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Abstract 

ABSTRACT 

Neural networks have been shown to be a promising tool for forecasting financial 

times series. Numerous research and applications of neural networks in business 

have proven their advantage in relation to classical methods that do not include 

artificial intelligence. What makes this particular use of neural networks so attractive 
to financial analysts and traders is the fact that governments and companies benefit 

from it to make decisions on investment and trading. However, when the number of 
inputs to the model and the number of training examples becomes extremely large, 

the training procedure for ordinary neural network architectures becomes 

tremendously slow and unduly tedious. To overcome such time-consuming 

operations, this research work focuses on using various Higher Order Neural 

Networks (HONNs) which have a single layer of learnable weights, therefore 

reducing the networks' complexity. In order to predict the upcoming trends of 

univariate financial time series signals, three HONNs models; the Pi-Sigma Neural 

Network, the Functional Link Neural Network, and the Ridge Polynomial Neural 

Network were used, as well as the Multilayer Perceptron. Furthermore, a novel 

neural network architecture which comprises of a feedback connection in addition to 

the feedforward Ridge Polynomial Neural Network was constructed. The proposed 

network combines the properties of both higher order and recurrent neural networks, 

and is called Dynamic Ridge Polynomial Neural Network (DRPNN). Extensive 

simulations covering ten financial time series were performed. The forecasting 

performance of various feedforward HONNs models, the Multilayer Perceptron and 

the novel DRPNN was compared. Simulation results indicate that HONNs, 

particularly the DRPNN in most cases demonstrated advantages in capturing chaotic 

movement in the financial signals with an improvement in the profit return over other 

network models. The relative superiority of DRPNN to other networks is not just its 

ability to attain high profit return, but rather to model the training set with fast 

learning and convergence. The network offers fast training and shows considerable 

promise as a forecasting tool. It is concluded that DRPNN do have the capability to 

forecast the financial markets, and individual investor could benefit from the use of 

this forecasting tool. 
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Chapter 1: Introduction 

CHAPTER 1: INTRODUCTION 

1.1 Neural Network and its Application to Financial Time Series 

Prediction 

Financial forecasting is a difficult task due to the intrinsic complexity of the financial 

system. While many time series may be approximated with a high degree of 

confidence, financial time series are found among the most difficult to be analyzed 

and predicted (Castiglione, 2000). This relates to the fact that stock markets are 

affected by many highly interrelated economic, political and even psychological 
factors, and these factors interact with each other in a very complex fashion. It is also 

very complicated to forecast the movement in the stock market (Yao et al, 1996). 

Despite the fact that it is difficult in practical applications, predicting financial time 

series data is still an issue of a much interest to both the economic and academic 

communities. Decisions regarding investments and trading by large companies and 

the economic policy of governments rely on computer modeling forecasts (Knowles, 

2005). Commercial imperatives have ensured that financial time series prediction has 

been given a large amount of coverage in research literature and this will no doubt 

continue to be the case. 

Various methods and techniques for the prediction of financial time series have been 

developed and are still being developed on the ground of these basic principles. From 

statistical to artificial intelligence, there are a range of techniques which have been 

used to make a forecast. The traditional methods for financial time series forecasting 

are based around statistical approaches. However, most of the developed prediction 

methods have very weak scientific support and were completely unsatisfactory due to 

the nonlinear nature of most of the financial time series (Dunis and Williams, 2002; 

Yao and Tan, 2000; Hellstrom and Holmstrom, 1998). Accordingly, throughout the 

last decade, neural networks have emerged from an esoteric instrument in academic 

research to a rather common tool assisting auditors, investors, port-folio managers 

and investment advisors in making critical financial decisions (Chen and Leung, 
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Chapter 1: Introduction 

2005). Neural networks are powerful forecasting tools that draw on the most recent 
developments in artificial intelligent research. They are nonlinear models that can be 

trained to map past and future values of time series data thereby extract hidden 

structures and relationships that govern the data (Shachmurove and Witkowska, 

2000). Using neural networks, complex relationships between input and output 

variables can be learned by machines without requiring a human being to specify the 

nature of the relationship. Neural networks have appeared as a powerful leaming 

technique to perform complex task in highly nonlinear dynamic environments of 
financial time series. Financial service companies are becoming more and more 
dependent on computer technologies to establish and maintain competitiveness in a 

rapidly expanding global economy (Chen and Leung, 2005). In fact, most of the 

major investment banks, such as Goldman Sachs and Morgan Staley, have dedicated 

departments to the implementations of neural networks (Shachmurove and 
Witkowska, 2000). The fact that major companies in this financial industry are 
investing resources in neural networks indicates that artificial neural networks may 

serve as an important method for forecasting. The application of neural networks in 

time series prediction has shown better performance in comparison to statistical 

methods because of their nonlinear nature and training capability (Yumlu et al, 2005; 

Ho et al, 2002; Dunis and Huang, 2002). In addition, it has been shown that neural 

networks are universal approximators and have the ability to produce complex 

nonlinear mappings. 

This research work examines the ability of High Order Neural Networks (HONNS) 

as a forecasting tool to predict the upcoming trends of financial time series data. The 

utilization of higher order terms allows the neural networks to expand the input space 
into a higher dimensional space where linear separability is possible, thus reducing 
the complexity of the network. The use of HONNs is circumvented by the fact that 

the higher the order of the network, the more complex the network becomes and 
learning is significantly slower. Functional Link Neural Network (FLNN) (Giles and 
Maxwell, 1987) is a type of HONN, which can use higher order correlations of the 
input components to perform nonlinear mappings using only a single layer of units. 
However, the network suffers from the combinatorial explosion in the number of 

weights, when the order of the network becomes excessively high. A simple yet 
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Chapter 1: Introduction 

efficient alternative to FLNN is the Pi-Sigma Neural Network (PSNN) which was 

proposed by Ghosh and Shin (Ghosh and Shin, 1991-b). PSNN was introduced to 

overcome the problem of weight explosion in FLNN. The network has a regular 

structure and requires a smaller number of free parameters, when compared to other 

single layer HONN's. However, the Pi-Sigma Neural Network is not a universal 

approximator (Shin and Ghosh, 1995). A generalisation of PSNN is the Ridge 

Polynomial Neural Network (RPNN) (Shin and Ghosh, 1995). The network has a 

well regulated structure which is constructed by the addition of PSNNs of varying 

orders. Contrary to the FLNN, which utilizes multivariate polynomials, thus leading 

to an explosion in the number of free parameters, RPNN uses univariate polynomials 

which are easy to handle. RPNN is a universal approximator (Shin and Ghosh, 

1995), and the network maintains the fast learning and powerful mapping properties 

of single layer HONNs and avoids the explosion of weights, as the number of inputs 

increases. 

1.2 Dynamic Ridge Polynomial Neural Network 

Applications in forecasting and signal processing require explicit treatment of 
dynamics. The behaviour of the financial signal itself related to some past inputs on 

which the present inputs depends. The inherent nonlinearity of financial time series 

can prevent a single neural network from being able to accurately forecast an 

extended trading period even if it could forecast changes in the testing data. To 

overcome the problems associated with neural networks when used for financial time 

series forecasting; in this research work, a new dynamically sized higher order 

recurrent neural network architecture is proposed. The network will start with small a 
basic structure, which will grow as the leaming proceeds until the desired mapping 

task is carried out with the required degree of accuracy. The network is called the 

Dynamic Ridge Polynomial Neural Network (DRPNN). This becomes the novel 

aspect of this research in which the proposed Dynamic Ridge Polynomial Neural 

Network incorporates both higher order terms and a recurrent structure. In particular, 
this research work systematically investigates a method of pre-processing the 
financial signals in order to reduce the influence of their trends. The networks are 
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Chapter 1: Introduction 

tested for the prediction of one and five steps ahead predictions of financial time 

series in which two methods are utilized; in the first method the data are passed 
directly to the neural network as non-stationary signals while in the second method 

the financial data are transformed into stationary signals. Ten financial time series 

are used in the simulation process. The performance of each network is evaluated 

using financial criteria for trading performance and standard statistical measures for 

forecasting accuracy. 

1.3 Problem Statements 

Although there have been a number of research advancements taken place in the area 

of neural networks applications, not all of which can be used in real time commercial 

applications. In practice, it appears that although many organizations have expressed 
interest in applying neural networks technology, few have actually implemented 

them successfully. This relates to the fact that the size of the neural networks can be 

potentially so large as to prevent the problem solution from being commercialized in 

the real world (Leerink et al., 1995). Furthermore, the large network size can slow 
down the training speed and its convergence. For these reasons, selecting the 

optimum network structure is very important. A neural network of size below the 

optimum will usually fail to approximate the underlying function. On the other hand, 

a network with size above the optimum will have a large number of weights and tend 

to memorize the training data, this can lead to over-fitting of the problem, which can 

result in poor generalization (Lawrence and Giles, 2000). 

The highly popularized Multilayer Perceptron (MLP) has been successfully applied 
in a broad class of financial markets prediction tasks (Hellstrom and Holmstrom, 

1998; Dunis and Williams, 2002; Yao and Tan, 2002; Shachmurove and Witkowska, 

2002). However, MLP adopts computationally intensive training algorithms such as 

the error backpropagation and can get trapped in local minima (Lawrence and Giles, 

2000). In addition, the network has problems when dealing with large amounts of 

training data, and demonstrates poor interpolation properties, when using reduced 

training sets. 
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In many cases, the slow speed of neural networks is due to its large size, which can 

slow down the feedforward process. In feedforward process, each weight in a 

network results in multiplication with the nodes, and each node results in the 

evaluation of the transfer function. Thus, it is important to consider the number of 

nodes and weights employed in the network since they require a large space for 

mathematical implementation. Since the MLP network has multilayered structure, the 

network requires excessive training time for learning. Furthermore, the number of 

weights and the training time increases as the number of layers and the nodes in a 
layer increases (Patra and Pal, 1995; Chen and Leung, 2004). 

Higher Order Neural Networks (HONNs) which have a single layer of trainable 

weights can help speeding up the training process. HONNs are a type of feedforward 

neural networks, which have certain advantages over MLP. They are simple in their 

architecture and this potentially reduces the number of required training parameters. 
As a result, they can learn faster, since each iteration of the training procedure takes 

less time (Cass and Radl, 1996). 

HONNs have applications in wide range areas of human interests. They are not just 

scientific curiosities as they have already been applied in many and various real 

commercial applications such as pattern recognition (Artyomov and Pecht, 2004; 

Voutriaridis et al, 2003; Kaita et al, 2002; Shin et al, 1992), function approximation 
(Voutriaridis, 2003; Shin and Ghosh, 1995; Shin and Ghosh, 1992; Ghosh and Shin, 

1992), process optimization (Cass and Radl, 1996), systern identification (Mirea and 
Marcu, 2002), signal processing (Patra and Pal, 1995), image processing(Hussain 

and Liatsis, 2002), classification (Shin and Ghosh, 1995; Ghosh and Shin, 1992), 

time series prediction (Tawfik and Liatsis, 1997), and intelligent control (Karnavas 

and Papadopoulos, 2004; Pau and Phillips, 1995). Most applications are related to 

pattern recognition and function approximation problems but other applications are 

steadily growing. Nevertheless, literatures on the use of HONNs for financial time 

series prediction are limited. The questions of how good HONNs on pattern 

recognition and function approximation have been widely researched, but the 

corresponding question of how good they are on financial time series has not been 

adequately addressed. 
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Chapter 1: Introduction 

1.4 Aims and Research Challenge 

The aim of this research study is to make an investigation and analysis on HONNs 

models, with an application to financial time series prediction. More specifically, this 

research work investigates the theory of HONNs, their architectures and their 

learning algorithms. Furthermore, this research work seeks to find a network 

architecture which maintains a good performance, while at the same time reducing 

all the problems associated with network complexity. Besides, the research study 

also points to observe the use of HONNs as financial time series predictor with 

parsimony structure that can maintain good generalization capability. This research 

work emphasizes at designing a network architecture which can simplify the training 

and significantly can reduce the convergence time. Hence, the major challenge ahead 
is the development of a valid, precise, and reliable network predictor which can be 

tested against actual trading performance and gain profits based on the prediction 

results. 

1.5 Objectives and Contribution of the Thesis 

In order to investigate the research aims, a few specific objectives are set as follows: 

To design, implement and simulate HONNs models; such as the FLNN, PSNN, 

and RPNN for the prediction of the future trend of financial time series. 

9 To construct a novel Dynamic Ridge Polynomial Neural Network, which 

comprises of a feedback connection in addition to the feedforward Ridge 

Polynomial Neural Network. 

* To address the problem of stability in the proposed Dynamic Ridge Polynomial 

Neural Network and finding a mathematical solution for its stability. 

9 To compare the out-of-sample performance of various HONNs models as well as 

the MLP. 

* To evaluate the performance of all network models with financial metrics and 

statistical metrics. 
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1.6 Scope and Limitations 

The potential combinations of neural networks type and financial time series 

prediction are virtually limitless. In order to place boundaries around the vast topic of 
time series forecasting using neural networks, this research work is limited to the 

analysis, construction, implementation, and testing of the Multilayer Perceptron, 

Functional Link Neural Network, Pi-Sigma Neural Network, Ridge Polynomial 

Neural Network, and Dynamic Ridge Polynomial Neural Network. The construction 

of the networks is based on the Standard Incremental Backpropagation (for MLP, 

FLNN and PSNN), and Constructive Learning Algorithm (for RPNN and DRPNN). 

All the networks will be tested on ten financial time series signals. They are the IBM 

common stock closing price, the Standard & Poor 500 stock index futures, the United 

States 10-year government bond, the United States 30-year government bond, the 

UK pound to EURO exchange rate, the UK pound to US dollar exchange rate, the 

US dollar to EURO exchange rate, the Japanese yen to EURO exchange rate, the 

Japanese Yen to US dollar exchange rate, and the Japanese Yen to UK pound 

exchange rate. In this research work, the performance of the network is evaluated 

using five financial criteria (annualized return, maximum drawdown, annualized 

volatility, sharpe ratio, and transaction cost) and four statistical criteria (normalized 

mean squared error, mean squared error, correct directional change, and signal to 

noise ratio). 

Detailed Gantt chart for the research framework is presented in Appendix 1. 

1.7 Thesis Structure 

The remaining part of this thesis is broken up into the following chapters. Chapter 2 

is concerned with the literature review on neural networks and their types. This 

includes the architectures of feedforward neural networks and recurrent neural 

networks. Chapter 3 describes various types of Higher Order Neural Networks, their 
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learning algorithms and applications. This covers the Functional Link Neural 

Network, the Pi-Sigma Neural Network, and the Ridge polynomial Neural Network. 

Chapter 4 introduces the proposed Dynamic Ridge Polynomial Neural Network; 

presented as an extension of the ordinary feedforward Ridge Polynomial Neural 

Network. Subsequently, the stability and convergence of the network is shown. 
Chapter 5 reviews the fundamentals of financial time series prediction, addressing 
their difficulties, and their practical applications using neural networks and 
traditional forecasting approaches. Chapter 6 assesses the extensive modeling and 
design methodology in all network models, as well as the generation of input-output 

pattern, the specification of parameters, and performance measures. Chapter 7 

presents the simulation results for the prediction of all data signals using all neural 

network models. Analysis on the results is presented follows with a statistical and 

graphical review of the information acquired. Some issues raised by the results are 
discussed. Chapter 8 is dedicated for the final conclusions, contribution of research, 

and further works. 

1.8 Chapter Summary 

The challenge in financial time series forecasting is to discover the network model 
that would provide the best forecast and yield the best profit. However, there cannot 
be a universal model that can produce good prediction for all data signals, and 
indeed, there is probably no single best forecasting method for all situations. The 

design of neural network model does require knowledge, such as a strategy to 

acquire the necessary data to train the network, the selection of learning rules, data 

pre-processing methods and mainly how to connect the neurons within the network. 
With proficiency design, careful selection of learning parameters and pre-processing 

of the data, it is anticipated that HONNs used in this research work might be able to 

produce superior performance in the prediction of financial time series. 
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CHAPTER 2: NEURAL NETWORKS 

2.1 Introduction 

Neural networks provide a general class of nonlinear mod6ls which have been 

successfully applied in many engineering and scientific problems. These includes 

real world problems such as time series prediction (Dunis and Williams, 2002; Chen 

and Leung, 2004; Ho et al., 2002; Plummer, 2000; Leung ct al., 2002), image 

processing (Hussain and Liatsis, 2002), speech/character/pattem recognition (Pao, 

1989; Kaita et al., 2002), system identification (Mirea and Marcu, 2002), medical 
image analysis (Shieh, et al., 2004), system optimization (Yu and Morales, 2005), 

function approximation (Ghosh and Shin, 1992; Shin and Ghosh, 1991) and more. 
Their numerous application domains fall into categories: for example regression and 

generalization, classifications, association, clustering, pattern completion, and 

optimization. 

The idea of Artificial Neural Networks (ANNs) is to model a neuron by building 

interconnected networks, and devise learning algorithms to work out the ANNs. 

Often the term 'Neural networks' is used as a broad sense which group together 
different families of algorithms and methods. A formal definition of ANNs according 
to Haykin (1999) is: 

"A neural network is a massively parallel distributed processor that has a 

natural propensity for storing experiential knowledge and making it available for 

use. It resembles the brain in two respects: 1) knowledge is required by the network 
through a learning process, 2) Interneuron connection strengths known as synaptic 

weights are used to store knowledge. " 

Biological wise, the term 'Neural networks' is used to describe models of 

computation in single neurons or whole areas of brain. Neural networks which posses 
learning abilities have attracted much attention due to the way they use data to learn 
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patterns and underlying relationship instead of totally rely on people to specify them. 

According to Zaknich (200-3)), neural networks can often provide suitable solutions 
for problems that generally are characterised by nonlinearities, high dimensionality, 

noisy, complex, imprecise, imperfect and/or error prone sensor data, poorly 

understood by physical and statistical models, and lack of clearly stated 

mathematical solution or algorithm. 

2.2 From Biological to Artificial Neuron 

Neural networks are information processing paradigms that are inspired by the way 

in which human brain processes information. Researchers and even computer 

scientists are excited about the enormous power of the human brain. The capability 

of the brain to solve complex nontrivial problems is even impossible to solve using 

the newest computer technology. Recognition of the brain's impressive power has 

lead to interest in the development of ANNs (Zaknich, 2003). 

Figure 2.1: Basic features of biological neurons (Fraser, 1998) 

Neural networks are based on a rather simple model of brain neuron as shown in 

Figure 2.1. Most neurons have three parts: a dendrite which acts as receptive zones 

and collects inputs from other neurons, or from external stimulus; a soma (cell body) 
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which performs an important nonlinear processing step; and finally an axon, a cable- 
like wire along which the output signal is transmitted to other neurons further down 

the processing chain (University of North Carolina at Charlotte, 2002). The 

connection site between two neurons is called a synapse. Synapses are elementary 

structural and functional units that mediate the interconnections between neurons. 
The signal of most real neurons is chemical and it consists of spikes, short pulses of 

electrical activity. In Artificial Neural Networks, these spikes are replaced by a 

continuous variable Xj which we may think of as a temporally average pulse. The 

majority of neurons encode their outputs as a series of brief voltage pulses. A 

biological neuron may have as many as 10,000 different inputs, and may send its 

output to many other neurons (up to 200,000). 

The same mechanism and function exist in ANNs. They have many very simple 

processors, each possibly having a local memory, which are organized in layers and 

are connected by weighted links. It is an attempt to simulate within specialized 
hardware or sophisticated software, the multiple layers of simple processing elements 

called neurons. To achieve good performance, neural networks employ a massive 
interconnection of simple computing cells referred to as 'processing units'. ANNs 

systems gain their power by using a large number of very simple processing units in 

the network, similar to the brain where there exist miles of axon 'wire' in every cubic 

centimetre of brain. 

2.3 Components of Neural Networks 

A basic computational element of a neural network is often called a unit, node, 

perceptron, or Processing Element (PE). As shown in Figure 2.2, it receives input 

from some other units, or perhaps from an external input. Each input Xi has an 

associated weight Wy, which have different synaptic strength. - 
These weighted inputs 

are summed to give the net input, S. Most units in neural networks transform their net 
input by using a scalar-to-scalar function called an 'activation function', yielding a 

value called the 'unit's activation' or neuron's output. This neuron's output, Y, is 

produced at the output layer. Hidden and output units usually use a 'bias' or 
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'threshold' term in computing the net input to the unit. A bias term can be treated as 

a connection weight from a special unit with a constant, nonzero activation value. 
The single bias unit is connected to every hidden or output unit that needs a bias 

term. Hence the bias terms can be learned just like other weights. 

Neural networks behave, react, self organize, learn, and generalize rather than just 

execute programs (Schwaerzel, 1996). Neural networks derive their computing 

power through their massive parallel distributed structure, and their ability to learn 

and therefore generalize (Haykin, 1999). Generalization refers to the fact that neural 

networks can produce reasonable outputs for inputs not encountered during learning. 

Given a training set of data, neural networks can learn the data with a learning 

algorithm; the most common learning algorithm is the backpropagation. Through the 

learning algorithm, neural networks form a mapping between inputs and the desired 

outputs from the training sets by altering weighted connections within the networks. 
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Figure 2.2: Network with single perceptron or node 

2.4 Different Structures of Neural Networks 

In a great variety of neural networks, the interconnection architecture can be very 
different for different types of networks (Zaknich, 2003). The neurons in ANNs can 
be interconnected in many different possible topological ways. These topologies 
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include single-layer and multi-layer networks. The layer where the input features are 

presented is referred to as the input layer and the output layer is where the network 

outputs are formed. A single-layer network actually has both the input and the output 
layers, whereas a multi-layer network can also have one or more hidden layers in 

between. The hidden layers are so called because their inputs and outputs are only 

used for internal connections. The number of inputs to the network is constrained by 

the problem to be solved, and the number of neurons in the output layer is 

constrained by the number of outputs required by a particular problem. 

Different types of neural networks have different strength and abilities particular to 

their application and can be related to their structure and learning method. It is 

widely acknowledged that there is no single method, statistical or neural network that 

gives the best result for all kinds of problems. Generally, there are two types of 

neural networks architectures; feedforward network and recurrent network (Sarle, 

2002). In feedforward network, the signal can only travel in one direction, whereas in 

recurrent network, the signal can travel in both directions by introducing loops or 

cycle in the network itself. 

2.4.1 Feedforward Neural Networks 

Often neural networks are arranged in layers such that the connections are only 
between consecutive layers, all in the same direction. Such neural networks are 

called feedforward neural networks. These networks can have any number of layers, 

units per layer, network inputs, and network outputs. The input signals propagate 

through the network in a forward direction, on a layer-by-layer basis, hence the term 

feedforward. The output is only a function of the current input, not of the past or 
future inputs or outputs, therefore the node equations are memoryless. 
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2.4.1.1 Multilayer Perceptron (MLP) 

Multil-ayer Perceptron (MLP) is a feedforward network which is formed by a 

collection of summing units that are connected by their associated weights. Due to its 

capability of learning a rich variety of nonlinear decision surfaces, MLP has been 

successfully tested in many applications*, among those are financial time series 

prediction (Dunis and Williams, 2002, Plummer, 2000; Yao, and Tan, 2000), signal 

processing (Richmond, 2002), and function approximation (Lawrence and Giles, 

2000). 

The network has a hierarchical structure of several perceptrons, and has the ability to 

overcome the shortcomings of single-layer networks (Nikolaev, 2006). It has one or 

more hidden layers in between the input and output layers, which transmit the data 

from the input nodes to the output nodes. The function of the hidden nodes is to 

intervene between the external inputs and the network output in some useful manner. 

Figure 2.3 illustrates the layout of MLP with single hidden layer. The network figure 

is said to be fully connected in the sense that every node in each layer is connected to 

every other node in the adjacent forward layer. 
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MLP computes the network output according to following equation: 

Ar 

W, a wy X, + W., ) + W. ') 

where xj denotes the input value, Wy is the weights from the input layer to the hidden 

layer, Wjk is the weights from the hidden layer to the output layer, Wq is a bias for 

hidden node, a is a sigmoid transfer function, and Y is the network output. MLP has a 
highly connected topology since every input is connected to all nodes in the first 

hidden layer, and every unit in the hidden layers is connected to all nodes in the next 
layer, and so on. The input nodes pass values to the first hidden layer's nodes. The 

forward propagation is continued to the second hidden layer and so on until the 

output of the network is produced at the output layer. 

MLP can approximate reasonable functions to any desired degree of accuracy using 

only one hidden layer, provided that sufficiently many hidden nodes are available, 

and having sigmoid function as the nonlinear activation function (Cybenko, 1989; 

Hornik et al, 1989). Due to their multiple layer structure, they utilised 

computationally expensive training algorithms and thus can get stuck in local 

minima. One of the network's disadvantages is that it can only be used with 

supervised training, it needs an abundance of training examples, and the training can 

sometimes be slow and not well behaved (Zaknich, 2003). 

Backpropagation Learning Algorithm 

To make meaningful forecasts, a neural network has to be trained using a certain 
learning algorithm; a procedure used to perform the learning process. The idea of 

employing a learning algorithm is to calculate the error each time the network is 

presented with a training vector and to perform a gradient descent on the error. The 

Backpropagation (BP) algorithm has emerged as the most popular learning algorithm 
for supervised training of the MLPs. According to Haykin (1999), the algorithm has 

two distinct properties; it is simple to compute locally, and it performs stochastic 
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(updating weights by pattern learning) gradient descent in weight space. It however 

has some downside properties: 
1. As the algorithm uses an 'instantaneous estimate' for the gradient of the error 

surface in weight space, it is therefore stochastic in nature and has a tendency to 

zigzag its way about the true direction to a minimum in the error surface. 
2. As a result, it converges fairly slow, which in turn make it computationally 

agonizing. 

3. The algorithm runs a risk of being trapped in local minima in which every small 

change in the synaptic weights affects the cost function. It is unfavourable to 
have the learning process cease at a local minimum instead of global minimum. 

Backpropagation algorithm is a supervised learning algorithm based on a suitable 

error or cost function, with values determined by the actual and desired outputs of the 

networks, which is to be minimized via a gradient descent method. The principle idea 

of this algorithm is to compute the influence of each weight in the network by 

performing an iterative training process. The aim is to minimize the error by 

performing simple gradient descent where the weight is adjusted in the steepest 
descent direction (negative of the gradient). This is the direction in which the error 

rapidly decreased. 

The learning of the networks is perfon-ned in such a way that the weights are adjusted 

after the presentation of each or a batch of training examples. During the iterative 

process, two sets of signals are passed through the networks: 

op Function signals: the input examples propagated through the hidden units and 

processed by their activation functions and emerge as output. 

* Error signals: the errors at the output nodes are propagated backward layer-by- 

layer through the networks so that each node returns its error back to the nodes in 

the previous layer. 

The weights are adjusted in accordance to the Delta Rule. It suggests that the actual 

network output is subtracted from the desired output in the example. The weights are 

adjusted so as to make the network output much closer to the desired output. The 

error function to be minimized is: 
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I jok 
-Ykf (2.2) 2k 

where tk is the desired output and yk is the network output. Each component of the 

gradient provides the slope of the error function with respect to that weight: 

aE aE 
, 

aE aE 
(2.3) 

aw awo awl ...... aw" 
The partial derivative of the error function with respect to the weights and biases in 

the backpropagation algorithm is determined as follows: 

aE 
= 

aE aS, anet, 
(2.4) 

aWy aS, anet, aW. 

where Wy is the weight from neuronj to neuron i, S, is the neuron output, and net, is 

the weighted sum of the inputs of neuron L Given the gradient, each weight is 

adjusted by the negative of the gradient to reduce the error. The value of the 

derivative is then used to minimize the error function by performing a gradient 
descent as below: 

WU(t+1) = Wjj(t)-6 
aE 

(t) (2.5) 
awy 

The learning rate, c, is used to control the learning step, and has a very important 

effect on convergence time. A very large learning rate can lead to oscillation in the 

weight space and could end up with reaching only local minima instead of global 

optima. Meanwhile setting a small value of the learning rate can lead to a slow 

training since many weight steps are required. To prevent the above problems, 

momentum term usually added to scale the influence of the previous step/derivative 

to the current and to make the learning process more stable: 

aE A wij (t) - (t) + PAW(t - 1) (2.6) 
awy 

where p is the momentum term. Another reason for introducing the momentum 

term is to avoid oscillation when using high learning rate. For each iteration, the 
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change in the weight keeps a little bit of the direction of the previous weight change. 

Thus the weights behave as if they had some inertia or 'momentum'. The use of 

momentum in the BP algorithm can be helpful in speeding the convergence and 

avoiding local minima (Nikolaev, 2006). 

E Negative slope 

Desired 
weights, ---ý 

Positive slope 

Slope of E Positive --)decrease w 

Slope of E negative 4increase w 

No 4 

Figure 2A Basic principle of gradient descent 

Figure 2.4 shows the behaviour of error E with respect to one weight w. In order to 

decrease the value of the error function E, the Backpropagation algorithm does 

gradient descent in the reverse direction of the error gradient (slope). If the gradient 

of E is negative, the value of w must be increased to move forward towards the 

minimum. If E is positive, the value of w must be decreased to move backward to the 

minimum. There will be a gradient of slope for each weight. By repeating this 

process, E is moved 'downhill'until a minimum is reached, where at this time, no 

further progress is possible. 

There are two methods to update the weights of the network; batch gradient descent 

and incremental gradient descent. In batch gradient descent, the true gradient is 

usually the sum of the gradients caused by each individual training example. 

Therefore, batch gradient descent requires one sweep through the training set before 

any parameters can be changed. In incremental gradient descent, the true gradient is 
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approximated by the gradient of the cost function, which is evaluated on a single 

training example. 

The term 'batch learning' is used quite consistently in neural networks literature, 

which means that the weights are updated after the whole training examples being 

processed. However, the term 'incremental learning' is often used for on-line, 

constructive, or sequential learning, and sometimes it refers to 'pattern learning' and 
'instantaneous learning'. Incremental learning is used for learning that updates the 

weight after each training examples being processed (Sarle, 2002). It has been argued 

that incremental learning can be highly efficient for some large data sets when a 

good learning rate is selected. 

2.4.1.2 High Order Neural Networks (HONNs) 

High Order Neural Networks distinguish themselves from ordinary feedforward 

networks by the presence of high order terms in the network. In a great variety of 

neural networks models, neural inputs are combined using the summing operation. 
HONNs contain summing unit and product units that multiply their inputs. These 

high order terms or product units can increase the information capacity of higher 

order network in comparison to standard neural networks with summation units only. 

The larger capacity means that the same function or problem can be solved using 
higher order network that has fewer units. HONNs also make use of non-linear 
interactions between the inputs. The networks therefore expand the input space into 

another space where linear separability is possible (Pao, 1989). 

Although most neural networks models share a common goal in performing 
functional Mapping, different network architectures may vary significantly in their 

ability to handle different types of problems. For some tasks, higher order 

combinations of some of the inputs or activations may be appropriate to help form 

good representation for solving the problems. HONNs are needed because ordinary 
feedforward network like MLP cannot elude the problem of slow learning, especially 

when involving highly complex nonlinear problems (Chen and Leung, 2004). The 
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representational power of high order terms can help solving complex problems with 

construction of significantly smaller network whilst maintaining the fast learning 

(Leerink et al, 1995). 

A comprehensive discussion on HONNs will be included in Chapter 3. 

2.4.2 Recurrent Neural Networks (RNNs) 

Feedforward Neural Networks have been successfully used to solve problems that 

require the computation of a static function; i. e. function whose output depends only 

upon the current input, and not on any previous inputs. In the real world however, 

many problems cannot be solved by using static functions because the function being 

computed changes with each input received. 

Feedforward networks however have no way of influencing the processing of future 

inputs. This situation can be rectified by the introduction of feedback connections in 

the network. Network activation produced by past inputs can be cycled back and can 

affect the processing of future inputs. This allows the network to have knowledge of 

the past behaviour. To enable the architecture to learn a representation of time in 

data, Recurrent Neural Network (RNN) is used. 

Recurrent Neural Networks have been proposed to overcome these deficiencies in 

ordinary feedforward networks. A neural network is said to be recurrent if it 

possesses at least one feedback connection. RNNs are neural networks where the 

connections between the units form a directed cycle or looping. They must be 

approached differently than feedforward networks, both when analysing their 

behaviour and during training. RNNs behave chaotically where dynamical systems 

theory is used to model and analyse them. As stated by Kuan and Liu (1994), RNNs 

have a richer dynamic structure and they are similar to nonlinear time series models 

with moving average terms; the nonlinear Auto Regressive Moving Average models 
(ARMA). 
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RNNs have some notion on how the past inputs can affect the processing of current 
input, as well as a way of storing the past inputs. In other words, they have a memory 

of the past input and a way to use that memory to process the current input. 

Recurrence is achieved by feeding the network with a delayed version of the past 

observations, commonly referred to as a delay vector or tapped delay line. These 

recurrences enable the network to find out an appropriate internal state representation 

which allows the time series behaviour to be captured. With those internal dynamics, 

RNNs can learn sequences as time evolves and can response to the same input 

pattern differently at different times, depending on the previous input patterns as 

well. 

According to Kim (1998), there are multiple methods to present temporal 

information in the neural networks. These include: (1) creating a spatial 

representation of temporal pattern, (2) putting time delays into the neurons or their 

connections, (3) employing recurrent connections, (4) using neurons with activations 

summing inputs over time, and (5) using combination of the above. Above all, Kim 

in his work (1998) suggested that employing time delayed recurrences in the layered 

network is more efficient for temporal correlations and prediction than putting 

multiple time delays into the neurons or their connections. 

The RNN can be fully or partially connected. In a fully connected RNN all the units 

are connected recurrently, whereas in partially RNN the recurrent connections are 

omitted partially. Fully connected RNN uses unconstrained fully interconnected 

architectures and learning algorithms that can deal with time-varying input and/or 

output in non-trivial ways (Omlin and Giles, 1996). Fully RNN, as shown in Figure 

2.5, has feedforward and feedback connections in any order, all of which are 

trainable. The network can take on any arbitrary topology as any node in the network 

may be linked with any other nodes including the node itself. The only requirement 

to be made is that the network should has clearly defined input and output nodes. 
Omlin and Giles in their work (1996) used partially and fully RNNs to classify 

strings with arbitrary length. Meanwhile, research done by Moody et al (1998), used 
fully RNN model to perform a spatial delayed matching to sample task. 
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Figure 2.5: Fully-Connected RNN 

Partially RNNs are a type of feedforward networks with the incorporation of a unit 

called 'context unit', which stores the output from the hidden or output layers. The 

connections in the partially RNNs are mainly feedforward but include a carefully 

chosen set of feedback connections. This network has all its feedforward connection 

trainable, whereas the feedback connections are fixed. The recurrence in the 

partially RNNs allows the networks to remember cues from the recent past but does 

not appreciably complicate the structure and training of the whole network. There are 

several different models of partially RNNs. Examples of partially RNNs include the 

Jordan network (Jordan, 1986), and the Elman network (Elman, 1990). There are two 

kinds of local feedbacks in partially RNNs; the activation feedback (mainly applied 
in Elman network), and the output feedback (used in Jordan network). Figures 2.6 (a) 

and (b) shows the architectural of the Elman and the Jordan networks, respectively. 

The Elman network is a two-layer network with feedback from the hidden layer to 

the input layer, as depicted in Figure 2.6 (a). This recurrent connection allows the 

Elman network to both detect and generate time-varying patterns. The input layer is 

divided into two parts; actual input units, and context units. The context units are 

connected to the forward direction with weights fixed to unity and they are not 

trainable. The presence of this simple loop implies that the activations of the hidden 

units at time t can influence the activations of the hidden units at time t+]. The 

recurrent connections allow the network's hidden units to see its own previous 

output, so that the subsequent behaviour can be shaped by previous responses. These 

recurrent connections give the network memory. In order for the Elman network to 

22 



Chapter 2. - Neural Nelworkv 

have the best chance to learn a problem, it needs more hidden neurons in its hidden 

layer. 

( 
Input 

(a) 

Context Input 

(b) 

Figure 2.6: (a) Elman and (b) Jordan networks 

In the case of Jordan network, the architecture is realized by adding recurrent links 

from the network's output layer to a set of context units which form a context layer. 

Additionally, the context units are connected with each other and with themselves. 

This allows them to calculate their next state as a function of the current net output, 

their current state, and the current state of the other state units. The self connections 

in the context layer give the context units some individual memories or inertias. 

Hence, Jordan network can be trained to recognize and distinguishes different input 

sequences. Based on Figures 2.6(a) and 2.6(b), the following Equation (2.7) and 

Equation (2.8) hold for Elman and Jordan network respectively: 

Y(t) W)-X(t) 
X(t) f (WIIxc(t)+ wxuu(t)) (2.7) 

X'(t) = X(t - 1) 

Y(t) WYXX(t) 
X(t) f (Wxcxc(t) 

+ wxuu(t)) (2.8) 

Xc(t) = Y(t - 1) + a(X'(t - 1) 
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where Y(I) represents the network output at time 1, X(I) is the activations of hidden 

units at time i, A"(t) is the output of the context units at tirne 1,11(t) is the external 

input to the network at time t, a is the feedback gain of the self connection, W", ff", 

and r" are weights matrices, andfis a nonlinear transfer function. 
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Figure 2.7: A four-layered partially RNN 

Variations of simple RNNs can be defined by adding additional hidden layers and by 

changing the connectivity of the context layers. Another different type of partially 

recurrent network was developed by (Mozer, 1989) and is illustrated in Figure 2.7, 

has been tested for pattern recognition. The feedback connection shown in this figure 

originated from context unit to itself. The network's input layer consists of a small 

temporal buffer holding several elements of the input sequence. The connectivity in 

the context layer is restricted to one-to-one recurrent connection and the integration 

over time in the context layer is linear. The presence of the feedback loops in Figures 

2.5,2.6 and 2.7 have a profound impact on the learning capability of the networks 

and on its performance. 

A number of training algorithms for training RNNs have been proposed. Some of 

them are the Dynamic Backpropagation (Kuan, 1989), Real Time Recurrent 

Leaming (Williams and Zipser, 1989), and Backpropagation Through Time 

(Patterson, 1996). The fundamental difference between the Backpropagation 
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Through Time (BPTT) and the Real Time Recurrent Leaming (RTRL) algorithms 

can be expressed in the following way. While the BPTT algorithm will try to 

minimise the error over a sequence: 

minjE(n) 
wn 

(2.7) 

The RTRL algorithm will try to minimise the individual error terms of a sequence: 

I 
min 

[E(n)] 
nw 

(2.8) 

Recurrent Neural Networks have attracted great attention from the scientific 

community because they are useful for time series forecasting (Zhang and Chan, 

2000; Steil, 2006), approximating a dynamical system (Kimura and Nakano, 2000), 

forecasting a stream flow (Chang et al, 2004), and system control (Reyes et al, 2000). 

They have shown a considerable improvement in performance over ordinary 
feedforward networks and make efficient use of temporal information in the input 

sequence, both for classification (Jordan, 1986; Husken and Stagge, 2003) as well as 
for prediction (Kuan and Liu, 1994; Ho et al, 2002; Kim, 1998). As argued in (Gilde, 

1996), RNNs are more suitable for the analysis and prediction of time series since 
they can represent time dependencies in the data better than feedforward networks. 
They are believed to be able to represent complex dynamic system better than 
feedforward networks, and they could increase the precision of predictions and 
improve the possibilities to analyse time series. 

2.5 Chapter Summary 

Neural Networks have been shown to have a high parallel computational ability. 
They have the ability to learn and find optimal solution based on actual and desired 

output. The capability of neural networks to implement solutions without complete 
knowledge of the algorithms or data transformations makes them suitable to solve 

many real world problems. In practical applications, Neural Network is expected to 
be an interconnected network of many (possibly thousand) simple processing units. 
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The effectiveness of the network is expected to come about because of the 

complexity of the interconnections rather than through any particular clever 
behaviour of the individual neurons. 
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CHAPTER 3: HIGHER ORDER NEURAL NETWORKS 

3.1 Introduction 

This chapter discusses various types of Higher Order Neural Networks (HONNs), 

their learning algorithms, and their applications. Each type of networks has its own 

strengths and capabilities in input-output mappings, on various kinds of problems 

ranging from signal prediction, pattern recognition, time series forecasting, data 

classification, and etc. Three Higher Order Neural Networks models will be 

investigated in this research work; the Functional Link Neural Network (FLNN), the 

Pi-Sigma Neural Network (PSNN), and the Ridge polynomial Neural Network 

(RPNN). 

3.2 The Properties of HONNs. 

Neurons in an ordinary feedforward network is just a first order neuron, also called a 
'linear neuron' since it only uses a linear sum of its inputs for decision. This linearity 

provides a hyperplane for decision that limits the capability of the neuron to solve 

only linear discriminant problems (Guler and Sahin, 1994). 

It is well known that using single layer feedforward neural networks with first-order 

units can only provide linearly separable mappings (Minsky and Papert, 1969). One 

possibility to drop this limitation is by using multilayer networks with hidden units 

which can combine the outputs of previous units and give rise to nonlinear mappings 
(Hornik et al., 1989). The other way to overcome the restriction to linear maps is to 

introduce higher order units to model nonlinear dependences (Giles and 
Maxwell. 1987; Giles et al., 1998). 
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High Order Neural Networks (HONNs) are type of feedforward neural networks 

which have the combination of summing units and multiplicative units (product 

units) in the networks. In this research work, the HONNs' architecture is classified 

into three different groups, as shown in Figure 3.1. The networks provide nonlinear 
decision boundaries offering a better classification capability than the linear neuron 
(Guler and Sahin, 1994). A major advantage of HONNs is that only one layer of 

trainable weights is needed to achieve nonlinear separable, unlike the typical 

Multilayer Perceptron (MLP) or feedforward networks (Park et al., 2000). This 

results in faster training. The nonlinearity is introduced into the HONNs by having 

multi-linear interactions between their inputs or neurons which enable them to 

expand the input space into higher dimensional space. This lead to an easy separation 

of nonlinear separable classes where linear separability is possible or a reduction in 

the dimension of the nonlinearity is achieved. For example, the XOR problem could 

not be solved with a network without a hidden layer or by a single layer of first-order 

units, as it is not linearly separable. To demonstrate this, Figure 3.2 shows the XOR 

problem which has two inputs, and the 2 nd order HONN architecture. The same 

problem, however, is easily solved if the patterns are represented in three dimensions 

in terms of an enhanced representation (Pao, 1989), by just using a single layer 

HONN with second-order terms. The resulting linearly separable hyperplane which 
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allow the XOR inputs to be separated into two classes is plotted in a 3-dimensional 

space, as shown in Figure 3.3. 

X, X2 XIX2 Output 

0 0 0 0 

0 1 0 1 

1 0 0 1 

1 1 1 0 
41 

(a) 

X, X2 XIX2 

(b) 

Figure 3.2: (a) Truth table for XOR problem, (b) 2 nd order HONN with two inputs 

Figure 3.3: Linear separation of the input data for the XOR problem using 2 nd order HONN 

HONNs can achieve similar performance to that of standard multilayer neural 

network using a single layer of trainable weights (Park et al., 2000). They are simple 

in their architecture and require fewer numbers of weights to learn the underlying 

equation when compared to ordinary feedforward networks, in order to deliver the 

X, X2 XIX2 Output 

0 0 0 0 

0 1 0 1 

1 0 0 1 

1 1 1 0 
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same input output mapping (Lecrink et al.. 1995, Ules and Maxwell, 199T. Shin and 
Ghosh. 1995). As a result, they can learn faster since cach iteration of' the training 

procedure takes less time Wass and Radl, 1996). This makes them suitable models 
I'm complex problem solving Ahcre the ability to retrain or adapt to the new data in 

real time is critical (Pau and Phillips. 1995. Artyoniov and Pecht. 2005). 

On the other hand, high ordei- terms oi, product units in I IONNs call increase tile 

nif'ormation capacity ofneural nemorks in comparison to neural networks that Litilise 

summation units only (Yonghono et al., 2003)). A node in I IONNs model 

(particularly of type (a) and (c) frorn Fipure 3.1). could receive information from 

more than one nodes only via one weight connection, as this special criteria is never 

exist in MIT network. Figure 1.4(a) is an example of signal flow in original 

feedforward network where the first order correlation can transmit the information 

frorn only one node, node. j. to node i in the proceeding layer. Meanwhile in I IONNs, 

the third order correlation (Figure 3.4(b)) has simulated the interaction among 

several nodes (j, k, 1). giving the ability to the correlation. 11, A/ to transmit 

information from the product of three input terms. This is ho. v I IONNs with a 

combination of product units and Summation units can increase the information 

capacity compared to ordinary feedforward network. As a result, tile representational 

power of high order terms can help solving complex problems xvith the construction 

ot'significantly smaller network while maintainino fast learnino capabilities (Leerink 

et al., 1995). 

I) 

A) 
V 

? S4 

Figure 
-3 ). 4: (a) I" order weight correlation, (b) 3 id order weight correlation I 
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According to Patra and Pal (1995), since MLP structure is multilayered and the 

Backpropagation (13P) algorithm involves high computational complexity, this 

structure requires excessive training time for learning. Furthermore, the number of 

weights and in turns the training time increases as the number of layers and the nodes 
in a layer increases. In contrast, the HONNs structures are single layered of learnable 

weights and thus the training time will potentially be less than that of the MLP 

structure. 

HONNs are endowed with certain unique characteristics; stronger approximation 

property, faster convergence rate, greater storage capacity, and higher fault tolerance 

than lower-order neural networks (Wang et al., 2006). The networks have been 

considered as good candidate for invariance geometric transformation, due to their 

design flexibility for given geometric transforms, robustness to noisy and/or 

occluded inputs, inherent fast training ability, and nonlinear separability (Park et al., 
2000) 

3.3 Product Units in HONNs 

Standard neural networks models use a summation function 'E' which performs a 
linear weighted sum of the inputs. Apart from - the utilization of summing units, 
HONNs on the other hand, also make use of product terms '11'. Product units are 

normal neurons that are different from the most widely used neurons types in that 

they multiply their inputs instead of summing them. They were introduced by Durbin 

and Rumelhart (1989) to allow neural networks to learn multiplicative interactions of 

arbitrary degree. 

Multiplication is an arithmetic operation that, when used in neural networks, helps to 

increase their computational power (Schmitt, 2001-a). There are good reasons to 

explicitly apply multiplication in the network. For instance, empirical evidence is 

available and reported for the existence of exponential and logarithmic dendritic 

processes in biological neural systems, allowing multiplication and polynomial 

processing (Schmitt, 2001-a). Consequently, as argued in (Durbin and Rumelhart, 
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1990), in order to model biological neural networks, one should extend the standard 
MLP model with multiplicative or product units. Further, biological nets make use of 

nonlinear activation components in the form of axo-axonic synapses performing pre- 

synaptic inhibition (Neville et al., 2000). The simplest way of modelling such 

synapses and introducing increased node complexity is to use multi-linear activation, 

which is the node's activation is in 'higher order' nodes form (Rumelhart et al., 
1986), resulting the use of nonlinear activation components. 

According to Durbin and Rumelhart in their work (1989), there are various ways in 

which product units could be used in a network. One way is for a few of them to be 

made available as inputs to the network in addition to the original raw inputs (refer to 

Figure 3.1 (a)). Alternatively, they can be used as the output of the network itself 

(Figure 3.1 (b)). The other way of utilizing them is a whole hidden layer of product 

units, feeding into a subsequent layer of summing units (Figure 3.1 (c)). The 

attraction is rather in mixing both types of units; product unit and summing unit, so 

that product units are mainly used in a network where they occur together with 

summing units. 

Product units have been proven computationally more powerful than summing units 
in many learning applications. Networks with product units have increased 

information capacity and the ability to form higher-order combinations of inputs. 

Durbin and Rumelhart (1989) determined empirically that the information capacity 

of the product units (measured by their capacity for learning random Boolean 

patterns) is approximately 3N, compared to 2N of a network with additive units for a 

single threshold logic function, where N denotes the number of inputs to the network. 
There are many researches in the literature which show that a network with 

combination of summing unit and product units could possibly enhance the network 

performance (Leerink et al., 1995; Ismail and Engelbrecht, 2002; Schmitt, 2001-a; 

Sanzogni et al., 2000; Schmitt, 2001-b; Durbin and Rumelhart, 1989; Durbin and 
Rumelhart, 1990; Estudillo et al., 2006). 
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3.4 Types of HONNs 

This section introduces a few types of HONNs. These include the Functional Link 

Neural Network, Pi-Sigma Neural Network, and Ridge Polynomial Neural Network. 

Each one of them employs the powerful capabilities of product units with some 

combinations of summing units. With different strength and capabilities, a structure 

and characteristic of these networks is elaborated and discussed below, as well as 

their training algorithms and applications in use. 

3.4.1 Functional Link Neural Network (FLNN) 

FLNN was first introduced by Giles and Maxwell (1987) who referred to the network 

as 'Higher Order Neural Network'. Pao (1989) further analyzed the network, referred 

to them as Functional Link Neural Network. The network naturally extends the 

family of theoretical feedforward network structure by introducing nonlinearities in 

inputs patterns enhancements (Durbin and Rumelhart, 1989). These enhancement 

nodes act as supplementary inputs to the network, and effectively increase the 

dimensionality of the input vector. Hence the hyperplane generated by the FLNN 

provides greater discrimination capability in the input pattern space (Pao, 1989). In 

FLNN, the input information is increased without adding extra input patterns, 

nevertheless the representation has apparently been enhanced. The network can use 
higher order correlations of the input components to perform nonlinear mappings 

using only a single layer of units. 

Pao (1989) proposed two FLNNs models; the functional expansion model and the 

tensor (outerproduct) model. In the functional expansion model, the functional link 

acts on each node singly, in which it simply applies one or more univariate functions 

to each input. The input space is expanded by passing the inputs of the network to the 

univariate functions and including the output of those functions into the network 
input units. As illustrated in Figure 3.5 (a), each component of the input vector is 

enhanced by the functional link to yield the quantities fift), f2ft)... f, (k). The 

functions f(x) might simply be included (but are not limited to) logical (AND, OR, 
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XOR), trigonometric (sin, cos) and joint activations (XIX2, etc), such as x, X 1, X3, ..., or 

x, sin; Tx, coszx, sin2; rx, cos7rx, and so on, depending on the set of functions that one 

want to use. 

In the tensor or outerproduct model (refer to Figure 3.5 (b)), each component of the 

input pattern multiplies the entire input pattern vector. The functional link in this 

case generates an entire vector from each of the individual components. The effect of 

the nonlinear functional transform is to change the representation of the input pattern 

so that, instead of being described in terms of a set of components ýxjj, it is 

described as f xi , xi xj), where j ý: i, or as f Xi , Xi Xi, Xj Xi Xk I. where k ýJ ?: i, and so on. 

Therefore no new information has been added, but joint activations have been made 

available to the network. Such functional transforms greatly increase the number of 

components in terms of which the input pattern is described. 

Y 

a (nonlinear TF) (nonlinear TF) 

Output layer of Output layer of 
summing unit summing unit 

6b 

X, X2 X3 f(Xl) f(X2) f(X3) X, X2 X3 X1X2 X1X3 X2X3 X1X2X3 
Input enhancement using 
functional expansion 

Input enhancement using product ofinputs 

(a) (b) 

Figure 3.5: (a) The FLNN of type functional expansion model, (b) The FLNN of type tensor 
product model. 

Bias nodes are not shown here for reason of simplicity. 

Both models may be used simultaneously and in combination, as appropriate (Pao, 

1989). The outerproduct model truly introduced higher-order terms in the enhanced 

representation in the sense that some of these terms represent joint activations. In 

contrast, the functional expansion model merely expands the dimension of the 

representation space without introducing joint activations, and without involving any 
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interactions between inputs. However, with the functional expansion model, the 

responsibility lies to the user to choose an appropriate set of functions to deal with 

the problem at hand. Most nonlinear problems are complex and there is little 

information about them. Tbus the decision of choosing a good set of functions from a 

near infinite set of possibilities is difficult (Patra and Bos, 2000). One possible 

answer currently being explored is the use of evolutionary computation to select the 
function set (Sierra, 2001). 

On the other hand, the outerproduct model uses only joint activations between the 
inputs to expand the input space. Limiting the higher-order terms to joint activations 

avoids the problem of selecting which functions to use to expand the input space. 
Moreover, an interesting class of nonlinear transformations which transform the 

input pattern vectors into higher order tensors allows a direct representation of higher 

order correlations between input features, rather than forcing the network to discover 

these for itself. As a result, this research work only considers and explores the FLNN 

with tensor product. Therefore, in this thesis, occasionally the term 'Functional Link 

Neural Network' is used and regarded to the Functional Link Neural Network of type 

outerproduct model. 

FLNN calculates the product of the network inputs at the input layer, while at the 

output layer, the summation of the weighted inputs is calculated. The higher order 

terms in the network are generated from the raw inputs, and they are pre-computed 

via pre-processing of the input data. FLNN is said to be k-th order if it include 

products up to k input terms maximum. The network can be called a full n-th order if 

all possible products of all input components up to this order are presented. Figure 

3.1 (a) shows an example of third order FLNN with 3 external (raw) inputs xj, x2, and 

x3 and four high order inputs which are xjx2, xjx3, x2x3,. and xlx2x3 act as 

supplementary inputs to the network, making the total inputs of the network seven. 
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Below is the basic equation for calculating FLNN's outPut of 3" degree: 

Y=a WO+I: WiXi+I: I: W#XiXJ+EE2: WYkXiXjXk (3.1) 
iIJiJk 

where 'a' is a nonlinear transfer function, wo is the adjusted threshold, and wi, wy, 

wvk are adjustable weights that link the external inputs xh xj, xk, and also the high 

order inputs, XlXj, xjxk, xjxk, and xxxk to the output node. 

FLNN unfortunately suffers from the explosion of weights where the number of 

weights required to accommodate all high order correlations increase with the 

number of input dimension d, and the desired order of the network, k. A k-th degree 

of FLNN needs a total of. 

(d+i-l)=(d+k) 

Ik i-O 
(3.2) 

weights if all products of up to k components are to be employed (Shin and Ghosh, 

1995). A large number of free weights eliminate the advantages of quick training and 
low complexity that is the basis for using networks with higher-order terms. It is 

therefore necessary to restrict the number of input nodes and higher order terms in 

order to avoid the curse of dimensionality. For that reason, normally up to 2 nd or P 

order networks are considered in practice (Thimm, 1995; Kaita et al., 2002; Park et 

al., 2000; Pao, 1989). Furthermore, since the networks do not allow terms 

like XK (k > 1), a single layer FLNN is not capable of approximating some functions I 
well (Shin and Ghosh, 1995). 

Despite FLNN has one major drawback, the network is likely to solve problem in an 

elegant and simple manner. Learning in FLNN is often quicker, although this is 

highly dependent on the specific problem and implementation design. Since there is 

no hidden layer in the FLNN, the computational requirement is drastically reduced 

compared to that of MLP (Patra and Bos, 2000). As a consequence of simpler 

architecture, it has the ability to reduce computational cost in the training stage, 

whilst maintaining good performance of approximation (Mirea and Marcu, 2002). 

The reduced number of free weights compared with MLP means that the problems of 

over-fitting and local minima can be migrated to large degree. 
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3.4.1.1 Learning Algorithm of the FLNN 

Learning algorithm for Functional Link Neural Network used in this research work is 

based on the incremental backpropagation algorithm (Haykin, 1999). The Mean 

Squared Error function (MSE) is as follows: 

N 

EZ 
(dP-y p (3.3) 

P--l 

where superscript p denotes the p-th training example, dP is the target output, 

whereas YPhP is the network predicted output. 

The learning algorithm for FLNN can be divided into the following: 

For each training example, 
Calculate the output 
Functional Link Neural Network computes the output: 

U(WO +E WjXj + 
1: 

WjkXjXk +E WjklXjXkXl (3.4) 
i j, k J, k, l 

where a is a nonlinear transfer function, wo is the threshold, x is the 

component of input vector X, and w are the trainable weights. 

compute the benefit 8 at output node 

,8= 
(d, 

- yj )y, Q- yj 

om compute the weight changes 
Delta weight for FLNN is: 

=x 'd 
wi llp k 

o Update the weight 

W, + Awj 

Until termination condition is satisfied. 

(3.5) 

(3.6) 

(3.7) 
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3.4.1.2 FLNNs' Applications 

Functional Link Neural Networks have been successfully applied in variety of 

problems, such as system identification (Mirea and Marcu, 2002), pattern recognition 
(Kaita et al, 2002; Artyomov and Pecht, 2005), intelligent control (Patra and Bos, 

2000), process optimization (Cass and Radl, 1996), signal processing (Patra and Pal, 

1995), and optimal control (Pau and Phillips, 1995). 

A research to analyze the robustness problem in Fault Detection and Isolation (FDI) 

has been conducted by Chow and Teeter (1997). They proposed a generalized 

version of Dynamic FLNN (GDFLNN), which was used to perform the Heating, 

Ventilating and Air-Conditioning (HVAC) thermal system identification and 

modelling. In order to provide the FLNN with adequate internal memory, an Auto- 

Regressive Moving Average (ARMA) filter was placed either as a Local Activation 

Feedback or as a Local Output feedback. The research work successfully proved that 

using the proposed GDFLNN reduced the design time from several days to several 
hours for each designated model. 

Cass and Radl in their work (1996) used FLNN in process optimization and found 

that FLNN can be trained much faster than MLP without scarifying computational 

capability, which makes them more suitable in process modelling applications, where 
the ability to retrain or adapt to new data in real time is critical. Another research was 

constructed using FLNN that react invariantly under geometric transformations on 
the input space (Giles et al, 1998). The model has the advantage of inherent 

invariance, and only learned the desired signal. 

Mirea and Marcu (2002) investigated the development and application of an FLNN 

with internal dynamic elements to system identifications. The internal dynamic 

elements are auto-regressive moving average filters (ARMA) that implement local 

activation feedback and local output feedback. Empirical results suggested that the 

proposed model reveal better approximation and generalization with reduced training 

and evaluation time, compared to FLNN with static structure. Meanwhile, Pao 

(1989) has shown that there is a significant increase in the rate of leaming in the case 
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of FLNN in comparison with the generalized delta rule network, when used to learn 

the XOR problem. 

3.4.2 Pi-Sigma Neural Network (PSNN) 

Pi-Sigma Neural Network was first introduced by Shin and Ghosh (1991-b) to 

overcome the problem of weights explosion in FLNN. The network is a feedforward 

network with a single hidden layer and product units at the output layer. PSNN 

calculates the product of sum of the input components instead of the sum of products 

as in FLNN. 

The motivation was to develop a systematic method for maintaining the fast learning 

property and powerful mapping capability of single layer FLNN whilst avoiding the 

combinatorial explosion in the number of free parameters when the input dimension 

is increased. In contrast to FLNN, the number of free parameters in PSNN increases 

linearly to the order of the network. For that reason, PSNN can overcome the 

problem of weights explosion that occurs in FLNN which rise exponentially to the 

number of inputs. Shin and Ghosh (1991-b) argued that PSNN not only requires less 

memory (weights and nodes), but typically needs at least two orders of magnitude 
less number of computations as compared to the MLP for similar performance level, 

and over a broad class of problems. 

Figure 3.6 shows a PSNN with a single output. The network architecture of PSNN 

consists of two layers; the product layer and the summing layer. The inputs are 

connected to the summing layer by trainable weighted connections. The output from 

this layer is passed to the product unit (by non-trainable connections set to unity), 

which passes the signal through a nonlinear transfer function to produce the nýtwork 

output. For each increase in order, only one extra summing unit is required. The 

product units give the networks higher-order capabilities without suffering from the 

exponential increase in weights, which is a major problem in a single layer HONNs. 

The output of the PSNN is computed as follows: 
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(w 

ki 
Xk +Wjo) (3.8) 

IkI 

where Wkj are adjustable weights, ffýlo are the biases of the summing units, Xk is the 

input vector, K is the number of summing units (alternatively, the order of the 

network), N is number of input nodes, and 'a' is a nonlinear transfer function. 

h 

Adjustable i 

Fig. 3.6: Pi Sigma Neural Network of K-th order. 
Bias nodes are not shown here for reason of simplicity. 

Hidden layer of 
linear summing 

unit 

nputlayer 

It has a topology of a fully connected two-layered feedforward network. Since there 

are K summing units incorporated, it is called a K-th order PSNN. The number of 

summing units signifies the order of the network, i. e., a second order PSNN has two 

summing units, while a3 rd order PSNN has 3 summing units, and so on. In this case, 

Wk, from input Xk. to the j-th summing units is a trainable weight. The weights 

between the summing and the output layer are fixed to unity, and they are not 

trainable. For that reason, the summing layer is not -hidden" as in the case of MLP. 

Such a network topology with only one layer of trainable weights drastically reduces 

the training time. 

The structure of PSNN is highly regular in the sense that summing units can be 

added incrementally till an appropriate order of the network is achieved without 

over-fitting of the function, and without disturbing any connection established 
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previously. The order can be gradually increased until the desired low predefined 

error is reached. If multiple outputs are required, an independent summing layer is 

needed for each output. Thus, for an M-dimensional output vector y, and N- 

dimensional input vector x, a total of ZM 
, i-1 

(N + 1). K, weights connections are needed, 

whereK, is the number of summing units for the i-th output. This allows a great 

flexibility since all outputs do not have to retain the same complexity. The reduction 
in the number of weights as compared to FLNN allows PSNN to enjoy fast training. 

Ghosh and Shin in their work (1992) showed that PSNN requires fewer numbers of 

adjustable weights for the same degree and same N-dimensional of input and output 

as compared to FLNN. This structure avoids the combinatorial explosion of high 

order terms, which makes it superior to FLNN. 

A further advantage of PSNN is that there is no need to pre-compute the high order 

terms in order to feed them into the network. The network also able to learn in a 

stable manner even with fairly large learning rates (Ghosh and Shin, 1992). The use 

of linear summing units makes the convergence analysis of the learning rules for 

PSNN more accurate and tractable. The price to be paid is that the PSNN is not a 

universal approximator. 

PSNN combines the fast learning abilities of single-layered feedforward networks 

with the nonlinear mapping of higher order neural networks, while using much fewer 

numbers of units. Despite not being a universal approximator, PSNN demonstrated 

competent ability to solve many scientific and engineering problems, as discussed in 

section 3.4.2.2. 

3.4.2.1 Learning Algorithm of PSNN 

Learning algorithm for Pi-Sigma. Neural Network used in this research work is based 

on the gradient descent on the estimated Mean Squared Error (MSE), which is 

calculated as follows: 
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INp (dP 

P--l 
(3.9) 

where p denotes the p-th training data, dP is the target output, whereas 

YP = a(flj hf) is the network predicted output. 

The learning algorithm for PSNN can be divided into the following: 

For each training example, 
Calculate the output 
PSNN computes the output: 

ri 1 ,, (W, 
Xý + wi. 

j=l k=l 

* compute the benefit 8 at output node 

,8= 
(d, - y, )y, Q-y, ) 

compute the weight changes 
The delta weight is: 

m 

, Jwi = , fl H hj Xk (3.12) 
j*i 

o Update the weight 

W, = W, +, dW.. (3.13) iii 

Until termination condition is satisfied. 

3.4.2.2 PSNNs' Applications 

Previous research work found that PSNNs are good models for various applications. 

Shin et al (1992) investigated the applicability of PSNN for shift, scale and rotation 
invariant pattern recognition. Preliminary results for both function approximation 
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and classification are extremely encouraging, and showed a faster performance of 

about two orders of magnitude over backpropagation to achieve similar quality of 

solution. Another work of Shin and Ghosh (1991-a) has introduced a so-called 
Binary Pi-Sigma Neural Network with binary input/output and the hardlimiting 

activation function instead of continuous input/output and sigmoidal activation 
function. Simulation results demonstrated that for low leaming rates, the MSE 

always decreasing, indicating the stability of the asynchronous leaming algorithm 

used. On the other hand, for large problem sizes, perfect leaming was still achieved 

even with MSE ý: 1, indicating the difficulty of the underlying mapping problems. 

Ghosh and Shin (1992) used both analog PSNN (Shin and Ghosh, 1991-b) and 
binary PSNN (Shin and Ghosh, 199 1 -a) for classification and function approximation 

problems. Their results showed that PSNNs yield comparable or better results than 

single layer HONN, and when compared to the MLP, both PSNNs and single layer 

HONN performed much better in terms of giving correct solutions within a short 

training time. 

Hussain and Liatsis (2002) proposed a new Recurrent Polynomial Network for 

predictive image coding that explores both multi-linear interactions between the 

input pixel as well as the temporal dynamics of the image formation process. They 

have extended the architecture of ordinary PSNN to include a recurrent connection 
from the output to the input layer. The network does not suffer from a slow 

convergence rate and because of the feedback connections and the existence of high 

order terms, it can be applied to highly nonlinear problem. 

Knowles (2005) has investigated several types of HONNs including the PSNN for 

financial time series prediction. He has extended the use of PSNN in two different 

structures; the recurrent PSNN and the pipelined PSNN. Results showed that the 

pipelined PSNN is computationally more efficient than the ordinary pipelined 

recurrent network, as it maintain the same level of signal tracking abilities while 

using less weight. 
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3.4.3 Ridge Polynomial Neural Network (RPNN) 

Although Pi-Sigma Neural Network has shown to provide good results in 

classification and function approximation, the network however is not a universal 

approximator due to the utilization of a reduced number of interconnected weights. 
To evade this drawback, Shin and Ghosh (1995) have introduced the Ridge 

Polynomial Neural Network; a generalization of PSNN, and the network is a 

universal approximator. RPNN has a well regulated structure which is constructed by 

adding gradually more complex PSNNs, therefore preserving all the advantages of 
PSNN. 

Any multivariate polynomial can be represented in the form of a ridge polynomial 

and realized by RPNN whose output is determined according to the following 

equations (Shin and Ghosh, 1995): 
N 

f(x) =u1P, (x) 
i=I 

Pi (x) = 
h«X, 

wi) + wo) i=1 
j=I 

(3.14) 

where 'a' denotes a suitable nonlinear transfer fimction, typically the sigmoid 
transfer function, WjO are the biases of the summing units in the corresponding PSNN 

units, N is the number of Pi-Sigma blocks used (or alternatively, the order of the 

RPNN), and (X, W) is the inner product of weights matrix W, and input vector X, 

such that: 
d 

(X, W)=Lxiwi 

i=l 
(3.15) 

The details on the representation theorem to proof can be found in (Shin and Ghosh, 

95). 

RPNN can approximate any multivariate continuous functions on a compact set in 

multidimensional input space, with arbitrary degree of accuracy. In contrast to FLNN 
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which use multivariate polynomials that causes an explosion of weights, RPNN and 

PSNN utilize univariate polynomials which are easy to handle (Shin and Ghosh, 

1995). Similar to the PSNN, RPNN has only a single layer of adaptive weights. The 

structure of RPNN, as shown in Figure 33.7, is highly regular in the sense that pi- 

sigma units can be added incrementally until an appropriate order of the network or 

the desired low predefined error is achieved without over-fitting of the function. 

Y 

(; (non-linear TF) 

.................................. 
Summing layer 

.................. . ............................... . ................................. 
Product layer 

...... ... 40 

PSNN, PSNNk PSNNI 

:< 
Summing layer 

.............. ....... .... ........................ ......................................... ................................................ .................................. : 
/ 

wj 

C, ..................... 
.................... 

(: ý) 
< ...................... 

Inputlayer 

Figure 3.7: The Ridge Polynomial Neural Network of k-th order 
Bias nodes are not shown here for reason of simplicity. 

where k is the number of PSNN units used, h is summing unit (hidden unit) in each 

PSNN, and Wj are trainable weights. 

RPNN provides a natural mechanism for incremental network growth, by which the 

number of free parameters is gradually increased. Unlike other growing networks 

such as self-organizing neural networks (SONN) (Tenorio and Lee, 1990) and the 

group method of data handling (GMDH) (Ivakhnenko, 1971), in which their structure 

grow to any arbitrary number of hidden layers and nodes, RPNN has a well regulated 

architecture. 

As agued by Nikolaev and Iba in their work (2003), the constructive polynomial 

networks like GMDH and SONN do not attempt to improve the weights further once 
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the network is built. The reason is that the estimation of the network weights near the 
input layer is frozen when estimating the weights near the output layer, and the 

estimation of weights near the output layer does not influence the weights near the 
input layers. As a result, the network weights are not sufficiently tuned so that they 

are in tight interplay with respect to the concrete structure. Oh et at (2003) claimed 
that GMDH have some drawbacks; it tends to generate quite complex polynomial for 

relatively simple system, and also tends to produce an overly complex network when 
it comes to highly nonlinear system. 

While more efficient polynomial-based networks may be obtained through 
incremental growth procedures, the implementation requires extensive pre- 

processing and data analysis to develop such kind of networks (Ivakhnenko, 1971). 

RPNN does not require extensive pre-processing during the training. In 

circumstances where the complexity of the problem is not known in priori, RPNN is 

a good candidate to solve the problem. This is due to the fact that RPNN provides a 

natural mechanism for incrementally growing the networks until it is of appropriate 

size, and the network decides which higher order terms are necessary for the task at 
hand. 

3.4.3.1 Learning Algorithm of the RPNN 

Since RPNN is a generalization of Pi-Sigma Neural Network, they adopt the same 
learning rule. Referring to equation (3.14), it is shown that P, is obtainable as the 

output of a PSNN of order i. Therefore, the learning algorithm developed for the 

PSNN can be used for the RPNN, in addition to the constructive learning procedure 
(Shin and Ghosh, 1995). The algorithm can be divided into the following steps: 

1. Initialization step: RPNNI s order = 1. Assign suitable 

values for threshold r, learning rate n, dec r and dec n. 

2. For all training patterns, do: 

* Calculate actual network output 

* Update the weights asynchronously 

46 



Chapter 3: Higher Order Neural Networks 

3. At the end of each 

current epoch, e,. 

4. If e, < eth or t ý5' tthr 

* Stop the training 

5. Else do 

0 If I(ec-ep)lepl<r 

" Add higher 

" Reduce the 

" Reduce the 

" ep = e, 

" order = ori 

0t=t+1 

0 Go to step 

9 Else do 

0 

epoch, calculate the error for the 

order Pi-Sigma unit 

threshold r; r-r dec r 

learning rate n; nn* dec n 

der +1 

2 

ep = e,, 

Go to step 2 

where e, is the MSE for the current epoch, and ep is the MSE for the previous epoch, 

e1h is threshold MSE for the training phase, t is number of training epoch, and t1h is 

threshold epoch to finish the training. Notice that every time a higher order PSNN is 

added, the weights of the previously trained PSNN networks are kept frozen, whilst 

the weights of the latest added PSNN are trained. During the training, only the 

weights of the latest added pi-sigma unit are attuned asynchronously. The algorithm 

for the RPNN endows the network with a parsimonious approximation of an 

unknown function in terms of network complexity (Shin and Ghosh, 1995). 

3.4.3.2 RPNNs' Applications 

RPNNs have become valuable computational tools in their own right for various 

tasks such as pattern recognition (Voutriaridis et al, 2003), image prediction (Liatsis 

and Hussain, 1999), function approximation (Shin and Ghosh, 1995; Shin and 
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Ghosh, 1992; Voutriaridis, 2003), time series prediction (Tawfik and Liatsis, 1997), 

data classification (Shin and Ghosh, 1995), and intelligent control (Karnavas and 
Papadopoulos, 2004). Liatsis and Hussain (1999) have presented a new I -D predictor 

structure for Differential Pulse Code Modulation (DPCM) which utilizes Ridge 

Polynomial Neural Network. They found that, in the case of I-D image prediction, 
the 3d order RPNN can achieve high signal to noise ratio compression results. At a 

transmission rate of I bit/pixel, the I-D RPNN system provides on average 13 dB 

improvements in the signal to noise ratio over the standard linear DPCM and a9 dB 

improvement when compared to single layer HONN. 

Voutriaridis et al. (2003) examined the capability of RPNNs in pattern recognition 

and function approximation. They used features from the image block representation 

of the characters and traditional invariant moments to test the ability of RPNNs as 

object classifiers. Meanwhile, to examine the powerful of RPNNs as approximators, 

they tested the networks to a number of multivariable functions. Simulation results 
demonstrated that RPNNs can give satisfactory results with significantly high 

recognition rate when used in character recognition and act as reliable approximators 

when used in function approximation. 

The architecture of RPNNs has been tested successfully on a 4-carrier Orthogonal 

Frequency Division Multiplexing (OFDM) system (Tertois, 2002). The networks 

were placed in the receiver, and corrected the nonlinearities introduced by the 

transmitter's high-power amplifier. RPNNs in their work have shown good results in 

simulations and improved the performance of OFDM systems, or keep the same 

performance with lower power consumption. 

Shin and Ghosh in their work (1995) have tested the network with a surface fitting 

problem, the classification of high dimensional data, and the realization of a 

multivariate polynomial function. They highlighted the capabilities of RPNN in 

comparison to MLP, Cascade Correlation, and Optimal Brain Damage (OBD). Result 

showed that the RPNN trained with the constructive learning algorithm provided a 

smooth and steady learning. Simulation results indicated that RPNN used less 

computation and memory (number of units and weights). Unlike OBD and MLP, a 
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significant advantage of RPNN is that the structure of the network is automatically 
determined during the training by the network itself. 

RPNNs have also been tested for one step prediction of the Lorenz attractor and solar 

spot time series (Tawfik and Liatsis, 1997). The work proved that RPNNs have a 

more regular structure with a superior performance in terms of speed and efficiency, 

and shows good generalization capability when compared to Multilayer Perceptron. 

Karnavas and Papadopoulos (2004) presented a design of an intelligent type 

controller using PSNNs and RPNNs concepts for excitation control of a practical 

power generating system. Both PSNNs and RPNNs controllers demonstrated good 

performance over a wide range of operating conditions. Both networks offer 

competitive damping effects on the generator oscillations, with respect to the Fuzzy 

Logic Excitation Controller (FLC). They also emphasized that the hardware 

implementation for the proposed PSNNs and RPNNs controllers is easier than that of 
FLC, and the computational time needed for real time applications is drastically 

reduced. 

3.5 Chapter Summary 

This chapter has investigated the nature and application of Higher-order Neural 

Networks as nonlinear prediction models. The utilization of higher order terms 

within the neural networks structure has also been discussed. Three types of HONNs 

have been discussed extensively; the FLNN, the PSNN, and the RPNN- The 

networks are computationally efficient nonlinear network and are capable of 

complex nonlinear mapping between their input and output pattern space. The use of 
higher order terms allows the networks to expand their input space into higher 

dimensional space where linear separability is possible. In the next chapter, the 

Dynamic Ridge Polynomial Neural Network which is expanded through the addition 

of feedback loop into the RPNN will be introduced. 
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CHAPTER 4: DYNAMIC RIDGE POLYNOMIAL NEURAL 

NETWORK 

4.1 Introduction 

This chapter proposes a novel recurrent neural network architecture. The new neural 

network architecture incorporates recurrent links into the structure of the ridge 

polynomial neural network. Feedforward HONNs discussed earlier in Chapter 3 can 

only implement a static mapping of the input vectors. In order to model dynamical 

functions of the brain, it is essential to utilize a system that is capable of storing 
internal states and can implement complex dynamic system. Neural networks with 

recurrent connections are dynamical systems with temporal state representations. The 

dynamic structure approach has been successfully used for solving varieties of 

problems, such as time series forecasting (Zhang and Chan, 2000; Steil, 2006), 

approximating a dynamical system (Kimura and Nakano, 2000), forecasting a stream 
flow (Chang et al, 2004), and system control (Reyes et al, 2000). Motivated by the 

ability of recurrent dynamic systems in real world applications, the proposed 
Dynamic Ridge Polynomial Neural Network (DRPNN) architecture has been used in 

this research work. 

4.2 The Properties and Network Structure of DRPNN 

In linear system, the use of past inputs values creates the Moving Average (MA) 

models. Meanwhile, the use of the past outputs values creates what is known as the 

Autoregressive (AR) models. Feedforward neural networks were shown to be a 

special case of Nonlinear Autoregressive (NAR) models, on the other hand Recurrent 

Neural Networks (RNNs) were shown to be a special case of Nonlinear ARMA 

models (NARMA). This means that RNNs have moving average components, 

therefore showing advantages over feedforward neural networks, similar to the 

advantages in which ARMA model posses over AR model (Connor et al., 1994). 

so 
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Hence, RNNs are well suited for time series that posses moving average components 
(Connor et al., 1994). 

Applications in forecasting and signal processing require explicit treatment of 
dynamics. Feedforward RPNN can only accommodate dynamic systems by including 

past inputs and target values in an augmented set of inputs. However, this kind of 
dynamic representation does not exploit a known feature of biological networks, that 

of internal feedback. The behaviour of the financial signal itself related to some past 
inputs on which the present inputs depends. DRPNN, on the other hand, incorporates 

a recurrent connection, and as a consequence of this feedback, the network outputs 
depend not only on the initial values of external inputs, but also on the entire history 

of the system inputs. Hence, the introduction of recurrence feedback in the ordinary 
feedforward RPNN is expected to improve the input-output mapping. This relates to 

the fact that the proposed DRPNN has the capability of having a memory to solve the 

underlying task and exhibiting a rich dynamic behaviour. 

The rational of placing the recurrent connection from the output layer back to the 

input layer in the proposed DRPNN is that instead of learning with complex and 
fully connected recurrent architectures, redundant connections should be eliminated 
in order to significantly increase the network's generalization capability. This 

architecture is similar to the Jordan recurrent network (Jordan, 1986). The 

feedforward part of Jordan network is a restricted case of a non-linear AR model, 

while the configuration with context units fed by the output layer is a restricted case 

of non-linear MA model (Beale and Jackson, 1990). From this, the proposed DRPNN 

which has the feedback connection from the output layer to the input layer is seen to 

have an advantage over feedforward RPNN in much the same way that ARMA 

models have advantages over the AR. 

The structure of the DRPNN is constructed from a number of increasing order of Pi- 

Sigma units with the addition of a feedback connection from the output layer to the 

input layer. The feedback connection feeds the activation of the output node to the 

summing nodes in each Pi-Sigma units, thus allowing each building block of Pi- 

Sigma unit to see the resulting output of the previous patterns. In contrast to RPNN, 
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the proposed DRPNN, as shown in Figure 4.1 is provided with memories which give 

the network the ability of retaining information to be used later. All the connection 

weights from the input layer to the first summing layer are learnable, while the rest 

are fixed to unity. 

y(n) 
n(non-linear TF) 

< Summing layer 

..................... ............. ........... . ............. ............ ...... Product layer 
PSNN2 P. SNNk PSN141:,: 

............... ....... .... Summing layer 

. ............. ...... ............. 

wij 71 
4 410 

..................... 
41P 

................... 
400 

< ................ 
Inputlayer 

Figure 4.1: Dynamic Ridge Polynomial Neural Network of k-th order 
(Bias nodes are not shown here for reason of simplicity) 

Suppose that M is the number of external inputs U(n) to the network, and let y(n- 1) to 

be the output of the DRPNN at previous time step. The overall input to the network 

are the concatenation of U(n) and y(n-1), and is referred to as Z(n) where: 

Zi(n) = 
Ui (n) if I<i<m 

y(n - 1) i=M+l 

The output of the k1h order DRPNN is deten-nined as follows: 

k 

y (n) u P, (n) 

P, (n) lý(h, (n» 
11 
Af 1 

h, (n) 2: W, 
., /Z, 

(n) + WJ() 
11 

(4.1) 

(4.2) 
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where c; (. ) is a suitable nonlinear activation function, k is the number of Pi-Sigma 

units used, Pj(h) is the output of each PSNN block, hj(n) is the net sum of the sigma 

unit in the corresponding PSNN block, Wj, is the bias, cr is the signioid activation 
function, and n is the current time step. 

4.3 Learning Algorithm of DRPNN 

The DRPNN uses a constructive learning algorithm based on the asynchronous 

updating rule of the Pi-Sigma unit. The network adds a Pi-Sigma unit of increasing 

order to its structure when the relative different between the current and the previous 

errors is less than a predefined threshold value. DRPNN follows the same training 

steps used in feedforward RPNN, in addition to the Real Time Recurrent Learning 

algorithm (Williams and Zipser, 1989) for updating the weights of the Pi-Sigma unit 
in the network. A standard error measure used for training the network is the Sum 

Squared Error: 

e (n) 

The error between the target and forecast signal is detennined as follows: 

e(n) = d(n) - y(n) 

where d(n) is the target output at time n, y(n) is the forecast output at time n. 
At every time n, the weights are updated according to: 

LE Ji i) A Wk, (n) =- a Wki 

where q is the leaming rate. 

(4.3) 

(4.4) 

(4.5) 
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The value 

(a 

WkI 
is determined as: 

aE(n) 
e(n) (4.6) 

awn 0 Wkl 

ay(n) 
_ 

ay(n) a P, (n) 
(4.7) 

a Wv aP, (n) a Wkl 

where 

ay(n) ki 

t9P, (n) 
P (n) hj (n) (4.8) 

j=l 
pti 

and 

aP, (n) o5y (n - 1) 
--I .= WY + Z, (n) 6ik (4.9) 
a Wkl Wkl 

where 6, k is the Krocnoker delta. Assume D as the dynamic system variable (the 

state of the e neuron), where D is: 

Oy(n) 

'0 Wkl (4.10) 

The state of a dynamical system is formally defined as a set of quantities that 

summarizes all the infon-nation about the past behaviour of the system that is needed 
to uniquely describe its future behaviour (Haykin, 1999). Substituting Equation (4.8) 

and (4.9) into (4.7) results in: 

o'y(n) D,, (n) = =f IP, (n))x llhj(n) (WUDU(n-l)+Zj(n)i5jk) 
(4.11) a Wkl 

i=l j=l 
\, j; ti 

wherefo is the first derivative of a nonlinear activation function. 

For simplification, the initial values for DO(n-])=O, and Zj(n-l)=0.5. Then the 

weights updating rule is 
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A W, (n) = qe(n)D, (n) + ocA W, (n - 1) 
(4.12) 

W, (n+]) = W, (n)+AW,, (n) 

where Wy are adjustable weights and A Wy are total of weight changes. 

4.4 Issues of Stability in DRPNN 

While Recurrent Neural Networks have matured into a fundamental tool for solving 

many real world problems such as time series forecasting, approximating a 
dynamical system, forecasting a stream flow, string classification, character 

recognition, and system control, major difficulties for their application still remain. 
These are the known high numerical complexity of the training algorithm and the 
difficulties in assuring stability (Steil, 2005). In RNNs, the internal state evolves in 

time according to certain nonlinear state equations until it goes to equilibrium, or 

possibly other types of behaviour such as periodic or chaotic motion could occur 
(Atiya, 1988). However, one would be interested in having a steady and fixed output 
for every input applied to the network. Therefore, beginning in any initial condition, 
the state should ultimately go to a unique equilibrium. It is in fact that equilibrium 

state that determines the final output. The objective of the leaming algorithm is to 

adjust the parameters of the network into small steps in order to move the unique 

equilibrium state in a way that will result finally in an output as close as possible to 

the required one. Since weight adjustment affects the evolution of states at every 
time steps during the network training, obtaining the error gradient is rather a 

complicated procedure (Atiya, 2000). This is due to the tendency of the network to 

become unstable. 

One of the most useful properties of networks with recurrent connection is their 

ability to model the behaviour of arbitrary dynamical system. Hence, the existence of 
feedback in the proposed DRPNN is expected to improve the performance of a given 

network. Despite the potential and capability of the DRPNN which comprises the 

recurrent connection, the same problems of complexity and difficulty of training the 

network exist in the proposed DRPNN, which are: 
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0 The states of the processing elements, denoted by Dy in Equation 4.10, affect 
both the output and the gradient. Therefore, calculating the gradients and 

updating the weights of a recurrent network is much more difficult. 

0 The network is more difficult to train than ordinary RPNN. This relates to the 
fact that the training algorithm could become unstable which is the result of: 

- the error between the target and the output of the DRPNN may not be 

monotonically decreasing, 

- the gradient computation is more complicated, 

- and the convergence time may be long. 

In an attempt to overcome the stability and convergence problems in the proposed 
DRPNN, the convergence of DRPNN is presented in section 4.5 to ensure that the 

network posses a unique equilibrium state. 

4.5 The Stability Condition for DRPNN 

Based on the stability theorem for a general network proposed by (Atiya, 1988) and 

shown in Equation 4.13, any network that satisfies this theorem exhibits no other 
behaviour except going to a unique equilibrium for a given input: 

max(ýY 
(4.13) 

where w is the weight matrix and f is the first derivative of a bounded and 
differentiable activation function. 

From the given theorem, a unique fixedpoint is reached regardless of the initial 

condition. This means that for a given input, after a short transient period, the 

network will give a steady and fixed output, no matter what the initial network state 

was. In other words, beginning with any initial conditions, the state is to be attracted 

towards a unique equilibrium. In order to guarantee that the proposed DRPNN shows 

a unique equilibrium state, a derivation of the stability convergence of the proposed 

network will be presented. 
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Let y, (t+ 1) and y2(t+ 1) be 2 outputs for the DRPNN. 

Ak 

(4.14) nhIL (t + 11 
k=l L=l 

wheref is a nonlinear transfer function. 

Ak 

Y2(t+l)-=f 
1: 1ih2L(t+l) 

k=l L=l 

m 
hIL (t + 1) = 

I;.. 
awLiXi + WL(M+I) +WL(M+2)YI 

(4.16) 
i=l 

aL + PLYI (t) 

with 
m 

aL --= 
JWLA + WL(M+I) (4.17) 
i=l 

and 

)6L --': 
WL(M+2) (4.18) 

while 
m 

h2L(t+')'*"': J: WLA +WL(M+I) +WL(M+2)Y2(t) 
(4.19) 

i=l 
aL + PLY2 (t) 

The aim is to get J approaching '0', which means that the 2 outputs of a given input 

are close. 

Let J(t+l) be: 

At + 1) -': 
Ilyl (t + 1) - Y2 (t + DII (4.20) 

where 11 11 is the norm. Based on Mean Value Theorem (O'Connor and Robertson, 

2000), which states that for a functionf(k) which is continuous on the closed interval 

[a, b] and differentiable on the open interval (qb), there exists a value c on the 

interval (a, b) such that 

P(C) =f 
(b) f (a) 

(4.21) 
b-a 
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wheref is the derivation of the function. Hence 

f(b) - f(a) = f(c) o (b - a) (4.22) 

and 
11f(b) 

- f(a)ll = Ilf'(c)ll o Ilb - all (4.23) 

which leads to 
11f(b) 

- f(a)11: 5 maxllf '(c)ll e Ilb - all (4.24) 

substituting Equation (4.14) and (4.15) into Equation (4.20), results into 

AkAk 

J(t + 1) f 1: rIhIL (1 + 1) f 1: rlh2L (t + 1) (4.25) 
k=l L=l k=l L=j 

using Mean Value Theorem, leads to 
AkAk 

1] 1 IhIL (t + 1) 1] 
2L 

(t + ff Hh 
k=l L=l k=l L-1 

(4.26) 

0 Ih 1) 
, <maxlf'l Z- 1] nh 

_, 

I 
IL 

(t + 
2L 

(t + 

k=l L=l k=l L-1 

therefore, from Equation (4.25), Equation (4.26) becomes 

AkAk 

J(t + 1) <maxlf le 1] + 1) 
- 

(4.27) 
.dI 

1h HhIL (t 2] 
2L (t + 

k=l L=l k=l L=l 

from Equation (4.14) & (4.16), let g(y) be 

J(aL + )6L Y) g(y) 

Ak 

k=l L=l (4.28) 
2]rlhL(t+1) 
k=l L=l 

hence 

AkAk 
y 

,1 
lh, 

L(t+')-E 
rjh2L (t + 1) = 

119(y. (0) 
- 

AY2 (O)l (4.29) 
k=l L=l k=l L=l 

using the Mean Value Theorem again, leads to: 
119(yl (0) - 

AY2 (O)l -<-MaX191 * JJYI (t) - Y2 (Oll (4.30) 

hence, from Equation (4.27), ( 4.29) & (4.3 0), results into: 

At + 1) <'ýMaXlf 'I) * 
(MaXlg'l)'o JJYI (t) - Y2 (Oll (4.31) 
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let 6 be 

8= (max If '1) 9 
(max Ig'I) 

then 

(4.32) 

J(t + 1) :! ý; 5-11YI (t) - Y2 (Oll (4.33) 

from Equation (4.20), Equation (4.33) becomes 

J(t + 1) :! ýaj(t) (4.34) 

The aim is to get both J(t+l) and J(I) approaching very close to zero, and for large 

(t), and for any value of (t). To achieve this, & has to be very small value, which is 

less than 1. Hence, from Equation (4.32), when 6 is < 1, leads into: 
(maxjf'j)* (maxIg'j) < (4.35) 

from Equation (4.28), g(y) will be 
Ak 

9(y) I I(aL + PLY) (4.36) 
k=l L=l 

let P(y) be 
k 

P(Y) 11 (ClL +PLY) (4.37) 
L=l 

then 
AAk 

P(Y) IMCýL + )6L Y) (4.38) 
k=l k=l L=l 

therefore 
A 

g(y) > 'P(Y) (4.39) 
k=l 

and 
A 

(g(y)) 1], P'(Y) (4.40) 
k=l 

from Equation (4.37) 
k 

ln(P(y)) =L ln(t7L + JOL Y) (4.41) 
L=l 

and 
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P'(Y) k PL ý 
(aL +, 8LY) P(Y) 

L=l 

hence 
k 

P(Y) = P(Y). #8L 

L=l 
(aL + flLY) 

substitute Equation (4.37) into Equation (4.43), having 
kk 

JOL P'(y) = 
11(aL +, 
L=l 
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substituting Equation (4.47) into Equation (4.40), results into 
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(4.42) 
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(4.44) 

(4.45) 

(4.46) 

(4.47) 

(4.48) 

(4.49) 

(4.50) 
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hence 
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note that from Equation (4.18) and Equation (4-5 1) results 
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Akk M+2 

(g(yV I: zd IWL(M+2)1'0 IIE 
Smi 

k=l L=l S=l M=l 
S*L 

substituting Equation (4.56) into Equation (4.35), we get 
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therefore, the condition for DRPNN to converge is described by 
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(4.51) 
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(4.56) 
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This work guarantees the stability of DRPNN for the equilibrium problem. The 

resulting condition will further be applied in the network training, which will be 

discussed later in Chapter 6. 

4.6 Chapter Summary 

In this chapter the Dynamic Ridge Polynomial Neural Network was presented as an 

extension of the ordinary feedforward Ridge Polynomial Neural Network. In order to 

represent a dynamic system, the functionality and architecture of the feedforward 

RPNN were extended by adding a feedback connection into the network. 
Subsequently, the stability and the convergence of the proposed network were 
implemented to ensure having steady and fixed output. 
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CHAPTER 5: FINANCIAL TIME SERIES FORECASTING 

5.1 Introduction 

Forecasting a time series is a common problem in many domains of science, and this 

has been addressed for a long time by scientists (Senjyu, 2002; Zurnbach, 2001; 

Masters, 1993). This chapter aims at introducing the fundamentals of financial time 

series prediction, addressing the difficulties and comparing neural networks and 

traditional forecasting approaches, particularly to the prediction of financial market. 
A review on literature detailing the practical applications of neural networks in 

financial time series prediction is presented. 

5.2 Time Series and their Properties 

Time series generally refers to a sequence of data points, of any data series measured 

typically at successive times, spaced at time intervals. Practically, it is a collection of 
historical data of one system, such as a stock price, traffic data, and the pollution 

rates. A time series can be used in two ways for different purposes: 

* Looking backward - the use of historical data to analyze the previous behaviour 

of a system. Applications include diagnosis or recognition of machine fault or 

human disease. 

e Looking forward - the use of data to predict or forecast the future behaviour of a 

system. Applications include stock or price prediction and market demand 

forecast. 

Time series analysis comprises methods that attempt to understand the behaviour of 

such time series, often either to understand the underlying theory of the data points, 

or to make forecasts. Time series forecasting is the use of a model to predict future 

events or future data points based on known past events. It is a process that produces 

a set of outputs by a given set of historical variables. Forecasting assumes that future 
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occurrences are based on present or past events, in which some aspects of the past 

patterns will continue into the future. Past relationship can then be discovered 

through study and observation. In other words, time series forecasting is to discover 

the relationship between present, past and future observations. According to 

Plummer (2000), the aim of time series forecasting is to observe or model the 

existing data series which can be in the form of financial data series (stocks, indices, 

exchange rates, etc), physically observed data series (sunspots, weather, etc), and 

mathematical data series (Fibonacci sequence, integrals of differential equations, 

etc). 

Time series forecasting takes an existing series of data X, 
-,,, 

X, 2s Xjs Xt and 

forecasts Xl+,, Xt+2, -.... data values. Theoretically, these series can be seen as a 

continuous function of time variable t. For practical purposes, however, time is 

usually viewed in terms of discrete time steps. The size of the time interval depends 

on the problem at hand, and can be anything from milliseconds, hours to days, or 

even years. If the time series contain only one component, it is called a univariate 

time series; otherwise it is a multivariate time series. In a univariate series, the input 

variables are restricted to the signal being predicted, while in multivariate series, the 

raw data come from a variety of indicators which will form the actual inputs 

variables (Kaastra and Boyd, 1996). In a multivariate series, any indicator whether or 

not it is directly related to the output can be incorporated as the input variable (Cao 

and Tay, 2003). 

5.3 Financial Time Series 

Financial time series are among the best application domains for intelligent 

processing and advanced learning techniques (Magdon-Ismail et al., 1998). Financial 

time series has an economic interest to predict the financial value at some time in the 

future. This is because once the prediction of returns is successful, monetary rewards 

will be substantial. 
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Financial time series are available in different time scales; daily, hourly, or tick-by- 

tick stock prices of exchange rates, and they are simultaneously available in many 
different markets. The distances between point to point in the financial time series 
depend on the activity in the market. If there is a lot of action in the market, the price 

changes more often and frequently than during quite periods. These stock market 
fluctuations are the result of complex phenomena and their affect are translated into a 
blend of signs and losses that appear in stock price time series plot (Sitte and Sitte, 

2000). The most noticeable variations are: trend, periodic variations and day-to-day 

variations. The trend is an identifiable long term variation in the stock market time 

series, while the periodic variations follow either seasonal patterns or the business 

cycle in the economy. Short-term and day-to-day variations appear at random and are 
difficult to predict, but they are often the source for stock trading gains and losses, 

especially in the case of day traders (Sitte and Sitte, 2000). 

Financial time series data can be categorized into three categories; technical data, 

fundamental data, and derived entities (Hellstrom and Holmstrom, 1998): 

5.3.1 Technical data 

As reviewed by Kaastra and Boyd (1996), technical data are defined as lagged values 

of the dependent variable. The term 'lagged' means an element of the time series in 

the past. For example, at time t, the values y(t-1), y(t-2),.., y(t-p) are said to be lagged 

values of the time series y. Meanwhile, the term 'dependent variable' signifies the 

variable whose behaviour is being predicted. Technical data includes figures such as 

stock prices, volume, volatility, and etc. Typical types of daily technical data are as 
follows (Hellstrom and Holmstrom, 1998): 

" Closing price (price of the last performed trade during the day) 

" Highest traded price during the day 

" Lowest traded price during the day 

" Volume (total number of traded stock during the day) 
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5.3.2 Fundamental data 

Fundamental data are economic variables which are believed to influence the 

dependent variable (Kaastra and Boyd, 1996). These are data describing current 

economic activity of the company whose stock prices are to be predicted. 
Fundamental data include information about current market situation as well as 

macroeconomic parameters, such as inflation, unemployment rate, and etc 

(Hellstrorn and Holmstrom, 1998). 

5.3.3 Derived Entities 

Derived entities are produced by transforming and combining technical and 

fundamental data such as the following (Hellstrorn and Holmstrom, 1998; Yao and 

Tan, 2001): 

" The k-step returns which can be interpreted as the k-day price trend for the stock: 

R(I) = 
y(t) - y(t - k) 

y(t - k) 

" The log-retum 

R(I)= log - 
Y(t) 

Y(t - 1) 

where y(t) is the price or value at time t. 

In most cases, the most obvious types of data selected to predict time series is the 

returns (Chenoweth and Obradovic, 1995; Franses, 1998). Hellstrom and Holmstrom 

in their work (1998) argued that both of these derived entities are often used for 

financial time series prediction for the following reasons: 

R(t) has a relative constant range even if data for many years are used as inputs. 

The raw prices normally fluctuate very much and make it difficult to create a 

valid model for a longer period of time. Returns also fluctuate slightly, but they 

do so within approximately the same boundaries, and remain on the same scale. 

66 



Chapter 5: Financial Time Series Forecasting 

* R(t) for different stocks may also be compared on an equal basis. 

It is easy to evaluate prediction accuracy by computing the correct sign 

prediction of R(t). 

5.4 The Prediction of Financial Time Series 

The Prediction of financial time series is very difficult and a nontrivial problem since 
it depends on several known and unknown factors, and frequently data used for the 

prediction is noisy, uncertain and incomplete. The series are affected by many highly 

correlated economic, political and even psychological factors. Several difficulties can 

arise when handling time series forecasting, and as a result it has been suggested that 

some financial time series are not predictable (Schwaerzel, 1996). 

The prediction of financial time series attracts interest due to its difficulty in practical 

application. They have a number of properties, which make the prediction 

challenging. Depending on the type of data series, a particular difficulty may or may 

not exist; among them are (Plummer, 2000): 

1. Limited quantity of data. 

Limited data may be the most difficult problem in financial time series 

prediction. In order to form a more accurate model, it is desirable to use as 
large training set as possible. However, such large data is not always possible. 

2. Noisy behaviour. 

Financial data are characterized as noisy data in which large amount of random 

and unpredictable day-to-day variations exist. 
3. Non-stationary properties. 

Most financial data is non-stationary in nature, meaning that the statistical 

properties (e. g. mean and variance) of the data change over time. These 

changes are caused as a result of various business and economic cycles. 
4. Outliers data. 

Values that do not appear to be consistent with the rest of the data set. They are 

correct but extremely unusual observations. 
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S. Random events. 
Many random and unpredictable events will occur which will affect the time 

series that need to be predicted. When major events occur, the fluctuation of the 
time series will increase for a short period. Meanwhile, small events will not 
affect the variable in a recognizable way, rather they will become part of the 
background noise of the signal which makes it more difficult to extract 
meaningful information. Such events come in two categories (Knowles, 2005): 

9 Economic news such as announcements of interest rate changes, 
unemployment figures, takeovers, etc. 

* Non-economic events, which still have effects on the economic climate, 

such as elections, natural disasters, terrorist acts, etc. 

Financial time series prediction is an interesting problem to traders and individuals. 

Researchers and practitioners have been striving for an explanation of the movement 

of financial time series. To maximize profits from the liquidity market, forecasting 

techniques have been used by different traders. Assisted by powerful computer 
technologies, traders no longer rely on a single technique to provide information 

about the future of the market. Thus, various kinds of forecasting methods have been 

developed by many researchers and experts (Yao and Tan, 2000). From statistical to 

artificial intelligence, there are various choices of techniques which can be used to 

make a forecast. The traditional methods for financial time series forecasting are 
based around statistical approaches. Nevertheless, none of these methods are 

completely satisfactory due to the nonlinear nature of most of the financial time 

series (Hussain et al., 2006-a). Other more advanced techniques such as Support 

Vector Machine (Cao and Tay, 2003), genetic algorithm (Zumbach, 2001; Thomas 

and Sycara, 1999; Allen and Kaýalainen, 1999; Dunis et al., 1999), fuzzy logic 

(Abraham et al., 2001), and neural networks have been used for financial time series 

prediction. 

Time series forecasting is perhaps the most useful and exciting application of neural 

networks. The objective is to discover the underlying structure of the mechanism 

generating the data and to find an appropriate model which can simulate the data 
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generation process. Figure 5.1 gives a basic architecture of a neural network as a 

time series predictor. 

X(t-n) 
....... 

X(I-2) x(I-1) X(t) 

Figure S. 1: A general method of performing time series prediction with n inputs, 
where F(S) is the activation function, X(, ) are the input vectors, 
and X(I+ 1) is the predicted output. 

Forecasting the behaviour of the financial market using neural networks is 

problematic. Multiple decisions, each of which affects the performance of the neural 

networks forecasting model, must be made, including which data to use, the size and 

the architecture of the neural network systems (Zhang, 2003). Some of the 

difficulties of using neural networks in financial time series applications are: 

ip There are infinitely many models which fit the training data well, but few of them 

generalize well. Supplementary degrees of freedom may lead to a better fitting of 

the model during the training of the network, but to worse generalization ability 

on the out-of-sample data (Lendasse et al., 2000). 

e In order to form a more accurate model, it is desirable to use as large training set 

as possible. However, for the case of highly non-stationary data, increasing the 

size of training set results in more data with statistics that are less relevant to the 

task at hand being used in the creation of the model. 

e The high noise and too many parameters (compared to the number of data 

available) make the models prone to overfitting (Lendasse et al., 2000; Dorffher, 

1996). 
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* Require large number of sample data, due to their large number of free 

parameters (Dorffher, 1996). The limitation exists for the problems that some 

new founded companies do not have much of the previous data. 

5.5 Conventional Prediction Methods and Neural Networks 

Conventional statistical methods have been widely used to model the behaviour of 
financial time series and to forecast future values for time series (Dunis and 
Williams, 2002). Among them are Moving Average (MA), Auto Regressive model 
(AR), Auto Regressive Moving Average (ARMA) and exponential smoothing 
(Hussain et al., 2006-a). Although conventional statistical methods are perfect choice 

of modelling a lot of time series, they are not capable of modelling many time series 

generated by nonlinear systems, even if the underlying system is relatively simple 
(Gilde, 1996). These models are linear while most financial time series data show 

significant degrees of nonlinearity. Hence, they fail to capture the nonlinearities 

characteristic of financial time series. 

Over the past few years, neural networks have been widely advocated as a new 

alternative modelling method to more traditional econometric and statistical 

approaches, claiming increasing success in the fields of economic and financial 

forecasting (Dunis and Huang, 2002). This has resulted in many publications 

comparing neural networks with traditional forecasting methods (Yumlu et al., 2005; 

Ho et al., 2002; Dunis and Williams, 2002; Dunis and Huang, 2002; Shachmurove 

and Witkowska, 2000; Yao and Tan, 2000; Yao et al., 1996; Moody, 1995; Kuan and 
Liu, 1995) and many more. 

Kuan and Liu in their work (1995) showed that neural network models can describe 

in-sample data (training data) quite superior and that they also generate 'good' out- 

of-sample forecasts. Neural networks can tolerate noise and chaotic components 
better than most other methods (Masters, 1993). They promise attractive features to 

business forecasting, outperforming conventional statistical approaches (Yumlu et 

al., 2005; Gradojevic and Yang, 2000; Franses, 1998; Yao et al., 1996; Yao and Tan, 
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2000; Dunis and Huang, 2002; Ho et al., 2002). Because of the high volatility, 

complexity, nonlinearity, and noise market environment, neural network techniques 

usually are the prime candidates for prediction purposes when compete with 

statistical techniques (Leung et al., 2000; Dunis and Williams, 2002). 

According to Refenes et al. (1994, cited by Yao and Tan, 2000), traditional statistical 
techniques used for forecasting financial time series have reached their limitation in 

applications where nonlinearities exist in the data set. The main attribute which 
distinguish neural networks time series modelling from conventional statistical 

methods is their ability to generate nonlinear relationship between a vector of time 

series input variable and a dependent series, with little or no priori knowledge about 
the nonlinearity in the series. This is opposed to the rigid structural form of most 

conventional series forecasting methods (Fieldsend and Singh, 2005). 

Neural networks present a number of advantages over conventional methods of 

analysis, which are summarised as follows (Berardi, 2003; Garcia and Gencay, 2000; 

Hamm and Brorsen, 2000; Shachmurove and Witkowska, 2000; Zhang et al., 1998; 

Kuo and Reitsch, 1995): 

0 Neural networks make no assumptions about the nature of the distribution of 
the data and therefore they are not biased in their analysis. Instead of making 

assumptions about the underlying population, neural networks use the data to 
develop an internal representation of the relationship between the variables. 
Thus neural networks are well suited for problems whose solutions require 
knowledge that is difficult to specify but for which there are sufficient data or 

observations. 

0 Since financial time series data are dynamic in nature, it is necessary to have 

non-linear tools in order to discern relationship among time series data. Neural 

networks are capable of performing non-linear modelling, and they are best at 
discovering non-linear relationships. 

0 Neural networks perform well with missing or incomplete data. Traditional 

regression analyses are not adaptive; they process all past data together with 

new data. On the other hand, neural networks can adapt their weights when 

new input data becomes available. 
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0 Neural networks can often correctly infer the unseen part of a population even 
if the sample data contain noisy information. 

0 It is relatively easy to obtain a forecast in a short period of time as compared 

with an econometric model. 

5.6 Application of Neural Networks in Financial Time Series 

The use of neural network models for the prediction of financial time series has 

shown significant improvements in terms of prediction and financial metrics (Cheng 

et al., 1996). This is not surprising since these models utilise more information such 

as inter market indicators, fundamental indicators and technical indicators. 

Furthermore, neural networks are capable of describing the dynamics of non- 

stationary time series due to their non-parametric, adaptive and noise tolerant 

properties (Cao and Tay, 2001). 

A review on existing literature reveals financial studies on a wide variety of subjects 

such as stock price forecasting (Castiglione, 2000; Leung et al., 2000; Zeki6,1998), 

currency exchange rate forecasting (Hussain et al., 2006-b; Chen and Leung, 2005; 

Schwaerzel , 1996; Tenti, 1996; Kuan and Liu, 1995; Giles, et al., 2001; Yao et al., 
1996; Walczak, 2001, Yao and Tan, 2000), returns prediction (Hussain et al., 2006-a; 

Shachmurove and Witkowska, 2000; Franses, 1998; Dunis and Williams, 2002; 

Chenoweth and Obradovic, 1995, Yao et al., 1996), predicting government treasury 

bond (Cheng et al., 1996), forecasting currency volatility (Yumlu et al., 2005; Dunis 

and Huang, 2002), sign prediction (Lendasse et al, 2000; Fernandez-Rodriguez et al., 

2000), and others (Sitte and Sitte, 2000; Moody, 1995). 

Yumlu et al. in their work (2005) have discussed the application of global, feedback 

and smoothed-piecewise neural prediction models for the Istanbul stock exchange. A 

conventional Exponential Generalized Autoregressive Conditional 

Heteroskedasticity (EGARCH) volatility model was implemented for comparison 

purpose. They observed that the smoothed-piecewise neural network model becomes 

advantageous in capturing volatility in index return series when compared to global 
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and feedback neural network models, and also to the conventional EGARCH 

volatility model. 

Dunis and Huang in their work (2002) examined the use of non-parametric Neural 

Network Regression and Recurrent Neural Network regression models for 

forecasting and trading the currency volatility, with an application to the GBP/USD 

and USD/JPY exchange rates. Similarly, Dunis and Williams (2002) implemented 

Neural Network Regression to forecast foreign exchange rates on UER/USD series. 
The study was benchmarked against several traditional forecasting techniques 

including Nalve Strategy, MACD Strategy, ARMA Methodology, and Logit 

Estimation (Dunis and Williams, 2002). Their observations have confirmed the 

applicability of neural network for financial forecasting. 

Another approach to financial time series forecasting can be found in Shachmurove 

and Witkowska's work (2000). The authors analyzed the predictability of major 

world stock markets of Canada, France, Germany, Japan, United Kingdom (UK), the 

United States (US), and the world excluding US (World) using Multilayer Perceptron 

models. They found that Multilayer Perceptron models predict daily stock returns 
better than the traditional ordinary least squares and general linear regression models, 
in terms of the Mean Squared Error. 

The forecasting performance of the neural networks on the exchange rates between 

American Dollar and five other major currencies; Japanese Yen, Deutsch Mark, 

British Pound, Swiss Franc and Australian Dollar was reported by Yao and Tan 

(2000). The results showed that irrespective of Normalized Mean Squared Error, 

gradient or profit, the neural networks models used are much better than the 

traditional ARIMA model. They also concluded that a backpropagation network used 

in their study can achieve up to 73% of correctness in terms of gradients, when 

compared to the ARIMA method which achieve about 50% of correctness. 

Gradojevic and Yang (2000) investigated whether introducing a market 

microstructure variable (that is, order flow) into a set of daily observations of 

microeconornic variables (interest rate, crude oil price) together with neural 
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network's technique can explain the Canada/U. S. dollar exchange rate movements 
better than linear and random walk models. They compared these models using Root 

Mean Squared Error and percentage of correctly predicted exchange rate changes. 
Empirical findings are in favour of the neural network model, which yields a very 

robust out-of-sample forecasting improvement in both performance measures. 

Castiglione (2000) modelled the MLP to predict the price increment of several daily 

closing prices of different assets and indexes. The author found that the network has 

the potential to forecast the sign of the price increments with a success rate above 
50%. Another study to evaluate and compare the performance of Multilayer 

Feedforward neural network and general regression neural network was carried out 
by Chen and Leung (2005). They measured the network's strength on the prediction 

of currency exchange correlation. 

Chan et al. (2000) investigated financial time series forecasting using feedforward 

neural network and daily trade data from Shanghai Stock Exchange. To improve 

speed and convergence they used a conjugate gradient learning algorithm and 

multiple linear regressions for the weight initialization. They conclude that neural 

network can model the time series satisfactorily and that their learning and 
initialization approaches lead to improved learning and lower computation costs. 

Using weekly data from 1984 to 1995, Yao et al. in their work (1996) have analysed 

the predictability of the British Pound, Deutsch Mark, Japanese Yen, Swiss France, 

and Australian Dollar against the US Dollar. They used the ARMA model as a 
benchmark. Correctness of sign and trading performance were used to evaluate the 

models. They concluded that using neural network models can produce higher 

correctness of sign, and consequently produce higher returns, than ARMA models. In 

addition, they state that without the use of extensive market data or knowledge, 

useful predictions can be made and significant profit can be achieved. 

Neural networks are an emerging and challenging computational technology that can 

offer a new avenue to explore the dynamics of a variety of financial applications. 
They can make contributions to the maximization of returns, while reducing costs, 
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and limiting risks. Zekid in his work (1998) showed that neural networks have been 

widely used for many fields and applications, for example: 

" Classification of stocks 

" Recommendation for trading 

" Predicting stock performance 

" Predicting price changes of stock indexes 

" Stock price prediction 

" Modelling and forecasting the stock performance 

5.7 Chapter Summary 

One of the most challenging problems in economics is the forecasting of financial 

markets. Current research have shown that neural networks are promising tools for 

forecasting financial times series, as they were most implemented in mapping the 

underlying movement in the financial market. Numerous research and applications of 

neural networks in business have proven their advantage in relation to classical 

methods. Nevertheless, literatures on the use of Higher Order Neural Networks 

(HONNs) for financial time series prediction are limited. The following chapter 
focuses at the design and implementation of HONNs model, particularly for financial 

time series prediction. 
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CHAPTER 6: EXPERIMENTAL DESIGN 

6.1 Introduction 

The design of neural networks to successfully predict financial time series is a 

complex task. Several design factors can significantly impact the accuracy of 

network forecast, such as the selection of the input-output variables, the choice of 
data, the initial weight state, the stopping criterion during the training phase, and etc. 
Issues such as the learning parameters, the number of nodes'and the activation 
function are also important. The aim of this chapter is to provide an overview of a 

step by step methodology to propose the design of neural networks for forecasting 

financial time series. These neural networks models include the Multilayer 

Perceptron (MLP), Functional Link Neural Network (FLNN), the Pi-Sigma Neural 

Network (PSNN), The Ridge Polynomial Neural Network (RPNN), and the proposed 

Dynamic Ridge Polynomial Neural Network (DRPNN). A method of designing the 

network forecasting models, as well as the generation of input-output pattern, the 

specification of parameters, and performance measures used is presented. 

6.2 Variable Selection 

Choosing a suitable forecasting horizon is the first step in financial forecasting. From 

the trading aspect, the forecasting horizon should be sufficiently long such that 

excessive transaction cost resulting from over-trading could be avoided (Cao and 

Tay, 2003). Meanwhile, from the prediction aspect, the forecasting horizon should be 

short enough as the persistence of financial time series is of limited duration. 

Thomason in his work (1999-a) suggested that a forecasting horizon of five days is a 

suitable choice for the daily data. Considering the trading and prediction aspects 

from both literatures, this research work consequently implements two forecast 

horizons; 1 -day ahead, and 5-days ahead. 
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Success in designing a network for time series prediction depends on clear 

understanding of the problem. Knowing which input variables to be used in the 

network is important. Walczak in his work (2001) showed that the selection of input 

variables is a critical problem facing neural networks researchers and designers. 

Chenoweth and Obradovic (1995) suggested that an appropriate combination of most 

significant inputs leads to faster computation compared to the use of all available 
input variables. Yao and Tan in their work (2000) also argued that increasing the 

number of inputs does not necessarily increase the accuracy of time series prediction. 
This related to fact that the information provided by others inputs variables might 

already embed in the essential inputs variables. At this point of the design process, 
the concern is about the raw data from a variety of indicators, which will form the 

actual inputs to the network. These raw data, as discussed previously in Chapter 5, 

can be in the form of technical data (univariate signal), and fundamental data 

(multivariate signals). Univariate signals are data directly obtainable from the time 

series being forecast, and models that utilize univariate signals rely on the predictive 

capabilities of the time series itself. Meanwhile multivariate signals utilize 
information from outside the time series, in addition to the time series itself. For 

simplicity reason, this research work i§ restricted to the use of univariate signals. 

6.3 Data Selection 

To build a proper neural network forecasting model, sufficient experiments should be 

performed. To test the network capabilities only for one market or just for one 

particular time period will not promise an acceptable result. It will not lead to a 

robust model based on manually, trial and error, or adhoc experiments. 

In this research work, ten noisy financial time series signals are considered as shown 
in Table 6.1. All financial time series were obtained from a historical database 

provided by DatastreamV (2005), forepart from the IBM common stock closing price 
time series, which was taken from the Time Series Data Library (Hyndman, 2005). 

The signals were fed to the neural networks to capture the underlying rules'of the 

movement in the financial markets. 
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Tablc 6.1: Financial time scrics shmials uscd t, 

Time Series Data Finie Periods Total 

Iý IBM coninion stock closing price (113M) 17 () 5 190 1 to 0-1 11 1962 360 

2 Standard &, Poor 500 stock index futures (('MFSP) 01 10 1 11988 to I1 '07,1995 1963 

3 The United States I 0-year government bond (CBT- 10) 0 1/06 1989 to I 1/ 12 1996 1965 

4 The United States 30-year government bond (CBT-30) 0 1/ 10/ 1990 to 24/04 /1998 1975 

5 UK pound to EURO exchange rate (UK/EU) 03/01 -1000 to 0411 '2005 1525 

6 UK pound to US dollar exchange rate (UK, 'US) 03/01 2000 to 04/11/2005 1525 

7 US dollar to EURO exchanoc rate 0 JS I-V) 03/0 1 2000 to 04/1 1/1200i 1525 

8 Japanese yen to EU RO exchange rate (. 111 1ýt 1) 03/0 1 2000 to 04/11/2005 1525 

9 The Japanese Yen to US dollar exchange rate (JP/US) 03/01 2000 to 04/11/2005 1525 

10 The Japanese Yen to UK pound exchange rate (JP/UK) 03/01/2000 to 04/11/2005 1525 

As can be noticed from Table 6.1. six time series used in this research work are the 

exchange rates signals. It is worth pointing out that most ofthe published rescarch in 

financial time series prediction has focused on the exchange rate I'orecasting, for 

example (Hussain et al., 2006-b, Chen and Leuno. 2005-, Sch-wacrzel. 1996, Tcnti, 

1996-, Kuan and Liu, 1995. Giles et al., 2001. Yao et al.. 1996, Walczak, 2001, Yao 

and Tan, 2000). The foreign exchange market is the largest and most liquid of the 

financial market with an estimated $1 trillion traded evcryday (Yao and Tan. 2000). 

Foreign exchange rates are among the most important economic indices in the 

international monetary markets. The trading of currencies has groxNn enormously due 

to the general trend of globalization, the increase of the import and export of 

commodities all over the world, and an increased interest in international investments 

(Schwaerzel, 1996). 

The U. S. Government Bonds were also used in this research work because it is a 

significant variable in many econometric and financial models. According to Cheng 

et al. (1996), the US treasury market is the largest financial market in the world, 

with over 33 trillion dollars in securities traded on an around-the-c lock basis. It yields 

the greatest return on investment, and it is a highly-liquid asset. In addition to the 

U. S. Government Bonds, The S&P 500 is widely regarded as the best single gauge of 

the U. S. equities market. The S&P 500 is an index containing the stocks of 500 

leading companies in leading industries of the U. S. economy. The index is the most 
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notable of the many indices owned and maintained by Standard & Poor's, a division 

of McGraw-Hill. The IBM closing price, owned by the world's largest information 

technology company was selected as it is a well known time series, described by 

(Box et al., 1994). 

6.4 Data Pre-processing 

In this research work, two sets of experiments are performed, the non-stationary and 

the stationary data sets. For non-stationary signals, all the data listed in Table 6.1 is 

presented to the networks directly without any transformation. The data are scaled 
between the upper and lower bounds of the transfer function. On the other hand, the 

stationary version of the signals needs some series of transformations before passing 

them to the networks. It is worth noting that the precise values of daily prices (the 

non-stationary signals) are often not as meaningful to trading as its relative 

magnitude and the high-frequency component in financial data are often more 
difficult to be modelled (Cao and Tay, 2003). 

The idea of transforming the original signal into the stationary version is due to the 

characteristics of the financial data which exhibit high volatility, complexity, and 

noise. Pre-processing and proper sampling of input data can give a significant impact 

on the forecasting performance (Kaastra and Boyd, 1996). To smooth out the noise 

and to reduce the trend, the original raw data was pre-processed into a stationary 

series (a shown in Figure 6.1: Part 1 and Part 2) by transforming them into 

measurements of relative different in percentage of price (RDP) (Thomason, 1999-a). 
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Figure 6.2 (Part 1): Histograms of the signal before and after pre-processing. 
For each data, left plot is non-stationary signal, right plot is stationary signal. 
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Figure 6.2 (Part 2): Histograms of the signal before and after pre-processing. 
For each data, left plot is non-stationary signal, right plot is stationary signal. 
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The advantage of using RDP transformation is that the distribution of the 

transformed data will become more symmetrical and will follow more closely the 

normal distribution, as illustrated in the histogram plots in Figure 6.2 (Part 1 and Part 

2). According to Thomason (1999-a), this transformation of the signal often enhances 

the performance of trading systems, when applied in neural network models. The 

assumption is that the transformation results in the extraction of market 

characteristics that are more useful to the prediction task than the absolute values 

alone, and that improved prediction performance translates to improved trading 

system performance. 

The input variables were determined from four lagged RDP values based on five-day 

periods (RDP-5, RDP-10, RDP-15, and RDP-20) and one transformed signal 
(EMA15) which is obtained by subtracting a 15-day exponential moving average from 

the original signal. As mentioned in (Thomason, 1999-a), the optimal length of the 

moving day period, in this case is 15, is not critical, but it should be longer than the 

forecasting horizon. Since the use of RDP to transform the original time series may 

remove some useful information embedded in the data, EMA15 was used to retain the 

information contained in the original data. As argued in (Thomason, 1999-b), 

smoothing both input and output data by using either simple or exponential moving 

average has shown to be a good approach and can generally enhance the prediction 

performance. The weighting factor, a--[O, I] determines the impact of past returns on 

the actual volatility. Volatility here means the changeability in asset returns. The larger 

the value of a, the stronger the impact and the longer the memory. In this research 

work, exponential moving average with weighting factor of a=0.85 was 

experimentally selected. 

The output variable, RDP + k, where k is the forecast horizon, was obtained by first 

smoothing the signal with an n-day exponential moving average, where n is less than 

5. The smoothed signal is then presented as a relative difference in percentage of price 
for k--l, and k--5. As pointed out previously, this work concentrates on forecasting the 

RDP of the next day, and the next five days ahead. Since the statistical information of 

the previous 20 trading days was used for the definition of the input vector, the 

original time series were transformed and reduced by a length of 20. The calculations 
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t1or the transl'ormation ofinput and output variables arc prescilted In Table 6.2. 

Fable 6.2: Calculations for trails format loll of' Input and output variables 

Indicator Calculations 

FMA 15 a +a 11) +a++ a" , EAM, i 
1) a +a I +a 2 +... +a"' 

I"Put I RDP-5 (1)(i) 170 - 5)) 10 - 5) 100 
variables 

RDP- 10 10) - PO - 10)) 1)(i - 10) 100 

RD11- 15 (1)(i) - 1ý0 - 15)) 1)(i 15) 100 

RDP-20 (p(i) - 17(i - 20)) 10 20) 100 

p(i +k p(O); 1)(i) * 100 
Output RDP+k 

variable 
p( EAM 

where EAfA,, (i) is the n-day exponential moving average of the i-th day 
p(i) is the signal of the i-th day. 
(, x is wei,, Iitin,, factor 
k is forecast horizon, I or 5. 

Subsequent to transformation. all the input and output variables '. vere scaled in order 

to avoid computational problems and to meet algorithm requirements. Tile reasons 

for using data scaling is to reduce the range difference in the data and to process 

outliers, which consist of sample values that occur outside the normal (expected) 

range. Furthermore. the data are scaled to accommodate tile limits of the net"vork's 

transfer function. Manipulation of the data using this process produces a new 

bounded dataset. The calculation for the standard minimum and maximum 

normalization method is as follo\vs: 

x' = (max, 
- in in, ) *x- min, 

-+ in in, 
max, - min, 

where x refers to the normalized value. x refers to the observation value (original 

value), min, and max, are the respective minimum and maximum values of all 
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observations. and min., and max., refel- tO thC dCSII'Cd 111111111IL1111 MId IMIXIIIIIIIII Of 

the new scaled series. One of' the desirable effects of' mimmum and 111axinjujil 

normalization is the preservation of tile relationships of the onginal series 
(Thomason, 1998). In accordancc to the selectc(i Sig, moid transfer I'miction. thc 

lllptlt-OLItPLIt variables wcrc normalized bctN\ccn flic interval 10.2.0.91. The choice of' 

the interval is to avoid difficulty in ('CttilW IlCt\\Ol-k OUtIlUtS 100 Close to the tWO 

cndpoints of' Slomold transfer I'Linction. This relates to the I'lict that thc two encipollits 

can only be reached bý infinite hiput \alucs. 

6.5 Data Partition 

The data sets used in this research x\oi-k were seorcgated in time order. In other 

words earlier period ofdata are used for trainino. and the data ofthe later period are 

used for testing. The main purpose of sortim, them into this order is to discover tile 

underlying structure or trend of the mcchanisin pencratim, tile data. that is to 

understand the relationship exist between tile past. present and future data. 

Table 6.3 (a): Data parlition for stationarN signials 

l Prediction of Neura 
Networks 

Data set US/EU, UK/EU, UK/US, 
JP/EU, JP/US, JP/UK IBM CMESP CBTrlý, 

ýCBT30 

MLP Training 1 
__753 

170 971 977 
FLNN Validation 376 85 486 486 489 
PSNN 

- 
Out-of-sample 376 85 486 486 489 

RPNN Training i 
F- 1129 255 1457 1459 1466 

, DRPNN ple i 376 85 486 486 489 

Table 6.3 (b): Data partition for non-stationary signals 

Prediction of Neural 
Networks 

Data set US/EU, UK/EU, UK/US, 
JP/EU, JP/US, JP/UK IBM CMESP CBTIO CBT30 

MLP Training 758 175 976 978 982 
FLNN Validation 379 88 489 489 492 
PSNN Out-of-sample '79 88 489 489 492 ý-ýp ýý 

Training 1137 263 1465 1467 1474 
DRPNN Out-of-sample 379 88 489 489 

For the MLP, FLNN, and PSNN. each signal was divided into three data sets which Z-- 
are the training, validation and the out-of-sample which represent 25%. 25%, and 
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50% of the. entire data, respectively. Out-of- sample data is the unseen data that has 

not yet being used during the training of the networks, and it is reserved for the use 

of testing of the networks. For the RPNN and DRPNN, the data were partitioned into 

two categories: the training and the out-of-sample data, with a distribution of 75% 

and 25%, respectively. Table 6.3 (a) and 6.3 (b) demonstrate the number of data 

points used for each data set, for both non-stationary and stationary versions. 

6.6 Network Models Topology 

Network models topology describes the architecture of the network models and the 

way in which the network is organized. This section addresses the selection of 

number of input-output nodes, network's order, hidden layer nodes, and the transfer 

function. 

Number of input-output nodes 
The number of nodes in the input layer is pre-determined by how many different 

input categories (independent variables) are used. Each of these input categories 

represents one input node. In real application, it is difficult to know how much 
information (in terms of number of variable or size of the input vector) must be used 

to properly learn the dynamics of the financial time series. Obviously, the quantity of 

the information increases with the number of the variables. However more input 

variables will lead to more parameters in the network, which increase the over-fitting 

problem (Lendasse et. al., 2000). As mentioned initially in Section 6.4, the number of 
input nodes for all networks used in this research work was set to 5. 

On the other hand, the decision on the number of output nodes (dependent variables) 
is a straightforward task as it is directly related to the problem under study. For a 

time series forecasting problem, the number of output nodes often corresponds to the 

forecasting horizon. As mentioned initially, two types of forecasting horizon 

employed in this research work; the one-day-ahead and the five-days-ahead 

prediction. 
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Network's orderfor the HONNs 

For FLNNs and PSNNs, the higher order terms were empirically selected between 2 

and 5, whereas for RPNNs and DRPNNs, the network's order was incrementally 

grown from 1 to 5. 

Number of hidden layers and hidden nodesfor the MLPs 

There is no perfect formula for determining the optimum number of hidden nodes. 
However a rough approximation can be obtained by the geometric pyramid rule 

proposed by Masters (1993). According to him, for a three-layer MLP with n input 

nodes and m output nodes, the hidden layer would have V-n-xm nodes. The actual 

number of hidden nodes can still range from one-half to two times the geometric 

pyramid rule depending on the complexity of the problem. In practice, MLPs with 

one or two hidden layers were widely used and have performed very well in 

forecasting problems (Yao and Tan, 2001; Cybenko, 1989; Hornik et al., 1989; 

Kaastra and Boyd, 1996). In this research work, the MLPs were trained with one 
hidden layer, and the hidden nodes were experimentally varied from 3 to 8. 

Transferfunction 

The purpose of transfer function is to determine the output of a processing neuron 

and to prevent outputs from reaching very large values which can 'paralyze' the 

network and thereby inhibit training (Kaastra and Boyd, 1996). The activation 
function is sometimes called a "transfer", and activation functions with a bounded 

range are often called "squashing" functions, such as the commonly used hyperbolic 

tangent and logistic sigmoid functions. It is commonly believed that the activity of 
biological neurons follows such sigmoid transfer function (Duch and Jankowski, 

1999). In fact, better performance is often obtained when using sigmoid function at 
the output neurons which prevents the network to "overshoof' the correct output 

values (Thimm and Fiesler, 1997). The function is smooth and it is easy to calculate 
its derivative (Duch and Jankowski, 1999). The Sigmoid function is commonly used 
in time series prediction since they are nonlinear and continuously differentiable 

which are desirable properties for network learning (Kaastra and Boyd, 1996). Hence 
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in this research work, the sigmoid transfer function is used in all neural network 

models. The sigmoid function is calculated as follows: 

Ax) =1 (-x) (6.2) (1 + exp 
) 

where x is neuron's output. 

6.7 Training of the networks 

One of the primary goals in training neural networks is to ensure that the network can 

perform well on data that it has not been used during the training previously, through 

the process of finding a set of optimal weights. Training is performed by repeatedly 

showing the network representative examples of the inputs, paired with the desired 

outputs. During each learning or training iteration, the magnitude of the error 

between the desired and actual outputs is computed. This is used to make 

adjustments to the internal network parameters or weights according to some specific 
learning algorithm. 

The network is trained directly on the training set; a data set correspon ing to a 

period much back in time. On the other hand, a data set corresponding to the most 

recent period of time was used for testing. Figure 6.3 and Figure 6.4 illustrate how 

the neural network is used to learn the financial time series using the non-stationary 

signal and stationary signal, respectively. The MLP, FLNN and PSNN were trained 

with the incremental backpropagation learning algorithm (Haykin, 1999), whereas 

the RPNN and DRPNN were trained with a constructive learning algorithm (Shin 

and Ghosh, 1995), as described in Chapters 2 and 3. In this research work, 

experimental simulations showed that longer training was not always giving better 

results. The reason is that continuing training for much longer epochs may produce 
improved training errors but at the same time it might give poorer forecasting results 
due to overfitting of data. It is anticipated that 3000 epochs is enough for the 

networks to converge. Therefore, all networks were trained with maximum number 

of 3000 epochs. 
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During the training process, the initial learning parameters such as the learning rate, 

momentum term, range of weights initialization, and the choice of stopping criteria 

used can highly affect the network learning speed and generalization performance 

(Thimm and Fiesler, 1994-, Thimm and Fiesler, 1997). The optimal values for these 

parameters are usually unknown priori because they depend mainly on the training 

data set. Nevertheless, it is important to have a good approximation of the optimal 
initial value of these parameters as it can reduce the required training time. In this 

research work, a various sets of parameters (refer to Table 6.4) were experimentally 

chosen within the learning process to yield the best performance on out of sample 

data. The learning parameters for each network are based on the training algorithm 

used (as explained in Chapter 2 and Chapter3). 
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Figure 6.3: Learning the non-stationary signal with a neural network 
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Table 6.4: The learning parameters used in all neural networks tl 
Neural 

Networks 
Initial 

Weights Momentum Learning 
Rate (n) dec-n Threshold 

(r) 
dec-r 

MLP 
FLNN [-0.5,0.5] 0.5 0.1 or 0.05 - 
PSNN I I I I I I 
RPNN ý 

[-0.5,0.5] 0.5 [0.05,0.51 
I 

0.8 [0.00001,0.71 
II 

DRPNN 

D. y 
I 

Input and output transformation 

Indicator Calculations 

EMA15 P AMA 
15 

RDP-5 (P(i) - p(i - 5)) p(t - 5) 100 

Input RDP-10 (P(O - PO - 10)) P(i - 10) 100 
variables 

RDP-15 (p(i) - p(t - 15)) p(i - 15) 100 

RDP-20 (p(i) - p(i - 20)) p(i - 20) too 

(p(i+k)-p(i)) p(i)*Ioo Output RDP+k - variable 
p(i) = EMA 3 

Figure 6.4: Leaming the stationary signal with a neural network 

Since network training can be significantly influenced by its initial internal state, 

which involves different initial learning parameters and different set of random 

weights, an average of 20 independent runs have been performed for all the neural 

networks in order to obtain fair and more robust comparative evaluation. 
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For every networks training, there will be a point at which training should be 

stopped. Early stopping criterion was utilized for the MLP, an FLNN, and PSNN. In 

this procedure, the networks were trained by observing the point at which the 

validation error began to rise, and then restored the network weights at the iteration 

cycle where the validation error was minimum. To avoid over-fitting and slow 

convergence of the training phase, the stopping criteria are determined by the 

following conditions, one of which is sufficient to end the training phase: 

" Stopping is ensured within 3000 iterations. 

" Validation error began to rise for five times continuously. 

An early stopping method was not employed for the training of the RPNN and 
DRPNN. This is because every time a higher order PSNN unit is added to the 

networks, the monitored mean squared error will slightly increase before it gradually 
decreases. If an early stopping were used, the networks training will usually stop 

after a PSNN unit is added, at the same time that the new added PSNN is about to be 

trained. This will result in truncated and incomplete learning. Two termination 

criteria are used for stopping the training of RPNN and DRPNN, one of which is 

sufficient to end the training phase: 

" Stopping is ensured within 3000 iterations. 

" Training is stopped after accomplishing the 50' order network learning. 

In addition to the two stopping criteria, the training of DRPNN is also halted when 

the network learning become unstable and divert from the stability convergence. This 

condition is checked every time before adding a higher order PSNN unit to the 

networks. In other words, when DRPNN does not satisfy the stability condition, as 

shown in Equation 58 (Chapter 4, Section 4.5), training is terminated. This indicates 

that an optimal DRPNN model has been accomplished at the previous network's 

order. 
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6.8 Model Selection 

How well the network generalized was deduced by analyzing its performance on the 

test set. Following the training of various architectures, a single model must be 

selected from all generated models for use in the final prediction (generalization). In 

accordance with the objective function (MSE), the model with lowest MSE on the 

validation set is routinely selected (for MLP, FSNN, and PLNN). In the case of 
RPNN and DRPNN, the adjustable weights in the final iteration during the training 

of each network's order were selected for generalization purpose. These set of tuned 

weights are used to test the network ability to generalize on out-of-sample data, using 

that particular network's order structure. When testing at this stage is completed, 

training is resumed with the increasing network's order, and this continues until 

stopping criteria is reached. 

For all simulations which were carried on as part of this research work, the 

algorithms were written and run using Matlab version 7.0.4, on a machine with 

Windows XP 2000, Intel processor (Pentium 4), CPU of 3.00 GHz, and 1 GB of 

RAM. 

6.9 Performance Metrics 

There are a number of statistical measures that can be used in evaluating the 

performance of the neural networks, such as the Mean Squared Error (MSE), the 

Normalized Mean Squared Error (NMSE), and the Mean Absolute Error (MAE). For 

financial time series forecasting, the aim of the prediction is to achieve trading 

profits based on prediction results rather than emphasizing on the forecasting 

accuracy. As a result, financial criteria were frequently used to test whether the 

model is of economic value in practice (Dunis and Williams, 2002; Yao and Tan, 

2000; Hamm and Brorsen, 2000; Cheng et al., 1996; Tenti, 1996). 

In order to provide a more complete comparative evaluation, empirical testing was 

used in this work encompass not only on the more traditional criteria of MSE and 
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NMSE, but also a collection of analyses adapted in recent financial literature (Cao 

and Tay, 2003; Dunis and Williams, 2002; Hussain and Liatsis, 2002; Walczak, 

2001; Yao and Tan, 2000; Femandez-Rodriguez et al, 2000). The prediction 

performance of this work were measured using five financial metrics, and four 

statistical and signal processing metrics, as shown in Table 6.5. The objective of 

using financial metrics is to use the networks predictions to generate profit, whereas 
the statistical and signal processing metrics were used to provide accurate tracking of 
the signals. In order to measure profits generated from the networks predictions, a 

simple trading strategy was used. If the network predicts a positive change for the 

next k-day price (for non-stationary signal) or the next k-day RDP (for stationary 

signal), a 'buy' signal is sent, otherwise a 'sell' signal is sent. The descriptions for all 
the metrics used are given in the following subsections (Cao and Tay, 2003; Dunis 

and Williams, 2002; Hussain and Liatsis, 2002). 

Annualized Return (AR) 

The ability of the networks as traders was evaluated by the AR, a real trading 

measurement which is used to test the possible monetary gains and to measure the 

overall profitability in a year, through the use of the 'buy' and 'sell' signals (Dunis 

and Williams, 2002). The AR is a scaled calculation of the observed change in the 

time series value, when the sign of the change is correctly predicted. 

Transaction Cost (TQ 

Transaction cost is a penalty applied to the network each time a buy or sell signal is 

sent; as such actions would have a financial cost in the real world. 

Maximum Drawdown (MDD) 

MDD is the minimum of the accumulated losses and is used as a risk assessment 

measure for various financial prediction models. It measures the downside risk, 

which is the maximum loss of the model during the sample period. 
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Annualized Volatility 
Volatility is the measure of the changeability in asset returns, which means less 

volatility is preferable. It describes the variability in a stock price and is used as an 

estimate of investment risk and for profit possibilities. The volatility is of great 
interest for financial analyst and provides useful information when estimating 
investment risk in real trading. 

Sharpe Ratio 

A risk-adjusted measure of retum, with higher ratios preferred to those that are 
lower. The higher the sharpe ratio, the higher the retum, and the lower the volatility. 

Normalized Mean Squared Error (NMSE) 

NMSE is also used to measure the deviation between the target and the predicted 
signals. The smaller the values of the NMSE, the closer the predicted signals are to 

the target signals. 

Mean Squared Error (MSE) 
MSE is the square of the error between the actual and forecast signals. It is the most 
frequently used accuracy measure in the literature. 

Correct Directional Change (CDQ 

CDC measures the capacity of a model to correctly predict the subsequent actual 

change of a forecast variable. 

Signal to Noise Ratio (SNR) 

SNR is given in decibels and is used in many other digital applications such as 

electronic communications and image processing. It contrasts the amount of 

meaningful information given by the signal, with the amount of background noise 

which is distraction from the signal. A higher ratio indicates a clearer reading of the 

signal. 
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In financial forecasting parlance, accuracy typically refers to profitability. The reason 
is that, from the trading prospective, the objective is to use the network's predictions 

to generate profit. Indeed, it does not add value from a financial forecasting 

perspective, when the network produces very low prediction error, while at the same 

time it attains a lower profit return. Therefore, it is important for the network to 

predict the correct direction of change of the signal. Certainly, any model that can 

predict the direction of change to 100% would be optimal from a profit point of 

view, regardless of what the error is. However, it appears that the number of 
direction changes that are correctly predicted is not as important to the annualized 

return (AR). This relates to the fact that the size of the changes that are correctly 

predicted will have a greater effect on the AR. If a model is accurate at predicting 

many smaller changes, it will lose profitability if it fails on the larger changes. 
Conversely, if a model is accurate at predicting the larger changes, its profitability 

will be eroded if it fails on many smaller changes. This trade-off is not reflected in 

the Mean Squared Error (MSE) metric. Low forecast errors and trading profits are 

not necessarily synonymous since a single large trade forecasted incorrectly by the 

network could have accounted for most of the trading system's profits (Kaastra And 

Boyd, 1996). Therefore, it is important to consider the out-of-sarnple profitability 

when dealing with financial time series prediction. 
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Table 6.5: Pert'orniance metrics and their c., ilcuktiliMill 

Financial metrics 
S'ignal Processing 

and Statistical metrics 

Annualized Return (%AR) Normalized Mean Squared Error (NMS 
Pro fit 

ý 100 AR 
A# profit 

252 
Profit --* CR 

n 
CR R (T I 

(T 
- 0,17-1,1 

Ri 

otherivise Y 

252 
A# Profit - ubs(R 

Maximum Drawdown (MDD) Mean Squared Error (. MSE)_ 

11 
MDD = min Y- C, R maJCR CR 

t 
CR L Ri, In 

H 

+ 
R 

Otherwise 

Annualized Volatility (AV) Correct Directional Change (CDC) 

-ký AV = V-25-2 (R 
1 17 

CDC= - 
ycý 

, 17 _1 17, 

Sharpe Ratio (SR) if 0" 

d, 
SR = 

Annualized Return 0 otherivise 
Annualized Volatility 

Transaction Cost (TC) Signal to Noise Ratio (SNR) 

TC = 0.01 *Number Qf Transaclion 
SAW = 10 * log1l) (Sigma) 

signia 
in- *n 

Number of Transaction L, SSE 

SSE 
< 0. 

0 othenvise Inax(y, 

where n is the total number of data patterns. 
j, and i, represent the target and predicted output value. respectively. L, - 
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6.10 Chapter Summary 

Financial time series exhibit dynamic behaviour over time. The signals have to be 

adequately organized and processed before presenting them to the neural network. 
Lots of attention in the design stage has been given to the pre-processing method to 

reduce the trend and embedded noise. Together with a careful choice of training 

parameters and network paradigms, and using appropriate approaches that prevent 

over-fitting during network training, it is proposed that the developed networks can 

give some promising results, not only on the forecast error but most importantly on 

the profit gained. 
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CHAPTER 7: SIMULATION RESULTS AND ANALYSIS 

7.1 Introduction 

In this chapter, the simulation results using the MLP and four Higher Order Neural 

Network architectures; the FLNN, PSNN, RPNN, and the proposed DRPNN, are 

presented. This chapter is divided into five main sections. Following this section, 
Section 7.2 discusses the networks predictions using the stationary signals. In 

section 7.3, the results of the non-stationary (original) versions of the datasets are 

given. In both section 7.2 and 7.3, analysis on profit return, network convergence, 

training epochs, performance of networks with increasing order or number of hidden 

nodes, transaction cost, CPU time, and learning curves are provided. Section 7.4 

provides a discussion on the simulation results presented in section 7.2 and 7.3. 

7.2 Prediction of Stationary Signals 

In this section, extensive reviews of the stationary prediction of ten financial time- 

series datasets are discussed. Simulation results from the prediction of one step ahead 

and five steps ahead are given. The results gathered from the best average 

simulations and best single simulations are presented. 

7.2.1 One Step Ahead Prediction using Stationary Signals 

As we are concerned with financial time series prediction, in these extensive 

experiments, our primary interest is not to assess the predictive ability of the network 

models, but to concentrate on the profitable value contained in the networks 

predictions. During generalization, the work focuses more on how the network 

generates the profits. For this reason, the neural networks structure, which provides 
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the highest percentage of Annualized Return (AR) on out-of-s=ple data (unseen 

data) is considered the best model. 

7.2.1.1 Best Average Simulation Results 

To obtain a fair and more robust comparative evaluation which involves different 

network architectures, and different starting point of random weights values, a 

committee of 20 runs has been used to arrive at a trading decision. Table 7.1 through 

Table 7.5 summarize the average results of 20 simulations obtained on unseen data 

from ten signals using five neural network architectures. In each table, the network's 

order (for HONNs), and number of hidden nodes (for MLPs) for the best selected 

network topology is given in the second column. For the MLPs, the network 

structures that give the best average results were mostly realized with networks of 
five hidden nodes. In the case of FLNNs and PSNNs, networks with 2 nd and 3 rd order 

were found to appear most in the table. Meanwhile, both RPNNs and DRPNNs in 

most cases were comprised of the 2nd order network structure. This indicates that the 

interaction between the input signals for HONNs of order two to three appear to have 

learned the signals and contains significant information for the prediction task. 

The results of the Annualized Return (not accounting the transaction cost) from 

Table 7.1 through Table 7.5 obviously demonstrated that the proposed DRPNNs 

profitably attained the highest profit return compared to the MLPs and all other 
HONNs models in all time series, except for the IBM signal. In the case of predicting 

the IBM, RPNN has shown to obtain the best profit return. Forecasting the nine 

signals, DRPNNs outperformed other networks on the average AR by 1.96% to 

10.19%. By looking at the other financial metrics; the maximum drawdown, 

volatility and sharpe ratio, results in Table 7.1 to Table 7.5 clearly show that the best 

values were dominant by DRPNNs, except for the prediction of IBM signal, in which 

RPNN gave better results for this signal. It is worth pointing here that for the 

maximum drawdown and sharpe ratio, a bigger value is preferable. Meanwhile for 

volatility, a lower value is desirable. When measuring the NMSE, MSE, and SNR, it 

can be noticed that DRPNNs also outperform all other networks in all signals. MLPs 
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madc the highest NMSE, MSF. and lowest SNR xNlien predicting four out of ten 

signals, nanicly the CMFSP. CBT-30. JPJ IS and . 11'/tiK. In flic casc ol'oaluatino t, 
the Correct Directional Change (CDC) Obtained b\ all ncmorks, DRPNNs achlewd 

the lii(, hest values in six out often sionals. \Nhich are the CMI'S11. CKV-10. I'K/US, t- -- Ij 
US/EU, JP/EtJ. aiid. 113/tJS. 

Table 7.1: Best averagc rcstilt from the M 1.1), 

Time 
Series 

No. Hidden 
Nodes 

Annualized 
Return 

Maximum 
Drawdown N ol a t-i 

H 
t-N. 

- S arpe Sh 
Ratio Nm', IS t'. 

1 SNR UDC I 
IBNI 4 81.1081 -2.0021 18.1462 1 1734 ý, 005 12 5 1) , 15 2097 

CNIESP ý 6 80.4081 -0.6831 4.3145 M6370 (o -- 128508 000507 65,13 29.7.5 
CBT-10 5 81.3089 -0.4004 2.9002 2 X. -O 3-5 7 1 0 39 8 03,0,002-254 6-- 5.44 2 -1 .5 

3 
CBT-30 

- 
7 78.5305 -0.7587 3.7283 2 1.0636 1 _ _ 0.002662 66.78 _ _ _ 23.52 

ru K/ Et 69.6529 -0,5719 2.9022 24.8585 1 0,451 Q 0.001858 - ( 1 -1.25 
2.4.42 

UK/US 76.4311 -0.8698 3.9218 19.4891 tO. 
398401 0.002813 02 49 )3.57 

US/El.; 3 76.6488 -1.6467 4.0910 18.7367 0.400491 0.002 192 _ W27 23.40 
JP/EU 3 73.7938 -0.7019 3.7037 19.9248 0.438785 0000943 64.8 26A8 

. JP/t: s 7 74.3301 -0.8493 4.0752 
- 

18.2396 0.493811 0002159 
- - 

6L95 24.72 

-JP/UK 
74.1686 -0.6449 3.0320 7 1 20 42 15 1 1 0.401703 (), ()1)13 W j 00.28 25.75 

Table 7.2: Best avera-e result from the Fl. NNs t, 
Time 
series 

Network's 
Order 

Annu alized 
Return 

LNIaxi 
D 

mum ýVolatfl ýy 
D Iii t Drawdown ? Irav 

e - Sharp S NR 
NIv NISE cm Ratio (d B) 

1 B. %l 2 8 1,428ý - I. 9OS4 18 1109 .1 49- 1 4WO'N 0.00*5 12 lo 
-ES P 2 80.2347 -0.6831 4.3200 1 18 ý738 

-- , 0.423157 0.0005 65.0 29.81 
CBT-10 4 80.3706 -0.4945 2.9214 

ý2 ý. 
5j-)ý 0.398967 1 0.002259 24.52ý 

CBT-30 -5 78.8850 -0.7586 3.7184 21.2146 0.422164 
1ý 0.002653 67.38 23.53 

LJK/EU 3 69.4822 -0.5786 1 2.8051 24.7720 1 0.45 1294 1 0.001858 62.93 24.42 
UTK/US 76.6273 -0.8688 3.9161 19.5674 0.390958 0.002761 62.79 23.65 

- US/EU 2 76.1346 -1.6467 4.1080 18.5338 0.403777 (111 f, A jr, I 23.43 
JP/EU 3 73.5144 -0.7535 3.7111, 19.8063 0.440153 0.000940 63.2 26.47 
JP/US 2 74.1289 -1.0967 4.0811 18.1642 0.479966 0.002142 62.33 275 
JP/UK 3 74.2100 -0.6511 3.6310 20.4-38(OT O. 455859 0.001287 60.16 

Table 7.3: Best average result from Ilic PSNNs 

--Tim-e 

series 
Network's 

Order 
Annualized 

Return 
M aximum 
Drawdown ti llitý v ola 

Sharpe 
Ratio NNý 

ýMSE 
CDC SNR 

(d B) 
I B. NI 21 80.9979 -1.9084 JS. 1()7, ) 4.459-1 0.461342 0.005172 57-92 

L 

20.93 
CMESP 41 7 9.6 3 3, -0.6831 1 4.3391 18.3529 0.426327 0.000504 81 64. 29.78 
CBT-10 3 80.0114 -0.6198 2.929: L:: Jý27 ý11i7 0.400.509 0.002269 . 65.87 24.51 

rc 
B -ýýO 5 78.9800 -0.7585 3.7158 21.2555 0.423368 0.002661 67.02 23.52 

UK/EU 3 69.4939 -0.5786 2.8050 24.7770 -0.450935 0.001856 63.52 24.43 
UK/US 4 77.4628 -0.8383 3.8914 19.9064 0.396223 0.002798 63.11 23.59 
US/EU 3 76.8080 -1.6753 4.0857 18.7994 0.401166 0.002186 66.49 23.46 

_ JP/EU ý 
2 74.3537 -0.7535 3.6878 20.1624 0.43917.5 0.000944 1 63.76 26.48 

jý -Uý 2 74.7229 -0.8493 4.0637 18.3878 1 0.481702 0.00-149 16 . 72 24.74 
JP/UK 3 73.9829 -0.6476 3.6368 20.3430 0.458442 0.001294 1 60.63 25.79 
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Table 7.4: Rest averaoc rcstill From Ilic RPNNs 

Time Network's Annualized I Sharpe 
tv Volatili NNISE, 

series Order Return Drawdown Ratio 
113NI 2 82.3-190 

- - - -1,9083 ,, -- 
17 991 1 ý7-1 ls(, 07S 

CNIESP 2 8 0. 7359 -0 6831 4.3040 is S91 . 1-1 1756 
CRT-10 2 81.3069 -0.4004 2.9003 28.0337 19000 1 

LCBT-30 2 79.4325 -0.7586 3.7031 
_2 

1.4505 123ý54 
UK/EU 69.4302 -0.5641 2.8060 24,7477 IS0389 I 
UK/tJS 2 78.2625 -0.7846 3.8672 20.2_4_02 0.408800 
US/Et: 2 76.7915 -1.0731 4.0860 8.7959 () )oIS22 

75.0900 -0.7535 3.6664 20.4,82(01 0.434805 
2 74.8359 -0.9493 4.0604 18.4309 0.47924 
3 74.2434 -0.6476 3.6301 20.4532 0.452 

Table 7.5: Best avera-e result from the DRIINNs 

SNR 
NISV (,, )(, ý 

000002 031 ý 11)71) 
00 OS 71 21 S 

0,002001 0' 
0001879 6 -4 

') 7 
0,0028 6 2., 1.; 23 16 
000,189 0.1 99 2,1 -is 

sI1 
' 20 S2 

I8 s 2.1.76 
0.00 1 76 -5 

i ol 4 25.84 

Time Network's Annualized Maximum Shar e SNR Volatilit yI NNISE NIS E 
series Order Return Drawdown Ratio (d B) 
IBNI 
NI ýES P 

79.5507 
82.6975 

-1.9085 
-0.5523 

18.3478 
4.2396 

4.3384 
19.5071 

11 1 100 
0.32W9 

0004676 
0.00039 

ý1899 21 17 
66.54 ; (), 89 

CBT- 10 3 86.2569 -0.3424 2.781 31,0133 0.30098S 0,001704 69.42 25.75 
CBT-30 2 83.9919 -0.6588 3.5682 1 23 5401 0.341816 0.0021,19 66.42 24 45 

t ýK/EU 77.1638 -0.5676 2.6580 29.0339 --4 
0.365767 ý0.001506 63.5_6 

_2533 11K/US 2 82.0593 -0.6773 3.7477 21.8991 0318307 0.002248 0-4.93 24 54 

Uji S/E tj 2 82.6223 -0.7092 3.8780 21.3071 0.3 - 0.00 1 7_97 68.44___ 
_2,1.31 JP/EU 3 83.7068 -0,7379 3.3901 24.0944 0.362191 0.000778 65.37 27.32 

JP/US 1 77.7430 -0.7975 3.9719 19.5744 1 0.399054 1 0.001781 62.45 25.56 

JP/UK-- 80.7760 -0.4945 3.4508_ 23.4087 1 ). 37351 0.001054 60.81 26.67 

For demonstration purpose. the annualized return achieved in all network models is 

depicted in Figure 7.1. Meanwhile. the maximum average number ofepochs reached 

for the prediction of all data signals during the trainino ofthe nemorks is shown in L- 
Table 7.6. Apart from the prediction of UK/US, US/FU and III/EU sionals. results L- 
given in Table 7.6 demonstrate that the proposed DRIINNs reveal to use least 

number of epochs to converge on all data, which is ]. 1 -5 to 55.49 times faster than L- 
other networks. For the prediction of UK/US. US/Ftl and Jll, /FU signals, RIINNs 

appeared to utilize least epochs. Out of ten signals. FLNNs apparent],., have shown to 

require larger number of epochs to complete the whole training. specitically on the 

CBT-30, UK/EU, UK/US, US/EU, JP/EU, and JP/UK. 
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Figure 7.1: Best average annualized return from all network models 

Table 7.6: The average maximum epoch reached durino training 
Time Series MLP FLNN PSNN RPNN DRPNN 

IBM 2543 2473 1929 2897 480 
CMESP 390 375 433 158 137 
CBT-10 1234 154 156 187 48 
CBT-30 2298 2608 618 287 47 
UK/EU 415 924 237 172 132 
UK/US 1712 3000 304 21 110 
US/EU 1017 1647 486 27 73 
JP/EU 1118 3000 1702 119 258 
JP/US 2837 2705 2163 292 178 
JP/UK 638 2851 738 142 96 

In accordance to the number of epochs used, an analysis of the network size, 

principally the number of trainable weights employed in the network is of important to 

judge a network parsimony and simplicity. Table 7.7 demonstrates the results of the 

number of trainable weights and bias utilized in all network models, calculated from 

the network structure given in Table 7.1 through Table 7.5. When examining the 

number of free parameters, it appears that most of the smallest network structures are 

prevailing by the PSNNs, followed by RPNNs and FLNNS. The MI-Ps obviously 

103 



Chapter 7-Simulalimi Re. wills and, bialvýis 

comprise of larger number of trainable weights to learn seven of the linancial time 

scries. that is the 113M. CMFSP, CBT-10.1 JKVS. US/F. 1 ý, . 11'1/1 IS, and . 111/1 IK. From 

the tabulated results, the biggest network StI-LICtLII*C IS I)OSSCSSCd h) a 5"' ordcr RPNN 

when used to forecast the UK/1'. 11 signal, mth tile number 01' 11-ce parallictcl-S 90. 

Meanwhile, the smallest network structure Is owned by 1 2"" order PSNN. mth 12 

trainable weights. 

Table 7.7: Number oftrainable \\ci, -, Iits and bias uscd in all ncmorks 

Time Series MLIP FLNN PSNN RPN N DRINN 
IBM 29 16 12 _ ls __ 

CMESP 433 16 24 -- 18 21 
CBT-10 36 31 18 18 42 
CBT-30 50 32 30 18 21 
tJK/EtJ 3) 6 26 18 90 21 
t'K/US 36 3) 2 24 18 21 
US/EU 22 16 18 18 21 
JP/EtJ 22 26 12 18 42 
HA'S 50 16 12 18 21 
JP/t; K 36 26 18-- T 36 21 

In order to test the modelling capabilities and the stability of all rict-work modes. 

Figure 7.2 and Figure 7.3) illustrate the best average result of AR and NMSF. 

respectively, tested on unseen data. when used to predict the financial signals. The 

performance of the networks was evaluated with the number of hi her order terms g 

increased from I to 5 (for RPNNs and DRPNNs) and from 2 to 5 (t'()r FI. NNs and 

PSNNs), and different number of hidden nodes increased froll, ) The ' to 8 (for MI-11s). 

plots in Figure 7.2 indicate that the performance ofthe proposed DRIINN continues to 

rise when a2 
nd 

order PI-Sigma unit was added to the riet\%orks. and the AR began to 
, rd drop when the ) order PI-Sigrna unit was added, except for the prediction of J11/1'IJ 

and CBT-10 signals in which the AR continue to increase alont, ý, Nith the network 

growth. For the RPNNs, the AR for the IBM and UjK/EU signals keep increasim, until . tý t- 

network of order five. For the CMESP, CBT-10. CBT-330. UK/US, JlI/FL-j, US/E I ý. and 

JP/US signals, RPNNs* performance start to deorade at , ter a 3)'d order Pi-Signia unit 

was added to the networks, except for the prediction of JP/LjK '-vhere the AR only drop 

when 4"' order Pi-Sigma unit was added. In most cases, when the networks order or 

number of hidden nodes were expanded, the plots tor IISNNs and MlTs shmv a rise in 

the AR. Their performance then starts to degrade when they reached order higher than 
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three or four (for PSNNs), and hidden nodes more than five, six, or seven (for MLPs). 

This can be seen when PSNNs used to predict the CMESP, UK/US, UK/EU, US/EU 

signals, and when MLPs predicting the CMESP, UK/US, UK/EU, JP/UK, and CBT-30 

signals. Meanwhile, in some plots, the networks demonstrate an up and down 

movement, namely when PSNNs predicting the JP/EU, JP/UK, CBT-10 signals, and 

when MLPs predicting the IBM, US/EU, JP/US, and CBT- 10 signals. For the FLNNs, 

most of the plots demonstrate an up and down movement of AR, namely for the 

prediction of CMESP, UK/EU, US/EU, JP/EU, JP/UK, and CBT-10 signals. Apart 

from some cases, the performance of the networks show an increment in the AR along 

with the networks' growth (for UK/US and CBT-30 signals), and a continuously 
decreased of AR (for IBM and JP/US signals). 

Figure 7.3 depicts the average performance of various neural network architectures 

using the NMSE measure with increasing networks order or number of hidden nodes. 
For the prediction of CBT-30, JP/EU, US/EU, UK/EU, and IBM, the NMSE of 

DRPNNs started to rise up when aP order Pi-Sigma unit was added to the networks. 
For the CBT-10 and JP/UK signals, the plots for DRPNNs demonstrate a 

continuously decreasing NMSE. Conversely for the prediction of CMESP, UK/US, 

and JP/US signals, the plots show an increasing NMSE. In the case of RPNNs, the 

plots for prediction of IBM, CBT-10, UK/EU and JP/EU signals reveal an 
incessantly decreasing NMSE, and that of for CMESP signal shows a continuously 
increasing NMSE- Meanwhile, RPNNs when used to forecast the CBT-30, UK/US, 

US/EU, JP/US and JP/1JK signals demonstrate an up and down movements of 
NMSE. PSNNs exhibit an increased NMSE along with the network growth in most 

of the signals prediction. When using the FLNNs to predict the CMESP, UK/EU, 

JP/US, and CBT-10 signals, the NMSE were increasing and began to drop when 

networks' order were expanded, except for the IBM signal in which the NMSE stay 
increase until network of order five. Forecasting the CBT-30, UK/`US, US/EU, 

JP/EU, JP/UK signals, the plots for the FLNNs demonstrate a small up and down 

movement of NMSE. Meanwhile, the performance of MLPs overall show a little of 

up and down movement, namely when predicting the IBM, UK/EU, US/EU, JP/US, 

JP/UK, and CBT-30 signals. 
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7.2.1.2 Best Single Simulation Results 

All the results formerly discussed were base on thc best ax, cragc of'20 simulations. In 

the remaining of this section, results tl'oni the best SIlIgIC S1111LIkltlOll ZIChICVCd I'I'0111 

each network model are discussed. Table 7.8 through Table 7.1-1. and Figure 7.4 

show the individual result Ior best simulation run when measured using the AR. In 

1 -1 
in the order to realistical1v assess the returns ofeach model. they have been asscssc( i 

presence of transactions costs. Transaction cost is a penalty applied to the nemork 

each time a buy or sell signal is sent. The more the number of' transaction (bLiy or 

sell), the more the network will loose frorn its prot-It. The tradino cost of I ",, o per L- 
transaction was used. Hence. the transaction cost mainly depends on the number ot 

transaction taken. 

Experimental results tabulated in Table 7.8 throuoh Table 7.12 clearly denionstratc 

that the proposed DRPNNs protitably achieved the Iiii'liest profit return compared to 
I -- 

the MI-Ps and all other HONN models in all time series. except t'or the prediction of' 

IBM signal. In the case of predicting the IBM. FLNN has shown to make the best 

profit return. Forecasting the nine signals. DRPNNs outpert'Ornied other net-ý, vorks on 

the average profit return by 2.69% to 11.73%. Surprisingly. DRIINNs reveal to have 

the least number oftransactions taken when trading all the signals. As a result. %%hen 

accounting the transaction costs, the DRPNNs finally "Ill not loosing too much in the 

profit return compared to other networks. Note that most of the lowest returns were 

found in the FLNNs, namely when predicting the UKA'S. US/1-T. Jll//FtT. JP/US. and 

JP/UK signals. 

Table 7.8: Best sin-gle simulation based on the AR for tile MI. Ps 

Time 
Series 

Annualized 
Return 

(e eluding TC) 

Number of 
Transaction 

Transaction 
Cost 

Annualized 
Return 

(including TC) 
IBNI 82.41) 16 0.16 81 

CMESP 81.01 100 1.06 79.95 
CBT-10 82.16 89 0.89 81.27 

CBT-30 78.62 90 0.90 77.72 
_ U K/EU 70.78 76 0.76 70.02 

UK/U'S 76.98 78 0.78 76.20 
US/EU 77.37 82 0.82 76.55 

JP/EU 74.34 79 0.79 73.55 

JP/US 74.47 78 0.78 73.69 
JP/UK 74.91 83 0.83 74.08 

IN 
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Table 7.9 : Best single simulation hased on Ihc AR I'M- Ihc FI NNs 

Annualized 
Time Number of I Fransaction Annualized 

Return Return Series Transaction Cost 

- _ýexc 
luding (including, 11 

I RNI 8_; 1.; 82 9S 
CN I ES P 81.33 106 1 00 go 27 
CRT-10 81.22 1 091 SO 3%1 
CBT-30 78.90 88 0,88 802 
I K/Et 70.70 76 0,76 0991 
I K/VS 70.91 90 0ý80 -o 11 

I It S/EU 77.26 79 0.78 7o. 48 
JP/EU 73.51 

_71) 
0.71) 72.72 

_ J P/ US 74.27 80 1) 80 73 
.. 
17 

JP/uK 1 74.22 79 079 _ _ 73 41 

Table 7.10: Best siil., -, Ie simulation based on the AR fOr the PSNNs 

Time 
Series 

Annualized 
Return 

(excluding TC 

Number of Transaction 
II 

Transaction Cost 

Annualized 
Return 

(includingTC) 
IBNI 83.03, 16 10 N, 

CNI ESP 79.99 120 1.20 
CBT- 10 81.14 97 0.97 go 17 
CBT-30 79.51 86 0.86 78.65 

70.33 76 0.76 69.57 
t'K/I*S 77.87 74 0.74 77.13 
t- S/ E 1; 77.33 82 0.82 76.51 

[--JP/EU 74.98 79 0.79 74.09 
JP/1. S 74.80 82 0.82 73.98 
i P/t: K 74.15 79 0.79 73.36 

'Fable 7.11: Best single simulation based on tile AR for tile RPNNs 

Time 
Series 

Annualized 
Return 

(e eluding TC) 

Number of Transaction 
Transaction Cost 

--- --- 

Annualized 
Return 

(includingjQ 
ý IBNI _ ---- - 8 1.03 10 S- 0.10 

CNIESP 81.2,1 110 1.1 
1- 
kCBT-10 

CBT-30 
81.72 
79.62 

92 
86 

0.92 
0.86 

8080 
78.76 

I K/Et' 71.74 74 0.74 71.00 
t K/t S 80.39 64 0.64 79.75 
VS/Et' 78.56 82 0.82 77.74 
JP/EU 75.69 77 0.77 74.92 
JP/t'S 75.13 80 0.80 74.33 
JP/UK 75.35 77 0.77 74.58 
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Table 7.12: Best single simulation based on the AR for the DRIINNs 

Time 
Series 

Annualized 
Return 

(c cluding TC) 

Number of 
Transaction 

Transaction 
Cost 

Annualized 
Return 

(including TC) 
IBM 81.47 12 - 0.12 81,35 

CMESP 83.76 80 0.80 92.96 

_CBT-10 
87.52 75 0.75 86.77 

_CBT-30 
85.17 70 0.70 84.47 

_UK/EU 
78.45 54 0.54 77.91 

U K/US 83.75 55 0.55 83.20 
US/EU 83.49 49 0.49 83.00 
JP/EU 85.02 57 0.57 84.45 
JP/US 1 78.72 60 0.60 78.12 

_JP/UK 
1 81.59 51 0.51 81.08 

87 

82 

(n 

77 

. -0 

72 

67 Lumis - L-LmLm LLELE LI-ELJE-LLJILR LLALM . LELM I L" LLJRJR . LL 

Figure 7.4: Best ARs (including the transaction cost) 

E] MLP 

MFLNN 

MPSNN 

M RPNN 

M DRPNN 

In order to compare the speed of the networks to execute and complete the training, 

Table 7.1-33 shows the amount of CPU time for all networks when used to learn all the 

signals. CPU time is the amount of time a computer program uses in processing on a 

CPU, often measured in clock ticks. It is used as a point of comparison for CPU 

usage of a program. The CPU time was based on a machine with Windows XP 2000, 

Intel processor (Pentium 4), CPU of 33-00 GHz, and I GB of RAM. The proposed 

network, DRPNNs broadly used the least CPU time when compared to other neural 
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networks. Training the 113M. ClIT-10. tJK/I-'tl. . 11'/IJS and . 11'/t; K signals. DRPNNs 

OUtperformed other network models by 1.05 to 17.17 time I. listcr 111 ('111' tillic. 
RPNNs made the best C111, J time when trained tilt-cc of' the slgjlýjjs. 11ý1111cl\ 111c 
UK/US. USTU, and . 1P/F, U signals. Most ot, the longest (T[ ý tillies ýýCrc found III 
FLNNs. which is when trainingthe ClIT-10. I ýK/Ftl. U KJ'S. US 

and JP/tJK signals. 

Table 7.13: CM J time usage for I raining each ncuril I nct\\ork I- 
Predictor VILP FLNN IlSNN ý4 RPNN DRIINN 

IBM 94.27 - 56.86 93.09 51 
CMESP 99.53 27.25 113.88 52.50 95 34 
CBT-10 80.33 11.95 34 81 66.33 37 6; 
CBT-30 445.39 484 44 256.14 110.87 -21 81) 
UK/EU 138.53 382.11 99.48 42.69 37.28 
UK/US 329.61 382.42 214.53 9.48 73.88 
US/EU 132.61 366.55 89.16 11.19 67.19 
JP/EU7 88.98 393.61 269.09 40.55 71.09 
JP/t7ls 102.55 38 1.20 159.14 

- 
1 54K34 66.94 

JP/t: K 315.31 373.45 80.906 67.00 37.77 

The learning curves from the best simulation for the prediction ofall data signals using 

the proposed DRPNNs are shown in Figure 7.5. The plots demonstrate that DRPNNs 

learned the mapping task in a moderately rapid learning. considering all the curves 

when used to learn every ten ofthe si-grials end up at less than 600 epochs. In aCtUal 
fact, the fastest learning using DRPNN Just required r-I 1 30 epochs when used to train the 

CBT-10 signal, and the largest epoch taken by the DRPNNs \\as 595 \\hen learning 

the IBM signal. For all shl-Mals, the learning curves t, or DRPNNs were remarkably 

stable and the Mean Squared Error (MSE) continuously decreased every time a Pi- 

Sigma unit of a higher degree is added to the networks. For purpose ot'dernonstration. : _1 

Appendix 2 shows the respective learnim, curves for the other network models. the 

MLPs, FLNNs, PSNNs, and RPNNs. collectively with the DRPNNs. In most cases. 
DRPNNs. RPNNs, and FLNNs learnt all the signals very quickly when compared to 

other network models. It is shown that DRPNNs have accomplished the fastest 

learning on four time series, which is when used to predict the IBM. CBT- 10. CBT-10, 

and JP/UK time series. The RPNNs have made the fastest learning on four signals, 

which are the JP/EU, US/EU. UK/US and UE-1-T signals. Meanx\hile the FI. NNs 

converged fastest on the prediction of CMESP and . 111 I'S signals. NUTS UtIlized the 

largest epochs when used to train the IBM. CMESP. CBTIO. CBT-30. JPTS. US/ljý, 
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and UK/EU, while the FLNNs showed the largest number of epochs when learning the 

IBM, JP/UK, JP/EU, and UKAJS signals. 

Following the learning curve plots, Figure 7.6 shows the best prediction on all 

signals using the proposed DRPNNs. The plots were taken from the first 100 data 

points from the unseen part of the data, except for the IBM as the signal has less than 

100 point of out-of-sample data. For demonstration purpose, the relevant plots for the 

other network models are shown in Appendix 3. By looking at the plots in Figure 7.6 

and Appendix 3, it can be spotted that the original and predicted signals are pretty 

close to each other. This may indicate that all the networks are likely capable at 

mapping the underlying movements in stationary financial markets. Meanwhile, 

Figure 7.7 presents the histograms of the prediction errors using DRPNNs, which 

signifies that all the prediction errors are near to zero and follow closely to the 

normal distribution. Obviously, signal's error that approaching zero is desirable 

properties in Neural Network predictions. Histograms of the prediction errors for the 

other four networks; the MLPS, FLNNs, PSNNs, and RPNNs are shown in Appendix 

4, which demonstrate desirable prediction errors that close to zero. 
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7.2.2 Five Steps Ahead Prediction using Stationary Signals 

In this section, the simulation results for the five steps ahead prediction using 

stationary signals are shown. 

7.2.2.1 Best Average Simulation Results 

Tables 7.14 to 7.18 summarize the average results of 20 simulations obtained on 

unseen data from the ten financial signals using five different neural networks. 

Experimental results from the second column in Table 7.14 show that the network 

structure for the MLPs that give the best average results were mostly realized with 

networks of five hidden nodes and above. In most cases, FLNNs and PSNNs consist 

of 2nd and 5th order network structure, respectively (refer to Tables 7.15 and 7.16). 

For the performance of the RPNNs as shown in Table 7.17, the best average results 

are found in all network structures. Meanwhile, for the DRPNNs (refer to Table 

7.18), in most cases the network consists of 2 nd and 3 rd order network structure. This 

shows that the networks have simulated the interaction of up to 3 rd order network to 

successfully map the underlying task within the stability condition (as explained 

previously in chapter 4 and 6). 

In the case of evaluating the percentage of annualized return (not accounting the 

transaction costs), HONNs successfully made the best Profit return when compared 

to the MLPs on nine out of ten signals. The MLP can only attained the highest profit 

when used to predict the UK/US signal. Forecasting the other nine signals, HONNs 

outperformed the MLPs on the average AR by 0.25% to 2.69%. The prediction using 

MLPs produced the lowest AR for three signals; the IBM, JP/EU and CBT-10 

signals. The proposed network, DRPNNs obtained the highest profit return when 

predicting six signals; CBT-10, UK/EU, US/EU, JP/EU, JP/US, and JP/UK. 

Meanwhile, the FLNNs and RPNN attained the highest profit on two signals; 

CMESP and CBT-30, and one signal; IBM, respectively. PSNN, however, never 

achieved the best profit compared to other network models. 
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In terms of other financial measures: the maximum drzmdomi, \olatility and sharpc 

ratio, it appears that most of the best values ýverc dominant hv DRPNNs. DRPNNs 

also show the highest valUeS in six out of tell s4_11'als \ý hen assessed \k ith (lie correct 
directional change (CDC). When I'lleaSUI-Ing the dI"mdO\vIl. It Call be 

noticed that all I IONN models have lovver maximum loss compared to the M 1.1's, and 

this suggests that IIONNs have less domiside risk. In the case of' cvalliating tile L- 
NMSE. VISE, and SNR, HONNs models outperformed the %11.11s in all si. gnals. cxccl)t 
for the prediction ot'UK/FU and JP/l ! K. 

Table 7.14: Best average result from the I. Ivil. lls I- 
No. 11idden Annualized Maximum Volatilit Sharpe 

NNISE 
-1 

NISE SNR DC 
series Nodes Return Drawdown Y Ratio (d B) 

-M -7 89.4021 -6.7628 5 1.2 3 3) 2 
. 1, 1, "ON, 013-4.1 ()()()I, 'N7" (it 11 -11 ('s 

CM -ES P 8 85.6451 -2.0462 , 13.5867 . . 6.3 () lo 0.2945 0008: 15 17 3,1) 181 
-C-BT-10 -7 86.1028 -1.9829 9.503 - t 9.006 0.2537 (), ()()11)35 1 25.20 
-- - C BT-30 
-- 

4 88.6882 - 13067 11.2442 7.87i6 0.2153 0001502 O. S. 58 1 
- - -I 

25.7 5 
--- -- - UK/EU 8 86.6448 -1.5427 8.3108 

- 
10.4258 

- - 
0.2207 

- 
0.001018 00. 0 I 

- 
20 

. 66 
UK/us 3 88.1342 -1.5179 12.5555 0138 . 0138 7 0.2089 0.001720 00. 35 25,71 
US/EU 3 97.9804 -2.6447 12.3825 7.071 0.2375 0.001742 66.2-1 23.81 
JP/EU7 7 87.0519 1 -1.7986 

j 11.1881 1 7.7777 1 0.2156 ý () 000719 1 64.61) 27.84 
JP/US (6) 83.5513 -2.0705 12.4382 1 6.7103 [: E)2694 0001766 58.41) 25.60 
JPJýJK 5 88.9711 -1.9827 10.869Lý 8.1808 1 

ý0.2083 
1 0.001001 59.51 26.61 

Table 7.15: Best avera-e I-CSLIII fi-oin the I: I. NNs 
-ji-m--e 

series 

NetworWs 
Order 

Annualized 
Return 

Maximum 
Drawdown Volatility 

Marpe 

Ratio NVISE NISE CD SNR 
(. d 11) 

' IBM 90.2120 -3.6676 50.4281 I -, ýii 3619 0.1 Is I 0,2704 0.001 S 
CMESP 4 85.8998 -2.0445 13.5617 0 1)00 0 2946 0.000836 64. SI `7 0) 

-jýBT-10 2 86.2743 -1.8786 9.4415 
t(ý; 

2 
ý4(0) 

)7-- 
- 25 24 0.001915 07.9.4 

CBT 30 2 89.1699 -1.0847 11.1642 7.984 0.213 
-)N 

0001494 64.80 25.77 
UiZiEU 3 85.6429 -1.5427 8.3975 10.1945 0.2238 0.001032 1 65.93 26ý60 
UK/US 4 88.0578 -1.5179 12.5584 7.0104 0.2069 0.001704 59.97 25.75 
CJS/EU 2 87.4584 -2.6447 12.42ý2 =7 0ý2ý26 1 0.2414 0.001771 66.22 23.74 
JP/EU 

- 
3 97.3362 -1.5221 11.1546 7.9243 

1 0.2114 0.000712 
_64.64 

27.88 
-: Fp / US 5 84.7522 -1.5873 12.2948 6.8935 0.2573 0.001687 58.52 1 25.79 
-ýP/UK 2 88.8414 -1.9827 10.8919 8.1478 

_ 
LO. 2084ýj 0.00 10 10 59.04 j 26 

Table 7.16: Best average result fi-om tile PSNA's 
C- 

Time 
se 

=ri 

ees 
Network's 

Order 
Annualized 

Return 
Maximum 
Drawdown Volatilitv NAISE 11 NISE Ratio CD( SNR 

(d 13) 
IBM 90.1036 -5.3672 50.8658 1.7559 o. 2858 O. W3742 05.11 

CNIESP 4 85.5844 -2.0450 13.5994 0.2901 0.2954 0.000839 64.63, - 38 
-OBT-10 86.1676 -1.8786 9.448 9.1203 0.2515 0.001918 67.52 1 25.23 
--66T-30 4 88 7304 -1.1513 11.226 7.9003 0.2167 0.001512 65.10 25.73 

UVE U 86.3449 -1.5427 8.3362 10.3578 0.2234 0.001030 00.55 26.61 
UK/US 2 87,9867 -1.. 5581 12.6208 6.9384 0.2056 0.001694 60.05 25.77 
US/EU 2 87.5358 -2.3909 12.4018 7.0497 0.2369 0.001738 66.15 23.82 

P/ -EU 87.0561 -1.8327 11.1831 7.7846 0.2133 0,000711 64.04 27.99 
JP/US 83.5263 -1.5937 12.4 192 0.2656 1 0.001742 58.73 25.65 

r--JP/UK 88.8596 -1.9827 10.8778 8.1689 0.2090 1 0.001003 59.92 26.60 
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Fabic 7.17: Bcst a\ crage restill from the R PN V, 

Time 
series 

Network's 
Order 

Annualized 
Return 

Maximurn 
Drawdown olatiliIN 

Sha 
Ra 

I BM 3 90.7125 -4.. NIS I-, 
CNIFSP 3 8-5.6441 -2.04-41) 1.; 5k)k), j 0.21 

5 86.5960 -1,8977 9.5041 4) 1 
CBT-30 3 88.7508 -1.2623 11.2273 7.1) 

FKIEU 3 l 86.6437 -1.4312 8.3389 10 1 

UK/LJS 5 87.1449 -1.5143 12.7251 6 "S 
US/EU 

d 

2 88.3191 -1.5891 12.271 
--ý 

- 
4 87.4830 -1.8623 11.21 

ý4 
j-X 

IS . 111/tis 2 84.8365 -2.9646 12.4962 0.71 
4 89.2521 -1.4883 10.8557 8.2, 

Isv msl-ý cm, 
INN R 

io (dB 
-l"() 1 00 t, 

49 95 9 0008 0) Ol XO 27 

. 
18 0 25,6 1 0 00205 671 2s IS 
)5 2 138 0 OM P) 2 015 12 2s 76 

, )18 2,; 1 .1 1) oo 1008 OS, 17 26,40 
81 02 001-21 1 1.1 25 70 
66 t) 2SOO 0 00 18 "8 11.1 21 23 58 
lw) o, 2 I i2 oo()0-18 61 21 27 85 
c 0,21) 2o 00 1 () 1 1) S. " 5t) 
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Table 7.18: Best average result from the DRPNNs 

Time Network's Annualized Maximum 1 Sharpe 'I N'% R Volatility i NMSE MSF CDC 
series Order Return Drawdown Ratio 13) 
IBM 2 90,7075 - 3.6_165 50ý0070 1 1%, 1i 3) 059 0 00.1000 h., )S w, 

CNIESP 2 85.7694 -2.0457 13.617 6-58- 0.2909 00082ý WS ýI 27AS 
-CBT- 10 3 87.3525 -1.6071 9.3363 9.3575 0,2541) 0.00194.1 06 87 41 25.18 

CBT-30 3 88.0966 -1.1630 I 1 1.3M6i 7.7923 Oý21., 7 1,1 k) I (, 1 77 25,78 
-F -K/ E 1; 2 87.5726 -1.0129 8,3067 10.5427 ). 2231 0.001.021) 65.75 ý26. 

-62 
1; K/ U, S - 3 87.4671 -1.4861 12.668 6.905 0.2160 ! 0.00177() 61,2ý I "S 56 
US/Etf 2 88.8278 -1.4518 12.2705 7.2402 0,2577 0,001890 64.11 23 46 
JP/EU 3 87.8136 -1.8327 11 093 7.916 2159 0.000'20 6492 27 83 
j P/ S JP/t; s 2) 2388 86 -2.7460 12.659 6) 82 3 -- --t I-. - -- -- i -- --t - -. 0 W20 0 001994 , 

59 - 37 25ý09 
. . . 
jp/ JP/IUK 2 89.4970 -L 

t 
2i 

ý 0.001017 01.24 26.54 O. 2120 

For demonstration purpose. the annualized return achieved in all network models (as 

given in Tables 7.14 to 7.18) is plotted in Figure 7.8. Mcaimlifle. the maxinium tý 
average number of epochs reached for the prediction of' all data signals during the L- 
training of the networks is shov, -n in Table 7.19. DRIINNs and RPNNs have revealed 

to use less number of training cycles (epocls) to Converge on all clata. which is 

equivalent to being 1.07 to 600 times faster than the other nemorks. In \-Ie\\ ofthat. 

DRPNNs have sho\vn to require the least number of epochs to converpe on six out of 

ten signals. In all financial signals. FLNNs and NILIs appeared tO LltlllZC more 

epochs to complete the training. 
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Figure 7.8: Best average annualized return from all network models 

In accordance to the number of epochs used, Table 7.20 demonstrates the results on 

the number of trainable weights and biases utilized in all network models calculated 

from the network structure given previously in Tables 7.14 to 7.18. It can be noticed 

that most of the smallest network structures is dominant by FLNNs, followed by 

PSNNs and DRPNNs. The MLPs and RPNNs obviously comprise of larger number of 

trainable weights to learn the financial time series. From the tabulated results, the 

biggest network structure is possessed by the RPNNs of order five, that is when used 

to predict the CBT-10 and UK/US signals, with the number of free parameters of 90. 

Meanwhile, the smallest network structure is owned by a2 nd order PSNNs, with 12 

trainable weights. MLPs never present with the smallest network size. 
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Table 7.19: The averagc maximum c1loch I-cachcd training 

Time Series MLP F 1, NA PSNN RIINA DRIINA 
IBNI 

_5 68 2SH (, 51 1 

CMESP 907 645 312 193 255 

_CBT- 
10 1395 1104 2ý2 8(1 30 

CBT-30 744 2870 244 155 216 
UK/EU 1365 2851 893 44 
UK/tjS 2050 2993 2543 245 
US/EU 3000 3000 12 94 24 
JP/EU 3000 3000 _ 871 917 1 
Jp/t; S 699 1489 1141 8 
JP/UK 1179 3000 1078 12 

Table 7.20: Number of trainable NNeights and bias used in all ncmorks 
Time Series MLP FLNN PSNN ýRPNN DRIINN 

IBM 
_20 

12 o -11 
CMESP 57 31 24 36 21 
CBT-10 50 26 30 90 42 
CBT-30 29 16 24 36 42 
UK/EU 57 26 30 36 21 
UK/US 22 31 12 90 42 
US/EU 22 16 12 18 21 
JP/EU 50 26 30 60 42 
JP/US 43 32 30 18 21 
JP/UK 36 16 30 60 21 

To configure the modelling capabilities and the stability of the neural netWorks, 

Figures 7.9 and 7.10 illustrate the best average result ot'AR and VVISF. respectively. 

tested on out-of-sample data, when used to predict the financial signals. The 

performance of the networks was evaluated with the number of higher order terms 

increased from I to 5 (for RPNNs and DRPNNs), and I rorn 2 to 5 (for FLNNs and 

PSNNs), and number of hidden nodes increased from 33 to 8 (for MIT). The plots in 

Figure 7.9 indicate that all HONNs models generally learned the data steadily "'Ith the 

AR continues to increase along with the net,, Nork groxth. After sometimes vvIlen they 

reached a certain higher order structure. the performance start to degrade. and usually 

the AR will not rise up again. This can be seen when FLNNs predictino the 113M. tn 
UK/US, and UK/EU. PSNNs predictino the CMESII, and ClI'I'-' 30. RIINNs predicting 

the IBM, CMESP, US/EU. JP/EU. JP/UK, and CB'F-')O. In some cases. the 

performances of the networks show an up and down movement ofAR (FI, NNs when 
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predicting the CMESP, JP/US, JP/EU, JP/UK, CBT-10, and RPNN when predicting 

the JP/US). Some of the plots in Figure 7.9 demonstrate decreasing AR (FLNNs when 

predicting the US/EU, CBT-30, and PSNN when predicting UK/US). When predicting 
t th 

the IBM, UK/EU, and US/EU signals, PSNNs showed increased AR only af cr a4 or 
Sth order network structure were utilized. Meanwhile, the AR keep rising from network 

of order one to five when using PSNNs to predict the JPIUS, JP/EU, JP/UK, CBT-10; 

and when using RPNNs to predict the UK/US, UK/EU, and CBT- 10. 

DRPNNs specifically show an increasing AR from network structure of order one to 

three when predicting the CMESP, UKAJS, JP/EU, CBT-10, and CBT-30 signals. For 

the prediction of IBM, UK/EU, US/EU, JPIUS, and JP/UK; the AR began to drop 

beyond the 2 nd order structure. On the other hand, the performance of the MLPs in 

most of the plots in Figure 7.9 show an up and down movement, indicating that there 

is no clear pattern whether the profit is going up or down when the number of hidden 

nodes in the network were appended. Meanwhile, MLP when used to predict the 

CBT-10 signal generated a continuously increasing profit with the increment number 

of hidden nodes. 

Figure 7.10 demonstrates the average performance of the NMSE with increasing 

networks order or number of hidden nodes. RPNNs and DRPNNs exhibit drastically 

decreased NMSE along with the network growth. Apart from the prediction of CBT- 

10 and JP/EU, the NMSE for RPNNs and DRPNNs started to rise up when a3 rd 
, and 

2 nd order Pi-Sigma unit, respectively, is added to the networks. On the contrary, the 

MLPs, FLNNs, and PSNNs revealed to show a little of an up and down motion on 

the NMSE, and in certain cases, the NMSE keep on increasing, except for the 

prediction of US/EU when using the PSNN. 
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Figure 7.9: Networks' perfon-nance on the AR with increasing order / number of hidden nodes 
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7.2.2.2 Best Single Simulation Results 

In thc remaining ofthis scction, rcsults from thc bcst SillgIC SillILIkItiOll ýIdliCXCj 

each network model are discussed. Tables 7.21 to 7.25 and Figure 7.11 sho%% the 

individual result for best simulation wlicti measured mth the AR. The AR \ýas 

assessed in the presence of transactions costs ot . Po per t rallsact loll (MIN of- sell). 
Results in Tables 7.21 to 7.25 show that IIONNs models attained the best profit 

return compared to the MI, Ps oil eight out of ten signals. The N11.1's achieved flic 

hioliest profit ý, vhen used to predict t,. N'o sivM11s, tile CNOFSP and ('K I'S signals. 
Forccasting the othcr eight signals, IIONNs outperformed tile N11.1's oil the AR by 

0.10% - 2.35%. Within the IIONNs models. RPNNs obtained the lill,,, Ilcst profit 

return when predicting five signals, IBM. UK/EU, US/Et I. -JP/IJ I. and JPVK. Most 

of the worst results corne from the FLNNs and PSNNs. Note that in all results, the 

highest AR (with transactions costs) were endox\ed by those models \\hich have the 

highest AR (without transactions costs). except t'Or the prediction ol'I'S'1: 1: and 111\1 

signals. For these two signals, the highest AR (xvithout transactions costs) \ýas found 

in the DRPNNs, but when applied the transaction costs. the RPNNs finally produced 

the highest AR. This indicates that in sorne predictions. models \\hlch have more 

transactions will loss the prof-it. unless if the model at first vains a much higger 

profit. 

Table 7.2 1: Best single simulation based oil the AR for tile M 1.1's 

Time 
Series 

Annualized 
Return 

(excluding TC) 

Number of 
Transactions 

Transaction 
Cost 

Annualized 
I 

Return 
(including, Pcý 

IBNI 91.38 12 0.12 
CNIESP 96.15 90 1 0.90 85.25 
CBT- 10 86.95 70 070 86.25 
CBT-30 88.91 74 0.74 88.17 
UK/EU 87.04 66 0.66 86.38 
UK/US 88.75 51 

- - 
0.5 1 

- 
88.24 

US/EU 98.04 5 6 0.50 87.54 
JP/EU 87.26 68 0.68 86.58 
jp/US 85.50 54 0.54 84.96 
JP/UK 89.08 62 0.62 88.46 
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Table 7.22: Best single simulation based on the AR for the I. I NV 

-rime 
Series 

Annualized 
Return 

(excluding_TC) 

Number of 
Transactions 

Transai 
Cos 

I B, %I 91.9s II 
CNIESII 85.93 90 9( 
CBTAO 86.79 72 0.7-. 
UBT-30 99.41 76 0.7( 
t K/EU 86.28 66 0.6( 
UK/US 88.12 50 (). 5( 

I It TS/EU 87.59 50 

( ' . JP/EU 87.49 67 

j 

0.0" 

) JE/ tJ =S 85.04 62 - 0.61 
JP/UK 89.85 64 

. 6. ý 

( )ý 
Table 7.2-3): Best single silliLliation based oil tile AR fOr the 

Time 
Series 

_ 

Annualized 
Return 

(excluding TC) 
_ 

Number of 
Transactions 

T Annualized Transaction 
Return Cost 

1 (including TC ) 
-__ I BNI 90.25 12 I 'w I, 

NI ESP 86.03 88 0.8 X 'S5 1i 
(, Brl, _Io 87.04 72 O%r 

.7 ý2 86.32 
CBT-30 88.91 74 0.7-' 88.17 
UK/EU 86.37 66 0.6 85.71 
UK/Us 88.00 50 () 9 7 iO 
US/EU 87.73 50 - 0. io -- - - 1%, 23 
JP/EU 87.06 68 1 0. (, 8 8o 38 
ip/t; s 1 83.54 66 0.66 82 S8 
JP/UK T777ý4.08 62 0.02 88 

Table 7.24: Best single simulation based oil the AR for the RPNNs 

Time 
Series 

Annualized 
Return 

(excluding TC) 

I-- --Annualized 
Number 

-of TTransaction 

Transactions Cost Return 
(including TC) 

IBM 93.06 12 94 

CNIESP 86.04 86 0.86 8i Is 
CBT- 10 89.59 70 6-7-0 

CBT-30 88.94 76 0.76 88.18 
UK/EU 88.81 66 0.66 88.15 
UK/US 88.26 53 0.53 87.73 

_ US/EU 89.73 42 _ 0.42 _ 89.31 
JP/EU 88.64 64 0.64 99.00 
JP/U'S 86.95 56 0.56 86.39 
JP/tjK 90.14 62 0.62 _ 89.52 
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Table 7.25: Best single simulation based on the AR for the DRIINNs 

Time 
Series 

Annualized 
Return 

(excluding TC) 

Number of 
Transactions 

Transaction 
Cost 

Annualized 
Return 

including TC) 
IBM 93.09 16 16 929, 

CMESP 86.02 98 0.98 8 5,04 
CBT-10 89.38 78 0.78 88.60 
CBT-30 89.05 78 078 88.27 
UK/EU 88.55 68 0.68 87.87 
UK/US 88.73 51 0.51 88.22 
US/EU 89.74 50 0.50 89.24 
JP/E 1 88.13 72 _ 0.72 87.41 
Jp/US 87.20 60 0.60- -86.00 
JP/UK 90.07 62 0.62 89.45 

94 

92 

90 

c3) 
c 88 

86 

10 .- 84 

82 

80 

Figure 7.11: Best AR (including the transaction cost) 

[3 MLP 

[3 FLNN 

0 PSNN 

Cl RPNN 

0 DRPNN 

Table 7.26 shows the results of CPU time taken by all neural networks during the 

training of various signals. Results from the table demonstrated that RPNNs and 

DRPNNs in most of the cases, took the least CPU time when compared to other 

neural networks. DRPNNs made the best time when training the IBM. CBT-30, 

US/EU, and JP/UK signals. Forecasting the four mentioned signals. DRPNNs 

outperfon-ned other networks by 1.07 to 128-15 time faster in CPU time. RPNNs 
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took the quickest time when training tile (A]II. SP. ('111 -10. t ýK I-It', I 'K I'S, and 

JPTS signals. Meanwhile, most of' tile longest CIT tinles \\cre t'ound in FI, NNs. 

that is when training the IBM. ClIT-10. I'K I'll'. USIT. and . 11,1 K "Ignals. 

t'()I lowed by MIAs. when trainino the UM FSP. ClIT-10. and J 111-J! signals. L- 

Table 7.26: CIIIJ time usage t'()i- training each neural nct\\ork 
_Vredictor MLP FLNN PSNN RPNN DRIINN 

IBNI 29.38 72.47 31.34 1 S. 7*; I- ý8 
CNIESP 520.98 63.94 51.7 5 42.97 
C BT- 10 99.30 282.52 33.83 7.30 35.64 
CBT-30 286. SO 476.55 110.03 66.62 22.00 
UK/EtJ 299.72 376.42 201.72 6.05 38.97 
UK/Us 288.84 374.91) 539.13 12.66 WOO 
US/El; 190.23 374.19 261.89 7.13 2.92 
JP/Et; 649.61 4.11 187.66 63.63 101.09 
JP/tis 190.02 151.91 247.45 2.31 4.03 
J P/t; K 311.09 386-09 142.98 51.84 2 1.77 

The learning curves from the best simulation for the prediction ofall data signals using 

the proposed DRPNNs are shown in Fioure 7.12. DRPNNs have shown the ability to 

converge extremely fast. In actual fact. the fastest learning using DIONN just requircd 

7 epochs when used to train the US/Ell signal. and the largest epoch taken by tile 

g For purpose of' DRIINN was 76, that were when learnin, tile CNIFSP sijnial. 

denionstration, Appendix 5 shows the respective learnim, curves t'or the other rietwork 

models. the MLPs, FLNNs, PSNNs. and RPNNs. collectively %\ith tile DRPNNs. In 

most cases. both DRPNNs and RPNNs learnt all the signals very quickly x%lien 

compared to other network models. It is shown that DRIINNs have accomplished the 

fastest learning on six out of ten signals. whereas the RIINNs have made the fastest 

learning on three signals. For all signals. the learnin- for both nemorks. RIINNs and z1- -- -- 
DRPNNs were exceptionally stable and the Mean Squared Frror C011MILIOUSIN' 

decreased every time a Pi-Sigrna unit of a higher degree is added to the nemorks. The 

longest learning was when using the MIR training, the . 11, IT signal. and using tile 

FLNNs to train the JP/UK and US/EU signals. x\hich finished off at the maximum 

epochs of '3000. Recall that the number ofmaxMILIM epoch pre-deternimed for training 

g all the networks is 3000. Out of ten sionals. the WIN utilized larest epochs on tive 

of them, namely the CMESP. CBTIO. CBT-30. t'K and JR/ I I-. [:. This is followed 

by the FLNNs and PSNNs, in which they took largest epoclis when learnt three 

(US/Eli, JP/US. JP/UK) and txNo (IBM. UK,, J'S) sionals. respectively. 
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Figure 7.13 shows the best prediction on out of sample signal using the proposed 

DRPNNs. For demonstration purpose, the pertinent plots for the other network models 

are shown in Appendix 6. In order to give a closer view, the plots depict just part of 

the prediction, which is the first 100 data points from the out-of-sample signal, except 
for the IBM as the signal has less than 100 point of out-of-sample data. As it can be 

noticed from Figure 7.13, the plots for the original and predicted signals are very close 

to each other and at some points they are nearly overlapping. This indicates that 

DRPNNs are capable of learning the behaviour of chaotic and highly non-linear 
financial time series data and they can capture the underlying movements in financial 

markets. Meanwhile, Figure 7.14 depicts the histograms of the prediction errors using 

RPNNs, which indicates that all the prediction errors approach to zero and 

demonstrate a bell-shaped of normal distribution. Histograms of the prediction errors 

for the other four networks; the MLPS, FLNNs, PSNNs, and RPNNs arc shown in 

Appendix 7. The plots in Appendix 7 in most cases also show prediction errors that 

close to zero. 
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Figure 7.13: Best forecasts made by DRPNNs on all data signals 
Original signal, Predicted signal 
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7.3 Prediction of Non-Stationary Signals 

Analysis of the non-stationary prediction of the ten financial time-scries signals is 

discussed in this section. Simulation results from the prediction of one step ahead 

and five steps ahead are presented, respectively. The results arc assembled from the 

best average simulation and best single simulation. 

7.3.1 One Step Ahead Prediction using Non-Stationary Signals 

In this section, the simulation results for one step ahead prediction using non- 

stationary signals are presented. 

7.3.1.1 Best Average Simulation Results 

Following the training of various architectures, Tables 7.27 to 7.31 summarize the 

finding results from the average of 20 simulations. The results were taken from the 

out-of-sample data testing on ten univariate signals, using all neural networks. In 

each table, the network order (for HONNs), and number of hidden nodes (for MLPs) 

for the best selected network topology is given in the second column. For the MLPs 

(as shown in Tables 7.27), the network structures that give the best average results 

were mostly realized with networks of three and eight hidden nodes. Meanwhile, for 

the HONNs models (refer to Tables 7.28 to 7.31), in most cases the network consist 

of 2 nd order network structure. 

The results of the Annualized Returns (without accounting the transaction cost) from 

Tables 7.27 to 7.31 demonstrate that the proposed DRPNNs profitably attained the 

highest profit return compared to all other network models in five time series, 

namely the IBM, CBT-10, UK/EU, JP/EU, and JP/UK signal. When predicting the 

previously mentioned five signals, DRPNNs outperformed other networks on the 

average AR by 0.15% to 11.23%. Meanwhile, RPNNs has shown to obtain the best 

profit return on the CMESP, UK/US, and US/EU signals. Forecasting the CBT-30 
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and JP/tjS, FTNNs outperl'Ormed other nctworks on the AR. WIIIIC OillLhiling IIIC 

other financial metrics, the maximum dra\\do, \n. volatility and sharlic ratio, rcSLIIIS 

in Tables 7.27 to 7.31 show that tile best valLICS \Ncre dominant b\ DRPNNs and 

RPNNs. When measuring the NMSF, MSF. and SNR. it can I)c ol),, cl-\c(i jJ1,11 

DRPNNs outperform all other networks vvith tile lo\wst N\Isl. ' and \Isl.,. 111d 

\jcýj, j\\jj, jc. %11.1, s 111ji(Ic highest SNR in CBT-10. USFU, JP/US. and . 1P/UK sumials. ' 

the highest NMSF, MSE, and lowest SNR when predicting fi\ c olit ()I* tell signals. 

namely the CMESP, US/EU, JP/FU,. II', 'US and . 1P/UK. In the cz, sc ()I, cNjIjjjl, q,, Ile 

C'orrcct Directional Change (CDC), both FI, NNs and RPNNs dominantIN achic%cd 

the highest values in three signals \vhen compared to other ncmorks. Fl. NN. s 

outperform in the UK/EU, US/EU and JP/US signals. mcairMidc RIINNs outperform 

in the IBM, CMESP, and CBT-30 signals. 

Table 7.27: Best aNeragc result From the MIAs 

Ti : me 
rieý s 
Fs] 

Series 
No. Hidden 

Nodes 
Annualized 

Return 
Maximum 
Drawdown 

Volatility Sharpe 
NAISF NISE cl)c R 

Ratio (d 11) 
--- -I. I _ IBNI 3 -4.6122 -20.6499 1 lo.; lools. " 0. ()()() v)(, S(ol 

CNIESP -5.5038 -18.4418 9.2V47 0.5930 3.378792 j 0.008137 48.89 20.82 
CBT-10 12.1217 -4.1682 6.0213 2.0140 0.027215 0.000167 ! 55.71 3 5.3 9 
CBT-30 6 2.7592 -8.7013 7.8416 0.35 19 0.0695 12 OM0444 54.7 31166 ý 
UK/Rj 8 -5.7302 -12,1393 5.5982 1.0243 0.484508 0,000985 49.72 27.7 
t'K/US 8 -0.7015 -12.3437 8.2396 0.0852 0.208277 0,000379 51.44 26.17 
U -S/E U 7 

_0.9642 -8.9431 8.9115 0.1082 2.004158 0.005521 47.22 21.5 
JP/EU 3 -2.1583 -10.1293 7.9351 0.2721 12.897 34 0.009076 49.89 23.14 

7 -3.4242 -11.4673 8.6423 0.3963 0.076222 0,000282 48.87 29.52 
jp/ 'K JP/UK U 8 7 8.0312 -6.6898 7.4047 1 1.0851 0.384767 0.000393 57.84 3114 

Table 7.28: Best average result from the Fl-NNs 

Network's 
Order 

Annualized 
Return 

Maximum 
Drawdown volatilitv 

.ý 
Sharpe 
Ratio 

, 
NVISE MSE CDC SNR 

(d B) 
IBM 2 -9.0347 -23.2481 3 1. i824 0.2870 2.577 708 0.004800 50.00 15.67 

CMESP 1 -6.3389 -18.9548 9.2, "' 11 0.6829 0.0347 2 0.000010 47.42 
- 

39.23 
CBT-10 1 9.6093 -5.5482 6.0302 1.594 07 o. 022697 0.00014 53.64 36.19 

CBT-30 1 5.9666 
- -6.5782 7.8348 0.7611) 1 0.03486 0.000223 54.49 34.83 

L'K/EU 2 -1.6517 -9.2232 5.5986 0 '1961 1 0.107904 0.000211) 52.41 34.06 

UK/US 2 -1.2531 -12.5917 8.2401 Oý 1521 2.22945717 0.004054 50.75 15.42 
US/EU 2 -0.3741 -10.5707 8.9092 0.0421 0.0916 0.000252 50.04 

- 
34.28 

5 -0.9701 -8.6543 7.9377 0.1223 0.222201) 0.000157 51.53 36.25 

-1.6514 -10.7538 8.6449 0.1911 0 05 1096 0.000191 49.12 31t18 
4.7861 -7.4511 7.4123 1 0.6463 j 0.152831 1 0000156 55.78 ,, -- -, " -- -I, ---I II 36.25 ] 
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Table 7.29: Bcst avera-c restill from the PSNNs 

Network's Annualized Maximum ý, olatijitý 
Sharl 

Series Order Return Drawdown Rati 
1 -7.5871 -2 2.., 437 31o 2s J( 

C- NIESP 5 -6.2391 -20.4375 9 281.1 7 
CBT-10 2 8.6950 -6.0657 6.0314 1.44. 

ý-C-BWr-30 2 5.6980 -6.5027 7,9356 0,72( 

I ý-/J ýU lb 4 -1 3400 -9.2416 5.6010 0. 
-2-3-k 

UK/t: S 4 -0,0728 -13.0318 8.2371) 0.001% 
US/Et; 
- - - 

2 -0.9417 -10.0111 8. ()O()g 0.1o. 
1 J p/f, t I 3 -0.7070 -9.3511 7.9352 0,08 

IP/IIS 2 -2.9656 -12.5309 8.6432 (). -1 - 
4. 

. )P/I; K 3 T. 5 5 4,3 -7.0358 7.4110 0.75( 

, SNR NISI. CDC W B) 
00 

1) 0 Off; So 
(1 12 Q('s o 000201 61 

I(IX )I )()Ssl S 9s 

0 1111 "1 11 11 1 (1-1 21) 6.1 

1 2("5 Q 2 16 IN 71) 
17 o) I ()M i8 3 18 1 "1 2 

1 0 21) 0019 0 ONO)s Sl 01 is (11 
I If (I ý') I ()o(Q-1 Is 81 If ýs 

x 
10 11.2 

-, 
I (, S9 I (wo II st, I1 "7 

Table 730: Best average result I'l-om Ilic RPNNN's 

Time m 
Series 

Network's 
Order 

Annualized 
Return 

Maimum 
Drawdo%%-p_j 

Sharpe SNR Volatilitv 
Ratio I 

NNISE NISE- CDC 
(d 11) 

IBM - 
0.4641 

- - -17.6616 1 
- - -- . 11.0,21) ()()110 11 Is IN, I w) 

-- - - - - 
CMESP 4 4 7.8 73 j A1 2.4 6 85 7 0 9. 2 2 0 8511 0 

__, ý 
1.10-) 

-; 
1 0003 2-; IS i- 

CBT-10 1 11 0105 -4.5959 6.0236 1 1.9280 0.0 . 074 1 25 0.000159 5 

Cýf -30 3 56633 -6.5684 7.8345 0.7235 0.047035 
- 

0.0003 54.8 31 Is 

UK/t U 5 79 7 7 - 9.1858 5.6016 0.1414 0.07654 2 0.000156 52,07 35 72 

UK/us 2 1 79ý) 

= 

-10.2990 8.2351 0.2183 0.520431 0.000947 22.79 51.36 

S/E tU 4 1.0510 1 05 0 10.0-593 8.9042 0.1181 0.173251 0.000477 49.17 32 65 

j -4P/Et: , 2 -0.8266 -8.1307 7.9364 0.1043 0.174 64 0.000123 50.77 25 

.1 
F-j p/ _LS 5 4.1 

ý4 
6ý3 

- -13.6355 8.6399 0.4803 0.043948 Oý000163 . 18.54 
- 

319.1 
ý--JýP/ ý, ý 3 5 7.785 -6.3960 7.4059 1.0518 0.139066 0.000142. 1 57.18 10.62 

Table 73 1: Best average result from the DRPN Ns 

--&-etwork's 
Order 

-ý-nnualized 

Return 
Maximum 
Drawdown 

Sharpe 1 
Volatilit y Ratio 

, 
L- 

N, 'm 'E NISE 
--- I 

CDC 
I 

SNR 
(ýd B) 

1 2.1946 -16.5205 31.6604 0,0090 12.23231) ()o228o--, 51 5-1) W 

CMESP 3 63732 -13.9709 9.2820 0 6874 0.07396 0.000179 
+ 

51,71) 35 

CBT-10 
-Cý ý ý-3 

0 
3 

-1 
13 9853 

0 17-5 
-4.4815 
-7.4161 

6.0140 
7.8362 

2,3263 
0.6407 

0.019101 ). 000118 
0.043104 0.000275 1 

54ý04 
54.51 

3 0.9ý 

34 11 

I K/EU - 
0.2960 -9.1664 5.6023 0.0533 0.083240 0.0 00 109, 51 -1 

-- 
8_ '17 

- jýKJU K 3 1.2960 -9.4577 8.2 3 63 0.1575 0.85040,0001547 50 54 
.. 

21s 
-1 

L S/EU 2 0.0837 -8.8003 8.9100 0.0093 0.076884 1 0.000212 -1 (1 Is, 9 , 
_4 

3 

-0.5587 -9.1767 7.9332 0.0703 0.21517i 0.000152 51 654 
2 -2.3702 -11.3892 8.6422 1! 0.2 743, o. o. 18587 0.000143 -18, - 

). 1 3 2.4 6 

JP/UK 8.7788 -6.5637 T4034 1.1860 0.10447 0.000107 57.78 37 78 

The annualized return achieved in all network models as g3ven in Tables 7.27 to 7.31 

is depicted in Figure 7.15. Subsequently. the averape number of epochs reached for 

the prediction of all data signals during the training of the networks is shomi In r_1 -- 
Table 7.32. For the prediction of IBM. UKA-U. Jl', 'I-'t' and JRVS signals. results 

given in Table 732 show that the proposed DRPNNs reveal to use least number of 

epochs to converge during the training. \\ hich is about I- 10 to 175.00 tinles taster L- Zý 

than other networks. RPNNs on the other hand have sllo\\ n to com crgc fastest when 
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30. used to predict the UK/US signal. For the prediction ofCBT-10 and ClIT-3 PSNNs 

appeared to utilize least epochs compared to other network models, while FI. NNs 

have shown to use least epoch when used to learn the CMESP, US/F. U. and JP/1JK 

signals. Forecasting the IBM and JP/US signals, both MI, Ps and FI. NNs reached the 

maximum number of epochs for training the network which was set to 3000. Besides, 

FLNN also used maximum epochs to learn the UK/US signal. Out often signals. 
MLPs have shown to require larger number of epochs to complete the whole 

training, except for the prediction of CMESP and UK/US. 

15 

10 

C 

G) 

C 
C 

-10 

[] MLP 
[3 FLNN 
M PSNN 
(3 RPNN 

M DRPNN 

Figure 7.15: Best average annualized return from all network models 

Table 7.32: The average maximum epoch reached during training 
Time Series MLP FLNN PSNN RPNN DRPNN 

IBM 3000 3000 249.3, 61 8 
CMESP 95 19 94 2173 2071 
CBT-10 2724 186 98 494 1789 
CBT-30 2861 89 38 58 46 
UK/EU 2067 24 31 1377 22 
UK/US 1443 3000 2759 26 102 
US/EU 2353 27 198 249 947 
JP/EU 905 20 21 1 60 19 

3000 3000 2564 1899 730 
2697 125 562 1325 2656 
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Table 7.33 denionstrates the results of' the nemork sizc, spccilicjjjlý on the . 1%cragc 

number of trainable weights and biaS LltlllZcd in all ncmork modcls. I-A aluating the 

number of free parameters, it appears that most of the smallest nemork StRICUll-CS M-C 
dorninated by the FLNNs and PSNNS. The RPNNs obviously comprise of' larga 

network size when learning the CM FS 11, U K/I J:. tIS, T U. ail(I . 11,1 '. s II 111c scl-Ics. 
While the training ofthe MITs shovved that the nemorks coily, -Ise ol, 1ýjj-gcl. 11111111)cl- 

of trainable weights and bias when used to learn the ji, I, K 

signals. From the tabulated results, the biggest network structure is possessed by a 5"' 

order RIINN, which contains 90 free parameters when used to forecast the . 111,111S 

signal. Meanwhile, the smallest net,, vork structure is owned by a 2"" order PSNN, \ýIih 
12 trainable wel-lits. 

Table 7.33-33: Number of trainable N%eitilits and bias used in all ncmorks I- 

Time Series MLP FLNN PSNN RIINN DRPNN* 
IBNI 22 16 30 

CNIESP 22 16 30 60 42 
CBT-10 36 16 12 18 42 
CBT-30 43 16 12 36 21 
UK/Et! 57 16 24 90 21 
UK/US 57 16 24_ 18 42 
US/Etj 50 16 12 60 21 
JP/ElJ 22 32 18 18 21 
JP/t; S 1 50 32 1 -) 90 21 
JP/UK 57 16 8 36 21 

Subsequently, Figure 7.16 and Figure 7.17 illustrate tile best average result of AR and 
NMSE, respectively, tested on unseen data. when used to predict the tinancial signals. 
In order to test the modelling capabilities and the stability of all nemork models. the 

performance of the networks was assessed Nvith tile number of higher order terms 

increased from I to 5 (for HONNs). and the number ot'hidden nodes increased from 3 

to 8 (for MLPs). The plots in Figure 7.16 show that the performance ofthe proposed 

network, DRPNNs, steadily continue to increase along with the nemork growth whell 

used to predict the CMESP, UK/EU. JP/EU. and PIT e 'K sionals. For th prediction of 

IBM, US/EU, CBT-30. and JP/US slrgnals. the performance of DRPNNs continue to 

rise when a2 nd order Pi-Sigma unit was added to the netN\orks. and tile AR began to 

" rd drop when the -) order Pi-Sigrna unit was added. Conversely. for tile prediction of 
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UK/US and CBT-10 signals, the AR for DRPNNs were dropping when a 2nd order Pi- 

Sigma unit was added to the networks, and the AR began to increase when a 3rd order 

Pi-Sigma unit was added. In the case of evaluating the performance of RPNNs, the AR 

for the prediction of CMESP, JP/US, and JP/UK signals keep increasing until network 

of order five. Meanwhile, for the prediction of the IBM, JP/EU and CBT-30 signals, 

RPNNs exhibit an increment in the AR, and their performance then start to degrade 

when they reached network of order three or four. For the remaining of the signals, the 

plots demonstrate an up and down movement of the AR, except for the CBT-10 series, 

where the AR kept on decreasing until network of order five. For FLNNs and PSNNs, 

the networks in some cases reveal decreasing AR (FLNNs for the prediction of IBM, 

UK/US, CBT-10 signals, and PSNNs for the prediction of US/EU, JP/US, CBT-10, 

CBT-30 signals). Meanwhile, the networks also showed an up and down movement in 

the AR performance (FLNNs for the prediction of CMESP, UK/EU, JP/UK, CBT-30 

signals, and PSNNS for the prediction of UK/US, UK/EU, JP/EU, JP/UK signals). 

FLNNs in some cases showed increased AR only after a 5h order network structure 

were utilized. This can be seen when the networks were used to forecast the US/EU, 

jP/US, JP/EU signals. For the prediction of IBM and CMESP signals, PSNNs steadily 

showed an increasing in the AR. Meanwhile, the performances of the MLPs generally 

exhibit an up and down movement in the AR, except for the prediction of UK/EU in 

which the AR keep increasing from network structure with hidden node of three to 

eight. 

Following the performance of AR, Figure 7.17 depicts the average performance of 

the NMSE with increasing networks order or number of hidden nodes. For the 

prediction of UK/EU, JP/US, JP/EU, JP/UK, CBT-10 signals, the plots for DRPNNs 

demonstrate continuously decreasing NMSE along with the network growth. 

Meanwhile, the performance of the DRPNNs when used to predict the CMESP and 

US/EU signals demonstrate an"increment NMSE until evolving P order networks. 

For the prediction of IBM, the NMSE of DRPNN continued to rise when a2 nd order 

Pi-Sigma unit was added to the networks, and started to drop when the P order Pi- 

Sigma unit was added. Conversely, for the prediction of CBT-30 and UK/US signals, 

the NMSE for DITNNs were dropping when 2 nd order Pi-Sigma unit was added to 

the networks, and began to increase when the 3 rd order Pi-Sigma unit was added. 
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Forecasting the signals using RPNNs shows that in most cases, the NMSE steadily 

decreased along with the networks growth. On the whole, PSNNs and FLNNs on the 

other hand, reveal to perform increasing NMSE. Forecasting the IBM, CMESP, 

UKIUS, US/EU, and JP/US signals, the plots for the MLPs demonstrate a zigzag 

motion of NMSE. Meanwhile, when predicting the UK/EU, JP/EU, JP/UK, and 

CBT-10 signals, the performance of MLPs show decreased NMSE, and when the 

number of hidden nodes was expanded, the NMSE began to rise. Finally, the plot for 

MLP when used to predict the CBT-30 signal reveals that the NMSE continued to 

increase with the network size. 
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7.3.1.2 Best Single Simulation Results 

In the remaining ofthis section, results from the best single sinjulý111oll ýjcjijcý ctl l'i-Oll, 

each network model are presented. Tables 734 to 738 and Figure 7.18 sho\\ the 

individual result for best simulation run when measured %Nitli the AR. and assessed In 

the presence of transactions costs. Fxperimental results tabulated in Tabics 7.14 to 
7.38 demonstrate that the proposed DRPNNs protitably achieved the highest prolit 

returns compared to other network models in the prediction of II KA'S. . 111 1: 11. and 

. 1P/tJS signals. In the case of RPNNs, the nemorks OUtpert'()rmcd other modcls \N Ith 

the highest AR when used to predict the 113M. CMFSP. CBT-10. I'S IJ '. and . 11)'t'K 

signals. Mean\, N, hile. FLNN and MLP made the best profit return \Nhen predicting the 

UK/EU and CBT-10, respectively. Most of the lowest returns NNcrc Cound in the 

FLNNs, followed by the MLPs, and PSNN. Although DRIINNs have sho\% 11 to have 

more number of transactions in live of the signals. narnek the Ill. m. 

UK/US, US/EU, and JP/UK, the networks however never made the lo%%cst profit in 

the previously mentioned five signals even \,, -hen accounting the transaction costs. 

Table 7.34: Best single simulation based oil the AR for the \11.1's 

Time 
Series 

Annualized 
Return 

(e eluding TC) 

Number of 
Transactions 

I 

--T 
I Annualized Transaction 

Return Cost 
(includin&TC) 

IBM 13.55 7 0.37 1 
CMESP 10.23 360 3.60 6.63 

-ý ýBT- 10 17.02 207 2.07 14.95 
CBT-30 5.77 219 2.19 3.58 
UK/EU 0.82 161 1.61 -0.79 
UK/US 3.58 89 0.89 2.69 
US/EU 6.19 171 1.71 4.48 

7.30 248 2.48 4.82 

-1.46 165 1.65 -3.11 
12.13 163 1.63 10.50 
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Table 7.335: Best sin-le simulation based on the AR fOr the 1.1 NV 

Time 
Series 

Annualized 
Return 

(excluding TC) 

Number of 
Transactions 

Transaction 
Cost 

IBM 4.37 043 
CMESP I'll 138 1.38 
CBT-10 14.75 168 1 ý68 
CBT-30 12.46 142 _ 1.42 
UK/EtJ 10.95 148 1.48 
tJK/tJS 3.31 187 1 87 

II US/EU 5.56 175 1.75 
JP/EU 3.09 155 1.55 
JP/lLjS 0.85 169 1.69 
JP/l. JK 10.37 104 1.04 

Anntiahied 
Rettim 

including T( 

2- 
1 
-1.07 

1 1.0-1 
9.47 
1.44 

-0.84 

Table 7.36: Best single simulation based on the \R fOr ilic 

Time 
Series 

Annualized 
Return 

(excluding TC) 

Number of 
Transactions 

I Annualized Transaction 
Return Cost 

Oncludino TC) 
I B. "v] 2.31 31 0.31 

CM ESP 5.46 IsO 1.80 3.00 
CBT-10 16.71 210 2.10 14.61 
CBT-30 14.19 153 1.53 1 2.00 
UK/EU 7.36 138 1.38 _ 5.98 
UK/LJS 9.46 181 1.81 7.66 
US/EIJ 8.08 99 0.99 7.09 
JP/EU 8.44 141 1 41 7.03 
JP/US 1.17 190 1.90 -0.73 
JP/UK 10.56 177 1.77 8.79 

Table 7.337: Best single simUlation based oil the AR for the RIINNs I 

Time 
Series 

I BINI 

Annualized 
Return 

(excluding TC) 
18.34 

Number of 
Transactions 

_5 4 

Annualized Transaction 
Return Cost 

(including T 
0,54 F. 80 

CMESP 20.73 188 1.88 
CBT-10 17.53 251 2.51 15.02 
CBT-30 15.68 182 1.82 13.86 
UK/Etj 9.72 189 1.89 7.83 
UK/US 9.30 153 1.53 7.77 
US/EU 12.71 102 1.02 11.69 
JP/EU 6.51 103 1.03 5.48 
JP/US t'S 1.88 176 1.76 0.12 
JP/UK 14.33 177 1.77 12.56 
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Table 7.38: Best single simulation based oil the AR for the DIONNs 

Time 
Series 

Annualized 
Return 

(excluding TC) 

Number of 
Transactions 

Transaction 
Cost 

Annualized 
Return 

including TC) 
A 

IBM 16.23 59 
CMESP 17.44 233 2.33 1 5.11 
CBT-10 17.48 256 2.56 14.92 
CBT-30 12.39 160 1.60 10.79 
UK/EU 9.62 188 1.88 7.74 
UK/US 12.49 238 2.38 10.11 
US/EU 6.43 179 1.79 4.64 
JP/EU 16.23 145 1.45 14.78 
JP/US 5.07 184 1.84 3.233 
JP/UK 12.95 178 1.78 11.17 

16.8 

11.8 

6.8 

1.8 

-3.2 

Fi ure 7.18: Best AR (including the transaction cost) 9 L, 

: 73 MLP 

E3 FLNN 

m PSNN 

E3 RPNN 

m DRPNN 

Table 7.3 39 shows the amount of CPU time utilized by all neural networks during the 

training of various signals. Results from the table demonstrated that FLNNs broadly 

used the least CPU time when compared to other neural networks in all signals. 

except for the training of IBM and UK/US signals. The networks appeared to 

outperform other neural networks with a speed of 1.29 to -322.68 faster in CPU time. 
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RPNNs took the quickest time when training the IBM and UKIUS signals. 
Meanwhile, most of' the longest CPI I times %Ncre II OLInd in \11.1's, that is Wicil 

training the IBM, CBT-30. tJK/I-U. US/EU. and . 1111/UK signals. 

Table 7.339: CIIIJ time usage for training each netil", 11 let\\ k), -k 
Predictor I MLP FLNN PSN N RPNN DRIINN 

IBM 161.92 104.27 - 153.05 . 1.01 1 
CMESP 33.20 4.42 5 7.3 8 
CBT-10 563.73 29.02 68-13 15'. 19 
CBT-30 869.25 4.17 13.39 10 

. 
92 7. 

UK/EU 520.59 4.05 4.70 
ý 

66., 6 12.02 
UK/US 611.55 3) 9 5.3) 6 642.53 

- 
8.9s 57.77 

US/EU 
JP/EU 

728.47 
3347.19 

3.4 5 
2.72 

4 29.3() 7.6 
4.00 7.98 

3.14 
1-1,80 

JP/US 690.28 387.39 597.66 i 07197 619.17 
J P/U K 713.83 2.75 658.08 1- 448.80 887.3o 

Figure 7.19 shows the evolutions of MSF during the learning, process of DRPNNs. 

DRPNNs have apparently shown the ability to converge extremely fast. Hic s est 

learning using DRIINN just required 5 epochs when used to train tile I BM signal. and 

the largest epoch taken by the networks was 2700 when learning tile . 11' I'K signal. 

For all signals, the learning curves for DRPNNs . \ere remarkabiv stable and the 

Mean Squared Error (MSE) continuously decreased every time a Pi-Signia unit 01' a 
higher degree is added to the networks. E. ach spike shown in Figure 7.19 comes from 

the introduction of a new Pi-Sigma unit in the DRPNNs. For Purpose Of 
demonstration. Appendix 8 shows tile respective learning curves for tile other 

network models-, the MI-Ps, FLNNs. PSNNs. and RPNNs. collectivel\- ýýIth tile 

DRPNNs. In most cases, FLNNs and DRPNNs learrit all the sionals very qLi1cklv 

when compared to other network models. FLNNs have accomplished tile tastest 

teaming on four time series, which are the CMESP. JPVK. Jl' I-V. and I'K I-V 

signals. Meanwhile, DRPNNs converged fastest when used to predict the 113M. 

JP/US, and UK/US signals. Apart from the prediction of the (AIFSP and IT KVS 

signals. MLPs appeared to utilize the largest epochs durino tile trainin". and tile 

networks revealed to reach maximum number of pre-deterin 1 tied epoch \0en 

learning the IBM, CBT-10. JI1JJK, and JP/US signals. 

The best prediction on all signals using the proposed DRPNNs is depicted in Figure 

7.20. The plots show the first 100 data points from the unseen data. except for tile 
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IBM as the signal has less than 100 point of unseen data. For demonstration purpose, 

the applicable plots for the other network models are shown in Appendix 9. Notice 

that when compared to the stationary signals, the plots in Figure 7.20 and Appendix 

9 indicate that for some financial time series, the non-stationary signals arc harder to 

predict. This can be viewed at some data points, in which the original and predicted 

signals are quite distant from each other. Meanwhile, Figure 7.21 prcscnts the 

histograms of the prediction errors using DRPNNs, which signifies that most of the 

prediction errors are close to zero, except for the prediction of the IBM, UK/EU, and 

UK/US signals. The pertinent histograms of the other four networks; the MLPS, 

FLNNS, PSNNs, and RPNNs are shown in Appendix 10. Histograms in Appendix 10 

reveal that MLPS and PSNNS in most cases demonstrate prediction errors that far off 

zero. This suggests that the non-stationary time series signals arc harder to predict, as 

compared to the previously presented stationary signals. 
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Figure 7.19: Learning curves for the prediction of all signals using DRPNNs 
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7.3.2 Five Steps Ahead Prediction using Non-Stationary Signals 

In this section, the simulation results for five steps ahead prediction using non- 

stationary signals will be discussed. 

7.3.2.1 Best Average Simulation Results 

Based from 20 simulations, Tables 7.40 to 7.44 review the average results obtained 

on unseen data from ten signals using all neural networks. Results from these tables 

show that the network structures for the MLPs that give the best average results were 

mostly realized with networks of three and five hidden nodes. For the performance of 

FLNNs and PSNNs, in most cases the networks consist of 2 nd and 4th order, 

respectively. Meanwhile, RPNNs in most cases were encompassed of 2 nd and 3 rd 

order network structure. In the case of DRPNNs, the network structure was dominant 

by the 2 nd order networks. 

In terms of the percentage of annualized return (not accounting the transaction costs), 

HONNs models prevailed to made the best profit compared to the MLPs on all 

signals, except for the IBM and UK/US. Forecasting the eight signals, HONNs 

outperformed the MLPs on the average AR by 0.41% to 13.28%. The proposed 

DRPNNs were doing very well and made the highest profit returns compared to other 

networks on four out of ten signals; namely the CBT-30, UK/EU, US/EU, and 

JP/UK. Meanwhile, the PSNN and RPNNs attained the highest profit on one signal; 

CMESP, and three signals; CBT-10, JP/EU, and JP/US respectively. FLNN, 

however, never achieved the best profit compared to other network models. The 

prediction using MLPs obviously produced the lowest AR on six signals; the 

CMESP, CBT-10, UK/EU, US/EU, JP/EU and JP/UK signals. 

By looking at the other financial metrics; the maximum drawdown, volatility and 

sharpe ratio, the simulation results indicated that most of the best values were 

dominant by DRPNNs, except for the volatility. The MLPs and RPNNs appeared to 

possess a lower volatility. It is worth pointing here that for the maximum drawdown 

149 



Chapter 7-Simulalion andAmili-m 

and sharpe ratio, a big-er value is pretlerable. mealmlille for \-01,11'1*t\. ýI lO\\Cr value ' 

desirable. For all financial metric evaluations. the MITs revcalcd to \ý()rsj I, 

most cases ofthe signal predictions. DRPNNs also attained tile lllýflicst \alucs in I'mir 

out of ten signals when assessed with the correct directional change that Is the 

113M, CBT-10, CBT-30, and JP/UK sionals. In the sanic measure. made dic 

lowest CDC when predicting four of the sionals. nanicly the (AlI: S P. CIII'-w. ('III - 
ý 0, 

-) and JP/FtJ signals. When ineasunilo the NMSF. %, ISI-',. aiid SNR. it call tic i1oliccd 

that all HONNs models outperform the MIAs in all siviials. Ammig flic I IONNs 

models, the proposed DRPNNs achieved the lowest NMSI: and MSF, and luglicst 

SNR in five signals, namely the CMFSp. I IKA IS, JRVS ind . 11, t'K. 

Table 7.40: Best averape rcsult from the \11.1's 

Time No. Hidden Annualized Maximum 
T 

Sharpe I SNR Volatiliq NNISE NISF (. I)(. 
Series Nodes Return Drawdown Ratio 
IBNI 4 4.6310 -17.0223 1.7 00 3 0.1463 1,4847 2 51 iý I'S . 18 

- - - -- C, NI FS1 4 -4 3 568 23.9475 9.2943 -0.4083 1 3.4799 1 0.0084 ý157 11) 7.1 
CBT-10 3 -11 3984 -22.0317 5.9958 -1.9031 0.1135 0,0007 1 50.34 1 29.22 

CBT-30 8 0.9245 -8.2450 7.8388 0.1179 0.8775 0.0056 53.26 1 20.61 

UK/EU 5 -2.4510 -8.5185 5.6097 -0.4372 4.3038 O. Oo87 5.139 18.51 

i UK/ 1; S 5 12.2974 -5.5978 8.1566 1.5084 1 2.8735 0.0052 53.02 0 1.4 5 
US/EU 5 -0.4046 -12.9163 8.8697 -0.0456 5.0802 Oý0140 51.26 - - rIO 

- 
88 

YP / -EL 3 -1.4164 -11.3317 7.9151 -0.17)2 18.6406 0,0132 50193 11). 15 
/US 8 8. )79-1 

- -9.1225 8.5967 0.9633 
- 

0.4653 0.0017 52.09 
JP/UK -3 1 4. 

ý)096 + 
-9.1185 7.3800 6 0.50 2 1.5511 0.0016 543 2 

Table 7.4 1: Best average result from the I-INNs 

Time 
Series 

Network's 
Order 

Annualized 
Return 

aximum M 
Drawdown volatilitv eI Sharp 

NNISE SNR 
Ratio NISE CDC 

(d Bý) 
4 2.2919 - 19.48ý 24_ 2 0080 (). oo 38 49.71 1(, 

UM- -ES P 4 -3.7535 _-20.5846 
9.3020 0.4038 0.1160 - 0.0003 52.58 14 

CBT-10 4 -3.3257 -12.3002 6.0157 0.5531 0 1105 0.0007 52.39 29.34 
_TBT-30 5 02145 -11.9279 7.8362 0.0271 0.0259 0.0040 53,57 1 22AII 

UKIEU 1 -6.0166 -5.6078 
1 0.5264 

, 
0.3452 0.0007 ýi - 

2.72 29ý02 
7.1974 -5.4384 8.1846 1 0,879i 1 4.4686 0.0081 52.50 12.36 

--CS/EU 3 1 8762 -10.5181 - 
9.8645 0.2118 0.3311 0.0009. 0.83 , 8,92 

JP/ -EU _2 Y. 0040 -10.7201 7.9115 0.1274 0 4961 0.0004 52.31 32.63 

JP/tJS 75879 -11.8206 8.6003 0.8823 0.2102 0.0008 il. 89 25.19 
r-J-P-/-U K () 4 56 -80 519 IL 7.3792 0.7653 5 55.21 11 15 
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Table 7.42: Best average restilt I rom the PSNN. s 

Time 
Series 

BN 1 

-N-etwork's 
Order 

3 

Annualized 
Return 
2.1275 

Maximum 
Drawdo%n 

-18.8953 

Volatilitv 

Al ESP 2 -3.2481 -21.0706 1') 
B F-10 " -1.9877 -11.1463 6.0 15 

'B l'-30 2 0.2121 -10.3497 7.83 So 
_ t K/EU 4 1.6594 -5.9605 5.6095 

I. K/US 3 10.6332 -5.5241 8-- 165_7 
__ US/EU 4 2.1340 -11.0979 8.8609 

. IP/ELJ 4 -0.7323 -11.1450 19083 
_ 
. lP/US 4 7.3261 -10.1964 86003 
jp/UK 3 5.1359 -5.5934 7.3792 

Sharpe 
. S's R 1' %ISV M Ratio (d 11) 

(), 06-', 1 -09, 11(1; 1 
O"'. 19S 01 om) 

0-19"- 0 0)"() 52 71 N'so 
0271 1089 00020 

4 

51 69 21 1) 

-, 0.; 2 .1i2,1 () 0082 S; I1 2088 
0.2420 .1 1) 130 M 1(, 51 81 P) OX 

0912 8 i022 12 12 N i(, 
Sill ! 0.576,; () 0()21 ý - 12 92 2() 71 1 i 
0903 I 

-05 
.. 

58- f 
1 0000 4 5.1 22 : 10 51 

Table 7.433: Best average result from the RPNN, ý 

Time 
Series 

Network's 
Order 

Annualized 
Return 

maximum 
Drawdown 

Volatility Sharpe I SNR N Nis E MINE CDC Ratio (d 11) 
I B, %1 3.3807 - 17.9568 31.6989 01 M11) 1 -2244 

(ýN jýsp -3.2925 -20.3323 9.3006 O'"'S P) 0 1012 1 00002 5267 34 13 
('B'I'- 10 3 1.8808 -8.8009 6.01 32 0.3127 1 13.9260 10 0847 ,; 4 00 1) SI 

__ CBT-30 3 0.1378 -9.5628 7.8370 0.0176 0. 10 18 0 90 10 . -- 5338 ' 29 NO 
3 2.3788 -6.4716 5.6091 0,4242 - . 0.2S. P, 00005 4 

_ 
4 

53.94 : 30 ;I 
UIK /US 2 10.7459 -5.9207 8.1669 1.3163 0.25"0 00005 53.07 24,77 

II S/El 2 1.8078 -10.2540 8.8671 0.2041 1 9.6.1,83, 0.0265 026 5 50.09 21.82 
5 1.6009 -10.7719 7.9071 , 0,2038 1 0.4965 0.000.1 52 84 312.76 

-JP/ t"S 9.1770 -8.1107 8.5912 1.0686 1 

1 

0.9842 0 )033 0 WTJ 52.92 19.23 
Fj -P/t" K 4 6.9296 -7.7458 7.3719 0.9411 () ()()i)ý 0.5145 30.85 

Table 7.44: Best average result from the DRPNV 

-fime 
Series 

_ýýe_twork`s 
Order 

Annualized 
Return 

Maximum 
Drawdown Volatilitv SýIharipe 

in a0 
SNR NNISE NISF CDC 
(d B) 

iBN1 3 4.6259 -19.9992 , 
_ 31.6221 146i 2.3335 oo-I-2 51 04 I'X' (o 

ýNff S FF -3.2542 i -215030 9.2958 0.0907 0.0002 -52.70 _CýBT-10 BT-10 3 0.5473 -10.1067 6.0127 1 0. ( )915 1.3,583 0.00 83 54.1 
ýt 

21.93 
0.9651 -10.0597 7.8379 0.1232 0.1108 0.0007 53.75 29.46 

UK/EU 2 4.3449 -7.1003 5.6074 
_ 

0.7752 0.3945 0.0008 53ý74 29.68 4 

I JS )'K/U 3 8.8454 -6.2374 
ý 1735 1.0836 0.2359 0.0004 52.97 25.11) 

US/EU 2 2.1552 -10.2798 8.8620 0.2450 0.6360 0.0018 51.79 25.81 
JP/EtJ 2 1.1228 -9.6084 7.9073 0,1427 0.5 14 1) 0.0004 52.51 1-) 

p/ _tj S 2 7.3246 -9.5584 8.5999 0.8520 - 0.15 54 0.0006 52.90 26.4 3 
JP/UK 2 7.1044 -8.3385 7.3726 0.9643 0.4190 0.0004 1 55.22 . 31.74 

For demonstration purpose, the annualized return achieved in all nemork models (as 

given in Tables 7.40 to 7.44) is depicted in Figure 7.22. Mean\%hile. the average 

number of epochs reached for the prediction ofall data signals during the training of 

the networks is shown in Table 7.45. Networks that converged fastest are like]\ to 

disperse in all HONNs models. Apart from the prediction ot'llIN1. . 11) IT and JPVS. 

HONNs revealed to use less number ot'epochs to converge on all data. \\11ich Is 1.24 
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to 155 times faster than the MLPs. Each DRPNNs. RPNNs. and I -TNNs ha,, e shown 

to require the least number of epochs to converge on three out often signals. whereas 
PSNN only converged quickest on one signal. Of all the ten signals, MITs appearcd 

to utilize more epochs to complete the whole training. except for the prcdiction of 
UK/US, JP/EU, and JP/US. 

12 
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(D 
cu 
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-9 

MLP 
FLNN 

m PSNN 

M RPNN 
MDRPNN 

Figure 7.22: Best average annualized return from all network models. 

Table 7.45: The average maximurn epoch reached during training 

Time Series NILP FLNN PSNN RPNN 
IBM 3000 3000 3000 128 -0 

CMESP 104 19 34 51- -- 2-0 

CBT-10 2524 116 40 72 84 
CBT-30 2520 21 479 293 35 
UK/EU 1040 42 544 91 10 
UK/US 945 3000 739 140 189 
US/EU 1554 28 241 10 16 
JP/EU 937 19 47 1149 24 

JP/US 2301 2610 1 755 124 415 

JP/UK 2490 96 176 
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Table 7.46 demonstrates the results on tile number of trainable %%elghts and Hi's 

utilized in all network models calculated from tile net\\ork structures given In 

7.40 to 7.44. After examining the 111.1mber of' Free parameters. it appears that most of 

the smallest network structures are prevailing by the FI. NNs. l'ollo\\cd by PSNN-,, I he 

Ml, Ps comprise of larger number of trainable xwights 1() learl, 1-1\c , I- 111c 111alIcIzil 

time series. that is the C13T-')O. UK/Ftl, UK/US, t; S, /I: t'. all(I . 11) I's. the 

tabulated results. the biggest network structure is possessed by the Z-- RPN\ of' order 
five, with the number of free parameters are 90, Meall\%jille. the sinalicst llct%%ork- 

structure is owned by a2 nd order PSNNs. with 12 trainable weights. 

'Fable 7.46: Number oftrainable ý%eights and hm, ý wcd in al I nemorks 

Time Series MLP FLNN PSýýN RPNN DRPNN 
IBM 

CNIESP 
29 
29 

31 
31 

18 
-4 12 

36 
18 

CBT-10 22 31 30 36 42 
CBT-30 57 32 12 36 21 
U K/EU 36 32 24 36 21 
UK/US 36 16 18 36 21 
US/EU 36 26 24 18 21 
JP/EtJ 22 16 24 90 21 
JP/US 57 16 24 18 21 
JP/tJK 22 16 18 60 21 

In order to test the modelling capabilities and the stability ofthe C 'i networks. Figur 7.2. 

and Figure 7.24 illustrate the best average result of AR and N%lSl-''. respectively. tested 

on unseen data, when used to predict the financial signials. The pert'Orniance of the 

networks was evaluated with the number of higher order terms increased from I to i 

(for RPNNs and DRPNNS), and from 2 to 5 (for FLNNs and IISNNS). and number of S 

hidden nodes increased from 3) to 8 (for MLP). The Plots I indicatc that 11 Figure 7.23 

the proposed network. DRPNNs. generally learned the data steadily. The performance 

of the networks in all signals showed an increment in the AR along \ýith the nemork tý 

growth except for three cases. name],,,, the prediction of JR17S, JPA'K. and CBT-10: ill 
,, d 

which the AR began to drop when the _) order Pi-Sionla unit was added to the 

networks. In most cases. the plots for RPNNs and PSNNs sho%N a rise in the AR. and 

in most of the cases when the networks reached order higher than mo. the 

performance start to degrade, and usually the AR will not rise Up again. Thii 
It, I is can be 
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seen when the PSNNs were used to predict the IBM, UK/US, UK/EU, US/EU, JP/US, 

JP/UK signals, and when RPNNs predicting the IBM, CMESP, UK/US, US/EU, 

JP/US, and CBT-30 signals. In the case of evaluating the performance of FLNNs and 
MLPs, most of the plots mostly demonstrate an up and down movement, namely when 
FLNNs predicting the CMESP, US/EU, JP/US, CBT-30, UK/EU signals, and when 
MLPs predicting the IBM, UK/US, UK/EU, JP/US, and JP/UK signals. This may 
indicate that there is no clear pattern whether the profit is going up or down when the 

network order or number of hidden nodes in the networks were appcndcd. 
Nevertheless, MLP when used to predict the CBT-30 signal generated a continuously 
increasing profit with the increment number of hidden nodes. 

Figure 7.24 demonstrates the average performance of the NMSE with increasing 

networks order or number of hidden nodes. Using all the signals, DRPNNs exhibit a 

stable performance with a significantly decreased NMSE along with the network 

growth. Meanwhile, the performance of RPNNs when forecasting the UK/US and 

JP/EU signals show a decreasing NMSE, and conversely, in the US/EU and JP/UK 

signals, the NMSE keep rising along the network growth. For the remaining of the 

signals, the plots for RPNNs demonstrate a zigzag movement. In most cases, the plots 
for PSNNs and FLNNs show a rise in the NMSE, except for the prediction of the 

JP/UK when using the PSNN, and for the prediction of IBM, UK/US, and JP/US when 

using the FLNNs. On the contrary, the plots for the MLPs revealed to show a zigzag 

movement on the NMSE, and in certain cases, the NMSE keep on increasing, except 
for the prediction of CMESP. 
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7.3.2.2 Best Single Simulation Results 

In the remaining ofthis section, results from the best single s, 111111,11 , ),, ýjcjjjc% ckj 

each network model are discusscd. Tables 7.44 to 7.48. and Figure 7.25 shO\\ the 

individual result for best simulation when measured \\Qh the AR. The AR %\as 

,, o per transaction (1-, Ll\ assessed in the presence oftransactions costs of I or sell). 

Results in Tables 7.47 to 7.51 demonstrate that I IONNs models attained h1glicl- p, -oIII 

return by 0.17% - 19.01% when compared to the MI. Ps oil all tile signals. except for 

the CMESP. Among the HONN models. each RPNNs and DRPNNs obtained tile 
highest profit return when predicting three signals. RPNNs made the I)c..,. t prolit oil dic 

CBT-10, JP/tJS, and JII/UK, whereas DRPNNs achieved the highest prolit x%liell 

predicting the IBM, UK/US, and JP/EU signals. 2\11 \\orst results conle from the 

FLNNs and MLI's. Notice that in all signals. the net, -vork modcls that attamcd the 

highest AR after accounting the transactions costs are actually those models \%hi Ich 

made the best AR before accounting the transactions costs. This indicates that even 
including the transaction costs, models with high AR can save tile cost of' tile 

transaction. 

Table 7.47: Best single simulation based on the AR t'()i- the N11.1s 

Time 
Series 

Annualized 
Return 

(excluding TC) 

Number of 
Transactions 

- 

Transaction Annualized 

Cost Return 
Qnclud i no TýC 

- IBM 16.03 29 -_ 0.29 1 ;, --4 
-CMESP 18.18 270 2.70 148 

CBT-10 -1.36 189 1.89 
CBT-30 5.08 193 1.93 
UK/EU 2.42 153 1.53 0.89 

-S 17.55 96 0.96 16.59 
ýS/Etj 5.83 104 1.04 4.79 
JP/EU 6.76 113 1.13 5.633 
JP/tjS 13.19 143 1.43 11.76 
i P/ýJ-K-ý 10.94 158 1.58 9.36 
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Table 7.48: Best shlgle simulation based oil tile AR for tile ITNV 

Time 
Series 

Annualized 
Return 

(excluding TC) 

Number of 
Transactions 

Annualized Transac(ion 
Return Cost 

Oncluding], C) 
IBNI 10.29 () "5 () L) " 

CMESP 7.01 143 1.43 5.58 
CBTAO 4.26 121 1.21 3.05 
C BT-30 12.35 284 2.84 9 

. 
51 

UK/EU 11.78 116 1.16 1 10, ()2 
UKAJS W. 11 161 1.61 8. S0 

11 US/EU 11.89 91 0.91 10.08 
JP/EU 8.42 131 1.31 7.1 1 
jp/US 10.43 147 1.47 8.96 
JP/UK 9.05 165 1.65 7.40 

'Fable 7.49: Best single simulation based on the AR fOr flic I)INN, 

Time 
Series 

Annualized 
Return 

(excluding TC) 

Number of 
Transactions 

--- 

---I-- -7 
Transaction Annualized 

Return Cost 
(including 

IBM 12.93 25 0.25 1 
CMESP 9.91 168 1.68 
CBT-10 4.62 179 1.79 8 3, 
CBT-30 4.94 134 1.34 3.60 
UK/EU 7.84 127 1.27 6.58 
U'K/US 16.24 154 1.54 14.70 
UYS/EU 15.91 126 1.26 14.65 
JP/E ; 15.38 144 1.44 13.94 
JP/IJS 10.94 156 1.56 9.38 
JP/I-JK 11.56 201 2.01 9.55 

Table 7.50: Best single simulation based oil the AR t'()r the RIINNs 

Time 
Series 

Annualized 
Return 

(excluding TC) 

Number of 
Transactions 

Annualized Transaction 
Return Cost 

( including TC) 
IBM 20.49 46 - 0,40 

CMESP 7.90 139 1.39 6.51 
CBT-10 18.34 258 2.58 15.76 
CBT-30 8.02 214 2.14 5.88 
Uu, K/ELJ 9.23 151 1.51 6.72 
UK/US 16.43 136 1.36 15.07 
US/EU 13.40 208 2.08 11.32 
JP/EU 15.56 138 1.38 14.18 
JP/t: S 13.38 131 1.31 12.07 
JP/tjK 13.23 150 1 1.50 11.73) 
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Table 7.5 1: Best single simulation based on the AR for tile DRPNNs 

Time 
Series 

Annualized 
Return 

(excluding TC) 

Number of 
Transactions 

- 

Transaction 
cost 

- 

Annualized 
Return 

(including TC) 
IBM 22.15 59 0.59 2 1.56 

CMESP 12.49 260 2.60 _ _ 9.89 
CBT-10 14.70 257 2.57 12.13 
CBT-30 10.04 268 2.68 7.36 
UK/EU 9.92 187 1.87 8.05 
UK/IJS 17.66 91 0.91 16.75 
US/EU 14.12 187 1.87 12.25 
JP/EU 16.93 162 1.62 15.31 
JP/US 11.75 95 0.95 10.80 
JP/UK 12.94 148 1.48 11.46 
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, 4, 
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0 

[3 MLP 

mFLNN 
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mRPNN 
MDRPNN 

\$/ g 
Figure 7.25: Best AR (including the transaction cost) 

Results for CPU time for the training of non-stationary signals, forecasting five steps 

ahead is presented in Table 7.52. FLNNs demonstrate the fastest CPU time in most 

of the learning, namely when used to train the CMESP, CBT-10, CBT-30, UK/EU, 

US/EU, and JP/EU signals, which is 1.01 to 77.28 time faster than other neural 
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networks. This is followed by DRIINNs when learning the IX PS-111 I 1S and. 11, IK 

signals with 1.28 to 15.90 times Easter then other network models. Results for the 

Ml., Ps reveal that the network took the longest tirne to learn all tile signals. exccpt for 

the UK/US. 

Table 7.52: CPU time usage for training each llcl\%, )I-k 
Predictor MLP FLNN PSNN RPNN- DRIINN 

IBM 156.64 95.44 133.98 5.17 
CMESP 30.27 33.5 8 5.77 10.45 13.41 
CBT-10 591.23 24.53 24.75 25.23 61.3 8 
CBT-30 253.89 4.13 9.55 37.61 28.58 
UK/EU 180.52 2.86 8.16 15.17 6. - 

'IS 
U K/US 245.11 372.36 56.23 53 28 27.8 0 
US/EU 93.42 2.94 15.53 3.78 11.16 
JP/EU 230.30 2.98 18.81 21.61 15.94 
JP/US 674.69 389.36 213.92 54.50 42.42 
JP/UK 667.44 3 89.33 3 56.57 125.86 

The learning curves frorn the best simulation for the prediction ofall data signals using 

the proposed DRPNNs are shown in Figure 7.26. DRIINNs have apparently shown flic 

ability to converge extremely fast. The fastest learning using DRIINN Just required 12 

epochs when used to train the US/EU signal, and the largest epoch taken bý tile 

DRPNNs was 436, that were when learning the JR/UK signal. For all signals, tile 

learning curves for DRPNNs were remarkably stable and the Mcan Squared Frror 

(MSE) continuously decreased every time a Pi-Signia unit of a higher degree is added 

to the networks. Notice that each spike in the curve was resulted from the addition of' 
pi-Sigma unit in the networks. For purpose of dernonstration. Nppendix II sho%% s tile 

respective learning curves for the other network models, tile MI. Ps. FLNNs. PSNNs. 

and RPNNs, collectively with the DRPNNs. In most cases. DRPNNs. RIINN,,. and 

FLNNs learnt all the signals very quickly vv-hen compared tO Other nct\\ork models. it 

is shown that DRPNNs have accomplished the fastest learning oil tour tinie series. L- 

which is when used to predict the IBM, JP/UK. JP/US. and UK I-T silimals. The 

RPNNs have made the fastest learning on three signals, the C13'1'-Io. 17S Ft'. and 

UK/US. Meanwhile the FLNNs converged fastest on the prediction ot'C\ II, CBT- 

)0, and JP/FU signals. Of all networks, MI-Ps appeared to utilize more epoch in most 

of the signals, apart from the CMESP, JP/UK. and UKA'S. 
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Following the learning curve plots, Figure 7.27 shows the best prediction on all 

signals using the proposed DRPNNs. The plots were taken from the first 100 data 

points from the unseen part of the data, except for the IBM as the signal has less than 

100 point of out-of-sample data. For demonstration purpose, the relevant plots for the 

other network models are shown in Appendix 12. By looking at the plots in Figure 

7.27 and Appendix 12, it can be spotted that at some points, the original and 

predicted signals are a bit distant from each other. This can suggest that the non- 

stationary time series signals are harder to predict, as compared to the previously 

presented stationary signals. Meanwhile, Figure 7.28 presents the histograms of the 

prediction errors using DRPNNs, which demonstrates that most of the signals error 

are not approaching zero, even though in some cases, the histograms show a normal 
distribution. Further, Appendix 13 depicts the histograms of the prediction errors for 

the other four networks; the MLPS, FLNNs, PSNNs, and RPNNs, which also 
indicates that most of the prediction errors for these networks are far off zero, while 

relatively few of them tend to one extreme or the other. When compared to the 

prediction error from stationary signals, histogram plots in Figure 7.28 and Appendix 

13 suggest that the non-stationary time series signals are more difficult to predict. 
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Figure 7.26: Learning curves for the prediction of all signals using DRPNNs 
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Figure 7.28: Histograms of the signals error on non-stationary data using DRPNNs 
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7.4 Discussions 

In this section, some of the issues raised by the comparison of different neural 

networks are addressed. As the results presented previously cover broad and 

expensive simulations, this section will elaborate the observation derived from the 

whole of the experimental results. 

7.4.1 Why Neural Networks Make Better Profits with Stationary 

Signals? 

To answer this question, the nature and behaviour of the data itself should be 

addressed. Consider Figure 6.1 (refer to Chapter 6) which shows the time series 

signal before and after pre-processing. By looking at the non-stationary forecast plots 

(signal before pre-processing), it tells that the signals exhibit a very strong trend and 

shows obvious up and down movement. During the training of the non-stationary 

signals, the networks were used to learn the precise values of the daily prices. These 

values contain a high-frequency component and their relative magnitudes are more 
difficult to be modelled. Therefore, the networks often unable to respond well to 

chaotic structure underlies within the non-stationary data. Hence, to correctly predict 

the price from day to day point is a difficult task. As a result, when calculating the 

Annualized Return based on the magnitude size of correct directional change, the 

resulting profit is likely unpromising and unsatisfactory. 

On the other hand, the plots for stationary signals (refer to Figure 6.1, Chapter 6) 

demonstrate a linear trend after applying the pre-processing technique. Since the 

original signals have been smoothed before transforming them into Relative 

Difference in Price (RDP), the resulting stationary signals demonstrate a huge 

reduction in the trends and day to day variations. Furthermore, when transforming 

the data into RDP values, the sign of the resulting signal remain the same for a period 

of points before changing to the opposite sign. The stationary signals provide the 

networks with easier training and help the networks to capture the essence of the 
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background movement. The assumption that pre-processing the signal before using 

them in the networks will lead to better forecasting seems to hold for all the time 

series used in this research work. As a result, the potential profit that the networks 

can achieve by correctly predicting the changes increases. Thus, the result presented 

previously support the theoretical concept of non-stationary signal is much harder to 

predict than the stationary signals. 

7.4.2 Why Forecasting of Five Steps Ahead Make Better Profits 

than Forecasting of One Step Ahead? 

For non-stationary signals, it is very difficult to obtain direct relation between the 

prediction of one step ahead and five steps ahead, as the results do not show which 

prediction is better than the other. As a matter of fact, the prediction of the non- 

stationary signals is about to learn the mapping of the precise values of daily prices. 

Probably because of this, the profit gained through forecasting either one step ahead or 

five steps ahead was likely did not show a big different. 

Meanwhile, there is an obvious difference in terms of the profit gained when 
forecasting the one step ahead stationary signal (RDP+l) and five steps ahead 

stationary signal (RDP+5). In nature, the size of changes from point to point in the 

original series varies significantly. The magnitude of RDP of point x to point x+5, is 

comparatively larger than that of x to point x+L Therefore, forecasting the RDP+5 

provide a greater chances of making better profit if the networks correctly predicting 

the sign of the change. 

7.4.3 Why some Neural Networks with Good AR Produce High 

NMSE and Low SNR? 

The simulation results showed that in some cases some neural networks attained high 

profit retum, but at the same time they produce slightly high NMSE and lower SNR. 
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This does not reflect the significant profitable value offered by the networks. This is 

because the SNR and NMSE are calculated based on the squared error; therefore, if a 

model has a low NMSE, the SNR will be high. Conversely, if the NMSE is high, the 

SNR will drop. On the other hand, the AR is a scaled calculation of the observed 

change in the time series value, when the sign of the change is correctly predicted. 

Hence, it is worth noting that seeking optimal forecasting in terms of NMSE is not 

the aim of this research work, as explained previously in chapter 6. 

7.4.4 How do DRPNNs and RPNNs Compare? 

DRPNNs in most cases are more capable of giving higher profit return when 

compared to the RPNNs for both stationary and non-stationary data. When 

considering the other performance measures, DRPNNs on the whole consistently 

gave better results than the RPNNs, with the exception for Correct Directional 

Change (CDC) for the prediction of one step ahead using non-stationary signals, in 

which RPNNs offered better results than DRPNNs. 

The networks are also compared in terms of the networks' complexity. 'Complexity' 

will be defined as the number of adaptive weights used by the neural network. %ile 

there are other measures of complexity, such as the training algorithm, weights are a 

good complexity measure. As in the case when all other properties of two neural 

networks are equal, a network which has less weights will usually execute faster and 

require less time for training. Such properties are especially desirable in real-time 

systems. 

In most cases, DRPNNs were found to have a reduced complexity compared to the 

RPNNs when predicting the one step ahead of non-stationary signals and five steps 

ahead of stationary signals. RPNNs on the other hand have less number of adaptive 

weights when dealing with one step ahead prediction of stationary signals. For the 

prediction of five steps ahead of non-stationary signals, both networks fairly 

prevailing to have smaller network size. For both predictions of one step and five 

steps ahead using both stationary and non-stationary signals, the smaller number of 
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weights utilized by the DRPNNs in most of the cases led to significantly faster 

training-simulation of these networks as well as reduced memory requirements when 

compared to the RPNNs. 

7.4.5 How do HONNs and MLPs Compare? 

When comparing the results given by all HONNs models (DRPNNs, RPNNs, 

PSNNs, and FLNNs) and the MLPs, HONNs models gave broadly the best average 

results on the profit return. Forecasting the one step ahead using stationary and non- 

stationary signals, HONNs significantly outperformed the MLPs in all time series 

used. When using both versions of the signals to forecast the five steps ahead, 

HONNs demonstrate better profit than the MLPs in all time series, apart from the 

IBM and UK/US signals. Further, evaluating the networks with other performance 

measures shows that HONNs on the whole offered more promising results than the 

MLPs for both versions of signals and forecast horizons. 

In both predictions of one step and five steps ahead using both stationary and non- 

stationary signals, all the smallest network size was dominant and shared by HONN 

models, with the exception for five steps ahead prediction of CBT-10 non-stationary 

signal, in which the MLP comprised of the smallest network size. With the reduction 

in networks complexity in HONNs, all the fastest convergence presented in the 

experimental results was dominant and shared by HONNs models. Nevertheless, 

MLPs in all cases apparently have never converged fastest during their training 

simulations when compared to the HONNs. 

The significant performance of HONNs in comparison to the MLPs is not surprising. 

HONNs are computationally efficient nonlinear networks and they are capable of 

complex nonlinear mapping between the input and output. The use of higher order 

terms allows them to increase their information capacity and expand their input space 

into higher dimensional space. Besides, HONNs structures are single layered of 

learnable weights and thus allow the networks to advance faster toward convergence. 

Reductions in the training time and number of free parameters help to avoid the 
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problems of over-fitting, resulting in the enhancement of networks performance and 

make them superior to the MLPs. 

7.4.6 Why DRPNNs Made the Best Profit than Other Network 

Models? 

Simulation results demonstrate that all the neural networks models used in this 

research work were potentially profitable, however, in most cases the proposed 
DRPNN is by far the most beneficial as money-making predictor. The use of 
DRPNN in financial time series prediction shows that the proposed network provides 

promising tool to time series forecasting. The general property making the DRPNN 

interesting and potentially useful in financial prediction are as follows. The networks 

manifests highly nonlinear dynamical behaviour induced by the recurrent feedback, 

therefore leads to a better input-output mapping and a better forecast. With the 

recurrent connection, the network outputs depend not only on the initial values of 

external inputs, but also on the entire history of the system inputs. Therefore, the 

DRPNN is provided with memory which gives the network the ability of retaining 
information to be used later. The superior performance of DRPNN is also attributed 

to the natural mechanism for incremental network growth, therefore giving the 

network a very well regulated structure and smaller network size which led to and 

network robustness. The presence of higher order terms in the network equipped the 

DRPNN with the ability to forecast the upcoming trends in financial time series 

signals. The DRPNN is guaranteed to exhibit a unique equilibrium state, as the 

stability convergence of the network was applied during their training to ensure that 

the network always posses a stable condition. The network can robustly process the 

underlying dynamics of a non-stationary environment with a vast speed in 

convergence time. A noteworthy advantage of DRPNN is the fact that there is no 

requirement to select the order of the networks as in PSNN and FLNN, or the 

number of hidden units as in MLP. 

DRPNN has shown its advantages in forecasting both stationary and non-stationary 

signals. Simulation results have provided additional evidence supporting the 
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application of DRPNN to financial time series prediction, thus suggesting that the 

model is good at making profit. 

7.5 Chapter Summary 

This chapter presents extensive simulation results of five neural networks 

architectures; namely the MLPs, FLNNs, PSNNs, RPNNs, and DRPNNs. Two sets 

of simulations are shown in this thesis, stationary and non-stationary prediction of 

ten financial time series to forecast the one step and the five steps ahead predictions. 
Networks performance was evaluated using five financial metrics, and four statistical 

and signal processing metrics. In the next chapter, the main conclusions of this 

research work are presented. 
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CHAPTER 8: CONCLUSIONS AND FUTURE WORK 

8.1 Introduction 

This chapter summaries the final conclusions that can be derived from this research 

study. Matters such as different network types, financial time series used, pre- 

processing method, performance measure, and finding results are drawn. The novelty 

and contribution of this research work and possible research directions for used in the 

future are discussed. 

8.2 Main Conclusions Derived from this Research Study 

This thesis investigates extensively various types of Higher Order Neural Networks 

(HONNs) as non-linear prediction models and the idea of using higher-order terms 

within the neural network structure. Three HONNs models were explored in this 

research work, namely the Functional Link Neural Network (FLNN), the Pi-Sigma 

Neural Network (PSNN), and the Ridge polynomial Neural Network (RPNN). The 

learning algorithms and their use in real world applications were presented. Their 

strengths and capabilities in input-output mappings, on various kinds of problems 

ranging from signal prediction, pattern recognition, time series forecasting, data 

classification, and more were discussed. The networks are computationally efficient 

and are capable of complex nonlinear mapping between their input and output 

pattern space. The use of higher order terms allows the networks to expand their 

input space into higher dimensional space where linearly separable is possible. 

In order to represent a dynamic system, the functionality and architecture of the 

ordinary feedforward RPNN were extended. Accordingly, a novel recurrent neural 

network architecture called Dynamic Ridge Polynomial Neural Network (DRPNN) 

was proposed. A leaming algorithm for DRPNN was also derived to tune the free 
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parameters in the network. Subsequently, the stability and the convergence of the 

proposed network were implemented to ensure having steady and fixed output. 

This thesis elaborated the fundamentals of financial time series prediction, 

addressing the difficulties and comparing neural networks and traditional forecasting 

approaches, particularly to the prediction of financial market. A review on literature 

detailing the practical applications of neural networks in financial time scrics 

prediction was shown. The design of neural networks to successfully predict 
financial time series was presented. More attention on the design stage was given to 

the pre-processing method to reduce the trend and embedded noise, as financial time 

series exhibit dynamic behaviour over time. A step by step methodology of 

constructing the network forecasting models, as well as the generation of input- 

output pattern, the specification of parameters, and performance measures used was 
discussed. 

The networks have been trained and tested on ten financial time series signals. The 

results from extensive simulations were accordingly presented, collectively from four 

HONNs models; the FLNN, PSNN, RPNN, and the proposed DRPNN. Stationary 

and non-stationary versions of ten financial time series were used to forecast the one 

step ahead and five steps ahead predictions. The simulation results for the prediction 

of all data signals using four various feedforward networks (MLP, FLNN, PSNN, 

and RPNN) and recurrent network (DRPNN) were compared. Analysis on profit 

return, network convergence, training epochs, performance of networks with 
increasing order or number of hidden nodes, transaction cost, CPU time, and leaming 

curves were given. Networks' performance was evaluated using five financial 

metrics, and four statistical and signal processing metrics. It is worth to point out that 

in financial forecasting application, an important question for any forecasting model 

is how the model stands up in an actual trading scenario. In this research work, the 

questions have been tackled by using and testing the networks with the actual trading 

signals. Furthermore, the performance of the networks models also evaluated with a 

real trading evaluation, such as the Annualized Return, Maximum Drawdown, 

Annualized Volatility and Sharpe Ratio. 
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Further, experimental results showed that HONNs in most cases always perform 

better in terms of producing higher profit return against the MLP. In addition to 

generating profitable return value, which is a desirable property in nonlinear 
financial time series prediction, HONNS also used smaller number of epochs during 

the training in comparison to the MLPs. Among all HONN models, the proposed 

DRPNN showed an improvement in approximating the financial time series and the 

networks are capable in outperforming the MLP and other HONN models. DRPNN, 

on the whole offers significant advantages over other network models; including 

such increment in profit return, reduction in network complexity, faster le=ing, and 

smaller prediction error. In summary, HONNs and especially DRPNN are one of the 

promises for the future in financial time series prediction. They offer an ability to 

perform tasks outside the scope of traditional techniques. They can recognize 

patterns within large datasets and then generalize those patterns into recommended 

courses of action. 

8.3 Novelty and Research's Contribution 

Despite of being successfully applied in signal prediction, pattern recognition, data 

classification, function approximation, and data classification, there was very little 

research being carried out in financial time series prediction using HONNs. The 

construction of the proposed DRPNN is the main contribution and novelty in this 

research work. The unique characteristic of DRPNN which combine the properties of 

Higher Order Neural Network and Recurrent Neural Network, make it suitable and 

useful for financial time series forecasting. In fact the way in which the data was pre- 

processed and presented to the HONNs and the proposed network is a novel 

application indeed. 

The forecasting and trend prediction results using the proposed DRPNN are 

promising and certainly warrant fin-ther research and analysis. Given the finding 

results, the current study should be a great for many practitioners and managers of 

multinational corporations as it suggest DRPNN can be effectively used as financial 

forecasting tool. Further, based on the good performance of DRPNN, corporations 

173 



Chapter 8: Conclusion 

can devise more effective business strategy to improve their financial positions and 

efficacious precautionary measures to reduce potential currency risk. The use of 

DRPNN in financial time series prediction demonstrated that the proposed network is 

potentially useful for technical trading to forecast daily financial time series data. 

DRPNN offers some significant advantages. The merit of DRPNN, as compared to 

the feedforward RPNN is its increased inherited nonlinearity which resulted from the 

use of recurrent neural networks architecture, giving it an advantage when dealing 

with financial time series forecasting. A considerable profitable value does exist in 

the DRPNN when compared to other neural networks and the network can make 

contributions to the maximization of returns. The network demonstrated a vast speed 

in convergence time and comprises of smaller number of network size, therefore 

showing a reduction in network's complexity. 

8.4 Future Research Directions 

The method which was proposed and presented in this research work can be viewed 

as starting points for future research direction, since the potential of DRPNN, 

especially with respect to financial time series prediction is by far not fully exploited 

yet. More research is needed with the use of DRPNN to give a more general account 

of their abilities beyond the financial time series domain. Based on the conclusions 

of this thesis and other research which is currently ongoing in this area, the following 

continuations of this research work are suggested. 

Use of evolutionary computation - It should be emphasized that RPNN and 

DRPNN is not without problem. The main intricacy when using the networks is to 

find the suitable parameters for successively adding a higher degree of Pi-Sigma unit 

in the networks. Training the networks can be a quite expensive procedure, as it is 

difficult to know the best combination of learning parameters; the learning rate n, 

threshold r, dec_n, and dec_r. With respect to this deficiency which causing to a trial 

and error approach, it might be worthwhile to consider how Genetic Algorithm (GA) 

(Koza, 1992) can be used to automatically generating and finding suitable parameters 
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for the networks. Evolutionary computation has been successfully used to 

automatically develop neural network structures, weights adaptation and lc=ing 

parameter setting; rather than the user doing this task experimentally. Howevcr, 

research relating to time series prediction with HONNs and evolutionary 

computation remains largely unexplored. GA has proven to be capable at finding 

near optimal solutions for problems which have extremely large search spaces. In 

this way, GA searches promising areas of the solution space by evolving a 

population of rules that tends to become more adept at solving the problem in 

successive generations. By implementing a GA approach to the learning parameter 

selection, it is expected to an improvement in the training process and therefore leads 

to better forecasting performance of the networks. 

Improved trading strategies - As there is no perfect forecasting technique, trading 

profit is ensured by a good trading strategy which taking a full advantage of a good 

forecasting method. The transformations from prediction into market actions are 

obtained by specifying the trading strategies; a set of rules to buy and sell currency 

futures. The investigation of trading strategies forms an important part of research for 

people working in economics. Any sensible trading strategy should somehow restrict 

the number of trading transactions because of the incidence of transaction cost. More 

trading strategies are needed in addition to the one explored in this research work. 

There are some good trading strategy can be referred to, such as (Ficldsend and 

Singh, 2005; Dunis and Huang, 2002; Hamm and Brorsen, 2000; Tenti, 1996). 

Multivariate time series - This research work has focuses on the univariate time 

series, which is data from the single time series to be forecasted. The ever more 

global nature of the world's financial markets necessitates the inclusion of more 

global knowledge into neural networks design. Multivariate series can look at the 

interdependence between several time series. Therefore, the use of multivariate series 

would be advantageous, since some dependent market depends on other global 

markets and thus the inclusion of these series will potentially improve neural 

networks forecasting performance (Zhang, 2003). 
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Market Timing Hypothesis - It would be worthwhile endeavour to consider a 

methodology which provides a measure of the economic value of a forecasting 

model. A market timing test can be used in order to give more candid examinations 

of the financial time series forecasts generated by different network architectures. 

Henriksson and Merton (1981) have developed a framework for analyzing the 

statistical significance of the correlation between forecasts and actual values of 

returns on stocks. The Henriksson-Merton market timing test is essentially a test of 

the directional forecasting accuracy of a model. Directional accuracy has been shown 

to be highly correlated with actual trading profits and a good indicator of the 

economic value of a forecasting model. This hypothesis test is a practical test to 

observe whether the network models have an economically significant value in 

predicting the financial time series signals. This would be very useful to evaluate the 

probability of the network's profit and to justify whether the networks are able for 

making money out of its predictions. 

Testing and evaluation with datasets from different application areas - This 

research has evaluated the capabilities of HONNs on the prediction of financial time 

series data. In light of the DRPNNs' results giving a higher AR in most of the cases, 

an evaluation of the network using data with different properties, from different 

fields would be very useful. One useful application is preventing undesirable events 

by forecasting the event, identifying the circumstances preceding the event, and 

taking corrective action so the event can be avoided. Another application is 

forecasting undesirable, yet unavoidable events. The sunspots data series, which is 

data counting dark patches on the sun and is related to the solar storms, shows an 

eleven-year cycle of solar maximum activity (Plummer, 2000), and if accurately 

modelled, can forecast the severity of future activity. While solar activity is 

unavoidable, its impact can be lessened with appropriate forecasting and proactive 

action. 
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8.5 Chapter Summary 

This research work underlines an important contribution of the proposed DRPNN; 

namely their elegant ability to approximate nonlinear financial time series. This 

superior property hold by the DRPNN could promise more powerful applications in 

many other real world problems. Hence, it is anticipated that HONNs, and 

particularly DRPNN, can be used as an alternative or supplemental method for 

predicting financial variables and thus justified the potential use of these models by 

practitioners. To conclude, DRPNN is a promising intelligent computational 

technology that potentially can be a challenging tool for future research. 
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Appendix 2: Learning curves for the prediction of one step ahead using stationary signals 
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Appendix 3: Best forecasts on stationary data for the prediction of one step ahead using M [Ts 
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Appendix 4: Histograms of the signals error on stationary data 
for the prediction of one step ahead using ML, Ps 
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Appendix 4: Histograms of the signals error on stationary data 
for the prediction of one step ahead using FLNNs 
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Appendix 4 

Appendix 4: Histograms of the signals error on stationarý data 
for the prediction of one step ahead using PSNNs 
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Appendix 4: Histograms of the signals error on stationary data 
for the prediction of one step ahead using RIINNs 
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Appendix 5: Learning curves for the prediction of five steps ahead using stationary signals 
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Appendix 5: Leaming curves for the prediction of five steps ahead using stationary signals 
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Appendix 6: Best forecasts on stationary data for the prediction of five steps ahead using MI. Ps 
ý Original signal, Predicted signal 
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Appendix 6: Best forecasts on stationary data for the prediction of five steps ahead using FI. NNs 
ý Original signal, Predicted signal 

10 2- 

5ý 
0 

In 0, 

0, 

C) 5 
+ 

4 

+ 
CL Oý 

W -5 
1 

0ý 
-05- 

-15() ; io 4'0 

Day 
60 so 100 -2 0 00 Day 60 so 100 

IBM CMESP 
3 

25ý 

4 

3, 

2 
2, 

15, 

m 

1, 

0', 
CX. 

w 

0. 

q 

I 
cr- 

-05 
4 

-, 501- ---ýo 

Day 
9'0 - 160 -36 2,0 4.0 6ý0 ýo 1ý0 

Day 
CBT-10 CBT-30 

2, -- 

15, 

15ý 
1 

1 
1 

! . 5ý 

In 0 

+ 05r 

V 

a- -05- CL 
C: l 0 

-05, 1 

-2' 

C) _0 - 6 20 ýo -80 100 -36 -- 2'0 40 60 so 100 

D ay Day 
UK/EU UK/US 

25 
25- - - 

2 
2 

1 51 
15 

U') 05 
, C) 05. 

+ 
0 CL 0- 

Of -0 5. - cr- -0 5 

15 

21 -2- 

-256- ---ý'O-- 

Day 
-80- Too -25- 0 - 40 '0 270 ZO 

Day 150 10 
US/EU JP/EU 

4 25 

2L 
3 15 

2' 1. 

LC) 05- 

+ 
cm 

0 
C) 0, - -0 5ý 

-21 

4'0 
Day 50 so 100 

25-- 
(3 20 40 

Day Cýo E; o 100 

JP/US JP/UK 



Appendix 6 

Appendix 6: Best forecasts on stationary data for the prediction of five steps ahead using PSNNs 
ý Original signal, - Predicted signal 
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Appendix 6: Best forecasts on stationary data for the prediction offive steps alicad using RPNNs 
ý Original signal, - Predicted signal 
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Appendix 7: Histograms of the signals error on stationary data 
for the prediction of five steps ahead using M I, Ps 
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Appendix 7: Histograms of the signals error on stationary data 
for the prediction of five steps ahead using FLN Ns 

16ý 

14- 

12ý 

10 

1 

8. 

150- 

1001 

. 
%'2-0 

15 -0 1 -005 0 005 ( 
Signals Error 

CBT-10 

90 
80. 
70 

60' 

50, 

I 
40- 

30, 

20- 

10. 

01 - 

-01 

L 

-005 0 005 

Signals Error 

UK/EU 

90 
80 

70 

50 

40 

'o 6 

30 

20 

10 

0 

120 

100 

60 

401 

20' 

0 

Signals Error 

CNIESP 
120 

100 

60 

1 "0' 

40 

20 

0, 
)15 -01 11 

-I 80-- 

70- 

60 

40- 

5ýo o' 

2o 

lo 

0 1- 

WEI 

01 

. 0, Signals Error 

UK/t; S 
100 
90 
so 
70- 

50 

40 

6 

30 

20 

10ý 

0- 
-01 00', 

15 

80 

70 

60 

50 

40 

30 

20 

10 

01 
1 

o'l 1 

II 

C BT-30 

Signals Error 
IBM 

Signalý Error 

US/EU 
Sig na Is f ri or 

JP/EU 

Signals Error 

JP/UK 
Signals Error 

JP/US 



Appendix 7 

Appendix 7: Histograms of the signals error oil stationary data 
for the prediction of five steps ahead using PSNNs 
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Appendix 7: Histog rams of the signals error oil stationary data 
for the predict ion of fi ve steps ahead Using RPNNs 
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Appendix 8: Learning curves for the prediction of one step ahead using non-stationary signals 
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Appendix 8: Learning curves for the prediction of one step ahead using non-stationary signals 
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Appendix 9: Best forecasts on non-stationary data for the prediction of one step ahead using MI, Ps 
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Appendix 9: Best forecasts on non-stationary data for the prediction ofone step ahead using FLNNs 
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Appendix 9: Best forecasts on non-stationary data for the prediction ofone step ahead using PSNNs 
Original signal, Predicted signal 

420 480 

4751 
400 

4701 

0 485 :: 
460 

0 455, 

m 
3407 

450, 

320 

445 

440 

435 
L- 

300-- -- 0 20 40 60 80 100 
Da 

4300 -ýý 20 ýo no so 100 y Day 
IBM CMESP 

100 
94- 

93- 
98ý 

92- 

94 
+ 91, 

go, 90, ' 
CL 

ý 
CL 

0 

2, 
z7 89ý 

go; . 

8a -- -- -- -- -- -ý-o -- -- Eýo -- 8ý0 -- 00 0 20 
a7--- - 0 20 00 4ýO AýO 100 Day Day 

CBT-10 CBT-30 

071 
081[- 
06 

07ý 059ý 

069ý 058, 

+ 
068ý 

+ 
057ý 

0 67ý 
056- 

0 55 
0.6ý 0541 

v 
0 65--- - ---- -- 0 20 40 

Day 
60 80 100 

0 53ý- io 40 

Day 60 ýo loo 
UK/EU UK/US 

1 28, 

1 26ý 

138 -- 

137 

8 

.1 
CL 

1 24ý 

1 22 

12 

136 

35 

8 134, 

Cl- 133- 

1 
1 32ý 

1 
31 

20---- 46 6ý- 80 100 

Da 
130, 

0 20 ýo 60 130 160 
y Day 

US/EU JP/EU 
206 - 

114 

113 204- 

112- 202- 

200- 

109 

198 

w 

107(ý- - -1 6C, 20 40 

Day 
1946- ---- 20 - --loo 

40 60 80 

Day 
JP/US JP/t'K 



APP(Illdiv 9 

Appendix 9: Best forecasts on non-stationary data for the prediction ofone step ahead using RPNNs 
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Appendix 10: Histograms of the signals error on non-stationary data 
for the prediction of one step ahead using MI. Ps 
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Appendix 10: Histograms of the signals error on non-stationary data 
for the prediction of one step ahead using FLNNs 
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Appendix 10: Histograms of the signals error on non-stationary data 
for the prediction of one step ahead using PSNNs 
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Appendix 10: Histograms of the signals error on non-stat ionary data 
for the prediction of one step ahead using RPNNs 
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Appendix II 

Appendix 11: Learning curves for the prediction of five steps ahead using non-stationary signals 
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Appendix 11: Learning curves for the prediction of five steps ahead using non-stationary signals 
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Appendix 12: Best forecasts on non-stationary data for tile prediction offive steps allead using M H's 
Original signal, Predicted signal 
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Appendix 12: Best forecasts on non-stationary data for the prediction of five steps ahead using FLNNs 
Original signal, Predicted signal 

440 480 
1 --- 

420 475ý 

400 
470t 

380 
465. - 

Cl- 
350 

480- 
340 

320 455 

00 -- 30 -ýo so 

Day 
80 100 

4506 io 40 60 
Day 

HO 100 

IBM CMESP 
loo7-- 94-- 

93- 
98 

96 
92. 

91, 

94ý 
go 

92, 
agr 

90 as 

88 87- 
2 so 

Day 
so IGO 20 40 50 

Day 
so 100 

CBT-10 CBT-30 

0 71 
08 

07 0 59- 

069 058 

+ 
068 

0 57 

06 

L 

CL o 56ý 

1 

0 

055, 

0541 

0850 20 40 
Day 

60 80 100 
0536- --- 20 40 

Day (50 So loo 
UK/EU UK/US 

1 26 

138 --- 

137, 

1 25 

1 24 
13"' 

i 23 

1 22 

ý 
13 51 

13., 

CL 1 21 133 

12 

1 19 
132' 

131, 

1 17 
0 20 40 

Day 
60 so 10 0 

130o- io- 40 
Day 60 60 160 

US/EU JP/EU 
116- - 206 

115 c 
114, 

: 

1131 o 

+ 112 + 
200- 

Cl- 
110 198, 

109 

108 

107 -- 1941 - - ýO ý 4 60 

Day 
80 100 0 20 40 6 0 

Day 
40 100 

JP/US JP/UK 



Appenthv 12 

Appendix 12: Best forecasts on non-stationary data for the prediction of five steps ahead using PSNNs 
Original signal, Predicted signal 
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Appendix 12: Best forecasts on non-stationary data for the prediction offive steps ahead using RPNNs 
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Appendix 13: Histograms of the signals error on non-stationary data 
for the prediction of five steps ahead using Ml, Ps 
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Appendix I): Histograms of the signals error on non-stationary data 
for the prediction of five steps ahead using FLNNs 
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Appendix 13: Histograms of the signals error on non-stationary data 
for the prediction of five steps ahead usine PSNNs 
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Appendix 13 

Appendix 13: Histograms of the signals error oil non-stationary data 
for the prediction of five steps ahead usina RPNNs 
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