IMPROMPTU: SOFTWARE FRAMEWORK FOR
SELF-HEALING MIDDLEWARE SERVICES

Ella Grishikashvili Pereira

A thesis submitted 1n partial fulfilment of the requirements of Liverpool
John Moores University for the degree of

Doctor of Philosophy

~ May 2006

To My Mother

11

Abstract

As a result ot recent advancements 1n the fields of computer networks, software and

hardware technology, networked systems and appliances have improved immensely
In terms of performance, reliability and cost of ownership. This undoubtedly has been
a major catalyst for 1ts widespread adoption and interweaving in today’s socio-
economic fabric (everyday life). Whilst, such a development has created many
commercial opportunities with slogans including; “anywhere anytime” and “always
on”’, 1t has engendered a range of technical challenges including: how to ensure

systems’ lifetime dependability and high-availability.

This has driven research and development to exploring new generations of networked
software systems’ design, management and maintenance along a number of directions
including: component-based and service-oriented models. Where software 1s no

longer developed as large monolithic systems, but rather they are assembled from

Commercial Off The Shelf (COTS) or Services Of The Server (SOTS).

Whilst, COTS and SOTS approaches have improved software design, maintenance
and evolution, however, they have engendered additional challenges — as distributed
applications are notoriously difficult to develop and manage due to their inherent
dynamics, and heterogeneity of their implementation, topology, deployment and
network requirements. Middleware technology has come to the rescue by facilitating
the development and interoperation of distributed applications. Though, much more
research 1s required, for instance, to support On-demand selt-assembly and healing of
software application, which 1s the main focus of this work, that 1s, to investigate the
fundamental requirements for a software framework and associated middleware

services to develop on-demand application services.

This work makes a number of contributions towards a better understanding of
software self-healing requirements for autonomic distributed software engineering,

including: on-demand service assembly and delivery.

it

Acknowledgements

I would like to thank all those people who have supported me throughout this PhD.
Firstly I wish to express my gratitude to my supervisor Professor A. Taleb-Bendiab
for his valuable guidance, advice, significant feedback and criticism. I also would like
to thank to the director of the school Professor Madjid Merabti for giving me the
opportunity to come to Liverpool to carry out my PhD studies.

Many thanks to my second supervisor Mr. Andy Laws and colleague Mr. Denis
Reilly for their assistance, useful guidance and numerous discussions that clarified
many aspects of this work. Also, my thanks to all colleagues, academic staff,
administration statf, technicians and research students in the School of Computing

and Mathematical Science for creating a friendly and supportive environment during

these years.

My special thanks and gratitude to my friends Brian and Jeni Fogg for their warmth,

special friendship and encouragement since I first came to England.

[would hike to express many thanks to my husband Rubem for his patience,

continuous help and support and to my son Nicholas Alexander for being an indirect

inspiration to complete this work.

Last but not least I would like to thank all my family for their strong support and

encouragement.

v

LIST OF TABLES. o rrriintitirtteneineetinnetrnonreaecessseseessssessessssssssssssnssssses XI

CHAPTER T oo rrrrrniintnniitniseenneeeneeeseetesse s 1
INTRODUCGCTION ..o irirtiiiiiiiiiiitiniciencernerememnmeneseeseesesss 1
1.1 MOTIVATION: HIGH-AVAILABILITY CONCERNS OF DISTRIBUTED
APPLICATIONS . .. rrriniiiiitinenenereeeresssnssssreesresssssssssssssssssssssessessssssssessonsns 1
1.2 CHALLENGES: ON-DEMAND SERVICE DELIVERY AND
MANAGEMENT ... iiiiciniitnniieeetreenrecessesanssesessssssssssssssssssesssssssassssesssses 2

1.6 THESIS STRUCTURE ...covviiiiriiriniiiiiiiiniciiiiniiciiiimiesmccssiccssssesssscssnses 7
CHAPTER 2...oririiiiiniiiiniiiiniiiiiiecniiiimiiseeiieeiiinmcssssssssssssssssssssssssssssssnssessans 9

2.3 MIDDLEWARE BASED DISTRIBUTED SYSTEMS....ccoctvriiiiniiiiiennecennen 13
2.3.1 Categories of M1ddlewarecoouvviiiiiiiiiiiiiece e, 14
2.3.2 Jim1 Middleware Technologyooevviiiiiiiiiiiiiee e, 15
2.4 Service-Oriented Software Developmentoovvviiiiiiiiiie i, 18
2.4.1. Service-Oriented ATChIteCtUIesovvniiiiiii e 19

2.5 COMPONENT-BASED DEVELOPMENToctriitiiimniirnccnesincssssccsssnssenes 21
2.5.1 Components and their Interactionsccooeviii i 21

2.7 AUTONOMIC COMPUTING.cttireeereitiriesrcottescrsssssrsssssssansssscosssssssssssasons .24
2.7.1 Architectural Concepts of Autonomic Computing.............ccoeeevvieennnnnn.ne, 27

2.8 SUMMALRY ..cutuiiiuiruienncreeseeecsaecssssessssesnsessssssrsssssssssssanssssssssssssssssssssssssassssenes 28

CHAPTER 3. oeeierirriiteectnecteecenacssssssssssssssnsesssscssssssssssssssnsssssssssssssssssnsesansssasssaes 29

LITERATURE REVIEWcitiitectnerrenninicirsestsesctensesssanssissionssssssssssssssssssssnsnss .29

3.1 INTRODUCGTIONcucteriirecenecteecteeccsscssassssssssssssssnssresssasssnsssnssssssssssssasssssssssens 29
3.2 Self-Healing SYStEIMIS.......uuiiiiiiiieiiiiieiee e eee e 29

3.2 SERVICE-ORIENTED ARCHITECTURES AND FRAMEWORKS35

3.3 DISTRIBUTED COMPONENT-BASED FRAMEWORKS ..ooovveveeeeeemmnnnn. .37

3.4 REQUIREMENTS ..oriiitiiiitteineteneinrrerenceseesessesssnnsssssssssnsssnsssssssnmmmmmnnnns. 41
3.5 SUMMALRY oiittttiiiiiiininniiiniintnnneeeereesssssssssssssssssssesesssssssssssssnsssssssnnnnnnnnnnnt 43
CHAPTER ..o rnniittiintteeceeetnereerrsessesstssssscssssnssssssssssssssssssssssssssnsnnnmnnnn. 46
IMPROMPTU: SOFTWARE FRAMEWORK FOR ON- DEMAND SELF-
HEALING MIDDLEWARE SERVICES ... tittiiiiitttemnneeeseeesssssessssssssssssssssnns 46
4.1 INTRODUCGTION ..ciiiiiiiiiiinnnnieenrentnssereenseesceesresssssssssssssssessssssssssssssssssssesssssses 46
4.2 THE OVERALL DESIGN OF THE FRAMEWORKcccoceeeeeeervmneeeeeseennes .46
4.2.1 Components, Frameworks and Patternso.oeeveevvoeeeiiiieeeiee, 477
4.3 SOFTWARE DEVELOPMENT MODELccottvieiitiuneseeeanscessssnsssesenssnceses 49
4.4 On-Demand Service Assembly and Delivery Model..........coooeveeveveeevennnnn... 54
4.4.1 Basic Services in the OSAD Model..........ooveieeeeeoieeeeeeeeeeeee e, 57
4.4.2 Service Description Model............oouuueiiiiiiiiiiiiieeee et a e 58
4.5 SELF-HEALING IN THE OSAD MODKELuuciirttcerrenncecrrreseeceessanees 61
4.6 SUMMALRY iiitiiiiiiiiiiiieecitneectnenceeeceraecssssecrsnssssssssssssssassssssssessssssssssssssssasses 63
CHAPTER §.rtiitiiitiiitiirenietnictencireneetnieresseessesssnssessssssssssssssssssssesssesssssassesssses .65
THE ARCHITECTUREcocciiitiiiniiiniitniitiiiteictenceseceesssssssssssssssssssessssssssesssssssssnes 65
5.1 INTRODUCGTION cuucaiiiriiincreecctencrenctenccssctesccssceansesssersscerssssssssssssssssssssssssses 65
S.2 THE BIG PICTURE.......cocitiiitiiirnniiennienictnictaiittncctncerscesnsssssssesssssssessnsessasossses 65
5.2.1 First Layer - Platform Services..........ooviiiiiiiiiiiiiiii e, 66
5.2.2 Second Layer — Framework Componentscccoeevvivieiiiiiiiniinniinnnennn., 67
5.2.3 Third Layer — Distrnibuted Applications and Application Services............ 68
5.3 THE ARCHITECTURE OF THE OSAD MODEL........cccttiiiuneincrencrneccennes 68
SIIST G107 107 12N 2 TR 69
CHAPTER O .eaeeereeieecrenceerreictncesencssociesssassssssssssssssessssssssssssssesssssssssssssssssnsssnsssssns 71
IMPLEMENTATION OF IMPROMPTU FRAMEWORKcccciveeeienccneecanne 71
6.1 INTRODUCGTION ...ocrureeciuniiercennccrnssrncsissssssscsssssanssssssssssssesssssssssessasssssessnssss 71
6.2 IMPLEMENTATION REQUIREMENTS....ccitcittteiticrncieeinirncesessrocssnscsanons 72
6.2.1 The Choice of Jini Technology.......ccoovriniiiiii 72
6.3 IMPROMPTU COMPONENT SERVICES.....cciviiiiiiiiniinicncninm. 73
6.3 ASSEMBLY SERVICE.......ccoiiteirecrnntiiniiiiiiniciisississssessssissssssssisssessasssssnes 74
6.3.1 TasSK SUDMISSION ...ciuniiiiiiiieee e e e e e e e e eans 76
6.3.2 Registration/DISCOVETY ..ocvuuiieiiiiiiineee et e 77
6.3.3 CONTIGUIALIONvuuiiiiieeeiiiie e e ceee et e e e e e eree e e et s e tren s e eeaaa e e eeaneaeeren. 78
6.3.4 ServiCe DeSCIIPIIONuciiiiiii et e e e e re e een e 78
6.3.5 ServiCe INVOCATIONouniiniiiiit it e e et e e e eneanens 79
6.4 OPERATIONAL ENVIRONMENTc.cccctttiitncinnccerncrsicssissscsessccssssssscssssnnnes 81
6.5 SYSTEM MANAGER. ... trrtereeitniitesitecierstssttestacssisssscssstssssassssssessssnsssnas .82

6.5.2 Recovery and Reconfigurationccooeeveiimemoooe oo 84
6.6 ILLUSTRATIVE EXAMPLE APPLICATIONS .. .cottettteeteeerenssrmnnnsssnmmnnn. 85
6.6.1 Application 1: Home Appllances...........uuueeeeeeeeeeeeeeie, 85
6.6.2 Application 2: SOftWare SeIrVICES......vvvvuuveeeeeeeeeee e 90
0.7 SUMMALRY oiiiitiiiitiiitniniiencrranecernneerereiesssssssrssssssssssssssssssessssssssssssssnssesssssns e 92
CHAPTER T o iiiiniiiititiiernnceettencerrersiestessesrsssssessessssssssnsssssssssssssessnsssssessses 94
ON-DEMAND SERVICE DELIVERY AND SELF-HEALING SOFTWARE
PATTERN LANGUAGE ... cotititiiirecctttenneeierrnnnierennecsrssessssssssssssssessssnssessnssaneses .94
7.1 INTRODUGCGTION ccciiiiiiiiieiiieiitneeteietenecrresesessssesssesssssssssessasssssssssssnssessssssrsnnes 94
7.1 VIABLE SYSTEM MODEL - TO MODEL AUTONOMIC SYSTEMS....... 95
7.1.1 VSM model: a Brief OVerVIEW.......ooovuiiiiieiiee oot eeee e 95
7.1.2 Viable Pattern Languageoiiiiiiiiieiieeeeeee et e e 99
7.2 Pattern-Omniented Software Architectures for Concurrent & Distributed
N 21052 1 4 TP PRRPRRRRPROPRRN 100
7.2.1 OSAD PATTERN LANGUAGE ... uirtretriniitirrerennecernecrneeressersscsssssesses .101
7.3 LOOKUP SEIVICE (1) covriiiniiiiiiii e, 102
7.4 Registry and DI1SCOVETY (2)..uniiviniiiiie e 104
7.5 ServiCe INVOCATION (3) .euuiiniiiiii et e, 105
7.6 Control/Monitoring SEIVICE (4) ..uiuuiiiie e e 107
7.7 Self-Healing MechaniSm (5) ..oivniieniiiiiiie e, 108
7.8 Task ASSIZNMENT (60) ...vvniiiniiiiiiiiiiie e e 110
T.8 SUMMALRY ..ciiittiiiiiniitniinnitenciescancsnecssestoscsssssscssssssssssssasssssssnsossssssscssssssssssnnns 111
CHAPTER 8. eeiiecitcrticteictnccenettsecssecsrscseesasessescsssssssssssssnsssssssssssansesssssnsesssssns 112
CHAPTER 8...eeeeittienrenirrecrecenccenceeseesecssossonconscssscsnsssssssssssnssssscsasssssssssssssscssnsans 112
EVALUATION. ... ittiitiereecrecetecseereecensecesesrsssssssssscsssssssssssssssssssssssssssssnsssssassanssas 112
8.1 INTRODUCTION ...ueieuiiuicrncerecrencerccesccressnsssnsassssesssssssossasssssssssssssscssssssssssnsss 112
8.2 METHODOLOGY uvuirnrrerenirincrnncenerscsasessecssees 112
I B 0] o) 1163 5 AT PR TPUPRPP 112
8.2.2 APPIOACK .. it e e 113
8.2.3 OVerall SettINgsS. ... ciiviiiiieieiii e 114
8.2.3.1 Example ApplcCationscccoiiiiiiriiiiiiiiii e 114
TIN5 11741 10) 010 113 0 | APUTR PRI 116
8.3 THE QUANTITATIVE EVALUATION....cccoittiiiiimuiiiirnniirennnsieennnccreensenes 116
8.3.1 The Sorting Algorithm Services Scenario..............ccoevvviiiiiiiniiiniiinnnnnn, 116
8.3.2 The Experimental ReSultscoovviiiiiiiiiiiiii 120
8.3.3 Home Appliances SCENATIOcccuuuurriiiiiiiiiiiiiiiiiiiii e 125
8.3.4 The Experimental Results ..., 127
8 3.5 Performance of Failure Detection MechaniSm........coceevvvivveviiiiiniininninen, 129
8.3.5.1 The EXPeriment............cooevviiiiiiiiiiiiiiiiiiin it 131
8.3 5.2 FIISE SCEMNATIO .. evneeeinieieit e et eee et e e e e e e e e e e e s et s e e e et e ttasaesneaaneaeaeannns, 132
e T JIT=ToTe) 016 BN T e1530 T-) o (o DUUE TR U 134

%0

8.3.5.4 Evaluation of the eXperiment..........cooouv v 135
8.4 THE QUALITATIVE EVALUATION ..uttitiitetniieeeereeessroseossessssssnssnsenssnnss 135

8.5 MEETING THE REQUIREMENTS AND HYPOTHESIS OF THIS WORK

9.2 ACHIEVEMENTS otiiiiiiiiitiiimiiiiiiiiiiiniciiniersmereenecsssssssssessesssccssssssssnses 140
9.3 THESIS SUMMARY ..tiiiiiiiiininiiiiiiiiiiiicisetreccsssccsssscssssscsssssssnsscssssssssnsons 141

The Jin1 LooKUP SEIVICE ..cuniieii e e 149
APPENDIX Booeiireiercrncrencenectectnrsesssrsssesssssnsssssssssesssssssssssssssnsssssessssessssssssnses 151
WORLD WIDE WEB. ... rttitirierceniittctteccssssansrnsstsrossossstssssssssssssssssssssssssssssss 151

XML TeChNOIOZY ..coviiniieiee e 152

WV ED ST VICESu ittt ettt et et e ettt et e e s e e e e e ta e e e e ran s enn e eanes 153

The Language of Web ServiCes........oouuuiiiiiiiiiiiiiiiiiiiiere e, 153

Publications by the Author.........oooviiiiii e, 157
REFERENCES ... otertiitietrecteecencrescessssssssssssssssssssssssssssssssasssssssssaassosssssassssssssenss 159

Vi1l

List of Figures

Figurel.1l: Impromptu Componentsocoeeveeemoomeesoooo 7
Figure 2.1: A client-Service interaction [12]......ccoooeevvvvoieoei 12
Figure 2.2: A Distributed System organized as a middleware [12] e 14
Figure 2.3: Jin1 components and their interaction.cooovvvoviiveeei 17
Figure 2.4: Jimi Architecture.ooovovieeiieoeeeeeeeeee 18
Figure 2.5: The major components and operations of a SOAoovvoivvveee 20
Figure 2.6: Diagram of Component connector, etC...........oovvvvoeeeoooooe 22
Figure 2.7: Four fundamental features of Autonomic computing [39].........coovvvin.... 26
Figure 2.8: Control loops for autonomic computing system management [39]. 27
Figure 2.9: Hierarchy of autonomic computing technologies [397]...........cvvvvvvveiein.. 27
Figure 3.1 The autonomic middleware control service architecture [8] 30
Figure 3.2: Framework Services [43] ... uuuv oo 33
Figure 3.3: Adaptation Framework [44]......coooommmeee oo 34
Figure 4.1: Self-AssembLy PrOCESScoovuveeiieeieeeeeee oo, 50
Figure 4.2: Application Services and t001S.........oooveeieeeeoeee oo 50
Figure 4.3: High-level view of application development using distributed services.. 52
Figure 4.4: OSAD MOdElc..oeeeeieeeeee e 55
Figure 4.5: Service Description Modeloooviiimieooieeeee oo, 58
Figure 4.6: Task Description MOdEL..............ooooiiimomoeeeee e, 59
Figure 4.7: Operational Space DesCription.ouuueeeeeeeeeee e, 61
Figure 4.8: The lifecycle of self-healing behaviour in OSADooovveveveeeeeeeeennn. 62
Figure 5.1: The overall architecture of the framework.............ooovveiiii, 66
Figure 5.2: OSAD AICRItECTUTEcooovviiiiee et e e e e, 69
Figure 6.1: Impromptu COmponent SEIVICEScoevvrruireireiieeeeeeeeeeeeereeeeeeeeeenennnn. 73
Figure 6.2: The UML Class Diagram for Assembly Servicecoevueveeeeeeveeneennnnn.. 76
Figure 6.3: Implementation of registration Sub-Servicecccovevveveeneveeeeenneeneennn. 78
Figure 6.4: Stmple service desCriptioncccuuniiiiiiiiiiiiiiiiicci e, 79
F1gure 6.5 SErviCe AIIDULES ...couviiiiiiiiieeee et eean, 80
F1GUTE 6.6: PaTSET ...conieiiiiieii ettt r e e e, 80
F1gure 6.7 Service LOCatIonccuuiiiiiiiiiiic e ea e 81
Figure 6.8: Description of the state of container 1.............cooovviiiiiiiiiiiiien, 84
Figure 6.9: Home Appliances SCENATIOccoviivniiiiiiiiiciii e, 86
Figure 6.10: The Jim1 StartService Application [22].cooiiiiviiiiiiiiiiiie, 87
Figure 6.11: The Main GUI of the example application..............cccoooiiiiiiiiino, 88
Figure 6.12: Defining the dependences............ccoovviiiiiiiiiiiiiiiiee e 88
Figure 6.13: Service INVOCAtIONccovviiiiiiiiiiii e 89
Figure 6.14: the GUI for Monitoring SErviCe...........coviviiiiiiiiiiiiiieieeeieiiiiiiicin e 89
Figure 6.15: Service failure detectioncoovvuiiiiiiieiiiiiiiiiiiee e, 39
Figure 6.16: The GUI for Task Assignment...............ccoooviiiiiiiiiiiiiiiiiiiiiiiieee, 90
Figure 6.17: The GUI for software services application............cccceevevvviiiiiirieennnnnnee. 91
Figure 7.1: An illustrative example of Alexander’s Pattern...........................oc, 95
Figure 7.2: Patterns used in Distributed Middleware Frameworks [102] 100
Figure 7.3: OSAD Pattern Languagecccoccvviriiiimiiiiiiiiiiiiiiiiiiiiicccecececeeecee, 102
Figure 8.1: The architecture of the OSAD model..................... L, 114
Figure 8.2: The registration method for sorting services..............ooovviviiiiiiiennnnn., 117
Figure 8.3: The initialisation process of the array s1ze.............ccccccoovviiiiiiiininne, 118

Figure 8.5: An example of calculating the elapsed time for the service invocation and

the sorting algorithm............ e, 119
Figure 8.6: The elapsed time for the Bubble Sort Service.........c.c.cooee 121
Figure 8.7: The elapsed time for the Quick Sort Serviceccccoooivviiineinnnnn. 121

Figure 8.8: The elapsed time for the Insertion sort Service
Figure 8.9: Retrieving the location of the XML service descriptional document 123
Figure 8.10: An example of getting the invocation method name from an XML

(0703110 1S3 o | PP PPRRRPRRRI 123
Figure 8.11: Companson of the time performance profile in the application with and
without Self-healing behavior...........coooiiiiii e, 125
Figure 8.12: Comparison of the elapsed time for service delivery with and without
SCI-NEAlING .. .oe e, 127
Figure 8.13: Elapsed time for the application to be executed..............coeevvvviinnnie.n, 128
Figure 8.14: The average latency for self-healing processes in Home Appliances
€20 001 o) [T 129
Figure 8.15: The failure rate of a component over its lifecycle..............ooooiiinnniil 131

Figure 8.16: The ratio, 1n percentages, of failed service invocation to total number ot
service invocation, as a function of the MTBF, for a system with pre-emptive
failure detection (monitoring period = 1 minute) and on-use failure detection. 133

Figure 8.17: The ratio, in percentages, of failed service invocation to total number of
service invocation, as a function of the MTBF, for a system with pre-emptive
failure detection (monitoring period = 2.5 minutes) and on-use failure detection.

.. 133
Figure A.1: The OMA Reference Model [9] ..., 145
Figure A.2: The Structure of CORBA, Object Request Brokercccocviiiiniinn. 146
Figure A.3: COM INteraction.........cocevrirmmiiiiiiiiiiiiiiiniiiniii e 148
Figure A.4: The overall architecture of DCOM [9] ..., 149

List of Tables

Table 3.1: Requirements tfor Impromptu software framework for on-demand service

assembly and delivery and self-healing Middleware Services...........ccccvuenene.... 43
Table 3.2 Assessment of related work against Impromptu framework...................... 44
Table 7.1: The major systems of Viable Systems Model...........coooovvviiniiinniinnnnn, 98
Table 8.1: The calculated elapsed time for three different services......................... 121
Table 8.2: The sorting process 1s performed with the Service manager invoking

different SEIrviCes at TUN-TIME........cccoviiriiiiiiie e, 124

Chapter 1

Introduction

1.1 Motivation: High-availability Concerns of Distributed
Applications

As a result of recent advancements in the fields of computer networks, software and
hardware technology, networked systems and appliances have improved immensely
in terms of performance, reliability and cost of ownership. This undoubtedly has been
a major catalyst for their widespread adoption and interweaving in today’s socio-

economic fabric (everyday life).

While such a development has created many commercial opportunities with slogans
including; “anywhere anytime” and “always on”, it has also engendered a range of
technical challenges including: how to ensure systems’ lifetime dependability, high-
availability and assurance. This has driven research and development to explore new
generations of networked software systems’ design, management and maintenance
along a number of directions 1ncluding: component-based and service-oriented
models [3]. Here, software 1s no longer developed as large monolithic systems but
rather from Commercial Off The Shelf components (COTS) [4] or Services Of The
Server (SOTS). Such application services make use of infrastructure software that has
also been decomposed into discrete system services. These discrete services can be
deployed across any number of physical machines that are interconnected. By

reassembling a few services into a new configuration, a user can create a new service.

Whilst, COTS and SOTS approaches have improved software design, maintenance
and evolution, however, they add additional challenges — as distributed applications
are notoriously difficult to develop and manage due to their inherent dynamics, and

heterogeneity of their implementation, topology, deployment and network

requirements. Middleware technology has come to the rescue by facilitating the
development and interoperation of distributed applications. Until recently however,
little attention has focused on combining an assembly concept in conjunction with

middleware technologies to understand dynamic behaviour and assist with the

runtime management of distributed applications.

1.2 Challenges: On-Demand Service Delivery and Management

One of the challenges in distributed systems development is the concept of on-
demand service delivery and management. It is a foundation for modular, flexible,
and automated access to digital assets, including computing resources, from virtually
anywhere. The vision of on-demand services is a framework, encompassing
networked services such as: services registry, lookup, and discovery, along with more
advanced capabilities, such as virtualised containers (storages), composite services

(created by combining separate services) and behaviours such as self-adaptation and

seli-healing.

It 1s challenging to create a system that gives the user the ability anytime, from
anywhere to access over the local or global network services that are dynamically
discoverable, reusable and re-configurable into flexible, interoperable, innovative
applications. The creation of this kind of system involves a range of technical 1ssues

to be addressed and requires the development of:

e Reference models: including software design patterns, design models and
architectures to aid developers in the design, development and management of
self-managing software, thus enabling systems to monitor their behaviour and
performance, to reconfigure when required and determine that any proposed

software composition is compliant with its design and requirements.

e Mechanisms: to be used for rapid assembly of distributed components to form
a trusted service that can still be analysed to determine that it meets its

requirements. To this end, other facilities and utilities need to be developed,

including:

= How to access and reason about functionalities that distributed
services offer: the distributed services that run in different

locations and are developed by different individuals.

" How to create a common understanding between these service

providers and clients.

" How to teach a system to find and invoke the service the user

requires.

* How to teach a system to monitor the behaviour of each

composition and repair it in case of failure.

e Experimental insight: demonstrating that this type of mechanism enables
computers, software components and devices to plug together quickly to form
impromptu, networked applications assembled with less human intervention

and moreover to make them self-organising and self-healing.

1.3 Research Hypothesis

Influenced by the service-oriented programming [11, 12], and the IBM autonomic
computing blueprint [13], this work proposes that autonomic computing capabilities
including: self-healing, self-optimisation, self-configuration and self-protection to be

provided as middleware services.

Hence, with specific focus on self-healing capability only, the hypothesis for this

study can be formulated as:

Practical self-healing properties can be incorporated in distributed

services-based applications through the extension of existing middleware

technologies.
1.4 Approach

The work described in this thesis aims to investigate the fundamental requirements ot

a software framework and associated middleware services to develop on-demand

application services. The software framework is intended to enable user to access

over the local or global network, services that are dynamically discoverable, reusable

and combinable 1nto tlexible self-adaptive applications.

To build such a system requires encompassing networked services, such as registry,

lookup and discovery along with more advanced services, including:

e The assembly service: containing the service description, service

configuration and service execution functionalities.

* The system manager service: containing monitoring and self-healing

(recovery and reconfiguration) capabilities.

For theoretical support this work draws on a number of research results emerging

from related fields including:

e Advanced software engineering: using middleware services to bridge the
gap between the network layer and the application layer [5]. The services
such as lookup, registry or discovery. The remote event notification
concept | 6] to enhance the communication between the system and

services and remote method invocation techniques for service invocation

[7].

e Self-healing systems: using proposed models, requirements and theories to

enable software to use real-time monitoring, diagnosis, repair and control
[3].

In addition, this work follows an experimental research approach aimed at the design,

build and test of a framework for on-demand service delivery software with selt-

healing behaviour.

The well-established Viable Systems Model provides a design blueprint and system
taxonomy to guide the specification and design of the intended autonomic

middleware services and associated reference architectural model.

Furthermore, it this work aims to document a pattern language for on-demand service

delivery and management software by testing the existing framework with different

application scenarios.

1.5 Contributions

This work makes a number of contributions towards a better understanding of self-

healing software requirements for autonomic distributed software engineering. Such

contributions are summarised below:

* A software architectural model: motivated by and grounded in a range of

current research on distributed middleware, service-oriented architectures,
service on demand concepts and part of autonomic computing for its support
of self-healing and self-awareness. In particular, this work contributes to the
development of an architectural model for a middleware-based on-demand
self- servicing software framework. The framework described in this thesis is
developed based on a proposed architectural model and unites a number of
components including: service description, discovery, invocation,
configuration, monitoring and response to events, such as failure of the

Service.

A mechanism for assembling distributed services regardless of their location -
1S a representation of how a single functionality provided by one service can
be combined with the functionalities provided by another service to form a
required composite service. As a part of the Impromptu framework this

mechanism contains a number of novel components including:

- The Service Description Model: providing a meta description of a
given software service. The development of such a model was

motivated by the lack of uniform description of software services.

- The Service Invocation Model - based on the above service meta
model, it facilitates the invocation of a discovered, distributed

service. The service invocation model is responsible for parsing the

service description document, then via the reflection API, the

service 1s assembled and invoked.

- The Operational Service — is a novel element of the framework

referred to here as a virtual container. This was introduced to

provide support for application services development and provides

a virtual environment where the services are grouped and executed
according to users’ requirements. Such an environment helps the

monitoring and management of applications, so that the system

knows where to look for a particular service assemblage.

o An Adaptation model that is responsible for providing self-healing
capabilities. For instance, the system responds to a detected service failure by
searching for an alternative service in a local or global network. System self-

healing 1s performed when the new service is found and invoked.

* A Design Pattern Language focused on on-demand software service assembly

and delivery to support software self-healing behaviour. The design pattern
language includes patterns for ad-hoc service discovery, invocation and

monitoring.

1.5 Scope

This research proposed a new software framework and associated autonomic
middleware services that enable the development of distributed applications, on
demand, according to user’s requirements. Furthermore, the system is able to perform

runtime self-healing when a failure of one or more components has been detected. In

particular, this work focuses on:

e The development of a generic model for distributed services to be discovered,
invoked and monitored throughout their lifetime. A self-healing process is

triggered if and when a system failure has been detected.

e The development of a software framework that otfers a number of middleware

service that perform the activities described above (discovery, mvocation

monitoring, recovery, etc.)

» The development of a service description model that helps the client to obtain

the service signatures described in the service interfaces by the service

providers.

o The development of a design pattern language for On-demand Service

Delivery and Assembly of software.

Furthermore, 1 a constantly changing environment where services come and go,
using our software model the developers will be able to search for, discover and bind
to a service matching their required service profile. If no match is found or available
the framework enables the selection of the closest match, and/or activating a required
service from the code base'. In addition, the Impromptu framework enables the

generation and publication of new application services for other users and

applications to use.

The main building blocks of the Impromptu architecture are shown in Figure 1.1.

Applications
. -, v B . Assembly Service
| | | §
|
| | | Operational Service
Impromptu Impromptu | l Impromptu I

SETVICES - Services SErvices » System Manager
(—

o . T | yervice
l Distributed Middleware |

OS | OS5 OS

Figurel.1: Impromptu Components

The approach for developing the generic model described in this thesis has been

tested in two different example applications. One example application was developed

for a home appliances scenario in order to test the simple services. And the other

example application is based on more complex software. In both cases the

applications were tested.

1.6 Thesis Structure

' A full description of the software development model adopted for the proposed On-demand Service
Assembly Delivery (OSAD) is given in Chapter 4

This thesis consists of nine chapters and is organized as follow:

In this chapter we have discussed the main motivations for the work, challenges,

contributions and thesis outline.

Chapter 2 introduces the relevant background theories, principles and technologies
that are used or considered important for the development of the proposed work. The
survey covers the basic concepts and principles of distributed systems including:
Distributed Middleware technologies, Service-oriented and Component-oriented

Developments. We also review Autonomic Computing and its architectural concepts.

Chapter 3 provides a literature review of related work covering a range of fields,
including: Self-healing Systems, Service-oriented architectures and frameworks as
well as Component-based frameworks. At the end of this chapter we list the main

requirements for the proposed framework development.

Chapter 4 describes the overall design of the proposed On-demand Service Assembly
and Delivery (OSAD) model and consequent framework services as well as the

concept of self-healing in the OSAD model.

Chapter 5 presents the architecture of the model, describing where the framework

middleware services fit.

Chapter 6 provides a prototypical implementation of the model based on the Java

programming language and Java-based Jini middleware technology. This chapter also
contains the description of two illustrative example applications, the first based on

one of the well-known connected homes scenarios and the second, a Software

services example.

Chapter 7 documents a pattern language for distributed self-healing applications

development.

Chapter 8 describes an evaluation of our work, giving the assumptions of the previous

chapters and using example applications such as sorting algorithm services and the

home appliances application.

Chapter 9 presents a summary, concluding remarks and proposed future work.

Chapter 2

Background

2.1 Introduction

Distributed applications are difficult to develop and manage due to their inherent
dynamics, the heterogeneity of component technologies and the possibility of
different network protocols. Distributed component-based software applications often
consist of a collection of software components that communicate via distributed
middleware. The distributed middleware, or simply middleware plays a crucial role

by providing APIs and support functions to bridge the gap between the network

operating system and distributed components and services.

This chapter provides an overview of existing supporting technologies for distributed
selt-adaptive applications development. This starts with a brief description of the
basic concepts and principles of distributed systems (Sec. 2.2), and distributed object-
oriented programming and middleware including; CORBA technology, DCOM (Sec.
2.3.1) and Jim1 technology (Sec. 2.3.2). The chapter concludes with an overview of

the principles and mechanisms to support the design, development and management

of autonomic computing (Sec. 2.6).

2.2. Distributed Systems: basic concepts and principles

Much research work related to the design and development of distributed systems and
their underlying principles has been performed. The development of distributed
systems followed the emergence of high-speed, local area computer networks at the
beginning of the 1970s. More recently, the availability of high-performance personal
computers, workstations and server computers has resulted in a major shift towards
distributed systems and away from centralized and multi-user computers. This trend

has been accelerated by the development of distributed system software, designed to
support the development of distributed applications.

Ditferent definitions of distributed systems have been given in the literature. One

defines it as:

(4

. a collection of independent computers that appears to its users as a

single coherent system.” [9]

Another as:

“...one in which hardware or software components located at networked

computers communicate and coordinate their actions only by passing

messages”’ [10].

The defimtions may be as different as the individuals that define them, but the goal is
the same: to make it easy for users to access remote resources and to share them with
other users 1n a controlled fashion. Resources can be anything, but typical examples
include computers, printers, storage facilities, data, files, Web pages and applications

to name but a few. The key characteristics of distributed systems can be summarised

as follow [11]:

o Heterogeneity: distributed systems should be constructed from a variety of
different networks, operating systems, computer hardware and programming

languages.

e Transparency: is an ability for the system to present itself to users and
applications as if it was only a single computer system. Transparency deals

with hiding the fact that its processes and resources are physically distributed

across multiple computers.

e Openness: distributed systems should be extensible. An open distributed

system is a system that offers services according to standard rules that

describe the syntax and semantics of those services.

e Scalability: a system can be scalable with respect to 1ts size, meaning that we
can add more users and resources to the system, or 1t can be geographically

scalable in which the users and resources may lie far apart.

e Fault-handling: any process, computer or network may fail independently of
the others. Therefore, each component needs to be aware of the possible ways

in which the components it depends on may fail and be designed to deal with

each of those failures appropriately.

10

e Concurrency: the presence of multiple users in a distributed system is a source

of concurrent requests for its resources. Each resource must be designed to be

safe in a concurrent environment.

There are different types of distributed system. A distributed operating system
manages the hardware of tightly coupled computer systems, which include
multiprocessors and homogeneous multi-computers. These distributed systems are
good at providing a single-system view, but do not support autonomous computers. A
network operating system, on the other hand, 1s good at connecting different
computers, each with their own operating system, so that users can easily make use of
ecach node’s local services. However, network operating systems do not offer a single-
system view the way that distributed operating system do. Neither a distributed

operating system nor a network operating system can really support the development

of a distributed system that has the best of both worlds: the scalability and openness
of network operating systems and the transparency of distributed operating systems.
The solution was found in an additional layer of software that 1s used in a network
operating system to more or less hide the heterogeneity of the collection of
underlying platforms but also to improve distribution transparency. Modemn
distributed systems are constructed by means of such an additional layer of what is
called Middleware [12]: the layer that is placed between network operating systems
and the application layer. Middleware with real case examples of existing distributed

systems constructed, as middleware will be described in detail 1n Section 2.3.

An important issue with a distributed system is its organmization. The most widely
applied model is that of client processes requesting services at server processes (Fig.
2.1). A client sends a message to the server and waits until the latter replies. This
client-server interaction, also known as request-reply behaviour, is strongly related to
traditional programming, in which services are implemented as procedures 1n separate

modules. A further refinement is often made by distinguishing a user-interface level,

a processing level, and a data level.

11

Wait for result

Client

Figure 2.1: A client-Service interaction [12]

The user-interface level contains all that is necessary to directly interface with the

user. The processing level contains the applications and the data level contains the

actual data that 1s being acted on.

Distinguishing three logical levels suggests a number of possibilities for physically
distributing a client-server application across several machines. The consequence of
this division was the creation of multi-tiered client-server architectures [9]. The
different tiers correspond directly with the logical organization of applications. There
1s vertical distribution that can be characterized as: the server is generally responsible
for the data level, a processing level and the user-interface level is implemented at the
chent side. The processing level can be implemented at the client, server, or split

between the two.

For modern distributed systems, this vertical organization of client-server applications
1s not sufficient to build large-scale systems. What is needed is a horizontal
distribution by which clients and servers are physically distributed across multiple

computers. This type of distribution has been successfully implemented in the World

Wide Web (App. A).

In a peer-to-peer distribution with one user seeking contact with another, both can
launch the same application start a session. A third client may contact either of them,
and subsequently also launch the same application software. One of the essential
issues, after organization, is the communication between processes 1n a distributed
system. In traditional network applications, communication 1s often based on low-
level message-passing primitives. In modern distributed systems, the widely used
communication models are: Remote Procedure Call (RPC), Remote Method

Invocation (RMI), Message-Oriented Middleware (MOM), and streams.

12

The essence of an RPC 1s that a service 1s implemented by means of a procedure, of
which the body is executed at a server. When the client calls the procedure, the client
side implementation, called a stub, takes care of wrapping the parameter values into a
message and sending that to the server. The server calls the actual procedure and
returns the results, again in a message. The client’s stub extracts the result values

from the return message and passes 1t back to the calling client application.

A Remote Method Invocation (RMI) 1s similar to an RPC in terms of parameter
passing. Though, an essential difference between them is that RMI supports system
wide object references to be passed as parameters. RPC and RMI offer synchronous
communication facilities, by which a client 1s blocked until the server has sent a
reply. In this sense, the message-oriented models (that underpin MOM) offer more
convenient inter process communications as they offer asynchronous communication;
that 1s, the sender 1s allowed to continue 1mmediately after the message has been
submitted for transmission. MOMs are used to assist the integration of (widely

dispersed) collections of databases into large-scale information systems”.

2.3 Middleware Based Distributed Systems

To support heterogeneous computers and networks while offering a single-system
view, distributed systems are often conceptually organized into a layered topology ot
software, which are logically placed between a higher-level layer consisting of users
and applications, and a layer underneath consisting of network operating systems

(Fig. 2.2). Such a layer is often referred to as middleware.

Middleware is a class of software technologies designed to help manage the
complexity and heterogeneity inherent in distributed systems. It is defined as a layer
of software above the operating system but below the application program that
provides a common programming abstraction across a distributed system, as shown 1n
Figure 2.2. In doing so, it provides a higher-level building block for programmers

than Application Programming Interfaces (APIs) such as sockets that are provided by

the operating system.

2 Streaming is a completely different type of communication and 1s used mainly for video and audio streaming.

13

Machine A Machine B Machine C

OO
Distributed Applications

Middleware Services

Local OS Local OS l Local OS

Network

Figure 2.2: A Distributed System organized as a middleware [12]

Middleware frameworks are designed to mask systems’ heterogeneity providing
distributed systems developers with convenient programming models for distributed

object-onented programming including support for: location transparency,

concurrency, replication, failures and mobility.
2.3.1 Categories of Middleware

Many types of middleware now exist, which can be grouped according to the

programming abstractions they provide:

e Distributed Tuple Space Middleware: this 1s based on a distributed
relational database offering the abstractions of distributed tuples. Its
Structured Query Language (SQL) [13] allows programmers to manipulate
sets of these tuples (a database) with intuitive semantics and rigorous
mathematical foundations based on set theory and predicate calculus. A good

example of this type of middleware is the Linda framework [14], which otfers

a distributed tuple abstraction called Tuple Space (TS) [15].

Remote Procedure Call Middleware: this extends the procedure call
interface to offer the abstraction of being able to invoke a procedure whose
body is across a network. Remote Procedure Call systems are usually
synchronous, and thus offer no potential for parallelism without using

multiple threads, and they typically have limited exception-handling facilities.

e Distributed Object Middleware: this requires that each object implements
an interface that hides all the internal details of the object from the users

(remote object). Thus the only thing that a process sees of an object is 1its

14

interface, that is, the set of method signatures that the object implements. The
best known example of such a middleware are; Common Object Request
Broker Architecture (CORBA) [16], Jin1 [5] and DCOM [17}. CORBA is a
standard for distributed object computing proposed and developed by the
Object Management Group (OMG) [OMG, #24]. CORBA automates many
common network programming tasks such as object registration, location, and
activation; request demultiplexing; framing and error-handling; parameter
marshalling and demarshalling; and operation dispatching. CORBA offers
heterogeneity across programming languages and vendor implementations. Its
standards are publicly available and well defined. DCOM 1is a distributed
object technology from Microsoft that evolved from its Object Linking and
Embedding (OLE) approach [18] and Component Object Model (COM) [19].
DCOM’s distributed object abstraction 1s augmented by other Microsoft
technologies, including Microsoft Transaction Server [20] and Active
Directory [21]. DCOM provides heterogeneity across the programming

language but not across operating system or tool vendor.

e Message-Oriented Middleware (MOM): provides the abstraction of a
message queue that can be accessed across a network. It 1s a generalization of
the well-known operating system construct. It is very flexible in how it can be
configured with the topology of programs that deposit and withdraw messages
from a given queue. MOM offers the same kind of spatial and temporal

decoupling as in Linda model | 14].

A detailed description of both CORBA and DCOM can be found in Appendix A. The
next section will provide a detailed description of another widely used middleware
technology called Jini, as this was chosen to support the development of the software

framework described in this thesis. Jini is categorized as service-oriented middleware.

2.3.2 Jini Middleware Technology

From the official Jini architecture specification [22], Jini 1s defined as:

"4 Jini system is a distributed system based on the idea of federating groups

of users and the resources required by those users. The focus of the system

is to make the network a more dynamic entity that better reflects the

15

dynamic nature of the workgroup by enabling the ability to add and delete

services flexibly.”

A Jini system uses the network as a foundation to enable service discovery and
execution. Traditional systems attempt to mask the appearance of the network; 1n
contrast, Jin1 uses the dynamic, flexible nature of the network to form communities,
register services, discover services, and invoke services. Jini attempts to address the

problem of the assumptions of reliability, the network does not change, and the

administrator will perform the majority of maintenance functions.

l'o address the assumption that the network is reliable, Jini systems are self-healing.
Jim services will repair themselves by using the concept of leasing. Jini ensures that
services are removed from the community automatically at a given time by using a
concept called leasing, without the need for an administrator to perform the
maintenance. The network can change but Jini will continue to work without the need
to update a URL 1n the software, properties file, or an administrative interface. Jini
services are able to respond to such changes automatically. Communicating with a
Jinm1 service occurs through service proxies that are downloaded to the client machine

without the need to have an administrator to install the code, a practice that is normal

1n traditional architectures.

The Jmm architecture 1s based on the principle that the system is dynamic, and 1s
closely related to Service-Oriented programming [23], 1n contrast, other technologies
such as J2EE [24], NET [25], and CORBA have their foundation 1n a static world.
These technologies use a static approach to installing the software with 1ts approprate
stubs and skeletons. One of Jini's strongest points 1s downloadable, service-proxies
that communicate with the Jini service. Jini has the same concept of a service registry,
a service provider, and service requestor. The technologies previously mentioned

force the SOA model to fit a static architecture that was not designed for this purpose.

The Jini architecture compromises of three main components (Fig. 2.2). There 1s a
Service, such as printer, a toaster, a spellchecker, etc. There 1s a Client, which would
like to make use of this service. Thirdly, there 1s a Lookup Service (service locator),
which acts as a broker/trader/locator between the service and the client. There 1s also

an additional “hidden” fourth component, which 1s a network connecting the previous

16

three together, and this network will generally be running TCP/IP (although the Jini

specification is independent of network protocol).

Lookup Service

Service o T Y DEIVICe . . Service

PfU}CY P ETEIETIEENERY Ll me{y '-_“.l 3 PfUXEf

Service | Chent
ICP/1IP

Figure 2.3: Jini components and their interaction.

Jin’s API provides code mobility in that code can be moved around between these
three components, over the network, by marshalling the objects. This marshalling
involves serializing the objects (using Java’s Serialization API) in such a way that
they can be moved around the network, stored in a “freeze-dried” form, and later
reconstituted by using included information about the class files as well as instance
data. This marshalling is represented in Figure 2.3 using the block arrows with broken

lines. Two events must take place in order for the client to use the application service:

e First the service, which consists of an implementation and a proxy, must
register with a Jini lookup service. Sun Microsystems Jini implementation
provides a lookup service (called reggie), which “listens™ on a port for
registration requests. When a request is received, a dialog between the

application service and lookup service takes place after which a copy of the

service proxy is moved to and stored in the lookup service.

e Second, the client must find the service. This again involves the lookup
service, which also listens for incoming requests from clients that want to use
services. The client makes its request using a template, which is checked
against the service proxies that are currently stored on the lookup service. If a

match is found, a copy of the matching service proxy is moved from the

lookup service to the client.

At this stage there are three copies of the service proxy in existence (Fig. 2.2), one 1n

the service, one in the lookup service and now one in the client. Jini service proxies

17

are implemented as Java interfaces that specify the signatures of methods, which are
implemented by the service implementation. The client can interact with its copy of
the service proxy by invoking any of the specified methods. These method
Invocations are then routed back to the service implementation, typically using RMI,
resulting in the invocation of a method in the service implementation. The overall
eftect of this routing is that the client “thinks” that it has its own local copy of the

service implementation and proceeds to use the service by invoking its methods being

unaware of the physical location of the service within the network.

The following diagram shows (Fig. 2.4) the overall architecture of the Jini technology
that 1s very close to Service-Oriented Architecture. The Jini architecture has a

foundation that is rooted in the dynamic principles of Service-Oriented Architecture.

Lookup Service

Service Discovers and
Register with the
Lookup Service

Find the Service

Chient downloads
proxy object for
service

Service

Communicates
with the service via
Proxy

Figure 2.4: Jini Architecture.

2.4 Service-Oriented Software Development

Service-Oriented Programming (SOP), as a relatively new paradigm, builds on
Object-Oriented Programming [26] by adding the abstraction that objects
(components) provide and use services. In other words, where Object-Oriented
Programming (OOP) focuses on what things are and how they are constructed, SOP

focuses on what the things can do. A service itself 1s a contractually defined
behaviour that can be implemented and provided by any component for use by any

other component, capable of meeting the contract [3].

Component models prescribe that programming problems can be seen as

independently deployable black boxes that communicate through contracts. The

18

traditional client-server model often lacks well-defined public contracts that are
independent of the client or server implementation, which renders the client-server
model “brittle”. Through the service-oriented model, components may

interchangeably provide and use services in a peer-to-peer manner, thereby

eliminating the brittleness of the client-server model.

The new concepts of the SOP paradigm have been widely adopted and implemented
within the industry, including Sun’s Jimi, Openwings [27] [28] and Microsoft’s .NET
[25]. The analyses of these technologies have yielded a set of common architectural

elements that make up Service-Oriented Programming. The elements of SOP are:

e (Contract — An interface that contractually defines the syntax and semantics of

single behaviour.

e Component — A third-party deployable computing element that 1s reusable due

to independence from platforms, protocols, and deployment environments.

e Connector — An encapsulation of transport-specific details for a specified

contract. It 1s an individually deployable element.

e (Container — An environment for executing components that manages

availability and code security.

e Operational Space — A virtual environment containing one or more virtual

containers [29].

e Context — An environment for deploying plug and play components, that

prescribes the details of installation, security, discovery, and lookup.

7.4.1. Service-Oriented Architectures

Service-oriented architectures provide a standard programming model that allows
software components, residing on any network, to be published, discovered, and
invoked by each other. SOA software programmers can build services that are offered
as components to anyone, anywhere via a computer network. This means that any

distributed service application can interact with any other service-based application

regardless of either’s network location. Service-Oriented Architecture 1s defined as

[30]:

19

“SOA takes the existing software components residing on the network and
allows them to be published, invoked and discovered by each other. SOA
allows the software developers to model programming problems in terms of

services offered by components to anyone, anywhere over the network.”

There are essentially three components and three operations to a SOA (Fig. 2.5). The

components are:

e Service Provider: Typically the owner of the service, the service provider is

responsible for publishing a description of its service to a service registry. The

provider also hosts the service and controls access to it.

e Service Requestor: The service requestor 1s a software component 1n search
of a service to invoke. The service requestor finds the service by discovering
(through the Service Registry) the set of available services that meets some
pre-defined criteria. Once a suitable service i1s discovered, the service

requestor will bind to the service publisher to actually invoke the service.

e Service Registry: The service registry is a central repository that facilitates
service discovery by service requestors. This component 1s optional 1n an
SOA because it is possible for service requestors to obtain service descriptions
from a variety of other sources. This includes getting 1t directly from the

Service Provider via FTP, a URL, or some other discovery service.

~ Service Publish the

. R f’-'-_.gis,try Service
Description

Find a
Service

~ Service

- Se r}riﬁ-e '

~ Requestor Provider

Bind to the
Service

Figure 2.5: The major components and operations of a SOA
The major operations of a SOA are:

=« Find a Service: An operation performed by the service requestor to locate a

service. The find operation is initiated by a user through a user interface or via

another service.

20

= Publish a Service Description: The service provider publishes a description
of the service that 1s available. This description details everything necessary to

interact with the service, including specific network location, transport

protocols, and message formats.

* Bind to the Service: Once the service requestor finds an appropriate service,

it will invoke the service directly at runtime using the binding information

provided 1n the service description.

Jin1 middleware technology (described in the previous section) has been recognized
as one of the most promising middleware technologies for implementing SOA
software as Jini’s architecture promotes the concept of dynamic registration,

discovery, and execution. For this reason Jini was chosen as the supporting

middleware for the Impromptu framewortk.

The next section explores the concept of service in relationship to the more
established concept of software components, and it describes how current component-

based development practices provide a tried and tested foundation for the

implementation of service-oriented architecture.

2.5 Component-Based Development

There 1s growing interest 1n the notion of software development through the planned
Integration of pre-existing software components. This is often called Component-
Based Development (CBD) [31], which 1s based on software development practices
using standard components. Its origins perhaps date back to the early sixties
following the publication of the “Software Crisis” report [2] and the start of the
software reuse research trend [32]. The basic 1dea was simple: when developing new
systems use components that are already developed. When we develop the specific
functions that we need in our system, we should develop it in a way that allows this
function to be used by other systems in the future. Although the i1dea and the

principles are quite simple, it has been shown that the implementation 1s quite hard.

2.5.1 Components and their Interactions

The meaning of the term “component” has been changed many times during this

development period. Different individuals have tried to use the word and definition

21

for different problem domains, relating to the technologies used at that time. The

following are a selection of the definitions found in the literature today:

“... A component can be considered as an independent replaceable part of

the application that provides a clear distinct function ...” . [33]

According to [33], a software component is a unit of composition, with pre-defined
dependencies on other components. In the world of business systems, business
components represent reusable conceptual artifacts that can be implemented and
deployed 1n large business systems. Components may also be regarded as coherent
packages of software that can be independently developed and delivered as a unit.
The functionality of a component is accessed via an interface and interfaces may also

be used to plug components together in order to construct a larger system [34].

Components can provide services or components can use services.

For the purpose of our work, 1n conjunction with distributed object systems, we adopt
the physical view of a component as: “a self-contained binary implementation, which
consists of one or more objects”’. These objects occur as instances of the classes that
make up a component. Components communicate with each other through connectors
that are implemented via software interfaces, thereby providing a component-

connector abstraction (Fig. 2.6).

Connector

Provider Protocol

Role=Provider Role=User

RMI,
SOAP, Etc.

Figure 2.6: Diagram of Component connector, etc.

The Architecture Description Language (ADL) [35], which is a modelling language
for Service-Oriented software development is based on this type of component-
connector abstraction. Consequently, components may provide services and/or use
services provided by other components mn a peer-to-peer like regime thereby

providing a federation of services, which forms the basis of the alternative service-

oriented abstraction, which we regard as:

22

“... A collection of application services spread over networked computers

which clients use remotely via distributed middleware services [36]

A service represents contractually defined behaviour that is provided by a specific

component for use by any other component, capable of meeting the contract. The
description of connectors and contract is provided in section 2.4, while the next

section defines the Autonomic Computing principles and describes the architectural

concepts of this type of system.

2.6 Extensible Markup Language (XML)

Since 1ts introduction in late 90s, Extensible Markup Language has become
ubiquitous. It is used as a base format for everything from configuration files to
document management or to messages sent between computers [O'Reilly, 2006
#131]. XML combines the power and extensibility of its parent language, SGML
(Standard Generalized Markup Language) [114], with the simplicity demanded by
the rapid development of Web based technologies. XML is the first language that

makes the data description documents both human-readable and computer-

manipulable.

The essential characteristics of XML are the data independence, the separation of
content and its presentation. Because an XML document describes data, it can
concelvably be processed by any application. The absence of formatting instructions
makes 1t easy to parse. This makes XML ideal framework for data exchange.
Integration of XML to any applications makes applications more dynamic and
interoperating. Because XML’s semantic and structural information enables it to be
manipulated by any application, much of the information and the operations that were

limited only to servers now it can be reachable and performable by client.

There are some alternative markup/document description languages to XML, such as:
SGML, JSON (JavaScript Object Notation) [JSON, #132], SMEL (Some Modest
Extensible Language) [Carlier, 2003 #139], ONX (Open Node Syntax) [Jacobs, 2005

#140], or SSYN (Structured Syntax) [Diamond, #141].

SGML was designed to be a flexible and all-encompassing coding scheme. Like
XML it is a toolkit for developing specialized markup languages. But SGML 1s much

bigger and complex than XML and it requires very complex software to process it.

23

Therefore its usefulness 1s limited to large organizations that can afford both the

software and the cost of maintaining SGML environments.

JSON 1s a data-interchange language that is easy not only for humans to read and
write, but also for machines to parse and generate. JSON is a text format that is

completely language independent, but it is not as widely used, known and understood
as XML.

SMEL 1s another XML like language that provides a method for structuring and
documenting data. So is the ONX, the markup language that is designed to be data-
oriented mstead of document-oriented and is intended for use in platform-independent

transter of data over distributed systems, though it can be used for non-networked

applications just as effectively.

The SSYN specification defines a set of both abstract and syntactic rules designed for
the interchange of structured information. SSYN has been designed as an alternative
to XML for the increasing number of cases where XML 1s currently used to store
information 1n a rigidly structured manner. SSYN 1s simple and flexible language for

the developers to read and write structured do<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>