved and their interaction. 

The main objectives of this research are: 

1. To identify fire safety assessment techniques currently used in the passenger 

ships, which include methods for hazard identification, risk quantification and 

decision-making. 

2. To study the Formal Safety Assessment (FSA) approach In maritime safety 

applications. 

3. To develop novel fire safety assessment techniques and decision support 

approaches to facilitate maritime safety analysis of passenger vessels. 

4. To identify the best way whereby safety on board passenger ships can be assured 

and to develop a suitable model to assist in its implementation. 

5. To identify further research areas required to be exploited in the future. 

1.4 Scope of the Work 

The fire safety analysis and decision support methodologies developed and described 

in this work are of general nature, therefore they are theoretically applicable to the 

design and safety related assessment of a wide range of complex engineering products 

such as passenger vessels. They are also appropriate for other disciplines of 

engineering work, especially in situations when the relevant safety-related information 

is lacking. The developed methodologies can be used together with the conventional 

methods in fire safety assessment, in particular for engineering products with a high 

level of innovation. The body of the thesis is structured in ten chapters. A brief outline 

of the content of each chapter is given below. 



Chapter 2 outlines a comprehensive statistical data analysis of the vessels. The data 

that was collected and analysed from various sources, are presented in the form of 

graphs and tables to enable easy reading. The findings of the accident data gathered 

and the problems of lack or incomplete data to carry out passenger vessel fire safety 

assessment are discussed. 

Chapter 3 discusses the inception of FSA. The concept of FSA consists of five steps, 

which are the identification of hazards; assessment of the risks associated with those 

hazards; identification of ways of managing the risks; cost benefit assessment of the 

identified risk control options; making decisions on which options to select. These 

five steps are briefly discussed, highlighting the interaction and continuity of each 

step. Reiteration within the FSA process is expressed by means of a flowchart. A 

general framework for the application of the FSA to generic passenger vessel is 

proposed and is demonstrated using a test case. The typical risk and fire safety 

assessment techniques are also described. The advantages and disadvantages of each 

method are reviewed. 

Chapter 4 proposes an approach for fire modelling of accommodation zone of 

passenger ships. The example performed summarises the basic assumptions, the 

models and the calculation procedures employed to analyse a possible fire scenario in 

an accommodation zone of a passenger ship. 

One of the most important means to avoid catastrophes in case of fire onboard 

passenger ships is to ensure that the passengers can escape in a quick and safe manner. 

One of several precautions to take is to try to control the spread of the smoke in a 

simple and reliable way. In this way the area where people are in contact with the 

smoke can be minimised and better visibility to escape from the smoke can be 

secured. Chapter 5 develops in smoke control philosophy for accommodation area. 

Chapter 6 describes a new approach for evacuation analysis usmg computer 

simulation. This chapter includes the simulation of 90 passengers and 10 crew 

members mustering on a vessel with 6 decks. After this, simulation of different 

scenarios is discussed. 
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Chapter 7 presents a risk modelling approach which incorporates the use of 

approximate reasoning method in engine room applications. This chapter concentrates 

on the fire risk evaluation of the major hazards threatening the engine room overall 

rather than focusing on specific areas of the design. A case study of the risk to 

passenger ship engine room due to fire during operation is used to illustrate the 

application of the proposed risk assessment model. 

Chapter 8 examines a new design-decision support framework for evaluation of 

machinery space. In this chapter, a design-decision support framework using a 

composite structure methodology grounded in approximate reasoning approach and 

evidential reasoning method is suggested for design evaluation of machinery space of 

a ship engine room at the initial stages. 

Chapter 9 proposes a framework for the identification and quantification of fire in 

passenger vessel operation. The method uses Analytical Hierarchy Processing (AHP) 

theory to rank the preference of each risk control option. The advantages of 

employing the AHP technique are discussed. 

Finally conclusions and recommendations are provided in Chapter 10. 

The logical sequence and interrelations among the chapters of the thesis are illustrated 

in Figure 1.1. 

1.5 Contributions and Dissemination 

This thesis proposed several subjective fire safety analysis methods for passenger 

vessels within the FSA methodology. Also, it concentrates on developing an advanced 

approach for passenger ships. 

A few novel safety analysis and synthesis methodologies are presented to integrate 

fire safety assessment with decision-making techniques so that fire safety can be taken 

into account from the concept design /operation stages of passenger ships. This is to 
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ensure a more controlled development process permitting decisions regarding design 

and operation to be made based on fire safety assessment. 

In general, the results of the project can be tailored for fire safety analysis of an: 

maritime engineering product with domain-specific knowledge and therefore can be 

used in many engineering applications. 

Investigation results and findings are made available by publications in journals and 

presentation at international conferences. Some publications arising from this 

investigation are listed in Appendix 1 at the end of this thesis. 
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Figure 1.1. Structure of the thesis. 
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CHAPTER 2 - A STATISTICAL STUDY OF PASSENGER 

VESSELS 

Summary 

This chapter briefly reviews the current rules and regulations governing passenger 

ships and presents the fire safety programmes implemented by the governing bodies. 

This chapter demonstrates that there is a need for improvement in fire safety 

performance. 

2.1 Introduction 

The most recent biggest passenger vessels have been designed to carry more than 

3,000 passengers, 1,500 crew and other staff members. The needs of the market will 

probably lead in the near future to the building and operation of passenger ships with 

more and more passengers on board, suited to different types of clients (couples, 

families and groups), with large public spaces (restaurants, cinemas, discos, casinos 

and sports and other forms of entertainment) and very high comfort on board. The 

setting inside the ship is to be at least as beautiful and impressive as the setting 

outside. 

Due to world cruise demand, which foresees doubling the number of passengers by 

the year 2010, the building of large passenger ships is expected to growing carry on. 

The International Maritime Organisation (IMO) Secretary General [IMO, 1999], while 

recognising the achievements of the shipbuilding and ancillary industries in delivering 

gigantic passenger ships embodying state-of-the-art technology, expressed the wish 

that the IMO undertake a global consideration of safety issues pertaining to passenger 

ships. with particular emphasis on large cruise ships. 



Several questions may arise: 

1. What are the necessary solutions to deal with safety of these vessels? 

2. Can present rules and regulations, concerning the safety of the ship, passengers 

and crew but derived from ships of smaller dimensions, cope with such an 

explosion of needs and creativeness? 

3. Safety records of incidents and accidents of passenger ships are good, especially 

for the latest generation of ships, but are the present solutions adequate to cope 

with the above mentioned growth and the needs of this industry? 

The present large passenger ships are built in accordance with international 

regulations derived from experience in the past for ships of smaller dimensions. 

However, a lot of improvements have already been foreseen by the designers, often 

going beyond the sole strict application of present rules and regulations, taking into 

account the number of passengers and crew on board [Cazzulo & Fanciulli, 2000]. 

The most interesting features presently foreseen or under discussion for future new 

buildings are about fire safety and means of escape and evacuation. For some of these 

issues, IMO, International Organization for Standardization (ISO) and International 

Association of Classification Societies (lACS) provide guidelines in order to clarify 

the matter on an international basis and contribute to developing appropriate 

regulations, rules and standards, where necessary. 

The following innovative solutions are of instant relevance to fire safety: 

1. Special purpose smoke detectors installed in potentially high fire risk spaces, 

such as inside the galley greasy exhaust ducts, and additional automatic local 

extinguishing (water-spraying) systems installed in machinery spaces. 

2. Automatic/manual means to control the interaction between the smoke 

extraction, fans, dampers, Heating, Ventilation and Air Conditioning (HV AC) 

and the fire detection and extinguishing systems. 
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3. Use of visual display units to simplify and reduce the number of mimic control 

panels and of audible and visual alarms for monitoring the status of generaVfire 

alarm system, public address system, fire dampers, Hi-Fog system, CO2 release 

and alarm system, etc. 

The following innovative solutions are of instance relevance to escape and evacuation: 

1. Means of escape to avoid bottle necks in corridors and stairways, theatres and 

atriums designed to accommodate a large number of people, position and 

dimensions of muster stations evaluated using evacuation analysis. 

2. Escape routes designed to fit additional berths in cabins, exceeding the effective 

total passenger capacity and allowing more flexible booking in relation to clients 

need. 

3. Use of alternative lifesaving appliances to lifeboats, such as chutes and slides 

associated with life-rafts. 

The above mentioned solutions are often based on rules, guidelines and industry 

standards, which are not compulsory but are instead applied on a voluntary basis. 

2.2 Accident Data 

The information from international statistical sources shows that main casualty 

categories are machinery damage, stranding, collision and fire and explosion 

[Norman, 1997] [Waite & Aston, 1999] [Guillaume, et aI., 2003]. Fire accidents have, 

however, not been reduced to the same extent as the other accident types during the 

1988-1991. Fires and explosions have also caused great concern in relation to 

passenger transport (cruise ships and ferries) [Rensvik, et aI., 1994]. 

The accident data presented in this section are predominantly gathered from the 

Lloyd's Register [Aldwinckle & Mitchell, 2000]. The LR received 8,744 accident and 

incident reports of all ships in 2000. Accidents to passenger ships accounted for 457 
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of those reports. The data presented here is collected from 1990 to 1999 and reflects 

all the reported incidents and accidents relating to all kinds of vessels. 

For all ships losses, in Figure 2.1 shows the 35% of these were caused by machinery 

and hull damage, 20% by wrecked and stranded, 13% by frre/explosion, 13% by 

foundered, 11 % by collision, 6% by contact and 2% by miscellaneous. Also, the graph 

indicates that the percentage of each accident events involving the passenger ships. 

Stranded/wrecked represents 26% of the total losses. Fire risks remain the second 

largest contributor with 250/0, contributing 18% of hull/machinery damage 11% of 

contact, 9% of collision, 8% of foundered and 3% of miscellaneous. 

II 

II 

II 

II 

All ships 
II 

• Pasaanger ships 

II 

c_, -. 
Figure 2.1. Serious casualties ship losses (1990-1999). 

To determine the severity of the accidents on cruise ships, data reflecting the accidents 

to vessels with the fatalities caused are gathered and presented in Table 2.1. This table 

shows that 51.41 % of the total fatalities were caused by collision accidents on vessels 

and 48.47% by fire accidents [Terje & Arnstein 2000]. 
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Table 2.1. Cruise ship fatalities (1963-1997). 

Cause Fatalities % 

Collision 436 51.41 

Grounding 1 0.12 

Impact 0 0 

Foundering 0 0 

Fire 411 48.47 

Total 848 100 

Table 2.2 gives the detailed evacuations by accident cause from 1963 to 1997 

[Skjong, et aI., 1997]. From this table, it is noted that a great proportion of cruise 

vessel evacuation accidents (56.25%) is caused by fire. 

Table 2.2. Cruise ship evacuation (1963-1997). 

Cause Evacuation % 

Collision 3 6.25 

Grounding 15 31.25 

Impact 2 4.17 

Foundering 1 2.08 

Fire 27 56.25 

Total 48 100 

2.3 Data Analysis 

In many cases of the passenger vessel accidents examined, information is incomplete 

or lacking. This makes it difficult to analyse the events that lead to the accident. 

The changes to the SOLAS Convention which had arisen as a result of major 

accidents such as Scandinavian Star (Fire). The Amendments to SOLAS as a result of 

the Scandinavian Star disaster were balanced as follows: 

1. 3 amendments preventing fires from starting ( 6% of regulation changes) 
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2. 21 amendments preventing fires from escalating (43% of regulation changes) 

3. 25 amendments to evacuation arrangements (51 % of regulation changes) 

It can be reasonably expected that if maritime regulators had been able to agree a 

proactive approach with the industry, the regulatory effort might have concentrated on 

the accident initiation and accident escalation prevention stages rather than on 

mitigation. However it is not possible to take an objective view following a disaster. 

Survivors accounts of how their escape could have been made easier if particular 

equipment or systems have been in place cannot be ignored by regulators. The 

regulator cannot argue against imposing additional safety requirements of little or no 

value because the regulator has lost credibility as a result of the accident. It is after all 

difficult to argue that there is little likelihood of a scenario re-occurring if the 

regulator has failed to predict it in the first case. Also, in the wake of an accident the 

operator will be represented by corporate spokespersons but making declarations to 

the effect that 'the operation met every regulatory requirement' often with a subtext 

that the regulator should have prevented the accident by imposing higher regulatory 

requirements [Wright, 2000]. 

It is difficult to state what fire risks are to be counteracted, which measures are the 

most needed, whether the current measures are effective without a clear definition of 

the targets of the acceptable, tolerable or unacceptable risks. Answers to these 

questions can be obtained by applying systematic risk based methodologies aimed at 

considering the ship's fire safety as a whole, including protection of life, property and 

the environment, such as the so called Formal Safety Assessment (FSA). The FSA 

could be useful to identify the most appropriate risk control and mitigation options 

and to compare different conventional and non-conventional solutions, for instance in 

terms of their implications on safety and reliability. 

However, to become useful, the FSA needs a lot of work to implement all necessary 

information and tools. It is evident that such an exercise becomes effective if it is 

carried out on a wide and cooperative basis, with the support of all interested parties. 

e.g. owners, operators, insurers. administrations, classification societies. etc. FSA will 

then play an important role in the design and operation of the next generation of 
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passenger ships and offer considerably help to identify the most appropriate fire risk 

control options relevant to the transport of large numbers of passengers on board these 

ships. 

2.4 Conclusion 

A review has been performed on available incident data relevant to passenger vessels. 

However, the database still lacks sufficient information about the casual relationship 

between the causes and effects of the accidents/incidents. 

Data interpretation should be carried out with caution, as it is highly likely that there 

is some degree of under reporting of incidents. This would entail that the actual 

number of deaths, accidents and vessel losses, would be higher than the figures 

presented here. However, the data gathered and analysed in this chapter show that 

there is a real problem in the cruise industry. The frequency of fire accidents and the 

associated severity are still high by maritime standards. 

The work in this thesis attempts to provide fire safety assessment methods that could 

identify the high-risk areas on a passenger ship, thereby justifying and implementing 

fire risk management solutions. It can be concluded that due to the lack of proper 

reporting of accidents/incidents on passenger vessels, subjective methods of risk and 

safety analysis may be more favourable. 
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CHAPTER 3 - SAFETY ANALYSIS METHODS AND FORMAL 

SAFETY ASSESSMENT (FSA) OF A GENERIC PASSENGER 

VESSEL 

Summary 

This chapter gives a detailed review of some of the typical safety analysis techniques 

(including fire modelling and evacuation modelling techniques) currently in use. Each 

method's characteristics are investigated. The FSA approach is described and 

discussed in the context of a trial application to a generic passenger vessel. 

3.1 Safety Analysis Methods 

3.1.1 Introduction 

When studying the safety aspects of a large ship, it is almost impossible to treat the 

system in its entirety. A logical approach may be to break down the system into 

functional entities comprising subsystems and components. Safety modelling of these 

functional entities can be carried out in such a logical structure, then the 

interrelationships can be examined and finally a system safety model can be 

formulated to assess the safety parameters. The formulation of a system safety model 

can be difficult for a large and sophisticated marine system and thus requires 

approximations and judgement [Pillay & Wang, 2003]. 

It is very beneficial to apply safety analysis methods effectively and efficiently in the 

design for safety process. This chapter specifies how to deal with such problems. This 

requires an understanding of the concepts of qualitative and quantitative safety 

analysis. 

Safety assessment is a logical and systematic way to seek answers to a number of 

questions about the system under consideration. The assessment of risk associated 
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with an engineering system or product may be summarised to answer the following 

four questions: 

1 . What can go wrong? 

2. How likely are the potential problems to occur? 

3. How severe might the potential problems be? 

4. What lessens can/should be learn from the risk? 

The answer obtained from these questions will provide the information about the 

safety of the system. Such information is interesting but is of no practical significance 

unless there is a method for controlling and managing the risk levels of specific 

hazards to tolerable levels. Hence, a complete safety assessment will require a fifth 

question to be answered: 

5. What measures need to be undertaken to reduce the risks and how can this be 

achieved? 

Safety analysis can be generally divided into two broad categories, namely, 

quantitative and qualitative analysis methods. 

3.1.2 Qualitative and quantitative safety analysis 

Depending on the requirements of safety analysts and the safety data available, either 

a qualitative or a quantitative analysis can be carried out to study the risks of a system 

in terms of the occurrence probability of each hazard and its possible consequences. A 

severe hazard with a high occurrence probability requires priority attention and a 

hazard which is not likely to occur and which results in negligible consequences 

usually requires minimal attention [Aldwinckle & Pomeroy, 1983]. 

3.1.2.1 Qualitative safety analysis 

Qualitative safety analysis is used to locate possible hazards and to identify proper 

precautions (design changes, administrative procedures, etc.) that will reduce the 
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frequencies or consequences of such hazards. It should become an integral part of the 

marine design process. It may be performed with one or more of the following 

objectives [Pillay & Wang, 2003]: 

• To identify hazards in the design. 

• To document and assess the relative importance of the identified hazards. 

• To provide a systematic compilation of data as a preliminary step to facilitate 

quantitative analysis. 

• To aid in the systematic assessment of the overall system safety. 

Engineering judgement and past experience are required to carry out a qualitative 

safety analysis. Measures can be taken to eliminate or control hazards based on the 

information produced from qualitative safety analysis. 

3.1.2.2 Quantitative Risk Analysis (QRA) 

QRA is a valuable tool to establish valid and more precise relationships between the 

costs of safety, maintenance, etc. and the benefits of maintaining production in a safe 

and ecologically acceptable environment. These relationships can be used to compare 

and evaluate different risk scenarios and different design or mitigation proposals so 

that designs and operating procedures can be optimised to meet commercial 

requirements and external standards at minimum cost. This leads to more realistic, 

moderate and efficient conclusions than analysis based on regulations only, where the 

issues are only good (if the regulation is applied) or bad (if not applied) 

[SAFERRELNET, 2002]. 

Although QRA started in the nuclear and chemical process industries, the combined 

effects of commercial pressure. statutory regulation, and public concerns mean that 

increasingly it is seen to be of benefit, or at least potential benefit. in other industries 

and activities. 



The purpose of QRA is to describe the risk by a value that is measurable with criteria 

or other values associated with an operation and design. Risk is a multi-dimensional 

concept involving hazard frequency and its consequences. QRA involves the 

estimation of the frequency and consequences of a range of hazard scenarios and of 

individual and societal risk (or economical risk). QRA is normally a part of a risk 

assessment. The risk assessment process is depicted in Figure 3.1 [Lee, 1996]. 

The purpose of risk assessment based on QRA is normally to [SAFERELNET, 2002]: 

• Assess the risk of fatality or serious injury to persons (workforce or the members 

of the public). 

• Identify measures to reduce the overall risk and assess the effectiveness of such 

measures. 

• Assist in the selection of preferred options for enhanced safety. 

• Assist in the setting of Performance Standards for design, monitoring and audit 

purposes. 

• Assist cost benefit assessment of possible safety expenditure. 

• Assist in decision making on whether the risk is tolerable against the risk 

acceptance criteria. 

• Assess the environmental risk. 

• Assess the risk to the asset and / or revenue. 

The results of a QRA may not be precise and this should be recognised when they are 

used for making decisions. This is not that important when comparing several designs, 

but it can lead to substantial problems when the aim is to assess absolute figures. 

Therefore, QRA results should always be carefully reviewed in the context of the 

specific circumstances of a particular decision or requirement. There is no 

standardised method for carrying out a QRA. 

Sensitivity to variations in the assumptions made should be checked to provide an 

indication of the criticality of the input data. Where necessary, a more detailed 

analysis of the most critical data should be conducted to improve the confidence in the 

results. 
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~ 
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~ 
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~ 
- Develop escalation scenarios 

QRA 
~ 

Identify mitigating features 

~ 
Estimate consequences 

~ 
Estimate frequencies 

~ 
Calculate risk 

~ 
Compare with risk criteria 

~ 
1. Accept system 

2. Modify system to reduce risk/cost 
3. Abandon design/operation 

Figure 3.1. QRA with the risk assessment process [Lee, 1996]. 
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The typical methods used in a QRA to estimate the risk are: 

• Event Tree Analysis (ETA). 

• Fault Tree Analysis (FTA). 

• Cause-Consequence Analysis (CCA). 

• Failure Mode, Effects and Criticality Analysis (FMECA). 

• Risk Matrix Approach. 

• Fuzzy Sets Theory. 

3.1.2.2.1 Event Tree Analysis (ETA) 

ETA utilizes decision trees to graphically model the possible outcomes of an initiating 

event capable of producing an end event of interest. This type of analysis can provide 

(1) qualitative descriptions of potential problems (combinations of events producing 

various types of problems from initiating events) and (2) quantitative estimates of 

event frequencies or likelihoods, which assist in demonstrating the relative importance 

of various failure sequences [Henley & Kumamoto, 1996] [Villemuer, 1992]. ETA 

may be used to analyze almost any sequence of events, but is most effectively used to 

address possible outcomes of initiating events for which multiple safeguards are in 

line as protective features [ASS, 2003]. 

An example of a simple Event Tree (ET) is shown in Figure 3.2. The fire protection is 

provided by a sprinkler system. A detector will either detect the rise in temperature or 

not. If the detector succeeds the control box will either work correctly or not - and so 

on. There is only one branch in the tree that indicates that all the subsystems have 

succeeded. 

The ET that calculates the outcomes of the scenario will be more detailed in Chapter 4. 

3.1.2.2.2 Fault Tree Analysis (FTA) 

Compared to an ET the Fault Tree (FT) analysis works in the opposite direction. It is a 

deductive approach, which starts from an effect and aims at identifying its causes. 

Therefore a FT is used to develop the causes of an undesirable event. It starts with the 
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event of interest, the top event, such as a hazardous event or equipment failure. and is 

developed in a top down manner [SAFERRELNET. 2002]. 

Initiating 
Event 

Fire 
starts 

Fire 
detected 

Yes 

No 

Fire alarm 
Works? 

Yes 

No 

Sprinkler 
Works? 

Yes 

No 

Yes 

No 

Figure 3.2. A simple ET structure. 
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FT A is both a qualitative and a quantitative technique. Qualitatively it is used to 

identify the individual scenarios (so called paths or cut sets) that lead to the top (fault) 

event, while quantitatively it is used to estimate the probability (frequency) of that 

event. 

A component of a FT has one of two binary states, either in the correct state or in a 

fault state. In other words, the spectrum of states from total integrity to total failure is 

reduced to just two states [SAFERRELNET, 2002]. 

A FT is basically a graphical representation of the Boolean (logical) equation which 

links the individual component states to the whole system state. Therefore, it 

encompasses all the possible states of the whole system. These states are split into two 

classes according to that the top event is achieved (true) or not (false). 
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The basic elements of a FT may be classed as (1) the top event, (2) primary events, (3) 

intermediate events and (4) logic gates. 

An example of a simple FT with an "AND" gate and an "OR" gate, is shown in Figure 

3.3. 

Top Event 

AND 

Intermediate 
Event 

Figure 3.3. Fault Tree example. 

There are several benefits of employing FT A for use as a safety assessment tool. 

These include: 

• The Fault Tree (FT) construction focuses the attention of the analyst on one 

particular undesired system failure mode, which is usually identified as the most 

critical with respect to the desired function [Andrews & Moss, 2002]. 

• The FT diagram can be used to help communicate the results of the analysis to 

peers, supervisors and subordinates. It is particularly useful in multi-disciplinary 

teams with the numerical performance measures. 
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• Qualitative analysis often reveals the most important system features. 

• Using component failure data, the FT can be quantified. 

• The qualitative and quantitative results together provide the decision-makers with 

an objective means of measuring the adequacy of the system design. 

3.1.2.2.3 Cause-Consequence Analysis (CCA) 

CCA is a marriage of fault tree analysis (to show causes) and event tree analysis (to 

show consequences). CCA is a diagrammatic approach as shown in Figure 3.4. 

Construction of cause-consequence diagrams starts with a choice of a critical event. 

The "consequence tracing" part of a CCA involves taking the initial event and 

following the resulting chains of events through the system. The "cause identification" 

part of a CCA involves drawing the fault tree and identifying the minimal cut sets 

leading to the identified critical event. CCA is extremely flexible as it can work 

forward using event trees and backward using fault trees [Pillay & Wang, 2003]. 

Such a cause-consequence diagram is easy to modify and it can be split in several sub

diagrams. As such, CCA is a realistic and efficient tool to analyse a new system or a 

new procedure. It is a means to gather in a practical way several FTs and it is possible, 

when it has been built completely, to easily derive an equivalent ET. 

3.1.2.2.4 Failure Mode, Effects and Criticality Analysis (FMECA) 

FMECA is probably the most widely applied hazard identification method. It is a 

combination of Failure Mode and Effects Analysis (FMEA) and Criticality Analysis 

(CA). It can be carried out at any indenture level required to examine each failure 

mode of an item and its possible consequences. 
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Figure 3.4. The diagram of cause-consequence analysis. 

The objectives of a FMECA are: 

The defined 
undesired 
event 

Consequence 1 

Consequence m 

I. Identification of each failure mode, of the sequence of events associated with it 

and of its causes and effects. 

2. A classification of each failure mode by relevant characteristics, including 

detectability, diagnosability, testability, item replaceability, compensating and 

operating provisions. 

3. An assessment of the criticality of each failure mode. 

An FMECA may consist of the following steps [MIL-STD-1629 A, 1980]: 

• Define the constraints and assumptions of the analysis. 

• Break down the system to its indenture levels such as the sub-system level and the 

component level. 

• For each item at the level analysed, identify all possible modes of failures and 

respective causes. 

• For each identified failure mode, identify or provide the following information: 

I. All the distinctive operating conditions under which failure may occur. 
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2. The failure rate of the identified failure mode. 

3. The effects (consequences) on the safety and operability of the higher levels 

(including the level analysed). 

4. The possible means by which failure may be identified. 

5. Design provisions and/or actions in operation to eliminate or control the 

possible resulting effects. 

6. The severity class of the possible effects where such a class may be defined by 

one of the following linguistic variables: 

Catastrophic: 

Critical: 

Marginal: 

Negligible: 

Involving death, system loss and/or severe environmental 

damage. 

Involving severe injury, major system damage and/or 

major environmental damage. 

Involving minor injury, minor system damage and/or 

minor environmental damage. 

Involving no injury and negligible damage to the system 

and the environment. 

• Failure consequence probability defining the likelihood that the effects of the 

identified failure mode will occur, given that the failure mode has taken place. 

• Criticality analysis 

Criticality analysis allows a ranking of the criticality of the failure modes of items 

as a function of the severity classification and occurrence likelihood. 

If the probability of occurrence of each failure mode of an item can be obtained 

from a reliable source, the criticality number of the item under a particular severity 

class may be quantitatively calculated as follows: 

where: C = criticality number, 

E/ = failure consequence probability of failure mode i, 

Li = likelihood of occurrence of failure mode i. 



N = the number of the failure modes of the item, which fall under a particular 

severity classification, and 

t = duration of applicable mission phase. 

Once the criticality numbers of the item under all severity classes have been 

obtained, a criticality matrix can be constructed which provides a means of 

comparing it to all other items. Such a matrix display shows the distributions of 

criticality of the failure modes of the item and provides information for assigning 

priority for corrective action. Criticality analysis can be performed at different 

levels. Information produced at low levels may be used for criticality analysis at a 

higher level. 

An FMECA is an inductive process which involves the compilation of reliability data, 

where available, for individual items. Information produced from FMEC A may be 

used to assist in construction of fault trees and also in construction of Boolean 

representation tables [Wang, et aI., 1995]. 

3.1.2.2.5 Risk matrix approach 

The early form of the risk matrix methodology was presented in the [MIL-STD-882, 

1969]. This methodology has founded wide application in many areas of technology. 

The proposition of quantitative risk assessment presented to ships, which was based 

on the risk matrix methodology [Kobylinski, 1997]. The following definition was 

assumed: "Risk is defined as hazard probability times hazard severity 

(consequences)". In generally used terminology risk means the product of the 

probability of accident occurrence and the severity of damages being the results of 

accident. 

Further. the ordered two define the risk category: the level of probability and the 

category of severity. The risk acceptance can be determ ined on the set of these two 

(e.g. intolerable risk, As Low As Reasonably Practicable (ALARP) and negligible 

risk). 
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Data needed to risk assessment by the risk matrix methodology can be obtained from 

the historical records of the analysed system, similar systems or from expert 

judgements. 

The risk matrix approach will be evaluated and used in Chapter 3.2.4 and Chapter -t. 

3.1.2.2.5.1 Risk acceptability criteria 

Acceptance of risk is basically a problem of decision making, and is inevitably 

influenced by many factors such as type of activity, level of loss, economic, political, 

and social factors, confidence in risk estimation, etc. A risk estimate, in the simplest 

form, is considered acceptable when below the level which divides the unacceptable 

from acceptable risks. A better description of risk criteria is as the standards which are 

used to translate risk estimates as produced by a risk analysis into value judgements. 

As far as risk criteria for ships are concerned, the general criteria may include 

[Spouse, 1997]: 

1. The activity should not impose any risks which can reasonably be avoided. 

2. The risks should not be disproportionate to the benefits. 

3. The risks should not be unduly concentrated on particular individuals. 

4. The risks of catastrophic accidents should be a small proportion of the total. 

More specifically, individual risk criteria and social risk criteria need to be defined. 

For example, an estimate of individual risk per annum of 10.7 can be considered as 

"negligible risk"; similarly, an estimate of injuries occurring several times per year, 

can be considered as "unacceptable" [Pillay & Wang, 2003]. 

In addition to the risk matrix, i.e. the boundaries of risk acceptability and 

intolerability, risk criteria, in general, contain recommendations on the tolerability of 

the overall system risk and the extent to which taking further risk reducing measures 

may be justified. 
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3.1.2.2.6 Fuzzy sets theory 

Problems of uncertainty in safety analysis can be treated using two principal types of 

methods involving probability and possibility, respectively. Probability methods deal 

with uncertainty which is essentially random in nature but of an ordered kind. 

Probabilistic methods are based on a mature scientific theory [Apostolakis et aI., 

1993]. Possibility methods (non-probabilistic methods) study problems which are not 

really probabilistic but cause uncertainty due to imprecision associated with the 

complexity of a system as well as vagueness of human judgement. Possibility 

methods often use fuzzy sets, possibility theory and belief functions [Apostolakis et 

aI., 1993]. 

In probabilistic risk assessment, probability distributions are used to describe a set of 

states for a system and to deal with uncertainty in order to evaluate potential hazards 

and assessment system safety. In many cases, however, it may be difficult or even 

impossible to precisely determine the parameters of a probability distribution for a 

given event due to lack of evidence or due to the inability of the safety 

engineer/designer to make firm assessments. Therefore one may have to describe a 

given events in terms of vague and imprecise descriptors such as "likely" or 

"impossible", terms that are commonly used by safety analysts/designers. Such 

judgements are obviously fuzzy and non-probabilistic, and hence non-probabilistic 

methods such as fuzzy set modelling may be more appropriate to analyse the safety of 

systems with incomplete information of the kind described above. 

Fuzzy set modelling can also be used together with Multiple Attribute Decision

Making (MADM) methods to assist decision makers in selecting the winning 

design/procurement proposal that best satisfies the requirement in hand. It can also be 

used together with Analytical Hierarchy Process (AHP) and the Delpli method In 

carrying out design support evaluation [Sii et aI., 2002]. 

In maritime risk assessment. the application of numerical risk criteria may not always 

be appropriate because of uncertainties in inputs [Wang & Kieran, 2000]. 
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Accordingly, acceptance of a safety case/a formal safety assessment is unlikely to be 

based solely on a numerical assessment of risk. In situations where there is a lack of 

safety data for analysis or the level of uncertainty in safety data is unacceptably high, 

fuzzy set modelling may be effectively used as a useful alternative approach by 

maritime safety analysts to facilitate risk modelling and decision making. 

3.1.3 Fire safety modelling 

Zone models have been used since the mid 1970s to predict thermal hydraul ic 

conditions in a fire compartment prior to flashover. The zone model approximation 

treats the compartment atmosphere as two well mixed layers, namely a hot smoky 

layer above a cooler and clearer layer. Such stratification often arises as a result of 

buoyancy, but may be inapplicable in certain situations such as tall stairwells, long 

corridors, or other situations where three dimensional effects are important. Zone 

models apply conservation equations to each layer, with the user specified fire 

providing a source of energy and mass. 

Fire-growth And Smoke Transport (FAS1) is a zone model developed by the US 

National Institute of Standards and Technology (NIST) to predict the smoke layer 

interface height, layer temperatures, surface temperature and combustion product 

concentrations during a fire in an enclosed space [Walter & Richard, 1989]. 

The aspects covered include: 

I. Multiple connected compartments. 

2. Multi fires (constrained or unconstrained). 

3. Vertical and horizontal vents. 

4. Mechanical ventilation. 

5. Conduction through surfaces. 

6. Radiation between fire, layers and surfaces. 

7. Combustion chemistry and resulting toxic concentrations and optical density. 

8. Attenuation by sprinklers. 



At the outset, it is important to note that FAST is intended for use only by those 

competent in the field of fire safety and is intended only to supplement the informed 

judgment of the qualified user. The software is intended to provide quantitative 

estimates of some of the likely consequences of a fire. The model has been subjected 

to a range of verification tests to assess the accuracy of the calculations. Like any 

computer calculation, however, the quality of the calculated result is directly related to 

the quality of the inputs provided by the user. Lack of accurate predictions by the 

model could lead to erroneous conclusions with regard to fire safety. All results 

should be evaluated by an informed user. 

SMARTFIRE has been developed at the University of Greenwich using a combination 

of in-house and proprietary software building blocks [Wang, et aI., 200 1]. The 

software produces reasonable agreement with experimental temperature 

measurements derived for a non-spreading fire in a moderately large ventilated fire 

compartment. The coarse mesh simulation, while performed on a relatively crude 

computational mesh is able to represent the broad features of qualitative trends in the 

observed temperature distributions at the locations quantitatively, temperatures are 

generally over-predicted and the level of stratification within the compartment is not 

well represented. 

LUCIFER enables a deterministic appreciation of the step-by-step propagation of a 

fire after a set time 't'. It also enables the identification of vital functions that will be 

partially or totally destroyed and important zones affected by the fire [Garsmeur & 

Anselme, 1998]. The time parameter 't' corresponds to the sum of the detection time 

and the time needed for the fire crew to contain the fire, in other words to prevent it 

spreading. LUCIFER does not calculate the fire duration through to its extinction by 

quenching, lack of combustible material or through the action of fixed or mobile fire

fighting equipment within the volume formed by the burning zones. 



3.1.4 Evacuation modelling 

The computer simulation models for evacuation analysis that have appeared over the 

last two decades have marked the evolution of evacuation models from 'hydraulic' 

and/or 'ball-bearing' models to behavioural models with adaptive capabilities, which 

can be represented as a simplified method and an advanced method. Today_ over 40 

different evacuation models for aircraft, building, trains and ships exist. While each 

model is very different, they all share common approaches in the way they represent 

the geometrical environment, i.e. the configuration of the structure, the population and 

the behaviour of evacuating individuals. These three constituent components are 

pivotal in defining the nature of an evacuation model [Sharp, et aI., 2003]. Within the 

modelling methodologies adopted, there are a number of ways in which to represent 

the geometry, population and behaviour of the evacuees. To a certain extent, the range 

of models reflects the purpose for which they were originally intended, the nature of 

the developers, and also the availability of computing power at the time of the 

development. In the following an attempt is made to review the computer-based 

implementations of modelling approaches that are widely accepted as applications to 

be used in the maritime environment. 

SIMULEX was originally developed at the University of Edinburgh and is currently 

maintained by IES Scotland. SIMULEX is a model that through the use of a detailed 

spatial representation, concentrates on the physical aspects of the population and the 

way these affect the outcome of the evacuation. It intended to be used as a design tool 

by fire safety engineers and possibly architects and building engineers when devising 

the geometric layout of buildings in the design stages [Thompson, et aI., 1995a, 

1995b, 1996]. SIMULEX can be used to simulate the evacuation of large number of 

people from large multi-floored structures. 

EVACSIM and EVAC are both discrete time step models. EVACSIMwas developed in 

1995 and has been used to model and analyse the evacuation flow for public and 

private facilities (including buildings, stadiums, passenger terminals and offshore oil 

platforms) [Soma, et ai, 1995]. EVAC was developed to comply with IMO regulations 

in addition to Norwegian regulations, which are considerably stricter [Drager & Orset, 

1999]. EVAC is a model that applies a coarse network method of geometry 

33 



representation. This would be supported in that passengers escape via means of an 

escapeway, which is a series oflinked decision points 

maritimeEXODUS is part of the EXODUS suite of software tools based on an 

automatic model developed by the Fire Safety Engineering Group (FSEG) at the 

University of Greenwich. [Galea, et aI., 1996, 1999] [Owen, et aI., 1996, 1998]. The 

suite also exists for use in buildings and aircraft (for aircraft design and certification). 

Recently, FSEG is extending the system for application of marine fields. In 

collaboration with the Canadian company Fleet Technology and the Canadian 

government, a detailed abandonment model is currently under development and a 

series of full-scale trials is being developed in order to collect human performance 

data under different conditions of list. This information will be incorporated with 

maritimeEXODUS along with appropriate modifications to the behaviour sub-model. 

The current prototype version of maritimeEXODUS does not posses marine specific 

data for the performance of passengers under conditions of list and roll. However, 

when this data is available it can easily be incorporated into the model framework. As 

the model has the flexibility to allow the user to alter the entire preset default values, 

it is easily adaptable when new data becomes available. Furthermore, the current 

version of maritimeEXODUS does not include reliable data to represent the 

preparation/ deployment of the escape system or the actual abandonment ofthe vessel. 

Again, these aspects can be included when data become available. 

Evacuability index (Evi) was developed by the Ship Stability Research Centre 

(SSRC) at the Unversities of Glasgow and Strathclyde [Vassal os, et aI., 2001]. Evi is 

passenger evacuation software developed specifically for a ship-sea environment, 

capable of real time evacuation simulation of the most complex of scenarios in the 

largest cruise ships. It represents the state-of-the-art computer simulation-based 

capability for the prediction of passenger mustering and evacuation involving a 

number of escape and rescue scenarios (abandon ship, transfer to refuge centres or a 

combination of these) in a range of incidents (fire, collision, progressive flooding, 

cargo shift, foundering) whilst accounting for ship motions in a sea environment. 

Valuable input and feedback from the owners/operators can help refine and render the 

model a practical tool which, coupled to modelling of uncertainty in all the parameters 

that may affect evacuation times and the ability to play back a given scenario as video. 
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provides the analyst with wide-ranging capability in modelling realistically the most 

complex of evacuation scenarios thus allowing for routine applications of passenger 

evacuation analysis. The latter entails a wide range of evacuation capabilities 

including evaluation of evacuation time, potential bottlenecks. assessment of 

accommodation module layout and sensitivity analyses to assist design for ease of 

evacuation, passenger familiarisation with a ship's environment, "what if' scenarios 

for training, devising effective evacuation planning procedures/strategies and decision 

support to manage a crisis. Evi is available in the form of a computer program that can 

be readily customised to any vessel environment with an efficiently tailored user 

interface and Run Time Simulator (RTS). 

3.1 .5 Discussion 

In this section, typical safety analysis methods, fire modelling and evacuation 

modelling techniques are outlined in terms of their requirements, advantages and 

limitations. Some of these techniques have been successfully used in the industry and 

still continue to be used. However, the application of these conventional techniques to 

passenger vessel fire safety assessment may not be as straightforward as it may seem. 

Certain modifications are needed to enhance the application of such methods to 

passenger ships. These modifications include the ability of the analysis methods to 

handle data that is associated with a high degree of uncertainty and the integration of 

expert opinion in a formal manner where there is no bias of opinion. 

The conventional methods can be used individually or in a combined manner within 

the framework of a Formal Safety Assessment (FSA) process. The FSA process will 

be described and discussed in the next section, detailing how the analysis methods 

outlined can be used effectively together with some of the novel techniques developed 

in the following chapters of this thesis. 
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3.2 Formal Safety Assessment (FSA) 

3.2.1 Introduction 

Traditionally, improvements in shipping safety have emerged in response to major 

accidents. Under FSA, the International Maritime Organisation (IMO),s approach to 

regulation would aim to anticipate accidents through risk assessment and set standards 

accordingly. The loss of the Alexander Kielland semi-submersible and the Piper 

Alpha platforms focussed enormous attention on the unsatisfactory system which had 

seen such structures built to comply with existing rules, but which had been unable to 

prevent disasters costing several hundred lives [Department of Energy, 1992]. 

The Cullen inquiry [Department of Energy, 1992] into the loss of the Piper Alpha, in 

the UK sector of North Sea firmly committed the offshore industry to altering its 

design approval process to embrace formal safety assessment and the safety case. The 

offshore operators have to demonstrate that each of their installations complies not 

only with prescriptive rules, but also meets certain levels of safety. It is an expensive 

and time consuming process, but against the public perceptions of offshore safety. It 

has been heightened by the huge publicity of the Piper Alpha disaster, which clearly 

left no choice for the industry. 

In 1992, the Select Committee of the House of Lords published a report entitled 

'Safety Aspects of Ship Design and Technology' [House of Lord, 1992]. The report 

called for a more scientific approach to ship safety, with an emphasis on performance 

or goal-based rather than prescriptive requirement or the so called safety case regime. 

The UK government responded to the report agreeing that the concept was ideal to be 

worked towards but recognising that it was not a practicable solution at present. 

However, the UK recognised that a number of elements of the safety case approach 

were being progressed, such as the introduction of the International Safety 

Management (ISM) Code and a move towards greater use of performance based 

regulations both at IMO and in Classification Society Rules. As a result, the UK 

submitted a paper to the IMO Maritime Safety Committee drawing on the conclusions 

of the House of Lords Report encouraging the application of the safety case approach 
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to the work of IMO and to shipping. In order to distinguish the approach as applied to 

ships from elsewhere the paper used the term FSA [Sii, 2000]. This is a new approach 

to maritime safety which involves using the techniques of risk assessment and cost

benefit assessment, not for individual ships, but as a basis for IMO's rule making 

process for shipping in general. The UK reasoned that the adoption of FSA would 

enable safety issues at IMO to be prioritised, and regulations derived that are cost 

effective and proportional to risk. 

FSA was seen by the UK in its proposal to the Maritime Safety Committee as 

comprising five steps as follows: identification of hazards; assessment of risks 

associated with those hazards; ways of managing the risks identified; cost benefit 

assessment of the options identified in the previous step; and decisions on which 

options to select [Peachey, 1995]. FSA is designed for application to common safety 

issues for a generic vessel type. In this section, a trial application of the proposed 

formal risk analysis techniques together with the FSA approach to a generic passenger 

vessel is demonstrated. 

3.2.2 Formal Safety Assessment (FSA) 

FSA is a new approach to marine safety which involves using the techniques of risk 

and cost-benefit assessment to assist in the decision making process. The FSA is 

based on QRA and provides applications of QRA to marine transportation. It is a 

structured methodology, aimed at enhancing maritime safety, including protection of 

life, health, the maritime environment and property. 

FSA is thought as a tool to help in the evaluation of new regulations for safety in 

shipping and in comparisons between existing and possibly improved regulations. It 

can be applied by Governmental Administrations and Organisations when proposing 

amendments to safety. It is possible to apply the FSA on the level of classification 

societies, shipyards and ship owners. 

International teams have been developing FSA continuously. The "Interim Guidelines 

for the Application of Formal Safety Assessment to the IMO Rule -Making Process" 
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was produced in 1997 [IMO, 1997a], and the "Draft Guidelines for FSA" was revised 

in 2001 as the report of the Correspondence Group [IMO, 2001a, 2001 b]. The state

of-art report is based on the latter guidelines. 

3.2.3 Basic terminology ofFSA 

The following basic terminology is used within FSA [Wang, 1994]: 

Accident An unintended event involving fatality, injury, ship loss or 

damage, other property loss or damage, or environment damage. 

Accident category A designation of accident reported in statistical tables according 

to their nature, e.g. fire, collision, grounding, etc. 

Accident scenario 

Consequence 

Frequency 

Generic model 

Hazard 

Initiating event 

Risk 

A sequence of events from initiating event to one of final stages. 

The outcome of an accident. 

The number of occurrences per unit time (e.g. per year). 

A set of functions common to all ships or areas under 

consideration. 

A physical situation with a potential for human injury, damage 

to property, damage to the environment or some combination of 

these. 

The first event of the sequence leading to a hazardous situation 

or accident. 

The combination of the probability and the degree of the 

possible injury or damage to health in a hazardous situation. 

Risk contribution The combination of all fault trees and events trees that constitute 

tree the risk model from hazard to outbreak of the categories and 

sub-categories of accidents. 

Risk control A means of controlling a single element of risk. 

measure 

Risk contribution A combination of risk control measures. 

option 

Risk evaluation Criteria used to evaluate the acceptability Itolerability of risk. 

criteria 
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3.2.4 Methodology ofFSA 

FSA methodology comprises the following five steps: 

• Step 1: Identification of hazards. 

• Step 2: Estimation of risk associated with those hazards. 

• Step 3: Development and evaluation of alternative ways of managing those risks. 

which need to be addressed. 

• Step 4: Cost benefit assessment of these alternative risk management options. 

• Step 5: Decision making and recommendations. 

The flow chart between these steps is presented in Figure 3.5. The purpose in Step 1 is 

to identify and generate a prioritised list of hazards, specific to the problem under 

consideration. Hazard identification comprises both creative and analytical 

techniques. The first one should ensure that the identification process is proactive, 

directed not only to the past but also to the events possible in the future. It is carried 

out by the group of experts of various appropriate areas (design, operation, 

management, safety analysis) during structured reviews. The combination of available 

data and judgements is usually used. The review session may last over a number of 

days. The analytical techniques ensure that the previous experience is properly taken 

into account. A coarse analysis of possible causes and outcomes of each identified 

accident category is made by using standard techniques (ETA, FTA, CCA. and 

FMECA. etc.). 
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Figure 3.5. FSA methodology [IMO, 1997a]. 

3.2.5 An example 

Using the risk matrix approach the screening of earlier identified hazards is carried 

out. The available data on the frequency about different outcomes of accident 

scenarios, supported by judgements, are used. The risk matrix and connected 

taxonomies are shown in Tables 3.1-3.3 [IMO, 1997b]. The consequence and 

probability indices used in the matrix are determined in logarithmic scale. A risk 

index may therefore be established by adding the probability/ frequency and 

consequence indices (risk is defined as the product of probability and severity of a 

damage). 

The purpose in step 2 is to estimate the distribution of risk, obviously connected with 

the hazards, which were identified and selected in step 1, and to address high risk 

areas. Risks to people, the environment and property are considered in dependency on 

the issue under analysis. 
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Table 3.1. Frequency indexes. 

Fi Frequency General interpretation 

(Likelihood of occurrence of a 

single event a vessel) 

Fl 10,000 - 100,000 years Extremely remote to extremely improbable 

F2 1,000 - 10,000 years Remote to extremely remote 

F3 100 - 1,000 years Remote 

F4 10 - 100 years Reasonably probable to remote 

F5 1 to 10 years Reasonably probable 

F6 Yearly Reasonably probable 

F7 Monthly Frequent 

Table 3.2. Severity indexes. 

Si Severity Effects on human safety Effects on ship 

1 Minor Minor injuries Local equipment damages 

2 Significant Major injuries Non-severe ship damages 

3 Severe 1 to 10 deaths Severe damages 

4 Catastrophic >10 deaths Total loss 

Table 3.3. Risk matrix. 

Frequency 

Fl F2 F3 F4 F5 F6 F7 

SI Minor 1 2 3 4 5 6 7 

S2 Significant 2 3 4 5 6 7 8 

S3 Severe 3 4 5 6 7 8 9 

S4 Catastrophic 4 5 6 7 8 9 10 

The above purpose is achieved by constructing and quantifying a diagram to display 

the distribution of risk, which is a typical cause-consequence model being a 

combination of FT and ET trees. The quantification is begun from the accident 

categories and then distributed down and up as deep as rationally. The available 

statistic data supported by judgement are used for this quantification. 
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The high risk areas are also addressed by ranking the risks using Frequency-Number 

(FN) diagrams or Potential Loss of Lives (PLL) values. The focus will be on them in 

next step. The best practice is to distinguish three levels of risk: Intolerable, ALARP 

and Negligible. The first level means that the risk cannot be justified except in 

extraordinary circumstances. The third level means that the risk is so small that no 

further precaution is necessary. The ALARP is situated between those two levels. The 

risk of shipping on a vessel should therefore be situated in ALARP range because sea 

travel can never be made so safe that the risk is Negligible [IMO, 2001a]. It is noted, 

that levels of risk for shipping are not quantified to date, though several propositions 

in this area have been elaborated [Skjong & Eknes, 2001] [Soares & Teixeira, 2001]. 

The purpose of step 3 is to propose effective and practical Risk Control Options 

(RCOs). Risk areas needed control are focused, potential Risk Control Measures 

(RCMs) are identified and then grouped into practical RCOs. The latter should 

address both existing risks and risks introduced by future technology, methods of 

operation and management. 

The identification of RCMs is achieved by structured revIew techniques. These 

techniques include risk attributes and casual chains. The first ones relate to how the 

measure might control risk, and the second ones to where risk control can be 

introduced in the sequence of events leading from basic events to damages. 

Works are continued in IMO under development of techniques to identify the various 

influencing factors to risk (connected with the environment, policy, organisation, 

etc.), named 'Regulatory Impact Diagram' [IMO,2001b]. 

RCMs should be aimed at the following actions: (1) reducing the frequency of 

failures, (2) mitigating the effect of failures, (3) alleviating the circumstances of 

failures, (4) mitigating the consequences of accidents. 

The RCMs are grouped into limited number of practical RCOs. When RCOs are 

assigned. the interested entities (stakeholders - person, organization, company, coastal 

state. flag state, etc.), which may be affected by the proposed measures. are identified. 



The purpose of step 4 is to estimate and compare benefits and costs connected with 

the implementation of each RCO. Costs should be expressed in the terms of the life 

cycle costs of under analysis. Benefits may comprise reduction in fatalities, casualties. 

environmental damages and clean-up, indemnity of third party liabilities, etc .. and 

increase in the average life of ships. Using various methods the evaluation of costs 

and benefits can be carried out. 

The effectiveness of RCOs can be expressed by "Cost per Unit Risk Reduction 

(CURR)" and "Implied Costs of Averting a Fatality (lCAF)". 

The purpose of step 5 is to define the recommendations for relevant decision-makers. 

The recommendations can be made in various kinds. The natural kind is the 

comparison and ranking of RCOs in the light of associated costs and benefits and 

identification of the most cost-effective RCO, which keep risk as low as reasonably 

practicable. 

The results of FSA should be evaluated using risk evaluation criteria, but they are not 

set-ups up to now. In the Draft Guidelines [IMO, 2001b], it can be found that "It is 

desirable to determine risk evaluation criteria after wide and deep consideration for 

the use of the organisation and member government(s), which propose(s) new 

regulations or modification to existing regulations." 

3.2.6 Discussion 

The FSA methodology is particularly appropriate to the analysis of regulatory regime 

influencing the risk level of ships and searching safe solutions of them or their 

management. Safety is expressed by risk level connected with the life cycle of an 

analysed ship involving people, property and the environment. Also FSA fulfils the 

postulates of safety science: it treats safety as an attribute of man-technology

environment system and applies the probabilistic apparatus of safety quantification. 

Simultaneously FSA is adapted to analyses in the situations when historical data 
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needed for safety modelling are lacking, and is completed by subjective judgements. 

However, FSA has some deficiencies. 

Several problems have been identified with the use of the current method as proposed 

by the Maritime Coastguard Agency (MCA) to the IMO. These include: 

1. Reliable data is usually not available for passenger vessels - and when it IS 

available, there is a high level of uncertainty associated with the data. 

2. The risk matrix approach is a simple subjective method to quantify the probability 

of occurrence of a hazard and severity of the associated consequences however it 

lacks a formal approach to quantifying expert judgement and opinion. Conflicting 

opinions of two different analysts on the severity of an accident could result in a 

deadlock. 

3. It is usually difficult to quantify the cost and benefits of each RCO for each of the 

identified stakeholders. A more subjective approach is needed to express the 

preference of one RCO over the others. 

3.3 Conclusion 

In this chapter, several safety assessment methods and FSA have been reviewed in 

terms of their characteristics. Some typical fire safety models and evacuation models 

have been briefly studied. The review carried out in this chapter should provide basis 

for further research aimed at facilinating formal fire safety assessment of passenger 

ship. 

The setbacks of the FSA methodology and typical safety analysis techniques 

discussed here are addressed by the development of various methods that are 

presented in the following chapters of this thesis. 
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CHAPTER 4 - FIRE SAFETY ASSESSMENT ON PASSENGER 

SHIPS: APPLICATION TO AN ACCOMMODATION ZONE 

Summary 

This chapter provides an outlook on fire safety assessment, dealing with both its 

applicability to passenger ships and work needed to reach practical applications. A 

methodology is proposed for studying the fire scenarios in a typical ship cabin b) 

using the currently available data including the specific fire load and the sprinkler 

performance (according to SaLAS: Safety Of Life At Sea). An example is 

demonstrated to show the basic assumptions, the models and the calculation 

procedures required to analyse a possible fire scenario in an accommodation zone of a 

passenger ship. 

4.1 Introduction 

Many of the greatest maritime tragedies have involved fire, especially fire onboard 

passenger ships. "The Morro Castle", "The Lakonia", "The Scandinavian Star" and 

"The Moby Prince" accidents are typical examples [Cowley, 1994]. Serious accidents 

at sea over the last few years indicate that more research work needs to be carried out 

on fire safety in ships. 

Safety is the complement or antithesis of risk. Safety will be increased if the risk is 

reduced. There is no such thing as absolute safety. Some level of fire risk is virtually 

unavoidable. A passenger ship may be considered to be "very safe" from fire if a 

sufficiently "low fire risk" is associated with its structure, contents and occupants. The 

objective of fire safety assessment is therefore to reduce risk to life and property to 

acceptable levels to a property owner and society at large. This aim can be achieved 

by carrying out fire prevention activities, which would reduce the frequency of fires 

significantly and installing passive and active fire protection measures which would 

minimise the consequences if fire occurs [Ramachandran. 1999]. 
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Fire safety on board passenger ships has come under scrutiny following a fire on 

board 'The Scandinavian Star' in 1990, which revealed a number of flaws in the 

International Maritime Organization (lMO) rules and regulations. This has led to the 

development of more comprehensive rules and regulations concerning fire safety of 

passenger ships [SNMA, 1996]. 

The new trend in the international regulations emphasizes the importance of the 

Quantitative Risk Assessment (QRA) as a design tool to comply with rules and to 

optimise specific solutions compatible with corporate strategies. In particular, it offers 

the possibility to better appreciate the benefits resulting from the combined effects of 

innovative solutions to a design problem [IMO, 1996]. QRA is a technique that can be 

used both qualitatively and quantitatively. It is used to understand and assess different 

hazards, and forms the basis of hazard management. 

This chapter provides an overview on some of the typical techniques for fire risk 

assessment, with special emphasis on a framework for fire safety assessment to 

passenger ships. 

4.2 Fire Safety Assessment 

4.2.1 Goals of fire safety assessment 

The main goals of fire safety assessment are: 

1. To assess the fire risk by evaluating the frequency and possible consequences of 

each scenario. 

2. To rank the risk against acceptability criteria, in order to highlight the areas 

needing risk reduction. 

3. To compare different design solutions aimed at: 

- Preventing the fire occurrence. 

_ Delaying fire growth and propagation. 
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- Minimising the consequences of fire. 

4.2.2 Application 

Historical data indicates that fires in accommodation areas can be regarded as events 

characterized by high specific impact on the people on a passenger ship, whose 

consequences range from mere discomfort to the potential for fatalities. This is also 

due to the absence of international maritime restriction on upholstered furniture and 

cloths currently used in passenger vessel's accommodations, unlike the properties of 

materials used for the boundaries of the spaces (bulkheads, floor and ceiling 

components and coverings) [Anderson, et aI, 1993], subjected to fire restriction. Such 

reasons have suggested the possible occurrence of a fire event in a cabin of a 

passenger ship, constituting the initiating event for the analysis. 

Investigations, available in literature, of fires on ships show that most injuries and 

fatalities are due to the effects of smoke and toxic fumes [Jenner, 1994, Jensen, 1994]. 

In this context, the present application is concentrated on the quantification of the 

severity degree of the various scenarios stemming from the initiating event. The 

severity is related to the impairment of the escape from a fire zone caused by smoke, 

on the basis of the time available to the passengers to leave the zone. 

4.2.3 Methodology 

A fire assessment framework is proposed to include the following steps: 

1. Problem definition. 

2. Construction of the Event Tree (ET). 

3. Quanti fication of the outcomes. 

4. Simulation of the consequences. 

5. Risk evaluation. 
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They are detailed in the following: 

1) The analysis is applied to a fire event in a cabin of a passenger ship. However, 

for its intended purpose, the analysis is intentionally restricted to a single piece 

of furniture burning in one cabin, allowing to screen the most critical scenarios. 

For this reason, the severity of the scenarios is viewed in relative terms; actually, 

in such conditions, the fire will self-terminate after some minutes. It is to be 

underlined that such limitations by no means affect the basic outline of the 

methodology; its application to broader scenarios only depends on the extent of 

the available information and resources employed. 

2) The initiating event of the ET is the occurrence of the fire in a cabin, which is 

assigned a fictitious unitary frequency, as the absolute evaluation of fire risk is 

out of the scope of this analysis. The definition of the ET nodes, on the other 

hand, is set on the basis of the main factors affecting the fire escalation, namely: 

- Ignition (immediate/delayed depending on the effectiveness of preventive 

measures such as use of fire retarding materials). 

- Ventilation (mechanical and/or natural). 

- Correct operation of protective systems (effectiveness of control measures such 

as fire detection systems and of mitigation measures such as sprinkler 

systems). 

- Fire spread to adjoining compartments (e.g., due to openings, air conduits, 

etc.). 

3) Once the ET is constructed, each node is assigned a probability of failure and 

success, obtained from databases or expert judgement. As the nodes in this case 

are independent, the probabilities of the ET outcomes occurring can be obtained 

[Angelo & Giovanni, 1997]. 
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4) Each ET outcome scenario is to be assigned a severity level of possible 

consequences. In this case, this is carried out by means of a deterministic 

simulation through the fire zone model implemented in the FAST computer code 

[Peacock, et ai, 2000]. In particular, the simulation of every scenario is conducted 

to yield results in terms of smoke interface height, temperature of upper layer and 

heat release rate, which are used to evaluate the consequences against the severity 

criteria. 

5) Risk evaluation - Hazard screening. 

Risk is concerned with the frequency (probability) coupled with the consequences 

(number of deaths, cost of damage to property or the environment) that might be 

caused. 

Table 4.1. Generalised risk matrix table [IMO, 1999]. 

Frequency 

Risk matrix table Low High 

.. • 
Fl F2 F3 F4 F5 F6 F7 

Minor Cl 1 2 3 4 5 6 7 

Significant C2 2 3 4 5 6 7 8 

Severe C3 3 4 5 6 7 8 9 

Catastrophic C4 4 5 6 7 8 9 10 

Notes: 

Each Ci (i = 1 to 4) stands for either the personnel safety (Si), 

environmental degradation (Ei) or business loss (Bi) consequence band. 

Risk judgement can be based on a Probability-Consequence Interaction Table, which 

is known as risk matrix table (see Table 4.1). The purpose of the hazard screening is 

to provide a quick and simple way of ranking hazards, in terms of frequency and 

severity of possible outcomes with a view to setting priorities for more detailed risk 

evaluation. The risk matrix approach is a semi-quantitative risk ranking technique, 
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which is used in the hazard screening process. For each appropriate combination, an 

assessment is made on the frequency (F) of the accident, and the severity of the 

consequences in terms of the personnel safety (S), loss in business (B) and 

environmental degradation or contamination (E). 

In the risk matrix table, the magnitude of risk (defined as product of frequency and 

consequence) is measured on a scale of 1 to 10 as depicted in Table 4.1. This is called 

the Risk Ranking Number (RRN) which ranges from 1 (least frequent and least severe 

consequence) to 10 (most frequent and most severe consequence). Ranking of the 

various accidents determines their order in relation to one another. The RRN is 

indicative of the relative order of magnitude of risk [IMO, 1999]. In this chapter, the 

approach is used with reference to either historical data or expert judgements, and 

indeed, the FAST results. 

4.3 Case Study 

4.3.1 Problem definition 

4.3.1.1 Fire hazard 

In general, the fire hazard is related to the expected level of harm associated with the 

exposure to a fire or its eflluent. In the context of this work, the fire hazard is 

associated with the loss of escape route. 

An escape route is generally considered impassable when there are levels of 

temperature and smoke concentration, which are unacceptable for life safety ('Smoke' 

is used throughout this chapter to mean the total airborne eflluent from the fire; it 

includes the gaseous aerosol and soot like products of fire) [USCG, 1995]. 

As a first step, only the height and temperature of upper layer were assumed to be 

representative of the escape route impairment, neglecting the smoke concentration. 

Within this assumption, this limited state approach adopted allows to associate 

probability values with the different escape time margins. Obviously this is not a 
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measure of fatalities, which depends on the people's exposure to temperature and 

smoke toxicity [Angelo & Giovanni, 1997]. 

4.3.1.2 Limit criteria 

The smoke level values corresponding to unacceptable toxicity and visibility 

reduction are different for each material and type of combustion process and many 

data are needed to set criteria. Without available data on the smoke released by 

furniture materials under the actual burning conditions (which affect the smoke mass 

concentration factor and thus the smoke optical density), a conservative approach was 

adopted, based on layer temperature and overall upper layer height from the floor. 

rather than on opacity [Angelo & Giovanni, 1997]. 

4.3.1.3 Layout and data 

The SOLAS philosophy is aimed at confining any fire within a vertical zone. This 

analysis was applied to an area of a passenger ship compliant to 1997 Amendments of 

SOLAS [IMO, 1997]. 

The following are the basic available data and assumptions: 

Cabin description 

Passenger cabin's area is 15m2(5mx3m), containing a trash can, an upholstered chair, 

a bed, a table and a toilet, and provided with low flame spread covering as per SOLAS 

II-2.Reg.34.3 [IMO, 1997]. 

Some information on the layout and fire load for a typical cabin was obtained from an 

internal investigation and from NFPA 72E [NFP A, 1987]. 
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The data relative to the fire and necessary for the fire simulation are summarized in 

Table 4.2. They are relevant to the t-squared fire growth model and classified 

according to the BSI Standards, 1994 [BSI, 1994]. 

Table 4.2. Combustible items in the cabin. 

Item Fire Fire a Peak Virtual Source 

Load Growth (KW/S2) Value Time 

(MJ/m2) Label (MW) (S) 

Chair F-29 372 Fast 0.1055 2.11 70 NBSIR 83-2787, 

test 27 

Bed 390 Medium 0.0086 0.66 90 NBSIR 83-2787, 

test 67 

Wardrobe 504 Medium 0.0117 5.50 100 NBSIR 83-2787, 

test 42 

[U S Department 

of Commerce, 

1983] 

Table 671 Medium 0.0257 1.75 64 Fire Data (2 

Panel 

Workstation 

Test) 

[U S Department 

of Commerce, 

1983] 
Others 2890 Ultra- 0.3300 2.50 - Judgement 

Fast 

Total 4827 

Specific 330 

Fire Load mJ/m2 

The t-squared fire growth model can be represented with a power law relation of the 

following form: 

where Q is the heat release rate of the ftre, a is the fire intensity coefficient, and t is 

time [peacock, et ai, 2000]. 
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The items called "Others" encompass toilet, TV set, refrigerator, luggage and 

coverings. In order not to complicate the analysis too much, and since the simulation 

does not account for the behaviour of distributed fire load, these items were grouped 

in a single "dummy" object. 

Ventilation 

The cabin is equipped with a self-closing door as per the SOLAS regulations [IMO, 

1997] and a window (with no restrictions about its constituting materials), depending 

on the cabin row. 

The door is not airtight. Therefore, it was assigned a leakage even when closed. 

The window is made of standard materials, and for this reason, it was assumed that it 

was unable to withstand the fire. This implies the window to be either open or broken, 

in those scenarios when it is present. 

To take into account the natural ventilation (including leakage through the door), the 

following geometric characteristics of the openings were assumed: 

- Door open: 0.6 m x 2.1 m, 

- Door closed: 0.01 m x 2.1 m, 

- Door grill: 0.2 m x 0.4 m, sill 0.2 m. 

Mechanical ventilation supplies air into the cabins with a capacity of 277 kW, 

according to the technique of oxygen consumption calorimetry [SFPE, 1993]. 

Sprinkler 

The sprinkler characteristics (temperature intervention and specific flow rate) are 

consistent to SOLAS [IMO, 1997]. 
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The sprinkler has the following performances: 

Flow rate: 5 litre/m2/min, 

Spray density: 8.3 xl 0-5 mis, 

It is the amount of water dispersed by a water spray-sprinkler. The units for 

spray density are length/time. These units are derived by dividing the volumetric 

rate of water flow by the area protected by the water spray. 

Activation temperature range from 68°C to 79 DC. 

Further, a Response Time Index (RTI) of 278 (m/s) 112 was assumed. The RTI 

quantifies how rapidly the detector links temperature rises in response to immersion in 

a hot ceiling jet. 

Heat/smoke detectors 

The cabin is equipped with an optical detector, whose actual response time should be 

evaluated by assuming its activation if the temperature increases by 30°C above the 

ambient temperature, Response Time Index (RTI) = 50 (m/s) y, [IMO, 1997]; if the 

detection signal is not cleared within 120s, an alarm is activated in the affected zone. 

Heat Release Rate (HRR) and fire growth 

At first, the only presence of an upholstered chair was assumed to screen the most 

relevant and critical event sequences. This allows applying the HRR reference curve 

obtained by laboratory tests with the furniture cone calorimeter. 

The models characteristic values are: 

Fire growth rate: a = 0.1055 kW/s2, that is "fast" according to SFSE [SFPE, 1993) 

and between "fast" and "ultra-fast" according to the BSI Standards [IMO, 1997). 

Peak value: t = 140s, Q = 2.11 mW. 

Transition to decay at t = 160s. 

End combustion at t = 500s. 

Total heat developed = 372 mJ. 
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The fire growth model of the upholstered chair was derived from the reference test for 

the sprinkler performance verification as per IMO Resolution A800 (19) [Angelo & 

Giovanni, 1997]. The chair was assumed to be in a corner of the room. 

4.3.2 Event Tree Analysis (ETA) 

The initiating event frequency should be evaluated on the basis of the available 

historical data, adjusted appropriately if information relative to equipment, flammable 

inventory and ignition sources of the case is examined. In this analysis the initiating 

event frequency was not evaluated in order to emphasise the applicability of the 

methodology instead of an absolute measure of the fire risk. 

In the present example, the fire escalation was deemed to be mainly conditioned by: 

Sprinkler performance. 

Ventilation effects. 

The main assumptions are as follows: 

The outcomes of fire propagated to the whole fire load in the cabin (FRI : Full 

Room Involvement) were investigated only for the worst scenario. 

Only the natural ventilation was accounted for, due to the limited extent of the 

forced ventilation. 

The selected reference scenario is the fire of an upholstered chair in a cabin of a 

main vertical zone above the embarkation deck of a cruise ship; this constitutes 

the initiating event. 

The ET was constructed on the basis of the above assumptions (see Figure 4.1). The 

ET nodes. in this example where only the natural ventilation is dealt with. are: 
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Door status. 

Alarm activation. 

Sprinkler availability on demand. 

The ET nodes probabilities are shown in Table 4.3 and the Event Tree Analysis 

(ETA) results are as shown in Table 4.4. 

Event 

Door open 

Door closed 

Alarm activation 

Alarm failure 

Sprinkler available 

Sprinkler 

unavailable 

Door 
Open 

Yes 

Initial 
Fire 

No 

Table 4.3. ET nodes probability. 

Probability 

0.01 

0.99 

0.9 

0.1 

0.9 

0.1 

Alarm 
A f f clvalon 

Yes 

No 

Yes 

No 

Rationale 

Engineering judgement: the door is 

self-closing type [Angelo 

Giovanni, 1997] 

(1 - Door open) 

Expert judgementlhistorical 

[Magnusson, et aI, 1995] 

(1 - Alarm activation) 

Expert judgementlhistorical data 

[Angelo & Giovanni, 1997] 

(1 - Sprinkler available) 

Sprinkler 
Available 

Yes 

No 

Yes 

No 

Yes 

No 

Yes 

No 

... 

.. ... 

.. 

.. 

Scenario 1 

Scenario 2 

Scenario 3 

Scenario 4 

Scenario 5 

Scenario 6 

Scenario 7 

Scenario 8 

& 

data 

Figure 4.1. Event tree describing the eight scenarios. 
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Table 4.4. ETA results. 

Scenario Door Alarm Sprinkler Probability 

1 Open Success Success 8.1x10-3 

(0.01) (0.9) (0.9) (0.01xO.9xO.9) 

2 Open Success Failure 9.0x10-4 

3 Open Failure Success 9.0x10-4 

4 Open Failure Failure 1.0x10-4 

5 Closed Success Success 8.019x10-1 

6 Closed Success Failure 8.91x10-2 

7 Closed Failure Success 8.91x10-2 

8 Closed Failure Failure 9.9x10-3 

4.3.3 Quantification of the outcomes. 

The evaluation of the consequences was accomplished by means of a physical 

simulation of the outcome scenarios 1 to 8, obtained using the FAST code (shown in 

Figures 4.2 to 4.9). The results of the simulation are displayed along with calculated 

values for temperatures, the height of the smoke layer and heat release rate. The 

graphs of heat release rate, upper layer temperature and layer depth can also be 

displayed by simulation. The FAST code was a zone model specifically developed for 

civil buildings [Richard, et aI, 2000]. Therefore, it provides some cursory indications 

of the applicability to the shipping field. 

4.3.3.1 Severity criteria 

The criteria for estimating the severity of the consequences were thus defined as 

follows: 

1. The Full Room Involvement (FRI) temperature was assumed to be 500°C. By 

comparing this value to the corresponding temperatures of the 8 scenarios, 

considerations are made about the likelihood of FRI caused by the chair fire 

only. 
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2. The likelihood of the fire propagation in the nearby cabins only depends on the 

FRI occurrence; otherwise, the fire will self-terminate before the wall 

temperature gets high enough to cause the ignition of any object situated on the 

other side. 

The main limitations of this study are listed in the following: 

The temperature results from the code are averaged; they can be accepted in this 

case where the space is small, but would be inadequate in large spaces. 

The 500°C criterion corresponds to the flashover condition. In reality, it is also 

possible to reach FRI through propagation from the object to another within a 

room. 

The actual possibility of fire spread should take into account the actual walls' 

characteristics (resistance, thermal conductivity, etc.) and layout (e.g, existence 

of air gaps between the walls of two adjacent cabins that would delay the heat 

propagation, etc.). 

The danger of the smoke layer depends on more factors than the mere interface 

level, such as the optical density and the toxicity due to the presence of CO. 

4.3.4 Simulation of the consequences 

The simulation for the eight scenarios led to the following results (see the outcomes of 

scenarios I to 8 shown in Figures 4.2 - 4.9): 

1. In those scenarios where the door is open (l, 2, 3 and 4) the fire is fueI

controlled (that is, its growth is limited by the amount of the fire load). 

2. With sprinkler operating correctly (scenarios 1, 3, 5 and 7) 
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The sprinkler is instrumental in reducing the fire heat release rate, and consequently 

the possibility of FRI; as to the smoke layer, the consequences worsen according to 

the air ingress (1 and 3 being more severe than 5 and 7). 

With sprinkler unavailable (2, 4, 6 and 8) 

The fire heat release rate increases, and consequently the possibility of FRL increases; 

as to the smoke layer, in this case, scenarios 2 and 4 are more severe than 6 and 8. 

3. In those scenarios where the door is closed (5, 6, 7 and 8) the fire is ventilation

controlled (that is, its growth is limited by the amount of oxygen). Due to the 

limitations in the combustion the smoke produced depends on the time length of 

the fire. 

4.3.5 Risk evaluation - Risk Matrix Approach 

According to the probability and to the simulation results, the overall ranking of the 

eight scenarios is produced as follows: 

Table 4.5 gives the interpretation of the frequencies F 1 to F7. 

Table 4.5. Key to the frequency bands for risk table. 

Frequency Probability 

Fl 0.0000 - 0.0001 

F2 0.0002 - 0.0010 

F3 0.0011 - 0.0090 

F4 0.0091 - 0.0100 

F5 0.0101 - 0.0900 

F6 0.0901 - 0.8020 

F7 0.8021 - 1.0000 

64 



0\ v-

"'l1 _. 
CIQ 

3 
~ 

~ 

> ell 
-i 
3 
(I) 

c: =-0 ...., 

~ 
!I. 
O -. 

Heat 
100000 

-3= -cu -0 ex 

j '" 
-0 

:! 
0.0 

0.0 

120.0 
Upper 

-0 -
CL 
E 
Cit .... 
b 
>-
0 

....J ... 
:I 

0.0 I 

0.0 

Release Rote 

Fire Comportment 1 

Time <a) 1200.0 

Loyer Temp Interfoce Height 
3.0 

...... e ---§, 
'ij 
:r It-
G) 

8 -~ ., 
:s 

lh ~ 

1.0 

Time (s> 1200.0 0.0 Time (s) 1200.0 

OutcOtne of Scenario 1. 



Q 

B 
~ ..... 

+' 
c: 
v 
E 
+' 
~ -0 ..... " a. .r: '-' 
E 01 
0 Q) u 
U I .~ 
V 

~ 
Q) 

.~ U 
lL. 0 .... 

~ 
Q) • ..... N ,!; 

0 
.~ 

0 ~ 
0 Q d 

~ ftj 
(w) 14f>!9H a:>Opa~Uf 

0 
Q.) 
U 

r::/'J. 
Q 0 ~ 
8 8 0 ~ ~ 

Q) 

8 
Q) Q. 

0 
+' ,..... E - U 
0 II " ~ a:: "wi' Q) ...., 

I- ~ III u u 
I/) .~ ~ E 0 0 Q) 

Q) ~ >. ~ 

i 0 

a: oJ 

'-
+' Q) 
0 0. 
Q) 0. 
J: :::> 

~--~--~--~--~ Q 
o 0 
d g 

§ -

Figure 4.3. FAST result of scenario 2. 

66 



..... 

+' 
C 
Q) 

E .... 
~ 

0 o4J a. .c 
E 0\ 
0 Q) 
() I 

Q) ll) 

.~ u 
u.. 0 .... 

~ 
Q) 

o4J 

C 

g 
(w) NO!aH a:)D~JalUI 

0 g 
N .... 

Q) Q. .... ,..., E 0 III 
IY "" Q) 

f-

Q) v 
II) E l-

0 Il) 

Q) I- >-
i 0 

a:: ...J 

'-
+' Q) 
0 a. 
Q) a. 
I ~ 

o S (J) dwal Jd~Ol Jdddn 
.... 

Figure 4.4. FAST result of scenario 3. 

0 

8 
N 

" VI ...., 

v 
E 
l-

0 
0 

0 
.-I 

q 
8 
N .... 

,..., 
III 

"" 
u 
E 
l-

Q 
o 0 
d 

• 
("f') 

0 
.~ 

~ 
~ 
C 
Q) 
CJ 

C/) 

~ 
0 
C) 

8 
0 
U 
~ 

~ 
0 

67 



+J 

C 
v 
E 
+' 
L 
0 
Q. 

E 
0 
0 

v 
L 

LL 

v .... 
0 

a:: 
Q) 
II) 

0 
!? 
II> 
~ 

.... 
0 
II) 

I 

0 

8 
~ 

"-
+' VI 
.c: '-' 
01 

V V 

I E 
~ 

Q,) 
U 
0 ..... 
L 
II> 

+J 

.f 

0 

~ 
o 0 

(W) NO!aH a:>Opalul 
d 

0 0 g g 
N N .... .... 

a. ,..., E ,..., 
VI VI ....., v ....., 

I-
v v 
E L E Q) 

~ >.. ~ 
0 
..J 

L 
Q) 
a. 
a. 

:::> 

~ __ ~ __ ~ ____ L-__ ~ 0 

o 
~ (~) dwa 1 J~'<Dl J~ddn 

Figure 4.5. FAST result of scenario 4. 

o 0 
d 

• 
~ 
0 
.~ 

~ ro = Q) 
u 

r/J 
~ 
0 
Q) 

8 
0 
U 
~ 

~ 
0 

68 



Q) 
+' 
0 
r:r 
Q) 
I/) 

0 
Q) 

i 
0::: 

+' 
0 
0) 

I 

o o o o o -

.... 

~ 

c 
Q) 

E 
+' 
\... 
a 
a. 
E 
0 
0 

Q) 
I.. 

u.. 

0 g 
~ 

,.... 
III 

'-'" 

v 
E 
I-

q 
o 0 
d 

~ 

.r: 
0' 
Q) 

I 

ll> 
l) 

0 ..... 
\... 
Q) ...., 
c 

0 
I'i 

(w) l~f>!9H a:)OJ.J9IUI 

Q. 

E 
Q) 
I-

L 

Q) 

>. 
0 
..J 

I.. 
Q) 
a. 
a. 
:J 

o 
~ (~) dwa 1 Jd'<0l Jddd(l 

Figure 4.6. FAST result of scenario 5. 

0 
g 
~ 

,...... 
III 

-..; 

Q> 

E 
l-

0 

o d 
d 

0 g 
~ 

,.... 
II 

'-'" 

v 
E 
l-

o 
o 0 
d 

• 
l£) 

0 
.~ 

~ 
cd 
~ 
~ 
0 

(/) 

~ 
0 
Q) 

8 
0 
0 
~ 

~ 
0 

69 



I I 0 

8 
~ 

-oJ 

C 
v 
E ...-
L -0 
a. 

..., VI 
r. '-' 

E 01 

0 III V 
(J I E 

f-
III Q) 

.:: u 
LL 0 ..... 

L 
III 
..,; 

\0 1; 

~O 
0 
.~ 

~ 

0 o d ~ 
I"i 

(w) l40!aH a:>0JJalUI 
(j d 

0) 
u 

r./) 
I I I 0 0 ~ g g 0 N ~ y-

O) 

8 
0 

Q) Q. ...- - E ,..... U 
0 VI VI ~ 

Ir: '-' III '-' 
f- ~ 

III V V 
III E l- E 0 0 II> 
III I- ~ I-

~ 
0 
-1 

!r 
L 

+' II> 
0 .- a. 
III a. 
I ::J 

I I ~ Q 0 

0 
o 0 

0 
o 0 

0 (M) alo~ aSo~I~~ lOdH 
d g (:» dwal J~~Ol J;>dd(1 d 

0 
0 
0 " 

Figure 4.7. FAST result of scenario 6. 

70 



Q) 
+' 
0 

a:: 
Q) 
(I) 
0 
0> 
i 
!r 

+' 
0 
Q) 

I 

o o 
o o 
o 

.-

.... 
c 
Q) 

E 
+' 
L 
0 
Q. 

E 
0 
(J 

Q) 
L 

u.. 

I I 0 

8 
~ 

'"' +.I VI 
1: 'J 

01 
Q) v 
I E 

I-
Q) 
() 

0 
'+-
L 
Q) • 
+' t" c 

~ 
0 
.~ 

~ 
0 ~ g o d 

~ (w) ND!aH a:>o~JaIUI 
d 

C) 
U 

rJJ 
0 Q ~ g 8 0 N N 
0- r-

Q) 

a 
0 

a. U " E " III 1/1 ~ 'J 0> 'J 

I- ~ v v 
E l- E 0 Q) 

0-

I- ~ l-
0 
.J 

L 
0> 
a. 
a. 
:J 

Figure 4.8. FAST result of scenario 7. 

71 



T I 0 

8 
~ 

., 
C 
t> 
E 
+' 
L 
a " 
0. 

.... VI 

E 
.r: \J 

()l 

a Q.) 1I 

0 I E 
f-v Q.) 

L () 

l.i.. 0 ..... 
\.. 
II> • 
+I 00 C 

~o 
0 
.~ 

~ 

0 o 0 ~ 
r'i 

(LU) ~4f>!aH aOO!JalUI 
d ~ 

aJ 
U 

r/J 
0 ~ I I I g g 

0 N N 
f"" ... 

a,) 

E 
Q) a. 0 

..... ...... E ...... U 
0 VI VI ~ t:r '-" II> \J 

I- ~ 
II> V V 
If) E l- E 0 0 

Q) 

II> I- ~ f-

a> 0 
...J 

IY 
L 

+' Q.) 
0 0. 
0) 0. 
I :> 

I j ~ Q Q 
q 0 

0 
o 0 

0 
(M) alo~ dSOdld~ lOdH 

0 g (:)) dwa 1 Jd'<0l J~dctn 
d 

0 
0 
0 " 0 -

Figure 4.9. FAST result of scenario 8. 

72 



Table 4.6 shows the key to the consequence bands for Heat Release Rate (HRR), 

Upper Layer Temperature and Interface Height. 

Table 4.6. Key to the consequence bands for risk table. 

Cl Minor Single or minor injuries 

C2 Significant Multiple injuries 

C3 Severe Single death 

C4 Catastrophic Large number of deaths 

Table 4.7 represents a fire accident in the cabin. This table is generated by analysing 

the data in terms of its Occurrence and severity of consequences from the FAST 

results shown in Figures 4.2 - 4.9. 

For example, 

Scenario 1 - Heat Release Rate: 

Frequency band = F3 (Table 4.5) 

Consequence band = Cl (Table 4.6 and expert judgement with FAST results) 

Risk Matrix Scale = 3 (Table 4.1) 

The judgement of frequency bands is based on the results obtained from Table 4.4. 

The consequence bands (Le., CI-C4) are assessed by expert judgement with reference 

made based on the results obtained from simulation for each scenario. 

Table 4.7. Fire ranking using risk matrix approach. 

Heat Release Upper layer Interface height 

Rate (HRR) temperature 

Scenario 1 F3 CI - 3 F3 C2 - 4 F3 CI - 3 

Scenario2 F2 C2 - 3 F2C4 - S F2C2 3 

Scenario3 F2 Cl - 2 F2 C3 - 4 F2C2 - 3 

Scenari04 FI C2 - 2 FI C4 4 Fl C2 2 

ScenarioS F6 CI - 6 F6C2 7 F6CI - 6 

Scenario6 FS C3 - 7 FS C3 7 FSCI S 
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Scenario7 F5 CI = 5 F5 C2 = 6 F5 CI = 5 

Scenario8 F4 C3 = 6 F4 C3 = 6 F4 CI = 4 

Table 4.7 was then produced which gives a ranking number for each accident 

category. Following the tabulation of this data, the 'equivalent total' of risk ranking 

number can be derived as shown below. This is an approximate calculation based on 

the individual risk ranking values for all the scenarios. The calculation makes use of 

the fact that both the frequency and severity bands of the risk matrix are 

approximately logarithmic (e.g. a risk level of 6 is treated as 106). This will enable the 

process of ranking each scenario according to its influence on the safety of the cabin. 

The high-risk areas are then distinguished and attention is drawn to them. 

Based on the information obtained in Table 4.7, the ranking order is produced as 

follows: 

Heat Release Upper layer Interface height Total (same 

Rate temperature weight) 

Worst 6 5&6 5 5&6 

scenario 5&8 7&8 6&7 7&8 

1 7 2 8 2 

1&2 1,3 & 4 1,2 & 3 1 

Best 3&4 4 3 

scenario 4 

Calculation of 'Equivalent Total' for the Fire Accident in the Cabin: 

The number of occurrences in the Risk Table of a risk ranking score of 4 is 4; a risk 

ranking score of 5 is 4; a risk ranking score of 6 is 5; a risk ranking score of 7 is 3; 

risk ranking scores of 3 and below have been ignored as not significant. 

Using 7 as a base then: 'Equivalent Total' = 7 + log (3.544) = 7.55 
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Alternatively using the risk ranking score of 4 as the base, then: 'Equivalent Total' = -+ 

+ log (3544) = 7.55. 

If there are several cabin design options available, the above procedure can be applied 

to each of them to obtain the risk ranking score. The design option with the lowest 

risk score may be chosen. If design criteria such as costs are considered in the design 

process, the obtained risk scores can be combined with other design criteria to make 

decisions. 

4.4. Conclusion 

The analysis has basically highlighted the following points: 

1. From a simulation viewpoint, the fire growth model is of paramount importance 

to really simulate different options in the ship materials and the sprinkler 

intervention; the fire load basically gives indications of the heat energy stored, 

thus of the likelihood ofFRI and fire spread. 

2. In such constrained fires, the HRR is driven by the ventilation, which tends to 

smooth down the peak values as obtained by the tests in fuel-controlled 

conditions; on the other hand, the unburned paralysed fuel could be transported 

with the smoke into other compartments, thus contributing to propagate the fire. 

The assumption of free ventilation that would control the fire can be misleading, 

as it could make the situation worse. 

3. The test case demonstrates that sprinkler intervention and performance is a key 

factor to increase the time available to evacuate without hazard for the people. 

Generally speaking, the application of this methodology is demanding in terms of 

specific fire data of the involved materials and robust simulation models and tools. 

However, the performance based rules, which are being promoted by the new trends 

in regulations, should necessarily also be based on risk estimations; these, in turn, will 
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be typically developed on models and parameters characterised by uncertainty and 

described by statistical distributions. 

In this analysis, many data not available at hand were evaluated by engineering 

judgement. However, as fire safety engineering technology grows and matures, the 

availability of data will increase, making this methodology an effective and useful 

tool to focus on the most effective solutions among different designs. 
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CHAPTER 5 DEVELOPMENTS IN SMOKE CONTROL 

SYSTEM FOR PASSENGER SHIPS: APPLICATION TO AN 

ACCOMMODATION ZONE 

Summary 

One of the most important means to avoid catastrophes in case of fire onboard 

passenger ships is to ensure that the passengers can escape in a quick and safe manner. 

One of several precautions to take is to try to control the spread of the smoke in a 

simple and reliable way. In this way the area where people are in contact with the 

smoke can be minimised and better visibility to escape from the smoke can be 

secured. 

5.1 Introduction 

Fires onboard a number of passenger ships including the 'Scandinavian Star', have 

caused the International Maritime Organization (IMO) to tighten up the requirements 

for fire safety. Therefore it has been decided that in the future it will be a requirement 

that sprinklers and smoke detectors are installed in all the accommodation areas of 

passenger ships [IMO, 1997]. 

A Danish investigation shows that approximately 90% of the persons killed in 

shipboard fires have perished due to smoke exposure and only 10% due to heat 

exposure. The disasters on board Scandinavian Star, MIS TOR Scandinavian and 

other passenger ships, have further demonstrated that smoke could spread very 

quickly inside the ships [Anderson, et aI., 1993]. 

Although shutting down the Heating, Ventilating and Air Conditioning (HVAC) 

systems prevents fans from forcing smoke flow and stops supply of oxygen, it does 

not prevent smoke movement due to smoke buoyancy, stack effect, expansion or 

draught due to the wind. Therefore, it is not sufficient only to detect the toxic smoke. 

Safety will be increased further if the spread of smoke inside the ship is also reduced. 
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In order to achieve this, additional requirements are needed, that is, automatic release 

of fire doors into closed position and activation of the smoke control system when 

smoke is detected [Abell, 1999]. 

Previous studies have shown that fire is extremely difficult to locate in cabin areas 

[Jensen, 1994]. Fires in public spaces are often easier to locate and thus can be 

extinguished more quickly. Further, evacuation of passengers from public spaces is 

not as difficult as from cabin areas, where people may be sleeping. Therefore, smoke 

control in cabin areas is emphasised in this chapter. 

5.2 Background 

5.2.1 Regulations 

The fire aboard "Scandinavian Star" on passage between Oslo and Frederikshavn on 7 

April 1990 prompted the IMO Fire Prevention (FP) sub-committee at FP37, 1992 to 

establish the philosophy on smoke control and ventilation for eventual inclusion into 

the revised version of Chapter 11-2 SOlAS (Safety Of life At Sea) 1974. 

All passenger ships built after 1 January 1994, which have an atrium spanning three or 

more decks and containing combustibles such as furniture, shops, offices, restaurants 

etc. shall be equipped with a smoke extraction system. It shall be activated by the 

smoke detection system automatically or manually such that the entire volume within 

the space can be exhausted in 10 minutes or less, SOlAS Chapter II -2 Regulation 32 

(Ventilation Systems) 1.7. 

5.2.2 Definition of smoke 

Smoke is identified as a key factor and smoke control has to be dealt with carefully 

[Chow, 1995, 1997]. Sudden horrific explosions can maim, bum and subsequently kill 

people but the insidious development of smoke containing its cocktail of deadly 

poisonous gases invariably kills more [Graham, 1995]. 
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The chemical reaction known as polymerisation begins with a monomer, perhaps the 

most common of which is ethylene. Any substance that contains carbon can give off: 

1. Carbon monoxide (CO), a narcotic gas, which is lethal. It is produced, in 

copious amounts, as a result of incomplete combustion of materials containing 

carbon and is present in most fires. 

2. Carbon dioxide (C02), another highly poisonous gas, which is also produced in 

large quantities. Inhalation stimulates respiration and this, in tum, increases 

inhalation rates of both oxygen and possible toxic gases and vapours produced 

by the fire. 

If chlorine is added, the resultant molecule becomes PVC, polyvinyl chloride that is 

used to make a vast array of products such as adhesives, anticorrosion sealants, blister 

packages, bottles, electrical insulation, etc. Hydrogen chloride is evolved when these 

substances burn [Fe & Hadjisophocleous, 2000]. 

High levels of prussic acid and hydrogen cyanide, which are given off when nylon, 

wool or polyurethane bums, were found in the fatalities of the Scandinavian Star. This 

led to immediate investigation into the content of laminates found aboard various 

vessels. The mixture of these added gases increases the speed of the toxicity [Abell, 

1999]. 

The way in which any substance bums depends on many parameters and conditions, 

some of which may include: 

Its shape and size. 

The source of ignition. 

The amount of oxygen needed. 

The rate of flame spread. 

Ventilation and other environmental conditions. 

However, it is certain that, lack of visibility and disablement by toxic gases in smoke 

often impedes the escape of occupants [Abell, 1999]. 
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5.2.3 Smoke movement 

Smoke spread has been a main interest of fire science and engineering [He & Beck, 

1997]. The phenomenon of smoke spread, as an important factor in life safety design. 

must be understood and estimated [Kim, et aI., 1998]. 

There are two main factors, which determine the movement of smoke and hot gases 

from a fire. These are: 

1. The buoyancy (or mobility) of the smoke due to pressure differentials developed 

by: 

a. Expansion of the gases heated by the fire. 

b. Difference in density between the hot gases above the flames and the 

cooler air, which is surrounding the fire. 

2. The normal air movement inside the ship caused by: 

a. The stack effect: the pressure differential due to the temperature of the 

air inside a room being at a different temperature from the air outside the 

room. 

b. The wind pressure effect, due to penetration through leakages. 

c. The mechanical air handing systems. 

The smoke control system must be designed in such a way that it is not overpowered 

by the forces mentioned above [Abell, 1999]. 

5.2.4 Main criteria for design of smoke control system 

It is emphasised that only smoke control systems in the cabin areas and adjacent 

stairways will be discussed in this chapter. There are a number of criteria. which are 
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of great importance for the design of a smoke control system. Among these criteria 

are: 

1. The system shall be designed to handle fire. 

2. The fire doors close automatically when a fire is detected. 

3. Entry of smoke into the areas adjacent to the burning area, such as a stairwell 

and the other cabins, must be prevented. 

4. Differences in pressure must not be so great that door opening forces will 

become too excessive. 

5. The smoke control system should be activated as required. 

Further, as far as economy and space are concerned it is aimed at utilising the 

traditional HV AC systems to the greatest possible extent [Jensen, 1994]. 

5.2.5 HVAC (Heating Ventilating and Air Conditioning) system for cabin areas 

Normally supply air for the cabins is distributed from the air handling unit in a high

velocity, tubular, dual duct system. The air coming from the two pipes is mixed in an 

air terminal device, often known as a cabin unit, which is normally located in the 

ceiling. By means of a coupled two-valve system controlled by a thermostat, the air 

coming from the two pipes can be mixed in such proportions that the temperature 

required by the passenger can be obtained. The air enters the room through a diffuser 

fastened to the air terminal device. Both constant air volume systems and variable air 

volume systems are used (see Figure 5.1). 

Normally there is a smaller positive pressure m the cabin in order to prevent 

contaminated air from entering the air-conditioned cabin. Discharge of air normally 

takes place partly through bathroom and partly to corridor. Typically 30-40% of the 

air is exhausted through the exhaust valve mounted in the bathroom. The air enters the 

bathroom through a slot under the door into the bathroom. The rest of the air passes 

through a grille in door/under door/through duct under bathroom into the corridor. 

Usually there are several air terminal units for exhaust in the corridor. This means that 

normally there is negative pressure in the corridor and the bathroom. 
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Figure 5.1. HV AC system for cabin areas (energy recovery by recirculation). 

There are two ways of designing the exhaust air system. The choice depends on the 

energy recovery method. When a rotary enthalpy exchanger is chosen, usually all 

exhaust air is exhausted through one exhaust fan. Energy recovery by using 

recirculation of air is another method. In this case two separate exhaust systems are 

necessary. Exhaust air from bathrooms is not used for recirculation [Jensen, 1994]. 

5.2.6 HVAC (Heating Ventilating and Air Conditioning) system for stairways 

Halls and major stairwells are normally served by an air-handling unit, which does not 

serve any other spaces in the ship. The air supplied is distributed from the air-handling 

unit in a rectangular, single-duct system. The air enters the stairwell through diffusers. 

Usually the air volume exhausted from the halls and stairwells is equal to the air 

volume supplied - a balanced system (see Figure 5.2). 

5.2.7 Fire in cabin 

In case of fire in a cabin the optimal smoke control system would ensure that the 

smoke is extracted by means of smoke extraction in the cabin. Smoke entering into 
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the corridor would be avoided by prohibiting surplus air from the cabin from entering 

into the corridor. 

Damper 

Stairs 
Supply 
Fan 

Recirculation 

Corridor 

Stairs 

Stairs 
Exhaust 
Fan 

Figure 5.2. HVAC system for a stairs (energy recovery by recirculation). 

Large positive or negative pressures in the area consisting of the cabin and the 

bathroom must be avoided. Therefore, the mass flow of air exhausted by the exhaust 

system must be equal to the mass flow of air supplied by the air supply system. 

This solution would require quite a complex and expensive HV AC system, especially 

when a variable air volume system is used. Further, it is almost impossible for a 

system traditionally built to extract additional air/smoke through the exhaust valve in 

the bathroom, even by means of a bigger fan. This is primarily due to strict space 

limitations and thus to limitations of the pipe sizes [Jensen, 1994]. 

5.2.8 Fire in stairway 

In case of fire in the stairway the removal of smoke can take place through a 

mechanical smoke extraction fan located at the top of the stairway. In order to prevent 

smoke spread into the lower decks the exhaust duct system used during normal 

HV AC operation in the stairway has to be shut ofT. 
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As in all smoke control systems replacement air must be allowed to enter the space. In 

order to ensure an effective extraction arrangement the replacement air has to enter the 

stairway through numerous openings at low levels. The inlets could be connected to 

ducts leading directly to open air [Jensen, 1994]. 

5.2.9 Activation of smoke control system 

Fire experience onboard ships shows that fire in cabin areas can develop extremely 

quickly. Further, experience shows that fires in cabin areas onboard passenger ships 

often start as smouldering fires. A smouldering fire develops only a small quantity of 

heat and is, consequently, not detected by heat detectors/sprinklers, before it develops 

into a flaming combustion. It may take a long time before this happens. During this 

time the smouldering fire may have developed large amounts of smoke containing 

dangerous gases and will then be a big risk for the passengers. Therefore, it is very 

important to fight the fire as quickly as possible. 

Bearing this in mind, and considering the fact that smoke detectors are to be installed 

all over the accommodation, the addressable smoke detection system should be 

capable of activating the smoke control system. If the smoke detectors are suitably 

placed, this solution will give the shortest reaction time in case of fire [Jensen, 1994]. 

5.2.10 The control system 

The smoke control system is to be an integral part of the HV AC control system. 

Further, the system is to be connected to a fire detection system, including the smoke 

detection system, so that signals from here can be used for activating the smoke 

control system [He, et aI., 2002]. 

After having received and interpreted signals coming from the fire detection system 

the smoke control system proposes a pre-programmed control action. When the action 

performed by the smoke control system does not correspond to the required action, 

r .- '''~~') -" ---...,......... 
," j 
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that is, in case of a fan breakdown - an alarm will be triggered. All alarms must be 

audible. 

The system must allow the crew to override manually the actions suggested by the 

smoke control system at any time. Misunderstandings by the crew have to be avoided. 

The control system and all the components (fans, dampers, etc.), activated by the 

system in a fire situation, must be connected to the emergency generator [Jensen, 

1994]. 

5.2.11 Abbreviated draft guidelines 

Fire Prevention (FP) 40 in 1995 established draft guidelines for approval of active 

smoke control and ventilation systems in passenger ships [Abell, 1999]. These 

include: 

1. The main objective of an Active Smoke Control System (ASCS) is to keep the 

escape routes free from smoke for escape and aid to fire fighting operations. 

2. Passive Smoke Control means the utilisation of built in barriers within the ship 

such as main vertical bulkheads, fire doors and fire dampers in order to enclose the 

fire area and stop the spread of smoke. 

3. Active Smoke Control uses mechanically created pressure differentials and flows 

between smoke control zones to prevent smoke spread and remove smoke from 

the ship by extraction. 

4. Staircases shall be kept over-pressurised to prevent smoke rising up staircases. 

5. An ASCS shall operate within two minutes of detection. 

Many other points were drafted including design, types of spaces, test procedures and 

performance criteria, which were submitted by the correspondence group who were 
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also concerned with the technical understanding of a smoke control system on board 

[Abell, 1999]. 

5.3 A Proposed Approach 

The general smoke control philosophy is described as follows: 

1. Special smoke extract fans extract the smoke through grilles installed in the 

ceiling in corridors on the burning deck in the fire zone. This means that there will 

be a negative pressure in the corridor. 

2. All cabins belonging to the fire zone on the deck on fire are to be continuously 

supplied with air. Supplying air into the cabin creates a positive pressure in these 

spaces. 

3. In order to avoid spread of smoke from the burning zone to adjacent stairwells, 

these spaces are to be pressurised. 

It should be emphasised that it is not possible to create a smoke control system that is 

capable of stopping the spread of smoke from any fire, irrespective of size or 

development. There is no guarantee that the smoke extraction can be used to maintain 

a clear layer of air; this depends on the burning material, the size of the fire, etc. In 

case of fire in a corridor the smoke control system must work exactly in the same 

way, as just described previously [Jensen, 1994]. 

The conditions of pressure in cabin, corridor and stairs are shown in Figure 5.3. It can 

be seen that in cabins and stairs, there is a positive pressure while in corridors, there is 

a negative pressure. 

Several full scale tests have been carried out successfully according to the smoke 

control philosophy described previously [Jensen, 1994]. The disadvantage of this 

smoke control system is that the smoke from the cabin on fire enters the corridor 

whilst the smoke will rise towards the ceiling and - depending on the smoke 
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production and the extracted air volume - will mainly be concentrated between the 

two adjacent exhaust grilles. Tests, which have been performed, have also shown this. 

Further, as previously mentioned, large quantities of heat and toxic smoke will be 

extracted [Jensen, 1994]. 

Pressure 

,~ 

+ 

.. 
Neutral p ressure 

Cabm Corndor StaIrs 

Figure 5.3. Pressure conditions during smoke control mode. 

Smoke control will be a much better solution than previously described when the 

HV AC systems were shut down in a fire situation. Further, the advantage of this 

proposal is that to a large degree the traditional HV AC systems utilised are 

supplemented with only a few special components, such as, for instance, special 

smoke extractor fans. 

Air supply at the ceiling in the corridor of the burning zone must be avoided in a fire 

situation. This will result in mixing of air and smoke, which may cause considerable 

reduction of visibility in the lower part of the corridor. If there is only extraction in the 

ceiling and the air supply comes, for example, from grilles in the lower part of cabin 

doors. a smoke layer at the ceiling is produced. 

Due to the very limited space above the ceiling in the corridors it will, in practice, be 

very difficult to have two different exhaust ducts - one for normal operation the other 

for smoke extraction. 
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Unless the forthcoming regulations will require two sets of exhaust ducts, one exhaust 

duct in the corridor serving both operations could be used. In order to install as few 

smoke extraction fans as possible, an extra exhaust duct can be installed in the trunk -

a duct for smoke extraction only. The duct for smoke extraction is connected to the 

corridor exhaust ducts on all the accommodation decks in the main vertical fire lone. 

In case of fire, the damper between the duct(s) for normal extraction and the exhaust 

duct in the corridor on the burning deck closes, and the damper between the duct for 

smoke extraction and the exhaust duct(s) in the corridor in the burning 

accommodation area opens. All ducts for smoke extraction are to be heat insulated. 

Supplying air into the cabins creates a positive pressure in these spaces. This ensures 

that the smoke is kept out of those cabins not on fire. Further, supply of air into the 

cabins ensures that smoke will not pass from the burning cabin into other cabins via 

the duct system. 

The passage of smoke between the cabins via exhaust ducts from the bathroom must 

also be prevented - either by extraction or supply through the system. In order to 

secure positive pressure in the cabin, it must be ensured that the air volume, which 

may be exhausted via the ducts in the bathroom, is always smaller than the air 

volume, which is supplied to the cabin. 

In this connection it should also be mentioned that in case of a smoke control 

operation immediate shutdown of the recirculating air is required. Consequently, the 

return air dampers in the air-handling units are to be equipped with remote control 

connected to the control system. 

Smoke detectors are to be installed in the supply part of the system. The supply fan is 

to be equipped with remote control connected to the control system. In case of smoke 

detection immediate shutdown of the supply fan is required in both normal and smoke 

extraction modes. 

Discharge of smoke ought to take place without the risk of smoke being sucked into 

the inlet grilles. Therefore. discharge should take place vertically at the top of the ship. 
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It must be ensured that the components of the smoke control system can withstand 

high temperatures. The authorities have to define these temperatures in the 

regulations. The audible alarms in corridors must be sufficiently loud to drown the 

noise from smoke extraction. These are some of the requirements, which the 

authorities have to implement in the regulations regarding smoke control. 

In order to maintain the escape routes (stairwells and halls) free of smoke, the use of a 

mechanically driven extraction system to remove any smoke that may have entered 

the escape route is not satisfactory. An extraction system will reduce the pressure 

level in the escape route. Consequently, more smoke will be drawn into the escape 

route and visibility will be reduced, rather than improved. 

To prevent the smoke from entering the stairwells and halls an adequate air flow, 

which will keep the smoke away from spaces, is needed. To obtain this air flow air is 

to be injected into the area. The air leaks out of the space via door cracks, by a 

specially provided opening or into the fire area, where it is extracted. This system is 

called 'pressurisation', because in order to set up the required air flow the pressure in 

the escape routes is raised [Jensen, 1994]. 

In connection with the design of the smoke control system, it is most important that 

the authorities consider to what extent fire doors are automatically released into the 

closed position when a fire is registered. Automatic closing of fire doors has been 

investigated and is expected to become an IMO requirement [Jensen, 1994]. 

In case of closed fire doors the door opening forces resulting from the pressure 

differences produced by the smoke control system and the door closers must be 

considered. Over-pressurisation must be prevented because unreasonably high door 

opening forces can result in escaping passenger having difficulties or being unable to 

open doors to the escape routes. 
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As a point of information it should be mentioned that the National Fire Protection 

Association (NFPA) states that the force required to open any door In an escape 

situation is 100 N (UK) and 130 N (USA) [Abell, 1999]. 

Some methods to achieve pressure control are: 

1. To supply air fan and damper reliefs. 

2. To supply air fan with variable speed. 

3. To supply air fan with by-pass dampers. 

Water spray from sprinklers cools the smoke and reduces the pressure differences due 

to buoyancy. Some of the literature recommends a minimum pressure difference of 10 

Pa in this case [Abell, 1999]. Pressure differences across the fire door near the 

injection point can also be excessive, making the door difficult to open. On the other 

hand pressure difference far from the injection point can be minimal and may 

therefore fail to prevent smoke infiltration. The flow resistance in the stairwell causes 

the variation in pressurisation. This means that the stairwell pressurisation system 

shall be designed with multiple injection points. 

Another problem is the intermittent loss of effective pressurisation that occurs when 

the escaping passengers enter and leave the stairwell during evacuation. The 

pressurisation system should have a supply fan with sufficient capacity to provide 

effective pressurisation to prevent smoke entry when doors are open. For the design of 

the stair pressurisation system the number of doors that can be opened simultaneously 

should be considered. A design that allows all doors to be open simultaneously may 

ensure that the system always works, but it will probably add to the cost of the system. 

If all the fire doors leading to the burning zone are closed in case of fire it must be 

ensured that adequate replacement air is supplied into the burning zone. Depending on 

the smoke volume that has to be extracted, it may be necessary to install duct(s) in the 

trunk leading directly to open air. An alternative is to install an extra supply fan used 

for the smoke control operation only. 
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The extracted smoke mass flow vanes with the temperature of the smoke. 

Consequently, the speed of the above mentioned supply fan must be controlled by the 

control system. Unless adequate air is supplied there is a risk that the smoke 

extraction will create a huge negative pressure in the corridor. As a result of this, it 

may be impossible for the escaping passengers to open the fire doors, depending on 

which way the doors open. In order to prevent such a situation, the authorities ought 

to require that fire doors between corridor and stairwell will open into the corridor. 

Correctly there are no IMO regulations stating whether fire doors are to open into the 

corridor or out into the stairwell. 

If the fire doors are open it is possible to take advantage of the air flow coming from 

the pressurised stairwell. In case of open fire doors the extra supply fan with variable 

speed or the duct leading to open air is, in this case, not needed [Abell, 1999]. 

The requirements given by the authorities regarding design of pressurisation systems 

must include: a required minimum and allowable maximum pressure difference 

between corridor and stairwell; a minimum air flow velocity through open fire doors; 

and the number of doors that are open simultaneously. 

In this study, the ASCS is compared with the other two cases (i.e. HVAC system is 

stopped and HV AC system is normal) in terms of smoke layer heights in the corridor, 

given the occurrence of a fire in the cabin. To carry out this the following steps are 

proposed: 

Step 1 Present the available data and make appropriate assumptions. In this step, the 

number of the cabins needs to be defined. The accommodation zone needs to 

be specified. The dimension of the corridor and fire load also need to be 

specified. 

Step 2 Describe the ventilation system. In this step, it is required to define geometric 

characteristics of the door openings and mechanical ventilation supplies. 
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Step 3 Use a deterministic simulation through the fire zone model implemented in 

FAST (Fire growth And Smoke Transport) computer code [Peacock, et al.. 

2000] to study smoke layer heights. In this step, the data obtained in Steps 1 & 

2 can be fed into the FAST software. Each of the three cases is studied 

individually to obtain the characteristics. 

The fire simulation shall demonstrate the possible burden and pollution created from 

smoke, temperature and toxic loads in the ship spaces. Among other mathematical 

modelling possibilities, so called "zone models" are available, which constitute a 

simplified balance model of energy and mass flow, and offer a numerical solution. 

With zone models it is possible today to reliably predict the spread of smoke layers 

and the development of gas temperature, and to characterise with some degree of 

accuracy the visual range within the smoke [Schreiter, et aI., 2003]. Zone models have 

been used since the mid 1970s to predict thermal hydraulic conditions in a fire 

compartment prior to flashover. The zone model approximation treats the 

compartment atmosphere as two well mixed layer. Such stratification often arises as a 

result of buoyancy, but may be inapplicable in certain situations such as tall stairwells, 

long corridors or other situations where three dimensional effects are important. Zone 

models apply conservation equations to each layer, with the user specified fire 

providing a source of energy and mass [Ramsdale & Mawhinney, 2003]. 

The computer model FAST can be used to simulate physical conditions inside the 

building during a set of predetermined fire scenarios. Zone models such as FAST are 

relatively easy and quick to use and provide a reasonable engineering estimate of 

smoke hazards in compartmented structures [He, et aI., 2002]. 

Step 4 Analyse the results. The results obtained are compared in terms of smoke layer 

heights. Comments on the three cases are made. 



5.4 Case Study 

Step 1 

The following are the basic available data and assumptions: 

1. A Main Vertical Zone (MVZ) in a passenger ship compliant with the SOLAS 

Convention as amended in 1997. 

2. 10 cabins per deck 

Passenger cabin's area is (6mx3m), containing a trash can, an upholstered chair. a 

bed, a table, a wardrobe and a bathroom (2mx2m) and provided with low flame 

spread covering as per SOLAS II-2.Reg.34.3 [IMO, 1997]. 

3. Total length of corridor: (I5m x1.5m) per deck 

4. Fire load 

At first, the only presence of an upholstered chair was assumed to screen the most 

relevant and critical event sequences. This allows applying the Heat Release Rate 

(HRR) reference curve obtained by laboratory tests with the furniture cone calorimeter 

[US Department of Commerce, 1983, 1985, 1988]. 

The model characteristic values are: 

Fire growth rate: ex = 0.1055 kW/s2, that is "fast" according to SFSE [SFPE, 1993] 

and between "fast" and "ultra-fast" according to the BSI Standards [IMO, 1997]. 

Peak value: t = 140s, Q = 2.11 mW. 

Transition to decay at t = 160s. 

End combustion at t = 500s. 

Total heat developed = 372 mJ [Angelo & Giovanni, 1997]. 
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The chair was assumed to be in a comer of the room. 

Step 2 

1. Ventilation 

The cabin is equipped with a self-closing door as per the SOLAS regulations [IMO, 

1997] and a window (with no restrictions about its constituting material), depending 

on the cabin row. 

The door is not airtight, and therefore it was assigned a leakage even when closed. 

The window is made of standard materials and for this reason, it was assumed unable 

to withstand the fire. This implies the window to be either open or broken, in those 

scenarios when it is present. 

To take into account the natural ventilation (including leakage through the door), the 

following geometric characteristics of the openings were assumed: 

- Door open: O.6m x 2.0m. 

- Door closed: O.Olm x 2.0m. 

- Door grill: O.2m x O.4m, sill O.2m. 

- Window open: 1 mx 1 m, 1 m from the floor. 

- Window closed: O.Olmxlm. 

- Ceiling height: 2.44m. 

Figure 5.4 has the following characteristics [Abell, 1999]: 

- Air outlet: 250m3/h per cabin. 

_ Ceiling extraction bathroom: 50m
3
/h. 

_ Ceiling extraction corridor: 3m
3
/s. 

2. It was assumed that the smoke detector and sprinkler do not activate. 
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Step 3 

Test 1 

Bath 
room 

Cabin 

Stairs 

... 

Corridor 

----.~ 4~-+--

Figure 5.4. Mechanical ventilation supplies air values. 

For this test 1, the initial fire occurred in an upholstered chair corner of cabin 

(compartment 1). The smoke then fills the corridor and venting in next cabin 

(compartment 3). Cabin and corridor ventilation (HVAC System) is stopped. 

The evaluation of the test 1 consequence (Smoke Layer Height after Imin) was 

accomplished by means of a physical simulation using the FAST code. The result is 

shown in Figure 5.5. 

In a similar way, test 2 and test 3 are studied. 

Test 2 

Cabin and corridor ventilation (HV AC System) is normal. 
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Figure 5.5. Test 1 result of smoke layer height. 

Test 3 

ASCS is working. The following information is given: 

• Ceiling extraction bathroom: 100m3!h . 

• Ceiling extraction corridor: 6m3/s. 

Step 4 

Results 

Test 1 (After Imin, Corridor Smoke Layer Height= 2.01m) 

The calculation shows that if the ventilation is stopped the conidor becomes smoke 

logged. Smoke overflows to stairs. 
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Test 2 (After Imin, Corridor Smoke Layer Height= 1.36m) 

If the ventilation is kept in operation the smoke level is not significant and IS 

contained at the corridor ceiling. 

Further comments following test 2 indicated that smoke in the corridor is limited and 

would not give great difficulties in passenger evacuation provided that the ventilation 

is kept running. 

Test 3 (After Imin, Corridor Smoke Layer Height= 1.03m) 

When the ASCS is kept in operation the smoke level is much lower. Smoke spillage is 

limited to stairwell. 

The result of the smoke layer height for each test case is shown in Figure 5.6. 

This appears to be over optimistic. All tests have to begin with a selected size of fire 

and even slight variances, in reality, could change results. 

Any smoke, which is detected in crew or passenger spaces means that immediate 

evacuation is essential. 

5.5 Conclusion 

IMO is a well intentioned authoritative body, but in the past, by the nature of the 

organisation's procedures, acceptance of regulations internationally was slow. 

Although this process has been speeded up, technological advances and general 

developments often overtake regulatory requirements. 

The actual design and operation of ASCS does vary on the newer vessels but 

essentially it is the risk to life that is the concern of this chapter rather than tactical 

ventilation during fire fighting. 
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Figure 5.6. Test results of smoke layer height. 

Some of the new vessels, due to come into operation soon, have the following systems 

built in: 

If a fire is detected in any cabin, 

1. The air supply fan automatically stops and its dampers close. 

2. The recirculating air fan stops and its dampers close. 

3. The exhaust fan from the bathroom continues to extract. 

It is possible that smoke from a cabin may enter stairwells such that the escape by 

personnel from different decks may be compromised. In this case: 

1. The recirculation damper closes. 

2. The relative fan speeds of the stairs supply and stairs exhaust change to a 

predetermined point to create an over pressure from the stairs into the corridor. 
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The ship designer has a considerable problem in incorporating everything that is 

required or expected for passengers. Assistance, during an emergency, may be non

existent so everything that ensures the safety of the passengers and crew is essential. 

Smoke is one of the main killers at sea and this simple fact has been known for many 

years. 

The previous disasters proved to be an awakening and still there are a few regulations 

to put in place to deal with the problems that the chapter has brought to light. The 

regulatory process must be cautious but that also means it is ponderously slow. In this 

chapter different philosophies and solutions on smoke control have been discussed. 

The current regulations do not address the issue of smoke control in passenger ships 

as well as they should. IMO and other regulatory authorities could usefully benefit 

from using the techniques assessed in this chapter to improve smoke control in these 

vessels. These include: 

1. The smoke which has to handle all relevant data such as smoke volume to be 

extracted and smoke temperature. 

2. Required minimum and allowable maximum pressure differences between 

corridors and stairways. 

3. Criteria for temperature resistance of smoke extraction equipment. 

4. Definitions and functions of the control system. 
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CHAPTER 6 - EVACUATION ANALYSIS OF PASSENGER 

SHIPS: USING COMPUTER SIMULA TION TO PREDICT 

EVACUATION PERFORMANCE 

Summary 

Several disasters with passengerlRo-Ro vessels over the last years have demonstrated 

a need for evacuation analysis. This chapter presents a methodology for modelling an 

evacuation. Ship evacuation models offer the promise to quickly and efficiently bring 

evacuation considerations into the design or modify an existing design phase. 

Typically, this chapter provides the simulation of 90 passengers and 10 crew members 

mustering on a vessel of 6 decks. After this, simulation of different scenarios is 

discussed. 

6.1 Introduction 

Recent well-published disasters of passengerlRo-Ro ships together with trends of 

largely increased capacity of passenger carrying ships have brought the issue of 

effective passenger evacuation, being the line of defence, in an emergency to the 

centre of attention of the maritime industry worldwide. With numbers now ranging up 

to 6,000 on a single large cruise liner, with ships often trading in pristine 

environmental areas and with rapidly growing consciousness for safety and 

environmental protection among ship operators, assurance of all these issues at the 

highest levels has become the main targets for technological innovation in the 

maritime industry as well as key factors for gaining and sustaining competitive 

advantage [Simoes, et aI., 2000]. However, the process of evacuating a large 

passenger ship is a very complex one, not least because it involves the management of 

a large number of people on a complex moving platform, of which they normally have 

very little knowledge. These characteristics make ship evacuation quite different to 

evacuation from airplanes and buildings [Shields & Boyce, 2000] as the first only 

involve relatively simple geometries, whilst the second imply steady platforms, 

normally with no need for assistance to be given to its occupants during an evacuation 
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and no need for their preparation to survive a harsh environment following a 

successful evacuation. These inherent problems, coupled to limitations in time to the 

extent that evacuation may often be untenable, render decision making during a crisis 

a key to successful evacuation and any passive or active support encompassing design 

for ease of evacuation, crew training, evacuation plans/procedures and intelligent 

systems on board critically important [Lopez & Perez, 2003]. 

Following a ship incident, a decision has to be taken as to whether an evacuation is 

necessary. In many situations the safest course of action is to remain onboard the ship 

as the environment outside can be more perilous than that on board [Rutgersson, et aI., 

2003]. In such cases the evacuation does not require passengers to abandon ship but to 

seek safe refuge away from the immediate threat. However, uniquely to shipping 

applications, the orientation of the escape paths may be time dependent due to roll 

[Galea, 2000, Galea, et aI., 2002, Galea, et aI., 2004, Gwynne, et aI., 2001]. 

Uniquely to ship situations, a good deal of time consuming preparatory activities must 

be completed prior to the actual evacuation. Passengers are instructed to collect life 

jackets (usually located in cabins or muster stations) and are usually further required 

to assemble in pre-defined muster stations prior to attempting to disembark. Even in 

the well-orchestrated Exercise INVICT A, the mustering operation required between 

11 and 20 minutes [Marine Safety Agency, 1996, Thompson & Wheatley, 2000]. In 

addition, family groups separated prior to the emergency are likely to attempt to 

reunite prior to attempting to evacuate, all of which effectively delays and prolongs 

the evacuation process. Again uniquely to shipping situations, for the majority of 

passengers, the evacuation path is often counter intuitive. In buildings where the way 

out of a structure is to normally proceed to street level, while on board ship the way 

off requires passengers to seek the muster station. This could require passengers to 

travel to an apparently arbitrary location above or below their current position and to 

the port or starboardside. Furthermore, the routes can be complex and confusing to 

passengers not accustomed to the marine environment, even the term "muster station" 

may be unfamiliar to some passengers [Koss, et aI., 1997]. 
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Throughout the evacuation process complex contra-flows can develop within the 

passageways and staircases. These can be formed by flows of passengers with 

different goals, for example by passengers attempting to find companions, collect life 

jackets and warm clothing and locate muster stations. Crew can also create contra

flow situations as they attempt to tackle the cause of the emergency or reach assigned 

duty stations. Regardless how remote the possibility or difficult the task, ship 

evacuations do occur and they can be the result of fire (e.g. Ecstasy), collision (e.g. 

European Gateway), grounding (e.g. Saint Malo Ferry), equipment failure (Estonia) or 

human error (Herald of Free Enterprise) [Glen, et aI., 2003]. 

6.2 Background 

A number of drivers have brought passenger evacuation to the forefront of priorities 

of the European shipbuilding industry triggering the need for the development of tools 

[Soma, 2001] and procedures in support of performance-based design for evacuation 

to ensure cost-effective treatment of this important issue: 

1. Passenger ship/Ro-Ro ferry accidents have brought about the realisation that "ship 

and cargo survival" might have to be addressed separately from "passenger 

survival" in that these vessels can capsize very rapidly, when damaged, thus not 

allowing sufficient time for evacuating passengers and crew. 

2. An amendment to SOLAS (Safety Of Life At Sea) '74 requires "Ro-Ro passenger 

ships constructed on or after 1 July 1999, to have escape routes evaluated by an 

evacuation analysis early in the design process". 

3. The consequences of accidents involving large loss of lives could drive shippers 

out of business, as the Estonia tragedy has amply demonstrated. Such 

consequences are bound to reach intolerable levels when addressing new concepts 

such as cruise liners carrying well over 5000 passengers. 

Deriving from the above, there is an immediate need to address the capability of the 

whole passenger evacuation system pertaining to mustering routes and procedures, 
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life-saving appliances [Rodricks & Cooke, 1996], decision support and management. 

In tum, this leads to the necessity to focus on the development of evacuation analysis 

and simulation tools for the prediction of evacuation performance, thus allowing for a 

meaningful evolution of passenger ship designs with enhanced evacuation 

performance (minimum time for safe evacuation of passengers and crew). Successful 

mustering and evacuation can avert disaster as the last lines of defence even after the 

safety measures linked to structural reliability and enhanced ship survivability have 

failed. In this respect, the development of tools in the form of computer simulation 

models for the prediction of evacuation scenarios, evacuation time and probability of 

success in different conditions must be addressed as a top priority. The same tools 

could also be used to aid decision making onboard the ship, thus tackling the same 

problem as an operational rather than a design issue [Vassalos, et aI., 2002]. 

6.2.1 The shipboard evacuation problem 

Much as there are generic elements in the simulation of passenger evacuation equally 

applicable to ships, buildings or aircraft, there exist critical differences between them, 

which are likely to have a significant (and hence crucially important) effect on the 

outcome that ought to be addressed at the outset [Majumder, 2000]. 

6.3 Methodology 

An evacuation analysis framework is proposed to include the following steps: 

1. Collection of information. 

2. Simulation of evacuation process. 

3. Simulation of the consequences. 

They are detailed in the following: 
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1. A wide range of developments concerning design and operational "tools" have 

been made possible including: 

1) Evaluation of evacuation time for certification purposes. 

2) Design/modification for ease of evacuation. This involves systematic 

parametric investigation to identify governing parameters of the ship 

environment (e.g., corridors, staircases, number and location of mustering 

stations, life saving appliances, signage) within a pre-defined set of human 

behaviour parameters and mustering and evacuation procedures. This would 

allow design optimisation for enhancing evacuation performance, where 

parameters being considered include: evacuation time and components 

contributing to it; time history of occupancy of regions of interest; queue size 

time history (bottlenecks); rate of crossing through doors. etc. 

3) Mustering/evacuation routes and procedures. This involves the identification 

of optimal passenger flow (minimum total evacuation time) concerning choice 

of routes and procedures to achieving this. Heuristic approaches based on 

experience and engineering judgement are used in combination with self

searching and tuning algorithms to automate this process. 

4) Crisis management and decision support. This involves development of 

effective management and decision support systems for risk containment 

during a crisis as active means to averting catastrophes (e.g., an onboard 

evacuation simulation platform to aid decision-making for effective 

mustering/evacuation in a range of incidents). 

5) "What if' scenarios for crew training. 

6) Passenger familiarisation with a ship's environment - particularly the large 

cruise liners and passenger/Ro-Ro vessels being built today. 
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2. The evacuation when applied to maritime applications refers to all that activity 

which takes place from the sounding of an alarm to leaving the ship. To truly 

model ship based evacuation it is essential to address all of components. To 

perform the required simulation reliably requires an evacuation model with the 

appropriate set of capabilities and access to the necessary data. Furthermore, the 

scenario under consideration may be under conditions of calm or involve 

situations with list or roll [Tsychkova, 2000]. This will affect not only the nature 

of the data required but also the capabilities of the model. When modelling human 

behaviour during evacuation it is essential that the enclosure geometry, population 

and population behaviour be represented. 

3. The simulation produces a range of output, both graphical and textual. Interactive 

two-dimensional animated graphics are generated as the simulation is running. 

This allows the user to observe the evacuation as it takes place. The graphics are 

interactive allowing the user to interrogate occupants and events. In addition, a 

data output file is produced containing all the relevant information generated by 

the simulation, including a copy of the input data. For example, the output data 

includes evaluation time need for individuals, total time to muster and evacuation, 

distance travelled by individuals and time wasted in congestion by individuals. 

These are intended to be used once a simulation has been completed and enable 

large data output files to be searched and specific data selectively and efficiently 

extracted. 

6.4 Case Study 

A typical page during the evacuation involving fire of 90 passengers and 10 crew 

members from a passenger ship with some of the controls available in the simulation 

software is shown in Figure 6.1. 

In this case, the evacuation analysis is carried out by means of a deterministic 

simulation through a multi-decks model implemented in the Evi [Vassalos, et a\., 

2001 a-c]. In particular, the simulation of every scenario yields results in terms of total 

travel time (evacuees arriving at embarkation station). 
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Figure 6.1. Evi: Run time simulator during an evacuation. 

To demonstrate the use of the simulator, a number of scenarios are considered for a 

passenger ship operating in international waters. The vessel consists of 6 manned 

decks - 4 of which contain cabins. Each cabin size is 6mx3mx3m. The assembly 

station is located within a centralised atrium on deck 3. The embarkation station is 

located on deck 6. The detailed passenger and crew distributions are shown in Table 

6.1. 

110 



Table 6.1. Passenger and crew distributions. 

Deck Number of Number of Number of Remarks 

cabins passengers crew 

1 10 20 2 Cabins 

2 10 20 2 Cabins 

3 2 Assembly station 

4 10 20 2 Cabins 

5 10 30 2 Each cabin for 3 passengers 

6 Embarkation station 

The decks are connected by staircases and the width of each corridor is 2m, the 

location and dimensions of which are given in Table 6.2. 

Table 6.2. Deck connectivity by stairs. 

Connecting deck Number of Width Remarks 

staircases 

1-2 2 1m 

2-3 2 1m 4 - Fire doors 

3-4 2 1m 

4-5 2 1m 

5-6 2 1m 4 - Fire doors 

There are no arrows indicating the main escape route - this is due to the fact that there 

is always an option of two routes to the assembly/embarkation station (such as 

onboard Scandinavian Star where some passengers ended up entering areas affected 

by the fire by following EXIT arrows). Instead of arrows, the corridors in 

accommodation areas are marked by LLL (Low Location Lighting), luminous green 

horizontal lights along the length of the corridor and vertical lights marking 

doorframes along the escape routes. 

Information on passenger and crew distribution and demographic details was obtained 

from the IMO Interim Guidelines. All cases randomised passenger and crew gender. 

The simulations were run with passengers present in their cabins at the start of the 
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simulation involving fire, which is referred to as 'night case ' in the IMO Interim 

Guidelines. A 'day case' is one where passengers are situated in public areas (e.g. 

restaurants, shopping mall, etc.) [IMO, 2002]. 

Case 1: From Cabin to Assembly Station 

At the sound of the general alarm the passengers start moving from their respective 

cabins to the assembly station. Reaction time and uncertainties concerning age and 

gender, which affect speed of advance, are assigned (see Figure 6.2). 

o 10 3) ]I II Sl 
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Figure 6.2. Case 1: from cabin to assembly station. 
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Case 2: From Cabin to Embarkation Station 

At the start of the simulation the passengers move from their cabins to the 

Embarkation station on deck 6 following the shortest route and without stopping at the 

assembly station. Passenger distribution and uncertainties associated with human 

behaviour are applied. This case represents a real incident (see Figure 6.3). 

o ~ ~ m m 
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Figure 6.3. Case 2: from cabin to embarkation station. 
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Case 1-1: Blockage of One Fire Door on Assembly Station 

The blockage on the evacuation is considering the loss of escape route. When 

passengers arrive on the deck where there is the assembly station, they still have to 

queue before arriving at their destination (see Figure 6.4). 

o ~ ~ m m 100 1~ 
"'" I"" "'" I"" "'" I,,,,, ""I,,,, "'" I"" "'" I, """ "I"" "' __ ~ 

Figure 6.4. Case I - 1: blockage of one fire door on assembly station. 
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Case 2 - 1: Blockage of One Staircase on Embarkation Station 

The passengers have to travel to reach an alternative stairway that much further than 

their original choice (see Figure 6.5). 

Figure 6.5. Case 2 - 1: blockage of one staircase on embarkation station. 
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Comments on the results 

The results from the case studies presently considered are given in Figure 6.6. 

Cumulative Travel Times 
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Figure 6.6. Travel time for the cases considered. 

Case 1 has the shortest travel time. Th is is due to the fact that the passengers are 

simply moving from their cabins to an assembly station. This is illustrated by a steep, 

'straight' curve. 

Case 2 - here the passengers, rather than going to assembly stations, are instructed to 

go directly to the embarkation station. Comparing with Case 1, this can be detected by 

a less steep curve towards the end of the simulation. 

The results of Case 1 - 1 indicate that the start of the simulation curve is similar to the 

one in Case I - despite the fact that a less steep curve towards the middle and end of 

simulation is detected. The bump' on the curve is caused by the fact that on deck 3 
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assembly station one of the doors was blocked (bottleneck). This means that there is 

more queuing (compared to Case 1). 

Case 2 - 1 has the longest travel time - due to the fact that passengers generally have 

to travel a longer distance (as they may become lost at the blocked stair exit). 

The areas in direct connection to assembly and embarkation station appear to be prone 

to blockage due to the large number of passengers attempting to enter over a short 

period of time. This problem may be solved in normal evacuation by assembling the 

passengers in groups. The crew has to co-ordinate the assembly so that the passengers 

do not move towards the assembly stations until there exists sufficient area to 

accommodate the envisaged crowd capacity. Crew members by assembly station have 

to monitor the number of people there and to communicate to the crew responsible for 

a given group of passengers to start moving. 

One should consider having people waiting for example in assembly area until their 

passage to the embarkation station is clear. This is to prevent queuing in staircases or 

corridors. Passengers will be more relaxed and co-operative if they rest in an 

environment like a public area rather than a small and narrow corridor. 

6.5 Conclusion 

This chapter has demonstrated the evacuation process on passenger ship within 

different scenarios. The proposed approach can be used to investigate issues such as 

blockage exit, passengers and crew movements during emergency situations involving 

fire. The results of this study have also shown how varies in different evacuation 

scenarios. 

The evacuation analysis by the methodology using computer modelling is a useful 

tool. It can be used by ship designers during the concept phase, classification societies 

for the certification of ship design and by ship operators for training both on shore and 

at sea. In the stages of the design process such analysis will bring important issues of 

fire safety, evacuation. staffing and procedures to the fore of vessel design in a 

manner that is reliable. quantifiable and reproducible. In a similar process. 
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classification societies will be able to quickly assess a proposed design, including the 

crew procedures and determine whether proposed designs meet acceptable standards. 

Also, operators will be able to assess safety provision on board with respect to 

number, type and location of passengers, number and location of crew, etc. 
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CHAPTER 7 - FIRE RISK MODELLING OF MACHINERY 

SPACE: AN APPLICATION OF APPROXIMATE REASONING 

APPROACH (FUZZY AVERAGING METHOD) IN PASSENGER 

SHIP ENGINE ROOM 

Summary 

Fire safety is built up of ignition prevention, early detection of fire, safe personnel 

evacuation, containment of fire and efficient suppression. In addition, vital machinery 

functions must be continued during the fire. 

This preliminary fire safety study intends to assess the potential hazards that would 

affect the operation of a ship engine room. The risks associated with such hazards are 

quantified and ranked in order of priority and assessed for decision-making purposes. 

This chapter concentrates on the fire risk evaluation of the major hazards threatening 

the engine room overall rather than focusing on specific areas of the design. The main 

objective is to propose a framework for modelling system fire safety using an 

approximate reasoning approach. A case study of the risk to passenger ship engine 

room due to fire during operation is used to illustrate the application of the proposed 

risk assessment model. 

7.1 Introduction 

High fire safety in ships in general and machinery space in particular is a result of 

correct design and careful crew operations. When either one of these is missing, fire 

risks are significantly increased. 

The available fuel in an engine room of a ship is usually limited to oil, which is stored 

or used in engines, boilers, lubricants and stores. The tidiness of any engine room wi II. 

of course, affect the ease with which a fire may start and develop. Unless an engine 

room fire becomes serious, it may well be confined to the area in which the outbreak 

of fire occurred. In the event that an escape of oil does become involved, the 
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probability of fire being communicated to the accommodation is very much higher 

than fire spread in the reverse direction, because there is a good chance that there will 

be combustible materials in contact with, or in close proximity to, the accommodation 

side of the engine room casing. Heat rising from the engine room fire will cause the 

engine room casing to become hot, which in tum leads to ignition of combustibles by 

means of heat transfer by conduction or radiation. 

The most serious engine room fires therefore occur when an escape of oil becomes 

ignited. The ease with which oil can be ignited by the introduction of an external 

source of ignition, depends upon the flash point temperature of that oil. The flash 

point is the temperature to which the oil must be raised such that a flammable vapour

air mixture will be established at the surface of the liquid. 

Heat blister patterns providing clear evidence of oil having burned in the engine room 

may often be revealed after a fire by using diesel oil to clean soot and dirt deposits 

from surfaces of machinery and floor plates, etc. [Foster, 1994]. 

Fires in electrical switchboards and other electrical machinery have the potential to 

give rise to fire where cable connections and terminations become loose or damaged 

or where switch or contactor contacts have become eroded. Fires originating in main 

electrical switchboards seldom develop seriously, because usually only a small 

amount of cable insulation is exposed within the switchboard area, and for the most 

part the external portion of the cable is steel wire armoured or metal braided. Spare 

components are, however, often stored in combustible packaging behind the 

switchboard and this may extend the fire if it becomes involved [Foster, 1994]. 

When previous engine room fires are studied, it is apparent that no two fires are 

identical. All engine rooms are different. Even sister ships have differences. Thus 

slightly varying details or temporary changes may lead identically ignited fires to 

totally different end results. 

A fire resistant engine room displays lower ignition probability than an average one. 

A fire resistant engine room remains by definition safer for personnel. This chapter 
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focuses on the fire resistant one. High fire safety and resistance are difficult to achieve 

when capital and operational costs must be observed. True optimisation cannot be 

done. Of course the additional costs of improved design can be measured but the 

probabilistic gain from statistical likelihood of fire and expected damage costs are 

usually only theoretical figures [Hakkinen, 1997]. 

In general, ship fires have been widely investigated. Single fires are analysed (with 

varying accuracy) and reported to International Maritime Organization (IMO) related 

committee. Both the IMO and classification societies issue statistics and summaries of 

the fire reports. Increasing attention is also given today to the incidents and near miss 

cases that could have lead to disastrous consequences. Some of the fire reports issued 

by national safety authorities are really valuable materials for the fire safety 

researcher. 

Fortunately ship fires seldom result in catastrophes. Often the losses are mainly 

economical with minor personnel injuries. However some 100 to 200 fires are 

reported annually. Those fires involve human losses, significant ship damages or 

traffic interruption. Among these fires a third were initiated in engine rooms. 

Engine room fire safety has been considered by many parallel methods. IMO and 

other authorities have guided the technical development by detailed regulations on 

ship structures and equipment. Many rules and guidelines apply to the machinery 

systems and machinery spaces [IMO, 1997]. 

7.2 Fire Safety of Ship Engine Room 

7.2.1 Criteria for fire safety 

In principle, general fire safety is presented by the following sequential criteria: 

1. Fire ignition must be prevented. 

2. However. if fire is ignited. alarm or other suitable indications must be triggered 

without delay. 
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3. The indications must raise further action, like extinguishing, equipment shut 

down, etc. 

4. Fire suppression must be rapid, efficient and appropriate. 

5. Personnel must be safely evacuated from the danger zone. 

6. Fire must be confined in the compartment of ignition and not spread out to other 

zones. 

IMO and classification societies specify measures required to fulfil these criteria in 

principle. Extensive experimental and theoretical research lies behind the regulations 

and experience from the accidents is utilised. Yet regrettably engine room fires occur, 

which are not fully controlled according to items 1 to 6 above. 

Significant development work has been performed among the fire detection and 

extinguishing equipment manufacturers. Some of them are complaining that 

conservative regulations and acceptance tests are hindering the progress [Hakkinen, 

1997]. However, this particular topic is not further discussed in this chapter. 

'Normal conditions' refer commonly to cases when fire has been ignited by an 

accidental mechanical failure or a technical cause. A frequently quoted example is the 

crank case explosion of a medium speed diesel engine. In some cases the damage 

included heavy drive gear parts breaking through the engine frame, hitting equipment 

containing flammable oil and causing oil ignition. While such fires are commonly 

regarded as totally unexpected, closer inspection may reveal that primary causes 

included errors in engine design, prolonged operation on worn-out piston rings and/or 

engine overload. Causes are widely different and they often occur simultaneously. 

• Abnormal conditions' refer to circumstances where an unexpected and inherent 

incident causes engine errors. Typical examples are temporary stowing of combustible 

materials in a high fire risk area. leaving the exhaust gas manifold thermal insulation 
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uninstalled "only for the short coffee break", piping design where ruptures are 

generated but they remain unnoticed, etc. [Hakkinen, 1997]. 

7.2.2 Fire safety 

Fire safety can be defined and quantified in many ways. Statistical evaluation of fire 

safety is usually derived from a number of reported fires. This data can be used to 

calculate ignition probabilities with respect to figures for specified machinery spaces, 

ships of certain age, various flags and categories. Yet this evaluation tool has some 

drawbacks. Near miss-cases are ignored although they could produce valuable 

information for producing fire risk control measures. Experience confirms that various 

incidents are many times more frequent than actual fires. Furthermore some two thirds 

of ignited fires are instantly suppressed and remain unreported. 

Most of the statistical data contains very little information about the primary cause of 

fire origin. Valuable information on spread-out and damages is sometimes given in 

separate fire reports but summaries of such information are rare. 

The number of casualties and extent of damages are given in statistics to describe how 

serious the engine room fires typically are. These figures give unfortunately only 

limited help for the design and operational aspects of improved fire resistance. 

Profound analysis of single fire cases and their reports has appeared to be very 

valuable. The fire has to be investigated as a process starting long before the ignition 

and ending after the completion of investigation and damage repair [Hakkinen, 1997]. 

7.2.3 Scope of research 

In this chapter, the main attention was given to ships with diesel propulsion and 

mechanical and electrical power transmission. Besides the propulsion machinery was 

electric and thermal energy generation with their auxiliaries included. The 

investigated ship systems included steering gear. fire and bilge piping systems. The 

selected steel structures in machinery spaces were evaluated. 
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Other propulsion machinery concepts were not included in this chapter. Gas turbines 

have inherently good fire safety record, mainly due to the protective modular casing 

and the simplified fuel system. In many respects the auxiliary machinery in turbine 

driven ships has equivalent or better fire safety than diesel driven ships. 

7.3 Investigation of Previous Accidents Relative to Engine Room Fire 

This investigation comprises survey reports on 73 NK-classed ships involving engine 

room fires during the period from 1980 to 1992 [NKK, 1994]. Ships damaged by 

small fires or suffered sinking without being reported to the NK society are excluded 

from this investigation. Internal fires or explosions in boilers, exhaust gas 

economisers, waste oil incinerators, turbo-charges, crankcases, etc., without the fire 

extending to the engine room were considered as fire damage to the machinery itself, 

therefore, they are excluded from this investigation. Fire damage to the hull following 

an engine room fire was considered and counted as an engine room fire and a fire 

caused by rocket or missile attacks during a war was considered to be a fire in hull 

compartments. 

7.3.1 Results of investigation 

The results of the investigation are summarised as follows [NKK, 1994]: 

1. 73 ships were damaged by engine room fires during the period from 1980 to 

1992. 

2. About six ships per year were damaged by engine room fires, which are 0.1 % of 

all 6,000 NK classed ships. As a comparison, about seven ships per year were 

damaged by fire in hull compartments. 

3. Engine room fires often occurred when ships were underway, which accounted 

for about 750/0 of the total number of ships damaged by engine room fires. 52% 

of ships with engine room fires when underway became unnavigable. 
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4. The main cause of fire resulting in an unnavigable condition is a main electric 

source failure caused by the main switchboard or the main electric cables under 

the ceiling burning due to the ignition of a spray of fuel oil or lubricating oil. 

5. On average, one crew member per year was killed and one crew member was 

injured or suffocated from carbon monoxide per year due to fires. Engine room 

fires are mainly caused by flammable oil igniting and there are many cases of 

human casualties due to evacuations delays from engine rooms where fire and 

smoke had spread quickly. 

6. Fire often occurred in daytime during maintenance work by the crew. There 

were many fires caused by human error due to misoperation or overhauling of 

machinery, incorrect repair, etc. Alternatively, it was found that in unmanned 

ships, fires often occurred not only during daytime, but also early in the 

morning. 

7. There are no particular correlations between the number of fires and a ship's age 

and gross tonnage. 

8. Fires often occurred on reefer ships and car carriers having small engine rooms. 

9. The fuel oil piping of main engines and generator engines and the main 

switchboard are the main sources of fire followed by fuel oil piping ofthe boiler. 

10. Fires at the fuel oil piping of main engines and generator engines are caused by 

fuel oil spraying due to loose or broken fittings on fuel oil piping caused by 

vibration. The main cause of fire on fuel oil piping of generator engines is fuel 

oil spraying due to broken fittings on the fuel valve cooling oil piping. 

11. Fires on lubricating oil piping account for 25% of fires on fuel oil piping. 

12. No cases of engine room fire caused by a soot fire in an exhaust gas economizer 

were reported. 
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13. 

14. 

The number of machinery fires was twice as many as that of electric equipment 

fires. 

No engine room fire extending to hull compartments was reported for ships 

having keels laid after 1 st September, 1984. This may be because the 81' SOLAS 

Amendment was adopted and the regulations on fire protection for hull and 

electric cables were introduced from that date. 

15. The percentages of fire casualties between MO (MO-ships are those provided 

with alarm systems in accordance with the requirement of the "Rules for 

Automatic and Remote Control Systems") and Non-MO ships are almost the 

same. However, the percentage of fires detected by a fixed detector fire alarm 

was 50% in MO ships and only 19% in Non-MO ships, because the installation of 

fixed fire detection systems was not required for Non-MO ships having keels laid 

before 1 st September, 1984, in accordance with the 81 'SOLAS Amendment. 

16. There were fires caused by improper installation of machinery, exhaust gas pipes 

and electric cables. The engine room arrangement should be considered in a 

"Fire Risk Analysis" [NKK, 1994]. 

7.3.2 Locations in the engine room with a high fire risk 

Figure 7.1 shows the identified locations in an engine room taken from data on fires 

that have occurred in 73 ships classed with NK from 1980-1992 [NKK, 1994]. 

Fires did not occur uniformly at all the locations in the engine room space. Fires in the 

engine room were concentrated in areas where flammable oils are liable to leak easily, 

and in the vicinity of an ignition source such as a high-temperature surface or where 

there is electric equipment liable to generate sparks or overheating. Fuel oil pipes 

fitted to main engines, or generator engines, burner fuel injection pipes in boilers, 

exhaust gas pipes, turbochargers, and main switchboards are locations with a high fire 

risk. Countermeasures for preventing fires must be adopted on a top-priority basis at 

such high fire risk areas. 
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Figure 7.1. Sources of fire in engine room [NKK. 1994]. 
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7.3.3 Sources of ignition 

The sources of ignition are shown as follows [NKK, 1994]: 

• Fuel Oil (FO): 30 ships 

- Main Engine (MIE) FO piping: 8 

- Generator Engine (G/E) FO piping: 8 

- Boiler FO piping: 6 

- FO tank: 3 

- FO tank short sounding pipe: 2 

- FO spray after GIE damage: 2 

- Diesel oil purifier: 1 

• Leakage Oil (LO): 8 ships 

- MIE LO piping: 2 

- GIE LO piping: 1 

- LO tank: 1 

- LO strainer: 3 

- MIE crankcase explosion: 1 

• MIE Turbo Charger (TIC) explosion: 5 ships 

• Waste Oil (WO): 2 ships 

- WO tank: 1 

• 

- Incinerator: 1 

Electrical Equipment: 18 ships 

- Main switchboard: 8 

- Starter: 4 

_ Control panel: 1 

- Generator: 2 

- Motor: 1 

_ Transformer: 1 
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- FO electric heater: 1 

• Others: 10 ships 

- Repair at shipyard, loading: 7 

- Unknown: 3 

7.3.4 Breakdown of causes of fires 

The number of ships in each category is presented within ( ) [NKK, 1994]. 

• FO (30) 

o MIE FO piping (8) 

Disconnection of drain valve in FO supply piping (1) 

Breakage of air relief valve in FO supply piping (1) 

Breakage of cock in FO return piping (1) 

Disconnection of vinyl hose in FO return piping (1) 

Crack in welding seam in FO pipe connection (1) 

Breakage of fitting bolts between FO inlet pipe and FO injection pump 

(2) 

FO leakage from FO electric sheath heater due to mis-fitting (1) 

o GIE FO piping (8) 

Loosening ofFO supply piping (1) 

Breakage of FO pressure gauge pipe in FO supply piping (1) 

Breakage ofFO valve cooling oil pipe (3) 

Breakage ofFO valve cooling oil pipe in way of brazing fitting (1) 

Breakage of differential pressure gauge pipe for FO strainer due to 

explosion of air inlet pipe (1) 

Loosening ofFO injection pump flange (1) 

o Boiler FO piping (6) 

Burner mal-function (5) 

Loosening and disconnection of threaded pipe connection in diesel oil 

supply piping (1 ) 

o FO tank (3) 

Breakage of glass level gauge (1 ) 
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o 

o 

o 

Diesel oil overflow from air vent pipe ofFO service tank for boiler (1) 

FO tank short sounding pipe (1) 

Ignition of FO vapour during bunkering (1) 

G/E damage (2) 

FO spraying due to damage of GIE connecting rod (2) 

Diesel oil purifier (1) 

FO spraying due to improper assembling of diesel oil purifier (1) 

• LO (8) 

o MIE LO piping (3) 

Loosening and disconnection of LO supply pipe for exhaust valve 

driving gear (1) 

Disconnection of LO supply pipe for exhaust valve push rod and rocker 

arm (1) 

MIE crankcase explosion (1) 

o MIE LO strainer (1) 

Loosening of LO 2nd strainer cover (I) 

oGlE LO piping (1) 

Loosening of thermometer fitting of LO cooler (1) 

o LO tanking for TIC ofM/E (1) 

LO overflow from LO storage tank (1) 

o Strainer for TIC of MIE (1) 

Loosening of bolts for packing cover (1) 

o LO strainer for GIE (1) 

LO spraying from air relief valve during cleaning (1) 

• Waste Oil (2) 

Waste oil sprayed from the disconnected fitting cover of waste oil tank 

float gauge (1) 

Soot fire in incinerator (1) 

• Electrical Equipment (18) 

o Main switchboard (8) 

Arc from air circuit breakers (2) 



Short-circuit of non-fused breaker caused by overheating (1) 

Short-circuit of non-fused breaker for shore connection caused b: 

overheating (1) 

o 

Degradation of term inal for TurbolGenerator (1) 

Unknown (2) 

Starter Panels (4) 

Short-circuit of internal wiring in starter panel for LO pump (1) 

Short-circuit in starter panel for FO purifier (1) 

Chattering of magnetic contactor in starter panel for refrigerating machine 

and air compressor (1) 

Short-circuit in control panel for refrigerating machine (1) 

o Generator (2) 

Short-circuit at cable terminal of generator (2) 

o Motor (1) 

Overheating of motor for main cooling sea water pump (1) 

o Transformer (1) 

Overheating of transformer (1) 

o Electric heater (1) 

Incorrect fitment of electric heater for FO service tank (1) 

• Others (12) 

oTIC ofMlE (5) 

Explosion of TIC ofMlE (5) 

o Mooring and repair work at shipyard (7) 

Spark from welding (2) 

Spark from gas cutting (4) 

Explosion during cargo loading of Naphtha (1) 

• Unknown (3) 

Sinking (1) 

No report (2) 
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7.4 Approximate Reasoning Approach 

7.4.1 Approximate reasoning approach 

7.4.1.1 Membership functions 

The main artificial intelligence mechanism behind a typical fuzzy safety model is its 

fuzzy inference engine. A fuzzy inference engine comprises the selection or 

development of the type/types of fuzzy membership function used to represent risk 

levels and fuzzy rule bases to generate fuzzy safety estimates. The linguistic variables 

are employed in the development of fuzzy membership function for each input 

parameter. The goal of fuzzy linguistic variables is to represent the condition of an 

attribute/parameter at a given interval. The four attributes/parameters (input variables) 

considered in this study are failure rate, consequence severity,failure consequence 

probability of a cause to a technical failure, and control measure incorporated in the 

design or operation. 

The four fundamental parameters failure rate, consequence severity, failure 

consequence probability and control mechanism are represented by natural 

languages, which can be further described by different types of membership function. 

A membership function is a curve that defines how each point in the input space is 

mapped to a membership value (or degree of membership) between 0 and 1. Four 

different types of membership function are used in this study. The simplest 

membership functions are formed using straight lines. These straight-line membership 

functions have the advantage of simplicity. All of these memberships are commonly 

used to describe risks in safety assessment [Wang & Ruxton, 1997] [Sii, 2000] [Sii & 

Wang, 2000] [Sii, et aI., 2001 a-b]. The fuzzy membership functions are generated 

utilising the linguistic categories identified in the knowledge acquisition and 

consisting of a set of overlapping curves. 

Knowledge acquisition, development of fuzzy linguistic variables, development of 

membership functions and Analytic Hierarchy Processing (AHP) analysis are usually 

required to construct the linguistic safety levels and associated fuzzy membership 

functions [Klir & Yuan. 1995]. In knowledge acquisition. data collection analysis. 
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expert and engineering judgements, fuzzy modelling and concept mapping are 

performed sequentially to classify the knowledge. The goal is to establish linguistic 

variables based on fuzzy set theory, for qualifying and quantifying the safety 

estimates to develop fuzzy membership functions for representing risks. The 

arbitrariness and variability associated with combining information from various data 

and knowledge acquisition channels are the basis for utilising the approximate 

reasoning approach in the decision making process. The approximate reasoning 

analysis using fuzzy logic systems does perform such transformation and combination 

of information from different sources [Wang L. X., 1997]. 

This section defines the following forms of membership function as perceived by 

experts for risk analysis in this chapter: 

• 

• 

• 

• 

A single deterministic value with 100 % certainty (Figure 7.2 (a)). 

A closed interval defined by an equally likely range (Figure 7.2 (b)). 

A triangular distribution defined by a most likely value, with lower and upper 

least likely values (Figure 7.2 (c)). 

A trapezoidal distribution defined by a most likely range, with lower and upper 

least likely values (Figure 7.2 (d)). 

Each type of membership function is described in detail as follows: 

7.4.1.1.1 A single deterministic value 

A single deterministic membership function is defined by a crisp parameter raj, in this 

case the interval on x-axis is between 0 and 10. 
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Figure 7.2 (a). A single deterministic value of 5.0 with 100 % certainty. 
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Figure 7.2 (b). A closed interval defined by an equally likely range between 3.0 and 

7.0. 
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Figure 7.2 (c). A triangular distribution defined by a most likely value of 5.0, with a 

lower least likely value of2.0 and an upper least likely value of 8.0. 
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Figure 7.2 (d). A trapezoidal distribution defined by a most likely range between 4.0 

and 6.0, with a lower least likely value of2.0 and an upper least likely value of8.0. 
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7.4.1.1.2 A closed interval 

A closed interval membership function is represented in the form of [a, a, b, bj, where 

the first a is the membership function's left intercept with grade equal to 0, the second 

b is the membership function's right intercept with grade equal to 0, and the second a 

and first b are the membership function's left and right intercepts at grade equal to 1. 

The function y = closed interval (x, [a, a, b, bj) is written to return the membership 

values corresponding to the defined universe of discourse x. The parameters that 

define the closed interval membership function [a, a, b, bj must be in the discretely 

defined universe of discourse. 

7.4.1.1.3 Triangular membership function 

A triangular membership function is normally defined by [a, b, cj, where a is the 

membership function's left intercept with grade equal to 0, b is the centre peak where 

the grade equals to 1 and c is the right intercept at grade equal to 0. The function y = 

triangle (x, [a, b, c)) is written to return the membership values corresponding to the 

defined universe of discourse x. The parameters that define the closed interval 

membership function [a, b, cj must be in the discretely defined universe of discourse. 

7.4.1.1.4 Trapezoidal membership function 

A trapezoidal membership function is defined by [a, b, c, dj, where a is the 

membership function's left intercept with grade equal to 0, b is the membership 

function's left intercept with grade equal to 1, c is the membership function's right 

intercept with grade equal to 1, and d is the membership function's right intercept 

with grade equal to 0. The function y = trapezoidal (x, [a, b, c, dj), is written to return 

the membership values corresponding to the defined universe of discourse x. The 

parameters that define the closed interval membership function [a, b, c, dj must be in 

the discretely defined universe of discourse. 
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7.4.2 Background of fuzzy averaging for safety assessment 

Safety assessment provides the basic safety related information for any new project or 

engineering product at the initial design stages. The ability to identify, assess and 

evaluate anticipated hazards requires the study of imprecise data information coming 

from a rapidly changing environment, a task for which fuzzy logic may be better 

suited to deal with than classical methods. Analysis of complex situations needs the 

efforts and opinions of many experts. The experts' opinions, almost never identical, 

are either more or less close or alternatively more or less conflicting. They have to be 

combined or aggregated in a rational way in order to produce one conclusion. In this 

chapter the methodology of fuzzy averaging is introduced. It is also applied to fire risk 

modelling. 

7.4.2.1 Statistical average 

One of the most important contributions of statistics in applications lies in its concepts 

in the average or mean of n measurements, readings, or estimates expressed by real 

numbers rp .... , rn . It is defined by: 

(1) 

The above measurements are considered to be of equal importance. The mean or 

average which is typical or representative of n measurements is known as a measure 

of central tendency. 

If the measurements have various degree of importance, then the concept of weighted 

average or weighted mean is introduced. The weights reflect the relative importance 

or strength of the measurements. The concept of average (normally called as crisp 

average) can be generalized by substituting fuzzy numbers for the real numbers in 

Equation (1). The generalization process normally requires complicated computations 

involving complex arithmetic operations with fuzzy numbers. Since the main 

objective of this study is to explore the potential of fuzzy logic concept in safety 

assessment and safety based decision support, the generalization procedure is 

restricted to triangular and trapezoidal numbers. They are used very often in 
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applications and besides, it is easy to perform arithmetic operations with them. This is 

demonstrated in a case study in the ensuing section. 

7.4.2.2 Arithmetic operations with fuzzy triangular and trapezoidal numbers 

7.4.2.2.1 Addition of fuzzy triangular numbers 

It can be proved that the sum of two triangular numbers A = (a(l) a.(I) a(I)) and 
1 I' If' 2 

A - (2) (2) (2)). I . lb' "'2 - al ,aM' a2 ,IS a so a tnangu ar num er, I.e., 

This summation formula can be extended for n triangular numbers and also it can be 

applied for both left and right values in a triangular number. 

7.4.2.2.2 Multiplication of a fuzzy triangular number by a real number 

The product of a fuzzy triangular number A with a real number r is also a triangular 

number, i.e., 

(3) 

7.4.2.2.3 Division of a fuzzy triangular number by a real number 

This operation is defined as multiplication of A by l/r provided that r is not O. Hence 

Equation (3) gives: 

(4) 

Operations with trapezoidal numbers can be performed similarly to those with 

triangular numbers. 
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7.4.2.2.4 Addition of fuzzy trapezoidal numbers 

The sum of trapezoidal numbers A = (a(l) b(l) b(l) a(I)) and A = (a(2) b(2) b(2) a(2)) 
I 1'1'2'2 2 1'1'2'2 

is also a trapezoidal number, i.e., 

AI + A2 = (a(l) b(l) b(l) a(I))+ (a(2) b(2) b(2) a(2)) = (a(l) + a(2) b(1) + b(2) b(l) + b(2) a(l) + (2)) 
I , I , 2 , 2 I' I , 2 , 2 I I' I I' 2 2' 2 Q 2 

(5) 

Equation (5) can be generalized for n trapezoidal numbers. 

7.4.2.2.5 Multiplication of a fuzzy trapezoidal number by a real number 

The general operation involved in multiplication of a fuzzy trapezoidal number A by a 

real number r is shown in Equation (6) as follows: 

(6) 

7.4.2.2.6 Division of a fuzzy trapezoidal number by a real number 

The general operation involved in division of a fuzzy trapezoidal number A by a real 

number r is shown in Equation (7) as follows: 

A = ~A = (~,!2,!2,~J, r:;t: 0 
r r r r r r 

(7) 

7.4.2.2.7 Sum of fuzzy triangular and trapezoidal numbers 

. . A ((I) (I) (I)) h· h b t d Consider fuzzy tnangular number I = a l ,aM ,a2 w IC can e presen e as a 

. . f ((I) (I) (I) (I)) d ·d I fuzzy trapezoidal number In the form 0 a( ,aM ,aM ,a2 an trapezol a 

number A2 = (a}2), bl(2), b~2), a~2)). Applying Equation (5) gives Equation (8), which is a 

natural extension of Equation (5). 
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AI + A2 = (a~I), at), at), a~I))+ (a~2), b\(2), bf), a~2)) = (a}1) + a}2), at) + bl(2). ar; + b~2). a~l) + a~2) ) 
(8) 

7.4.2.3 Fuzzy Averaging 

7.4.2.3.1 Triangular average formula 

Consider n triangular numbers Ai = (a}i), at), a~i)), i = 1, ... , n. Fuzzy averaging of 

triangular numbers can be performed by two steps. First, addition operation is used to 

sum up the total triangular numbers and then division operation by a real number (the 

total number of triangular numbers under study) to give the triangular average 

(mean) Aave , which is a triangular number. 

_ Al + ... +An _ (a}\),at),a~I))+ ... +(a}n),at),a;) 
Aave - - ~-~-:::........!..--~~---'.:-'--------=-..!.. 

n n 

n 

The general operation is shown in Equation (9). 

(9) 

7.4.2.3.2 Weighted triangular average formula 

If each real numbers Ai represents the degree of importance of 

A ( (i) (i) (i)) " = 1, .... n, then the weighted triangular average (mean) A;.e is 
i = a l ,aM' a 2 ' 

obtained as follows: 
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=(fJ)la~I),fJ)la2f,fJ)la~I»)+ ... +(fJ) al(n) fJ) a(n) ,., a(n») 
n 'n M' UJn 2 

= (fJ)la~l) + ... + fJ)na~n), fJ)la2) + ... + fJ)nat) , fJ)la~l) + ... + fJ)na~n») 

Ai 
Where w· = U' - 1 ) I L n - , .... , n 

A' }=I } 

The generalized equation is shown as follows: 

(10) 

The average formulae for trapezoidal numbers can be derived similarly to Equations 

(9) and (10) and are presented as below. 

7.4.2.3.3 Trapezoidal average formula 

If A ( i) b(') b(i) (i») , 1 'd I b i = al , 1 , 2 ,a2 , 1= , .... ,n, are trapezol anum ers, then 

(a(l) b(l) b(l) a(I»)+ + (a(n) b(n) b(n) a(n») 
_ 1'1'2'2 ... 1'1'2'2 

n 

= (L:=1 a~I), L:=I b1(1), L:=1 b~i), L:=I a1i) ) 
(11) 

n 

Weighted trapezoidal average formula is shown in Equation (12). 

_ (I) b(l) b(l) (I») ( (n) b(n) b(n) (n») 
- tVl al , 1 , 2 ,a2 + ... + tVn al , 1 , 2 , ill 

(12) 

The triangular and trapezoidal average and weighted average Equations (9) - (12) 

produce a result which can be interpreted as a conclusion or an aggregation of all 
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meanings expressed by triangular or trapezoidal numbers A) , ... A
n 

either of equal 

importance or of different importance expressed by weights OJ; • 

The process of averaging involving fuzzy triangular and trapezoidal numbers 

presented here is a hybrid or cross section of classical statistics and fuzzy sets theory; 

it belongs to a new branch of science - fuzzy statistics. 

7.4.2.3.4 Defuzzification of fuzzy average 

The aggregation defined by a triangular or trapezoidal average number obtained using 

Equation (10) or (12) very often has to be expressed by a crisp value which best 

represents the corresponding average. This operation is called defuzzification and is 

demonstrated in Figure 7.3. 

Triangular Fuzzy Aggregation Maximizing 
or .. average value 
trapezoidal 
numbers 

Figure 7.3. The process of defuzzification of fuzzy average. 

First consider the defuzzification of AOl'e = (m), mM , m2 ) given in Equation (9). It 

looks plausible to select for that purpose the value mM in the supporting interval 

[m m ] of A • m has the highest degree (one) of membership in Aave' In other 
\' 2 ave , M 

words, Aove attains its maximum at mM , which is called maximizing value. 

Xmax = mM 
(13) 

However, the operation defuzzification cannot be defined uniquely. In another word, 

there are various ways of defuzzification as proposed and adopted by different 
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researchers. Three options are presented for defuzzifying A = (m m m) which 
ave I'M' 2' 

are essentially statistical average formulas: 

(2) (2) =m1 +2mM +m2 
xmax 

4 
(14) 

Equation (14) takes into consideration the contribution of m
1 

and m
2 

but gives 

different weight to mM only. 

If the triangular number Aave is close to a central triangular number meaning that m
M 

is almost the middle of [ml' m2 ], then Equation (13) gives a good crisp 

value xmax = mM • Then the three average formulas (1) to (3) in Equation (14) also 

produce numbers (maximizing values) close to mM • Usually in applications the 

triangular average numbers appear to be in central form. However, the experts dealing 

with a given situation have to use their judgment when selecting a maximizing value. 

The defuzzification procedure is presented as a block diagram shown in Figure 7.3. 

For the defuzzification of A;e =(m~,m~,m:), Equations (13) and (14) remain valid 

provided that m~, m~ and m: are substituted for m1, mM and m2 correspondingly. 

performed by an extension of Equations (13) and (14) using instead of mAl the 

midpoint of the flat segment mMI and mMz . The maximizing values are given as 

follows: 

Xmax = 
mM +mM I 2 (15) 

2 

and 
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(16) 

For the defuzzification of A;e = (mt, m~, m~2' m; ), Equations (15) and (16) hold but 

7.5 A Safety Model - A Framework for Modelling Fire Safety using 

Approximate Reasoning and Fuzzy Averaging Method 

A generic framework for modelling system safety using approximate reasoning and 

fuzzy averaging approaches is suggested and depicted in Figure 7.4. It is a convenient 

method for carrying out subjective assessment, therefore, it may provide a logical 

solution as it emulates the human reasoning process through synthesising human 

expert judgements within a specific domain of knowledge, codes and standards based 

on the guidelines and company policy using an approximate reasoning approach. In 

addition, a fuzzy averaging method is used in the later stage of the framework to deal 

with safety synthesis of the system (at system and sub-system levels) with complexity 

involving multi-experts, in a hierarchical structure. It provides a powerful and flexible 

platform for aggregation or amalgamation of experts' opinions or judgments. 

The proposed framework for modelling system safety for risk analysis consists of five 

major steps. The first three outline all the necessary steps required for safety 

evaluation at the bottom level using an approximate reasoning approach. The fourth 

one describes the step involved in synthesising the estimates thus obtained in the first 

three steps, using a fuzzy averaging method to synthesise or amalgamate fire safety at 

higher levels of an engine room. A fuzzy averaging method is used to deal with 
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hierarchical evaluation propagation issues without any loss of useful information. The 

final step describes the ranking and interpretation of the results. 

Anticipated causes/factors 
to fire of an engine room 

IDENTIFICA TION 

1 L -=====--
1----------..- r - - - - --Input variables to represent the 1 Output/solution 1 
1 identified causes to fire I ..... variable definition 1 1 _I 1 J - ------- ------

1- - - - - - - - - - - - -., 
Possibility distribution for each variable in any I 

1 forms shown in Figure 7.2(a) -7.2(d) 
L _____________ I 

=:l I 
~ 

1--------- ., 
Select fuzzy reasoning/inference 1 1 mechanism 

L _________ I 

-----------------~ I Aggregate resultant judgments with respect to all input variables 1 
1 for a particular cause 
L _________________ I 

Create resultant safety estimate using 
approximate reasoning method 

1 

DEFI NITION 

DEVEL OPMENT 
AFETY OF AS 

MODE L 

Normalise safety estimate 
~ 

Assign relative importance of experts 

Create resultant multi--expert safety 
synthesis using fuzzy averaging 

approach 

1 ------
Calculate overall risk level ranking 

index 

-l 
Rank potential causes based on the 

ranking index values 

-
Create resultant multi-

attribute safety 
synthesis 

_/ 
., 

Multi-attribute-multi-
expert safety synthesis 

SYNT HESIS 

RANKING 
INTERPRE 

& 
TATION 
TS OF RESUL 

Figure 7.4. A framework for modelling system safety using approximate reasoning 

approach and fuzzy averaging method. 
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The five steps used in the framework are outlined as follows: 

Step 1: Identification. 

• Identify all the anticipated causes/factors to fire of an engine room In a 

hierarchical manner. 

Step 2: Definition. 

• Define fuzzy input variables (i.e., failure rate, consequence severi(v. failure 

consequence probability and control mechanism) to describe the potential 

risk linguistically. 

• Define fuzzy output/solution variables (i.e., safety estimates). 

• Select the type/types of fuzzy membership function used to delineate each 

input variable, and provide interpretation for each fuzzy set of each variable 

(in any forms shown in Figure 7.2(a) - (d)). 

Step 3: Development of a safety model. 

• Aggregate resultant judgments with respect to all input variables for a 

particular cause to technical failure. 

• Create resultant safety estimate using fuzzy averaging method. 

• Normalise safety estimates. 

• Assign relative importance of each expert. 

Step 4: Safety synthesis. 

• Perform multi-expert safety synthesis in a hierarchy using fuzzy averaging 

method. 

• Perform multi-attribute safety synthesis using fuzzy averaging method. 

It is worth noting that in this step, in order to achieve a more effective and logical 

evaluation process, it is necessary to break down a complex system into simpler sub

systems and components in a hierarchical manner. The hierarchical framework of 

attributes or experts is used to guide the overall evaluation of multi-attributes or multi

experts or a combination of multi-attributes-multi-experts problems. 
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Step 5: Ranking and interpretation of results. 

• 
• 
• 

Calculate overall risk level ranking index. 

Rank potential causes based on their ranking index values. 

Alternatively perform multi-attribute-multi-expert safety synthesis. 

In fire risk study of a ship engine room, in many cases, subjective assessment (using 

linguistic variables instead of ultimate numbers in probabilistic terms) may be more 

appropriate to conduct analysis on the four parameters (failure rate, consequence 

severity, failure consequence probability and control mechanism) as they are always 

associated with great uncertainty, especially for an engine room with a high level of 

innovation. 

Safety estimate is the only output fuzzy variable used in this study to produce safety 

evaluation for each cause to a technical failure at the bottom level of a hierarchical 

system. This variable is also described linguistically. In safety assessment, it is 

common to express a safety level by degrees to which it belongs to such linguistic 

variables as ''poor'', ''fair'', "average", and "good" that are referred to as safety 

expressions. The output set can be defined using fuzzy safety estimate sets in the same 

way as the fuzzy inputs. 

Seven levels of linguistic variables may be used for failure rate; five levels for 

consequence severity, seven levels for failure consequence probability, four levels 

for control mechanism and four levels for safety estimates. The literature search 

indicates that four to seven levels of linguistic variables are commonly used to 

represents risk factors in risk analysis [Bell & Badiru, 1996] [Sii, et aI., 2001 c] 

[Wang, et aI., 1995, 1996] [Wang, 1997]. 

It is possible to have some flexibility in the definition of membership functions to suit 

different situations. The application of categorical judgements has been quite positive 

in several practical situations [Schmucker, 1984]. It is also usually common and 

convenient for safety analysts to use categories to articulate safety information. 
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When describingfailure rate, consequence severity,failure consequence probability, 

control mechanism and safety estimate, a linguistic variable may then be assigned 

with a membership function to a set of categories with regard to the particular 

condition. The typical linguistic variables for failure rate, consequence severity, 

failure consequence probability, control mechanism and the safety estimate of a 

particular cause to a technical failure by an expert, or by a panel of experts may be 

defined and characterised as follows: 

Failure rate describes the failure frequency in a certain time, which directly 

represents the number of failures anticipated during the design life span of a particular 

system or an item. Table 7.1 describes the range of the frequencies of the failure 

occurrence and defines the fuzzy set offailure rate. To estimate the failure rate, one 

may choose to use such linguistic variables as "very low", "low", "reasonably low", 

"average", "reasonably frequent ", "frequent" and "highly frequent". The failure rate 

of this study is defined on the basis of the recorded fires from the NK investigation of 

accidents related to engine room fire. Figure 7.5 shows the fuzzy failure rate set 

definition. 

1.0 
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V. 
low 
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Low R.low R.freq Freq H.freq 

4 6 8 10 

Failure rate 

Figure 7.5. Fuzzy failure rate set definition. 
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Table 7.1. Failure rate. 

Rank Failure rate Meaning (general interpretation) Failure rate (1 /25years) 

(interpretation in the context of 

engine room fire). 

1,2,2.5 Very low Failure is unlikely but possible during <1 

lifetime. 

3.5 Low Likely to happen twice during lifetime. 2 

4.5 Reasonably Between low and average. 5 

low 

5.5 Average Occasional failure. <10 

6.5 Reasonably Likely to occur from time to time. <20 

frequent 

7.5 Frequent Repeated failure. <29 

8.5,9,10 Highly Failure is almost inevitable or likely to >30 

frequent exist repeatedly. 

Consequence severity describes the magnitude of possible consequences, which is 

ranked according to the severity of the failure effects. One may choose to use such 

linguistic variables as "negligible", "marginal", "moderate", "critical" and 

"catastrophic". The fuzzy consequence severity set definition is shown in Figure 7.6. 

Negligible Marginal Moderate Critical Catastrophic 

1.0 

o 2 4 6 8 10 

Consequence severity 

Figure 7.6. Fuzzy consequence severity set definition. 

Table 7.2 shows the criteria used to rank the consequence severity of fire effects. 

151 



Table 7.2. Consequence severity. 

Rank Consequence Meaning (generic interpretation in the context of engine room 

severity fire ). 

I Negligible At most an unscheduled maintenance required (service and 

operations can continue). 

2,3 Marginal Possible single or multiple minor system damage. Operations 

interrupted slightly, and resumed to its normal operational mode 

within a short period of time (say less than 2 hours). 

4,5,6 Moderate Possible moderate system damage. Operations and production 

interrupted marginally, and resumed to its normal operational mode 

within a certain period oftime (say no more than 4 hours). 

7,8 Critical Possible major system damage. 

9,10 Catastrophic Possible system loss. 

The fuzzy failure consequence probability set definition is depicted in Figure 7.7 and 

the criteria used to describe the failure consequence probability are shown in Table 

7.3. 
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unlikely 
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Figure 7.7. Fuzzy failure consequence probability set definition. 

152 



Table 7.3. Failure consequence probability. 
Rank Failure Meaning 

consequence 

probability 

1 Highly unlikely The occurrence likelihood of possible consequences is highly unlikely 

given the occurrence of the failure event (extremely unlikely to exist on 

the system or during operations). 

2,3 Unlikely The occurrence likelihood of possible consequences is unlikely but 

possible given that the failure event happens (improbable to exist even on 

rare occasions on the system or during operations). 

4 Reasonably The occurrence likelihood of possible consequences is reasonably unlikely 

unlikely given the occurrence of the failure event (likely to exist on rare occasions 

on the system or during operations). 

5 Likely It is likely that consequences happen given that the failure event occurs (a 

programme is not likely to detect a potential design or an operational 

procedural weakness). 

6,7 Reasonably It is reasonably likely that possible consequences occur given the 

likely occurrence of the failure event (i.e. from time to time on the system or 

during operations, possibly caused by a potential design or operational 

procedural weakness). 

8 Highly likely It is highly likely that possible consequences occur given the occurrence of 

the failure event (i.e. often exist somewhere on the system or during 

operations due to a highly likely potential hazardous situation or a design 

and/or operational procedural drawback). 

9,10 Definite Possible consequences happen given the occurrence of a failure event. 

Figure 7.8 and Table 7.4 illustrate the criteria used to describe the level of control 

mechanism (or availability of defence) in the design. The availability of control 

mechanism refers to Table 7.4, for the scale of its readiness with availability of 

mitigation measures. This is obviously an essential parameter to be considered in 

system safety assessment, especially at the early design stage. The level of control is 

described in linguistic terms such as "full control", "immediate control", "delayed 

control" and "no control". For example, "full control" provides a linguistic 

delineation that the failure or hazardous event can be detected at time of occurrence, 

both preventive and mitigation measures are available, or control measurement 

available and effective, or control not required as impact is very low. "Immediate 

control" on the other hand indicates that the system cannot detect the failure or 

IS3 



hazardous event at time of occurrence but preventive measure is available, or it can be 

detected at time of occurrence and mitigation measure is not available, or moderate 

control measure is available, however it is not an infallible system. 

1.0 

Rank 

1,2 

3,4,5 

6,7,8 

9, 10 

Full control 

o 2 

Immediate 
control 

4 6 

Control mechanism 

Delayed 
control 

8 

No control 

10 

Figure 7.8. Fuzzy control mechanism set definition. 

Table 7.4. Control mechanism. 

Control Meaning 

Mechanism 

Full control Fire can be detected at time of its occurrence, both preventive and 

mitigation measures are available, or control measure is available and 

effective, or control is not required as impact is very low. 

Immediate Fire cannot be detected at time of its occurrence but preventive 

control measure is available, or fire can be detected at time of its occurrence 

and mitigation measure is available, or moderate control measure is 

available although not infallible. 

Delayed control Fire can be detected only after its occurrence and mitigation measure is 

available, or slight control measurement is available although not 

effective. 

No control Fire cannot be detected and no mitigation measure is available, or 

control measure is not available even impact is not low. 

With reference to the above fuzzy descriptions of/aUure rille, consequence severity, 

/aUure consequence probability and control measure, it may be observed that the 

linguistic variables are not exclusive, as there are intersections among the defined 

linguistic variables. Inclusive expressions may make it more convenient for the safety 
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analyst to judge a safety level. Overlapping functions are used to represent various 

linguistic variables because the experts and the literature concurred that in the analysis 

of the risks associated with a failure event/mode, the risk levels may have "gray" or 

ill-defined boundaries [Bell & Badiru, 1996]. 

Several sources such as historical records, operator's experience, statistical data, 

expert judgment, etc. can be used to carry out the judgment based on fuzzy 

descriptions. These approaches are mutually supporting each other and a combination 

of them is often the most effective way to determine the judgement. In the statistical 

data and information analysis the fuzzy descriptions may be derived based on 

statistical studies of the information in previous incident and accident reports or 

database systems. In-depth literature search may also be helpful. Skilled human 

analysts often have a good, intuitive knowledge of the behaviour of a system and the 

risks involved in various types of failures without having any quantitative model in 

mind. Fuzzy descriptions provide a natural platform for abstracting information based 

on expert judgements and engineering knowledge since they are expressed in a 

linguistic form rather than numerical variables. Therefore, experts often find fuzzy 

descriptions to be a convenient way to express their knowledge of a situation 

[Zimmermann, 1991]. 

The importance of approximate reasoning stems from the fact that human expert

judgements and engineering knowledge can often be represented in the form of fuzzy 

descriptions. Fuzzy descriptions based on these types of linguistic variables may be 

more natural and expressive than numerical numbers and criticality calculations. It is 

clear that such fuzzy descriptions can accommodate quantitative data such as failure 

rate, failure consequence probability and qualitative and judgmental data such as the 

consequence severity, control mechanism. The estimates can then be combined in 

safety evaluation. 

The criteria of selecting fuzzy reasoning/inference mechanisms are always subjective 

issues and mainly based on user's preference. For the normal IF-THEN fuzzy rule 

inference, the general approach adopted is similar to that used in fuzzy expert and 

fuzzy control systems. However, in this chapter, a simplified fuzzy averaging method 

is introduced to perform approximate reasoning and synthesis. 
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The first module of fuzzy inference operation is to take the inputs and determine the 

degree to which they belong to each of the appropriate fuzzy sets via membership 

functions. Inputs can be represented by one of the following membership functions to 

suit the conditions under study: 

• A single deterministic value. 

• A closed interval defined. 

• A triangular distribution. 

• A trapezoidal distribution. 

It is highly unlikely for selected experts to have the same importance, and weights of 

importance need to be utilised. The assessment of weight for each expert is an 

important decision for the analyst to make in view of the safety of the system under 

scrutiny. Each expert is assigned with a weight to indicate the relative importance of 

his or her judgment in contributing towards the overall safety evaluation process. The 

analyst must decide which experts are more authoritative. Weights are then assigned 

accordingly. 

The fuzzy averaging method is used to perform safety synthesis at different levels 

(component, sub-system and system levels) of an engine room with a structure that is 

capable of being decomposed into hierarchy of levels. The number of levels required 

in safety synthesis is solely decided by the degree of complexity of a system under 

scrutiny. 

The modelling framework of multi-attributes or multi-experts or a combination of 

both based on fuzzy averaging method has been developed to deal with such problems 

having a hierarchical structure of both qualitative and quantitative criteria with 

uncertainty. The fuzzy averaging method is different from most conventional Multiple 

Attribute Decision-Making (MADM) methods. Firstly, it employs a belief structure to 

represent an assessment as a distribution instead of a single numerical score. 

Secondly, it aggregates degrees of belief rather than scores. In this way, the fuzzy 

averaging approach can preserve the qualitative feature of subjective criteria in the 
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process of criteria aggregation. The fuzzy averaging IS a convenient method to 

aggregate or combine experts' opinions in producing a conclusion. It is a suitable tool 

for aggregation in qualitative safety or risk-based decision-support models. 

The first three steps of the framework mainly focus on safety assessment of a single 

component of a particular sub-system. Step 4 is concerned with safety synthesis of a 

system at various levels such as: 

• Multi-attribute safety synthesis of a sub-system due to a technical failure caused 

by various components done by an expert using an aggregation method - fuzzy 

averaging methods. 

• Safety synthesis of a system due to a technical failure caused by various sub

systems done by an expert using any other aggregation methods. 

The final step of the framework describes the calculation of overall risk level ranking 

index. Then the identified potential causes are ranked on the basis of their ranking 

index values. 

To calculate risk ranking index values associated with various causes to technical 

failure, it is required to describe the four safety expressions, i.e., {good, average, fair, 

poor} using numerical values. The numerical values associated with the defined safety 

expressions can be designated by experts. Suppose K j , K2, K3, K4 represent the 

unscaled numerical values associated with 'good', 'average', 'fair', 'poor', 

respectively. Then K j , K2, K3, K4 can be represented as follows: 

(17) 

The safety estimate of cause i to technical failure can be obtained using the framework 

described in this subsection as follows: 

Safety Synthesis, = {,u,' "good", ,u,2 "average ", ,u,3 'yair", ,u,4 "poor"} (18) 
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The risk ranking index value R; associated with cause i to technical failure can be 

defined as follows: 

4 

R, = I J-L; x K J , i = 1,2, ..... d , where d is the number of causes to technical failure. 
1=1 

(19) 

Obviously, the R; values obtained using the above formula can only show the relative 

risk level among all potential causes identified under study. The smallest R; is ranked 

first as it deserves more attention to reduce its potential risk to As Low As Reasonably 

Practicable (ALARP). The largest R; is ranked last to draw least attention and 

minimum effort for risk reduction measure consideration. A smaller R; means that 

cause i of a sub-system is having relatively higher risk level and deserves more 

attention at the early design stages or the early stages of designing operational 

strategies. The ranking for each potential cause is then produced. 

7.6 Case Study: Fire Risk Analysis of Ship Engine Room 

In this section, a preliminary safety assessment is carried out on fire risk introduced 

by the malfunction of individual components associated with various sub-systems of a 

generic engine room. Only hardware failure caused risk is assessed here, though 

operational failure has been also recognised as one of the major causes of fire. In this 

case study, at the preliminary design stage there is only one expert taking part in the 

safety assessment. For the purpose of safety modelling, it is assumed that each input 

parameter (Le., failure rate, consequence severity, failure consequence probability 

and control mechanism) will be fed into the proposed safety model in terms of fuzzy 

membership functions in anyone of the four forms as described in Figure 7.2 (a) -

(d). 

The selection of forms of membership function by an expert is dependent upon 

subjective judgment made pertaining to the level of ambiguity and uncertainty 

associated with the case as perceived by the expert, as well as his experience 

knowledge and understanding of the said system. The various forms of fuzzy 

membership function are capable of describing both "calculated risk" (i.e., those 

aspects with minimum uncertainty) and "uncertainty". 
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The safety critical elements were considered for an engine room. The generic engine 

room shown in Figure 7.1 is chosen as the system to be assessed by using the 

suggested framework. They consist of the following four main sub-systems: 

1. Fuel Oil (FO). 

2. Leakage Oil (LO). 

3. Electrical Equipments (EE). 

4. Turbo Charger (TIC) of Main Engine (M/E). 

The expert judgment made on the four input parameters (i.e., failure rate, 

consequence severity, failure consequence probability and control mechanism) 

using different forms of membership functions for representing technical failures 

associated with each sub-system is shown in Table 7.5 (a)-(d). 

Table 7.5 (a) shows the assignment of membership functions and the result of risk 

analysis for components associated with sub-system # 1 - FO and it is noted that only 

7 major components are considered here. Table 7.5 (b) - (d) demonstrates the 

assignment of membership functions and the results for sub-systems #2, 3 and 4 (i.e, 

LO, Electrical Equipment and TIC of MIE). 6 components are considered for sub

system #2 - LO, 6 components assessed for sub-system #3 - Electrical Equipment, 

only 1 component for sub-system #4 - TIC ofM/E. 

The safety estimate for each component is computed by using fuzzy averaging 

method. Before the actual computation can be performed, each form of membership 

function has to be transformed into a trapezoidal membership function. For example, 

for component 1.1 of sub-system # 1, the expert used the triangular membership 

function to describe the 4 input variables. The details are listed as follows: 

Component 1.1 - MIE FO piping 

4 input variables are originally described In the form of triangular membership 

function by the expert: 
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Failure rate = (6, 6.5, 7) 

Consequence severity = (8, 9, 9.5) 

Failure consequence probability = (7.5, 8, 8.25) 

Control mechanism = (0.5,2,2.75) 

After the transformation, the 4 input variables appear in the form of trapezoidal 

membership function: 

Failure rate = (6, 6.5, 6.5, 7) 

Consequence severity = (8, 9, 9, 9.5) 

Failure consequence probability = (7.5, 8, 8, 8.25) 

Control mechanism = (0.5,2,2,2.75) 

Applying the fuzzy averaging method, the safety estimate (Equation (11» is obtained 

as: 

S c.' { 6 + 8 + 7.5 + 0.5 
alety estimate 1.1 = 4 =5.50 "Good";6.38 "Average";6.38 "Fair";6.81 

"Poor"} 

According to the framework found in Figure 7.4, the fuzzy averaging method is used 

to synthesise the information thus produced to assess the safety of the whole system. 

This step is concerned with safety synthesis of a system at various configurations such 

as: 

• Multi-attribute safety synthesis at the component level - The synthesis of the 

four input variables to obtain the safety estimate of each component of each 

subsystem. 

• Multi-attribute safety synthesis at the subsystem level - The synthesis of safety 

estimates of the components of the sub-systems of a generic engine room due to 

the fire failure estimated by an expert (Figures 7.4, 7.9 & 7.11). 
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• Multi-attribute safety synthesis at the system level - The synthesis of safety 

estimates of various subsystems of a generic engine room (Figures 7.4, 7.1 0 & 

7.11). 

Table 7.5 (a). Risk analysis for components associated with sub-system #1 - FO 

(raw data). 

Component! Failure Consequence Failure Control Safety 

Activity Rate Severity Consequence Measure Estimate 

Probability (Good,A verage, 

Fair,Poor) 

1.1 MIE FO (6,6.5, 7) (8,9,9.25) (7.5, 8, 8.25) (0.5,2,2.75) 5.50,6.38, 

piping 6.38,6.81 

1.2 OlE FO (5.25, 7.5, 9) (6,8.5, 10) (7.5,8,8.5) (0.25, 1, 1.5) 4.75,6.25, 

piping 6.25,7.25 

1.3 Boiler FO {5, 5.75,6, {6, 6.5, 8, {7, 7.75, 8, 9} { 1.5, 1.8, 2.1, 4.88,5.45, 

piping 7.25} 8.25} 3} 6.03,6.88 

1.4 FO tank [2,4] [7.5,8.5] [7, 7.5] [1, 1.7] 4.38,4.38, 

5.43,5.43 

1.5 FO tank [1.5,2.5] [5, 7] [6,8] [1.5, 1.8] 3.50,3.50, 

sounding pipe 4.83,4.83 

1.6 OlE (3,3.5,4) (7, 8,9) (6, 7.5, 8) (1.25 1.5, 1.75) 4.31,5.13, 

damage 5.13,5.69 

1.7 Diesel oil {I, 1.5,2, {5, 7, 8, 8.5} {5.s, 6, 7, {0.25,0.5, 2.94,3.75, 

purifier 2.5} 7.5} 0.75, I} 4.38,4.88 

Table 7 .5 (b). Risk analysis for components associated with sub-system #2 - LO 

(raw data). 

Component! Failure Consequence Failure Control Safety 

Activity Rate Severity Consequence Measure Estimate 

Probability (Good,Average, 

Fair,Poor) 

2.1 MIE LO (4.5,5, 7) (6, 7, 8.5) (7,8.5,9) (1,2.5,3) 4.63,5.75, 

piping 5.75,6.88 

2.2M1ELO (0.75, 1.25,2) (5.05,6, 7.75) (6.25, 8, 8.5) (3.05, 4, 4.5) 3.78,4.81, 

strainer 4.81,5.69 

2.3GIELO [2,3] [6.5,8.5] [7,7.5] [1.25, 1.75] 4.19,4.19, 

piping 
5.19,5.19 

2.4LO {I, 1.5,2, 2.5} {6, 7, 8, 8.5} {6, 6.5, 8, 8.5} {0.5,O.75, I, 338,3.94, 
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tanking For 1.25} 4.75,5.19 
TIIC ofMIE 

2.5 Strainer (2.5,3,5) (4.5,5,6) (4.5,5.5,6) (1, 1.5,3) 3.13,3.75, 
for TIC of 3.75,5.00 
MIE 

2.6LO [1, 1.5] [5, 7] [6,6.75] [1.5, 1.75] 3.38,3.38, 
strainer For 4.25,4.25 

GIE 

Table 7.5 ( c). Risk analysis for components associated with sub-system #3 - Electrical 

Equipment (raw data). 

Component! Failure Consequence Failure Control Safety 

Activity Rate Severity Consequence Measure Estimate 

Probability (Good,A verage, 

Fair,Poor) 

3.1 Main (4.5,5,9) (6, 7, 7.25) (7, 8,9) (1.25, 1.5, 4.69,5.38, 

switchboard 1.8) 5.38,6.76 

3.2 Starter (4,5.5, 7) (5.12,6,6.5) (7.08, 7.5, 9) (1.1, 2.75, 4.33,5.44, 

panels 3.5) 5.44,6.50 

3.3 Generator [4,5] [7.5,8] [2,5] [1, 1.5] 3.63,3.63, 

4.88,4.88 

3.4 Motor {2, 3,4, 4.25} {5, 6, 6.5, {7.5, 7.75, {4, 4.12, 5, 4.63,5.22, 

6.75} 8.25,9} 5.75} 5.94,6.44 

3.5 (2,2.5,3) (4,6,8) (2,4,4.75) (1,2.5,2.75) 2.25,3.75, 

Transformer 3.75,4.63 

3.6 Electric {O.I, 2, 3, {2, 2.5,3, 6} {5, 6.5, 7, 7.5} {0.5, 0.75, 1, 1.90,2.94, 

heater 3.5} 2} 3.50,4.75 

Table 7.5 (d). Risk analysis for components associated with sub-system #4 - TIC of 

MIE (raw data). 

Component! Failure Consequence Failure Control Safety 

Activity Rate Severity Consequence Measure Estimate 

Probability (Good,Averale, 

Falr,Poor) 

4.1 TIC of (6, 7, 8) (7, 8.S, 9.S) (6, 6.2S, 6.7S) (2, 2.S, 3) S.2S, 6.06, 

MIE 6.06,6.81 
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Figure 7.9. Multi-attribute safety synthesis of a sub-system due to a fire failure caused 

by various components estimated by an expert. 
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Figure 7.10. Safety synthesis of a system due to a fire failure caused by various sub

systems estimated by an expert. 
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Figure 7.11. A generic hierarchical structure of an engine room. 

7.6.1 Risk modelling at the component level 

Upon normalization, the safety estimate for each component associated with each sub

system is shown in Table 7.6 (a) - (d). For example, the safety estimate for 

component 1.1 - MIE FO piping is: 

Safety estimate 1 1 = { 5.50 0.219 "Good";0.254 "Average";0.254 
. 5.50+6.38+6.38+6.81 

"Fair";0.273 "Poor"} 
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Table 7.6 (a). Risk analysis for components associated with sub-system #1 - FO 

[converted all membership functions into trapezoidal and normalised]. 

Componentl Failure Consequence Failure Control Safety ! 
Activity Rate Severity Consequence Measure Estimate 

Probability (Good,A verage, 
Fair,Poor) 

1.1 M/E FO {6, 6.5, 6.5, {8, 9, 9, 9.25} {7.5, 8, 8, {0.5, 2, 2, 0.219,0.254, 
piping 7} 8.25} 2.75} 0.254,0.273 
1.2 OlE FO {5.25,7.5, {6, 8.5, 8.5, {7.5, 8, 8, 8.5} {0.25, 1, 1, 0.194,0.255, 
piping 7.5,9} 10} 1.5} 0.255.0.296 
1.3 Boiler FO {5, 5.75,6, {6, 6.5, 8, {7, 7.75, 8, 9} {1.5, 1.8, 2.1, 0.209, 0.235, 
piping 7.25} 8.25} 3} 0.259,0.296 
1.4 FO tank {2,2,4,4} {7.5, 7.5, 8.5, {7, 7, 7.5, 7.5} {I, 1, 1.7, 0.223,0.223, 

8.5} 1.7} 0.277,0.277 
1.5 FO tank {1.5, 1.5, 2.5, {5, 5, 7, 7} {6,6,8,8} {1.5, 1.5, 1.8, 0.210,0.210, 
sounding pipe 2.5} 1.8} 0.290 0.290 
1.6 OlE {3, 3.5, 3.5, {7,8,8,9} {6, 7.5, 7.5, 8} {1.25, 1.5, 0.213,0.253, 
damage 4} 1.5,1.75} 0.253, 0.281 
1.7 Diesel oil {I, 1.5,2, {5, 7, 8, 8.5} {5.5, 6, 7, 7.5} {0.25,0.5, 0.184,0.235, 
Purifier 2.5} 0.75, I} 0.275, 0.306 

Table 7.6 (b). Risk analysis for components associated with sub-system #2 - LO 

[converted all membership functions into trapezoidal and normalised]. 

Component! Failure Consequence Failure Control Safety 
Activity Rate Severity Consequence Measure Estimate 

Probability (Good,A verage, 
Fair,Poor) 

2.1 MlE LO {4.5, 5, 5, 7} {6, 7, 7, 8.5} {7, 8.5,8.5, 9} {I, 2.5, 2.5, 0.201,0.249, 

piping 3} 0.249,0.299 

2.2 M/E LO {0.75, 1.25, {5.05, 6, 6, {6.25, 8, 8, {3.05, 4, 4, 0.198,0.252, 

strainer 1.25,2} 7.75} 8.5} 4.5} 0.252, 0.298 

2.3 OlE LO {2,2,3,3} {6.5, 6.5, 8.5, {7, 7, 7.5, 7.5} {1.25, 1.25, 0.223,0.223, 

piping 8.5} 1.75,1.75} 0.277,0.277 

2.4LO {1,1.5,2, {6, 7,8, 8.5} {6, 6.5, 8, 8.5} {0.5, 0.75, 1, 0.196,0.228, 

tanking For 2.5} 1.25} 0.275,0.301 

TIIC ofMIE 
2.5 Strainer {2.5, 3, 3, 5} {4.5, 5, 5, 6} {4.5, 5.5, 5.5, {1, 1.5, 1.5, 0.200, 0.239, 

for TIC of 6} 3} 0.239,0.319 

M/E 
2.6 LO {I, 1, 1.5, {5, 5, 7, 7} {6, 6, 6.75, {1.5, 1.5, 0.221,0.221, 

strainer For 1.5} 6.75} 1.75, 1.75} 0.279, 0.279 

OlE 
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Table 7.6 (c). Risk analysis for components associated with sub-system #3 - Electrical 

Equipment [converted all membership functions into trapezoidal and 

normalised]. 

Component! Failure Consequence Failure Control Safety 

Activity Rate Severity Consequence Measure Estimate 

Probability (Good,A verage, 

Fair,Poor) 

3.1 Main {4.5, 5, 5, 9} {6, 7, 7, 7.25} {7, 8, 8, 9} {1.25, 1.5, 0.211,0.242, 

switchboard 1.5, 1.8} 0.242, 0.304 

3.2 Starter {4, 5.5, 5.5, {5.12, 6, 6, {7.08,7.5, {1.1,2.75, 0.199,0.251, 

panels 7} 6.5} 7.5,9} 2.75,3.5} 0.251,0.299 

3.3 Generator {4, 4, 5, 5} {7.5, 7.5, 8, 8} {2, 2, 5, 5} {I, 1, 1.5, 0.213,0.213, 

1.5} 0.287,0.287 

3.4 Motor {2, 3, 4, 4.25} {5, 6, 6.5, {7.5,7.75, {4, 4.12, 5, 0.208, 0.235, 

6.75} 8.25,9} 5.75} 0.267,0.289 

3.5 {2, 2.5, 2.5, {4, 6, 6, 8} {2, 4,4, 4.75} {I, 2.5, 2.5, 0.156,0.261, 

Transformer 3} 2.75} 0.261,0.322 

3.6 Electric {0.1, 2, 3, {2, 2.5, 3, 6} {5, 6.5, 7, 7.5} {0.5, 0.75, 1, 0.145,0.224, 

heater 3.5} 2} 0.267,0.363 

Table 7.6 (d). Risk analysis for components associated with sub-system #4 - TIC of 

MIE [converted all membership functions into trapezoidal and 

normalised] . 

Component! Failure Consequence Failure Control Safety 

Activity Rate Severity Consequence Measure Estimate 

Probability (Good,Average, 

Fair,Poor) 

4.1 TIC of {6, 7, 7, 8} {7, 8.5, 8.5, {6, 6.25, 6.25, {2, 2.5, 2.5, 3} 0.217,0.251, 

MIE 9.5} 6.75} 0.251,0.281 

7.6.2 Multi-attributes safety synthesis 

Table 7.7 shows the results of multi-attributes safety synthesis (at the sub-system 

level) on technical fire risk of an engine room due to the FO, LO, Electrical 
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Equipment and TIC of M/E caused fire using the fuzzy averaging method. The 

synthesis is carried out without considering the relative weight of each sub

system/component, that is, using unity of weight. 

Sub-system #1 - FO 

Number of components = 7 

Safety estimate (FO) = {0.219+0.194+0.209+0.223+0.210+0.213+0.184 = 0.207 
7 

"Good";0.238 "Average";0.266 "Fair";0.289 "Poor"} 

Sub-system #2 - LO 

Number of components = 6 

Safety estimate (LO) = {0.207 "Good";0.235 "Average";0.262 "Fair";0.296 "Poor"} 

Sub-system #3 - Electrical Equipment 

Number of components = 6 

Safety estimate (EE) = {0.189 "Good";0.238 "Average";0.263 "Fair";0.31 0 "Poor"} 

Sub-system #4 - TIC ofMIE 

Number of components = 1 

S i.':' = {0.217 "Good···.0.251 ·'Average",·0.251 "Fair·'·,0.281 alety estImate (TIC of M1E) 

"Poor"} 

The safety synthesis of the whole system is derived using the fuzzy averaging method 

as follows: 
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Safety synthesis of the whole system (i.e., the engine room) = 

0.207 + 0.207 + 0.189 + 0.217 
{ 4 =0.205, "good"; 0.241, "average"; 0.261, "fair"; 0.293, 

"poor"} 

Table 7.7. Multi-attribute safety synthesis on fire risk of FO, LO, Electrical 

Equipment and TIC ofM/E. 

Safety Expressions 

Sub-system Good Average Fair Poor 

FO 0.207 0.238 0.266 0.289 

LO 0.207 0.235 0.262 0.296 

Electrical 0.189 0.238 0.263 0.310 

Equipment 

TIC ofMIE 0.217 0.251 0.251 0.281 

Whole system 0.205 0.241 0.261 0.293 

7.6.3 Safety synthesis of the system based on its sub-systems carrying different 

weights 

The above evaluation is based on the assumption that each sub-system is of equal 

importance according to the opinions gathered from the expert. In practical 

applications, the subsystems may carry different weights in safety synthesis. The 

assignment of ranking scale in weight for each sub-system can be suggested by an 

expert based on his or her engineering judgment and past experience. This is to reflect 

his or her risk perception towards each sub-system. Suppose the four sub-systems are 

evaluated differently by their peers on a scale in weight from 0 to 10 as follows: 

r] = lOis given to sub - system] (sub-system #1, i.e., FO) in weight; r2 = 4 to 

sub - system
2 

(sub-system #2, i.e., LO); r3 = 3 to sub - system3 (sub-system #3, i.e., 

Electrical Equipment); r4 = 3 to sub - system4 (sub-system #4, i.e., TIC of M/E). The 

weights OJ" i = 1,2,3,4, which express the relative importance of sub - system, , 

i = 1,2,3,4 can be calculated using the following equation: 
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rj 
())I=--~--

10 10 
())I = 1 0 + 4 + 3 + 3 = 20 = 0.5 

4 4 
())2 = 1 0 + 4 + 3 + 3 = 20 = 0.2 

3 3 
())3 = 1 0 + 4 + 3 + 3 = 20 = 0.15 

3 3 
())4 = =-=0.15 

10+ 4+3+3 20 

(20) 

Substituting these values into the weighted trapezoidal average Equation (12) gives: 

Safety synthesis (at system level)W = 0.5 {sal"ety estimate ( )} + 
ave ~t suh-system I 

0.2 {safety estimatesuh_System(2)} + 0.15 {safety estimatesuh_System(3)} + 

0.15 {safety estimate.wh_System(4)} 

= {(0.5xO.207 + 0.2xO.207 + 0.15xO.189 + 0.15xO.217, "Good"); (0.5x0.238 + 

0.2xO.235 + 0.15x0.238 + 0.15xO.251, "Average"); (0.5x0.266 + 0.2xO.262 + 

0.15xO.263 + 0.15xO.251, "Fair"); (0.5xO.289 + 0.2xO.296 +0.15x0.310 

+0.15xO.281 , "Poor")} 

= {0.206, "Good"; 0.239, "Average"; 0.263, "Fair"; 0.292, "Poor"} 

The safety synthesis derived based on the weighted fuzzy averaging method as shown 

above has revealed that the safety estimate of the whole system can be interpreted as 

20.6% "Good", 23.9% "Average", 26.3% "Fair" and 29.2% "Poor". 

7.6.4 Ranking 

The risk ranking for each sub-system based on the safety synthesis (Equation (17) 

(18» obtained by using fuzzy averaging method is shown as follows: 

R b (I) = 1x0207+08 x0238+0.6 xO.266+0.2 x0.289 = 0.615 
SII -system . .. 

R slIb-system(2) = 1 xO.2(r+0.8 xO.235+0.6 xO.262+0.2 xO.296 = 0.6/ / 
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R sub-system(3) = 1 xO.189+0.8 xO.238+0.6 xO.263+0.2xO.310 = 0.599 

R sub-system(4) = 1 xO.217+0.8xO.251+0.6xO.251+0.2xO.281 = 0.625 

Ranking = sub-system #4: sub-system #1: sub-system #2: sub-system #3. 

or 

Ranking = TIC ofM/E: FO: LO: EE. 

The smallest R(3) EE is ranked first as it deserves more attention to reduce its potential 

risk to As Low As Reasonably Practicable (ALARP). The largest R(4) TIC of MIE is 

ranked last to draw least attention and minimum effort for risk reduction measure 

consideration. 

7.7 Conclusion 

Performing the evaluation and fire risk assessment at this early stage will possibly 

provide further action learning opportunities which pennit the design team to identify 

any fundamental deficiencies in the outline design of the selected concept. Moreover, 

this will enable the design team to explore and identify particular areas which have to 

be targeted during the various phases of design to prevent the occurrence of hazardous 

events such as fire or, if prevention is not possible, to detect events and control and 

mitigate their effects. Implementation of changes is always easier and economical 

before detailed design gets underway. The evaluation and assessment process can be 

repeated to study the effectiveness of any safety improvements which might be made 

subsequently. 

The attempt in application of interval mathematics and possibility distribution such as 

approximate reasoning (based on fuzzy logic) method is different from conventional 

probability-based techniques which rely rather heavily on randomness and frequency 

on engineering systems. The safety modelling framework proposed in this chapter 

outlines and explains a philosophy for subjective safety modelling for fire risk 

analysis using approximate reasoning and fuzzy averaging methods. Various fonns of 

membership functions that could be used effectively in representing fuzzy linguistic 
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variables to qualify risk levels are discussed. The background of fuzzy averaging 

approach is also outlined. 

The proposed framework offers a great potential in safety assessment and decision 

support of engineering systems, especially in the initial concept design stages of a 

relatively novel system where the related safety information is scanty or with great 

uncertainty involved or only linguistic-related information is available. Fire safety 

assessment using approximate reasoning approaches can integrate domain human 

experts' experience and safety engineering knowledge; at the same time information 

of difference properties from various sources can be transformed to become the 

knowledge base, used in the fuzzy logic inference process. 

The modelling framework of multi-attributes or multi-experts or a combination of 

both based on fuzzy averaging method has been developed to deal with problems 

having a hierarchical structure of both qualitative and quantitative criteria with 

uncertainty. The fuzzy averaging method is different from most conventional Multiple 

Attribute Decision-Making methods and it is a convenient method to aggregate or 

combine experts' opinions in producing a conclusion. 

The results obtained from a case study on an engine room have demonstrated that 

such a modelling framework provides fire safety analysts and designers with a 

convenient tool that can be used in a ship's engine room fire risk analysis. 
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CHAPTER 8 - A DESIGN-DECISION SUPPORT FRAMEWORK 

FOR EVALUATION OF DESIGN OPTIONS IN PASSENGER 

SHIP ENGINE ROOM 

Summary 

Most real world design evaluation and risk-based decision support combine 

quantitative and qualitative (linguistic) variables. Decision-making based on 

conventional mathematics that combines qualitative and quantitative concepts always 

exhibit difficulty in modelling actual problems. The successful selection process for 

choosing a design/procurement proposal is based on a high degree of technical 

integrity, safety levels and low costs in construction, corrective measures, 

maintenance, operation, inspection and preventive measures. However, the objectives 

of maximising the degree of technical performance, maximising the safety levels and 

minimising the costs incurred are usually in conflict, and the evaluation of the 

technical performance, safety and costs is always associated with uncertainties, 

especially for a novel system at the initial concept design stage. In this chapter, a 

design-decision support framework using a composite structure methodology 

grounded in approximate reasoning approach and evidential reasoning method is 

suggested for design evaluation of machinery space of a ship engine room at the initial 

stages. It is a Multiple Attribute Decision-Making (MADM) or Multiple Criteria 

Decision Making (MCDM) framework, which provides a juxtaposition of cost, safety 

and technical performance of a system during evaluation to assist decision makers in 

selecting the winning design/procurement proposal that best satisfies the requirement 

in hand. An illustrative example is used to demonstrate the application of the proposed 

framework. 

8.1 Introduction 

The purpose of safety based decision making is to take system safety as a design 

criterion to produce the best design with both technical and economical constraints 

being satisfied. MCDM techniques can then be employed to process the constructed 
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model to produce efficient design solutions. In many cases, however, it may be 

difficult or even impossible to precisely determine the parameters of a probability 

distribution for a given event due to lack of evidence or due to the inability of the 

safety engineer to make firm assessments [Wang, et al.. 1996]. 

The objective of risk-based design assessments during the preliminary design stage of 

a large engineering system such as a ship engine room is to provide safety-related 

input in the process of designing and developing a feasibly acceptable system. The 

concept design should comply with the mission requirements and commercial targets, 

as well as technical qualities together with the requirements given by the regulatory 

bodies. At the initial design stages, there is often inadequate data or imprecise 

information available when carrying out safety assessments for the system. Therefore, 

conventional approaches may not be capable of modelling safety, cost aspects and 

technical adequacy for design and operation decision support effectively and 

efficiently. 

One of the mam limitations associated with conventional Probabilistic Risk 

Assessment (PRA) methods is the utilisation of a probability measure to evaluate 

uncertainty. Much effort is required in defining and establishing the probability 

distribution for each contributing risk factor using historical data in estimating relative 

frequencies [Sii & Wang, 2003]. 

Uncertainty can be broadly classified into three categories, namely fuzziness, 

incompleteness and randomness [Blockley & Godfrey, 2001]. However, most analysts 

take it for granted that uncertainty is a model associated with randomness. In the 

appropriate circumstances, probability theory can be a powerful tool. However, many 

times the type of uncertainty encountered in marine projects does not fit the axiomatic 

basis of probability theory, simply because uncertainty in these projects is usually 

caused by the inherent fuzziness of the parameter estimate rather than randomness. 

Uncertainty involved in real world situations is often relating to the knowledge of 

systems rather than depending on chance. 

One feasible way to deal with uncertainty in terms of fuzziness and incompleteness in 

design evaluation is to use fuzzy set theory. The use of fuzzy production rules in fuzzy 
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inference system, where the conditional part and/or the conclusions contain linguistic 

variables, can handle these types of uncertainty well [Zimmerman, 1991]. This greatly 

reduces the need for an expert or a safety analyst, to know the precise point at which a 

risk factor exists. In this context, a safety model using approximate reasoning based 

on fuzzy logic approach may be more appropriate to model the risks of the system 

associated with incomplete safety information. Conventional approaches such as Fault 

Tree Analysis (FTA) and Failure Mode, Effects and Criticality Analysis (FMEC A) 

have been widely used, but often fall short in their ability to permit the incorporation 

of subjective and/or vague terms as they rely heavily on supporting statistical 

information that may not be available. 

The design process is one of choosing an overall design solution, deciding on the 

details of the solution and then checking that the undesirable occurrences do not 

occur. An assessment of the safety of systems may be carried out on the basis of 

different known safety concepts such as global safety factors, semi-probabilistic 

approach using partial safety factors, probabilistic approximation solution using first 

and second order reliability theory and probabilistic 'exact' solution [Moller, et aI., 

1999]. Inaccuracies and statistically non-describable uncertainties are either ignored in 

the application of these concepts or only accounted for approximately using crisp 

bounds. 

In the evaluation of the safety and reliability of systems, how one quantitatively 

grasps the effects of uncertainty is important [Terano, et aI., 1997]. The causes of 

uncertainty that one must consider, their origins, elements and other aspects are really 

diverse, and regardless of what approach is applied, it is always dependent on human 

judgements for their comprehensive evaluation. In another word, the lack of 

information and deficiencies of models must be made up by means of the general 

evaluation capacity of humans, who can grasp the essence of an object, even if it is 

vague and unclear. In order to make use of this kind of human ability and to handle a 

wide range of safety and reliability, a novel safety framework is required. 

Often in marine engineering applications, engineers, safety analysts and managers are 

asked to make decisions on the basis of widely divergent objectives. For instance. 

contract proposals may be evaluated on the basis of technical merit, total cost 
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incurred, ability to meet schedule requirements, and intangible attributes such as 

previous performance. In such situations experts are asked to evaluate the proposals 

based on their experiences and engineering judgements. Often, especially in early 

design stages for engineering systems with a high level of innovation, only qualitative 

or vague statements can be made, such as 'good performance', or 'poor cost', or 

'quite safe'. Experts then apply numerical ratings to these vague, or fuzzy terms to 

assist in the evaluation. 

Fuzzy logic provides a means for evaluating alternatives where the objectives and 

criteria are vague and where the ranking criteria themselves vary in importance. Fuzzy 

logic is a subset of conventional logic that has been extended to allow for degrees of 

truth, i.e., truth-values between true and false [Sii & Wang, 2003]. 

Traditionally, in the marine industry, the primary objective in selecting a 

design/procurement option has been to select the one with the lowest cost estimate. 

However, in recent years, selection of the winning design/build proposal has been 

complicated by a trade-off among safety, cost and technical performance. Establishing 

criteria for the quantitative and qualitative selection of design/procurement proposals 

will enable designers to choose the proposal that best meets the needs described in the 

solicitation. 

In the design/procurement proposal evaluation process, the assessment of technical 

performance, safety and costs is subject to uncertainty, especially with a project 

having a high level of innovation without much previous experience. In this chapter, 

the uncertainty in values of the input variables such as technical performance, safety 

and costs incurred and its impact on the aggregate evaluation results are characterised 

by the means of an approximate reasoning approach using fuzzy averaging method 

[Sii & Wang, 2003]. 

The proposed fuzzy-composite evaluation framework may be used as a useful tool to 

solve decision-making problems in situations where traditional methods cannot be 

applied satisfactorily. It is a multi-level, multi-objective programming method using 

fuzzy theory to represent the uncertainty in input variables in terms of membership 

functions or degrees of belief. The specific objectives of this chapter are twofold. The 
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first objective is to develop a design-decision support framework based on a fuzzy

composite evaluation methodology and the second one is to apply the proposed 

framework to the technical performance-safety-costs trade-off analysis in a passenger 

ship engine room. 

8.2 Concept of Fuzzy Logic & Delphi Method 

8.2.1 Fuzzy logic 

Fuzzy logic is not itself logic which is fuzzy, but rather it is a rigorous mathematical 

discipline for examining complex systems where the objectives and controlling 

parameters are vague or qualitative in nature. To understand fuzzy logic one must first 

examine classical mathematics. Classical set theory, the basis for most decision

making processes, allows for two options: either something is a member of a set or it 

is not a member. 

In fuzzy set theory, developed by [Zadeh, 1965], everything is a matter of degree. On 

observing real world situations, the concepts of partial membership and gradual 

transition between membership and non-membership are intuitive. However, when 

analysis based on mathematical models is usually making use of assumptions, this 

inevitability forces a black or white view of the world due to limits of conventional 

logic. Fuzzy logic deals with shades of grey, allowing for partial truth, or grey areas. 

Since the transition from member to non-member appears gradually rather than 

abruptly, the fuzzy set introduces vagueness (with the aim of reducing complexity) by 

eliminating the sharp boundary dividing members of the set from non-members [Klir 

& Folger, 1988]. Thus, if an element is a member of a fuzzy set to some degree, the 

value of its membership function can be between 0 and 1. When the membership 

function of an element can only have values 0 or 1, the fuzzy set theory reduces to the 

classical set theory. 
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8.2.2 Application of the Delphi method in pooling expert judgement in design option 

assessment 

Delphi is an iterative forecasting procedure characterised by three features: 

anonymity; iteration with controlled feedback; and statistical response [Dickey & 

Watt, 1978]. The Delphi method was first developed for market research and sales 

forecasting purposes [Goldstein, 1992] from the American defence industry. Project 

of Delphi was the name of a study undertaken by the Rand Corporation for the US Air 

Force in the early 1950s concerning the use of expert opinion [Robinson, 1991]. The 

objective of the study was to obtain the most reliable consensus of opinion of a group 

of experts by a series of intensive questionnaires interspersed with controlled opinion 

feedback [Linstone & Turoff, 1975]. 

The Delphi method can be characterised as an approach for structuring a group 

communication process so that the process is effective in allowing a group of 

individuals as a whole to deal with complex problems. Delphi is primarily a 

communication device, which is applied when the consensus of experts on an 

uncertain issue, often intangible, is desired [Linstone & Turoff, 1975]. It is conducted 

by rounds interspersed with group opinion and information feedback in the form of 

relevant statistical data. 

It is vital that panel members remain unknown to one another and respond to a series 

of questionnaires. The iterative nature of the procedure generates new information for 

panellists in each round, enabling them to modify their assessments and project them 

beyond their own subjective opinions. It can represent the best forecast available from 

a consensus of experts. 

The Delphi approach offers an additional advantage in situations where it is important 

to define areas of uncertainty or disagreement among experts. In these instances, 

Delphi can highlight topics of concern and evaluate uncertainty in a quantitative 

manner. Group evaluation of belief statements made by panel members is an explicit 

part of Delphi [Robinson, 1991]. Goldstein correctly pointed out that. although the 

group view has a higher probability of being correct than an individual, its success 
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depends principally on the careful selection of the panel and the fonnulation of 

questions [Goldstein, 1975]. The major difficulties of Delphi, however, lie In 

maintaining the high level of response and in reaching and implementing a consensus 

[Robinson, 1991]. 

Prior to the design evaluation being perfonned by using the proposed composite 

structure, a panel of experts can be selected to carry out cost and technical 

performance assessments for each design option available subjectively using linguistic 

variables such as 'very low' in capital cost and 'average' in system integration. Then 

the panel is asked to assign degree of bel ief for each criterion based on the pre-defined 

expressions. For instant, the maintenance cost is described by the expressions such as 

{'very low', 'low', 'average', 'high'}. The Delphi method is used to guide and extract 

the maximum amount of unbiased infonnation from a panel of experts. Therefore, it is 

appropriate to adopt the Delphi method for obtaining assessments for each criterion 

for each alternative design option [Sii & Wang, 2003]. 

8.3 Development of Approximate Reasoning & MADM Model Based on 

Evidential Reasoning Method 

8.3.1 Approximate reasoning (fuzzy logic: fuzzy averaging) model 

Approximate reasoning and fuzzy logic are often used inter-changeably to indicate the 

process of expressing imprecise or approximate concepts and relationships. The main 

artificial intelligence mechanism behind a typical fuzzy safety model is its fuzzy 

inference engine. A fuzzy inference engine comprises the selection or development of 

the type/types of fuzzy membership function used to represent risk levels and fuzzy 

rule bases to generate fuzzy safety estimates. Linguistic variables are employed in the 

development of fuzzy membership function for each input parameter. The goal of 

fuzzy linguistic variables is to represent the condition of an attribute/ a parameter at a 

given interval. The attributes/parameters (input variables) considered in this study 

include failure rate, consequence severity and failure consequence probability of a 

cause to a technical failure. Another attribute considered is the associated control 

mechanism incorporated in the design or operation. 
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The four fundamental parameters failure rate, consequence severity, failure 

consequence probability and control mechanism are represented by natural 

languages, which can be further described by different types of membership function. 

A membership function is a curve that defines how each point in the input space is 

mapped to a membership value (or degree of membership) between 0 and 1. Four 

different types of membership function are used in this study. The simplest 

membership functions are formed using straight lines. These straight-line membership 

functions have the advantage of simplicity. 

8.3.2 MADM model based on evidential reasoning method 

MADM is defined as technical decision aids in evaluating and selecting alternative 

options, which are characterised by multiple attributes or criteria. MADM problems 

delineate a class of real world problems, which are having multiple attributes or 

objectives. Multiple attributes/objectives are often conflicting with each other and 

each attribute/objective is of different nature (based on different unit or scale of 

measurement). The key function of MADM is to obtain an optimal decision under 

certain constraints. This will help the decision-maker in evaluating alternative courses 

of action to achieve a certain goal or set of goals [Sii & Wang, 2003]. 

In order to achieve a more effective and logical evaluation process, it is necessary to 

break down the complex attributes into simpler sub-attributes in a hierarchical 

manner. The hierarchical framework of attributes is used to guide the overall 

evaluation of MADM problems. 

Prior to the assessment undertaken by using an MADM model, a generalised set of 

evaluation grades is required. An attribute can be either assessed numerically or 

subjectively depending upon the nature and situation of the problem under study. The 

measurement of what is good or desirable about a design is based on its attributes. 

In utility theory. the best judgement possible is related to the numerical value of one 

and the worst to zero. In this chapter. the general scale of evaluation grades, H. IS 

defined as follows: 
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H = (HI, H2, H3, H4} = {'greatly preferred', 'preferred', 'moderately preferred'. 

'slightly preferred' } 

The modelling framework for the MADM based on an evidential reasoning method 

has been developed to deal with MADM problems having a hierarchical structure of 

both qualitative and quantitative criteria with uncertainty [Yang, 2001]. The evidential 

reasoning framework is different from most conventional MADM methods. Firstly. it 

employs a belief structure to represent an assessment as a distribution instead of as a 

single numerical score. Secondly, it aggregates degrees of belief rather than scores. In 

this way, the evidential reasoning approach can preserve the qualitative feature of 

subjective criteria in the process of criteria aggregation. Using the four evaluation 

grades, the assessment of an attribute Ai, denoted by S(AJ, can be represented using 

the belief structure as follows: 

S (A; ) = {( HI' fJ;,\) , (H2' fJ;,2)' (H3' fJ;,3)' (H4' fJ;,4)} (1) 

where 1 2:: fJ;,n ~ 0 and /3;,n is the degree of belief that the attribute Ai is assessed to the 

evaluation grade Hn. S(AJ reads that attribute Ai is assessed to the grade Hn to a degree 

of fJ;,n xl 000/0 (n = 1, 2, 3 or 4). 

There must not be I:=I fJ;,n > 1. S(Ai) can be considered to be a complete distributed 

assessment if I:=I fJ;,n = 1 and an incomplete assessment if I:=I/3;.n < 1 . In the 

evidential reasoning framework, both complete and incomplete assessments can be 

accommodated [Yang, 2001]. In the case of an assessor, being unable to provide a 

precise judgement due to inadequacy of information available, the evidential 

reasoning approach allows a user to define a degree of belief of less than 1. No other 

MADM approaches can deal with this level of uncertainty and this helps reduce any 

inaccuracies introduced by further assumptions made. It is desirable that the 

assessment of all attributes should be complete. In design evaluation of an engineering 

artefact with a high level of innovation, at the initial concept stages. it is inevitable 

that the assessments of some criteria will be incomplete due to the highly subjective 

nature of the process and lack of available experience. The evidential reasoning model 
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can handle both complete and incomplete assessments in a consistent manner. It has 

also been shown that numerical data can be modelled using belief structure through 

the equivalent transformation of information [Yang, 2001]. 

In the evidential reasoning framework, an MADM problem with M attributes Ai (i = 

J, ... ,M), K options OJ (j = J, ... . ,K) and N evaluation grades Hn (n = J, ... ,N) for each 

attribute is represented using an extended decision matrix with S(A;(O)) as its element 

at the lh row and/h column where S(A;(O)) is given as follows: 

j = 1, ..... ,K (2) 

It should be noted that an attribute is permitted to have its own set of evaluation 

grades that may be different from those of other attributes. 

Based on the evidential reasoning framework the degrees to which a criterion IS 

evaluated, with respect to one of the N evaluation grades, is directly dependent on the 

evidence that supports the evaluation. With the evidential reasoning approach, there is 

little compromise between the data collection process and effective evaluation, since 

the accuracy of the evaluation is directly proportional to the amount of accumulated 

evidence. 

The major differences between the evidential reasoning approach and the 

conventional scoring methods come from the manner in which initial assessments are 

provided and aggregated. The evidential reasoning approach operates on distributed 

assessments (or evidence base mapping) instead of average scores and employs the 

evidence combination rule of the Dempster-Shafer theory to aggregate belief degrees 

[Yang, 2001]. This evidence based mapping process could be made less subjective by 

using guidelines and expert knowledge. The degree of objectivity in pooling evidence 

from various sources can be further improved by employing the Delphi method. 

Suppose OJ; is the relative weight of the attribute A, and is normalised so that 

1 ~ OJ, ~ 0 and I:=IOJ; = 1 . where L is the total number of attributes in the same 

183 



group for aggregation. To simplify the description, only the combination of 

incomplete assessments is examined. The description of the recursive evidential 

reasoning algorithm capable of aggregating both complete and incomplete 

assessments can be found in literature [Yang & Xu, 2002]. Without loss of generality 

and for brevity of illustration, the evidential reasoning algorithm is presented below 

for combining two assessments only. 

Suppose the two assessments S(AI) and S(A2 ) are given as follows: 

(3 a) 

(3b) 

The problem is to aggregate the two assessments S(AI) and S(A2 ) to generate a 

combined assessment S ( AI) + S (~). Suppose S(AI) and S(A2 ) are both incomplete. 

Let 

(4a) 

(4b) 

(4c) 

(4d) 

d - + .. 
"'tH = mlH + rhaH an m2H = ~H ~H 

(4e) 

In the evidential reasoning framework, "'t." and m2." are referred to as basic 

probability masses. While "'tH and ~H are masses of the remaining belief 
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unassigned after commitment of belief to all Hn (n = 1, .... , 4), m
lH 

is the first part of 

the remaining probability mass that is not yet assigned to individual grades due to the 

fact that attribute Al only plays one part in the assessment relative to its weight and 

mlH is the second part of the remaining probability mass unassigned to individual 

grades, which is caused due to the incompleteness in the assessment S(A\). The 

evidential reasoning algorithm is used to aggregate the basic probability masses to 

generate combined probability masses, denoted by mJn = 1, ..... ,4), m
H 

and m
H 

using 

the following equations [Yang & Xu, 2002]: 

(5) 

(6) 

where (7) 

The combined probability masses can then be aggregated with the additional 

assessments in the same fashion. The process is repeated until all assessments in the 

group are aggregated. The final combined probability masses are independent of the 

order in which individual assessments are aggregated. 

I f there are only two assessments, the combined degrees of belief f3n (n = 1, ..... ,4) and 

f3H ' the later being the unassigned degree of belief representing the extent of 

incompleteness in the overall assessment are generated by the following expression: 

_ mn 4 d r:l mH f3. - ,n = 1, ..... , an PH = 1 -
n 1 - -m

H -mH 

(8) 
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8.4 A Design-Decision Support Framework Using a Composite Structure 

Methodology for Design Options Evaluation 

8.4.1 A design-decision support framework 

This section proposes a design-decision support framework using a composite 

structure methodology based on approximate reasoning approach and evidential 

reasoning method for design options evaluation for marine engineering systems. The 

framework is a multi-criteria decision-making methodology to assist decision makers 

in solving the design options selection problems where there are conflicting 

objectives, the objectives have different preferences (weights), and the value of each 

input variable is having certain level of uncertainty. This is certainly the case that 

occurs in the process for selecting the best design option, that is, the one that best 

satisfies the requirements of design/procurement projects. The framework consists of 

the following steps: 

Step 1: Identify and define the hierarchical structure consisting of criteria, sub

criteria and sub-sub-criteria. 

Step 2: Group basic or first-level criteria (sub-sub-criteria) into progressively fewer, 

more general groups (second-level criteria or sub-criteria). 

Step 3: Use approximate reasoning approach, Delphi method and fuzzy averaging to 

represent the uncertainty in the basic criteria. 

Step 4: Determine the relative weights of the criteria in the hierarchical structure and 

use Intelligent Decision System (IDS) via Evidential Reasoning [Yang & 

Xu, 2004]to synthesise all the related basic criteria into second level criteria. 

Step 5: Define a utility space to evaluate the different second level criteria on the 

same scale. 

Step 6: Perform system synthesis for each design option using IDS. 
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Step 7: Compare the options by computing the preference estimate for each design 

option using IDS. 

Step 8: Rank the alternative options in order of preference. 

Figure 8.1 depicts the generic framework. 

Approximate reasoning to 
provide inputs in memberships 

,~------~ r----~/ V 

Safety 
estimate 

l 

Delphi method to pool experts' opinions 
in terms of degrees of belief 

,~---------- ~--------~/ V 

Cost Technical performance 
estimate estimate 

~ ! 
, 

Evidential reasoning 

~ 
Cost-safety-technical performance synthesis in the 

utility space 

Preference 
estimate 

Figure 8.1. Subjective evaluation framework for various design options. 

The following will delineate each step in detail: 

Step 1: Identify and define the hierarchical structure consisting of criteria, sub

criteria and sub-sub-criteria. 

The first step is to define all the basic criteria (first level) (sub-sub-criteria), second 

level criteria (sub-criteria) and the system (criterion) that are used in the design

decision support evaluation process. It is essential to list all the basic criteria and the 

salient characteristics of the system. 
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Step 2: Group basic criteria (first level)(sub-sub-criteria) into progressive" fe\\t:?r. 

more general groups (second-Ievel)(sub-criteria). 

Basic criteria are grouped into appropriate sub-criteria. The sub-criteria are then 

further grouped in the system-criteria. For example, the eight basic criteria for 

evaluation of a passenger ship engine room are shown in Figure 8.2. The set of basic 

(first-level) criteria is grouped into a smaller subset of second-level criteria. For 

example, the basic criteria such as capital cost, maintenance cost, operational cost and 

inspection cost can be grouped into cost in general, which is an element of the subset 

of the second level criteria. The other two second-level criteria are safety and 

technical performance. The third-level is considered as the final-level or system-level. 

The system criterion can be formed by combining the three second-level criteria (i.e., 

safety, costs and technical performance). 

Step 3: Use approximate reasoning approach and Delphi method to evaluate the 

basic criteria and use fuzzy averaging to represent the uncertainty in the 

basic criteria. 

Safety Modelling 

The four fundamental parameters used to assess the safety level of a maritime system 

on a subjective basis are the failure rate, consequence severity, failure consequence 

probability and control mechanism. Safety estimate is the only output fuzzy variable 

used in this study to produce the safety evaluation for each element at the bottom level 

of a hierarchical system. In safety assessment, it is common to express a safety level 

by degrees to which it belongs to such linguistic variables as "poor", "fair", 

"average", and "good" that are referred to as safety expressions. 
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First-level criteria Second-level criteria System-level 

Safety Safety 

Capital 
t--

Maintenance I""-

Cost System 
Operational to-

Inspection I""-

Reliability I""-

Integration Technical 

Supportability I--

Figure 8.2. The composite procedure for evaluation of the passenger ship engine 

room. 

Cost Modelling 

The cost incurred for the safety and technical performance improvement associated 

with a design option is usually affected by many factors. The capital cost, 

maintenance cost, operational cost or inspection cost incurred for a design option can 

be described using linguistic variable such as {'very low', 'low', 'average', 'high '}, 

which are referred to as cost expressions. The assignment of the four membership 

degrees to the four cost expressions is based on the engineering judgement and 

experience of the engineering team in terms of degrees of belief. 
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Technical Performance Modelling 

The basic criteria related to technical performance such as reliability, system 

integration and supportability are used to describe the technical strength of each 

design option. These basic criteria are assessed in a similar way based on engineering 

judgement and experiences of a team of personnel with strong technical background. 

The reliability, system integration or supportability for a design option can be 

described using linguistic terms such as those used for cost modelling, i.e .. {'very 

low', 'low', 'average', 'high '}, which are referred to as technical performance 

expressions. 

The values of the basic criteria for each design option are described in degrees of 

belief in accordance with the pre-defined fuzzy expressions. The Delphi method is 

applied to improve the objectivity of degrees of belief assessment made by a panel of 

experts. 

Step 4: Determine the relative weights of the criteria in the hierarchical structure and 

use IDS to synthesise all the related basic criteria into second level criteria. 

Relative weights of the criteria at both the first level and second level of the 

hierarchical structure are determined. Many methods including the Delphi technique 

can be used to obtain such weights. The evidential reasoning method is then used to 

synthesise all the basic criteria. This is to create second-level criteria for further 

analysis. 

Step 5: Define a utility space to evaluate the different second level criteria on the 

same scale. 

The selection of a design proposal relies on cost. safety and technical performance 

implications in a particular situation. This requires the synthesis of cost. safety and 

technical performance estimates for each design option in a rational manner. The cost. 
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safety and technical performance are described in such a way that the evidential 

reasoning approach can be used to carry out such a synthesis in order to avoid loss of 

useful information. However, the safety and technical performance associated with 

and cost incurred for each design option are described in terms of safety, technical 

performance and cost expressions, respectively. It is therefore necessary to define a 

utility space to evaluate cost, safety and technical performance on the same scale to 

expedite the synthesis process using evidential reasoning. Four utility expressions are 

defined as {' greatly preferred'; 'preferred' ; 'moderately preferred'; 'slightly 

preferred' }. The safety and technical performance expressions associated with and 

cost incurred for each design option are then mapped onto the generalised utility space 

and expressed in terms of utility expressions. For example, 'greatly preferred' 

corresponds to 'good' in safety expressions, 'very low' in cost expressions and 'high' 

in technical performance expressions. 

This step defines a common utility space in order to convert all the second-level 

criteria of different nature on the same scale. The second-level criteria are then 

mapped onto the utility space and expressed in terms of the utility expressions. 

Step 6: Perform system synthesis for each design option using IDS. 

The IDS is applied to carry out the synthesis of various second-level criteria, i.e., cost, 

safety, and technical performance. This is to achieve the final evaluation at the system 

level. 

Step 7: Compare the options by computing the preference estimate for each design 

option using IDS. 

The preference degrees associated with the available design options can be obtained 

by synthesising the safety and technical perfonnance associated with and cost incurred 

for each design options using the evidential reasoning approach. The numerical values 

are assigned here to describe the four utility expressions (i.e. "greatly preferred'; 

''preferred'; "moderately preferred'; "slightly preferred') in nonnalised fonn as 

U',,< 

~ICi;:! ~\:,~, , 
t., ,:'-
T -- -J" - .": <.:. -rn-ET J •• t ___ •• i:~ V&, _"::t-

lIVEEPCOL L2 2ER 
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follows: K = [K 1; K2; K3; K4] = [1; 0.8; 0.6; 0.2]. The attributes of cost. safety and 

technical performance can be considered to carry different weights (i.e. having 

different degrees of importance) for different situations while conducting the design 

selection. 

Step 8: Rank the alternative options in order of preference. 

Design selection can be carried out on the basis of the preference degrees associated 

with the available design options with regard to the particular considerations of cost, 

safety and technical performance using IDS. 

8.5 Case Study 

Under most circumstances, assessments of options/alternatives are usually performed 

on the basis of evaluation inputs that are crisp (single values are used) but subjective. 

In this case the criteria may be presented as a range of possible values instead of crisp 

values. The following example is used to illustrate the applicability of the proposed 

framework in design option evaluation. 

The machinery space of a passenger ship must be evaluated on the basis of a number 

of factors, such as safety, cost and technical performance. Assume that four options 

are being considered for an engine room. Option # 1 is a conventional ship engine 

room design without much innovation involvement. Option # 2 is a new design with a 

high safety and reliability level as well as novel fire alarms. Its capital and 

maintenance costs are comparatively more expensive than the conventional design 

(option # 1) as the design is capable of reducing the effect from fire accidental impact. 

Option # 3 is another design associated with some novel design features such as high 

technology fire extinguisher (i.e., C02, foam, chemical), which provides improved 

system safety and supportability. However, these novel design features inevitably 

increased the maintenance as well as capital costs. Option # 4 provides a generally 

good safety and reliability margins with novel fire control systems. Its design also 

provides improved system integration and supportability, but it requires higher costs 

in both maintenance and inspection throughout its operational life. 
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All the four options are hypothetically prepared for illustration purposes. The 

engineering design team will perform a technical review for acceptability in meeting 

the mandatory requirements in terms of safety, cost and technical aspects of the 

request for the four options. The engineering design team may be composed of 

personnel with various professional expertise in the fields ranging from engineering 

design, safety analysis, cost estimation, utility engineering, etc. 

The design evaluation is performed using the proposed framework as follows: 

Step 1: Identify and define the hierarchical structure consisting of criteria, sub

criteria and sub-sub-criteria. 

The hierarchical structure of the design evaluation is depicted in Figure 8.2. 

Step 2: Group basic criteria into progressively fewer, more general groups. 

The second step in the evaluation is to group appropriate basic criteria (first-level) 

such that they reduce to a single composite criterion (second-level). This grouping is 

shown in Figure 8.2. The basic criteria are known as the first-level criteria, and 

include safety, capital cost, maintenance cost, operational cost, inspection cost, 

reliability, easy system integration and supportability. The second-level criteria are 

safety, cost and technical performance. The final composite criterion is the system. 

Step 3: Use approximate reasoning approach, Delphi method and fuzzy averaging to 

represent the uncertainty in the basic criteria. 

The experts are requested to assess degrees of belief for each criterion in each design 

option according to the pre-defined fuzzy expressions. The Delphi method is then 

used to extract the maximum amount of unbiased assessment from a panel of experts. 

For example, the assessments made for capital cost for design option # 1 by five 

experts is shown in Tables 8.1. The deviations of each expert's judgement from the 

average are given in Table 8.2. 
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Table 8.1. 

Expert, Ei 

El 
E2 
E3 
E4 
E5 
Average 

Table 8.2. 

Expert, Ei 

El 
E2 
E3 
E4 
E5 

Assessment presented by experts for capital cost in design option # 1 

(Delphi method round I). 

Fuzzy Expressions 
'very low' 'low' 'averaKe' 'hiKh' 
0.10 0.45 0.30 0.15 
0.05 0.60 0.25 0.10 
0.15 0.55 0.10 0.20 
0.00 0.70 0.25 0.05 
0.25 0.50 0.20 0.05 
0.11 0.56 0.22 0.11 

Deviation from average. 

Fuzzy Expressions 
'very low' 'low' 'averaKe' 'high' 
-0.01 -0.11 0.08 0.04 
-0.06 0.04 0.03 -0.01 
0.04 -0.01 -0.12 0.09 
-0.11 0.14 0.03 -0.06 
0.14 -0.06 -0.02 -0.06 

Suppose the first round assessment is not satisfied with the level of deviations 

presented. Then the results on deviation and average for each fuzzy expression are 

given to each expert for reconsideration. 

Table 8.3. Assessment presented by experts for capital cost in design option #1 

(Delphi method round 2). 

Expert. Ei Fuzzy Expressions 
'very low' 'low' 'average' 'hiKh' 

El 0.16 0.57 0.19 0.08 

~ 0.14 0.53 0.22 0.11 

E3 0.15 0.54 0.20 0.11 

&. 0.13 0.56 0.21 0.10 

Es 0.17 0.55 0.18 0.10 

Average 0.15 0.55 0.20 0.10 

The results obtained from the second round assessment (Table 8.3) are satisfactory 

and the average in degree of belief for each fuzzy expression is rounded as {O.ls 'very 

low', 0.55 'low', 0.20 'average', 0.10 'high'}. 

The assessments for other first level criteria for both cost and technical performance 

follow the same procedure by the engineering design team. Safety estimates can be 
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obtained using the fuzzy averaging method described in the previous chapter. The 

results generated are depicted as follows: 

Option #1: 

Safety (option #1) = {0.205 'good', 0.241 'average', 0.261 'fair', 0.293 'poor'} 

Capital cost (option #1) = {0.15 'very low', 0.55 'low', 0.2 'average', 0.1 'high'} 

Maintenance cost (option #1) = {0.2 'very low', 0.3 'low', 0.35 'average', 0.15 

'high'} 

Operational cost (option #1) = {0.15 'very low', 0.2 'low', 0.3 'average', 0.35 

'high'} 

Inspection cost (option #1) = {0.05 'very low', 0.35 'low', 0.15 'average', 0.45 

'high'} 

Reliability (option #1) = {O 'very low', 0.15 'low', 0.25 'average', 0.6 'high'} 

System integration (option #1) = {0.1 'very low', 0.25 'low', 0.3 'average', 0.35 

'high'} 

Supportability (option #1) = {0.1 'very low', 0.35 'low', 0.15 'average', 0.4 'high'} 

Option #2: 

Safety (option #2) = {O.501 'good', 0.171 'average', 0.197 'fair', 0.131 'poor'} 

Capital cost (option #2) = {O 'very low', 0.25 'low', 0.3 'average', 0.45 'high'} 

Maintenance cost (option #2) = {0.15 'very low', 0.15 'low', 0.25 'average', 0.45 

'high'} 

Operational cost (option #2) = {0.15 'very low', 0.2 'low', 0.35 'average', 0.3 

'high'} 

Inspection cost (option #2) = {0.1 'very low', 0.35 'low', 0.3 'average', 0.25 'high'} 

Reliability (option #2) = {O 'very low', 0.05 'low', 0.15 'average', 0.8 'high'} 

System integration (option #2) = {0.15 'very low', 0.25 'low', 0.25 'average', 0.35 

'high'} 
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Supportability (option #2) = {0.1 'very low', 0.2 'low', 0.25 'average', 0.45 'high'} 

Option #3: 

Safety (option #3) = {0.437 'good', 0.112 'average', 0.352 'fair', 0.099 'poor'} 

Capital cost (option #3) = {0.35 'very low', 0.45 'low', 0.2 'average', 0 'high'} 

Maintenance cost (option #3) = {0.05 'very low', 0.15 'low', 0.35 'average', 0.45 

'high'} 

Operational cost (option #3) = {0.15 'very low', 0.15 'low', 0.25 'average', 0.45 

'high'} 

Inspection cost (option #3) = {0.05 'very low', 0.3 'low', 0.35 'average', 0.3 'high'} 

Reliability (option #3) = {O 'very low', 0.05 'low', 0.2 'average', 0.75 'high'} 

System integration (option #3) = {0.05 'very low', 0.15 'low', 0.25 'average', 0.55 

'high'} 

Supportability (option #3) = {0.1 'very low', 0.1 'low', 0.35 'average', 0.45 'high'} 

Option # 4: 

Safety (option #4) = {0.661 'good', 0.103 'average', 0.236 'fair', 0 'poor'} 

Capital cost (option #4) = {0.1 'very low', 0.35 'low', 0.3 'average', 0.25 'high'} 

Maintenance cost (option #4) = {0.05 'very low', 0.15 'low', 0.3 'average', 0.5 

'high'} 

Operational cost (option #4) = {0.05 'very low', 0.15 'low', 0.35 'average', 0.45 

'high'} 

Inspection cost (option #4) = {0.1 0 'very low' , 0.15 'low', 0.25 'average', 0.5 'high'} 

Reliability (option #4) = {O 'very low', 0.05 'low', 0.3 'average', 0.65 'high'} 

System integration (option #4) = {O 'very low', 0.15 'low', 0.35 'average', 0.5 'high'} 

Supportability (option #4) = {0.05 'very low', 0.15 'low', 0.35 'average', 0.45 'high'} 
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These systems are to be evaluated and compared on the basis of safety, four basic 

cost-related criteria and three technical performance related criteria. 

Step 4: Determine the relative weights of the criteria in the hierarchical structure and 

use IDS to synthesise all related basic criteria into second level criteria. 

The weighting factors for each basic criterion (first level) and each second-level 

criterion are shown in Tables 8.4 and 8.5 respectively. 

Table 8.4. Weighting factors for each basic criterion (first level). 

Basic Criterion Weighting factors 

Safety 1 

Capital 0.2 

Maintenance 0.4 

Operational 0.3 

Inspection 0.1 

Reliability 0.5 

Integration 0.3 

Supportability 0.2 

Table 8.5. Weighting factors for second-level criterion. 

Composite criterion Weighting factors 

Safety 0.6 

Cost 0.3 

Technical 0.1 

The proposed design-decision support framework is used to detennine which of the 

four options best satisfies the requirements of the project. The evaluation is to be 

conducted assuming that the reliability is 2.5 times as important to the evaluators as 

the supportability, and 1.7 times as important as the easy system integration. The 

capital cost is twice as important as inspection cost, maintenance cost is 4 times as 

important as inspection cost and twice as importance as capital cost, operational cost 

is 3 times as important as inspection cost. In the second level, safety is 6 times as 
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important as technical performance, twice as important as cost. The cost is 3 times as 

important as technical performance. In addition, the evaluation criteria are only known 

approximately because the design of the system is still in the initial stages. Moreover 

there is a high level of uncertainty associated with these criteria. 

The main window of IDS [Yang & Xu, 2004] for solving the design option problem is 

shown in Figure 8.3. 

OpUon1 I 
" 0.684666 

Option 2 I 
3 0.727333 

Option 3 I 
2 0.753474 

Option ... I 
1 0.766283 

Figure 8.3. IDS main window for synthesis of safety, cost and technical performance 

not weighted. 

The synthesis of the second level criteria of cost, safety and technical performance for 

the four options is shown as follows: 

Option #1: 

Safety expression 

Safety (option 
#1) 

good' 

0.205 

'average 

0.241 0.261 0.293 
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Cost expression 'very low' 'low' 'average' 'high' 
Cost (option # 1) 0.157 0.328 0.295 0.220 
[with weights] 

Cost (option # 1) 0.129 0.363 0.248 0.260 
[without 
weights] 

Technical 'very low' 'low' 'average' 'high' 
performance 

Technical 0.035 0.198 0.239 0.528 
performance 
(option # 1) [with 
weights] 

Technical 0.059 0.241 0.224 0.476 
performance 
(option #1) 
[without 
weights] 

It is noted that "with weights" means that criteria are given respective weights 

according to their degrees of importance assigned by experts during design evaluation, 

while "without weights" means that criteria are all of equal importance within their 

corresponding group. 

Option #2: 

Safety expression 'good' 'average' 'fair' 'poor' 

Safety (option 0.501 0.171 0.197 0.131 
#2) 

Cost expression 'very low' 'low' 'average' 'high' 

Cost (option #2) 0.110 0.191 0.294 0.405 
[with weights] 

Cost (option #2) 0.091 0.231 0.302 0.376 
[without 
weights] 
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Technical 'very low' 'low' 'average' 'high' 
performance 

Technical 0.046 0.112 0.179 0.663 
performance 
(option #2) [with 
weights] 

Technical 0.073 0.151 0.203 0.573 
performance 
(option #2) 
[without 
weights] 

Option #3: 

Safety expression 'good' 'average' 'fair' 'poor' 

Safety (option 0.437 0.112 0.352 0.099 
#3) 

Cost expression 'very low' 'low' 'average' 'high' 

Cost (option #3) 0.124 0.211 0.298 0.367 
[with weights] 

Cost (option #3) 0.141 0.263 0.294 0.302 
[without 
weights] 

Technical 'very low' 'low' 'average' 'high' 

performance 

Technical 0.023 0.071 0.218 0.688 

performance 
(option #3) [with 
weights] 

Technical 0.042 0.086 0.247 0.625 

performance 
(option #3) 
[without 
weights] 

Option #4: 

Safety expression 'good' 'average' 'fair' 'poor' 

Safety (option 0.661 0.103 0.236 0.000 

#4) 
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Cost expression 'very low' 'low' 'average' 'high' 
Cost (option #4) 0.055 0.174 0.309 0.462 [with weights] 

Cost (option #4) 0.067 0.188 0.298 0.447 [without 
weights] 

Technical 'very low' 'low' 'average' 'high' 
performance 

Technical 0.006 
performance 

0.079 0.309 0.606 

(option #4) [with 
weights] 

Technical 0.014 0.101 0.322 0.563 
performance 
(option #4) 
[without 
weights] 

Step 5: Define a utility space to evaluate the different second level criteria on the 

same scale. 

Safety, technical performance associated with and cost incurred for each design option 

are mapped onto the utility space and expressed in terms of utility expressions as 

shown in Table 8.6. 

Table 8.6. Linguistic variables for utility expressions corresponding to cost, safety 

and technical performance expressions. 

Utility Safety Cost expressions Technical 

expressions expressions performance 

expressions 

Greatly preferred Good Very low High 

Preferred Average Low Average 

Moderately Fair Average Low 

preferred 

Slightly preferred Poor High Very low 
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Step 6: Perfonn system (engine room) synthesis for each design option using IDS. 

This step involves the synthesis of the three second-level criteria on the same scale of 

a utility space. The system synthesis for each option is shown in Table 8.7. 

Table 8.7. The results of system synthesis for each option. 

'Greatly , Preferred' ' Moderately 'Slightly 
preferred' preferred' preferred' 

Option #1 
with weights for both 0.212 0.263 0.267 0.258 
first and second levels 
criteria 
without weights for 0.269 0.281 0.252 0.198 
both first and second 
levels criteria 

Option #2 
with weights for both 0.432 0.172 0.212 0.184 
first and second levels 
criteria 
without weights for 0.404 0.198 0.213 0.185 
both first and second 
levels criteria 

Option #3 
with weights for both 0.389 0.135 0.328 0.148 
first and second levels 
criteria 
without weights for 0.420 0.202 0.240 0.138 
both first and second 
levels criteria 

Option #4 
with weights for both 0.534 0.128 0.248 0.090 
first and second levels 
criteria 
without weights for 0.454 0.200 0.208 0.138 
both first and second 
levels criteria 

Step 7: Compare the options by computing the preference estimate for each design 

option using IDS. 

The results of the computed preference estimate for each design option are shown in 

Table 8.8, Figure 8.4 and Figure 8.5. 
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Table 8.8. Computed preference estimate for each design option. 

Option Preference estimate 

Option # 1 

with weights for both first and second level 0.634 

criteria 

Without weights for both first and second 0.890 

levels criteria 

Option # 2 

-~ 

with weights for both first and second level 0.734 

criteria 

without weights for both first and second levels 0.950 

criteria 
I 

Option # 3 
! 

with weights for both first and second level 0.724 

criteria 

without weights for both first and second levels 0.940 
I 

criteria 
I 

Option # 4 ! 

I 

with weights for both first and second level 0.803 

criteria 

without weights for both first and second levels 0.920 

criteria 
----
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Step 8: Rank the alternative design options in order of preference. 

Based on the information obtained in Step 7, the ranking of the four design option is 

produced as follows: 

Ranking with involvement of without involvement of 

weights for both first and weights for both first and 

second level criteria second level criteria 

1 st Preference Option #4 (0.803) Option #2 (0.950) 

2nd Preference Option #2 (0.734) Option #3 (0.940) 

3rd Preference Option #3 (0.724) Option #4 (0.920) 

4th Preference Option #1 (0.634) Option #1 ((0.890) 

In this example the order of selection was not clear from the original range of data. 

This is often the case when decisions are made on the development of new systems 

without past experience. However, the design-decision support framework provides a 

systematic approach to making a selection when the criteria are vague and of varying 

importance. The ranking of the design options with the consideration of weights for 

both first and second level criteria is {option #4, option #2, option #3, and option # I}. 

The ranking of the design options may change with the weights of the criteria. For 

example, if the weights for both first and second level criteria are not considered, then 

the ranking order of the four options is {option #2, option #3, option #4, and option 

#1 }. 

In this example only eight criteria were used to compare among four alternative 

options; this process can easily be extended to many more criteria and alternatives. 

This example shows the utility of the proposed framework in providing a method for 

decision-making when the basic evaluating criteria are uncertain or information 

available is incomplete. 
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8.6 Conclusion 

The chapter was performed to demonstrate the use of a design-decision support 

framework to assist in decision-making under conditions of vague or qualitative 

criteria of unequal importance. The proposed framework uses criteria that are 

sUbjective with a high level of uncertainty. 

The suggested framework provides a powerful tool for comparing alternatives under 

subjective and uncertain evaluation procedures. In the evaluation process, the 

evaluating criteria or objectives are rated against each other, forcing the decision 

maker to decide what is most important to the final result. Most importantly, the 

process provides a result based on the degree to which each alternative meets each 

objective, thereby allowing for a decision based on factors that may have been 

overlooked in conventional procedures. 

The final result (ranking of the design/procurement proposals) may vary with the 

weights assigned to each criterion and group. Thus, a sensitivity analysis may be 

required to investigate the effect for the weights. Because the selection of different 

basic criteria may also lead to different results, care must be taken to select all of the 

critical requirement criteria so that other criteria choices will not radically alter the 

result of the analysis. 
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CHAPTER 9 - DECISION MAKING USING ANALYTICAL 

HIERARCHY PROCESSING TO FIRE SAFETY ASSESSMENT 

OF A PASSENGER SHIP 

Summary 

An approach to integrate fire safety assessment and decision-making using the 

Analytical Hierarchy Processing (AHP) method is described. The aim of this approach 

is to reduce the occurrence probability and severity of fire during the operational 

phase of a passenger vessel. It utilises AHP theory to rank the impacts of fires and 

further integrates the available control options (to minimise these fires) within the 

analysis. The result obtained from the analysis reflects the most favoured control 

option that will address the possible fires within the ship to a satisfactory level. A test 

case, which considers the operation of a passenger vessel, is used to demonstrate the 

described approach. 

9.1 Introduction 

In the last 15 years there have been some severe fire accidents with passenger vessels, 

such as Scandinavian Star tragedy of April 1990 with 158 deaths and Moby Prince 

disaster of April 1991 with 140 fatalities. The accidents have demonstrated a clear 

need for fire safety improvements. 

The development of a fire from ignition to a major flammable incident usually takes a 

very short time. The speed of combustion is dependent on many factors such as 

oxygen, fuel, weather conditions, etc. Fire at sea, can have more serious and dramatic 

implications than a land based fire. On seagoing passenger vessels fire could develop 

quicker due to materials of construction, fuels, chemicals, petroleum gases, or other 

hazardous cargoes, which are indigenous to ships and contained within a relatively 

small area [Haisley. 1997]. 
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The application of fire safety engineering principles allows a more coherent, 

systematic and holistic approach to be used to address fire safety in passenger ship 

design. Consequently, it is inevitable that specific expertise is required and that more 

data and paperwork are to be generated, with direct impact on both designers and 

administrations. 

9.2 Statistics and Fire Safety Assessment of a Passenger Ship 

The Lloyd's Register (LR) ship casualty database contains details of any reported fires 

and explosions that occur on LR classed vessels. In the majority of cases the actual 

raw data is obtained directly from the surveyors in the field, via the classification 

reporting system. Press articles and casualty returns, reported in Lloyd's List and 

similar publications are scanned as a secondary source of information [Mather & 

Strang, 1997]. 

The following research criteria limits were applied to highlight passenger ship fires by 

searching the LR ship casualty database [Mather & Strang, 1997]: 

1. Fires. 

The database search was limited to fires. Only if an explosion was followed by a 

fire does the incidence of the explosion result in an entry in the data. 

2. Passenger vessels built between 1 January 1982 and 31 December 1996. 

The range of dates was chosen to provide a large enough sample of vessels and 

ensured that the analysis was carried out on fires where the vessels were 

constructed to current fire safety standards. 

From the data obtained from the LR ship casualty database, Table 9.1 has been 

complied. Table 9.1 lists the recorded fires and gives specific details of the locations 

of the fire and where known the extinguishing used. 
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Table 9.1. Reports of fires. 

Passenger Vessels 

Total recorded fires 9 ships 

Underway 6 

Ship motion Port I 

Anchored 0 

New construction 2 

Accommodation 2 

Galley 1 

Machinery space / pump room 5 

Electrical installations 1 

Location of fire Funnels and uptakes 0 

outbreaks Stores 0 

Oil tanks 0 

Cargo space 0 

Deck area 0 

Electrical 1 

Spontaneous combustion 0 

Hot surface 5 

Scavenge space 0 

Heat source Repairs / cutting / welding 1 

Cigarette / match 1 

Cargo / coal 0 

Outside the ship 0 

Negligence 0 

Heat source Collision 0 

contributory factor Sabotage 1 

Soot deposits 1 

Fuel oil / leakage oil 1 

Allowed to bum 0 

Fixed water - main / sprinkler 1 

Fixed gas 2 

Fixed foam 0 
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Fire extinguishing Fixed dry powder 0 I 

Portable water 1 I 
I 
! 

Portable gas 0 l 
I 

Portable foam I 

1 
I 

Portable dry powder 1 1 
I 

Fire containment Additional help 2 

Spread 1 

Loss of life/injuries Loss of life 0 

Serious injury 0 

Major / serious 1 

Degree Sank at sea 0 

Temporarily disabled 2 

9.2.1 Accommodation zone 

In accommodation superstructures, it is sometimes found that all combustible 

materials have been consumed leaving no identifiable patterns of fire spread, 

particularly in older ships in which bulkheads are largely combustible. 

Accommodation superstructures are divided into compartments designed to resist the 

spread of fire from one to another. Factors affecting the speed with which a fire 

develops in an accommodation should be identified. Open stairwells provide a route 

by which fire may spread rapidly from one deck to another. Enclosed stairways are 

fitted with self closing doors and a careful note of the condition of hinges and smoke 

patterns on the door edges and jambs may assist in determining whether these doors 

were open or closed at the time of the fire [Foster & Burgoyne, 1997]. 

Fire may be communicated from one deck to another or from one compartment to 

another on the same deck, by heat conduction through a steel barrier (i.e. deckhead or 

bulkhead). The speed with which a fire may develop in an adjacent compartment will 

be dependent upon the nature of the combustible material which is in contact with 

surface of the division on the opposite side of the existing fire. Sometimes a 

smouldering fire may be initiated in the adjacent compartment and sometimes can 
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elapse before transition to flame occurs. Therefore, the nature and disposition of the 

combustible contents in the adjacent compartment will determine the rate at which the 

fire develops there. In this way, the fire may spread gradually or quickly through an 

accommodation superstructure depending on the prevailing conditions [Foster & 

Burgoyne, 1997]. 

In accommodation spaces, good housekeeping and common-sense are important in 

preventing fires from occurring and spreading. Crew members should use cooking 

facilities in a pantry with care, especially during night watches. Smoke detectors and 

heat detectors should be maintained in good working order and fire doors should be 

kept closed, especially in stairwell areas [Foster & Burgoyne, 1997]. 

Clearly the accommodation has a higher fire risk; it is where personnel are 

concentrated owing to work and recreational activities, including smoking. 

Additionally, there are many combustible materials in these spaces. However, because 

the accommodation is a manned area, detection and extinction of a fire is usually 

quickly dealt with, thus preventing any escalation of a fire [Mather & Strang, 1997]. 

9.2.2 Public area 

There was one reported fire in a galley. However, because the galley is manned when 

the main hazard is present, during cooking, any fire is quickly detected and 

extinguished. Also the public areas (i.e. shopping malls, restaurants, cinemas) are well 

equipped with fire extinguishing facilities [Mather & Strang, 1997]. 

9.2.3 Machinery space 

The data analysis clearly indicates that the areas where the most fires can be expected 

are the machinery spaces, despite the numerous fire safety measures provided in these 

spaces. 

The most common cause of fire in the machinery spaces is due to the contact of oil on 

the hot surfaces of machinery. The fuel can be lubricating oil, diesel or fuel oil at high 

or low pressure. There are regulatory requirements for high pressure fuel lines to he 
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sheathed or annoured. Most of the engine room fires are the result of low pressure or 

lubricating oil leaks. The sources are rarely the line itself, but usually the joints or 

filters. Frequently, the problem is poor access so that engineers working on routine 

maintenance or repair work inadvertently trigger a fire [Waite, 2000]. 

A glib response would be that these problems are crew negligence. Even if that was 

the case, it does not relieve the designer from the responsibility to attempt to 

anticipate the circumstances under which fire could occur. Apart from the obvious 

annouring or sheathing of all oil lines, they should be fitted with quick response low 

pressure cut off. A fire may then start, but not continue to be fuel fed. Also, fuel lines 

which run over machinery or adjacent machinery where atomisation may occur should 

have limited lengths to limit the volume of fuel that can spray onto the engine [Waite. 

2000]. 

Engine room fires also have a tendency to extend to the accommodation. The rules 

and requirements are designed to provide time to prevent the spread of fire. The 

principle is to either contain the fire to give time to fight it effectively or to give time 

to evacuate the ship if it gets out of control. Clearly, there is no guarantee nor can 

there be, to stop the fire completely within a space. It is inevitable, therefore, that 

machinery fires can spread to the accommodation so that abandonment is necessary 

[Waite, 2000]. 

9.2.4 Evacuation 

The evacuation process of a passenger vessel may be divided into the following 

phases: Mustering, Embarkation and Evacuation. 

When the captain decides to muster the passengers, the alann will be activated and 

announcements will infonn passengers and crew about the situation. The passengers 

are guided to leave their cabins and walk along the marked escape-ways to their 

muster areas, where the crew will support them. If the situation deteriorates. 

embarkation of the lifeboats, which in the meantime have been swung out by crew, 

will be started. The lifeboats will nonnally be sequentially launched. 
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Some of the crew will systematically search the cabins and others will be posted at 

strategic positions to guide passengers to their muster stations. The crew members 

shall be dressed in their uniforms to be perceived as authority persons by the 

passengers. This contributes to preventing inappropriate or dysfunctional behaviour 

among passengers. Otherwise, they may adopt the behaviour of other persons 

appearing to behave with authority who in the worst case may be panicking people. 

In case of a severe accident on a passenger vessel, the captain is responsible for 

deciding whether the ship has to be evacuated. The history shows that several 

examples that delay to take a decision or incorrect decisions have contributed to 

creating disasters. On the other hand, premature evacuations may also cause loss of 

lives. 

9.2.5 Analytical Hierarchy Processing (AHP) for fire safety assessment and 

decision-making for passenger ships 

Quantification of the fire safety provision in new passenger ships is very difficult. In 

the retrofitting of existing vessels much of the work associated with fire safety is 

executed as an operation without the predetermination of the ships most at risk and a 

priority ranking of the components which contribute to the achievement of the 

required level of fire safety. Several spaces to quantify fire safety have been reviewed 

in Sections 9.2.1 - 9.2.4 and also investigated in the previous chapters 4 - 8. 

The use of the AHP method enables the solutions for each area with possible fire 

identified, to be integrated within the analysis. The solutions to reduce the risk levels 

(posed by fires) are evaluated in the first instance, and then are-iteration of the whole 

analysis is performed (assuming the implementation of the solution) to confirm the 

risk reduction. 

9.3 Analytical Hierarchy Processing (AHP) 

AHP is a powerful and flexible decision making process to help set priorities and 

make the best decision when both qualitative and quantitative aspects of a decision 

need to be considered. By reducing complex decisions to a series of one-on-one 
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comparisons, then synthesising the results. AHP not only helps decision-makers arrive 

at the best decision, but also provides a clear rationale that it is the best. Designed to 

reflect the way people actually think, AHP was developed more than 25 years ago b) 

Dr. Thomas Saaty [Saaty, 1980], and continues to be a highly regarded and widely 

used decision-making theory. 

AHP is especially suitable for complex decisions, which involve the comparison of 

decision elements that are difficult to quantify. It involves building a hierarchy 

(ranking) of decision elements and then making comparisons between each possible 

pair in each cluster (as a matrix). This gives a weighting for each element within a 

cluster (or level of the hierarchy). 

The AHP engages decision-makers in breaking down a decision into smaller parts, 

proceeding from the goal to criteria to sub-criteria down to the alternative courses of 

action. Decision-makers then make simple pair-wise comparison judgements 

throughout the hierarchy to arrive at overall priorities for the alternatives. 

The literature survey on AHP indicates that the method has been effective to a wide 

range of applications. These include agricultural applications [Alho & Kangas, 1997], 

[Braunschweig, 2000], industrial engineering applications [Alidi, 1996], [Bhattarai & 

Fujiwara, 1997] and financial applications [Hachadorian, 1987]. The application of 

AHP theory to ascertain business and financial risk has been relatively popular in the 

past [Jensen, 1987a-b], [Nezhad, 1988], [Simkin et aI., 1990]. It has also found its 

place in risk and safety assessment of engineering systems [Shields & SiIcock, 1986], 

[Saaty, 1987], [Hamalainen & Karjalainen, 1989, 1992], [Shields et aI., 1990], [Frank, 

1995], [PilIay, 2001]. 

9.3.1 Background of AHP 

In AHP. the quantified judgements on pairs of activities C; and C} are represented by 

an n-by-n matrix. 
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A = (aij) where i,} = 1,2, ... , n. 
(I) 

The entries aij are defined by the following entry rules: 

Rule 1. If aij = a., then aji = 1/a., a. =;; o. 

Rule 2. If Ci is judged to be of equal relative importance as C· then a·· = a·· = 1 
J , Ij ')1 • 

Obviously au = 1 for all i. Thus the matrix A has the following form: 

A = 1/ a12 1 
(2) 

where each aij is the relative importance of activity i to activity j. Having recorded the 

quantified jUdgements of comparisons on pair (Ci, Cj ) as numerical entry Gij in the 

matrix A, what is left is to assign to the n contingencies C) , C2 , C3 , ... , Cn a set of 

numerical weights Wj, W2, W3, ... , Wn that should reflect the recorded judgements. The 

eigenvector of the comparison matrix provides the priority ordering (weight), and the 

eigenvalue is a measure of consistency [Pillay & Wang, 2003]. To find the priority 

vector or the weight of each factor included in the priority ranking analysis, the 

eigenvector corresponding to the maximum eigenvalue is to be determined from 

matrix analysis. 

In mathematical terms, the principal eigenvector is computed, and when normalised 

becomes the vector of priorities (weights). To reduce the excessive computing time 

needed to solve the problem exactly, and due to the results of complex numbers, a 

good estimate of that vector can be obtained by dividing the elements of each column 

in the comparison matrix by the sum of that column (i.e. normalise the column). The 

elements in each resulting row are added and the sum is divided by the number of the 

elements in the row. This is a process of averaging over the normalised columns. 

Mathematically, the equation for calculating Wj is shown below: 

(3) 
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In general, weights W j, W2, W3, ... , Wn can be calculated using the following equation 

[Pi lIay & Wang, 2003]: 

_ 1 n akj 
Wk--Lj=I(~n )(k=l, ...... n) 

n L..i=1 aij (4) 

where aij is the entry of row i and column j in a comparison matrix of order n. 

Generally, if pairwise comparisons are provided for three or more criteria, they may 

not be completely consistent and as such it is not straightforward to obtain relative 

weights of criteria from the comparisons. The AHP method and several other methods 

can be used to generate weights using pairwise comparisons. 

9.3.2 Risk and AHP 

Risks are by nature subjective, therefore, the AHP method may be suited for risk 

assessment in many situations. This technique allows subjective and objective factors 

to be considered in risk analysis and also provides a flexible and easily understood 

way to annualise SUbjective risk factors. The elements in each level are compared 

pair-wise with respect to their importance in making the decision under consideration. 

The verbal scale used in AHP enables the decision-maker to incorporate subjectivity, 

experience and knowledge in an intuitive and natural way [Pillay, 2001]. 

After the comparison matrices have been created, the process moves on to the phase in 

which relative weights are derived for the various elements. The relative weights of 

the elements of each level with respect to an element in the adjacent upper level are 

computed as the components of the nonnalised eigenvector associated with the largest 

eigenvalue of their comparison matrix. The composite weights of the decision 

alternatives are then detennined by aggregating the weights through the hierarchy. 

This is done by following a path from the top of the hierarchy to each alternative at 

the lowest level, and multiplying the weights along each segment of the path. The 

outcome of this aggregation is a normalised vector of the overall weights of the 

options. The mathematical basis for determining the weights has been established by 

Saaty [Saaty. 1988]. 
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9.4 Application of AHP to a Passenger Vessel Operation 

The flowchart in Figure 9.1 illustrates the steps involved In carrying out the 

application of AHP to a passenger vessel operation. 

Determine 

Describe 
Operation 

Identify areas 
to investigate 

Determine the following 
for each area 

severity / conseq uence 
Determine 
probability 

Identify Risk 
Control Options 
(RCOs) 

Carry out analysis 
using AHP method 

Decision making 
(Most favourable RCO) 

Figure 9.1. Flowchart of the approach. 

This approach can be executed in the following seven distinct steps: 

Step 1. Describe operation - The operation under consideration is described in detail, 

highlighting all the areas that will be investigated to achieve the desired 

objective of the defined operation. 
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Step 2. Identify areas to be investigated - Identify all areas that are to be investigated 

to achieve the objective of the operation. 

Step 3. Detennine the following for each area - For each of the areas identified in Step 

2. 

Step 4. Determine the probability of occurrence - Using the LR ship database, 

detennine the probability that a fire might occur while investigating out the 

area specified in Step 2. 

Step 5. Determine the severity of possible consequence. 

Step 6. Determine Risk Control Options (RCOs) - Considering the operation under 

study, detennine several options that could address the risks estimated 

(associated with each area defined in Step 2). 

Step 7. AHP analysis - Using the data gathered in Steps 2, 4, 5 and 6, carry out the 

AHP analysis to determine the most favourable RCO. This RCO will address 

the risks associated with areas where fire could manifest. 

Step 7 (AHP analysis) involves 4 distinct steps, which are described below: 

(i) Set-up - Decision making criteria are generated, often by brainstorming or past 

experience. Hierarchical relationships are drawn between the criteria and are 

then represented in a matrix form. 

(ii) Weighting - The matrices are filled with the criteria comparisons. The 

comparisons allow calculation of the criteria-weighting vector. 

(iii) Ranking - The different RCOs are ranked on their ability to satisfy the various 

criteria. 

(iv) Evaluation - The final solution ratings are then calculated using the ratings 

detennined in (iii) and the weighting vector calculated in step (ii). 

9.5 Case Study 

The purpose of this analysis is to address the high risk areas of fire occurrence during 

the passenger ship operation. 
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9.5.1 Hierarchy set-up 

The hierarchy fire safety operation can be represented diagrammatically as shown in 

Figure 9.2. The elements in level two are set to be the probability of a fire occurring 

and its the severity. The sub-elements (level three) are determined by grouping the 

whole area into public area, accommodation zone and machinery space. Each area 

investigated in relation to the whole is considered within this level i.e. cabin, 

bathroom, corridor, etc. 

Goal { 
Fire safety operation 

Fire Fire 
Level 2 probability of occurrence severity / consequence 

, ,Ir 

Public area Accommodation r-+ 
Machinery .. ... .. 

zone space 

. 
1. Galley I .. 

1. Cabin I ~ 1. Engine room / .. 
Pump room 

Level 3 

2. Shopping . ... I ~ 2. Electrical .. mall 2. Bathroom 
installations 

.f ..J 'd I 3. Corrl or 3. Restaurant 3. Funnels 
f---+ and uptakes 

... 
I 

--"--
4. Stairway J 4. Cinema --. 

L.f 4. Evacuation --""" 5. Evacuation I --- 5. Evacuation ... 

Figure 9.2. Fire safety operation and its hierarchical levels. 

I 

221 



9.5.2 Level two matrix 

Occurrence probability and severity make up the two elements in Level 2 as seen in 

Figure 9.2. These two elements are compared against each other to determine the 

weighting vector of each element. Considering the goal of the analysis, it is decided 

that both these elements are equally important to a fire safety assessment. hence, the 

Level 2 matrix is determined as: 

Level Two = , and the Weighting Vector = . [
1 1] [11(1 + 1) = 0 5] 
1 1 1/(1+1)=0.5 

The first column in the level two matrix, (1, 1) is normalised so that the sum of the 

entries is 1.0. The weighting of Element 1 will be given as 1/( 1 + 1) = 0.5 or 50%. 

Similarly Elements 2 can be calculated to be 50%. The normalised weighting vector 

for Elements 1 and 2 is [0.5 0.5]. The sum of all two weightings is equal to 100%. 

The comparison process is repeated for all the matrices to be used in the analysis. The 

weighting vectors of the lower matrices will be normalised so that their total weight 

will equal that of the previous level (level two). For example, for Element 1, sub

elements public area, accommodation zone and machinery space will be given a total 

weight of 500/0. All sub-elements are analysed in the same fashion to the lowest level 

possible and the results are normalised to reflect the weight of each sub-element in the 

hierarchy. 

The next step is to generate the possible solutions to achieve the problem 

statement/goal. Each solution is compared against each of the lowest level sub

elements. The possible solutions are assumed to reduce the likelihood of fire 

occurring and/or the possible consequences. The evaluation represents the 

"effectiveness" of the solution in controlling the risks. These evaluations (of the 

solutions) are recorded with a user defined numerical scale, as appropriate for the sub

elements. For any given element, a normalised score is determined for each solution 

by taking the assigned score (which may have units) and dividing it by the sum of the 

assigned scores across all of the solutions. This fraction is then multiplied by the 
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weighting coefficient for the element. This will give a normalised score for each 

solution based on the element considered. These normalised results are then summed 

for the different elements in the matrix, to arrive at a final rating for each solution. 

The result of this series of operations is a weighted rating for each solution. The 

highest rated solution will best meet the problem statement (goal) [Pillay & Wang, 

2003]. 

9.5.3 Fire probability evaluation 

First, the importance of each element (public area, accommodation zone or machinery 

space) is determined. Considering the recorded fires from Table 9.1 and assuming 

with Table 9.2 that machinery space is moderately more important than 

accommodation zone and absolutely more important than public area. Then the level 

two matrix may be represented as seen in the matrix below: 

Table 9.2. Comparison scale. 

1 Both elements of equal importance 

3 
Left weakly more important than 

top 

Left moderately more important 
5 

than top 

7 
Left strongly more important than 

top 

Left absolutely more important 
9 

than top 

Public area: 1 fire (From Table 9.1) 

Accommodation zone: 2 fires 

Machinery space: 6 fires 

113 

115 

117 

119 

Top weakly more important 

than left 

Top moderately more 

important than left 

Top strongly more important 

than left 

Top absolutely more 

important than left 

probability (From Table 9.2): 1 

probability: 5 

probability: 9 
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[ 

1.0000 

Probability = 1/5 = 0.2000 

1/9=0.1111 

5.0000 9.0000] 
5/5=1.0000 9/5=1.8000 

5/9 = 0.5556 9/9 = 1.0000 

The weighting vector is obtained as follows: 

[

1/(1.0000+0.2000+0.1111) = 0.7627] 
Weighting vector = 1/(5.0000 + 1.0000 + 0.5556) = 0.1525 

1/(9.0000 + 1.8000 + 0.5556) = 0.0848 

The normalised vector is determined by considering the weighting vector at level two 

as follows: 

[

0.7627 x 0.5 = 0.3814] 
Normalised vector = 0.0763 

0.0424 

The probability of fire is considered for each of the areas investigated. Using Table 

9.1 and Table 9.2, each area is assigned the fire probability. This data is then used to 

compare each area against the others to determine the level three matrices. The 

matrices for the probability of occurrence for each area are determined as follows: 

Public area = 

1.0000 0.2000 

5.0000 1.0000 

1.0000 0.2000 

3.0000 0.6001 

0.2000 0.0400 

0.0980 

0.4902 

1.0000 0.3333 

5.0000 1.6665 

1.0000 0.3333 

3.0000 1.0000 

0.2000 0.0667 

Weighting vector = 0.0980 ,Normalised vector = 
0.2942 

0.0196 

5.0000 

25.0000 

5.0000 

15.0000 

1.0000 

0.0980 x 0.3814 = 0.0374 

0.1869 

0.0374 

0.1122 

0.0075 
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1.0000 1.0000 1.0000 1.0000 7.0000 
1.0000 1.0000 1.0000 1.0000 7.0000 

Accommodation zone = 1.0000 1.0000 1.0000 1.0000 7.0000 
1.0000 1.0000 1.0000 1.0000 7.0000 
0.1429 0.1429 0.1429 0.1429 1.0000 

0.2414 

0.2414 

We ighting vector = 0.2414 ,Normalised vector = 

0.2414 

0.2414 x 0.0763 = 0.01841 
0.0184 

0.0184 
I 

0.0344 
0.0184 J 
0.0026 

1.0000 0.2000 0.2000 3.0000 

Machinery space = 
5.0000 1.0000 1.0000 15.0000 

5.0000 1.0000 1.0000 15.0000 

0.3333 0.0667 0.0667 1.0000 

0.0882 0.0882 x 0.0424 = 0.0037 

Weighting vector = 
0.4412 0.0187 

0.4412 
' Normalised vector = 

0.0187 

0.0294 0.0013 

9.5.4 Fire severity evaluation 

The importance of each element (public area, accommodation zone or machinery 

space) is determined using the comparison scale in Table 9.2, the data in Table 9.1 

and expert judgement. The matrix below is obtained for the severity importance of 

each element. 

[

1.0000 

Severity = 0.2000 

0.1111 

5.0000 9.0000] 
1.0000 1.8000 

0.5556 1.0000 
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The weighting vector is obtained as follows: 

r
O.7627] 

Weighting vector = 0.1525 

0.0848 

The normalised vector is determined by considering the weighting vector at level two 

as follows: 

[

0.7627 x 0.5 = 0.3814] 
Normalised vector = 0.0763 

0.0424 

The matrices for the severity of the consequences of fire for each area at level three 

are determined as follows: 

1.0000 1/5 = 0.2000 1/3 = 0.3333 1/9=0.1111 5.0000 

5.0000 1.0000 1.6665 0.5555 25.0000 

Public area = 3.0000 0.6000 1.0000 0.3333 15.0000 

9.0000 1.8000 3.0000 1.0000 45.0000 

0.2000 0.0400 0.0667 0.0222 1.0000 

0.0549 0.0549 x 0.3814 = 0.0209 

0.2748 0.1048 

Weighting vector = 0.1648 ,Normalised vector = 0.0629 

0.4945 0.1886 

0.0110 0.0042 

1.0000 0.3333 0.2000 0.1429 5.0000 

3.0000 1.0000 0.6000 0.4287 15.0000 

Accommodation zone = 5.0000 1.6665 1.0000 0.7145 25.0000 

7.0000 2.3324 1.3996 1.0000 35.0000 

0.2000 0.0667 0.0400 0.0286 1.0000 
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0.0617 

0.1853 
0.0617 x 0.0763 = 0.0047l 

Weighting vector = 0.3087 ,Normalised vector = 

0.4320 

0.0123 

1.0000 0.1111 0.3333 1.0000 

Machinery space = 
9.0000 1.0000 3.0000 9.0000 

3.0000 0.3333 1.0000 3.0000 

1.0000 0.1111 0.3333 1.0000 

0.0141 I 
I 
I 

0.0236 I 

j 0.0330 

0.0009 

0.0714 0.0714xO.0424 = 0.0030 

Weighting vector = 
0.6429 0.0273 

0.2143 
' Normalised vector = 

0.0091 

0.0714 0.0030 

9.5.5 Risk Control Options (RCO)s 

Several viable Risk Control Options (RCO)s are generated in order to reduce the level 

of risks posed by fires during the operation. These risk control options are evaluated 

for their effectiveness against each of the areas identified. For this example, an 

arbitrary scale (1 to 10) is used to compare the RCOs, 1 being not effective and 10 

being most effective. Six RCOs have been identified to reduce the probability and 

severity of fire in the operation. These RCOs include: 

RCO 1 - Training of crew. 

RCO 2 - Reduce ignition sources. 

RCO 3 - Maintenance work. 

RCO 4 - Heat removal. 

RCO 5 - Additional crewing. 

RCO 6 - Quick fire detection and confirmation 

(audio and visual alarms. TV monitoring, indications. etc.). 
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The matrices for the effectiveness of each RCO in reducing the probability of fire 

occurrence in the accommodation zone are presented in the form as seen in Table 9.3. 

Similarly all other areas are compared with the different RCOs in terms of reduction 

in the probability of fire occurrence and its possible consequences. 

Table 9.3. RCOs matrix. 

Accommodation RCOI RC02 RC03 RC04 RC05 RC06 

zone 

Cabin 3 6 5 4 2 9 

Bathroom 2 5 6 6 2 8 

Corridor 5 6 7 8 7 9 

Stairway 6 5 8 8 9 9 

Evacuation 9 6 8 8 9 9 

9.5.6 RCOs Evaluation to reduce probability of occurrence 

The matrix for the effectiveness of each RCO in reducing the probability of fire 

occurrence in the public area is formulated as follows: 

9 9 8 8 6 9 0.0374 

8 9 7 8 9 9 0.1869 

Public area = 9 9 8 9 8 9 Normalised vector = 0.0374 

9 9 8 8 8 9 0.1122 

9 8 8 9 9 9 0.0075 

Then the normalised results are obtained as follows: 

0.0069 0.0069 0.0061 0.0061 0.0046 0.0069 

0.0299 0.0336 0.0262 0.0299 0.0336 0.0336 

Normalised results = 0.0065 0.0065 0.0058 0.0065 0.0058 0.0065 

0.0198 0.0198 0.0176 0.0176 0.0176 0.0198 

0.0013 0.0012 0.0012 0.0013 0.0013 0.0013 

228 



In the above matrix, the first column of the first row means that RCa 1 value is 

normalised so that it will be given as 9/(9+9+8+8+6+9) = 0.1837 x 0.0374 = 0.0069. 

In a similar way, the normalised matrices for the effectiveness of each RCa in 

reducing the probability of fire occurrence in the accommodation zone and machinery 

space are formulated as follows: 

3 6 5 4 2 9 

2 5 6 6 2 8 

Accommodation zone = 5 6 7 8 7 9 

6 5 8 8 9 9 

9 6 8 8 9 9 

0.0019 0.0038 0.0032 0.0025 0.0013 0.0057 

0.0013 0.0032 0.0038 0.0038 0.0013 0.0051 

Normalised results = 0.0022 0.0026 0.0031 0.0035 0.0031 0.0039 

0.0025 0.0020 0.0033 0.0033 0.0037 0.0037 

0.0005 0.0003 0.0004 0.0004 0.0005 0.0005 

9 9 9 9 9 9 

8 8 7 8 6 9 
Machinery space = 

6 7 8 7 6 8 

5 7 8 7 8 9 

0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 

0.0033 0.0033 0.0028 0.0033 0.0024 0.0037 
Normalised results = 

0.0027 0.0031 0.0036 0.0031 0.0027 0.0036 

0.0001 0.0002 0.0002 0.0002 0.0002 0.0003 

9.5.7 ReOs Evaluation to reduce severity of possible consequences 

The normalised matrices for the effectiveness in reducing the severity of possible 

consequences in the public area, accommodation zone and machinery space are 

formulated as follows: 
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9 8 7 9 9 9 

7 8 7 9 6 8 
Public area = 9 9 8 8 7 9 

8 8 7 9 7 9 

9 9 8 8 7 9 

0.0037 0.0033 0.0029 0.0037 0.0037 0.0037 
0.0163 0.0186 0.0163 0.0210 0.0140 0.0186 

Normalised results = 0.0113 0.0113 0.0101 0.0101 0.0088 0.0113 
0.0314 0.0314 0.0275 0.0354 0.0275 0.0354 
0.0008 0.0008 0.0007 0.0007 0.0006 0.0008 

7 8 6 7 6 9 

5 6 7 8 4 8 

Accommodation zone = 6 7 6 7 5 8 

7 6 8 8 7 9 

9 8 8 9 9 9 

0.0008 0.0009 0.0007 0.0008 0.0007 0.0010 

0.0019 0.0022 0.0026 0.0030 0.0015 0.0030 

Normalised results = 0.0036 0.0042 0.0036 0.0042 0.0030 0.0048 

0.0051 0.0044 0.0059 0.0059 0.0051 0.0066 

0.0002 0.0001 0.0001 0.0002 0.0002 0.0002 

9 9 8 8 7 9 

6 7 5 6 6 8 
Machinery space = 

5 4 6 6 7 8 

6 8 7 8 7 9 

0.0005 0.0005 0.0005 0.0005 0.0004 0.0005 

0.0043 0.0050 0.0036 0.0043 0.0043 0.0058 
Normalised results = 

0.0013 0.0010 0.0015 0.0015 0.0018 0.0020 

0.0004 0.0005 0.0005 0.0005 0.0005 0.0006 

9.5.8 Results 

The results obtained from Sections 9.5.6 and 9.5.7 are collated to determine the best 

RCO. Tables 9.4 and 9.5 show the summary of these results obtained in percentage. 
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Table 9.4. Summary of results for probability element 

Public area 
Accommodation Machinery 

Total rating 
zone space 

RCO 1 6.44% 0.84% 0.67% 7.95% 

RC02 6.80% 1.19% 0.72% 8.71% 

RC03 5.69% 1.38% 0.72% 7.79% 

RC04 6.14% 1.35% 0.72% 8.21% 

RC05 6.29% 0.99% 0.59% 7.87% 

RC06 6.81% 1.89% 0.82% 9.52% 

Table 9.5. Summary of results for severity element. 

Public area 
Accommodation Machinery 

Total rating 
zone space 

RCO 1 6.35% 1.16% 0.65% 8.16% 

RC02 6.54% 1.18% 0.70% 8.42% 

RC03 5.75% 1.29% 0.61% 7.65% 

RC04 7.09% 1.41% 0.68% 9.18% 

RC05 5.46% 1.05% 0.70% 7.21% 

RC06 6.98% 1.56% 0.89% 9.43% 

For example, the score for RCO 6 in the category of the public area in Table 9.4 is 

0.0069 + 0.0336 + 0.0065 + 0.0198 + 0.0013 = 0.0681 =6.81%. This represents the 

effectiveness of RCO 6 to reduce the probability of fire occurring when the vessel is 

operated. In Table 9.5, the same principles are applied for the evaluation of the 

effectiveness of each RCO to reduce or mitigate the possible consequences of fire 

occurring when the ship is operated. 

Each of these tables (fables 9.4 and 9.5) represents 50% of the weight (as the ReO 

evaluation has been normalised) of the elements in level two of the hierarchy. The 

final ranking of the ReOs is achieved by adding the final ratings of these tables for 

the respective ReOs. Table 9.6 shows the final results obtained for this analysis. 
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Table 9.6. Final ranking of RCOs. 

Public area 
Accommodation Machinery 

Total rating 
zone space 

RCO 1 12.79% 2.00% 1.32% 16.11% 

RC02 13.34% 2.37% 1.42% 17.13% 

RC03 11.44% 2.67% 1.33% 15.44% 

RC04 13.23% 2.76% 1.40% 17.39% 

RC05 11.75% 2.04% 1.29% 15.08% 

RCa 6 13.79% 3.45% 1.71% 18.95% 

From Table 9.6, it can be determined that the best control option to reduce the 

probability of occurrence and the severity of fire during the operation is RCO 6. The 

results entail that by installing various warning and indication devices onto/for the 

equipment used for the operation on a passenger vessel, the level of fire risk can be 

reduced most effectively. The ranking order of the RCO in terms of effectiveness is 

{RCa 6, RCa 4, RCa, 2, RCa 1, RCa 3 and RCa 5}. The ranking of the RCOs may 

change with the weights. 

9.6 Conclusion 

Fire remains a great hazard to life at sea and there have been very serious incidents of 

ship fires over the past. The rules and regulations primarily require fire safety for high 

risk areas such as machinery spaces to be protected by structural fire resisting 

divisions, detection and extinguishing systems. Furthermore, the importance of human 

actions is not generally considered in the standards, although this aspect will be 

addressed to a certain extent by the code. 

Many uncertainties exist in fire safety assessment, e.g., the level of fire safety 

achieved by compliance with existing prescriptive fire safety legislation. The AHP 

can be used for analysing and prioritizing the effect of uncertainty and identifying the 

uncertainties that influence outcomes more than others. 
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The suggested framework provides powerful tools for comparing alternatives under 

subjective and uncertain evaluation procedures. The chapter was perfonned to 

demonstrate the use of a design-decision support framework based on the AHP 

methodology to assist in decision-making. The approach can be used to identify risk 

control options and also detennine the best one for reducing fire hazards. 

In this chapter, only fires are considered in the analysis. However, this can be 

extended to include failures induced by other causes, such as collision or flooding. 
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CHAPTER 10 - CONCLUSIONS AND FURTHER WORK 

Summary 

This chapter concludes the thesis by summarising the results of the research project 

carried out by the author and outlining the contributions of the fire safety analysis 

methodologies developed for passenger ships. The areas where further effort and 

research are required to refine the developed methodologies are also reviewed. 

Finally, other important safety features related to fire safety assessment are briefly 

discussed. 

10.1 Conclusions 

10.1.1 Discussion of the main aim 

The chapters of this thesis have thoroughly described the series of work covered in the 

research project. The research started with the review of the development of fire 

safety and reliability assessment techniques in the maritime industry. This is followed 

by a comprehensive statistical study on casualty or failure data on passenger vessels. 

The basic concept of the fire safety assessment approach and its application to the 

passenger ships are discussed. The Fonnal Safety Assessment (FSA) proposed by the 

UK Maritime Coastguard Agency (MCA) as a means to improve the safety of 

international shipping is outlined. A range of novel fire safety analysis methodologies 

has been developed and the reasons behind the development of such methodologies 

have been explained. 

The main aim of this research was to analyse fire issue concerning the passenger 

vessel sector of the shipping industry. All the fire safety analysis methodologies 

described in this thesis have been developed in a generic sense and theoretically they 

are, in principle, applicable to all designs of maritime engineering products and 

projects. 
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10.1.2 Evaluation of main objectives 

The first objective (identification of fire safety techniques) has been identified and 

investigated. Accident investigations over the years have provided valuable 

information for fire safety assessment of passenger vessels. Lessons learnt from 

previous accidents have been used as a guide to produce rules and regulations to 

prevent similar accidents from happening. The various databases available concerning 

these accidents and many more within the maritime industry are discussed. Most of 

the databases described, lack vital information for a comprehensive and accurate 

safety and reliability study. The missing information in these databases includes the 

relationship between the cause and effect of an accident and the chain of events that 

led to the accident. Specific component/equipment failure data is also lacking. 

However, the data that is available requires certain amount of formatting if it is to be 

used for a safety and reliability study. From the data analysis (Chapter 2), there is an 

urgent need to address the fire safety issues plaguing the passenger vessel industry. In 

order to analyse the fire safety issues, typical analysis techniques can be employed. 

These are described in Chapter 3. The review of these typical analysis methods has 

been carried out, highlighting the advantages and limitations of each method. These 

methods can be broadly divided into two categories, namely, quantitative and 

qualitative analysis. 

The second objective (study the FSA) of this thesis has been examined in Chapter 3. 

The third objective (development novel fire safety assessment) was to develop 

techniques and decision support approaches for fire safety assessment. These novel 

methods capable of performing fire risk quantification and risk ranking are presented 

in Chapters 4, 5, 7 and 8. 

The fourth objective (development of a suitable model) was achieved through 

Chapters 6 and 9 where a suitable model was developed to assist in fire safety 

implementation. A method using Analytical Hierarchy Processing (AHP) is proposed 

in Chapter 9 to select the most favourable Risk Control Option (RCO). The AHP 

method allows for flexible modelling and re-structuring of the hierarchy. Apart from 

considering the effectiveness of the RCO. the proposed AHP method can be extended 
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to incorporate several other criteria such as collision and feasibility of 

implementation. The evacuation modelling methodology proposed in Chapter 6 

provides guidance in appraising capital projects relating to passenger ships. The fifth 

objective (identification of further research areas) is discussed in Chapter 10.2. 

10.1.3 Discussion on effectiveness of this project 

The main aim was generally achieved but not to the extent that it was expected. This 

was due to some difficulties. It was difficult to compare the real or test data and 

results with industry due to the lack of access and confidentiality policy of companies. 

Another negative aspect is that the information gathered from other researchers used 

in the development of fire and evacuation modelling techniques was limited. 

One of the major limitations of the fire safety analysis methodologies developed in 

this thesis is that they require intensive computational effort in conducting fire safety 

assessment, especially for maritime systems with a high level of complexity. It is 

rather a time consuming task to learn and familiarise with such methodologies in 

order to use them in fire safety assessment, however, advancement of computing and 

man-machine interfacing technologies of the present time may resolve such problems. 

The novel methods developed and presented in this thesis can be integrated into 

various sections of the FSA framework. This ensures a structured approach to 

identifying hazards, quantifying the risks and evaluating and deciding the best risk 

control options. 

It is believed that practical applications of these methodologies will result from 

utilisation by organisations that deal with safety problems with high uncertainty and 

insufficient data. In such cases, the implementation of the developed methodologies 

could have a high beneficial effect. 

10.1.4 Definitive conclusion 

It is believed that the approaches and safety based decision-making techniques 

developed in this thesis have great potential as effective aids and alternatives in the 
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areas of fire safety assessment. They will gain increased usage in the various stages of 

maritime system design and operations. It is also emphasised that a close 

collaboration with maritime industry is essential in promoting the practical 

applications of these methodologies, especially with organisations dealing with safety 

related problems with a high level of uncertainty as well as a lacking of safety and 

reliability data. This will provide a positive ground and chance for the applications of 

such methodologies to become established in order to prove their feasibility and 

practicality, otherwise, it is more likely that their full potential will not be realised. 

10.2 Further Work 

10.2.1 Recommendation for further research 

There are several areas that may be worthwhile exploring and exploiting on the basis 

of the methodologies developed in this thesis. These can be summarised by the points 

presented below: 

• The confidence and effectiveness of the FSA approach is greatly dependent on the 

reliability of system's failure/incident data. The quantitative risk assessments in 

the FSA approach were required to access some detailed, reliable and consistent 

incident, casualty or failure databases related to the system under scrutiny, such as 

a generic passenger vessel. The availability of these data sources is one of the 

major limitations of this study, as the data required for quantitative assessment is 

either unavailable or insufficient. As noted by [Dobler, 1994], at present IMO and 

the governments of its member countries have to rely on the statistical information 

collated and published by private sources, or, they have recourse on a contractual 

basis to the databases maintained by these sources, if more details are required. It 

is hoped that the application of FSA may trigger the Flag States and Classification 

Societies to collect data on operational experience, which can be very handy for 

effective precaution risk analysis in the future. Furthermore, human reliability data 

associated with maritime tasks is also a paramount area needed to be focused as 

the availability of these data can be useful to conduct human error analysis since 

human factors are considered to be one of the major contributors to maritime 

incidents. 
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• Rules and regulation governing passenger vessels in the past seem to only 

consider the structure and stability of the vessels. These rules have to be extended 

to cover equipment, operating procedures, crew training and competency, 

inspection requirements by coast guard agencies, etc. It has been noted that the 

authorities have addressed some of these aspects. However, there is a need to 

justify and rationalise each rule in order to account for the various costs that would 

be incurred by the vessel owners/operators as well as any stakeholder of the 

vessel. This can be achieved by using the FSA method. As such, the development 

of rules applied to passenger ship using the formal fire safety assessment methods 

needs to be researched and explored. 

• Formal training and education programmes should be developed for crew and 

passengers. This programme should not only highlight fire safety matters, but also 

extend to cover competency issues. Such a programme will be a starting point to 

cultivate a safety culture within the passenger ship industry. The outcome of the 

formal fire safety analysis can be used to identify areas where such training and 

education are lacking and the programme can be developed addressing these areas. 

• Quantitative risk assessment of passenger vessels is frequently inhibited by the 

lack of representative failure and repair statistics. Hence, there is a need to develop 

a database specifically for this type of vessel. Most databases available are only 

limited to failure data without identifying the chain of events or causes of failure. 

These are useful information that is required for a fire risk assessment. The 

reporting and recording format of accidents should be consistent and the data 

presented in the database should be formatted in such a way that it can be directly 

applied to the safety analysis techniques available. The current method of 

manipulating data has been noted to cause inaccurate analysis and this translates to 

a waste of time and resources [Vosburg, & Kumar, 2001]. 

• The decision making framework presented in Chapter 9 is inevitably a 

computationally intensive method, however, the proposed algorithm could be 
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• 

easily programmed and will definitely offer a convenient tool to evaluate option 

selection in decision making. 

Safety, cost and reliability may need to be considered simultaneously in an 

integrated manner in various design process of a maritime system. One can fully 

make use of the advancement in theory and applications of control engineering to 

establish quantitative models for synthesising safety, cost and reliability in a 

generic safety assessment framework. This generic framework will look very 

similar to the safety models proposed in Chapter 8, but with more comprehensive 

evaluation and further incorporation with cost and reliability models in order to 

minimise risk, minimise cost and maximise reliability in system optimisation 

study. 

• In recent years, in order to reduce human error and to provide operators with a 

improved working environment in maritime applications, advanced in computer 

technology have been increasingly used to substitute control tasks which were 

used to be performed by human operators. This inevitably has led to the 

development of more software intensive systems. However, the employment of 

software in control systems has introduced new failure modes and created 

problems in the development of safety-critical systems. In maritime system 

design, every safety-critical system in the software domain requires a thorough 

investigation to ensure it is extremely unlikely for its behaviour to lead to a 

catastrophic failure with catastrophic consequences. This is also to provide 

evidence that the risk associated with the software is acceptable within the overall 

system risks. 

10.2.2 Other important safety features 

Other important safety features related to the fire safety analysis methodologies 

developed in this research project are described as follows: 

• For the past century the marine industry has used prescriptive rules and 

regulations for treating safety matters. If a change of approach is to be adopted, 

the major hurdles to be overcome will need to be identified and possible solutions 
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suggested. The shift to more goal-setting regulations may encourage engineers and 

designers to consider safety related issues more explicitly while carrying out 

design optimisation studies. 

• As life safety is a prime concern in the passenger ship industry, more effort should 

be devoted to the life saving at sea in an attempt to estimate and evaluate the 

associated risks more reliably and effectively. 

• The passenger vessel companies should work together with the aim of improving 

the safety culture in and around passenger ships. The human element can be 

addressed in a holistic manner and not just by addressing a few areas that fall 

within the competence of the IMO, such as training, prevention of pollution and 

ship management [IMO, 1994]. Since safety is dominated by human factors, the 

development of a positive safety culture is the only way to improve the standard of 

safety. The analysis of accidents across different industries frequently points to 

human error as being the cause in anything up to 80% of cases [Stansfeld, 1994], 

[Pomeroy, 1998]. To ensure that there is a safety culture within an organisation it 

is essential to develop a positive attitude to safety. The only effective way of 

achieving this is through education and training. This is a long term process and it 

requires significant resources. Human error is now receiving increasing attention, 

particularly from industries concerned with design and use of maritime and other 

high-tech engineering systems. 

Fire safety is a complex subject and it involves management, engineering and 

operation underpinned by human factors. Therefore, in order to deal with safety one 

must have a proper understanding of all four aspects and competence in handling 

them. 
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