
A Specification Method for the Scalable Self-
Governance of Complex Autonomic Systems

Martin J. Randles

A thesis submitted in partial fulfilment of the requirements of Liverpool

John Moores University for the degree of

Doctor of Philosophy

School of Computing and Mathematical Sciences

Liverpool John Moores University

Liverpool

August 2007

ORIGINAL COpy TIGHTLY BOUND

/

THE FOLLOWING HAVE NOT
BEEN COPI ED ON

INSTRUCTION FROM THE
UNIVERSITY

Table 3.1

Figure 6.2

Figure8.4

page 60

page 113

page 160

Appendix 2 pages 210 - 220

To Donna

- ii-

Abstract

IBM, amongst many others, have sought to endow computer systems with self-

management capabilities by delegating vital functions to the software itself and proposed

the Autonomic Computing model. Hence inducing the so-called self-* properties

including the system's ability to be self-configuring, self-optimising, self-healing and

self-protecting. Initial attempts to realise such a vision have so far mostly relied on a

passive adaptation whereby Design by Contract and Event-Condition-Action (ECA) type

constructs are used to regulate the target systems behaviour: When a specific event makes

a certain condition true then an action is triggered which executes either within the

system or on its environment Whilst, such a model works well for closed systems, its

effectiveness and applicability of approach diminishes as the size and complexity of the
managed system increases, necessitating frequent updates to the ECA rule set to cater for

new and/or unforeseen systems' behaviour.

More recent research works are now adopting the parametric adaptation model, where the

events, conditions and actions may be adjusted at runtime in response to the system's

observed state. Such an improved control model works well up to a point, but for large-

scale systems of systems, with very many component interactions, the predictability and

traceability of the regulation and its impact on the whole system is intractable. The self-

organising systems theory, however, offers a scaleable alternative to systems control

utilising emerging behaviour, observed at a global level, resulting from the low-level

interactions of the distributed components. Whereby, for instance, key signals (signs) for

ECA style feedback control need no longer be recognised or understood in the context of

the design time system but are defined by their relevance to the runtime system.

Nonetheless this model still suffers from a usually inaccessible control model with no

intrinsic meaning assigned to data extraction from the systems operation. In other words,

there is no grounded definition of particular observable events occurring in the system.

This condition is termed the Signal Grounding Problem. This problem cannot usually be

solved by analytical or algorithmic methods, as these solutions generally require precise

problem formulations and a static operating domain. Rather cognitive techniques will be

needed that perform effectively to evaluate and improve performance in the presence of

complex, incomplete, dynamic and evolving environments.

In order to develop a specification method for scalable self-governance of autonomic

systems of systems, this thesis presents a number of ways to alleviate, or circumvent, the

Signal Grounding Problem through the utilisation of cognitive systems and the properties

of complex systems. After reviewing the specification methods available for governance

models, the Situation Calculus dialect of first order logic is described with the necessary

modalities for the specification of deliberative monitoring in partially observable

environments with stochastic actions. This permits a specification method that allows the

depiction of system guards and norms, under central control, as well as the deliberative

functions required for decentralised components to present techniques around the Signal

Grounding problem, engineer emergence and generally utilise the properties of large

complex systems for their own self-governance. It is shown how these large-scale

behaviours may be implemented and the properties assessed and utilised by an Observer

System through fully functioning implementations and simulations. The work concludes

with two case studies showing how the specification would be achieved in practice: An

observer based meta-system for a decision support system in medicine is described,

specified and implemented up to parametric adaptation and a NASA project is described

with a specification given for the interactions and cooperative behaviour that leads to

scale-free connectivity, which the observer system may then utilise for a previously

described efficient monitoring strategy.

- iv-

Acknowledgements

I am indebted to Professor Taleb-Bendiab, my supervisor, for his constant support,

encouragement and friendship. He has contributed in many ways to the work described

herein. Besides arranging the financial support that facilitated my completion of this

thesis, he is responsible for my development as a researcher and provided the vital

scientific inspiration for the work.

I would like to thank Philip Miseldine (Now Dr. Miseldine) for his support and friendship

throughout these past three years. The many discussions between Taleb, Phil and myself

provided many interesting and fruitful lines of research and clarified many technical

aspects of the work.

My thanks and appreciation is due to Professor Merabti, Director of the School of

Computing and Mathematical Sciences at Liverpool John Moores University for

providing the necessary environment and opportunities to complete the work.

Acknowledgement is also due to all my colleagues; academic staff, administrative staff,

technicians and research students in the School for their help and support.

The work, in the first instance (2004-2005) was supported by EPSRC, as part of the

2nrich Project, grant number GRlR86782/01.

I dedicate this work to my wife, Donna, for her psychological support, patience and

understanding and for ultimately making it all worthwhile.

Finally a thank you to Lucy whose long walks in the sand dunes, provided some

contemplative time for the development of these ideas, and for her quiet solicitude during

the writing up of this work.

Table of Contents
ABSTRA eT ---- .._ _ ._ III

ACKNOWLEDGEMENTS v
TABLE OF CONTEN'I'S _ _ VI

LIST OF FlGURES IX

LIST OFTABLES XI

CHAPTER 1 _ _. 1

INTRODUCTION ___ _._ 1

1.1 MOTIVATION 1

1.2 CHAUENGES 2

1.3 RESEARCH HYPOTHESIS 4

1.3.1 Research Questions 5

1.4 RESEARCH ApPROACH 6

1.4.1 Research Position 8

1.4.2 Research Method 9

1.4.3 Research Scope 9

1.4.4 Research Aims and Objectives 12

1.5 CONTRIBUTION TO KNOWLEDGE 12

1.6 THESIS STRUCTURE 14

CHAPTER 2 _ _. __ l'

COMPLEX SySTEMS _ 16

2.1 THE PHILOSOPHICAL STANDPOINTS 16

2.1.1 Reduction versus Collection 17

2.1.2 Formal Verification 18

2.2 AGENT ApPROACHES TO COMPLEX SYSTEMS 20

2.2.1 Agent Based Complex Software Systems 21

2.2.2 Agent-Based Programming Models 24

2.3 NORMATIVE ApPROACHES 26

2.4 FEDERATED BEIiA VIOUR 29

2.4.1 Joint Intentions 29

2.4.2 Modal Logic of Federations and Distributed Knowledge 33

2.4.3 Logical Omniscience 38

2.S SELF-ORGANISATION 39

2.6 THE WORLD WIDE WEB 45

2.7 SUMMARY : 50

CHAPTER 3 _ 53

SELF-GOVERNING SYSTEMS _._._ _ _ __ .. __ 53

3.1 AUTONOMIC AND SELF-* SYSTEMS ••••••••••••••••.••••••••••••••••••••••••.••••••••••••.•••••••••••••••••••••••.••••••••••••••••••••.•••••54

3.1.1 State of the Art in Autonomic Systems Research ...••.•...........•... 55

3.2 ROLES AND NORMATIVE POSITIONS FOR SELF-GOVERNANCE MIDDLEW ARE 58

3.3 SELF-ORGANISATION AND SELF-GOVERNANCE MIDDLEW ARE 61

3.3.1 Grid Computing 61

3.3.2 Co-ordination systems 63

3.3.3 Caching and Replication 63

3.3.4 Pervasive Computing .•...•.....................................•............•...... 64

3.3.5 Autonomic Self-Governance and the Emergence of Self-Organisation 65

3.4 THE SIGNAL GROUNDING PROBLEM AND AUTONOMIC SYSTEMS 65

3.4.1 The Signal Grounding Problem Explained 67

3.5 SUMMARY 68

CHAPTER 4 _ __ _ . 70

THE SPECIFICATION OF COMPLEX SYSTEMS.____ .. 70

4.1 OPEN SYSTEMS 70

4.2 STATE-BASED ApPROACHES 72

4.2.1 Process Algebras 73

4.3 PROPOSITIONAL FORMALISMS 79

4.3.1 Logical Calculi: Events and Situations 81

4.4 THE SITUATION CALCULUS 84

4.4.1 The Situation Calculus Language: Foundational Axioms · 86

4.4.2 Composite Actions and Procedures 88

4.4.3 Time and Concurrency 89

4.4.4 Sensing and Knowledge 92

4.4.5 Probability: Stochastic Situation Calculus 92

4.5 SUMMARY 94

CHAPTER S - _ _..._.. -_ 98

THE OBSERVER MODEL SIGNAL GROUNDING AND ENGINEERING EMERGENCE __ 98

5.1 THE OBSERVER SYSTEM 99

S.2 ADDRESSING THE SIGNAL G ROUNDING PROBLEM 101

S.3 EMERGENT BEHAVIOUR IN LARGE SCALE COMPLEX SYSTEMS 104

S.3.1 Markov Decision Processes and Natural Self-Organising Systems 105

S.4 SUMMARY 109

CHAP'I"ER 6 .. .______ 110

PROPERTIES OF LARGE-SCALE NETWORKS __ 110

6.1 PROPERTIES OF LARGE-SCALE COMPLEX SYSTEMS: SCALE-FREE SYSTEMS I10

- vii-

6.2 SCALE-FREE PROPERTIES AND METRICS 115

6.2.1 The Hub Connection Density Measure 123

6.3 ACQUAINTANCE MONITORING 123

6.4 MONITORING STRATEGIES AND MEMORY MANAGEMENT 127

6.5 SUMMARY 128

CHA~ER 7 -..... _......130

7.1 A NORMATIVE AUTONOMIC SCENARIO 131

7.2 THE NETLOGO EXECUTION ENVIRONMENT 136

7.3 SCALE-FREE AND RANDOM SYSTEMS 139

7.4 THE HUB CONNECTION DENSITY 143

7.5 ACQUAINTANCE MONITORING 146

7.6 DISTRIBUTED KNOWLEDGE RETRIEVAL 149

7.7 SUMMARY 150

CHAPTER 8 _ __ 153

EVALUA nON: TWO CASE STUDIES__ .._ ..__ .._ .._ ..__ lS3

8.1 A DECISION SUPPORT SYSTEM FOR BREAST CANCER CUNICIANS 153

8.1.1 The Decision Support System 154

8.2 THE NASA ANTS PROJECT 159

8.2.1 NASA ANTS Formal Specification 161

8.3 SUMMARY 174

CHA~ER 9 __ _ _ _....._......176

CONCLUSIONS 176

9.1 MOTIVATIONS AND APPROACH 176

9.2 THESIS SUMMARY 180

9.3 ACHIEVEMENTS AND CONTRIBUTIONS 182

9.4 CoNCLUSION AND DISCUSSION 186

9.5 PROPOSED FuRTHER WORKS 188

REFERENCES -... _ 191

APPENDIX 1......_....._ _..... 208

ADAPTIVE MIDDLEWARE 208

APPENDIX 2......-.. _ ...- __- , 210

A RECENTLY PuBLISHED TECHNICAL PAPER 210

APPENDIX 3 _.... - - ---- _.. 221

PuBLICATIONS BY THE AUTHOR 221

- viii-

List of Figures

Figure 2.1: Generic Hybrid System Overview 19

Figure 2.2: Possible Worlds Accessibility Relation 35

Figure 2.3: The Poisson Distribution (left) and the Power Law Distribution (right) for a

Node Degree Distribution 47

Figure 3.1 Autonomic Feedback/Control Loop 56

Figure 3.2: The Parametric Adaptation Process 57

Figure 4.1 Simple State transitions 73

Figure 4.2 Interleaved Time Processes in Situation Calculus 90

Figure 5.1 The Observer System 100

Figure 6.1: Regular ring lattice where each node is connected to its 4 nearest neighbours

.. 112

Figure 6.2: Random rewiring in the Watts-Strogatz model (Watts and Strogatz, 1998) 113

Figure 6.3: Typical topology of a scale-free system 115

Figure 6.4: A structural phase transition 122

Figure 7.1: System controller managing system space 134

Figure 7.2: System controller as system space monitor 134

Figure 7.3. Neptune repair strategy script. 136

Figure 7.4: Netlogo code fragment to construct a regular lattice 137

Figure 7.5: Netlogo output: Regular lattice of 40 nodes and connectivity of 25 138

Figure 7.6: A regular lattice rewired to a small world model 138

Figure 7.7: Netlogo implementation showing scale-free system topology 142

Figure 7.8: Netlogo implementation showing random system topology 142

Figure 7.9: Netlogo code to give a scale-free (left) or a random (right) network 143

Figure 7.10: The value of the Hub Connection Density measure 144

Figure 7.11: Scale-free network Hub Connection Density measure 145

Figure 7.12: Random network Hub Connection Density measure 145

- ix-

Figure 7.13: Netlogo code fragment for Hub Connection Density calculation 145

Figure 7.14: An implementation of Acquaintance Monitoring Selection 147

Figure 7.15: Acquaintance Monitoring Selection on a random network 147

Figure 7.16: Netlogo code fragment for Acquaintance Monitoring Selection 149

Figure 7.17: Graphical analysis of observer monitoring strategies 150

Figure 7.18: AMS on scale-free network showing 67.3% knowledge retrieval 150

Figure 7.19: Code fragment implementing Knowledge retrieval with AMS 151

Figure 8.1: Class structure for object-oriented decision model 155

Figure 8.2 Decision process and update 156

Figure 8.3: Decision options for post-operative breast cancer care 156

Figure 8.4: The NASA ANTS project (Rouff et al, 2004) 160

- x-

List of Tables

Table 3.1: Overview of Viable Systems Model (Laws et al. 2003) 60

Table 4.1: Comparison of Formal Representation System Features 96

Table 6.1: Scale-free systems with P(k) _k-A 117

Table 6.2: Comparison of network construction algorithms 122

- xi-

Chapter 1

Introduction

At present facilities to enable distributed computer systems to exhibit self-governance

remain at a rudimentary level of sophistication: Many major adaptations and adjustments

still need to be accomplished offline. This work investigates the specification of self-

governance, by the system itself, which can be applied to systems of varying scales. This

will become increasingly necessary with the advent of large-scale distributed computer

systems incorporating ubiquitous and pervasive computing environments within planet

scale systems, such as the Internet. A paradigm shift in this direction has been proposed

by IBM with its vision of Autonomic Computing (Horn, 2001) to address complexity and

endow systems with self-governance capabilities by delegating vital functions to

additional software components, inducing the so caJled self-* properties including the

system's ability to be Self: Configuring, Optimising, HeaJing and Protecting.

1.1Motivation

For computer software systems to possess the ability to control and influence their own

performance requires the provision of additional software components to the system

itself. These components (meta-systems), in line with the Aspect Oriented Programming

(AOP) (Kiczales et ai, 1997) principles, ought to be treated as completely separate

concerns from the system. In the autonomic computing reference models (Randles et al,

2005, Kephart and Chess, 2003) such meta-control capabilities are achieved through

feedback and control loops, where monitors are set on chosen key values and specified

actions are triggered when pre-programmed thresholds are exceeded, or other events, are

detected by the system. These autonomic systems, in effect, become libraries of rules

(policies) or production systems working in a similar manner to Event-Condition-Action

(ECA) (Widom and Ceri, 1995) rules, first used in active databases, where an event

causes a condition to be fulfilled triggering the specified action.

Evidently this has led to further software design complexity including increasing the

workload of control and communication functions, with networks of autonomic systems

being applied to monitor increasingly complicated distributed application level systems.

Hence the size of these systems exceeds the capabilities of the meta-systems to maintain

- 1-

a sufficiently agile and efficiently organized rule set. When so many rules are defined

within a system, there is likely to be many conflicts, amongst the rules, and their

interactions, in general, are very difficult to analyse. For instance, the execution of one

rule may cause an event, which triggers another rule or set of rules. These rules may in

tum trigger further rules and there is a potential for an infinite cascade of rule firings to

occur. Additionally these rules are static, in nature, in that there is usually no provision

for rule refinement or analysis. A system rule requiring alteration or adjustment

necessitates the system, or system part, being taken offline, reprogrammed and deployed

back into the system. Thus this work highlights the need for techniques and tools for the

meta-systems to analyse rule behaviour and its impact on the system. In particular the

adoption of a cognitive systems design model is proposed to enable the deliberation on

the effect of rule enactment on the system, to refine or delete the rules in the light of new

data and to determine new rules arising from the systems evolutionary operation. In other

words, rather than the meta-systems blindly reacting to pre-defined stimuli, the cognitive

systems provide the meta-system with knowledge of the intrinsic meaning of perceived

events and the likely outcomes of its actions. Thus, as the complexity of a system

increases, the "top-down" command and control approach becomes increasingly difficult,

if not impossible, to program. It is, indeed, impossible to program, at design time, for all

system eventualities. So unless sufficiently powerful cognitive systems are deployed, as

meta-systems, on large-scale complex systems failure will inevitably occur, with

increasing likelihood, as the system progresses further and further from its starting state

or configuration.

1.2 Challenges

As introduced in the previous section it is not currently possible to provide highly agile

and adaptable meta-systems for self-governance for larger scale distributed computing.

Thus the challenge addressed in this work is to consider how best to specify a meta-

system for self-governance that can be applied to scale from a simple closed system up to

planet wide completely open systems.

Systems, in this work, are viewed as being composed of many individual components.

These components may be atomic or may consist of further components. They are

programmable entities operating according to their own specific programming model or

dynamic rule set. Hence component interactions are directly related to rule interactions,

- 2-

component conflicts are akin to the rule conflicts and any component may be defined, at a

specific snapshot in time, by its rule set at that time. Thus the systems are considered as

federations of interacting components. A component can also be viewed as a software

agent. This is as far as this work goes in defining the concept of an agent, the term will be

used when it is necessary to draw results from other work or make clear certain points.

There are many proposals for frameworks to specify agent/component behaviour. But

none provide a totally integrated, unified approach for specifying command and control

top-down management, which may be used for less complex closed systems and the more

complex deliberative capabilities required when component interactions cause system

behaviour to emerge from the bottom-up. One of the earliest attempts at defining an

agent's behaviour is Belief-Desire-Intentions (BDI) (Bratman, 1987), but no allowance is

made for co-operative or social interaction between BDI agents and intention

reconsideration is not always possible (Cohen and Levesque, 1990). More recent

improved approaches, such as Epistemic-Deontic-Axiologic (EDA) (Filipe and Liu,

2000) or Extendable-Belief-Desire-Intentions (EBDI) (Badr et al, 2004) agents, handle

interactions, team-work and conflict resolution but there are no facilities for handling

emergent global events or behaviour. As systems become larger and more complex it

becomes increasingly unfeasible for a meta-system to function in monitoring and

controlling the system participants as well as assessing the global state and environment

of the system. Furthermore it is impossible to detect weaknesses within the system

structure or operation simply by analysis of the rule base for each participant. In the first

instance, a new statistical paradigm is required where the state of the system is assessed

and influenced by likelihood, rather than certainty, giving a high confidence in the

predictability of outcomes. Thus exhaustive monitoring is no longer required, rather

system participants are governed by simple rules and observation modules enforce a

global model based on the likelihood of the results of the participants' interaction. In this

. way a top-down approach is combined with a bottom-up assessment. Thus the research

challenges, addressed by this work, involve the provision of a unifying formalism, and

associated tools and techniques, which is flexible enough for both the specification of

system members' behaviour and the analysis of global emergence and novelty. The

formalism is required to provide the cognitive facilities, necessary for deliberation, of

reasoning, deduction, abduction, induction and inference as well as providing high

assurance for correctness of the specification. This then provides the required

- 3-

functionality to implement the deliberative capabilities and runtime adaptation necessary

for future autonomic networks on large-scale systems.

1.3 Research Hypothesis

The challenges, which the research hypothesis needs to address through this work, are

mainly concerned with providing a means of specifying self-governance capabilities for

computational systems of varying scales. A specification is, thus, sought that permits not

only the formalisation of rule sets to handle command and control type meta-systems but

also includes associated cognitive capabilities to reason on observed system outcomes

and provide the self-governance meta-system with the knowledge of the actual meaning

of observed phenomena within the system and its domain. Current meta-system

provision does not allow a sufficiently flexible representation of the knowledge within

the system to achieve this. The production type systems currently employed, as meta-

systems, represent knowledge as states and transitions, where each piece of knowledge

and each rule for transition must be explicitly enumerated. To facilitate a more flexible

representation, akin to human management, cognitive systems are required to deliberate

and reason on the system knowledge and its impact on system management. Thus a basic

objective to be addressed by the research hypothesis. throughout this work, is to provide a

specification technique for system management that possesses the deliberative skills of a

human operator but with the superior data handling capacities and speed of a

computational system. It is therefore necessary to consider the acquisition and handling

of knowledge within a computer system. Brian Smith (1982) formulated the Knowledge

Representation Hypothesis:

"Any mechanically embodied intelligent process will be comprised of structural

ingredients that (a) we as external observers naturally take to represent a propositional

account of the knowledge that the overall process exhibits, and (b) independent of such

external semantlcal attribution, play a formal but causal and essential role in

engendering the behaviour that manifests that knowledge ."

Thus a specification in mathematical logic is called for as a foundation for "the

propositional account" and additionally this specification then gives the system's

behaviour through logical entailment. Furthermore it is observed that the participant

interactions, in a normative environment, causally effect this normative environment. The

ensuing evolution, as the system adapts to new situations, causes the creation,

- 4-

modification or deletion of norms. It is postulated that the meta-system ought to adjust to

these system and environmental requirements and not vice-versa. In this way the meta-

systems possess an observational role with possibilities to influence components in

response to observed global topology. assessed through its cognitive facilities. This

requires that the system must attribute meaning to its observations in order to account for

realistic future actions or events: Signals emanating from the system need to have

grounding within the system. Finally this approach means that the deployed system ought

to possess the increased functionality and capabilities to perform its adaptations and

adjustments mostly at runtime. Incorporating all these notions into a single statement

gives the research hypothesis for this work:

Self-governance functions for Autonomic computer systems ought to be intelligent

processes, separately embodied within the computer system, which are better modelled

through cognitive observation systems, based on a unified specification, for all scales of

system, in mathematical logic. This specification both enforces limits for the bounded

autonomy of the system participants (from the top-down) and provides for deliberation on

the global implications and actions of these participants as well as the emerging features

of the participants' interactions (from the bottom-up) through the establishment of

intrinsic meanings for observed system signals giving a grounded definition of the events

occurring within the system.

1.3.1 Research Questions

The type of observation system envisaged for the meta-system includes a hierarchy of

observation components that possess deliberative functions, on signatures of emergent

self-organisation for instance, giving abilities to pass deliberation upwards through the

hierarchy. In this way deliberation can be performed at the most suitable point in the

observation system and the result propagated back through the monitoring system. The

observation hierarchy is conceived as culminating, in the worst-case scenario, with

human intervention. Thus it is intended to present a specification method for a formal

model that permits a direct implementation to allow the scaling of monitoring and Self-"

functions up to large-scale complex Worldwide systems.

This and the above stated research hypothesis naturally leads to the two major research

questions:

- 5-

What is the problem that prevents current autonomic self-governance systems from

being applied to large-scale complex systems?

How may grounded definitions of system signals/events be automatically assessed by

the system itself? Can a system achieve an automatic grounded definition of its

observed events: Is it possible for the meta-system to have an understanding of the

actual meaning to the system of observed phenomena?

A number of supplementary research questions, to aid the investigation, then follow:

•

•

• How can a formal logic inspired account of cognitive systems contribute towards the

design, specification and analysis of deliberative meta-systems to influence and

monitor, for the automatic runtime maintenance, tuning and security, as required in

autonomic self-* functions, of large-scale, complex, distributed computing systems?

• Can a formal specification be achieved that encompasses the modelling requirements

of normative and socially interactive components and permits the emergence of a

provably correct observable collective behaviour not apparent just from individual

component monitoring?

• What would be a suitable observer/system topology and how would deliberation

proceed?

• How are the defining characteristics and signatures for classes of self-organising

behaviour represented and assessed without the need for exhaustive monitoring?

• Can a design method, which may be implemented, be produced that includes

deliberation on global system state, scaleable to very wide distribution/complexity

and permits the formal specification of normative component behaviour?

1.4 Research Approach

The methodological foundation of this approach, for a formal definition of an

observational meta-system in a large-scale computer system, is founded on developing a

mathematical and computational treatment of dynamical systems (Reiter, 2(01). Thus it

is proposed to commence by assuming the Knowledge Representation Hypothesis

(Smith, 1982). This has a number of immediate implications:

- 6-

1. Mathematical logic, in contrast to more algebraic descriptions, is the natural choice of

language for the expression of the, "propositional account of the knowledge that the

overall process exhibits."

2. Separated observation systems, to best mimic the deliberative processes that we as

humans use, ought to be based on this propositional account.

3. What a system component (agent) "believes" to be true inherently provides the

overall system "knowledge" through the comprised formally constituted collective.

4. The usual state-based approach is redundant here. Rather than explicitly enumerating

states and their transition functions the Knowledge Representation Hypothesis calls

for a propositional account: A representation based on sentences describing what is

true in the system and its environment and of the causal laws in operation for the

same. Thus a full design time specification is not necessary.

5. Part (b) of the hypothesis makes a causal connection between these sentences and the

system's behaviour. In logic entailment is used to derive one sentence from another.

Thus system behaviour may be viewed as a logical consequence of the "propositional

account": Assessing how a system operates is equivalent to deducing how it must

behave given its description. So system design is simplified to logically describing

the system.

6. An abstract logical specification is gained from a propositional account. Thus it is

possible to automatically prove, within the logic, properties of the specification:

Logical deduction can be used to establish correctness properties for the system.

7. Efficient deduction leads to an executable system specification. Thus a logical

specification gives a simulator for the system.

Thus it is proposed to use a propositional approach, based on the Knowledge

Representation Hypothesis. to specify both a more traditional top down. command and

control, formalism and an analogous bottom up specification. The micro-scale

interactions can be specified in the logic as well as the deliberative functions of a

cognitive system for the monitoring and assessment of both recognised and novel

emergent macro-scale features.

-7-

1.4.1 Research Position

The research position, of this work, is based on using a unified logical approach to model

any dynamical system with: A norm-based approach, an emphasis on the promotion and

detection of signatures for emergent self-organising behaviour, or a combination of the

two. The research problems detailed are very similar to those encountered in Cognitive

Robotics (Reiter, 2001). In the early 1980s Hector Levesque argued that feasible

implementations for large complex systems require what were termed Vivid

Representations (Levesque, 1986). These require, as fundamental elements: What

Levesque calls a base theory in database form, which has, as a crucial property, methods

available to store and query very large amounts of contained data and which supports a

series of associated definitions. This means that predicates and functions of the base

theory, specified in the database form, are treated as atomic elements and novel elements,

introduced into a theory, are defined in terms of these atomic primitives. The evaluation

of a query thus amounts to decomposing the query, through the definitions, into a query

expressed solely in terms of the atomic elements, which can then be evaluated against the

base theory. The present, most widely used representative of such a form is the relational

database. However the vivid representation asks only that the database form have the

capability to efficiently handle large quantities of information. Thus the base theory is not

necessarily required to be complete. as would be the case for a relational database. In the

field of Cognitive Robotics this led, eventually, to the use of an updated version of John

McCarthy's Situation Calculus (McCarthy, 1963) where the process of regression is used,

with the base theory of the axioms of Situation Calculus, to reduce a situation to the

initial situation (Levesque et al, 1998). Thus system properties may be proved simply by

proving properties of the initial situation. It is for similar reasons that this work adopts the

Situation Calculus to specify and develop the required formalism for the deliberative

functions of meta-systems, including reasoning and analysis on autonomic system

behaviour. The requirement for the system to provide grounded definitions of events,

occurring at runtime, means that there is a similar prerequisite here for the cognitive

reasoning system to be able to handle large amounts of data.

In particular this work postulates that such deliberative capabilities, gained through the

Situation Calculus model, may also be used to reason on the emergence of events or

behaviour over the entire system. One of the most prevalent forms of self-organisation.

seen in many natural and large-scale man-made systems is the emergence of scale-free

- 8-

(Barabasi and Albert, 1999) topologies in the connectivity of components. In order to

represent component, bounded autonomy, social norms and this form of global system

emergence it is proposed to take a collectivist approach, instead of the usual

simplification of reductionism. In this way deliberation on the emergence of scale-free

behaviour can be achieved through considering the perceived global situation as the

social interactions of the participating components, as well as the specified individual

norms, actions and behaviours of the participants.

1.4.2 Research Method

The research methods used in this work are inspired by the design and specification of

meta-system observational and normative functions with a logical approach to modelling

dynamical systems using first/second order logic, in the guise of Situation Calculus,

proposed by John McCarthy (McCarthy, 1963) and later extended to be more of a

calculus of situations by Levesque et al (1998). This is allied to a rigorous assessment of

signatures for the global emergent property of scale-free connectivity between system

participants in order to solve the research questions detailed above in relation to

providing scaleable, autonomic type meta-systems. Using contributions and combinations

from these areas of research; formalism has been developed that permits both individual

and global deliberation through a collectivist model that can be shown to work through

fully implemented simulation software.

1.4.3 Research Scope

This research includes many strands of enquiry; some of which are obviously

interconnected whereas others appear to be from very diverse disciplines. This section is

concerned with drawing the strands together and making clear the interconnectedness of

the various lines of thought.

In the first instance this work requires a perspective on how systems are viewed from a

philosophical standpoint. To overcome the current failings of computer systems to

possess scaleable autonomic, self-· meta-systems it is proposed to take a collectivist

approach to systems thinking. In this the tasks performed and social interactions of the

system components lead to the perceived outcomes of the enclosing system. Indeed the

goals of the enclosing system are seen as being of a higher priority than the individual

goals of the components (Ratner and Lumei, 2(03). Through this treatment emergence of

behaviour and outcomes becomes of greater importance and the whole is seen to be

- 9-

greater than the sum of its parts. This also means that a positivist view is also rejected, in

that whole system ontology emerges from a socially constructed meaning emanating from

the interaction of the system components. That is observations and knowledge are of an

individual nature but an objective world is not sufficient to explain all outcomes: There is

also a need for an observing subject. The philosophy underlying the construction of an

observation system, in large-scale computing systems, may be more adequately

represented by a form of collectivism termed "hierarchical reductionism" by Richard

Dawkins (1996) in his book The Blind Watchmaker. Here complex systems can be

described with a hierarchy of abstractions where each level in an organizational structure

is only describable in terms of objects one level down in the hierarchy. Thus the goals of

the enclosing system, at the top of the hierarchy with human intervention, have no

perception of the goals of the low-level components, in the lower reaches of the

hierarchy. The top-level requirements emerge from the systems whole operational

environment and function.

Godel (1931) showed the futility of an approach based on reductionism to mathematics in

general. Chomsky (1965), in defining cognitive science, also challenged the approach of

reductionism, apparent in behaviourism, suggesting that cognitive function plays a

greater part. Cognitive science, however, also focuses on the deliberative functions of an

individual with mental states. The related field of Artificial Intelligence also sees

cognitive abilities as relating to an individual's mental or information processing powers.

This work promotes a shift of emphasis to more completely encompass the collectivist

approach in what has been termed; "Mind Out of Programmable Matter" (Randles et al,

2006a): The system consists of its own global identity as well as its constituent parts.

In the area of Distributed Artificial Intelligence the study of multi-agent systems is

included within the scope of this work. This provides for the study of computational

agents within the context of their situated environment and their social relationships with

other agents. As previously stated the term agent will be merely shorthand for

programmable computing entity or system component throughout this work. In 1987

Bratman established an approach to agent intentions with BDI (Bratman, 1987). There

are a number of documented weaknesses in this approach, not least the lack of support for

social activity in multi-agent systems or facilities to allow reconsideration of intentions.

In 1990 the notion of agents acting together and the formalisation of joint intention in

collaborative multi-agent settings was introduced (Levesque et al, 1990).

- 10-

Throughout the work presented in this thesis mathematical logic is the most important

tool in specifying and reasoning on the behaviour of computer systems. When it is

required to simulate, control, analyse or in any way investigate a dynamical system the

first step is to axiomatise it in a suitable logic. All features will follow through logical

entailment. Although it is not claimed that this is completely obvious it is hoped this

work goes some way to showing this in action. In taking the approach of Cognitive

Robotics, in utilising the formalism of Situation Calculus, many problems and solutions

for the provision of meta-system scalability can be addressed; the most important being

that explicit pre-defined state transitions are not necessary. Thus the ideas of emergence

and the unpredictable outcomes of component interactions can be included in the

formalism through the appropriate use of stochastic and statistical techniques, where

necessary, to ground the definition of system actions/events.

Ashby introduced the term self-organisation (Ashby, 1947) and it has been widely

studied initially from a cybernetic and general systems theory perspective. It has only

very recently come to prominence in physics and the study of increasingly more complex

computing systems as exemplified by the World Wide Web and Internet, through

statistical mechanics. Here the prominent form of observed organisational behaviour is

the emergence of power-law (Barabasi and Albert, 1999) topologies in the graphs

representing many various relationships across these systems. The absence of a

representative mean, in these distributions, has led to the systems being described as

"Scale-Free".

Recent research in mathematical logic, has been informed and inspired by the

requirements of Distributed Artificial Intelligence to model social agents in terms of

responsibility, normative assertions, autonomy and other notions of relationship such as;

joint intentions, commitments and obligations. Modal logics have been suggested for the

modelling of these concepts; deontic, action, or default logics, for instance. Such

formalisms prove less than versatile in application to the wide ranging and real world

concerns of complex systems. Similarly process algebras suffer from having no

correctness formalism built into the representation and also require explicit enumeration

of state spaces.

This thesis will provide background material on these subjects. But it is the vivid

representations to handle very large amounts of data, ultimately realised through the

Situation Calculus, that is chosen as the most promising and unifying approach for a top-

- 11-

down observer/influencer and a bottom up account of component interaction and global

emergence.

1.4.4 Research Aims and Objectives

This thesis has a number of aims and objectives to maintain the vision of autonomic

middleware for future large-scale, complex, interwoven and pervasive computing

systems, based on the reasoning set out in the preceding sections:

• An identification of the major obstacle(s) making self-governance difficult or

impossible in these widely distributed computer systems.

• Proposals and demonstrable methods to address the identified problem(s).

In keeping with the previously stated research position this gives rise to a number of

additional objectives:

• The provision of a suitable formal specification method to encompass federated

behaviour, stochastic actions, sensing and knowledge and the reasoning over

event sequences such as Markov Chains.

• The account of a formalism that is equally applicable to "top-down" engineering

approaches, for the representation of norm bounded autonomy and socially

interactive frameworks, and the specification of deliberative functions for

reasoning over "bottom-up" emergence.

• An assessment of the evolution and properties prevalent in large-scale system

networks in order to account for the likelihood of emergence.

• The specification of efficient methods for manipulating knowledge data.

• The implementation or simulation of key features for the type and scale of the

systems under consideration.

• The statement and analysis of suitable case studies as evaluation.

1.5 Contribution to Knowledge

This thesis presents the following novel contributions:

• A statement of the Signal Grounding problem and its consequences for control and

monitoring in large-scale systems of systems.

- 12-

• A specification method to support autonomic software engineering for deliberative

meta-system governance of, and reasoning on, autonomic systems behaviour for

varying scales of system to include some addressing of the Signal Grounding

Problem.

• A unifying formalism used to represent system and individual component norms as

well as the deliberative capabilities necessary for Signal-Grounding, engineering

emergence and harnessing the properties of large-scale networks. Thus aiding the

development of models for the monitoring, influence and self-* functions of large,

planetary scale systems.

• A new formal model of an observational meta-system for the monitoring and

influencing of large-scale computer systems based on deliberation of both the

normative bounding of autonomy, for components, and analysing the global

emergence and events that emanate from the whole system.

• A software engineering specification method for the implementation of deliberative

observers over a complex system to include provision for the likelihood of emergent

behaviour as a consequence of the normative interactions of participants.

From the outset Signal Grounding is recognised in this work as presenting a major

obstacle, preventing the efficient utilisation of monitoring data, in establishing the

recognition and recurrence of emergent phenomena in large, complex systems. This

means that without addressing the Signal-Grounding problem the adaptations necessary

for larger-scale systems self-governance will not be achievable. Thus this work initially

takes an approach to the specification of group behaviour in agent frameworks and seeks

further ways to provide the functionality necessary to handle and allow whole system

properties to emerge in a way that is recognisable to, and subsequently detectable by. the

governance system. In this way the normal functions of system control can also be used

to influence and assess the emerging environment: The system is a controller of itself in

its situated environment. The use of a formal specification method that permits the

representation of deliberative mechanisms as well as the description of normative

positions, through mathematical logic, allows assessments of system signals with

recurrence based on reinforcement. This is further refined to include the reuse of action

histories to reproduce desirable signals (engineer emergence) and the analysis, detection

and utilisation of widespread properties of large-scale networks of systems.

- 13-

1.6 Thesis Structure

The thesis commences with a review of complex systems and their associated meta-

systems. with approaches to the representation. analysis and formal specification.

encompassing the approaches sketched out in the research scope section of this

introduction. Then the Situation Calculus is introduced and the contribution of this thesis

is presented in the form of a directly implemented formalism for an observational meta-

system that is scaleable to World Wide Web size systems. using features and novel

metrics to inform the efficient deliberative properties of a propositional account. A

number of case studies are presented as an empirical evaluation and evidence of the

implemented systems.

Chapter 2 starts with an overview of various philosophical standpoints on the

administration of large systems of interacting entities. It is shown that a collectivist model

provides the necessary features for the cognitive meta-systems demanded here. In this

chapter the relevant background is also given for the construction of multi-entity systems

through agent architectures. normative environments and federated behaviour for

teamwork that underpin this research with a modal logic of mutual beliefs. It is further

shown how self-organisation may result from this federated behaviour. which is then

demonstrated using the World Wide Web as an example. The philosophical approaches to

large systems and social interactions are evaluated with respect to individual autonomy

versus normative governance and global outcome.

In Chapter 3 a literature review is provided on the state of the art for models of self-

management in distributed systems. autonomic computing applications and self-

management in middleware services. The chapter continues with a discussion on the

currently unachievable goal of allowing these methods to scale up to World Wide Web

proportions because of an identified Signal-Grounding problem.

Chapter 4 forms a literature review with relevant background on the state of the art

formalisms for specifying representing and reasoning on complex and agent based system

models. It concludes by observing that a propositional account of the domain gives the

more flexible and concise representation for the required cognitive meta-systems, yet no

such formalism exists, at present, to represent the top-down command and the

deliberative capabilities necessary for emergent behaviour from the bottom-up. required

for a meta-system on a large complex system. For this propositional account, requiring no

- 14-

prior state enumeration, Situation Calculus is described in detail with its support for

counterfactual reasoning.

Chapter 5 introduces the Observer System for systems exhibiting emergent outcomes. It

is shown how a specification can be handled by the Observation System to engineer a

previously discussed, naturally occurring emergent behaviour and a specification of

deliberation is described to address the Signal-Grounding problem.

Chapter 6 further introduces background properties and evolutionary features of large-

scale systems and networks that can be utilised by the Observer System when such

behaviour is detected. The classes of behaviour and connectivity are reviewed through a

model of phase transitions leading from a regular lattice to a scale-free connected

topology. A metric is proposed, the Hub Connection Density Measure, to determine what

topological phase a particular system is exhibiting, permitting the deployment of the most

appropriate monitoring strategy. In particular, when a scale-free topology is detected, a

newly defined Acquaintance Monitoring Selection algorithm can be employed by the

observation system to ensure optimum system knowledge gathering. Moreover a

representation of the situation space that gives a scale-free topology can utilise similar

methods to remove less important or redundant data.

Chapter 7 introduces the implementation and simulations for realising the specifications

from a normative based autonomic scenario to the handling of large complex systems in a

statistically mechanical way, demonstrating the use of the previously defined metrics,

tools and techniques through simulations predominately in the Netlogo language.

Chapter 8 brings all the approaches together in two empirically evaluated case studies.

Firstly the approach has been tested and fully implemented through a number of medical

collaborative research projects. Secondly the methods have been applied to analyse

swarm type behaviour in a future proposed NASA space mission.

Finally for Chapter 9 a conclusion is given with a summary of the results and

contributions leading to the proposal of future work.

- 15-

Chapter 2

Complex Systems

Complex computing systems are becoming increasingly prevalent because of three main

factors: Functionality, ubiquity and manageability. Firstly there is a general desire to

endow systems with as many functions as possible. Currently requirements engineering

actively seeks to satisfy the vast majority of system user requests and there is a much

effort devoted to design time fine-tuning in seeking to predict and deal with every system

eventuality. Secondly the sectors of application for computer systems are rapidly

enveloping all areas of human activities. Computing power is being embedded in many

more devices and the networking of formerly isolated or non-computational objects is

leading to a pervasive complex computing environment. Thirdly, as a result of this

functionality and ubiquity, the management of computer systems is outstripping the

information processing capacities of human operators. This has led to the establishment

of additional computing systems. sitting above the application level systems, to provide

management functions through the runtime of the system. These systems have been

termed self-adaptive, self-'" or autonomic systems, but the basic feature is varying

degrees of self-governance: The system having autonomous functions. independent of

any human permission, enabling the system to be a manager of itself. Following a law of

requisite variety (Ashby, 1947) these systems are required to match the complexity of the

system they are endeavouring to manage and so contribute a significant layer of

complexity to the system itself.

This chapter is intended to introduce the philosophical and computational foundations for

knowledge representation in controlling large numbers of interacting entities, which may

be conceived of as being contained within a system. This provides a relevant background

for clarifying the methodological differences between top-down and bottom-up

construction, in such systems as detailed in Chapter I, with an evaluation based on the

evolution and topology of the World Wide Web.

2.1 The Philosophical Standpoints

Through the twentieth century an increasingly recurring theme, in the development of

science, was the realisation that the Newtonian paradigm of mechanics was not sufficient

- 16-

to explain or model the observed complexity of natural systems or phenomena. The

reductionist view that every observed phenomenon can be reduced to a set of

deterministic natural laws governing the behaviour of the atoms or particles involved

became too rigid and sterile to handle the spontaneous creativity inherent in natural

systems. Large complex systems appear to be subject to the random occurrence of novel

structures and autonomous adaptation to environmental stimuli not apparent in more

simple linear systems. This leads to a perceived unpredictability in the functioning of

large systems that calls for a review of the methods used to handle large distributed

computational systems. Firstly a more collectivist perspective must be taken to reason on

the global state of the comprised system. This ought not to replace reductionist ideas

completely, as it is necessary to order the system components hierarchically to allow for

the bounded autonomy of the low level participants, that precipitates the global situation.

Secondly it is essential that the systems in place possess strong deliberative capabilities.

It is only through the addition of correct, verifiable cognitive systems that the scale of

these complex systems can be addressed.

2.1.1 Reduction versus Collection

The spontaneous emergence of new structure is quite readily observed in the real world.

It is generally seen at some point in a system's progress or evolution that may be termed a

phase transition. So the formation of ice crystals in liquid water heralds the emergence of

symmetric patterns of dense matter in a medium of randomly moving molecules. What

characterises this event is self-organisation where structure or patterns appear without any

external agent intervening (other than reducing temperature, which is not sufficient to

explain the ordering of structure, in the liquid, from a random motion). It seems as if the

system arranges itself into a more ordered pattern. This phenomenon contradicts the

reductionist, mechanistic worldview; it also does not easily fit with an intuitive

understanding of the world, as confirmed by the second law of thermodynamics, which

states that a system left to itself will inevitably increase in entropy (disorder). This,

apparent paradox, is explained in terms of global entropy: The randomly moving

molecules that are fixed in the crystalline ice structure pass on the energy of their

movement to the medium in which they are moving. Thus the decrease in entropy of the

crystal structure is offset by an increase in entropy of the surrounding environment. The

entropy of the whole effectively increases. Thus the observed behaviour is reduced to a

comparison of entropies. So a reduction approach gave some explanation of observed

- 17-

phenomena, yet the outcome for the system as a whole can only be explained in terms of

the collective behaviour. In relating this to the observation of a complex distributed

computing system it can be seen that the system may be hierarchically disassembled into

interacting units so that a reduction of the systems complexity may be achieved through

the individual analysis of each unit. Additional events occur within the system, however,

as a result of the complex interactions of the units, which can only be ascertained through

an appreciation of the collective. Richard Dawkins (Dawkins, 1996) coined the term

"Hierarchical Reductionism" to describe a complex system, as a hierarchy of systems

each of which is only describable using objects from one layer down in the hierarchy.

Thus a complex system can be reduced to component parts but the behaviour of the

systems results not only from the actions of the component parts but also from the

interactions of those parts.

Therefore the use of the term collective, in this work, is simply meant to convey the

concept of the collected system possessing a goal, which is satisfied by the system's

participants pursuing their own individual goals. This allows for whole systems' events

that are not explainable as the sum of events from the systems' parts. The reduction

approach is that complex phenomena can always be explained by reducing the occurrence

to the sum of simpler, less complex phenomena. So in less complex systems, with little

significant interaction of subsystems, the reduction approach need not be rejected out of

hand. As computational systems increase in complexity, however, it becomes necessary

to take into account the collectivist perspective encompassing the outcomes from

knowledge distributed across the system members. Reduction to subsystems can still be

useful but allowances have to be made for the global emergence that ensues from the

subsystem interactions.

2.1.2 Formal Verification

The provision of cognitive capabilities to an observing meta-system requires at least a

verifiable model of the logic involved to reach decisions on system behaviour. This

involves verifying correctness for certain deliberative properties where there is no

requirement for these properties to constitute a complete specification. In most usual

approaches to formal verification mathematical proofs of correctness are provided to

previously written programs. This is a laborious and awkward process for most programs,

complex systems' programming notwithstanding, leading to program verification being

- 18-

more often omitted in favour of software testing giving no means of assurance through

unpredictable runtime systems or understanding of the program's structure or function.

Program derivation, by contrast, develops proof and program in a synchronized manner.

A formal, non-executable, specification is established with a practical application of

mathematical rules to deliver executable code. The resulting program is then known to be

correct by construction. The work presented here uses this approach to design and

construct both smaller scale and large-scale systems. The same formal specification is

applied to both provide assurance, for system control, for a top-down approach and set

the bounds on autonomy for the programmatic specification of low-level interacting

entities. This provides for direct specification and control of system components, as

required, with monitoring and resultant deliberated actions on the environment and

application system in response to the emergent evolutionary features emanating from the

autonomous components interactions. Figure 2.1 gives a simple overview.

(Control)
J I
(ObservatioN)

(Monitoringl)
Deliberation

Commands

t
}_

I Iioo. -
Monitoring Control System ~data commands Space

I +
,

,

(System) I Autonomous 1
Componenll Components J

...,.;....tion Syalem

Dorn8ln

Figure 2.1: Generic Hybrid System Overview

Thus a specification is achieved that gives a programmatic formal verification of

boundaries within the system. For instance, assurance of legitimate states is provided by

- 19-

formally setting the boundaries of behaviour rather than having to explicitly detail all

legal or illegal states.

2.2 Agent Approaches to Complex Systems

To enable a high assurance approach to software engineering and endow a system with

the deliberative capabilities necessary for autonomous cognitive meta-systems this work

has proposed a formal approach to complex system construction and maintenance.

Systems are comprised of many interacting components with various degrees of freedom.

Some components, for less complex systems or parts of the system, will be completely

controlled by the system itself whilst others will be able to act autonomously within given

bounds. A major feature of this work is that the specification for the components will not

be exhaustive but rather concentrate on merely adjusting the autonomy of the components

to specify these bounds. The complexity of the system, and ultimately the necessary

techniques to manage the system, will arise from the emergent behaviour engendered by

the interactions of these autonomous components. Thus the notion of agent could be

construed as central to this thesis in seeking to represent components as agents.

The scientific community has so far failed to arrive at a universally accepted definition of

an agent. The problem arises from the many and various characteristics that are

associated with the notion of an agent. These are differently emphasised according to the

domain of application. The term agent arises from the Latin 'agere' meaning doing, in the

sense of something or someone that produces an effect and has been used for upwards of

900 years! to denote logical entities. More recently Agent Oriented Programming

(Shoham, 1993) has been proposed and multi-agent systems (Jennings and Wooldridge,

1998) adopted to provide software engineers with additional tools to better develop and

understand the working of systems. Communication is most often seen as crucial for the

interactions in a multi-agent system. Genesereth and Ketchpel (1994) define software

agents as "application programs that communicate with peers by exchanging messages in

an expressive communication language". Knowledge Query Manipulation Language

(KQML) (Labrou and Finin, 1997) and the Federation for Intelligent Physical Agents

(FIPA) Agent Communication Language (FIPA, 2(03) are widely adopted as frameworks

for agent communications.

! Sl Anselm is thought to have set down the earliest recorded modal logic of agency in about llOOAD

- 20-

It is not the intention here, however, to try and specify what the term agent means or

develop any further agent communication language. Rather it will be assumed that the

reader has an understanding, in this setting, of what an agent ought to be; a software

programmable entity and that communication is achievable through current methods.

Thus throughout this work the terms system: component, particle, participant, entity or

agent will be most often interchangeable and communication, between them, will be most

often portrayed as occurring through a system space, based on distributed tuples. The

more appropriate term will be used according to the domain being considered and the

associated relevant works in that field.

2.2.1 Agent Based Complex Software Systems

It has been noted that modern software is complex through functionality, management

and ubiquity in a distributed setting. This distributed environment means that components

will inevitably be required to exhibit more autonomy, as they will be separated, to some

greater or lesser extent by some measure, from the rest of the system. In the Logic of

Contract Representation (LRC) (Dignum et al, 2003) contracts are proposed to integrate

the top down specification of the organisational structures with the autonomy of

participating agents. Jennings (2001) comments on the complexity of "industrial-

strength" software systems and suggests that a software engineer's role is to provide

structures and techniques to cope with complexity. This complexity is not accidental

(Brooks, 1995) but is an inherent property of very large-scale systems; adding more

resources to a system, although increasing functionality, increases the complexity and the

complexity of interaction within the system. Coping with the complexity involves making

use of some important generic regularity of properties exhibited by this complexity

(Simon, 1996).

• Complexity quite often takes the form of a hierarchical structure with a system

composed of subsystems, which are themselves made up of smaller systems. The

structure can be assessed at any suitable level of abstraction down to the lowest

level atomic subsystem. The nature of the organisational relationships between

systems is not necessarily specified but may vary between client/server, peer-to-

peer, federated teamwork or swarm behaviour, for examples, at any given time.

• The level of abstraction is a choice based on an observers goal requirements and

intention set.

- 21-

• Hierarchical systems are much more dynamic than non-hierarchical systems of

similar size: Complex systems will arise much faster from lower level simpler

systems if there are intermediate, identifiable and stable systems through the

evolution.

• It is possible to distinguish between subsystem interactions and interactions

within subsystems. Interactions between subsystems are more frequent and more

predictable. Thus complex systems can be thought of as almost decomposable.

Subsystems can be treated almost as if they are independent of the system itself.

This however is not quite true as there are interactions between them, some of

which are predictable but some that are not.

Thus, to proceed in an agent-oriented way, it is clear that all solutions require a multi-

agent approach in keeping with the decentralised theme. Moreover the agents need to

interact with each other to achieve personal objectives or to satisfy dependencies and

obligations arising from the situated collective environment. The interactions can vary

from simple requests (client/server etc.) up to complex social behaviours based on

cooperation, coordination or negotiation. This work, while not specifically prescribing an

agent framework nevertheless adheres to some general principles that distinguish an

agent-oriented approach from other software engineering paradigms. That is, firstly,

agent interactions occur through some communicative process based on knowledge

representation of system function and state (Mayfield et al, 1995) as against method

invocations or function calls, which occur at a purely syntactic level. Secondly, agents

can be used as agile situated problem solvers operating in partially observable and

unpredictable environments. It is possible to endow agents with the capabilities to make

context dependent decisions about the nature and limits of their interactions that could not

be foreseen at design time. So adopting an agent-oriented approach to complex software

systems mean decomposing the problem into multiple autonomous components that can

act, react and interact in flexible ways to achieve the system's functionality. Many agent-

based system protocols have been developed that ensure coherent group actions and

characterise this macro-behaviour of collectives (Wooldridge and Jennings, 1995) and

(Jennings and Wooldridge, 1998).

An agent-oriented approach to software engineering provides many powerful arguments

in its favour:

- 22-

• Decomposition: Agent based decomposition effectively partitions the problem

space of a complex system. At any given level subsystems work together to

provide the functionality of the global system. Furthermore within each

subsystem the constituent members work together to achieve the required

functionality. Thus the same basic model of interacting components, working

towards a particular goal, occurs in all sectors of the system. It is, therefore,

entirely natural to modularise the system based on component objectives. To

encompass the requirement for distributed control individual agents ought to

localise and encapsulate their own control. That is they should be active,

maintaining their own thread of control and they should be autonomous, being

able to deliberate on their actions and intentions.

• Interactions: Complex systems are only nearly decomposable into separate

autonomous systems. Interaction is required to fulfil individual and collective

objectives. However, because of the system's inherent complexity, it is

impossible to know at design time the interactions that may occur. Agents can be

deployed with the ability to reason on the nature and range of their interactions at

runtime. This strategy of leaving the planning of component/agent interactions

until runtime has two major advantages:

o The usual problems associated with component couplings are in essence

removed. Components can be specifically designed to handle

unanticipated requests by having adaptability built in through the

cognitive facilities. Because an agent framework is knowledge based

couplings become a matter of propositional deliberation rather than being

subject to the syntactic concerns arising from the types of errors caused

by unexpected interactions.

o The problem of thread control and managing relationships between

components is resolved. All agents are always active and synchronisation

and coordination is handled from the bottom-up through agents'

interactions.

• Natural Modelling of Complex Systems: When modelling a complex system

the problem is most often characterised by the representation of subsystems,

subsystem components, interactions and relationships. Subsystems most

- 23-

naturally correspond to agent organisations: Constituent components act and

interact according to their role within the enclosing system. The interoperation of

the subsystems and the constituent components can be most closely modelled

through viewing the interactions as social occurrences, where the participants

collaborate to achieve some higher-level view (Booch, 1994). Agent systems

incorporate the necessary mechanisms for cooperation to achieve a common

objective, coordination of actions and negotiation for conflict resolution. The

abstraction levels required are available through the agent model, where a

collection of components can be viewed as a single conceptual unit. The

modelling of collectives is then most naturally handled as a team of components

working together to fulfil the collective's goal.

• Dependencies: The structure of the agent system is explicit in the representation

of relationships dynamically made in the framework. Agent-oriented systems

possess the functions to flexibly form, manage and disband collectives. This

means that the notion of what constitutes a primitive component can be adjusted

according to the granularity desired by the observer. Thus, from one perspective,

whole subsystems can be regarded a single components or federations/collectives

of agents can be seen as primitive components iteratively decomposing until the

system "bottoms out". Additionally the representational structure provides the

stable intermediate systems necessary for positive complex system evolution.

The availability of such systems allows agents or a collective federation of

agents to be developed separately and added to the system incrementally,

ensuring a smooth growth in functionality.

2.2.2 Agent-Based Programming Models

Programming models have evolved in response to the needs of the systems being

constructed. Distributed computing has established networks of heterogeneous machines

of various computational powers. Thus there has been a move away from languages that

are dependent on the associated machines' architecture to languages that abstract the

problem domain. Agents are a very natural means of problem abstraction: The real world

can certainly be viewed as a set of active purposeful agents interacting to achieve

objectives. Object-oriented programming (Booch, 1994) and aspect-oriented

programming (Kiczales et aI, 1997) present similar cases to agent-oriented programming

- 24-

but abstract the problem domain through different concepts. Object oriented analysis sees

the world as composed of objects, which have operations performed on them. Aspect-

oriented programming seeks to separate different system concerns into encapsulated

aspects with as little functional overlap as possible: The so-called separation of concerns

principle. For example, an aspect can alter the behaviour of the base code of a program

by applying additional behaviour at various join points (points in a program) specified in

a query called a point cut (that detects whether a given join point matches). These

approaches, in common with an agent approach, incorporate the principle of information

hiding and have first-class mechanisms for interaction. But both objects and aspects are

passive in nature; they need to send a message before becoming active entities. In

addition objects, although encapsulating state and behaviour realisation, do not

encapsulate behaviour modification or action choice. Aspects can perform modifications

to the base code but still possess an inflexible structural model, limited to join points to

allow runtime action deliberations. Any aspect or object can invoke a public method from

another. Once the method is invoked the corresponding actions are performed, In the

handling of complex systems it has been found that classes and modules are an essential

yet insufficient means of abstraction (Booch, 1994). Objects and aspects are necessarily

defined at too fine a granularity for behaviour and method invocation to permit a flexible

mechanism of interaction. Design patterns Gamma et al, 1994), application frameworks

and componentware (Beneken et al, 2003), although providing additional abstraction

techniques, still focus on generic system functions and patterns of interaction that are

rigid and pre-determined. Relationships are also difficult to represent without the concept

of an agent. In most approaches static inheritance hierarchies define relationships

between components, aspects, objects, etc. Much more recent work has sought to address

these shortcomings (Miseldine and Taleb-Bendiab, 2006), where, in a similar manner to

this work although explicit definitions of agency have been omitted, agent-like entities

are used as the principle abstractions. The principle abstraction or agent has its own

thread of control so that purpose is localised within the agent and agent selection is

encapsulated. The principle of reuse can also be extended to its widest scope. In design

patterns and componentware systems, only subsystem components can be reused whilst

in application frameworks static, pre-designed interactions are reused. In agent-type

programming models, in contrast, whole subsystems, with agent designs and

implementations, and flexible interactions, using resource allocation auctions, for

- 25-

example, can be reused. Additionally legacy systems can be included in the evolutionary

and incremental complex agent-system construction. A wrapper can be placed around the

legacy code presenting an agent interface to the other software components. Thus,

externally, it presents as any other agent. Internally, the wrapper takes requests from

other agents and maps them into calls in the legacy code and takes the legacy code's

external requests and maps them to appropriate sets of agent commands. Therefore a

complex system can grow in an evolutionary manner even maintaining availability, of an

existing system, in the process.

In considering complex system participants as agent entities a flexible representation of

the domain is established with components capable of autonomous actions and

interactions. It is stressed again that there is no attempt here to define an agent any further

than as a programmable entity. This programmable entity is capable of autonomous

action and interactions within a situated environment. Certain procedures for the agent

will be directed and prescribed at design time from the top down. However for an

adaptive and flexible complex system many decisions will be delegated to these situated

low-level agents/components. The structure and functions of the system will emerge,

from the bottom up, driven by the interactions of the situated entities. The top down

specification, the rules of interaction (obligations to other agents etc.) and the constraints

of the situated environment all contribute to the agents behaviour: Although the

behaviour may be autonomous it will still be carried out subject to these rules. The

agent's autonomy is always necessarily bounded and subject to normative influence.

2.3 Normative Approaches

A normative structure is required to regulate the behaviour within communities. Thus

norms generally arise as a response to the formation of a social situation, to provide rules

for a community of more than one individual. For example, collections of software

components/agents that may interact have many rules of engagement. Indeed norms can

be treated as multi-agent objects (Conte and Castelfranchi, 1995) and classified as one or

more of:

• Constraints on behaviour

• Goals

• Obligations

- 26-

Norms express an idea external to the agent yet the agent is charged with fulfilling the

requirement. Thus a norm may take any cognitive form: System norms form the basis of

a shared ontology between system participants; behavioural norms form the high level

goals in a top down specification and interaction norms result from the social situation in

setting parameters for cooperation between participants where an agent might have as a

norm an obligation to perform some action requested by another system participant. An

agents own intentions can be viewed as a special case of obligation - self-obligation.

Normative positions refer to the range of possible normative relations that may exist

between two or more system members. Sergot (200 1) presents a formal account of such

relationships building on Kanger and Lindahl's (Lindahl, 1992) work on normative

positions, which combined deontic logic (obligations and permissions) with logics of

action/agency to represent complex normative concepts. In general it is these kinds of

norms that are of interest in describing and specifying computational systems in general

and complex systems in particular. One of the contributions of this work was earlier

stated to be a normative bounding of autonomy for system participants. This is one facet

of the unifying formalism to specify and reason over complex systems from the top-down

and the bottom-up. Norms represent both a top-down specification and a bottom up

evolution of role in response to other system member requests/interactions. Deontic logic,

as a specification formalism for multi-agent systems, has been advocated as a mechanism

for handling norm violations (Boella and van der Torre, 2(03). In this work a formalism

will be used that specifies system actors (agents) in an abstract manner and verifies and

reasons about both system component behaviour and global system outcomes

independently of the implementation language used to represent the system participants

(agents). Normative agents can reason about norms and obligations and so form a notion

of society or federation based on the cognitive concept of obligations giving meaning to

the social constructs of cooperation, coordination, trust and reputation. Thus the

normative positions of most relevance to this work, in dealing with a top-down

. specification and bottom-up emergence of function, are respectively permissions and

obligations. Permissions are used instead of proscriptions or prescriptions because it is

only sought to bound autonomy rather than specify it. This also removes the necessity to

be concerned with norm violation, which would again introduce the need for an

exhaustive enumeration of the domain. In the usual specifications it is customary to use

the deontic operator 0 that expresses the notion that "it is obligatory". Similarly

- 27-

permissions are represented by the dean tic operator P, which can be stated in terms of 0

for some statement 0 as P(Q) 0(...0). Kanger-Lindahl theory (Lindahl, 1992) was

defined in terms of Standard Deontic Logic (SOL). Sergot's theory of normative

positions (Sergot, 2001), however, was not dependent on any particular deontic or action

logic. Later in this work the Situation Calculus will be introduced as a highly suitable

formalism for the representation of both permissions and obligations in a top-down

specification and bottom-up engineering for emergence. Norms most often arise in the

consideration of multi-agent systems but also arise with varying connotations in such

diverse fields as game theory, logics of obligation and other social concepts, statistics,

and distributed artificial intelligence. Various uses and descriptions of the applicability of

normative modelling may be found in (Dignum, 1999), (Jones and Sergot, 1993),

(Boman, 1999), (Meyer and Wieringa, 1993) or (Moses and Tennenholtz, 1995) for

example. In keeping with the proposed propositional account a norm, for the purposes of

this work, can be thought of as an implicative sentence where the antecedent is a

condition that states the agents position (with respect to some statement) and the

consequent is a condition expressing the normative position the agent has regarding some

state of the system or environment (Odelstad and Lindahl, 2(02). Another feature of a

normative position is that of commitment. This generally means an obligation directed

from one agent to another. A commitment, c, may be viewed as a 4-tuple c=C(x,y,G,p)

denoting a commitment from x to y in the context of G (environment or group) regarding

the proposition p (Singh et al, 2000).

This work will show how norms can be more than adequately represented within a formal

setting that also allows for system component autonomous interaction and deliberation on

non-norm related behaviour. Indeed this is the crux of this work that the introduced

formalism specifies both a norm driven system and a system driven by emergent

functionality from the actions and interactions of the participating entities. That is a

federated collection can be represented and analysed through a propositional account

based on the normative positions of the participants with behaviour being entailed by this

propositional account. Additionally the actions of the participants and their encounters

with each other can be used to engineer emergence and so harness complexity to the

function of the system. Thus it is next necessary to consider the process by which teams

of components become united into a cohesive federated system.

- 28-

2.4 Federated Behaviour

The obligation on a subsystem to perform some action amounts to the components, which

comprises the subsystem, having a joint intention to see to it that the action is performed.

The sum of all the subsystems working at different levels to provide the systems'

functions is a major feature of complex systems. Teams of components become

hierarchically arranged in dynamic assemblies characterised by a joint intention. The

joint action by the team of components, however, is more than a union of simultaneous

individual component actions, even if those actions are coordinated (Levesque et al,

1990). A federation is built on the epistemic states of the participants and these states are

subject to influence by the group's activities. In earlier works, around this subject, belief-

desires and intentions were regarded as paramount in defining the epistemic states of

system members (Cohen and Levesque, 1990). Intentions are seen as internal

commitments to perform an action while in a particular epistemic state. The commitment

is viewed as a goal that persists with time. Thus it is natural to define a joint intention, for

a federation, as a joint commitment to perform a collective action whilst all system

members are in a shared epistemic state. This is taken as the defining feature of team

membership. In addition the individual entities, composing the team, are conceived of: as

existing in a situated in a dynamic environment with other entities, as being capable of

holding false beliefs and not possessing a complete knowledge of the world, as having

goals that are subject to change, having uncertain action outcomes and being subject to

external or environmental influence. Thus, in the formation of a coherent team-based

solution the notion of joint intention is paramount for the comprised system's function.

2.4.1 Joint Intentions

Joint intentions ought to influence and provide the necessary epistemic structure to set the

individual intentions of the system team participants. Typically teams will be involved in

joint activities that consist of many separate concerns performed either concurrently or in

sequence. Thus a formal setting should show how the joint intentions to perform

complex actions give appropriate intentions to the individual components to perform the

correct actions. As part of this approach it is necessary to consider the differences

between the intentions and actions of an individual and the intentions and actions of a

collective. Aggregate agents, for example, will, from an observed perspective possess an

individual action and intention set, whilst at a lower level the component members of that

aggregate agent will themselves possess individual intentions.

- 29-

In some ways it is this divergence of epistemic state that provides complex systems with

the non-linear reductionist properties previously discussed: If the cases were limited to

scenarios where all actions, taken on by the team members, were performed publicly then

it would be a relatively simple task to analyse how an agent collective behaves as a single

agent because they would share the vast majority of their beliefs. In contrast when agents

do not operate in a synchronous manner and in a mutually agreed environment, as most

often happens, then there is a tension or added force to the scenario that seeks to preserve

some team coherence. The difference between an individual and a group perspective is of

an epistemic nature: There must be a concept of mutual: knowledge, belief, intention as

well as an individualistic analogue. This then may provide a group cohesion mechanism,

roughly stated as:

A and B jointly intend to perform the collective task T if and only if it is mutually known

by A and B that T should occur and that each has a mutual belief that they each have an

intention to perform their part of the task.

This presents a similar approach to most of the earliest work in this field seeking to

represent group dynamics and aggregated behaviour (Tuomela and Miller, 1988, Power,

1984, and Grosz and Sidner, 1990). There are, however, a number of problems with this

approach. For instance:

How can it be specified whether a participant in the task is committed to the task

or to the task's parts. It cannot be shown how one participant can be committed to

another's actions without stating that the participant intends another participant's

action: A clumsy and ill-formed statement. However such commitments are

important to enable cooperation and coordination.

• Team structure can be dissolved by participant doubt. Although a persistent

•

intention exists for each participant to perform their part there is no persistence of

mutual belief about these intentions.

In order to incorporate these insights into the definition, suppose:

A and B jointly intend to perform the collective task T if and only if it is mutually known

by A and B that T should occur and that each has a mutual belief that they each have an

intention to perform their part of the task with this mutual belief persisting until the task

is completed, found to be unachievable or irrelevant.

- 30-

Now this definition rules out doubt between the cooperating participants A and B because

each knows the other's position until they reach a mutual understanding that the task is

terminated by being completed, unachievable or no longer being relevant. This, however,

is now too strong a representation of diverging epistemic states. If A came to believe that

it did not possess the capabilities to perform its part of T then there is no longer a mutual

belief in the activity by all parties. But the defining feature of the aggregated component,

A and B, is the joint intention, kept until believed finished. Under the circumstances of A

having a private belief of termination, there is no longer a mutual belief that the task is

finished. Thus, contrary to an intuitive understanding, there is no joint intention at all.

This definition, therefore fails because it demands, from the start, that the participants

will mutually believe that they each have their own intentions until it is mutually believed

that they do not. It does not allow for the emergence of private beliefs on the status of the

task. So when a member of the team come to believe individually that the team goal is no

longer achievable it is necessary that the team, as a whole relinquish the goal, even

though the epistemic state of the other team members does not support this. Although

there is not a mutual belief that the goal is achievable there is not a mutual belief that the

goal is unachievable. It cannot follow that a goal is abandoned upon the failure of mutual

belief otherwise federations would fail as soon as there was uncertainty about the states

of other team members. Alternatively it is required that upon discovering that a goal is

completed, unachievable or irrelevant a team member takes on the goal of making this

state of affairs mutually believed. Thus before a federation may discharge a commitment

there must be a mutual belief that a termination condition holds. Therefore each member

of the team must possess a lesser individual goal:

Definition 2.1: A team member, A, has a lesser individual goal with respect to the

remainder of the team and the task T if one of the following hold:

• A has the task T as a goal to be completed, yet does not yet believe that T has

been completed

• A believes that T is completed, cannot be completed or is no longer necessary to

complete and has a lesser individual goal to make the status of T believed by the

other team members.

This can be stated, in a simple formalism, with LIGAbeing a lesser individual goal for

A. p being the proposition made true by the completion ofT, BA(p)being the belief of A

- 31-

that T has been completed (Le. A believes p is true). GA(p)meaning that T's completion

is a goal of A. MB~(p) signifying that T's completion (the establishment of the

proposition p) is a mutual belief of the federation 't with the usual meaning given to 0 (it

is possible that) and 0 (it is necessary that). Thus the lesser individual goal, from

Definition 2.1 may be stated as:

It is also implicit in the definition that AEt. Thus a definition of joint persistent goal can

be formulated:

Definition 2.2: Afederation, T, has a joint persistent goal to achieve p if:

• There is a current mutual belief that p is false

• There is a mutual belief that all members of T are working for p to become true

• It is mutually believed that until there is a mutual belief that p is true, p cannot
be true or p is irrelevant all members of T have p as a lesser individual goal.

So denoting a joint persistent goal for component A with respect to the federation t' as

]PGA:

This definition has a number of desirable properties that an intuitive account would

demand. For instance the case where A is a single agent (a singleton team) reduces to A

having a personal goal: If A has a lesser individual goal that persists until the goal is

believed to be true or impossible there must also be an ordinary goal that persists.

Furthermore:

Theorem 2.1: In a team possessing a joint persistent goal each individual team member

also possesses the same as an individual goal.

Informal Proof: Consider the case of two components/agents Aland A2• If AI has p as a

persistent goal suppose at some future time AI does not believe that p is true or

impossible to achieve. Then there is an absence of mutual belief with A2 so p must

represent a lesser individual goal for AI' Then from definition 2.1 p must still be a real

- 32-

goal for AI and so p persists until AI believes it is satisfied or impossible to achieve.

Similar reasoning applies to all the team members. So if a number of components

contract to do something then they individually commit to achieving it.

This account of joint intentions states precisely the dynamics involved in team formation

based on a shared commitment to a system state. It predicates that a participant will

persist in trying to achieve a goal even if it believes a fellow team member is trying to

make known the knowledge that the goal has been abandoned. Although, in terms of

optimal local strategies, it is inefficient for participants to persist in behaviour longer than

necessary, from another perspective, of global outcome, it is the mutual commitment to

this behaviour that provides the federation bindings. The participant always has the belief

that team member knowledge of futile actions will always eventually be communicated to

it. Additionally if a participant were to quit immediately on suspicion of non-mutual

belief then federated behaviour would never occur, as the collective could not be

assembled in a robust enough configuration. As previously stated, and illustrated with

this treatment of federated behaviour, the dynamics of the system are driven by

knowledge: It is the agents/components/participants beliefs and knowledge regarding the

properties of themselves and their environment that dictates their goals and actions. Thus

it is necessary to consider next how knowledge may be handled within a distributed

environment to give rigorous definitions to such concepts as belief.

2.4.2 Modal Logic of Federations and Distributed Knowledge

It has been shown in the previous subsection that federations can be made more robust

than a collection of participants in coping with unpredictable occurrences and in failure

situations. In situations requiring group cooperation collectives will quickly dissipate

through uncertainty. Whereas setting joint persistent goals, as detailed above, defines a

team participant and offers a robust configuration to allow team dynamics to happen,

even in the face of uncertainty. This means that participants' intentions for enactment are

produced not only from their own desires as part of a group but also from a construed

team belief. That is a team must have an epistemic structure that supports both individual

and group beliefs. The formal methods of investigating the behaviour and performance

of a distributed system can be built on a semantic model of knowledge reasoning

(Halpern and Moses, 1990). The notion of possible worlds can model the knowledge and

beliefs of a component functioning in such a system. More specifically, in this work, it is

- 33-

intended to consider a multiple agent/component team engaged in providing self-

governance functionality, through higher-level cognitive systems, to application level

services. The formal setting of the logic required to proceed with this approach is outlined

in this subsection. It is based on the possible-worlds semantics. This allows reasoning

about knowledge. Additionally, in distributed setting, messages passed in the system can

be viewed as changing the knowledge state of a system and its individual components. In

this way a formal understanding of knowledge may be included in the specification. This

is crucial, to this work, as knowledge represents the objects over which deliberation

occurs. Hence the dynamics of knowledge acquisition and manipulation, to be used later

in this work, need a base theory from which they can be assumed into the proposed

specification method.

In dealing with the uncertainty in the knowledge associated with a truly distributed

system: At each state of the world, a component believes itself to be in; it has other states

that it considers possible: States where all the propositions it believes true are true. So

given a statement, cp(say), made up of atomic symbols in a given language, <I>(say),then

the agent knows cp only if cp is true in all the worlds the agent considers possible.

Similarly the agent believes cpif there is some world accessible to the agent where cpis

true. If conditions are imposed on the possibility relation a number of interesting logics

can be captured (Halpern and Moses, 1994). For instance, if no restrictions are placed on

the possibility relation, then the normal modal logic of beliefs, K, is obtained. However if

it is an axiom that the component can be in situations it considers possible (i.e if S is the

set of situations VsES sRs where R is the possibility relation. That is R is reflexive) then

the modal logic T results. Alternatively this axiom may be written VcpE<I>K(cp)-cp for an

component agent using the modal operator K for knows (similarly B is used for believes,

which can also be written in terms of the K operator as B(cp)=-.K(-'cp» . Likewise if

VcpE<I>K(cp)-K(K (cp» (positive introspection) then the S4 logic results. This is akin to

saying the possibility relation is transitive and reflexive.(ie 'o's,s',s"[if sRs' and s'Rs"

then sRs"] and sRs). So for the system participant to know it knows some fact then it

must be true in all worlds accessible to the participant and in all worlds accessible from

all worlds accessible to it (figure 2.2). Finally another restriction gives the S5 logic. If the

possibility relation is symmetric (ie Vs, s' if sRs' then s'Rs), reflexive and transitive then

this gives the basic axiom of S5. This can also be stated as:

- 34-

'Vq>E<I>B(q»-K(B(q»).

Accessible S'
cp, IV

S" is not accessible
from S because 0 is
true in S but not in S".
S' holds no data about
0, but S" is accessible
from S' because all
common predicates
have the same value

NOT Accessible

\
Accessible

S"
IV,-,a

Figure 2.2: Possible Worlds Accessibility Relation

To model the distributed knowledge within a system the syntax used follows the form of

most logical representations. So there are:

• A set of primitive propositions,<I>.

• A collection of component agents, n in number, named 1, 2, , n

• Modal operators KI, K, where K;(q» is read as agent i knows q>.

• Ln(<I» is defined to be the smallest set of sentences containing <I>that is closed

under conjunction (A), negation (..,) and the modal operators.

• The standard logical constructs for OR and IMPLIES are used

o For two sentences 'V and q>:

•

•

• true is shorthand for some valid formula such as 1pv"''V andtrue is denoted

false.

Using this syntax it is possible to represent knowledge or belief. The main formal model

for possible-world semantics is a Kripke structure (Kripke, 1963). For n component

agents this consists of a tuple M = (S, 1t, KI, ••••••••...• ,K,,), where S is the set of possible

- 35-

worlds, n is a truth assignment from the primitive propositions and Kj (i=l,n) is a

binary relation on the set of possible worlds. So if <l>is the set of primitive propositions

then for each sES n(s) : <l>-{true,ja[se} and for agent i (s' ,s)E~ means that in world s

agent i considers s' a possible world. The usual order of this relation has been reversed.

This is because, in seeking to integrate this approach with the Situation Calculus later in

this work, the current situation term is always the final argument and a world is identified

with an action history or situation. Also note that each K;C S X S. So a binary relation

can be defined, between a formula and a pair consisting of a structure and a state

(situation) in the structure:

e.g (M,s) F cP that is read as cP is true at (Ms), for cp, cp E<l>

(M,») FP <:> n(s)(cp) = true

(M,s) F CPACP <:> (Ms) F cp and (Ms) F cp

(M,s) F -'CP <:> (M,s) (-. F) cP

(M,s) F Kj(cp) <:> (Mt) F<P for all values of t such that (s.t) E ~

The first three axioms merely correspond to the regular propositional calculus. The final

axiom formally introduces the notion of what it is for a component agent i to 'know' a

fact. That is component agent i knows cp in situation s of structure M only if cp is true in

every situation i considers possible when i is in situation s. Now it needs to be asked

whether this approach captures what an agent knowing a fact means. That is agent

knowledge is defined as the set of valid formulae (those statements that are true in all

situations of all structures). So for a structure M=(S,n.K., , Kn) tP is valid in M (M F
cp) if (M,s) F cpfor all situations sES. This leads to results:

if M F cpand M F cp-cp then M R>
M F (Kj(cp) A Kj(cp-cp»-Kj(cp)

if M f<P then M F Kj(cp)

for formulae CP. cp EL.,(<l»structures M and component agents i=l,• n

This constrains the ideas of knowledge that can be modelled by Kripke structures. It can

be shown that these constraints are maximal and correspond to a logic K.. that is the multi

agent equivalent of the previously mentioned modal logic K with ne l, Similar extensions

of single agent constraints, as detailed above, to the multi agent setting lead to logics Tn'

- 36-

S4n and S5n, amongst others. The above results are discussed and proven by Halpern and

Moses (1994). There is some debate over which, if any, system best captures our intuitive

notion of knowledge. It is noted that S5n captures useful concepts in distributed

computing. For example suppose a node in a distributed system (or grid) has received a

particular set of messages. There are a number of possible worlds (system states (or

situations» consistent with these messages having been received. Thus the node knows cp

if cp is true in all the possible worlds. So the node acquires knowledge but is not required

to perform any reasoning and is not necessarily aware of this knowledge. This

interpretation exactly matches S5n•

In order to reason about the state of group knowledge it is necessary to integrate the

previous subsections team knowledge in terms of the beliefs of the individual agents. The

first construct to be applied is an operator to capture the facts (beliefs) that are mutually

agreed by the agents (i.e facts that everyone knows or general knowledge). It can be

written for a team, t; of n component agents A" ..Aa MB~(CP)= E(CP)= K,(CP)

AK2(cp)A AKa(cp).for't={Aj I i:snEN}. Then the concept of common knowledge of a

statement can be modelled by the belief that everyone knows it and that everyone knows

that everyone knows it and that everyone knows that everyone knows that everyone

knows it..... etc. This is the infinite conjunction: C(CP)=E(cp)AEE(cp)AEEE(cp)A..... , so for

n=1 E(CP)=K(CP).In the language of Kripke structures this can be formally defined as:

E'(CP)=E(CP)and Ek+'(Ij»=E(Ek(cp»for kz l.

In the case of distributed knowledge it is required to reason about the entire knowledge of

the group. So if component agent A, believes cp and A2 believes CP-tp then the belief of

statement '!' is distributed between the agents even though no agent individually

believesip. A distributed knowledge operator D('4') can be used to specify this fact. So for

a Kripke structure M=(S,1t,K" K..)the following definitions can be made:

(M,s FE(CP)~ (M,s) FKj(CP)for all isn

(M,s) F C(CP)~ (M,s) F Ek(lj»for k=1,2,
(M,s) FD(CP)~ (M,t) F cP for all t such that (s,t)EK,n nK..

It can be shown that these axioms provide a complete and consistent specification of

these concepts. (Halpern and Moses, 1994). These operators are the general

representational forms that will be used later in this work to provide the dynamics of

- 37-

knowledge, belief and actions, in a suitable formalism, for both the top down

specification of behaviour and the reasoning mechanisms for the deliberative cognitive

systems providing the analysis and influence of the bottom-up emergent characteristics of

the system.

2.4.3 Logical Omniscience

A consequence of the possible worlds approach, as first established by Hintikka (1962),

is logical omniscience: A component-agent knows all the logical consequences of its

knowledge; if it knows <p and q> is a logical consequence of Ij> then it also knows q>.

Logical omniscience is an unrealistic property of a human based knowledge model, as,

for instance, it is unreasonable to suggest that all the properties of arithmetic are

automatically known from the axioms for constructing Natural numbers (Peano's

Axioms). Humans do not know all consequences of their knowledge nor is that

knowledge closed under deduction (Le it is not always the case that

[Kj(<p)AKj(<p=>q»]=>Kj(q»). All current formulizations of knowledge, however, have this

property with certain techniques to circumvent the problem. This is one of the reasons

why, in this work, the observer system is separated from the underlying components of

the application system. The observer system only deals in directly observed knowledge

and is external to the observed domain being formalised. In particular there is a complete

distinction between the observer and the observed components: Kj(<p) does not mean the

observer knows <p but rather the observer of the domain can look into the world inhabited

by component i and observe that component i knows <p. Thus there is no attribution of

logical omniscience to the observer, which may indeed culminate in human level

understanding of the domain. Rather logical omniscience is minimised through system

complexity arising from component-agent interactions that may be hierarchically

abstracted to relatively simple models.

The consequences of the observer ascribing logical omniscience to its monitored

components can thus be established. The observer is able to formalise a valid sentence

about the observed domain and be committed to the logical entailment of this sentence.

Nothing in this formalisation, however, implies that the observer is aware of these logical

consequences. Rather when one of these consequences is apparent, through the provision

of a valid proof, then the observer will assimilate the knowledge. Therefore, taking this

standpoint, the observer is not necessarily aware of all the logical consequences of the

- 38-

system axioms. An approach that stipulates only the direct specification of knowledge

(Fagin et al, 1995) allows the specification of the observer system: The observer knows cl>

if and only if cl> is explicitly represented in the information system or if it can be inferred

from existing sentences using a sound but possibly incomplete set of inference rules.

Awareness or unawareness of knowledge is used to distinguish between explicit and

implicit knowledge. Implicit knowledge is the general account given above and identified

as the logic S50• Explicit knowledge is implicit knowledge with awareness (Fagin and

Halpern, 1988). Knowledge of unawareness (Halpern and Rego, 2006) may be

represented in a fully formalised logic to accompany the abstraction gained through the

use of an observer system.

2.5 Self-Organisation

Federated behaviour represents one way in which a systems function can be delivered. In

large-scale complex systems behaviour and function can also emerge, in a non-

predictable manner, from the component interactions in the form of emergent self-

organisation. This work proposes a unified approach to specify federated behaviour and

to monitor for and deliberate on emergent self-organisation. In the previous subsections

the definitions and control of behaviour of the collective components, within a system,

have been described in a top-down manner. The interactions and behaviour of the

participants in the system may be formalised in terms of logical entailment that gives

predictability and safety to the system, where all properties may be derived from the

specification. It is widely known, however, that participant interaction, within a complex

system, can lead to unexpected features and properties of the system, known as emergent

behaviour. This can additionally be exhibited as spontaneous organisations becoming

apparent within the system architecture or topology. Such phenomena is said to arise

from the bottom-up. Functionality within the system results from this self-organisation

and from the engineering of this emergence.

As previously stated it is not solely through the aggregated behaviour of the component

agents that emergence and self-organisation can be understood. Interactions and the

interactions caused by the interactions and so on provide the delicate balance from which

emergent behaviour ensues. This interactive behaviour of the low-level components in a

system causes the self-organisation to occur at critical thresholds. In many cases the

probabilistic models that govern the stochastic actions of the participants will determine

- 39-

whether a particular form of emergence ensues or not. It is from these interactions that

global solutions can be engineered, from the bottom-up, through fine adjustments to the

logical model. Additionally, using a cognitive observer system, new emergence can be

detected and utilised for future system operation: The action history that engendered a

specific global emergence can be captured and reused to engineer the same emergence in

future scenarios.

The behavioural rules given to the component agents within a system are the basis of the

global emergence of system control, abstracting the role of a system controller. It is the

local interactions caused by the: if (condition) then do (action) procedure, for each

component, which distributes control across the whole system components-members. In

turn these rules may be evolvable by a number of methods such as genetic algorithms or

adaptation to danger signals. So, for instance, the death of a process may be used to form

a receptor that monitors and constrains similar processes to act within safe limits. The

properties of complex systems (Holland, 1995) have an impact on the modelling

techniques that need to be employed. Aggregation means that a component-agent

federation can be considered as a single component-agent. Labelling assigns roles to the

various system members. Flow of information and objects is a typical phenomenon of

complex systems. Typically energy is used from the environment to increase an object

with the resulting entropy being dissipated back into the environment Nonlinearity is

apparent in team functionality being greater than the combined functionality of the

participants. Diversity amongst component-agents promotes evolution so that rules of

interaction allow modification by other components via labelling and by using genetic

algorithms, for instance, to form optimal aggregations. For a complex system to exhibit

self-organising behaviour four prerequisites have been rigorously established (Glansdorff

and Prigogine, 1978), albeit from a thermodynamic viewpoint:

1. There must be two mutually influencing components within the system (mutually

causal).

2. At least one system component must be enhanced by the action of another

component (autocatalysis).

3. The system must take in resources from the environment to enhance itself and

dissipate the resulting increase in entropy back to the environment (far from

equilibrium).

- 40-

4. At least one of the system components must be accessible to random events from

the environment (morphogenetic change).

So in order to achieve the required self-organisation, within the system, to permit system

control to emerge, base level architecture and interaction frameworks need to be

established. The overall model ought to include both a top-down normative intentional

approach to deliberation and a bottom-up distributed control mechanism with methods

adapted from pattern recognition, such as Chance Discovery (Ohsawa, 2(01) novelty

(Magnani, 2005) and danger detection (Aicklen et al, 2003), used to indicate emergence

under suitable partial observation conditions.

Self-organisation has recently been considered in a wide variety of fields, stemming from

initial exemplars in physics and biology, providing new paradigms of interaction and

complex network behaviour through naturally occurring complex systems and large man-

made networks of components. A number of works in popular science have resulted in

the term becoming quite widely known (Barabasi, 2002 and Strogatz, 2(03).

Additionally naturally inspired self-organisation is now widely accepted as a field within

computer science. This has arisen because, as software systems have become pervasive

and ubiquitous throughout everyday environments. the complexity engendered cannot be

formalised in advance of the complex event chains and cascading side effects that occur,

as the system evolves. Thus, as previously stated. more functionality must be devolved to

the participant components. within the system, leading to traditional top-down techniques

being less appropriate and more bottom-up functionality emerging from the component

interactions.

Naturally occurring self-organising systems are composed of a very large number of

interacting entities that cooperate to achieve tasks unrealistic for anyone individual

component. These systems can scale to any required size, as interaction is local to the

participants rather than being staged at any global level. There are a number of self-

organisation mechanisms that are exhibited through biological multi-entity (agent)

systems. Social insects in engineering self-organisation from their interactions achieve

food foraging and nest building feats far in excess of any individuals' capabilities

(Carnazine et aI, 2(03). Herding by large mammals, flocking in bird colonies and

schooling within large groups of fish are all manifestations of completely decentralised

control, with no global directives, which nevertheless results in complex coordinated

behaviour being observed for the herd/flock/school as a whole. Typically such systems

- 41-

use a variety of techniques to engineer the global outcome from the participant

interactions:

• Foraging: Foraging individuals self-organise their activities to perform a

stochastic search through their situated environment (Parunak, 1997). For

example, ants lay down a pheromone trail when they are returning to the nest

from a discovered food source. The existence of pheromone has an effect on the

stochastic decision making process of a perceiving ant; the more pheromone

present the more likely the perceiving ant is to follow the trail. The pheromone is

volatile and disappears from the environment if not reinforced. This results in old

paths to food disappearing when the food source is exhausted. Such techniques

can be seen to have immediate applications to computer science related works in

network routing, search and optimisation algorithms (Hadeli et al, 2004).

• Herding: Typical examples of herding are the flocking or schooling of individual

entities/agent/animals into organised regular patterns, in their global environment

(Reynolds, 1987). It is self-organising behaviour that may be engineered through

the understanding and harnessing of three forces: Collision avoidance, flock

centring and speed matching.

o Collision avoidance occurs where the interacting entities are programmed

to be repelled from each other at close distances: They will pull away

from each other before crashing.

o Flock centring relies on the individual participants having a concept of the

centre of the flock. Each individual is always trying to move towards this

perceived centre without any intervention from a central authority.

o Speed matching describes the situation where the participants attempt to

proceed at the same speed as their neighbours.

Random pattern formation is a feature of herding, as flocks never attain

equilibrium (Toner and Tu, 1999) but may traverse through varying organised

structures according to the forces acting. Individuals in herds move less randomly

than in foraging scenarios: The rules of interaction prescribe a more tightly

bounded autonomy of individuals relative to each other. Applications of these

techniques may be seen in motion coordination problems; autonomous nano-

spacecraft, for instance, used for unmanned space exploration (Rouff et al, 2004).

- 42-

• Nest Building: Self-organisation can become apparent when swarm individuals

cooperatively produce a nest or other complex structure without any centralised

master plan. A structure is erected through interaction and simple local rules

followed by the participants. These rules typically follow a set pattern:

Individuals are in possession of small bricks made from waste matter or debris

that is marked with a pheromone. The individuals wander in a random manner

but tending towards the strongest local pheromone concentration. At each step a

stochastic action is available to the participants: The greater the pheromone

concentration the higher the probability that the brick will be deposited. Initially

randomly placed bricks appear scattered through the environment. These attract

individuals and increase the probability that they will deposit a brick at the same

place. The most recent deposits occur at the centre of a pile giving the highest

pheromone concentration and so leading to the formation of columns. When the

distance between columns diminishes the pheromone scent of each attracts the

individuals of the other thus causing the formation of arches. Cooperative

robotics is an application within computer science where such group building

mechanisms may be of use.

• Web Weaving: The weaving of a web is based on the low-level programming

task of connecting two locations by a line. The resultant web constructed by this

repeated activity, is composed of a network of lines tied to fixed spots.

Individuals wander randomly through the environment stochastically connecting

points with lines. These individuals however prefer to perform their movement

on the lines rather than through or on the environmental medium. Thus it is more

likely that where one line ends another begins producing the web effect. The

probability of moving on a line has to be finely tuned to facilitate the formation

of a web: If the probability is too low then the space is filled with random,

unconnected lines giving no web formation. If the probability is too high then

participants are trapped on their own lines with no weaving occurring. Once a

line has connected two points this becomes the shortest path between these

points. Thus this self-organising mechanism has relevance for file retrieval in

peer-to-peer systems and network routing. Lines can connect servers, service

hosts or resources to allow efficient discovery and retrieval in large-scale

computer systems.

- 43-

• Moulding: Moulding occurs most frequently in scarcity situations. It happens

when individuals are attracted to specialised food sources or other resources

located in the environment (Resnick, 1994). The usual scenario involves

individuals seeking food in the environment through random search. As food

becomes less frequently found individuals form a cluster that travels through the

environment as a single aggregated entity seeking more favourable environmental

conditions. When a new favourable environment is discovered the individuals

disaggregate and restart the process. Through the moulding phase pheromone

diffuses through the individuals neighbourhood attracting other individuals

concentrating where the pheromone concentration is highest. These techniques

are more generally applied to team coordination and situations where the

computational costs of maintaining a collective on a continuous basis is not

realistic but a group can be formed in difficult or dangerous conditions. For

instance to provide fault tolerance, in a distributed system, when some recognised

danger is perceived.

• Brood Sorting: Self-organisation, as represented by brood sorting, occurs when

objects are sorted into types through some low-level rule set for the participants.

This generally occurs in natural systems for items such as eggs. Participating

individuals wander randomly picking up and dropping objects according to the

number and type of surrounding objects. For example, an individual encountering

a large collection of similar objects located with one exhibiting different

characteristics will be most likely to pick up the different object and continue

moving randomly. It will deposit its object upon encountering an area containing

similar objects to the one it is carrying. Such techniques may be used as sorting

algorithms, database organisation methods or for virus protection. A swarm of

agents can range over system resources, clustering them and detecting outliers.

• Morphogenesis: In biology a major subject of research is how the large number

of various cells, evident in all life forms, self-organise into a single, coherent,

recognisable biological form. Morphogenesis is the emergence of a bodily form

from a mass of interacting entities. For example, in many species graduated

morphogens are used to determine a cells position and so influence its eventual

function. Cells at one end of an embryo emit a morphogen that diffuses along the

length of the embryo. Undifferentiated cells ascertain their distance from the

- 44-

emitting source and so determine their position in the body by establishing the

concentration of the morphogen. This technique could be used, with virtual

morphogens, to ensure a collective attains some required global shape.

The implications and use of self-organisation and emergence in this work is motivated by

two separate yet related considerations: Reuse and detection. Firstly, as outlined above,

there are very many naturally occurring models of self-organising behaviour. These can

be reused to engineer the required global outcomes from pre-programming the low-level

interacting participants. Secondly, through the operation of a large-scale complex

distributed system much of the emergence and self-organisation is going to appear in a

system dependent manner: The results of the component interactions are not predictable

in advance. Thus this work is concerned with formally specifying observer systems, to

reason on large-scale system operations and to detect various emergent features that

could not be predicted at design time. The system can then be tuned for these emergent

patterns and the emergence considered for such factors as recognisability and recurrence.

This model of emergence can then be reused as part of the system. This plurality is at the

heart of the unified approach presented here. The same formal constructs will be used to

provide:

• The top-down command and control structures, where necessary.

• The bottom-up specification to engineer emergence.

• The deliberative capabilities to recognise and influence the system to known self-

organising behaviour

• The reasoning faculties to detect and reuse the patterns of actions that engender a

certain global outcome for the system to emerge.

Similar principles can be applied to instances of emergent self-organisation exhibited by

large-scale complex man-made systems. The best examples being widely distributed

computer systems as exemplified by the World Wide Web.

2.6 The World Wide Web

No introduction to complex systems would be complete without a mention of the largest,

most pervasive and in many ways the most complex of man-made complex systems: The

World Wide Web, as made available via the Internet. Emergent characteristics are

apparent in the topological structure of the Internet and World Wide Web. Certainly the

- 45-

World Wide Web represents the largest, fastest growing system from which topological

information can be extracted. In 1999 there were about 1 billion web pages (Lawrence

and Giles, 1999). By 2005 this figure had risen to an estimated 11.5 billion pages (Galli

and Signorini, 2005) that were index able. It is becoming increasingly difficult to

determine or calculate the exact number of web pages. There are areas of the web that are

inaccessible from the outside and there are others sectors that do not have links out yet

possess inward links. In April 2007 (the latest figures available) the Netcraft web survey

(Netcraft, 2007) found 113,658,468 accessible websites. This, however, only gives a

figure for web sites. Neither Yahoo nor Google publicise the size of their index of actual

web pages; the last figures available are for August 2005 giving 19.2 billion web pages

(Yahoo, 2005). The Netcraft survey for August 2005 found 70,392,567 web sites

(Netcraft, 2005). Dividing the 19.2 billion web pages by the 70,392,567 web sites gives

the average number of pages per site: 273 (to the nearest whole number). Assuming the

average number of pages per site is fairly static; the Netcraft April 2007 figure of

113,658,468 web sites can be multiplied by 273 pages per site average to give an estimate

of the size of the World Wide Web. Thus the estimated number of accessible web pages

currently on the World Wide Web is 31,028,761,784 (over 31 billion pages). This is, at

best, a very rough estimate. There is no centralized control of the Internet or World Wide

Web and sites are created and deleted even as counts are being attempted. Thus there are

a very great number of web pages interacting with other web pages, via hyperlinks,

giving the global outcome ofthe World Wide Web.

A major observed self-organising behaviour, within the World Wide Web, is the power

law degree distribution of the links to web pages (Barabasi and Albert, 1999). Most

models of the web, before 1999, were based on random networks topology. The degree

distribution of web page links does not conform to such a model. Considering the

number of external links to a web page': Not all pages have the same number of links.

The spread in the number of links to a page is characterised by a degree distribution Pik),

where k is the number of links to a page, giving the probability that a page has k links. If

the links between pages were placed randomly, as in a random network, then the majority

of pages would have approximately the same number of links, clustered around the mean

value of k over all the pages: «k». The degree distribution of a random graph is a Poisson

2 The same reasoning can be applied to outward links from a web page.

- 46-

distribution with its peak at P(<k». Albert et al (1999) reported on the discovery that for

a large number of complex systems, including the World Wide Web, the degree

distribution is a power law: P(k) - k".

- Typlc.'node

Figure 2.3: The Poisson Distribution (left) and the Power Law Distribution (right)

for a Node Degree Distribution

Figure 2.3 shows the very different characteristics of the distributions. The crucial

difference is that the power law distribution permits the emergence of a small number of

pages with a large number of links. Albert et al (1999) further calculated the value of y

for inward links to be around 2.1, based on a subset of the World Wide Web containing

325,729 pages. This shows an emergent property of the World Wide Web that stems from

the low-level interaction of linking between web pages. Behaviour, such as this, is

discussed in more detail later in this work; however preferential attachment, where a page

is more likely to connect to another page if that page has a higher number of existing

links, is a consideration for the interactions that can be engineered to allow power law

connectivity distributions to emerge on the web.

This work may also be seen as a general response to the call for a Knowledge Plane for

the Internet (Clark et al, 2(03). In this a new objective was set to a provide a different

kind of network system that can assemble itself, given sufficient high level instructions,

reassemble itself, as an adaptive mechanism and automatically detect errors and fix

problems as they occur. A knowledge plane is proposed that creates, reconciles and

maintains the many aspects of a high level view, which may be specified for the

InternetIWorld Wide Web, and then provides services and data, as required to elements of

the system. Much research is underway to address this difficult problem and the

Knowledge Plane remains a proposal rather than any technical specification. The work

- 47-

described herein may be applied to the problem as a formal framework to allow the

implementation of such a structure. The knowledge Plane proposal (Clark et al, 2003)

includes key attributes essential for the system. These include:

• Edge Involvement: It is suggested that much of the knowledge in the system

originates and is used by system clients. Thus the knowledge plane is required to

be broader than traditional system management techniques to capture the

knowledge held beyond the traditional edge of the system. The approach in the

work, presented in this thesis, uses an observer system to hierarchically structure

and abstract its application level system. Thus any client/consumers of the system

are encompassed within the remit of the observer. Furthermore the propositional

approach means that knowledge may be inferred from system events rather than

always having to be explicitly stated. Techniques will also be introduced later in

this work to provide efficient methods of knowledge dissemination and discovery

using the perceived topological features of the domain.

• Global Perspective: The knowledge plane ought to provide a global perspective

including data from outside, inside and from different parts of the system. Again

the work presented herein will introduce efficient system management observers

that aggregate the knowledge from the specialised regional management

necessary for the heterogeneous systems. This will allow different part of the

system to be identified as operating different topological models, defining their

system boundaries. The knowledge inherent in these sectors will be integrated, at

some level in the observer hierarchy.

• Compositional Structure: Two knowledge planes ought to be capable of

merging their respective activities upon two systems becoming connected.

Additionally shared objectives and information cannot be assumed, as some

sectors may be required to maintain private data. Later in this work the

propositional approach established will be shown to provide the cognitive

formalism necessary to allow resolution of conflict between connecting systems

whilst the hierarchical nature of the observer systems enables easy integration of

system management. The previously detailed account of federated behaviour

provides the dynamics of joint intentions. Furthermore the usual methods of

information hiding will still be used with purpose localised within each

component, encapsulating action selection. The observer is required merely to

- 48-

reason on the observed outcomes for the global system rather than the

informational state of any component.

• Unified Approach: The knowledge plane proposal calls for a single unified

system with common standards and a common framework for knowledge. Thus it

is not enough to provide solutions through distinct mechanisms working bottom-

up, which may be loosely tied at the top. Rather, because real knowledge is not

partitioned by task a unified approach, although harder to develop, will be more

effective in the long term. This is precisely one of the objectives of this work.

Later the Stochastic Situation Calculus will be introduced to provide a unified

formalism for bottom-up task-based programming and monitoring of global

outcome together with a top-down knowledge based approach to influence the

system to desirable states and to allow deliberation on perceived global

situations.

• Cognitive Framework: The knowledge plane needs to:

o Reason in spite of partial or conflicting data.

• This work provides methods of partial observation and conflict

resolution based on Stochastic Situation Calculus and Partially

Observable Markov Decision Problems.

o Recognise and mediate conflicts in policies and goals.

• The approach, throughout the work detailed herein, relies on the

concept of action histories. Whilst allowing quite a lightweight

representation the histories allow recognition of previously

observed conditions. The formalism operates on rewarding

previously successful policy and goal enactments. Thus a

dynamical system is in place to provide cognitive reasoning in

conflict situations.

o Perform optimisations and respond to problems in environments too

complex for human intervention

• Cognitive systems, as formalised later in this work, provide the

functions to monitor and respond to whole system outcomes faster

and more efficiently than a human operator. As detailed earlier,

- 49-

the size, complexity and meta-functionality of the latest software

systems are beyond the capabilities of human operators to control.

o Automate functions that at present can only be performed by highly

skilled technicians.

• The cognitive techniques developed allow representation,

reasoning and learning that permits the meta-systems a level of

awareness of their application system and its actions.

It can be seen that the work being presented in this thesis is highly relevant to the World

Wide Web and Internet. This is to be expected, as they are examples of highly complex,

large-scale systems. Obviously it is not the intention to provide any means of control over

these structures but to provide the tools to imbue them and any large-scale complex

system with the desirable features as set down in the autonomic blueprints (IBM, 2003)

and paradigms of self-*. The method of achieving this cannot be left to simple rule-based

structures for all the reasons laid out so far. There must be a cognitive element to provide

the systems self-awareness. It is the intention in this work to show how this may be

achieved through a propositional approach using logical sentences.

2.7Summary

This work is seeking to provide a cognitive meta-system to reason and deliberate on

large-scale system function. In this Chapter it has been necessary to establish how this

relates to complex systems. Firstly the establishment of a suitable standpoint from which

to view the dynamics of a complex system was required. A collectivist approach was

selected as providing a notion of global outcome from the individual behaviours and

interactions of the many components in a complex system. This was further refined to a

hierarchical reduction approach, where each new layer in a hierarchy is best expressed in

term of the components immediately beneath it in the hierarchy.

Agent technology is a mature and flexible representation and implementation

methodology. For this reason this work will use many results from research into agent

and multi-agent systems. It is not, however, proposed to investigate agent properties or

even rigorously define what an agent means. Throughout this work the term agent will be

largely interchangeable with component, participant, team, member, etc. That is an agent

is simply a programmable entity that may be (but is not necessarily) capable of

autonomous actions. What is evident is that the abstraction of a system to component-

- 50-

agents is very useful in considering interaction in a system and deliberation on global

outcome. The advantage from a programming point of view is that agents are always

active entities and agent subsystems with flexible interactions can be reused. Objects, in

contrast, can only act upon receipt of a message and reuse pre-designed rigidly

constructed modules.

Normative approaches are required for complex systems because all the components, to

some extent, are operating within bounds of autonomy. There is a balance to be achieved

between setting the level of intervention in the system through governance and allowing

local autonomy of action for the system participants. It is necessary that this autonomy be

adjustable so that the system can reason on the bounds placed on the actions of its

components. These bounds on autonomy, or norms, arise for a number of reasons: They

may be set at design time to re-engineer some emergent behaviour, for instance, or they

may arise as environmental constraints. It is a vital necessity of any meta-system that the

normative position of the system and its component parts is adequately represented.

In view of the logical reasoning approach taken in this work a model of group behaviour

is required. The basis for this was set out in subsection 2.4 with joint goals and intentions

defined and suitable modal logics considered to represent the system knowledge for the

deliberative cognitive systems. An overview of the modal operators was completed and

this work will be integrated into the Situation Calculus for a fully formal approach to

knowledge, action and intention later in this thesis.

In order to incorporate a bottom-up approach into the work it was necessary to look at

how function emerges from interacting systems. The required conditions were considered

and a review of some of the naturally occurring systems completed with indications of

applications to large computing systems. A general method of formalisation and

implementation will be given later in this work that encompasses the specification of

these natural systems for: Foraging, herding, nest building, web weaving, moulding,

brood sorting and morphogenesis. This permits the engineering of emergence, where

required, in computer systems. Additionally the observer system in certain circumstances

using the same logic, but for deliberation instead, will be able to reason on novel

emergent features and reuse the results.

Finally the complexity of the World Wide Web was noted and certain emergent

properties briefly commented upon. These properties will be further developed and

- 51-

explained later in this thesis. A Knowledge Plane for the Internet was a proposal to apply

a cognitive system over the working of the Internet. This work is certainly relevant to the

aim s of the knowledge plane proposal and it was shown how this work provides the

functions, as detailed in the proposal, that are required for such systems.

The next chapter looks at the meta-systems for giving systems self-awareness capabilities

to enable the autonomy to carry on functioning without excessive control governance.

The current state of the art is reviewed and the problems of providing such systems are

considered in the light of the complexity, large-scale and cognition required for

deliberation.

- 52-

Chapter 3

Self-Governing Systems

The need for efficient methods of specifying and implementing agile meta-systems arises

mostly from the complexity of managing large-scale, distributed computing systems. As

previously mentioned the functionality, ubiquity and added management complexity

contribute to the systems being so unwieldy as to render the monitoring beyond the

capabilities of human operators. The original solution, proposed as early as 1968 (Naur

and Randell, 1968) was middleware, defined as a layer between application software and

system software. This abstracts the complexities of the system, allowing the application

developer to devote maximum efforts to the problem being solved without the concern of

managing the overall system. In this role middleware is related to providing support for

naming (for efficient service calling), service location and service discovery (allowing

decoupling of system components and dispensing with hard-coded service references),

transport (to permit transparent communication between distributed nodes) and binding

(to provide a linking between locally executing code and external code). As distributed

systems became more prevalent additional functions such as replication, storage,

concurrency control and failure handling of system faults became part of middleware

systems. In this way the heterogeneity of the underlying systems and inter-process

communication is hidden from the user and application developer. Many realisations of

autonomic type functions rely on the adaptation of middleware: A brief review of

adaptive middJeware is included in Appendix 1. This chapter proceeds with a review of

IBM's autonomic initiative leading to what has ensued in state of the art autonomic

systems. It is observed that adaptation has so far been restricted to mostly being of a

passive nature with some parametric adaptation. Some formal systems for specifying

systems' self-governance are given as background to this work and subsequent

engineering of self-organisation in middleware is assessed. The need to handle emergent

organisation in a specification method for self-governance in large-scale autonomic

systems is recognised and the Signal-Grounding problem is identified as presenting the

major barrier to accomplishing such systems' self-governance.

- 53-

3.1 Autonomic and Self·· Systems

Autonomic computing systems are generally thought to exhibit self-: Configuration,

Healing, Optimisation and Protection; the so-called self-* properties. The paradigm of

Autonomic Computing is based on a natural biological model of system regulation. The

autonomic nervous system, in the body, is responsible for providing non-conscious

control of vital bodily functions. This allows humans, for instance, to proceed with

everyday high-level activities whilst the underlying core functions of the body are

handled without conscious effort. So the heart beat rate, the amount of air taken in,

determined by the expansion of the lungs, for breathing, responses to hot and cold and

many other functions of the body are performed automatically with no human

interference or consciousness required. The IBM initiative for autonomic computing

originated through a presentation by IBM's senior vice president for research (Hom,

2(01). This stated that the major challenges facing the computing industry were

complexity and Total Cost of Ownership (TCO). The solution presented was called

Autonomic Computing and comprised of eight high level goals for computational

systems:

• Possession of System Identity: There ought to be a detailed knowledge of the

system and each individual part as it is reduced to component level, including its

current status, capacity and connections.

• Self-Configuration and Reconfiguration: System setup and dynamic adjustments

to account for environmental changes must occur automatically. Adaptive

algorithms are a suggested means to achieve this through the learning of best

configurations to produce mandated performance levels.

• Optimisation of Operations: The system will monitor its performance and that of

its constituent parts and fine-tune its workflow to achieve predetermined goals.

Feedback control mechanisms and control theory are highlighted as possible

techniques to respond to internal metrics and control all system parts in a unified

manner.

• Recovery from Malfunction: Problems or potential problems must be diagnosed

and alternative ways of using resources or reconfiguring the system may be used

to maintain a smooth running operation. Initially it is suggested that healing rules

- 54-

will be predetermined at design time. The goal, however is to allow intelligent

systems to discover new rules through runtime.

• Self-Protection: The system must detect, identify and protect itself against various

types of attacks and threats to maintain overall system security and integrity.

Artificial immune systems are mentioned as providing a detection mechanism for

suspicious code that can be isolated and analysed centrally with a cure distributed

to the entire system.

• Self-Adaptation: This is identified as self-optimisation turned towards the outside

of the system. An autonomic system will find and generate rules on how best to

interact with neighbouring systems and the environment. Grid type systems are

suggested as a means of connectivity that allows this environment aware ability.

• Independence from Proprietary Solutions: The system must function in a

heterogeneous world. It must coexist and interact with different systems through

the implementation of open standards. Research into intermediary broker agents

to arbitrate resource conflicts is a suggested way forward.

• Complexity Hiding: The computing and software technologies needed to achieve

a user's goals should be implemented without the users involvement. The system

however must anticipate user requirements and be ready to handle the requests in

a similar way to the body being prepared for action by adrenalin without any

conscious effort by the individual.

Initial reactions to the autonomic initiative sought to establish the novelty of such an

approach: Artificial Intelligence researchers have for many years devoted a large amount

of effort to studying systems adaptability, self-awareness and environmental

consciousness. Likewise best practice in software engineering ought to be the provision

of robust and agile computing systems responsive to user requirements. IBM's

Autonomic Computing provides an up to date list of desirable meta-system properties and

systems displaying these autonomic characteristics define the current state of the art in

meta-systems for self-governance.

3.1.1 State of the Art in Autonomic Systems Research

The establishment of Autonomic Computing as the de facto standard in meta-systems for

self-governance has encouraged a lot of initial research efforts to target Autonomic

- 55-

computing from the various research areas enveloped by the definition. The major

construct used is that of a feedback and control loop as shown, very simply, in Figure 3.1.

Application System

Figure 3.1 Autonomic Feedback/Control Loop

Feedback control is well established as a scientific principle (Laws et aI, 2003) and (Kuo

and Golnaraghi, 2003). It has been used in many areas of application from robotics to

management science to promote a predetermined model of system stability. System

stability is achieved through negative feedback in most cases: Some fault state is detected

in the system and is relayed to the meta-system, which determines the actions to take to

adapt the system so that it returns to its stable state. These control loop adaptations can be

classified into three categories (Tianfield and Unland, 2004): Passive adaptation,

parametric adaptation and mission oriented adaptation:

• Passive Adaptation arises simply from the addition of a control loop. Simple

rules will determine the operation of the loop. A particular metric will be

monitored in the application system. When this metric exceeds pre-defined limits

then a rule in the meta-system is triggered and the actions dictated by this rule

are performed on the system. This, in effect, is the current state of most

autonomic implementations relying on simple rule/policy based operations.

• Parametric Adaptation involves a feedback control loop operating on the effect,

within the system and environment, of an existing passive feedback control loop

as a parametric adaptation loop. This means that the parameters within the

passive loop can be adjusted or tuned through the system's runtime. Thus

changes in the system's operation or environment result in an optimisation of the

parameters in the feedback/control loop. A generic example is shown in Figure

- 56-

3.2. This represents the current state of the majority of research in autonomic or

self-governing systems (Steiner and Hagner, 2007), (Deussen, 2006), (Baresi et

al, 2006), (Miseldine and Taleb-Bendiab, 2006) and (Garlan et al, 2004), for

example. The tuning of the control parameters is still a very difficult problem to

solve through a runtime system. Especially as new parameters and associated

feedback/control loops may become apparent to an external intelligent observer

that would not be appreciated in a rigid policy based automated system.

System Goals

Manager

Input

Target System

Monitored Metrics

Figure 3.2: The Parametric Adaptation Process

• Mission-Oriented Adaptation can be likened to control loops on control loops on

control loops and so on, arranged in a hierarchical structure, culminating in an

intelligent observer. The environment of a complex system is most often subject

to considerable change over many parameters. The function of the system can be

engineered to emerge from the interactions of components/parameters or a

function may emerge as a runtime property. In any event the adaptation required

to monitor and influence such systems requires the appreciation of the bottom-up

nature of the programming model promoting such behaviour. Although the

problem has been recognised (Zhu, 2005), there is little support at present to

provide a model of self-governance based on mission-oriented adaptation or for

reasoning about emergent behaviour generally in multi agent type systems.

- 57-

3.2 Roles and Normative Positions for Self-Governance Middleware

Components in a programmable agent model can be used to provide functions for self-

governance in the middleware for autonomic computing (Randles et al, 2005, Padget,

2003), through parametric adaptation: Agent architectures can be specified to carry out

autonomic roles, based on system norms. The usual blurred distinction between

component/agent and system architectures will be maintained through this section;

although, more precisely a component/agent architecture describes the implementation of

individual agents whilst system architectures arise when the component agents are

connected through some communicative medium.

The most widely used mechanism of providing components with autonomous

capabilities, in such scenarios, is through Belief-Desire-Intention (BDI) type systems

(Rao and Georgeff, 1991). A component/agent possesses specified beliefs about the state

of its domain and further specified desires regarding what state the domain ought to be in.

A mismatch between the two specified notions triggers an intention, in the form of a

prepared plan, to align the beliefs with the desires. The most usually cited example of

such a system is the Intelligence-Resource-Bounded Machine Architecture (IRMA)

(Bratman et al, 1988). Here the architecture is supported by a number of features: A plan

library representing a subset of the component/agent's beliefs (Completion of a given set

of actions causes a given situation to become true); explicit representation of the beliefs

desires and intentions; a reasoner for reasoning over the domain; a means-end analysis

process to map intentions to plans; an opportunity analyser to scan the domain for

perceptible changes and a filtering process for determining the results of means-end and

opportunity analyses that are compatible with existing plans. A number of problems have

been identified in taking such an approach, including:

• It is very difficult to ensure that a sufficiently rich model of the domain can be

gained by the component/agent: Translating a real domain perspective into a

symbolic representation cannot always be guaranteed to give an up to date

representation of the actual state of the domain.

• Timely reasoning on the domain state cannot be guaranteed: by the time

reasoning occurs the system state is highly likely to have changed in most real

world systems.

- 58-

• There is no provision for intention reconsideration in the light of changeable,

dynamic environments.

• There is no cooperation or coordination mechanism for the component/agents:

The entities act according to selfish rules.

There have been numerous proposed extensions to the BDI model to include normative

behaviour with obligations and thus cooperation and coordination in multi-

agent/component systems. For example:

• The Belief-Obligation-Intention-Desire (BOlD) model (Broersen et al, 2001)

includes a specific specification of obligations with the component/agent type

defined by the precedence the component/agent gives to the modal attitudes.

• The Epistemic-Deontic-Axiologic (EOA) model (Filipe and Liu, 2000) is based

on organizational semiotics with normative roles for the participants classified as

belief, obligation or value system norms.

• The Extensible Belief-Desire-Intention (EBDI) model (Randles et al, 2005)

classifies the intentions to promote coordination and cooperation through

normative, reward and utility intentions.

The Viable System Model (VSM) (Beer, 1979) has also been proposed as providing a

model blueprint to enable a specification of system self-management through

middleware, based on BOI (Laws et al, 2003). The VSM considers any viable system to

be composed of 5/6 interacting systems, as shown in Table 3.1.

The power of the model arises from the recursive nature of the specification: Embedded

instances of a VSM model can occur in the SI units of a particular system. Thus the

operational and management SI units can be developed as VSM models, making the

system structure open ended in both directions. This hierarchy may be followed upwards

to more encompassing systems or downwards to smaller more specialized functions. This

notion of hierarchical recursive systems will be followed in the description of the

Observation System, used later in this work.

Other organizational models have been proposed, for example:

• Gaia (Zambonelli et al, 2003) specifies organizational normative roles with

interaction through four attributes: Responsibilities, permissions, activities and

protocols. It incorporates an interaction model, through a set of protocol

- 59-

definitions, which describes the dependencies and relationships between different

roles in the system.

• AALAADIN (Ferber and Gutknecht, 1998) is a meta-model to define

organizational models. It is based on three core concepts agent, role and group.

The latter concept ensuring cooperation and coordination through enforced

modularity allowing task decomposition.

• The ROPE project (Becht et al, 1999) similarly defines roles in an integrated

environment, termed the Role Oriented Programming Environment, to participate

in collaborative task accomplishment.

Table 3.1: Overview of Viable Systems Model (Laws et al, 2(03)

Thus it can be seen that there are very many methods through which normative control of

systems may be established. Centralised controllers, within the middleware, observe the

- 60-

system and enforce normative behaviour on the system participant components. either

through strict monitoring or by the pre-programmed model adherence of the components.

Through all these specification systems. however. there is a complete lack of a general

formal logic system for specifying and reasoning about emergent behaviours or self-

organisation with the systems. Thus to gain a unified formal specification method for

self-governance and autonomic systems it is necessary to further consider what needs to

be included to handle emergent self-organisation.

3.3 Self. Organisation and Self-Governance Middleware

Self-Organisation in middleware for Autonomic systems and self-governance systems. in

general. is a very important concept given the huge complexity. number of interacting

entities and the emergence of properties from the bottom-up: Middleware encapsulates

methods for coordinating processes and organising data. yet current approaches cannot

scale to large complex systems. This has provided the impetus for bio-inspired design

paradigms. These most often rely on stigmergy (Bernon, 2(06). Middleware in general

has been treated as applicable to a number of application areas (Mamei et al. 2(06): Grid

computing. Coordination systems, seeking to handle interaction mostly through

distributed tuples, caching and replication and pervasive computing are areas of

application where middleware is playing an increasingly necessary role in providing the

bio-inspired meta-systems required to handle the self-governance of large scale systems.

Each of these will be briefly reviewed in the following subsections with relevance to the

engineering of self-organisation in the middleware self-governance applications.

3.3.1 Grid Computing

Grid Computing has been seen as a solution to managing large computer systems for a

number of years. Condor (Litzkow et ai, 1988) was proposed in the late 1980s to usefully

employ idle computational time in a network. Grid computing. as a concept, was

envisaged as a means to seamlessly integrate heterogeneous systems. Mechanisms to

handle resource demand, conflict resolution and allocation are required so that the

computational assets are well utilised. data is placed in the locations where it is most

likely to be needed and services can be easily found. composed and deployed. This is also

required to occur in highly dynamic environments where demand or resource availability

cannot be predicted. Many users may log onto the system at the same time, demanding a

particular service. or the amount of free computational power may be limited by a lack of

- 61·

idle nodes. This makes computing resources a commodity in the Grid: Users do not need

to know how the system works but rather what it is they need from the system and how

much it will cost. In terms of engineering self-organising behaviour to provide

functionality in this regard, the natural models, briefly described in Chapter 2, can

provide new mechanisms to achieve resource utilisation in Grid systems.

• Foraging may be used for optimising the distribution of services (Andrzejak et

al, 2002) in a Grid: Pheromone-like trails can be used to positively reinforce the

successful service discovery processes and to ensure the abandonment of

obsolete service location data. The placement of resources can also be achieved

based on the strength of demand abstracted as a pheromone reading.

• Herding can be seen to have similar applications for service placement (Gilbert

et al, 2006). Collision avoidance can ensure replicated or similar services are not

located with too much redundancy, Flock centring can optimise the location of

services; dynamically adjusting the "centre of gravity" to demand fluctuations.

Speed matching can be utilised to balance loads across the Grid.

• Nest Building, similarly, can ensure the provision of adequate resources tailored

to demand (Bonabeau et al, 1999).

• Web Weaving is a mechanism that permits new shorter paths to connect

resources, nodes, etc (Bourjot et al, 2003). Thus, in Grids, more frequently

assembled service compositions may be autonomously organised through a web-

weaving algorithm.

• Moulding and Brood-Sorting can be used as an approach to organise grid

resources. Moulding can prevent the aggregation of data in a single location on

the grid. As the cluster grows towards becoming a bottleneck, in the system,

moulding can trigger a differentiation, through brood sorting, to cause the

formation of new similar clusters to be distributed across the grid.

• Morphogenesis also provides some powerful tools to engender a contextual

concept within the grid and may be utilised, in future work, for self-awareness.

This will be dealt with in a little more detail later in this work.

- 62-

3.3.2 Co-ordination systems

Tuple-based coordination models, such as Linda, provide a useful method of exposing

system participant states for use by other system components (Gelemter and Carriero.

1992). A structured set of typed data items form a set of tuples that can be indirectly

exchanged between the system participants. This occurs through a shared tuple-space. A

tuple can be written to the tuple-space or retrieved via matching queries to data items in a

tuple. In this way coordination between system components is handled in an uncoupled

manner with actions coordinated on the basis of the tuples present in the tuple-space.

Commercial middleware platforms, such as Jini (Arnold et al, 1999) or OigaSpaces (G.T.

Ltd., 2002) implementing JavaSpaces, are based on Linda distributed tuples. These

however, have not been widely used in large-scale systems. For larger scale systems

either a centralised single server is used to accommodate the tuple-space or tuples with

common characteristics are grouped together on specific servers or complete copies of

the tuple-space are placed on a number of servers or data is stored on a grid of nodes

formed by logically intersecting busses. Each node is part of exactly one inbus and one

outbus. Tuples are written and replicated on all nodes of the outbus whilst retrieval comes

from the inbus. One inbus intersects all outbusses giving a complete view of the tuple-

space. SwarmLinda (Menezes and Tolksdorf, 2004) brings principles from known self-

organisation models to allow a scaling up of tuple-spaces for large-scale systems. Brood

sorting is used to distribute the tuples, dynamically partitioning the tuple-space into

clusters of tuples. This ensures wide availability without having to perform

computationally costly procedures like replication. Tuples are retrieved by foraging

mechanisms: an executing process causes templates to search for matching tuples in the

tuple-space. Once a tuple is found it is relayed to the calling process and a pheromone

trail left so that subsequent templates seeking a matching tuple may also easily discover

the location. This results in the emergence of application specific paths between tuple

producing and tuple seeking components. The volatile pheromones disappear if not

reinforced meaning that paths dynamically adjust to system changes.

3.3.3 Caching and Replication

Caches minimize latency for network requests. In client/server architectures client side

caches act as server proxies receiving data requests. When the data is transferred to the

client a copy is held in the cache to be available for a different client making the same

request. This relieves load on the servers and minimizes response time. Similarly server

- 63-

side caches aid load balancing by storing the results of processing in the cache for

retrieval obviating the need for further processing upon receiving the same request again.

In both these cases cache sizes are obviously limited so the management of the cache's

content has important ramifications on systems' performance. It is obviously best to

populate the cache with the responses to requests that are most likely to be received. If

food foraging techniques were used then the entries in the cache (ants) that received a

sufficient number of requests (food) would remain in the cache whilst those entries that

received insufficient requests would die out to be replaced by new entries. This can be

done adaptively by the cache entities using artificial pheromones to indicate the locations

of resources. Newly created entries can follow the trails to predict what resources may be

required in the future; creating relevant new cache entries (Floyd, 2007).

3.3.4 Pervasive Computing

The increasing pervasiveness of modern computing systems is one of the identified forces

creating the need for adaptive middleware and system self-governance. Applications

have to be adaptive as system components can be deployed at any time across multiple

domains. In addition the performance of a software system is often dependent on its

environment of application. Thus a dynamically enforced awareness and subsequent

adaptation to context is required. Current middleware infrastructures, for the reasons

previously detailed, do not support these requirements. In addition application

component-agents are typically strictly coupled in interactions making dynamic runtime

compositions, cooperation and coordination for spontaneous interoperations impossible.

This adds to the application and environmental complexity that, together with increasing

functionality, provides more driving forces for the provision of adaptive middleware.

Field based coordination is the usual method of coordination in open dynamic component

application systems. Distributed data structures enable component interaction through the

mediation of fields, shaped according to the requirements of the system to permit a

selection of coordination patterns to match application goals. This field based

coordination displays self-organising attributes such as moulding and morphogenesis.

Distributed tuples may be propagated across a field with the tuple values subject to

alteration based on actions. For instance, a particular tuple value could increase as it

moves through a field. Any component-agent encountering the tuple could ascertain the

location of its source (commissioning process) by interpreting the value in the tuple. In

such a way component agents can operate by receiving contextual data from the

- 64-

distributed tuples. Such techniques are used in Co-Fields (Mamei et al, 2004) and TOTA

(Mamei and Zambonelli, 2(04) middleware.

3.3.5 Autonomic Self-Governance and the Emergence of Self-Organisation

It can be seen that self-organisation applied to middleware applications provides very

many useful functions for system self-governance. Indeed the coordination incorporated

into the Observer System, to be described later in this work, makes use of the distributed

tuple space. Additionally the specification, for engineering such emergence, can also be

achieved through the methods outlined in this work, though the adjustment of system

parameters and probability; such a specification, based on finding solutions to a Markov

Decision Problem, set in a food foraging scenario, is also detailed later in this work. The

specification of the self-governance in such cases is nevertheless still ultimately

dependent on parametric adjustment/adaptation to engineer the self-organisation. In many

cases, as systems scale up and become much more complexly interwoven, features

emerge from the system that have no precedence and have no possibility of prior

prediction. It is in these cases that mission-oriented adaptation is called for if true self-

governance is to be achieved. To handle such occurrences a cognitive observation system

is required. The present state of the art in autonomic systems relies on parametric

adaptation. Yet, in these cases, the meaning of the observed signals emanating from the

system and the engendered actions has no relevance to the automated system controller:

Self-governance is provided in such cases by blind adherence to rule sets and policies. To

reason adequately for mission-oriented self-governance, to efficiently utilise and adapt to

emergent outcome, the cognitive observation system must have an awareness of the

intrinsic meaning of the events and actions within the system: Signals observed in the

system must be known for the affect they have on the system, a grounded definition of

the signals is required.

3.4 The Signal Grounding Problem and Autonomic Systems

Known emergent outcome is extremely effective and useful in engineering macro-scale

behaviour from micro-scale interactions. For the reasons outlined in the previous section,

however, in the course of a systems runtime operation emergent features will almost

certainly arise that cannot be predicted at design time. Some of these will be desirable

emergent features that would aid the system in its current or future operation whilst

others may need to be proscribed to prevent a current fault recurring in future operations.

- 65-

As outlined above, current efforts in modelling and implementing autonomic systems and

adaptive middleware for behaviour control are achieved using policy and/or norm-based

management models. Even in the case of emergence engineering, the component

interactions are prescribed or proscribed at design time. In these systems rule-based

stimulus-reaction (sensor-actuation) constructs are often programmed as conditional

triggers or "hot swapping", in the case of providing facilities for systems' self-healing

(Appavoo et al, 2003). This is typified in many of the proposed autonomic systems'

blueprints (IBM, 2003). The systems are underpinned by this "sensor-effecter"

mechanism that facilitates context awareness, based on input from distributed tuples, for

instance, leading to reactive autonomic behaviour (Ganek and Corbi, 2003). The rules,

norms or policies are specified at design-time as in (Badr et al, 2004) and encoded into

rule-based systems through, for instance, object-oriented components or XML policy

documents. Other approaches use methods based on semiotic frameworks (Stamper,

2000) to distribute data through the application domain. Although, as previously stated,

these suffer from runtime novelty handling problems; more recent approaches are now

adapting machine-learning techniques to support novelty detection and runtime chance

discovery (Magnani, 2005). Despite these many varied approaches meaningful

introspection and accessibility of evolving regulatory models, of adjustable autonomic

systems, are theoretically difficult to achieve as they quickly come up against the Signal

or Symbol Grounding Problem (Harnad, 1990), a problem more usually encountered in

psychology. Here the limits of a purely symbolic model of cognitive function have been

reached leading to a more connectionist approach to cognitive modelling. The semantic

interpretation of a formal symbol system must be intrinsic in the system rather than

merely being assigned a meaning by some conscious process. That is an interpretation of

the meaning of sensing results as signals, or their associated semantics as symbols, in the

specification a truly agile cognitive observation system for self-governance, need to be

.programmed in and adapted throughout their lifetime, to achieve system the self-

governance with an absolute minimum of human intervention. Many current autonomic

systems implementations, for self-governance, whilst aiming at self-adaptation, only

provide for the restructuring of the software models with any adaptation or evolution, of

their control model specification and encoding, most often achieved by expert human

operators. However, although autonomic systems, on their own, do not need to be capable

of self-adaptation they do need to be adaptable. For instance in the administration of the

- 66-

stasis between sympathetic and parasympathetic responses threshold adjustments are

required (Miseldine and Taleb-Bendiab, 2005a). Knowledge of the meaning of a

perceived signal or observed symbol, encountered in a specific context grounds that

symbol/signal to provide an inferential mapping from sensor to actuation. In applying

more recent psychological models of cognitive process not based entirely on input/input

and input/output associations (Turkkan, 1989) to the cognitive meta-systems required; it

can be observed that it is impossible to provide an adaptable autonomic response system

without the system itself ascribing meaning to the symbols and signals in the system. It is

for these reasons that signal grounding is vital to systems engineered for the autonomy

that autonomic functions provide (Baillee, 2(04)].

3.4.1 The Signal Grounding Problem Explained

Symbol grounding, whilst being an open question in information theory (Floridi, 2004) is

vital in order to provide meaning to the symbols and signals (system events) that emerge

in systems operations. An original formulation was given in (Searle, 1980) with ''The

Chinese Room Argument" as a problem of intrinsic meaning or "intentionality". In this a

person is imagined locked in a sealed room with the facility to receive Chinese symbols,

which may be manipulated, according to a set of rules, based on the symbol's shape.

Chinese symbols are then output from the room. The person receiving the symbols does

not understand Chinese but performs actions based on the symbols' shape not meaning.

However the symbols are systemically interpretable as having meaning but this meaning

is not intrinsic to the symbol system itself. Hence the meaning of symbols is outside the

symbol system. So this does not form a viable model for symbol recognition in a

cognitive system. That is cognition cannot be solely symbol manipulation. Signals

require grounding within the context of a cognitive system so that the symbols have

meaning within the cognition of the system. This means that the system must have a zero

semantical commitment condition (Taddeo and Floridi, 2(05) so that: There is no innate

semantic resources supposed and there is no access to external semantic resources. The

system ought to use its own computational resources to perceive (through sensors and

instrumentation) and perform operations (through procedures and effectors) to ground its

symbol set to interpret system signals. For autonomic systems this requires an associated

observing cognitive system to assess the triggers for autonomic responses for both

adaptation and discovery. In this way the meaning of symbols and signals is grounded

through cognitive systems.

- 67-

3.5 Summary

The current state of research, in providing systems' self-governance through middleware,

is largely based in autonomic computing. Autonomic computing ought to provide a

holistic approach to computer systems development that copes with complexity and adds

a new level of automation and dependability to systems through self-healing, self-

configuring, self-optimisation and self-protection functions. Additionally it should

encompass the automation of system adaptations for computing systems. This is why

autonomic computing and adaptive middleware have become almost synonymous. Yet

current realisations of the paradigm merely add complexity and scale to an already

complex and usually large system. This is because adaptation is generally only

conceived of at a passive level. Although passive adaptation is a powerful tool in the

establishment of a control loop, all transitions of the system have to be allowed for at

design time and the system rendered in a top down fashion. In contrast parametric

adaptation allows for system tuning at runtime by the adjustment of parameters. This

represents the current leading research in this field, including the engineering of

emergence for pre-defined outcomes by the adjustment of probabilities in the low-level

component interactions. This is still predominantly a top down approach, for the

adjustment of thresholds, although pre-conceived bottom up functionality may arise from

engineered emergence. It is only through mission-oriented adaptation that truly self-

governing systems can emerge. Autonomic computing takes elements from a number of

disciplines to provide solutions for self-governance; feedback control, adaptive control

and artificial intelligence, for instance. Computational systems however differ

substantially from conventional feedback/control systems: Conventional feedback/control

methods are generally applied to physical systems compliant with physical laws.

Computational systems, in contrast, are artificial societies not generally governed by

physical laws but rather by goals, norms and policies set by humans, social imperatives or

environmental constraints. As a result it is a little artificial to directly apply conventional

feedback/control loops, based on continuous parameters, to autonomic systems where

evolution occurs through discrete events. Specification of roles and norms can go some

way towards achieving self-governance. and is indeed a vital element to be included in

any specification method. What is additionally required, however, is an associated

cognitive system to harness the frameworks and methodologies of feedback and adaptive

control rather than the rigid algorithmic procedures of physical feedback/control systems.

- 68-

In mission-oriented adaptation the system is guided through self-awareness towards its

high level goals. This includes detecting. reasoning about and acting on newly discovered

emergent global system features relevant to the mission of the system. This can only be

achieved through signal grounding requiring higher-level cognitive reasoning by the

meta-systems. This work seeks to present a formal semantics for the event-situation-

condition-action sequence. via a suitable formalism utilising many concepts from various

disciplines. to formalise the "adjustable" governance models for autonomic software

behaviour and system evolution" to ground the signals or symbols emitted from a run-

time system and its environment. This requires the establishment of cognitive observation

systems. These cognitive systems will be arranged hierarchically ultimately culminating

in human or user level intervention. An observer/controller monitors a running system

that may be an aggregation of further observed running systems. In this way control is

passed up through the system to a level with the appropriate knowledge to ground the

perceived signal. Final responsibility resides with the human level participants. Thus a

holistic approach to systems self-governance and the formal specification of adaptive

middleware, including autonomic computing functions. will be provided through a

proposed single formulation. This formulation will provide the specification for smaller

scale (component) systems through norm-based deliberation as well as the formal models

for large-scale complex systems through a cognitive observer model. The next chapter

considers the features of the various classes of formalisms necessary to construct an

appropriate specification; reasoning and evolutionary language to provide a holistic

unified scaleable solution to systems' self-governance.

- 69-

Chapter 4

The Specification of Complex Systems

The representation and reasoning about computational systems can take many forms. One

aim of this thesis is to provide a method to allow the robust design of meta-systems. This

includes both the more usual top down approaches for rule-based or norm-governed

behaviour through specific policies and the less easily achievable bottom up approaches.

for more complex systems. of engineering emergence and responding to unpredictable

system events. This chapter reviews the classes of representation and reasoning

formalisms available to provide the attributes that are most desirable in modelling the

complex adaptive middleware meta-systems required. This leads to recognition that the

Stochastic Situation Calculus provides a unique combination of relevant properties. such

as support for counterfactual reasoning and no prior state space enumeration. in a single

formal specification method. Thus the chapter concludes with a detailed overview of the

Situation Calculus approach to modelling dynamic systems with stochastic actions.

In any event it is necessary that the formalisms provide an openness to the specification

as it is a fundamental requirement for this work that a holistic unifying formalism be

provided that can permit a shared understanding of knowledge state. autonomy of action

and conflicting actions and the emergence of new entities into the system. For this reason

this chapter commences with a brief overview of open systems.

4.1 Open Systems

It has been noted that the distributed systems evident in the real world display

characteristics of openness and are exemplified by the following features: (Hewitt. 1990):

• There is communication between independently developed separate systems.

• Concurrent and asynchronous contact occurs through decentralised control based

on interactions.

• Local inconsistency occurs amongst the system participants: The participants

themselves hold consistent belief sets. but these may be at variance to the global

or other participant perspective.

-70-

• System participants are bounded entities in terms of autonomy, knowledge and

influence.

It is a fundamental feature of the application of distributed artificial intelligence that

systems are large-scale open systems, which are subject to unpredictable outcomes and

the emergence of new sources and items of knowledge, as described in Open Information

System Semantics (OISS) (Hewitt, 1991). Thus the interactions of open systems can be

characterised by features such as:

• Trials of Strength (Competition): When participants are working against each

other through conflicting goals.

• Global Commitment (formalised earlier as joint intentions): When participants in

the system carry out a joint course of action.

• Cooperation: When system participants have mutually dependent roles in the

enactment of global commitments.

• Negotiation: A trial of strength conducted through the communication of shared

beliefs.

Despite some opposition to OISS (Gasser, 1991), which suggests these notions are too

vaguely defined and an encompassing computational theory is required, these concepts

nevertheless represent a quintessential definition of an open system as it relates to this

work in supplying the necessary attributes of an open system that any formalism must be

able to accommodate. The formalism is further required to permit the runtime

accomplishment of these features through adaptive middleware. Therefore the requisite

properties of an open system, based on OISS, are:

• System participants are heterogeneous and are mostly capable of autonomous

actions.

• The complete behaviour of the system participants or global outcome cannot be

predicted entirely and in contrast to (Hewitt, 1991)

• Participants may enter and leave the system at any time.

This means that the meta-systems considered will feature trials of strength (competition),

global commitments (joint intentions), cooperation and negotiation. Thus the formalisms

and deliberation mechanisms must be able to accommodate these properties. This means

that the states a system may enter throughout its runtime cannot be totally defined at

- 71-

design time. The heterogeneity of component agents, and their interactions, makes it

impossible to predict, at design time, both the sequence of state transitions and the states

that will be entered. New previously undefined components or assemblies (federationsl

teams/swarms) of component agents will arise through the runtime operations, resulting

from the adaptation to competitive conditions, the provision of resources for cooperation,

the outcomes of negotiation and the formation of joint intentions. Thus the formalism for

the cognitive facilities an observer system must possess include the ability; to handle,

analyse and recognise novelty and to be able to reason on the outcomes of actions: The

formalism required for this top-down and bottom-up approach must necessarily allow the

emergence of previously unknown states and permit hypothetical reasoning. There are

two approaches that can be taken to provide such formalism: An algebraic approach or a

logical predicate/propositional approach. The remainder of this chapter is devoted to

assessing the formal systems available before defining the precise formal mechanism that

will be used to define and implement the meta-systems with the previously stated

required attributes.

4.2 State-Based Approaches

A state in a computing program or machine is a particular configuration of the data held

at each step of a process. Typically the state can be represented by a set of variables with

each state assigning different values to the variables. The variables are given initial

values at the beginning of the process and change value according to system events.

Thus it is possible to specify simple systems by a sequence of states or a set of

transitions: So if in one state a particular event occurs then the system/machine moves

into another specified state. This is a purely reactive system akin to the passive adaptation

most often seen in current autonomic system implementations. A state stores the

information regarding what has happened so far to the system (the changes in the value of

the system's variables). A transition indicates a change of state and is described by a

condition or action that would need to be fulfilled or occur, in that state, to enable the

transition. An action is a description of the activity that is to be performed at a given

moment. A very simple example is shown in Figure 4.1: In state 1 a light is on, when in

this state an action occurs that is pressing the off switch then the state changes to state 2

where the light is off. Conversely when in state 2 and the light is off pressing the on

switch causes the light to illume and the state changes back to state 1 LightOn.

·72-

S 1
l' tOn

State2

Figure 4.1 Simple State transitions

The simplest model of behaviour for a computer program is as an input/output function:

A value is input at the beginning of the process and at some point there is a value as

outcome or output. It is this idea that is the basis of Finite State Automata or Machines

(FSA or FSM): A process is modelled as an automaton, which has a number of states and

a number of transitions from state to state. The basic unit of the behaviour in such a

system is an action, the execution of which is denoted by a transition. There are also

initial states and a number of final states. A Behaviour of the process is a run from a

permissible initial state to a final state. Two automata are considered equal if there is

"language equivalence" between them determined by behaviour: Behaviour is

characterised by the set of executions from initial state to final state. So language

equivalence occurs between two automata if and only if they produce the same output for

every identical input into each automaton.

It can be seen that the behaviour of system components can be represented in this way.

However there is no provision to model the interactions between these components.

Through an execution from initial state to final state a system may interact with another

system. This is a requirement of modelling parallel or distributed systems with

concurrency theory: The theory of interacting distributed components. The term Process

Algebra has been applied to a class of formalisms considered to be an approach to

concurrency, based on parallel composition as the basic operator.

4.2.1 Process Algebras

In Process Algebra, process refers to the behaviour of a system: A system is anything

exhibiting behaviour, for instance the execution sequence of a software system, the

actions of a machine or human actions. Behaviour may be defined as a permutation of all

the actions or events the system can perform, the order in which the actions/events are

- 73-

performed and any constraints such as timings or probabilities. Throughout this it is not

possible to capture all behaviour but rather an abstracted version of behaviour, which

captures the main function of the system. Behaviour is observed and the unit of

observation is the action. These actions are further idealised to be discrete occurrences;

performed at some time point with different actions happening at different times: A

discrete event system.

Algebra in Process Algebra arises out of taking an axiomatic approach. In regular algebra

elements represented by symbols are combined with operators and results may be

calculated according to the rules or axioms of operations. Process algebra is a

mathematical structure satisfying some axioms given for basic operations: A process is an

element of the structure. which can be operated on or combined with other elements

(processes) to perform calculations based on the axioms. In this way alternative

composition (choice) can be reasoned on together with sequential and parallel

composition as basic operations on processes. Thus it is possible to state some structural

laws for operations in process algebras. similar to regular algebra: If the choice operation

is denoted by +, sequential composition by * and parallel composition by II. Then the

basic laws, for processes X, Y and Z can be:

• X + Y = Y + X (Choice is commutative)

• X + (Y + Z) = (X + Y) + Z (Choice is associative)

• X + X = X (Choice is idempotent)

• (X + Y)*Z = X*Z + Y*Z (Choice is right distributive over sequential

composition)

• (X*y)*Z = X*(y*Z) (Sequential composition is associative)

• XIIY = YIIX (Parallel composition is commutative)

• (XIIY)IIZ = XII(YIIZ) (Parallel composition is associative)

So rules are established for manipulating the processes and defining structure. A null

process may also be defined as a completely inactive process with no interactions.

Depending on the domain the set of processes may form an abelian group under

sequential composition, for instance. These laws however do not relate parallel

composition to sequential composition or choice. The axioms only represent properties of

the operators without any explicit representation of dynamics in a system: There is no

-74-

mention of action execution. To represent interleaving concurrency a theorem is required

to express parallel composition in terms of the other two operators. The algebras that

provide such a mechanism are termed process algebras of interleaved concurrency, in

contrast to simple concurrency (Baeten, 1993). To adequately model the complex

systems under consideration it is necessary to be able to represent both true concurrency,

where two or more actions start and finish at the same time, and interleaved concurrency,

where one action is due to occur after another; typically when the outcome is independent

of the order of execution.

Prior to the formulation of process algebras in the 1970s the only theory that existed

specifically to deal with concurrent processes was Petri Nets (Petri, 1962). Automata

theory can model programs but it is not sufficiently powerful to deal with process

interaction: The interactions of a process with other processes, between input and output,

affect the outcome of the procedure making behaviour difficult to analyse. It is for this

reason that the more powerful process algebras possess an expansion theorem that links

the dynamic system properties of parallel composition and process communication with

the more static system properties of sequential composition and choice. The usual way

this is achieved is through the reduction semantic: linking parallel composition,

communication and sequential composition. So, for instance, if j (a) represents the

sending of message a along channel x and x(b) is the process that expects to receive data

on channel x, where b is a place holder to be substituted by the arriving data, then for

processes W and Z:

j(a).W IIx(b).Z- W 1Iz[%]
forms a general reduction semantic. This means that the process x (a)*W sends a

message a along channel x. The process x(b)*Z receives this message on channel x.

When the message has been sent the process x(a)*W then acts as process W whilst the

process x(b)*Z acts as the process Z[aIb]: The process Z with a placeholder b replaced

by the data received on channel x, namely a. It is the formulation of this particular

property and the representation of communication that distinguishes the major process

algebras. Additionally, to completely model computational systems, allowances must be

made for non-terminating behaviour. Recursion and replication are methods of providing

finite representations of infinite behaviour. Recursion may be adequately represented

through sequential composition X*Y where Y = X*Y, for instance. Replication (!) may

-75-

likewise be represented by an infinitely countable number of parallel compositions of the

same process: !X = X II IX.

The first process algebra with a complete theory was the Calculus of Communicating

Systems (CSS) (Milner, 1980). This was quickly followed by similar formulations,

Communicating Sequential Processes and the Algebra of Communicating Processes that

emphasise slightly different aspects of the theory; it is from these that most modem

process algebras may be derived.

The Communicating Sequential Processes (CSP) (Hoare, 1985) was originally conceived

as a concurrent programming language (Hoare, 1978), without mathematically defined

semantics or an ability to represent unbounded time delays in message passing

(unbounded non-determinism). CSP, with influences from Milner's CSS, was further

developed into the process algebra as presented in (Hoare, 1985). It places less

importance on an equational structure, whilst the other early calculus, the Algebra of

Communicating Processes (ACP) (Bergstra and Klop, 1984), prioritizes the algebraic

structure and has a much more general abstraction of communication than the

distinguishing combination of message passing and interleaving in CSP or the abstraction

of communication by process hiding in CSS. Process hiding (in CSS and ACP) is

denoted by 't': the passing from one state to another without any (observable) action

occurring. All three share the static laws, as stated earlier. CSS denotes sequential

composition by "?", with the same concept represented by";" in CSP and "." in ACP.

Differences become apparent in the choice operator, although the laws, as stated still hold

for all representations: CSS and ACP denote choice as "T" and "+" respectively, whereas

CSP distinguishes between deterministic choice (determined by the environment) denoted

by "0" and non-deterministic choice (a simple indication that choice is available)

denoted by ''n''. Parallel composition and communication are represented quite differently

across the formalisms: CSP has different operators for communication and interleaving:

"I[{a}]1" for communication across parallel composition where both the processes

running in parallel must be able to perform action a before event a can occur: A

synchronisation point; "III" is used for interleaving to represent totally independent

concurrent activity. After some initial variation CSS uses the same operator, "I", for

communication and interleaving. Whereas, in CSP communication between processes

occurs if both processes offer the action a, in CSS communication takes place if one

process offers the action a and the other its complementary action a (interpreted as input

-76-

and output respectively). The communication between a and a results in a 't step: the

communication provides synchronisation but the result is not visible. ACP offers parallel

composition through the merge operator, "II": the parallel composition of two processes

with interleaved actions. Communication is denoted by the binary operator "I".

Thus the main differences between the three major process algebras can be seen together

with representational qualities they possess. Various formalisms extending and adding to

the original process algebras have been proposed:

• Ambient Calculus (Cardelli and Gordon, 1998) is applied to concurrent

computation where mobility, in terms of mobile devices and code location, is an

issue. The basic primitive is an ambient: a bounded computational space that may

be physical or virtual, a laptop computer or an address space, for instance, with a

definite boundary. There are three basic operations on ambients, where

computation is interpreted as the crossing of the ambient boundaries: to enter

another ambient, exit an ambient or open an ambient, by dissolving its boundary.

The reduction semantic defines the effects of these operations on ambients.

• n-Calcutus (Milner et al, 1992) is also applied to concurrent computational

scenarios in a mobile setting. It represents a continuation of the work on CSS and

is mostly arranged around the same formalism. The difference is that the content

of the message is a channel name, which may subsequently be used by the

receiving process. Mobility is handled through network change based on the

interactions of processes.

• Performance Evaluation Process Algebra (PEPA) (Gilmore and Hillston, 1994)

extends CSS and CSP with performance evaluating primitives. This involves

associating a random variable with each activity to represent the expected rate at

which the task can be performed. The models formed can be used to assess

quantitative properties of the system such as: latency, demand or throughput It

utilises the usual operator primitives of choice, sequential composition, co-

operation (parallel composition) and hiding (transition through an unobservable

event).

• Weighted Synchronous Calculus of Communicating Systems (WSCCS) (Tofts,

1993) is derived from a dialect of CSS: SCSS (Milner, 1983). It is based on an

abelian group of action symbols with a set of weights. In the process algebras

-77-

discussed so far the issue of non-determinism has been handled by leaving the

biases in making choices unspecified. In WSCCS the weights are used to add a

probabilistic quantification for non-determinism. Such a probabilistic account

provides a good formulation for specifying the bottom-up function emerging from

many natural systems. It is in the adjustment of the probability that self-

organising behaviour becomes apparent. An agent-based investigation of honey-

bee colonies was used to demonstrate the value of this approach (Sumpter, 2000).

Subsequently, more recently, this has led to applications for robotic swarm

spacecraft (Rouff et al, 2(05).

These process algebras are powerful yet primitive representation and reasoning

formalisms. The elegance stems from the restricted number of operators: they are

mathematical formalisms for describing and analysing the properties of concurrent

computational systems yet do not include atomic elements such as; numbers, Booleans,

data structures variables, functions or control elements such as if/then statements or

do/while loops. This gives process algebras their apparent simplicity. However this

simplicity comes at a price: from these basic elements all features of the system have to

be constructed making representative formalisms more difficult to follow. In addition the

language equivalence of finite state automata cannot be easily translated to interacting

systems of automata. Bisimulation is the technique used to assess the equivalence of

systems in process algebras. Informally this means that two systems are the same if their

actions and transitions are indistinguishable. Thus the definition of bisimulation will be

specific to the domain.

To utilise process algebras, in reality, requires the additional development of appropriate

modelling and verification methodologies that have to be placed above the primitive

constructs of the formalisms. This is typical of the requirement for modelling and proof

infrastructure when dealing with higher order logics (Gordon and Melham, 1993).

Additionally it can be noted that all states and transitions in a process algebra

specification must be pre-defined before implementation. This represents a major

drawback in providing the required adaptability and self-awareness necessary for systems

self-governance. For these reasons it is proposed to investigate the use of predicate (first

order) logics to achieve a similar simplicity of approach whilst gaining the advantages

cognitive reasoning with built in fully formal verification and correctness mechanisms.

-78-

4.3 Propositional Formalisms

In seeking to gain the same simplicity of approach, with a minimum number of

primitives, as process algebra and provide more flexible reasoning mechanisms it is

necessary to address a basic problem in applied artificial intelligence (AI): What

methodologies provide the best, most efficient mechanisms for converting the results of

sensing actions into actions on the environment? Typically most AI programs use a

simple set of assertions derived from data gathered by humans with no notion of

recognition, spatial awareness, noisy sensors, etc (Brooks, 1991). This was concisely

termed the Signal-Grounding problem in Chapter 3. It is the focus of this work that,

based on the Knowledge Representation Hypothesis (Smith, 1982), as stated in Section

1.3, with the consequences, as listed in Section lA, the manipulation of logical sentences

provides the most natural way to design "intelligent" processes.

A logical setting for AI, where knowledge is represented by logical sentences and

intelligence by proving properties of these sentences, dates back to the 1950s (McCarthy,

1959). Green presented the classical approach to planning, using general purpose

reasoning about actions in first order logic, to synthesise algorithms by theorem proving

(Green, 1969): Given a description of the effects of actions on a domain ~, an initial state

So and a goal r find a sequence of actions a such that l: logically entails r after a is

executed from So.The logical approach was further applied to robotics in the seventies as

exemplified by the Shakey project (Nilsson, 1984) with the STRIPS planning system

(Fikes and Nilsson, 1971), where states are represented by logical conjunctions of free

ground literals. In the early nineties Levesque and Reiter took the early version of

Situation Calculus (McCarthy, 1963), designed for logically specifying dynamical

systems, and extended it to include time, concurrency, procedures, probability, etc., in a

way that gave efficient implementations for cognitive robotics (Reiter, 1991). A

contrasting logic approach to planning, for cognitive robotics, is presented by interleaved

planning, sensing and execution (Shanahan, 1996) based on the Event Calculus

(Kowalski and Sergot, 1986): the planning process is subject to frequent disruption while

actions are performed and sensing data assimilated. In this given a goal r it is necessary

to find a sequence of actions AN such that:

l:sAI£AdNAdM ~ r

l:s is a background theory comprised of the axioms for the domain.

-79-

~E is a theory mapping the objects and actions in the domain to the sensor data.

~M represents the many explanations (sequences of actions) to account for the sensing

data. Thus signals within the system are grounded (Randles et al. 2006b) by interaction

with the domain.

~N may thus be taken to be the logical description of the actions occurring naturally in

the environment or performed by a particular agent component.

Thus it is clear to see that there are a number of advantages to be gained with a logic-

based approach to AI:

• If a component agent's design is logic-based then a rigorous mathematical

account can be given regarding success or failure in meeting its goals.

• The component agent's knowledge and goals are specified in a universal

declarative language. making the component easy to modify. adapt or maintain.

• It is a reasonably easy task to incorporate high-level cognitive facilities in a logic-

based component: including the ability to reason on the actions of other

components. its own knowledge or to plan based on sensed data.

Thus it would seem that techniques previously restricted to applications in cognitive

robotics might provide rich formalisms to endow modern autonomic type systems. for

self-governance. with the necessary cognitive properties to reason on system features

both in terms of component (norm-based) autonomy and the observable global outcome

of component interaction. In this way self-governance and autonomic functionality can be

applied to much larger and more complex systems than is currently the case. This gives

rise to a number of methodological options: Firstly. at one extreme, the basic unit of

representation is the logical sentence and the unit of computation is a step in a proof. This

gives a very short path from specification to implementation that simply involves the

application of a general-purpose theorem prover over the axioms of the domain

(previously termed ~B) and the sensed data (previously termed ~E)' The same logical

sentences and the same theorem prover can provide necessary conditions to explain the

sensing data (abduction) for planning as well as deducing and inferring other results

based on ~B and ~E' Unfortunately it is not likely, in the near future, that any such

powerful theorem prover will become available. Secondly. at the other extreme,

algorithms for planning. sensing and action can be handcrafted and proved correct with

- 80-

respect to the logically specified account. This approach, however, gives no systematic

process by which the implementation may be derived from the specification and makes

consistent maintenance and adaptation difficult to achieve. Finally the best approach,

between these two extremes, is centred on a form of logic programming: The logical

specification is preserved into the programming language, making the specification

computationally realisable. This is achieved by taking the clausal fragments, described in

a suitable formalism and rendering them into a language that makes use of the logic.

System properties, behaviour, correctness and all logical consequences of the

specification can be easily derived given a mainly first order logical formalism based on

Horn clauses.

4.3.1 Logical Calculi: Events and Situations

Logical theories of action and change most usually involve reasoning about the truth of

propositions and the occurrence of events in terms of causation and timing; either relative

to some ordering or absolute for scheduled events. The main logical calculi, considered to

be appropriate for reasoning about dynamic systems are Event Calculus (Kowalski and

Sergot, 1986) and Situation Calculus (McCarthy, 1963). The two formalisms were

originally conceived with very different ontologies to satisfy a requirement to specify a

domain from a particular perspective. The Event Calculus, as currently formulated

(Miller and Shanahan, 2002), may be utilised to provide a reasoning tool to analyse the

"commonsense" description of domains, including cognitive states (Mueller, 2006). In

Event Calculus the central theme is the notion of action occurrences, or events, happening

at specific time points. These events provide the start and end points for time intervals

during which certain fluents hold. These time points are considered to occur along a

single real-valued time line: Fluents can hold or not at a certain time point The formula

timet'I') denotes that T is a time point. The formula holds(A, T) represents the fact that A

holds at time T. An event is the occurrence of an action at a certain time point, denoted

by: happenstli.T): event E happens at time T and act(E,a) denotes that event E consists of

an occurrence of action a. The final primitives in Event Calculus are initiatesili.A) and

terminates(E,A) meaning that the event E initiates or terminates, respectively, the fluent

A. Thus a frame axiom may be stated in Event Calculus as:

- 81-

There is also a constraint on timing: The order on time points must be a linear order. This

means that the following must hold for all T/ ,T2 and TJ:

• (T/<T2) => (time(T/)1\ time(Tz)) - meaning that operator "<" can only relate time

points.

The linear ordering of time in the Event Calculus is necessary because partial orderings

makes it possible to build system models that do not conform to time constraints

(Denecker and De Schreye, 1995). For instance, without linear ordering, related events

cannot be scheduled to occur in the required ordering: A terminating event may occur

before an initiating event for a particular fluent This problem with the Event Calculus

also precludes any reasoning involving branching time structures, making reasoning in

possible worlds models impossible. Likewise conterfactual reasoning cannot be

supported; Statements of the form, 'if action A had happened then proposition B would

have held' can only be represented where it is possible to conceive of several possible

evolutions of the world (Belleghem et al, 1997). Extensions to the Event Calculus have

been proposed to accommodate hypothetical reasoning: The linear ordering of time [(

TJ<T2)V(T2<T/)v(TI-T~)l can be replaced by a branching time axiom defining a

situation, initiated at time point TI, as a set of time points, T2, such that no events occur

between TI and T2 (Belleghem et al, 1997). This formalism, however, does not allow for

concurrent events. Another proposal (Levy and Quantz, 1998) endows each Event

Calculus predicate with a situation argument with situations being related by equality

through certain time intervals. A Branching Discrete Event Calculus (BDEC) (Mueller,

2(07) is proposed for discrete event systems, shown to be equivalent to continuous event

systems with integer time, using a restricted Situation Calculus. This, however, can lead

to two identical sequences of events resulting in two distinct (non-equivalent) situations.

While seeking formalisms to adequately represent the cognitive functions, necessary to

reason on large-scale systems self-governance, it is desirable, if not necessary, to be able

to reason on the various outcomes of actions. It is clear that representing such reasoning

in the Event Calculus is not a straightforward task. The most often used methods to

endow Event Calculus with hypothetical reasoning procedures always involve imbuing

- 82-

Event Calculus with a restricted Situation Calculus type functionality. Thus it may be

more practical to actually use a pure form of the Situation Calculus from the first instance

to gain the reasoning capabilities necessary for systems self-governance.

In Situation Calculus the basic concepts are actions and situations. It provides a quite

natural way to represent commonsense type formulations. A situation provides a snapshot

of the world that is changed by an action occurrence: Actions are the cause of situation

transitions. In line with the recent applications of Situation Calculus to cognitive robotics,

where a fully formal description of the Situation Calculus has been provided (Levesque et

al, 1998), this work will consider a situation to be a sequence of actions or action history,

forming the major objects in the calculus. Each of these situations will have a set of fluent

values dictated by the initial situation, termed So and the action history. There is a

primitive binary operation do; do(a.s) denoting the successor situation to s resulting from

performing the action a. Actions are generally denoted by functions and situations (action

histories) are first order terms. In seeking to represent a domain actions must have

preconditions; necessary conditions that must hold before the action can be performed.

The predicate poss is used with posst a.s) meaning that it is possible to perform the action

a in a world resulting from the execution of the sequence of actions s. In order to address

the frame problem, effect and frame axioms are combined into one Successor State

Axiom (Reiter, 1991): A successor state axiom for a fluent is TRUE in the next situation

if and only if an action occurred to make it TRUE or it is TRUE in the current situation

and no action occurred to make it FALSE, with the precondition axiom poss(a, s)

meaning it is possible to perform action a in the situation s. These form the simple, yet

highly expressive, primitives of the Situation Calculus. There have been many attempts,

as outlined above, to give the Event Calculus the expressive power of the Situation

Calculus. The example of counterfactual reasoning shows that there are problems handled

in the Situation Calculus that cannot be handled in the Event Calculus. Most attempts to

reconcile the two, however, include an equivalence result, showing the two formalisms to

be essentially the same (Kowalski and Sadri, 1997). This contradiction is resolved

because all the equivalences are between the Event Calculus and a restricted version of

the Situation Calculus. For instance in (Kowalski and Sadri, 1997) frame axioms, in the

Situation Calculus are augmented with happens(A,S) primitives: This makes frame

axioms applicable only to actual asserted sequences of actions and additionally ensures

that only one sequence of actions can exist, just like the Event Calculus. Likewise BDEC

- 83-

(Mueller, 2007) restricts reasoning to actual asserted action histories with the requirement

that no actions can occur between adjacent situations.

Rather than seeking to provide Event Calculus with the ubiquity of representation

exhibited by the Situation Calculus, it would seem more sensible to use the Situation

Calculus to provide the primary representation and reasoning system. The conciseness of

the language with the greater expressiveness, allowing hypothetical reasoning, gives a

very powerful initial formalism for defining and implementing system self-governance

meta-systems. The next section summarises and defines the main results in Situation

Calculus augmented, where necessary, for application in this work.

4.4 The Situation Calculus

Henceforth this work will take a logical approach to modelling the dynamic systems,

necessary to provide cognitive functions in adaptive middleware meta-systems for self-

governance in large-scale complex systems, based on a first order logic language,

Situation Calculus, first proposed by John McCarthy in 1963 (McCarthy, 1963). Since

that time much has happened to and through the Situation Calculus. The problem of not

only specifying what changes occur in a domain but also the many instances of no change

in a system leads to the unavoidable consequence of a large number of frame axioms

(McCarthy and Hayes, 1968), termed the representational frame problem. Reiter's

solution (Reiter, 1991) provided a very efficient and compact representational mechanism

to mostly resolve the frame problem. This provides two main benefits: Modularity,

because as new actions and fluents are added to, or become apparent in, the domain, only

new effect axioms need to be included as the frame axioms are automatically supplied or

updated from these; Accuracy, because the frame axioms are given as part of the effect

specification there is no possibility of accidental omission.

In addition methods to address further problems, previously identified as presenting,

difficulties in logically specifying a domain may be circumvented. The position taken in

this work, to these problems, is as follows:

• The Qualification Problem, concerning the reliability of actions in the real world.

Given an action it is difficult to define circumstances under which the action is

guaranteed to succeed. That is there may be an indefinite number of minor

qualifications as action preconditions. The usual way to accommodate such a

problem is by choosing to ignore all the minor qualifications; concentrating on the

- 84-

necessary and sufficient conditions that define when an action may be performed

(Reiter, 200 1).

• The Ramification Problem arises because of the implicit consequences of actions.

It involves the additional consequences of actions because of state constraints

(Finger, 1986), also termed integrity constraints in database scenarios. For

instance the movement of a process also entails the movement of any processes

contained within it. The constraints/relationships may be explicitly represented

and the effect of actions taken into account accordingly (Schubert, 1990).

This more commonsense approach to reasoning and more modular representational style

has led to applications of the Situation Calculus to many real problems. The original

appeal was in applications to cognitive robotics (Lesperance et al, 1994) with agent

programming (Lesperance et al, 1997) and database updates (Lin and Reiter, 1994)

naturally following. More recently works have appeared on modelling ubiquitous

information services (Dong et al, 2004), representing agents in e-business (Albrecht et al,

2003), solving logistics problems with Markov Decision Problems (Sanner and Boutilier,

2(06) and reasoning with incomplete knowledge (Vassos and Levesque, 2007). There are

also works progressing on the meta-theory of Situation Calculus improving

representational and reasoning techniques. For instance the ramification problem and

complex temporal phenomena are addressed in the Inductive Situation Calculus

(Denecker and Ternovska, 2007).

The main difference, in using Situation Calculus, from alternative approaches is the

concentration on cognition as the driver for component-agent behaviour and observer

system function. This is needed because the state and evolution of large-scale systems

cannot be foreseen at design time; thus cognitive functions are required at runtime, by the

meta-system for self-governance and participant component-agents, to reason on the

perceived state of the system and take appropriate actions. Additionally component-agent

behaviour can be specified to engineer emergence or condition behaviour: modelling

component-agent beliefs and their consequences. Beliefs encompass statements about

what is true in the component-agent's environment, what actions it and its fellow

components, including the environment as a whole, can perform, what effects these

actions have on the domain, the conditions under which actions may be performed, the

resources available for cooperative task accomplishment and the outcomes of sensing

procedures. These beliefs condition behaviour and it is the purpose of this work to give a

- 85-

theoretical and computational account of the process of deliberation that leads to action

based on the Knowledge Representation Hypothesis (Smith, 1982) using logical

sentences as the fundamental mathematical representation for large-scale system control

and analysis; thus answering the question posed at the start of Section 4.3: What

methodologies provide the best, most efficient mechanisms for converting the results of

sensing actions into actions on the environment? The following subsections summarise

the features of the Situation Calculus that will be required to progress with this work.

Although a fairly technical treatment of the calculus will be presented it is not the

intention to give a fully formal account of the Situation Calculus in this work; the

descriptions given are based on or derived, where necessary, from (Levesque et al, 1998).

4.4.1 The Situation Calculus Language: Foundational Axioms

The Situation Calculus is a language of three disjoint sorts: Actions, situations and

objects (anything that isn't an action or situation, depending on the domain). Generally s

and a, with suitable subscripts, will be used for situations and actions respectively.

Additionally the language consists of:

• Two function symbols of the sort situation;

o The constant symbol Sodenoting the initial situation

o A binary function do:actionxsituation--+situation. Situations are

sequences of actions; dota.s) is the result of adding the action a to the

end of the sequence s.

• A binary predicate symbol posstactionxsituation. possia.s) meaning it is

possible to perform action a in situation s.

• Predicate symbols:

o Of the sort (actionU object]" for each n~ denoting situation

independent relations such as movesctionimoveiservice.lil-)

o Of the sort (actionU objectf xsituation for each n;d) denoting

relational fluents: situation dependent relations such as

heavyLoad(service.s),

• Function symbols:

- 86-

o Of the sort (actionU objectf'-eobject for each ~O denoting situation

independent functions such as location(move(service))

o Of the sort (action U objectf xsituation-vobjectl.I action for each ~

denoting functional fluents: Situation dependent functions such as

location(service.s).

• Action functions to denote actions of the form (actionU objectf'-vaction for

each n~ such as move(I/,12)'

• An ordering relation C: situation x situation denoting a subsequence of

actions: SIC~ means SI is a proper subsequence of S2' Alternatively the

situation SIoccurs before S2'

The functional and relational fluents take one argument of the sort situation; by

convention this is usually the final argument. There are four immediate, domain

independent, axioms of the Situation Calculus, which detail the fundamental properties of

situations in any domain specific representation of actions and fluents:

2. (ttP)[P(So)A ~(a,s) (P(s) ~P(do(a,s)))J~~ s pes))

3. (...3s)(sCSo)

Some logical consequences of the foundational axioms follow immediately, for instance:

• Sootdo(a,s) for any s

• do(a,s) ;if s for any a or s

• (s = SO>v (3(a,SI) s=do(a,sl»' i.e. SoC s for all s

This version of the Situation Calculus differs from McCarthy's (McCarthy, 1963)

original formulation in which situations were identified with states. The state-based

approach was evident in early works (McCarty and Hayes, 1968) where it was stated: "A

situation, s, is the complete state of the universe at an instant of time." A different

approach is to combine states and situations with an action theory as occurs in the Fluent

Calculus (Thielscher, 1998) with a translation available at implementation level (Schiffel

and Thielscher, 2006).

- 87-

4.4.2 Composite Actions and Procedures

Sometimes there will be a requirement to move between situations that are separated by a

sequence of actions rather than a single event or action. This will be denoted by

DO(a.sj.sj). which. informally means that it is possible to reach situation Sj from situation

Si by executing the sequence of actions. a = [a••a2 ~]. where each a, is a single

action. To relate a Situation Calculus representation to more familiar programming

constructs DO may be defined inductively by its action on the sequence comprising of its

initial argument

• If a is just a primitive action a then DO(a,s,s·) == posstacss.s) AS·_ dotaai.s). It is

necessary to put situational values into the actions. the meaning of acss, as the

action may rely on the value of a fluent in that situation. For example, the action

expression moveTo(location(servicel)), in a scenario for mobile services. where

servicel is a particular service is a functional fluent that is situation dependent as

service! may move. Thus the action needs to state move'Iotlocationiservicel.st).

• If a is a test condition denoted by "1" then DO(at.s.s')» a(S>A s=s·

• If a is the sequence of actions split into [a., a2] denoted by";" to separate the

sequence terms (which may themselves be sequences of actions) then DO(al:

a].s.s·)==(3s·)[DO(al.s,s')A DO(a].s ·.s·)]

• If a is a non-deterministic choice of actions from {a. a2}, denoted by "I", then

DO(alla].s,s·)==DO(al.s,s·) v DO(a].s,s·)

• If a is an iteration executed 0 or more times, denoted by"." and

TCsituations xsituations is the set of ordered pairs of accessible action histories,

where the second is accessible from the first term, then DO(a*,s,sJ==

(tlT){(tlsJ) (SJ,SJ)ETA(tlSJ,S2,S3)[DO(a,sl,s])A(S].sJ)ET~(Sl.SJ)ET]]

~(s.s·)ET

This states that doing the action(s) a zero or more times takes the situation from s to

s' if and only if (s.s') is in every set T where (sr.sr) is in T for all SI and whenever

doing a in situation SI brings about situation S2 and (S2,S3) is in T then (SI,S3) is in T.

Using these constructs it is possible to start to relate Situation Calculus to a

programming language (Lesperance et aI, 1997). For instance:

if a then ai else a] == a? ,.al Ia? ,.a]

- 88-

while a do a =(a? .. ai «; ...a?

4.4.3 Time and Concurrency

In order to represent actions that occur in time, for a certain duration or at the same time

it is necessary to consider the ways in which time may be represented within the axioms

of the Situation Calculus, as stated up to this point. The formulisation described so far

only conceives of actions occurring sequentially and without timing constraints. As

happened in previous discussions regarding process algebras there are different scenarios

under which concurrent actions can occur: Actions may occur together and have the same

duration; the duration of one may completely envelope the duration of the other or their

durations may just overlap. The representational device used within the Situation

Calculus to address these problems is to consider instantaneous actions initiating and

terminating action durations with a relational fluent representing the extent of the action

(Reiter, 1996). For instance instead of the monolithic action to move a process, A, from

location I, to location 12: move(A,II,/2) the instantaneous actions startMove and endMove

may be used and the procedure of moving represented by the relational fluent

moving(A,II,12,s): The startMove action causing the moving fluent to become true with the

endMove action making it false. Similarly the communicate action can be represented by

the pair of instantaneous actions startCommunicate and endCommunicate with the

relational fluent communicatingis). It is then quite simple to represent these actions and

fluents in the Situation Calculus, as defined:

poss(startMove(A,II,l2),S) ~ ...3(lJ,l4)moving(A, lJ,l4,S)A locationi A.s)=l,

poss(endMove(A,II,12),s) ~moving(A, 11,I2>s)

moving(A, 11,12,do(a,s»~ a=startMove(A, II'12)v[movingl A, 11,12,s)A
a~ endMove(A,II,12)]

location(A,do(a,s»=11~31, a=endMove(A,I,,/2) v[location(A,s)=/2A

...(31,1') a~ endMove(A,/,I')]

With this representation complex concurrency can be handled. For example for a

particular process:

(startMove(11,12),startBroadcast },{ endBroadcast, startReplication(1J)}, (endMove(ll,12)}

- 89-

is the sequence of actions commencing with simultaneously starting to move from 11 to 12

and broadcast, followed by simultaneously ending the broadcast and starting to replicate

at location 13, followed by ending the move at 12 whilst the replication is still proceeding.

This gives a particularly neat representation for interleaved concurrency: Two actions are

interleaved if one is the next action to occur after the other. Thus an interleaved

concurrent representation can be given for moving and broadcasting, for

•··I,
I
t
I
t
I
I
t
I····__ ----;';.-- oommunlcatt.ng(A.."So) --____.-------_

o 3

Figure 4.2 Interleaved Time Processes in Situation Calculus

instance: do([startMove(IJ,12},startBroadcast,endBroadcast, endMove(IJ,12} l,So} where

broadcasting is initiated after a move is started and terminated before the end of the

move. Alternatively it might be the case that:

doerstartBroadcast, startMove(IJ, '2)' endBroadcast, endMove(IJ, 12}J,So}

Thus any overlapping occurrences of moving and broadcasting, except for exact co-

occurrences of the initiating or terminating actions, may be realised in the formalism.

This is achieved without having to extend the formalism in any way.

To incorporate time into the Situation Calculus does involve extending the foundational

axioms with one new axiom and introducing two new functions. The representational

device for denoting time, in the Situation Calculus, is simply to add a temporal argument

to actions. Thus startBroadcast(t) is the instantaneous action of the broadcast starting at

- 90-

time t. The first new function is devoted to extracting this time argument from the

representation: It is a function time :actions-+!Ji .timet a) where !Jiis the set of real

numbers. So, for example time(startBroadcast(t))=t. The second new function is

startzsuuation-etli. start(s), which denotes the start time of situation s. This gives rise to

the new foundational axiom, which may be succinctly stated as; start(do(a,s))=time(a).

This facility to express time allows for the representation of any complex interleaving

processes. In Figure 4.2 a time line is illustrated where there are three overlapping

processes: The movement of a process (say) from location x to location y (moving(x,y,s));

the replication of the process at location x (replicating(x,s)) and the communication with

another process A (communicating(A,s)). The moving and replicating procedures begin

together at t=O with the replicating finishing at t=3 and the moving at t=4. The

communicating procedure is already occurring in the initial situation (t=O) and finishes at

the same time as the moving procedure (t=4).

Finally, in dealing with modelling temporal aspects of dynamic systems, it is possible to

handle true concurrency; when one or more actions happen at the same time. This is

achieved by simply considering concurrent actions as sets of simple actions: The notation

aEA denotes that the simple action a is one of the actions of the concurrent action A. The

do function symbol can be extended to accept concurrent actions as arguments:

do({startMove(x,y),openFile(j)}, SoJ,for example. The foundational axioms, as previously

stated, are then composed exactly as for simple actions; a concurrent action set replaces

the simple action in the axioms. The action precondition axioms then become: endMove

poss(a,s):=>poss({a},s) and

posseA,s):=>(3a)aEAII(Va)! aEA:=>poss(a.s)1

The successor state axioms can also be adapted to take account of concurrent actions, for

instance:

moving(x,y,do(A,s)).:::.startMove(x,y)EA v movingix.y.st» endMove(x,y)t!A

There are certain problems with true concurrency: Precondition interactions or conflicts

may be present. This does not occur with interleaved concurrency: This work will mostly

make appeal to the account of interleaved concurrency when modelling system actions.

- 91-

4.4.4 Sensing and Knowledge

The representation of knowledge and beliefs in the Situation Calculus is achieved by

seeing the world states as action histories or situations with the concept of accessible

situations (Moore, 1985). So if SI and ~ are situations then (SI ,S2)E ~ means that in

situation S2agent i considers SI a possible situation with K, an accessibility relation for

agent i.

That is all fluents known to hold in situation S2also hold in SI' SO an accessibility fluent

may be specified: ~(SI,S2) meaning in situation S2agent i thinks SI could be the actual

situation.

So knowledge for agent i (knows) can be formulated in a situation as:

knowsj($, s) == 'Vsl(~(sl' S)~$(SI» [alternatively 'tis} h K;(sJ, s)v <I>(sJ)]

This gives rise to a fluent to represent knowledge dynamics in the Situation Calculus that

still satisfies the constraints of the solution to the frame problem (Reiter, 1991).

However to make any axiom complete it is necessary to establish whether a sensing

action has taken place (Scher! and Levesque, 1993). That is if the action that occurred, to

change the situation to its successor, was the perception of the value of a fluent. So the

change was a change in the epistemic state of the agent. Thus it is necessary to

distinguish sensing actions by writing SR(sense"s) to denote that the action produced a

result for cp.

SR(sense., s) =r = value of cp in s

Thus a successor state axiom for K can be stated:

K(S2'do(a, s) <:> 3 Sl(s2=do(a, s.) A K(sl' s) A poss(a, SI) A SR(a, s)= SR(a, SI»

4.4.5 Probability: Stochastic Situation Calculus

In order to account for the uncertainty present in the domain it is necessary to consider a

stochastic formulation of the Situation Calculus. To achieve this, as part of a first or

second order logic representation, the approach is to decompose stochastic actions into

deterministic options (Boutilier et al, 200 1). So there are two classes of actions:

• Stochastic Actions that are under the control of a system component but have

an uncertain outcome.

- 92-

• Environmental Choices that form the choice of deterministic actions for any

component chosen stochastic action.

There will be a finite number of choices for each action and each will have an associated

probability, probeab.s) meaning the probability that a will be the outcome of stochastic

action b with a a possible action in s. It can be defined:

prob(a,b,s)=p == choicetb, a)Aposs(a,s)Ap=probofa,b,s) v

[-choicet b.a) v -posst a.s) J AP=O.
Here choiceib.a) is the decomposition of the stochastic action b into its deterministic

primitives and probofa.b.s) is the associated probability for each deterministic action a.

This gives a modular construction to provide axioms when uncertain outcomes are

observed in the domain. For example if the stochastic action is the flipping of a coin then:

choice(jlipCoin,a) == a=showlleadv a=showIail with

probo{showHeadjlipCoin,s) =0.5 and probo{showTailjlipCoin,s) =0.5

In reality most stochastic actions revolve around the success or failure of action

occurrences. For example if there are two actions of adding a process to a system and

making a link from process X to process Y, denoted by addProcess and addLink{X,l?
The addLink action is a stochastic action, in that the action may succeed or fail so can be

decomposed into two deterministic actions: s_addLink{X, 17 and f_addLink{X,l7

(meaning the action succeeds or fails respectively). The action addLink is assumed to be

under some cognitive systems autonomous control. If the system elects to perform the

action then non-determinism arises and exactly one of either s_addLink(X, l? or

f_addLink{X, 17 is enacted with associated probabilities. Thus, as above:

choice{addLink{X, l?,a)==a=s_addLink{X, l? vf_addLink{X, l?

with

probo(s_addLink(X,l7,addLink(X,l?,s) =p

probo{f_addLink(X, 17,addLink(X, 17,s) = l-p

where p is a probability distribution for the action occurrence.

The associated successor state axioms for the domain and the action precondition axioms

can then be stated in the usual manner. To provide a decision theoretic position into the

account, to in effect assess the importance of actions, a real valued reward function,

- 93-

rewardia.s), may be introduced. This denotes the reward a component may gain by

performing action a in situation s. For instance:

reward(addProcess,s) = 40

reward(s_addLink(X,Y),s)=r == [(server(X) v server(Y))A r=80]v

[(process(X)A process/Yj}» «{servertX) v server(Y)) Ar=30]

reward{f_addLink(X, y),s)=r == [(server(X) v server(Y))A r=-60]v

[(process(X)A processiYi)» -o(server(X) v server(Y)) Ar=-IO]

There may also be costs involved with performing actions. For instance it is costly to

move a process from its present location loc(s) to a new location I:

costtmovetll.s) = 0.2~(loc(s),ljl where I(x,y)I is some domain measure of a distance

between x and y. It is possible to eliminate the cost function by incorporating it into the

reward function. The domain usually determines the approach taken: If resources are

consumed in the performance of actions it is usually more intuitive to retain the cost

function. In this way Markov Decision Processes (MDP) may be specified in the

Situation Calculus: The representation, in Situation Calculus of a dynamic probabilistic

domain. In general an MDP consists of a state (situation) space, a set of actions, a

transition function over the space and a reward function that maps a state (situation) and

action to a real value. The goal is to find a policy that maximises the value function. In

the simplest case, for a Situation Calculus account of an MDP, a cost function, cosua.s),

and a reward function, reward(a,s), are defined for each deterministic outcome a of a

stochastic action and the value function becomes a linear combination of these:

value(do(a,s)) = value(s) + reward(a,s) - costta.s)

The application and solution of such problems is very applicable to engineering the self

organising processes observed to occur in natural systems, as outlined in Chapter 2, such

as: Foraging, herding, nest building moulding, web weaving and brood sorting. It is the

adjustment of probabilities that determines whether behaviour emerges or not in these

scenarios. This will be further investigated later in this thesis.

4.5Summary

This chapter has provided the justification for the choice of Situation Calculus as the

unifying formalism for providing the modelling and reasoning necessary to handle the

- 94-

top-down normative approach to software engineering, the bottom-up engineering for

emergence and the cognitive facilities for deliberating on systems' evolution and the

emergence of novel function. The modelling formalisms under consideration need to

exhibit properties of openness to handle the uncertainty within their operating

environments. State based approaches rely on process algebra, mathematical formalisms

for describing systems of interacting Finite State Machines (FSMs). It is a flat modelling

formalism: There are two sorts, states and transitions, together with axioms for

composing the FSMs, usually with no hierarchical structure; all the states appear in the

same layer and transitions may connect any pair of states leading to a modelling

formalism that is difficult to scale and maintain. In addition each realisation of a model is

a case specific solution: A new application usually requires a completely new design and

subsequent changes in the model cause difficulty with maintenance issues because of the

tight coupling between states and transitions. However in relation to the requirements, in

this work; to design, specify and analyse deliberative meta-systems for the automatic run-

time maintenance, tuning and security of large-scale, complex, distributed computing

systems, the major failing of a process algebra approach is the necessary enumeration of

all possible states in advance. Such enumeration is impossible in this work as the

evolution of large-scale complex systems is, in general, not predictable (Bullock and

Cliff, 2004). Even if enumeration were possible changes in state compositions would

result in an exponential increase in the number of system states. Furthermore any

practical utilisation of a process algebra, including the facility for deliberation on the

system by itself, requires the additional provision of modelling and verification methods

to sit above the primitive constructs of the formalism (Cerone and Milne, 2005). Thus the

need for a formalism giving a "propositional account" (Smith, 1982) is established. This

naturally leads to the adoption of mathematical logic: Instead of enumerating states and

their transition functions, sentences describing what is true in the system and its

environment and the causal laws in effect for that environment are favoured. This means

that: System behaviour is determined by the logical consequences of the systems

description, through entailment; a non-procedural specification is provided where system

properties may be verified and logical deduction used to establish correctness properties

and a system specification is obtained that is executable, giving a formal system

simulator. Throughout this work the formalism used is required not only to model the

systems under consideration but also to provide the deliberative functions of a cognitive

- 95-

system. This promotes the use of a single formalism to model the system, for correct

function through normative positions or emergence engineering and permits the

reasoning over system state, for analysing and grounding emergent self-organisation. It is

for this reason that the Situation Calculus was chosen to provide such formalism: The

other predominant suitable propositional representation system, Event Calculus,

necessitates reasoning with the linear concept of a single time line, thus making

hypothetical reasoning unfeasible. Attempts to incorporate hypothetical or counterfactual

reasoning into Event Calculus tend to transform it into an equivalent Situation Calculus

with additional primitive constructs, giving a less elegant representational formalism.

Table 4.1 summarises the features required of a formalism for this work in comparison to

the calculi previously reviewed in this chapter.

Table 4.1: Comparison of Formal Representation System Features

p at •.. " • • at.. .. til It tI' .. :.
p p .. tI' ."

• .. tI' • ..
tI' tI' .. ~ ..
II' tI' tl- t!' .tI'

The Situation Calculus is widely regarded as a formal modelling system for dynamic

worlds and as such it is highly suitable for application towards systems' self-governance.

Systems are regarded as being composed of infinitely many successive actions

(transitions) between infinitely many situations (system snapshots). A situation is

regarded, in the modern incarnation of the calculus (Levesque et al, 1998), as a sequence

of actions or action history, whereas originally (McCarthy, 1963) situations were

identified with states. Transitions are implied by relevant preconditions to the action and

- 96-

changes to situation dependent relations and functions (fluents). The basic idea of

Situation Calculus is similar to that of FSMs. Situation Calculus exceeds the capability of

an FSM by removing the requirement for the design time enumeration of states, prior to

runtime. Situations are generated dynamically at runtime taking infinitely many

instances, giving Situation Calculus many desirable properties in modelling and

reasoning over dynamic, open worlds. Situation Calculus also gives a rich descriptive

formalism with precondition axioms to ensure correct action execution, successor state

axioms to represent the execution effects and complex action constructs to express

elements of programming languages such as sequential, conditional and recursive

execution series. Methods to address the management of situation data and the ever-

increasing length of the action-sequence-based situations are proposed later in this work.

The solution to the frame problem (Reiter, 1991) and methods of handling complex

actions, temporal concerns, sensing actions, epistemic representation and reasoning on

stochastic actions make Situation Calculus very relevant to this thesis.

The Stochastic Situation Calculus provides all the necessary specification techniques to

proceed with this work. In subsequent chapters the observer system will be defined and

methods will be shown, specified for use by the observer system. This includes the

specification of system norms for the participating components, the specification of

federated behaviour that is assessed through the observer system, the specification for

engineering emergence and the specification of deliberation techniques. Additionally

various properties of large-scale systems will be derived for use by the Observation

System. This will be illustrated through implemented simulations/applications that

translates the Stochastic Situation Calculus specification into fully coded operational

examples. Finally the specification technique is shown in application to two case studies.

- 97-

Chapter 5

The Observer Model Signal Grounding and

Engineering Emergence

The major objective of this work is to provide a formalism to permit the modelling and

reasoning necessary for the meta-systems of large-scale complex systems. Much work

already exists on the top-down approach of policy and model based systems, for instance.

Some works are also in progress to address bottom up methods of engineering known

emergence. These facets are encompassed by the work in this thesis and will be

demonstrated through the formal setting of the Situation Calculus in the remaining

subsequent chapters. Additionally, however, this formal setting may be used to provide

deliberative facilities, to the meta-systems, for reasoning over the observed state of the

system. This is done entirely through the logical formalism allowing deduction and other

logical procedures to be used automatically to predict future system

performance/operation and detect component interactions that lead to a particular state.

This leads to three distinct areas of work:

• Firstly, when a particular state is observed to occur the sequence of actions that

preceded that particular state/situation can be analysed, through the formal setting,

thus grounding the occurrence of useful/interesting states for the runtime system.

• Secondly, the low-level interactions that preceded instances of self-organising

behaviour can be replicated at design time for engineering emergence.

• Thirdly, when a particular occurrence of a recognisable emergent or self-

organising behaviour is observed, which has not necessarily been engineered for,

then the properties associated with the detected behaviour can be utilised by the

meta-system.

The operative function through these processes is observation. This observation and the

methods of achieving reliable observation are crucial to this work. Thus, based on the

collectivist approach of hierarchical reductionism, an observer system will be proposed

that allows the system to be seen as component parts, of a single parent level, with

interactions that cause the whole system behaviour not to follow in a linear manner, but

rather emerge from the interactions of the components. This will then be used firstly to

- 98-

address the Signal-Grounding problem, as outlined above. Secondly, it will be shown

how a known emergent behaviour may be implemented, through the Observer System, as

a Markov Decision Process through the Stochastic Situation Calculus. Thirdly, a

particularly relevant class of self-organising behaviour, Scale-Free systems, will be

assessed that has been observed to have a very close association to large-scale man made

and natural systems. This scale-free behaviour has many interesting and useful properties

that may be utilised by a deliberative meta-system.

5.1 The Observer System

The proposed Observer System is built around the deployment of appropriate monitoring

and sensing modules, with guards to bound component autonomy and ensure legitimate

operation, for the system components. These components may be further reduced to

component level with appropriate monitoring and guard facilities. The behaviour of the

components is thus viewed at a reductionist level for the purposes of modularisation but

the interactions can be assessed at the global (containing) component level. This gives the

hierarchical reductionism of the collectivist case where the global behaviour of the

containing system is not necessarily a linear combination of the comprised component

behaviour. Figure 5.1 gives a view of two levels, at a particular point, in a system.

Each component, at the illustrated level of the system, has its own domain specific

observing module that represents the intrinsic knowledge of the component. This is

relayed and stored in a distributed tuplespace where the observer of the containing system

can reason on the state of individual components and more importantly the behaviour that

emerges from the interactions of the n components, in this case. Also norms can be

passed down the system, through the observers, to bound the autonomy of the individual

components The distributed tuplespace is an application of adaptive middleware for co-

ordination, as discussed in Section 3.3.2. Through this representation the formal account

can be expressed from any reasonable perspective: The norms for individual components

can be stated as well as the deliberative mechanisms for the observers, for instance.

The flexibility of this Observer Model lies in its self-similar structure at each hierarchical

level of the system. Each, separated out, observer monitors a set of components, which

may themselves consist of components with separate Observer Systems. Thus the system

is open-ended in either direction through the hierarchy and may be followed upwards,

- 99-

where more high-level goals may be set, or downwards to ever-smaller components,

where more low level functional goals will be satisfied.

component 1

DistributedTuple
SystemSp_

com en!n-1 componentn

Figure 5.1 The Observer System

At each level in the system the Observer System takes the same structure although the

detail would differ according to context with the deployment of the most appropriate

probes for the part of the system being monitored. In this way data emanating from a low

level component can be passed up the observer hierarchy until a level is reached where

the data has intrinsic meaning for that particular observer. This may even result in human

intervention, as any observer system is necessarily bound to culminate in human level

assessment. This allows each component level, in the hierarchy, autonomy of operation

bounded by the purpose of the system as defined and enforced by the associated Observer

System. Furthermore cooperation and coordination is achieved between components at

the same or different levels through the abstract communication facilities provided by the

distributed tuplespace. Such a system is akin to the recursively defined functions in the

Viable Systems Model (Beer, 1979), briefly reviewed in Section 3.2. The components in

the Observer Model represent the SI units of the Viable System Model with the varying

levels of management (S2, S3, S3*, S4 and S5) abstracted and distributed over

appropriate observers in the Observer System.

- 100-

An Observer System conceived of in this way addresses many of the issues identified as

necessary attributes for a Knowledge Plane over the Internet (Clark et al, 2(03), as

discussed in Section 2.6. Edge Involvement is achieved by the pervasive nature of the

observation permeating through to appropriate monitors in the system. The separation of

concerns, treating the observation as separate from the application, allows the formation

of a Global Perspective, through knowledge aggregation at the observers, identifying

heterogeneity and deploying the appropriate monitors and guards accordingly.

Compositional Structure is maintained through the rigorous approach of mathematical

logic and deliberation allowing federated behaviour between non-homogeneous systems.

The Unified Approach is developed through the Stochastic Situation Calculus providing a

rich representational medium and a mechanism to permit deliberation through logical

entailment. This leads into the provision of a Cognitive Framework where reasoning can

occur in the face of partial or conflicting data with resolution realised through the

deliberative stochastic nature of the formalism and the reward/cost based MDP type

analysis respectively. In this way system optimisations and responses to environmental

problems can be handled through the already established means of data handling but with

the additional benefit of meaningful deliberation based on a systemic comprehension of

the intrinsic significance of sensing data. Thus functions presently undertaken only by

skilled operatives may be achieved through automated functions.

S.2 Addressing the Signal Grounding Problem

The Observer System, as described in the previous section, provides a means to work

with the Signal-Grounding problem, as outlined in Chapter 3. The relevant data will

travel up the hierarchical Observer System until a module is reached where the data has

an intrinsic meaning for a particular observer: Rather than simply providing a stimulus to

action the piece of system knowledge will have a precedent and likely consequence to the

system that may be grounded at this appropriate observer module. Conversely norms

grounded at a certain level in the system can be relayed down to the individual

components for which the norm has no intrinsic meaning but is simply a prescription to

be followed. Using the grounded signals within the Situation Calculus representation

allows the evolution of a dynamic self: The circumstances that preceded a situation may

be extracted giving a prediction for actions in a specific context. Reasoning. using

deduction, abduction, induction or inference, can then be performed on the logical

- 101-

representation to supply receptors for perceived signals. In this way new interactions that

cause no harm, and may be beneficial, are allowed.

For example the action history represented by:

do(a,do(a/,do(a,s))) with SR(a,s)~SR(a, do(a/ldo(a,s)))

where SR(a,s) and a=sense, for some fluent f are as defined in Section 4.4.4 and a. is

some deterministic action can be used to provide a new prediction for the results of action

a. where the values of other fluents in situation s form the action precondition axioms for

a. as a context. In this way, action a r, executing in the context of situation s, grounds the

signal for f. So a signal may be grounded by the system and a parameter for autonomic

type response can be adapted at runtime. For example, using the previously defined

sensing and knowledge constructs from the Situation Calculus, suppose a service usage is

monitored via a CPU load sensor within the Observer System: A fluent heavyLoad(s) is

true if the CPU is working at over 60% capacity:

cpuload(do(a, s)) =n <:>[cpuload(s) =n A a.senseCPUWADJ v

[a =senseCPUWADASR(senseCPUWAD>s)=nJ

heavyLoad(do(a, s)) <:> [heavyLoad(s) A((a.senseCPUWAD) v ...(a= senseCPUWADA

SR(senseCPUWAD>s) <60)) Iv
[a = senseCPUWADA SR(senseCPUWAD>s) >60J

Thus an action a/ may be assigned a predicted outcome via the construct:

do(a,do(a/,do(a,s))) with SR(a,s)~SR(a, do(a/,do(a,s)))

with a=senseCPUWAD to deduce:

knowsiheavyload.s) and knows(-.heavyLoad,do(al,s))

In this way the action aI can form the action that returns a system to a required predicted

state, based on a grounded signal for heavy CPU load.

This illustrates the idea of how grounded signals may be extracted or adapted, within a

running system, to be used as autonomic type responses. In relaying deliberation to

higher cognitive entities the Symbol/Signal Grounding problem is circumvented, in some

cases, by the evaluating authority being a human mind. In this case the intrinsic meaning

of the signals is apparent to the expert operator. However it has been shown here that

these same signals may be manipulated by the system's cognitive facilities to adapt the

grounding of the signal to the practical system's actual operating environment.

- 102-

Additionally new signals can be ascertained and assessed by using the usual reasoning

methods of mathematical logic as outlined.

Additionally a mechanism needs to be included to determine the relevance of the

response. In this way correct responses are reinforced whilst poor results lead to the

perceived relevance of the signal diminishing, eventually leading to the signal response

losing all significance to the system, in cases where the grounded signal was detected in

error. An example simple reward system may consist of, for instance:

rewardiregenerateServicei Si.si=r ~S=service/Ar=80v S= service2Ar=60v

service(S) AS. service/AS. servicezAr=40

reward(senseCPUWADts)=lO

cost(aliocateMemory(n, S),s)=0.1 *sizern)
The action regenerateService(S) represents a class of actions depending on the stimulus

that caused the action to be considered for enactment. For instance, in the example from

the previous section, it may be

regenerateService(S).heavyLoad or regenerateService(S).unresponsive

according to whether the action was undertaken in response to heavy CPU load or system

non-responsi veness.

Additionally the rewarding of the action needs to be moved to the successor state, as it is

only here that the success of the prediction can be determined. Thus, for example it may

be stated using a reward for the action performance to cumulatively influence a fitness

function for the grounded response:

reward(regenerateService(S).heavyLoad, doea,s))=r ~=regenerateService(S)A

[(r=lOI\ -.heavyLoad(do(a,s)))v

(r=-lOl\heavyLoad(doea,s)))]

with

fitness(regenerateService(S).heavyLoad, doea,s))=
reward(regenerateService(S).heavyLoad,do(a,s))+

fitness(regenerateService(S).heavyLoad, s)

In this formulation the more successful a prediction of response to stimulus is the higher

the fitness value of the successor state axiom. Thus axioms that fall below a certain

- 103-

threshold can be discarded whilst those with a higher fitness can be treated as first class

axioms with a corresponding increase in their reward value compared to an axiom of

equal merit but lower fitness. Thus the Signal-Grounding problem is addressed by

providing preinstalled, human level, grounding of some initial signal set. The current

state of research means that cognitive systems, culminating at human level, are required

to provide grounding for the signals emanating from the system, in order to evolve

responses for self-governance. However, in this work, grounded signals and appropriate

responses are also extractable automatically from the runtime system. The formalism

permits the critical assessment and requisite adaptation, through the use of the decision

theoretic techniques involving utility, fitness and value.

5.3 Emergent Behaviour in Large Scale Complex Systems

The previous subsection indicated the methods by which an Observer System may detect

new signals and seek to assign intrinsic meaning to the data emanating from a system.

The second important facet of emergent behaviour identified is the interactions that led to

a known behaviour occurring. In such cases the complexly interwoven yet simple low-

level interactions that precipitated some global emergent phenomenon may be isolated

and reused to bring about future instances of the associated emergent global event: Signal

grounding is necessary at runtime to take advantage of newly discovered behaviour

whereas previously detected emergent behaviour may be used at design time to engineer

emergence. Thus the self-organising behaviour such as foraging, herding, nest building

moulding, web weaving and brood sorting, as discussed in preceding chapters, may be

used as the basis of models to achieve the observed desired outcomes: A particular

emergence may be engineered. For instance, the emergent outcomes observed in foraging

have been termed as stigmergy (Grasse, 1959). Although Grasse introduced the term

stigmergy to explain the behaviour of termite societies, the same term has been used to

describe indirect communication mediated by modification of the environment that can

also be observed in other social insects. More recently this approach has been adopted for

manufacturing systems (Hadeli et al, 2005). A stochastic Situation Calculus approach is

especially useful in this regard as treating the scenarios as Markov Decision Processes,

without the requirement for a state space enumeration, allows the parameters to be

assessed and adjusted optimally through the formal setting, whilst preserving the benefits

of self-organisational emergence.

- 104-

5.3.1 Markov Decision Processes and Natural Selt-Organlslng Systems

A Markov Decision Process (MOP) is a model M = < S,A,T,R>where

• S is a set of environmental states

• A is a set of actions

• T is a transition function T: SxAxS -[0,1] where T(sl,a,s2) = p(s2Is1,a): The

transition function gives the probability of entering a state 52when action a is

executed in state 51.

• R is a reward function, R:SxA-9t: This gives a real valued reward, R(s,a) for

performing action a in state s.

A policy, in an MDP, is a function n: S-A that forms a plan in which an action is chosen

according to the current state. For each policy, there is an associated expected cumulative

reward, V":S-m, which is satisfied by the Bellman Equation:

V"(s) = R(s, lC{s))+ Y Is'T(s, 1f(s),s') V'(s')

where O~y<1 is a discount on the value of future rewards. The goal is to find an optimal

policy n» with VJP(s)~ Vr(s) VsES and n; denoted V'(s). The most usual method of

solution is by value iteration (Bellman, 1957): A series of Q-functions are recursively

defined by setting VO=R with VDtermed an n-stages to go value function and

Q"(s,a):= R(s, a) + y ~,T(s, a, s') V'-I (s') for any a

For every state s, a Q-function Q''(s.a) is computed by using VD-)for any action a, and

VD(S)equals the maximal value of QDaccording to a: V'(s) :=max a Q"(s.a)

The Q-function Q"(s,a) denotes the expected value of performing action a at state s with

n stages to go and acting optimally thereafter. The sequence of vaIue functions VD

produced by value iteration converges linearly to V·. It is clear that at each derivation of

VDit is necessary to search the entire state space. To proceed with this approach the state

and action spaces need to be explicitly enumerated. In contrast the merits of using a

propositional account have already been established. There are a number of proposals for

representing MOPs in a propositional account. For instance it is possible to provide a

probabilistic variation of STRIPS (Boutilier et aI, 1999) or use stochastic actions in a first

order representation (Poole, 1997). However following the formal setting of stochastic

Situation Calculus it is possible to use Symbolic Dynamic Programming to look at

- 105-

solutions for MOPs (Boutilier et al, 2001) using the representation described in Section

4.4.5. The functions to represent reward, probability and value are best described in a

case notation so, for instance,

means that the result of the value function in situation s is Vj if the formula C/>,{s) (for

O<isn) consisting of domain fluents, is true. Then the Q-functions are given by:

Q ft(a(x),s)= R(s)+y l:;prob(n;(x),a(x),s) V"./(do(nj(x),s» [A]

The value function value may then be logically stated as:

Now it is possible to consider previously described naturally occurring self-organising

behaviour in terms of the stochastic Situation Calculus. For example consider the

foraging behaviour where ants transfer food particles from food sources to their nest. This

is a relatively simple domain consisting of locations, ants and food particles; ants can

pick up and drop food particles and move between locations. Accordingly, following the

procedure for stochastic actions outlined in Section 4.4.5, it is necessary to specify the

deterministic outcomes for each stochastic action. For example the pickUp action can

succeed or fail, denoted s_pickUp andf_pickUp as appropriate:

choicetpickllpi ant, j), a) :; a= s_pickUp(antf) v a- f_pickUp(antf)

Similarly the stochastic actions move and drop can be decomposed in the same manner

into successful or unsuccessful alternatives. The probability, prob(n,{x),a(x),s), can be

specified for each of the choices n,{x) associated to the action a(x) executed in s:

prob(s_pickUp(antf), pickUp(antj),s) = 0.95

prob(j_pickUp(antj), pickUp(antj),s) = 0.05

prob(s_drop(antj), drop(antj),s)=p:; weus)» p-O.6v-.wel(s)/I p-O.9

In the above-defined case notation this can be written:

prob(s_drop(antf), drop(antj),s)=case[wet(s),O.6,·~wet(s),0.9 J

Similarly for the opposite deterministic primitive of the drop action:

prob(j_drop(antj), drop(antj),s)=l- prob(s_drop(antj), drop(antj),s) is equivalent to:

prob(f_drop(antf}, drop(antj),s)=case[wet(s),O.4,·~wet(s),O.l J

- 106-

prob(s_move(ant,l) move(ant,l),s)=p =pheromoneTo(l,s)Ap-O.99v

«pheromone'Ioil.sis p-o.S

prob(j_move(ant.l) moverant.li.s)»! _ probe s_move(ant.l) moverant.li.s)

Thus it can be seen that dropping a particle of food is more likely to succeed in dry

conditions and a move to a new location is more likely to succeed if there is an existing

pheromone trail to that position.

The described deterministic actions will have action precondition axioms:

poss(s_pickUp(ant,f),s)=(3I)foodAt(f,l,s)AantAt(ant,l,s)

poss(j_pickUp(ant,f),s) =(3I)foodAt(f,l,s) AantAt(ant.l.s)

posse s_drop(ant,f),s) =carrying(f,ant,s)

poss(j_drop(ant,f),s) =carrying(f,ant,s)

poss(s _moverant, /).s)=trne

poss(f_ moverant, I),s)«true

The successor state axioms are:

foodAt(f,l, dota.st) ~3ant[antAt(ant,l,s)Aa=s_drop(ant,f)]v

ffoodAt(f,l,s) A -.(3ant)a=s_pickUp(ant,f)]

antAt(ant,l,do(a,s» ~ a=s_move(ant,l) v[antAt(ant,l,s)A -.(31')a= s_move(ant,l')]

carrying(f,ant,do(a,s)) ~a= s_pickUp(ant,f)v[carrying(f,ant,s)Aa~s_drop(ant,f)J

wetidoia.s) ~wet(s)

pheromoneTo(l,do(a.s) ~pheromoneTo(/,s)

This gives a stochastic Situation Calculus account of the domain. In addition pheromone

levels could be adjusted through ants moving and depositing pheromone whilst carrying a

food particle with a suitable decaying function for the level at a particular location.

To move now towards representing this scenario as an MDP a reward function can be

specified: R(s)= case[(3fJjoodAt(j,nest,s),JOO; -.(3fJjoodAt(f,nest,s),O]

The Q-functions, QV(a(x), s), can be characterised by a single case statement, using

equation [A] and the fact that the reward, probability and value functions can all be

represented as case statements. The problem, however with equation [A] is the presence

- 107-

of a successor situation in the term yn-/(do(n;(x),s». This can be handled using classical

regression techniques (Reiter, 1991). This is possible because the actions, although

stochastic in nature have been decomposed into deterministic primitives. Thus applying

regression gives the properties of the pre-action situation that provide the properties of

the post-action state that effect the value function. So QV(a(x),s) can be derived as a series

of case statements such as: casejalx.si.q} that gives the Q function for the action a(x)

with respect to V. At this point allowance has been made for action precondition axioms;

it is not clear whether any of the n,(x), as choices for the stochastic action a(x) are

actually possible. Thus the Q- value forms a relation QV(a(x),q,s) meaning that a(x)'s Q

value in s is q. This relationship is undefined unless one of the n,(x) are possible in s.

QV(a(x),q,s) EIV; (poss(n,(x),s»)IIq=case[a,(x,s),q;]

For example consider the value function yo regressed through the action drop(antf) with

reward R=VO, discount value y= 0.8 and:

yes) = case[(3j)foodAt(j,nest,s),lOO; -.(3j)foodAt(j,nest,s),O)

That is if some food is in the nest then the value is 100 otherwise it is O.

The resulting value for e(drop(antj),q,s) is a case statement with four elements, after

removing inconsistent and identical cases:

alantJ,s)-3ffoodAt(f,nest,s)

ai antf.s)Ewet(s) IIantAt(ant,nest.s) IIcarrying(j, ant,s) II ...31foodAt(f, nest, s)

alantf.s)E-'wet(s) IIantAt(ant,nest.s) scarryingtf.ant.s) II...31foodAt(f,nest,s)

at antJ,s)E(-'antAt(ant,nest.s) v -carryingtf.ant.si) A ... 31joodAt(f, nest,s)

The associated values for the qj (i=I-4) are: ql=180, q2=48, 'b=72 and q4=O

The representational power of Situation Calculus may thus be observed in this example of

engineering emergence. The model permits the tuning of parameters, which is utilisable

by the Observer System, through a MDP, to engineer various desirable properties. The

example given here is quite a simple scenario. Additional parameters, however, may be

specified to better capture the dynamics present in the natural domain: For example a

measure of the quantity of food in the nest can be added or the Q-value of the move

action can depend on the strength of pheromone present in that situation with the value

term in the case statement dependent on the pheromone strength.

- 108-

5.4Summary

This chapter has presented a proposed Observer System based on a collectivist behaviour

model that is hierarchically reducible solely at each individual component level. The

logical specification and assembled metrics allows deliberation to proceed on the

observed operation of the system. The Observer System, together with the Stochastic

Situation Calculus, gives a means of specifying self-governance to varying scales of

system. To illustrate this two techniques have been proposed for use by the Observation

system with its associated cognitive functions. Firstly the specification was shown of how

the cognitive Observer System would address the Signal-Grounding problem. In this way

newly evolving behavioural models could be incorporated into the specification at

runtime. Secondly it was shown how the Observer System would achieve a controlled

engineering of emergence for the governance of its associated application system:

Parameters are adjusted according to reasoning based on solutions to a Markov Decision

Problem. The next chapter details the manner in which large-scale systems evolve and the

properties associated with the most prevalent form of emergent organisation. Thus the

Observer System may then be endowed with facilities to harness the features of these

systems when their emergence is detected.

- 109-

Chapter 6

Properties of Large-Scale Networks

In the previous chapter the bottom-up perspective on systems design has been considered

through the application of a separate Observer System. Firstly an approach was illustrated

so that the Observer System could extract useful action sequences that gave rise to some

previously unpredictable occurrence. Secondly it was shown how the Observer System

could influence, through a formal model, the evolution of a system providing for the

engineering of a particular known emergent behaviour. Next, in this chapter, generic

properties of complex networks and particular classes of emergent organisation will be

considered that has been observed to be prevalent in large-scale, complex systems. Thus

the Observer System upon detecting some class of global system behaviour will be able

to utilise the properties of the system to either infer some monitoring data, thus scaling

down its sensing operations, target resources for better robustness based on the topology
of the system or influence the system to assemble in a particular desirable way.

6.1 Properties of Large-Scale Complex Systems: Scale-Free Systems

The observed topological structure of the World Wide Web and Internet was briefly

discussed at the end of Chapter 2. This feature of power law connectivity is one aspect

being increasingly observed as a property in many man-made and natural complex

systems. Thus the interactions that result in such global phenomenon and the architectural

properties of the systems exhibiting this behaviour are of importance to the work

presented here. Thus the recognition and properties of such behaviour requires further

investigation. It is through the use of Statistical Mechanics that the development and

features of these systems are explored.

Complex networks have usually been described through the use of graph theory. Simple

designed networks, such as electrical circuits, can be completely described by regular

graphs; large-scale complex systems, however, are too interwoven and complicated for

any design pattern to be apparent: Observed events and evolution appear to occur in a

totally random manner. Thus modelling the systems as random graphs with the same

number of edges and vertices as the system under investigation would seem to be a

reasonable approach: The properties of the random graph ought to correspond to
properties in the actual system. Random graphs, in relation to large-scale networks were

- 110-

first represented by the Erdos-Renyi (ER) model (Erdos and Renyi, 1959), where there are

N nodes connected to each other with a probability p. Thus the maximum number of
connections, when all nodes are connected is N(N-l)12 resulting in the expected number of
connections being pN(N-l)12, distributed randomly. This model has been dominant in the
study of complex networks until very recently when organizational structure was observed
to be necessary for the functioning of large-scale complex systems, such as the World
Wide Web. If complex systems deviate from random topologies then metrics and measures

need to be developed to capture the underlying organizational principles. Whilst many

metrics and measures have been proposed for complex networks, three main concepts

have emerged as the major factors in the analysis and characterisation of these complex

systems:

1. The Small World concept characterises the property that no matter what size a

complex network might grow to be there always seems to be, in most cases, a

relatively short path between any two nodes. The distance between two nodes is

defined to be the number of connections on the shortest path between the two nodes.

Thus the distance between two nodes does not depend on the usual Euclidean distance

but on the interconnections between them. This was noted in the "six degrees of

separation" principle (Travers and Milgram, 1969) where it was shown there is a very

short path of acquaintances between any two people. The property seems to persist

through many large-scale systems. The small world concept however is not evidence

. of some organising principle. Indeed random graphs are examples of small worlds

because if the connection probability p > /n(N)IN then a random graph will be

connected (Erdos and Renyi, 1961). This means that a path can be found between any

two nodes in the system. The typical distance, on a connected graph, between two

nodes scales as the logarithm of the number of nodes and thus tends to be quite small,

making even random graphs examples of small world phenomena.

2. Clustering tends to occur in social networks where circles of friends or acquaintances

occur where every member knows every other member, forming a clique. This

tendency in large-scale systems may be represented by a clustering coefficient (Watts

and Strogatz, 1998). The clustering coefficient for a particular node i is given by the

ratio of the number of edges between the nodes that i is connected to and the

maximum number of edges that could occur between the nodes i is connected to.

Thus if i has k, edges connecting it to k, other nodes (termed i's associates) then the

maximum number of connections that could occur between i and all its associates is

- 111-

k,{k;-l)/2, for undirected links. If the actual number of edges that occur between all

i's associates is El then the clustering coefficient for i is given by:

C, - k,(k,~X - k,(~~~I)· The clustering coefficient for the whole network is then

given by the average over all the nodes: C = _!_ ~ C; = _!_i tE;). Thus the
N; Ni_I k; k;-1

clustering coefficient of random graphs is quite small: The probability that the

associates of a node are connected, on a random graph, is the same as the probability

that any two nodes are connected. Thus the clustering coefficient for any random

graph is p. In the vast majority of real world networks however it may be observed

that the clustering coefficient is very much greater than in a random graph with the

same number of edges and vertices (Watts and Strogatz, 1998). This represented the

initial indication that random graphs could not account for all the behaviours in large-

scale complex networks. Furthermore empirical studies indicate that the clustering

coefficient appears independent of network size in many real world systems (Albert

and Baraasi, 2002). This is the case for ordered lattices where the clustering

coefficient depends only on the coordination number (the number of adjacent nodes

each node is connected to). For instance Figure 6.2 shows a regular lattice ring of 20

nodes with coordination number 4.

Figure 6.1: Regular ring lattice where each node is connected to its 4 nearest

neighbours

If each of the lattice nodes is connected to the K nodes closest to it then the clustering

coefficient is C _ 3(K - 2) which converges to ~ for large K. Regular lattices,
4(K -1)

however do not in general display short path lengths between nodes, as the nodes

furthest away from a neighbourhood cluster, on the opposite side of the ring, for

- 112-

instance, will require there to be many nodes on the shortest path between them. The

Watts-Strogatz model was the first attempt to model real world systems by providing

a method of generating graphs with both high clustering and short path lengths across

the system (Watts and Strogatz, 1998). The model is generated by commencing with a

regular ring lattice of N nodes on which every node is connected to its K nearest

neighbours (KJ2 on either side). Then each edge of the lattice is randomly rewired

with probability p omitting duplicate edges and self-connections. This introduces

pNKJ2 long-range edges that connect nodes that would otherwise be part of different

neighbourhoods. The variation of the p parameter interpolates between a regular

lattice and a random graph, as shown in Figure 6.3. This is for a ring lattice with

N=20 and K=4. A node is chosen and the edge that connects to a clockwise

neighbour. With probability p this edge is connected to a randomly selected node.

This process is carried on until all nodes have been considered once. The figure

indicates the results for different values of p: For p=O (total order) the original lattice

remain unchanged, as p increases the network becomes increasingly disordered until

at p=l (randomness) all the edges are randomly rewired. So at values of p a high

clustering coefficient is obtained together with the small world property of short path

lengths.

Figure 6.2: Random rewiring in the Watts-Strogatz model (Watts and Strogatz,

1998)

3. The degree distribution for a network recognises the fact that not all nodes in the

network possess the same number of connections. There is a range in the number of

edges associated with a node, termed its degree. This range is given by a probability

distribution P(k), the likelihood that a node has degree k: The probability that a

- 113-

randomly selected node has exactly k edges. In random graphs, because every node is

equivalent, all nodes have a degree very close to the average degree for the network,

«k». Thus the degree distribution is a Poisson distribution with a peak at Pt-ck»). As

outlined in Section 2.6 this differs significantly from the observed distribution for the

World Wide Web (Albert et al, 1999), which, in common with the Internet (router

level graphs) (Faloutsos et al, 1999) and cellular networks (Jeong et al, 2(00)

amongst many others, display a degree distribution with a power law tail: Instead of

the Poisson distribution that would be expected in the random graph representation

P(k) - e-tzl Ik! (Bollobas, 1985) where z=<k>, the average degree, the distribution

is given by P(k) - ck-A for some A. with k=m,M where m and M are the lower

and upper bound respectively of the nodes' connectivity and c is a constant

normalisation factor. This distribution of node degrees suggests that there will be

many nodes possessing a low connectivity but, crucially in the tail of the distribution,

a small number of nodes with a very high degree are expected. Thus there is a lack of

scaling around the mean connectivity leading to such systems being termed scale-
free. This means that systems attaining or passing certain thresholds exhibit

simplified or self-organising behaviour despite their complex nature. It may be

observed that the scale-free type network will be highly resistant to the random

removal of nodes, as most nodes have low connectivity, but may be susceptible to

specifically targeted attacks, against the few highly connected nodes. This has

prompted such networks to be labelled as robust yet vulnerable. Such a system is

illustrated in Figure 6.4 where the large square nodes can be observed to form a hub

connection backbone for the system. The removal of one of these larger hubs may

seriously compromise the integrity of the system, whereas removal of one of the

smaller (less connected) nodes would hardly be noticed. These properties may be

utilised by a cognitive observer system to identify and protect vulnerabilities whilst

benefiting from the underlying robustness and fault tolerance of the system.

These discoveries of the concepts and properties of small path length, clustering and

power law degree distributions have changed the manner in which large-scale-complex

systems have been studied over the past few years. There are three distinct models for

large-scale network systems: Firstly random graphs are still applicable to many classes of

systems and act as a benchmark on which to base the observed characteristics of complex

network systems. Secondly small world models interpolate between random graphs and

- 114-

highly clustered regular lattices. Thirdly power law distributions for large system

connectivity has introduced many models of scale-free behaviour that attempt to explain

and promote the power law tails, in the distribution, through specific low-level

interactions amongst the system participant components.

Figure 6.3: Typical topology of a scale-free system

In contrast to scale free systems, small world networks are most usually homogeneous in

their degree, with most nodes possessing a degree very close to the average, and cannot

exhibit system growth as the node number is fixed. Many real world networks exhibit

very strong growth and, as previously noted, are not homogeneous in node degree. It is

for this reason that the metrics and measures used through this work will be presented

through a scale free perspective: Scale-free behaviour has been widely observed to be a

very common feature in large-scale complex systems. Thus by harnessing the properties

of this complexity it ought to be possible to promote more scaleable methods of

achieving system self-governance by the detection and utilisation of scale-free behaviour.

6.2 Scale-Free Properties and Metrics

Scale-free topologies have been observed to occur as a property in many different forms

of large-scale complex systems. The Internet, as routers (vertices) and links (edges), and

the World Wide Web, as Web pages (vertices) and Hyperlinks (edges), has already been

- 115-

noted as primary examples of this phenomenon in man-made systems (Albert et al, 1999

and Faloutsos et al, 1999). Additionally, as more data on the topological structure of large

networks become available, it is apparent that this organisational behaviour is extremely

widespread in complex systems: Actor collaborations (Barabasi and Albert, 1999),

scientist collaborations (Newman, 200 1), metabolic networks (Jeong et al, 2(00),

ecological systems (Montoya and Sole, 2(00), citation networks (Redner, 1998),

telephone call patterns (Aiello et al, 2000), flare patterns on the sun (Paczuski and

Hughes, 2004), civilian war casualties (Alvarez-Ramirez et al, 2007) and even the goal

scoring propensity of Brazilian soccer players (Onody and de Castro, 2004), amongst

many more examples, have all been shown to organise in a scale-free manner. These

examples are summarised in Table 6.1 for degree distributions given by P(k) - k-)..

Neither random graphs nor small world networks reproduce this significant

organisational property observed so widely in the real world (Albert and Barabasi, 2002).

The mechanisms for producing such features and the metrics and measures associated

with the component interactions and global system outcome are vital for efficient

deliberation by an observer system on a large-scale network system. There are two

generic aspects of real systems that are absent from random graphs and small world

networks; namely growth and preferential attachment. The ER model assumes a fixed

number of nodes that connect with uniform probability, whilst small world networks

likewise assume a fixed node set that reconnects according to distance. In contrast most

real systems are open, the number of nodes varies with time, and most commonly the

network continuously expands by the addition of new nodes that connect to nodes already

present in the system. Additionally most real networks do not display random dynamics

for connecting up nodes rather they exhibit tendencies to preferential attachment, such as

the likelihood of connecting to another node is dependent on that nodes degree. For

example a newly created Web page is more likely to have hyperlinks to already well-

known popular pages with an existing high connectivity.

The Barabasi-Albert method for constructing scale-free systems combines these

properties through growth and preferential attachment into two steps (Barabasi and

Albert, 1999):

• Growth: Starting with a number of nodes, mo add a new node, at each point in a

series of time steps, which connects to m (smO> existing nodes with m edges.

- 116-

• Preferential Attachment: When selecting the nodes to attach to it is assumed that

the probability P that a new node connects to node i is dependent on the

connectivity k, of that node, so that:

P(k;) = i~j
j

Table 6.1: Scale-free systems with P(k) -k·).

Ir".---,---.:--::----::------- r--:::---r-=---:------,-"...".- - ---

I

I

This account gives a network where the probability distribution for the connectivity of the

nodes is a power law with an exponent of approximately 3 (Barabasi and Albert, 1999).

This, however, is not a universal network model but rather a minimal expression of the

underlying mechanisms in the emergence of scale-free topologies. It predicts a power law

degree distribution with a fixed exponent of 3 whereas Table 6.1 shows many different

exponents scattered in the interval [1,3].

Extensions to the scale-free model, such as rewiring (Sayeed-allaei et al, 2005) and

evolution (Albert and Barabasi, 2002) have provided a consistent model of real world

scenarios to account for scaling exponents and connectivity cut-offs, for instance. The

- 117-

scale free model however neglects to take into account an aspect of competitive systems.

That is the nodes are not homogeneously attractive irrespective of preferential

attachment. Some nodes are better than others at attracting new links. The model predicts

that node i's degree k, at time t is given by:

k,(t)-¥.

where ~ is the time at which node i was added to the network. Thus the oldest existing

nodes have the highest degree as they have the longest time to acquire them. If this were

the case for all systems any new component in a system would have no chance of

acquiring links. This is obviously not the case, as, in any real world example system, new

successful nodes or components can emerge. This is because some system constituents

have a higher fitness value that makes them more adept at competing for links at the

expense of less fit components. Thus varying fitness provides extra scaling in that the

time dependent connectivity ofthe node depends on the node's fitness. As detailed above,

for preferential attachment, the probability that a new node will connect to node i is given

by:

P(k;) - i~J
J

To model the ability of nodes to pick up connections, irrespective of solely its existing

connectivity a fitness parameter fj is assigned to each node. Initially it is assumed that this

is unchanged with time. However in real systems fitness will vary with time and this may

be handled via the reward and cost functions to produce a fitness value based on selected

actions. So now it is assumed that the probability PI that a new node connects to an

existing node, i, depends on the connectivity of i, k; and the fitness of if,where fis chosen

from a distribution such that:

This provides the simplest formulation whereby fitness and preferential attachment can

be taken into account when new nodes "decide" which existing nodes to link with. This

means that even a recently added node with few links can acquire connections at a high

rate if it has a sufficient fitness level. If, as in the originally stated Barabasi-Albert model,

- 118-

m links are added per time step then nodes introduced at a later time can also gather a

high number of links: A node, i,collects links at a rate:

If the nodes' fitness is homogeneously distributed, that is each node has the same fitness,

then the regular scale-free model is exhibited. So k,(t) _(k)1I1.

In order to solve these equations it is assumed that as k,emerges over time it still follows

a power law distribution but now there is also a new scaling in the system because of the

fitness function.

As such networks such evolve, a similarity to physical systems can be noted. The

dynamical properties of the evolving system go through three distinct phases.

• A Scale-Free Phase This is when all the nodes have fitness values tightly

clustered around a mean-value and the model reduces to the general scale-free

model. In this the first mover wins because the older nodes gather the most links

with connectivity tl12 so that old nodes with low t, have a high k; However the

oldest, most connected nodes are not the outright winners as its proportion of

links kmaJt)/(mt) tends to 0 in the limit. Thus, as described in (Barabasi and

Albert, 1999) a connected hierarchy of large hubs coexist with degree distribution

given by the expression Pik) _k"J.

• A Fit Get Rich Phase This phase emerges where the nodes have varying

fitness's. Nodes increase their connectivity with time but the dynamic exponent is

larger for more fit nodes.

• A Winner Takes All Phase In this stage the competition for links entails the

node with the greatest fitness emerging as the clear winner. There is an emergence

of new competing nodes but the fittest always acquire a finite proportion of links

This gives the unique response to node failure, exhibited by scale-free networks, as

manifested in the fraction of nodes that can arbitrarily be removed from a network

without affecting the system connection integrity. Random networks disintegrate; into

isolated clusters after a critical number of nodes have been removed. This critical

threshold all but disappears for scale-free networks with degree exponent less than or

- 119-

equal to 3 (Cohen et aI, 2002). These networks break apart only after all the nodes have

been removed. In practice this means hardly ever.

As previously stated the Barabasi-Albert model provides an indication of the dynamics

promoting the observed scale-free behaviour. The addition of a fitness function to

represent the nodes ability to gain links further improves the model in relation to real

world systems. For instance in citation networks the number of citations a paper receives

tends to decrease with age. In the plain Barabasi-Albert model, where the rate of

attachment is proportional to the degree, the opposite is true: The older the node the more

links it will gain. Indeed if the more mature nodes, in the Barabasi-Albert model, are

disregarded then scale free behaviour ceases to be evident. Scale-free behaviour,

however, is extremely prevalent in observed large-scale systems. In order to account for

this further models have been proposed to take account of the impact of age on the nodes

ability to acquire new links. This amounts to specifying a fitness function on a node that

determines its ability to acquire new links.

The Klemm-Egufluz model (Klemm and Egufluz, 2002) addresses this problem by

seeking the production of a highly clustered scale-free network based on the low-level

nodes degree-dependant deactivation dynamics. This model suggests a more directed

approach to facilitate a node being able to link to other nodes but not necessarily being

able to accept links. A node can be inactive or active: Active nodes can receive links from

other nodes whilst nodes are deactivated with probability P and can then no longer

receive links. The probability P decreases as the node degree increases. Thus the more

links a node possesses the less likely it is to be deactivated: If k is the degree and a is a

constant bias then Pacl/k+a. The dynamics are as follows:

1. Add a new node i to the network with no connections so k;=O

2. Attach m outgoing links from i to m active nodes, such that each of the m

nodes receives one extra link.

3. Activate i

4. Deactivate one of the active nodes. The probability that an active node j will

1p(k j) - 1 The summation in the
(a+kj)}:-k

IEAa+ I

be deactivated is given by:

denominator runs over the set A of the active nodes.

- 120-

5. Goto 1

This is shown to produce a network structure with higher clustering coefficient of 5/6,
larger than in a regular lattice, and scale-free, power law connectivity with exponent

a2 + - as a global outcome (Klemm and Egufluz, 2002). The scale-free networks
m

produced through this method have a resemblance to a regular lattice in the parameters

observed. It seems to follow that a sequence of phase transitions ought to exist

interpolating between regular lattices and scale-free systems. An attempt to reproduce a

scale-free model with preferential rewiring on a regular lattice combining the Watts-

Strogatz and Barabasi-Albert models fails because, although the more connected nodes

continue to become more connected, the overall acquisition of nodes increases uniformly

across the system (Kawachi et al, 2004). Thus there are no corresponding sparsely

connected nodes: In the construction of a scale-free model the rich get richer but the poor

must also become relatively poorer. Thus a procedure which showed a continuous

interpolation between regular lattices, small world networks, random networks and scale-

free systems would be of benefit to the Observer System in deploying appropriate

monitoring probes and assigning various properties to different levels or sectors of the

system based on its derived topological structure. A fixed cardinal structure transition is

defined (Kawachi et al, 2004), where:

1. Each node i is selected in tum together with an edge that connects it to a second

nodej.

2. With probability p the link i-j is deleted and the highest degree node of i and j is
rewired to connect to a third node I: If k;>kJ then i connects to 1 otherwise when

kj>k; then j connects to I.

3. Node I is chosen according to the probability: n(k,) - ~~' + I)
km + 1

m

4. Repeat procedure for every link of every node then repeat.

It is observed that p=O gives the regular lattice. p=la2 gives a small world type network

with scaling around the mean degree, a large clustering coefficient and small path lengths

between nodes. p=la°.J gives a random network with scaling around the mean degree,

low clustering and small path lengths between nodes. Finally r=! reduces to the

• 121·

Barabasi-Albert model with power law degree distribution but low clustering and small

path lengths between nodes. This is illustrated in Figure 6.4.

...
Regular Latti e Small W Id

tw rk

p=O p=J

Figure 6.4: A structural phase transition

Thus it is possible to account for most types of behaviour within large-scale complex

systems by the adjustment of parameters and interpolation is possible from a regular

lattice, by nature displaying a high clustering with long path lengths to a small world,

with high clustering and short path lengths to a random network, with low clustering and

short path lengths to either a scale-free (Barabasi-Albert) system with low clustering and

short path lengths or a scale-free (Klemm- Egufluz) system with high clustering and short

path lengths. The recognition and topology determination is thus of major interest for

Observer System deliberation. The algorithms influencing connectivity are summarised

in Table 6.2.

Table 6.2: Comparison of network construction algorithms

~~I Random ~IIU tering rm tributionI ~ I World I Free!r--S-ar-ab-aS-i-A-'-be-rt-rrrrl Low 1 PowerLa~

1~:~i~!·A:~~onre. 111""~-u~-~-io-n;-ith-'Ir'I-po-W-er-La-w--

I
on function General Iy

HighIr-W-a-tts---Str-o-ga-tz--rrrri High : Normal

I Klemm-EquHuz rrrrr--, HI-'gh--

IKawachiet al rrrri High

- 122-

6.2.1 The Hub Connection Density Measure

It has been noted. through this chapter, that one of the most noticeable features of scale-

free topology is the formation of high degree hub nodes. In view of the defining role of

hubs and hub-to-hub connectivity in the exhibition of the "robust-yet yet-fragile" nature

of self-organisation in scale-free systems. the most obvious measure to assess whether a

system is exhibiting scale-free organisation is to gauge the extent to which hubs are

forming and connecting in the system. High hub density can be characterised as high

degree nodes (or hubs) connecting to other high degree nodes. The rearrangement

inequality (Wu and Liu, 1995) states that:

Thus if the product of connected node degrees is assessed then a measure will be

maximised when high degree nodes are connected to other high degree nodes (Li et al.

2(05). So if the set of links for the system is C, meaning that if node i is connected to

node j then (ij)EC for any nodes i and j ,then ~ kikJ is maximised when high degree
(i,j)EC

nodes are connected to high degree nodes. The hub connection density is defined for a

graph consisting of a set of vertices, V, with IVI = N and a set of edges E linking the

vertices, as: ..!.. ~ kik J for any vertices i and j with degrees k, and kj respectively. This
N(i,j)EE

then gives a notion of hub connectedness across the nodes in a system modelled as its

analogous graph. In a similar way to (Li at al, 2(05) this measure attempts to quantify the

nature of hubs in the system that is mathematically rigorous and allows the detection of

scale-free organisation. Furthermore, in the next chapter, the measure will be empirically

evaluated to provide the limits of phase transitions from regular lattice to small world

network through random network to scale free system. Thus giving a measure to assess

the actual topology of the systems evolution and so inform the Observer System of the

most appropriate monitoring for the system and its components.

6.3 Acquaintance Monitoring

To adequately monitor a large-scale complex system, for autonomic response, for

instance. a large fraction of the nodes have to be observed to form a reasonable

knowledge of the global system's state. In scale-free systems. however, system state

- 123-

awareness is centred at the hubs, which make up a small proportion of the whole network.

The distributed data regarding sensing results, from within the complex system, including

inter-node monitoring tends to accumulate at these hubs. Thus extracting the most

relevant data for system self-governance is dependent on the detection and identification

of hubs to the Observers System modules. In practice the identification of hubs requires

global information, so to form a representative sample of the data held at the computing

nodes involves using random walk algorithm methods, selecting those nodes with the

highest degree and monitoring these nodes. However this approach gives no assurance of

successfully detecting the major hubs and is subject to local optimisation.

In this work the acquaintance immunisation strategy (Cohen et al, 2003) is adapted to

randomly traverse the graph towards the hubs along their acquaintance arcs, for a

quantifiable fraction of randomly chosen hubs. This is mathematically and experimentally

proven (later in this chapter and the next) to give a high accuracy hub detection method

for a monitoring selection algorithm based on a reduced set restricted to the system

knowledge hubs. It is widely known that to be successful in protecting a network by

randomly immunising members requires a very large proportion to be immunised and so

arrest epidemic conditions. Percolation on scale-free networks, where the percolation

threshold tends to 1, shows a large proportion of the nodes have to be removed before the

network is compromised (Cohen et al, 2003). In a similar way a large proportion of the

nodes have to be immunised otherwise the network remains contagious. Knowledge

propagation over the system can be thought of in a similar manner. In order to maintain a

reasonable knowledge of the system state a large proportion of the nodes need to be

monitored.

Considering the "robust yet fragile" nature of the scale-free networks; the fragile refers to

the fact that the most highly connected nodes or hubs in the network can be targeted for

attack and their removal can compromise the network. Thus the best possible course of

action for observation ought to be targeting the hubs for monitoring. In this way any

threat to the hub structure can be dealt with at the earliest possible detection, but also the

majority of the system knowledge is contained through the hub structure of the system. In

effect the hub connectivity system forms a self-organising network overlay. This type of

topology is observed through systems of peer-to-peer networks based on JXTA

(Traversat et al, 2002). In JXTA each hub maintains a list of all the other known hubs in

the system. At periodic time intervals the hubs pass this list to all the other identified

- 124-

hubs. Over time it is expected that all the hubs in the system will be discovered. The

identification of hubs, however, is a problem, for large complex networks, as previously

stated, because information regarding the degree of every node in the network is not

necessarily available. That is there is a lack of global data. Schelling's model (Schelling,

1971) has been used in a pure peer-to-peer setting to create an adaptive overlay network

(Singh and Haahr, 2006). This approach, whilst useful in a peer-to-peer system, assumes

a static homogeneous system of nodes and may still precipitate local optimisation, due to

unknown node data and the lack of global information, resulting in network partition.

Acquaintance Monitoring Selection (AMS) removes the need for global data. For AMS,

at any point in the systems evolution, a random proportion r of the N nodes is chosen and

a random acquaintance that they are connected to is searched for. The acquaintances

rather than the original nodes are monitored. The nature of scale-free networks means

that in most cases the nodes chosen for monitoring will be of higher degree than the node

that nominated them. The fraction r may be more than 1 as a node may be queried more

than once. However the fraction monitored.j, will be always less than or equal to 1. So to

monitor the network it is necessary to calculate the critical fractions for the network. That

is the critical fraction of the nodes that need to be chosen re and the resultant critical

proportion that are monitored to gain all the knowledge in the system located through the

virtual hub overlay j, can be calculated. Thus for networks displaying the characteristics

of scale-free topology a simple value can be calculated and the algorithm invoked to

effectively monitor the whole network by monitoring only the key nodes.

The probability that a node with k connections in a system of N nodes is selected for

monitoring is:

kP(k)
N~nP(n)

/I

where P(k) is the power law distribution for connectivity. This ratio quantifies what is

observable within scale-free scenarios: randomly chosen acquaintances possess more

links than randomly selected nodes. This is extremely useful in statistically obtaining a

high assurance that tends system hubs to be identified.

To analyse and determine the methods required producing the critical fractions it is

necessary to look at the nodes that randomly selected nodes connect to. That is following

- 125-

a branch starting from a random link, on a spanning cluster, there will be a level, I,where

there will be ntk) nodes of degree k. At the next level/+I each of these nodes has k-I

neighbours (excluding the nominating acquaintance node). Let the event that a node with

degree k remains unmonitored be Ric- To establish the number of nodes of degree k' that

are unmonitored at Ievel I+J, n,+lk'); the number of links emanating from the Ith layer, is

multiplied by the probability that a node of degree k' is nominated by an unmonitored

node at level I: p(k'/ k, Ric)'Then it is necessary to multiply this by the probability that

this node is unmonitored given this nodes and its neighbours degrees and the fact that the

neighbour is unmonitored: p(R". / k', k, Ric)'So:

nl+,(k') - ~n/(k)(k -1)p(k'l k,R")p(R,,. Ik',k,R,,)
J

[1]

and using Bayes Theorem:

(k'l k R) _ p(RI; Ik,k')p(k'l k)
p '" p(RI; Ik)

At each time step a random site (with degree k, say) is chosen with probability liN. The

probability of being reassigned to a specific acquaintance is 11k. So the probability that an

acquaintance is not selected at one attempt, and thus remains unmonitored, is: l-ItNk.

Now the number of nodes multiplied by the fraction of nodes that observation is being

attempted for gives the number of monitoring attempts: rN. Thus for all attempts the

probability that a node is not chosen is given by:

-r

This quantity is approximates to e k

If the neighbour's degree is not known then the probability that an acquaintance is not

chosen is the average of the v, taken over k. It is also apparent if a neighbour of known

degree is monitored this does not provide any additional data about a nodes probability of

observation. Thus

- 126-

-r

(ktl k R) _ Np(ktl k)e le'
p 'I: -r

}:eT

Substituting in [1] gives

n,+,(k') - V:'-2p(k'i k)e-rlkl~n,(k)(k _l)e-r'k
I.:

Since the summation does not depend on k' then nfk) is some constant factor of n,+lk'),

so that

nl+1(k') -= nl(k') ~p(k Ik')(k _1)v:-2e-2rlk
k

This then gives a critical phase measure: If the sum is larger than 1 the branching will

continue indefinitely. If it is smaller than 1 a monitored node is encountered. An

expression for the critical proportion of nodes needed to be selected, re is given by:

}: P(k)k(k -1) 1c-2 -2r It 1
v e ' -k r,

le

The fraction of monitored nodes can be easily obtained from this expression. These

results show that strategies such as random walk for Internet type networks (exponent in

power law connectivity is between 2 and 3.5) selection require fe=l, whereas using the

acquaintance monitoring algorithm requires a monitoring threshold of fc::::O.25(Cohen et

al, 2003) This proves the value of this approach for when applied, as a monitoring

strategy, to a system exhibiting self-organisation through scale-free connectivity.

6.4 Monitoring Strategies and Memory Management

The Signal Grounding problem was investigated in this work and possible ways around it

proposed earlier in this chapter. The solution, however, required the Observer System to

maintain a large number of action histories in order to achieve the grounding of some

system signals. Following the investigation of Acquaintance Immunisation and

monitoring on scale-free networks it may be possible to trim the situation space via the

application of these principles to a Situation (action history) space. To attempt to achieve

such a reduction in required memory space for action histories the representation of the

situation space is required to conform to scale-free principles. Thus it is proposed that

within the situation space two nodes are linked if the sense-action-sense procedure leads

- 127-

to the expected or grounded response for a particular fluent. In the terminology and

formalism used previously: Two situations (action histories) Si and Sj are connected if

there is some fluent F (assumed to be a relational fluent. for now) that changes value in

situations Si+1 and S)+} for actions a/ and a2 respectively. That is there is grounding for F.

So there is a link between two situations if:

knOWS(...F,S;) and knowsili.doia., S;) and

knows(...F,Sj) and knows(F,do(a2, S) deduced from

do(a,do(a}>do(a,s»» with SRCa,s).sR(a,do(aJ,do(a,s»)

do(a.dot a2,do(a,s»» with SR(a.s).sR(a,do(a2,do(a,s»)

where a=senseF

In this way situations are linked according to preferential attachment. with the number of

connections the fluent grounding already possesses determining the likelihood of further

links with fitness varying according to the success or failure of the actions in changing

the fluent values. Additionally some situations will naturally drop out as the fitness for

grounding a fluent diminishes through the learning procedure previously outlined. In this

case the links to that "lost" situation will be transferred, via the existing mechanism, to

another situation. This means that different situations (action histories) are linked via a

signal having the same ontological relevance to those situations. So connected actions

histories. although seemingly different, can be thought of as representing equivalence

between situations with a scale-free connectivity based on preferential attachment

6.5Summary

At each application level in a system an observer may be placed to provide cognitive

monitoring for use at that location and throughout the wider system. To this end three

topics have been identified and addressed as highly relevant to the operation of large

seale complex systems under the influence of a deliberative cognitive observer system:

a) The establishment of the conditions that resulted in new unforeseen emergent

behaviour (Signal Grounding).

b) The engineering of emergence: Reproducing a known emergent outcome

through the programming of the low-level component interactions.

- 128-

c) The provision of metrics and measures that promote or assess the emergence of a

wide class of behaviour observed to occur in large-scale complex systems, scale-

free connectivity.

Thus the previous chapter progressed with a treatment of signal grounding based on

deliberation over action histories in the Situation Calculus. The subsequent grounding

could then be assessed by future operation and maintained or dropped from the

cognitive systems' consideration accordingly. The engineering of emergence was

assessed through a previously defined known model of the emergent behaviour resulting

from food foraging observed in many natural domains such as ant colonies. The

behaviour was assessed by means of a Stochastic Situation Calculus representation of

the domain as a Markov Decision Problem. Through this model the Observer System

would be able to analyse and influence the engineering of very particular emergent

outcomes through the adjustment of the domain parameters.

Now, in this chapter, the emergence and prevalence of Scale-Free systems is described.

The power law distribution for connectivity has been observed to occur in very many

large-scale manmade and natural complex systems from the Internet to solar flare

patterns. In order for the Observer System to utilise this property it is necessary to

understand the phase transitions that may occur in the evolution of these systems. The

particular observed occurrences involved power law connectivity with high clustering.

High clustering was shown to be a feature of small worlds that reduced to random

graphs on sufficient applications of the small world algorithm on a regular lattice

system. Preferential attachment, growth and fitness were identified as key features in

promoting scale-free behaviour as observed in large-scale complex systems. In order to

assess when a system was behaving to scale-free principles the hub connection density

measure was proposed based on the connectivity of the system hubs. Additionally a

light monitoring strategy especially suited to scale-free networks was proposed based on

acquaintance immunisation. The chapter concluded by extending this strategy to deal

with the explosion in the number of action histories requiring to be stored in the

accomplishment of the signal grounding techniques outlined earlier. These measures

and properties of scale-free and large -scale systems will be evaluated experimentally in

the next chapter.

- 129-

Chapter 7

Executing the Specification

The previous chapters have presented a theoretical and deliberative framework for the

representation and analysis of distributed computing systems of any scale. The ubiquity

of the (Stochastic) Situation Calculus has been shown to

a) Allow the specification of top-down approaches for representing normative

positions for centralised control.

b) Permit the deliberation necessary for bottom-up functionality to be utilised in

three ways:

o In the detection of some new emergent features (through signal

grounding).

o To engineer particular instances of previously realised emergence

(through parametric adjustment)

o To detect various instances of a particular generic network topology with

associated metrics that enable the harnessing of the systems complexity

providing, for instance, more efficient monitoring strategies.

This chapter presents example implementations arising out of the (Stochastic) Situation

Calculus Specification. It commences by describing the implementation of a system

based on an extensible BDI used by a centralised system controller in autonomic

middleware, using a single observer. Then it continues, after a brief introduction to the

Netlogo (Wilensky, 2(07) simulation environment, by describing the topologies of large

complex systems through an analysis of the types of system structures that occur and an

implementation of the algorithms for the interaction dynamics presented in the preceding

chapter. This involves implementing the algorithms to produce and compare the global

topological structure and properties of these systems. The simulation continues with an

implementation and evaluation of Acquaintance Monitoring Selection procedure. Finally

the knowledge acquired through one application of the AMS is assessed for a variety of

systems. Additionally, in Appendix 2, a simple scenario is implemented to illustrate the

grounding of a particular global outcome. This also facilitates the recording of action

- 130-

histories to permit the associated trimming of the situation space that maintains the

amount of system knowledge available to the observer whilst removing duplicated and

redundant data without global information regarding the data content, location or

relevance.

7.1 A Normative Autonomic Scenario

This section describes the implementation of a model autonomic control service based in

the middleware. The control service incorporates three core services, embedded in a

three-layered model comprising: the service manager, the distributed shared system tuple

space service and the system controller incorporating an Observation System. The

architecture is based on a control service model that continuously monitors the specified

service for non-ideal behaviour, to identify conflicts and errors, prescribing repair plans

and performing reconfiguration.

The system monitor, the system reconfiguration module and the system repair strategies

consisting of resolution actions determining when, where and how the repair is applied,

form the major part of the meta-system: It is here that the resolution strategies

(intentions) are chosen based on the deliberation of the component over its role,

responsibility, reward and regulatory strictures through an Extensible BDI based on

beliefs, roles, the situated intentions, the normative intentions and the reward intentions:

• Beliefs correspond to service information derived from a range of sources,

including domain, environment or the communicated beliefs of components

via the shared space.

• Roles represent the state of affairs in an ideal world that often maximize the

service's own goals in terms of fulfilling a desire. By comparing the system

belief set (observed system states) against its stated role, the system may

detect a mismatch and instantiate a set of intentions. So the system high-level

desires are propagated throughout the system to lower level management

systems in a form that sets desires local to the services. For instance the high

level goal of availability manifests itself in the goal of setting a repair strategy

for services the agent believes to be damaged. Component roles provide action

triggers to specify the requisite resources.

• Situated intentions represent action sets for the system to undertake in a given

situation to achieve its specified desires andlor to address the mismatch

- 131-

between the system environment (beliefs) and the system's desires (goals)

including acting as a resource for other components and maintaining system

norms.

• Normative intention represents a set of actions to be undertaken to ensure a

specified set of rules and regulations, including obligation and responsibility,

rules are observed, via a dynamic utility representation. before a given

intention is enacted.

• Reward intention represents a set of system actions to optimize goal-oriented

intentions such as minimizing costs or optimizing quality of service.

For this implementation the beliefs, desires, goals and intentions can be described as

being collections of constraints, each of which represents distinct pieces of beliefs, desire

or goal and so on. These constraints are generated using service beliefs and desires. In

this implementation, beliefs are a runtime service's states such, as a service is available

for client requests or not. Intentions are the system actions (execution), which are, for

instance, triggered because of a mismatch between the system beliefs and system desires

sets using the norms. Thus service states can be deliberated upon and strategic

management executions propagated throughout the system.

The deliberation procedures required for intention resolution is formally specified in the

Situation Calculus, to illuminate the EBDI processes. For instance, a report of an

unavailable service in the system space triggers a situation whereby the role of service

reconnect is activated in the system controller: When the system detects a failure to

connect to a service it automatically retries as a responsibility to the connecting

component/agent. On failing a predetermined number of times it then attempts to connect

to an alternative service and/or starts a diagnostic process assembled from its available

resources resulting in a repair strategy committed intention. The Situation Calculus

representation of the entire EBDI deliberation process, for a session id, can be specified,

for instance:

retrialiid, do(a.s)) «> retrialiid, s) "

-03 ttaereadispacer+decisloniid, t))Aretriedtid.s) v aeretryttd)

withposs(retry(id), s) ::;>availableiservice, s)"retriedtid.s)

giving rise to additional successor state axioms:

- 132-

retriediid, dora,s)) ~ retriediid, s) v Ita=readtspacer-« ...avallableiservice, S))A

retrialild.s)]

availableiservice, doia.st) ~available(service,s) A

... (aereadispacei-« ...connectediservice.si)

connectediservice, doia.si) ~ (connectediservice.s) A

a" f_connect(service)) va= s_connect(service)

with poss(j_connect(service),s) ~ remoteservice exceptioni s)

poss(s_connect(service),s) ~ requestiid, s)

If the system remains unavailable after retrying a specified number of times then a

diagnostic state would be entered leading to repair strategies based in the implemented

scripts.

diagnosing(service, dora,s)) ~ [dlagnosingiservice.s) A

...3fault(a= service(jault))Jv (aefindfaulti servicet)

with poss(jindfault(service),s) ~3 id (retried(id,s)) A ...connected(service.s)

leading to

repairing(service, dol a,s))~[repairing(service.s) A

-dr(a=repaired(service)]v (a=repair(service))

with poss(repairedi service),s)~vailable(service.s)

poss(repair(service),s)~iagnosed(service fault.s)

Similar representations of self-governance can be derived to give a complete specification

and used to specify an implementation for this autonomic control feature: Although full

details of the implementation are outside the scope of this thesis, the specification can be

coded and executed, further details are available in the given references. To summarise,

the implementation is executed through a Cloud architecture (Miseldine and Taleb-

Bendiab, 2005a). It is defined to enable the autonomic framework to function using a

developed language, Neptune (Miseldine and Taleb-Bendiab, 2005a). which allows

management objects to be compiled and inspected at runtime. The cloud can be thought

of as a federation of services (component agents) and resources controlled by the system

controller and discovered through the system space. The system space provides persistent

data storage for service registration and state information giving the means to coordinate

- 133-

the application service activities. Neptune exposes policies and decision models for

system governance, derived from the Situation Calculus/EBDI model, as compiled

objects that can be inspected, modified and executed at runtime. Thus the system can

evolve as modelled by the logical specification in a safe and predictable manner giving

the adjustable self-management required. Neptune objects are executed on demand

through an event model exposed by the clouds architecture.

The system controller with an associated Observation System controls access to and from

the individual services and resources within the cloud. It brokers requests to the system

based on system status and governance rules, in Neptune objects, derived from the EBDI

deliberative process as stated above, either as an abstraction that inspects calls between

the System Space and services, as in Figure 7.1, or as a monitor that analyses the state

information stored within the system space as in Figure 7.2.

System Controller

Do o
10

Figure 7.1: System controller managing system space

B
Figure 7.2: System controller as system space monitor

- 134-

Each service and resource when it first registers itself to the Cloud sends a meta-object

serialized from an XML definition file. This meta-object contains the properties and state

data of the service it is describing and is stored within the System Space at registration.

Each service maintains its own meta-object and updates the System Space when changes

in state occur. The XML definition file contains all information required for the Cloud to

discover the service through registration contained in the service element. This allows the

querying of the service status through the published state properties contained within the

state element.

In addition to the meta-objects exposing properties of a service within the Cloud, they

also describe events that can be fired, caught and handled. The event model begins by the

service informing the System Controller when an event is fired, which itself marshals this

event to the System Space to provide the appropriate scope. Other systems within the

Cloud that have a role assigned to an event instruct the controller to inform them via

message when an event is fired, which the controller duly does when the event message is

received. The events themselves can pass XML files containing specific information

about the event at the time of firing. For example the event occurrence, when fired, can

include an XML document containing the actual data that is new to the service. This is

passed along with the event message and is exposed to all agents who have declared an

event handler with the controller. It should be noted however, that the event model is

abstracted from the agents within the system, and is controlled by the Neptune scripting

language that sends and receives the appropriate event calls to the controller.

The Neptune scripting language is structured in terms of rules, conditional statements and

variable assignments that are translated from the normative specification to software

system objects, encapsulating all the logical inference processes and variable

instantiations. Thus allowing the Neptune object to be inspected, modified, recompiled

and re-evaluated at runtime, through the specification. In this way the base rules for

deliberation in the EBDI to control the cloud architecture have been transcribed, from the

Situation Calculus reasoned representation, into Neptune objects that can be modified as

a result of Observation System deliberation on system events.

For example in the given Situation Calculus representation, an availability rule is defined

together with resolution strategies in the case of a service being unavailable. This

specifies that if the service is not available for calling, then the Cloud status is queried to

see if a service instance alternative is available. If no instance is found, the repair strategy

- 135-

is service regeneration. Calls are then rerouted to the newly generated service, or the

alternative service instance if located. This is shown in Figure 7.3:

ef·

if rvice_ b rvic
servl..ce . =

e ge

rV1OE!. = ,ez: c _,6

r.d if
z ezout,

it .count = 0)

chi

Figure 7.3. Neptune repair strategy script

Thus a set of normative positions can be specified for the autonomic control system

giving self-governance, as required, in smaller scale components or systems where

centralized control, most likely involving only one observer hierarchical level, is

appropriate. The deliberative features necessary for decentralized, distributed and larger-

scale systems, where mission-oriented adaptation may be called for, requires a extensive

cognitive Observer System to address the issues mentioned in point b) at the start of this

chapter. The simulations to assess the self-governance specification for the topologies of

large complex systems, through an analysis of the types of system structures that occur,

and an implementation of the algorithms for the interaction dynamics presented in the

preceding chapter are accomplished through Netlogo. Accordingly a brief overview of

Netlogo follows.

7.2 The Netlogo Execution Environment

Netlogo 4.0betal is a multi-agent programming language and integrated modelling

environment (Wilensky, 2(07) that extends previous versions of the language. It is based

on the Logo language (Feurzeig and Papert, 1968), a dialect of LISP. The Net prefix

denotes its applicability to decentralised, interconnected network-like phenomena. It is

particularly well suited to modelling large-scale complex systems that develop and evolve

with time. It is possible to program instructions for very large numbers of independent

components or agents acting concurrently, making possible the investigation of the global

outcome that results from component interactions: The detection of emergent behaviour.

Additionally the core structure as a functional programming language gives a natural

- 136·

implementation from the mathematical logic of Situation Calculus to an executable

program.

It is principally for these reasons that Netlogo will be used for the execution and

implementation of the systems already discussed in this work. For example a regular

lattice of adjustable size and connectivity may be constructed from the code fragment

illustrated in Figure 7.4, with output as shown in Figure 7.5 when the user defined values

of 40 nodes with a connectivity of 25 are used. An output graph is also included, on-

screen, showing the distribution of the nodes connectivity. In the case of the regular

lattice in this example, the graph shows, as expected, that all 40 nodes have the same

connectivity of 25. If, however, a button is coded to rewire the lattice as in the Watts-

Strogatz (Watts and Strogatz, 1998) model of the previous chapter then the output is as

shown in Figure 7.5: The node degree distribution can be observed to take the typical

form of a normal distribution.

o 90101:
ca
set-d foul -shape nodes »computer workstation'
set-d au1.t-sho.pe ··h.ne"
c

set cotor red
s ne bo-nod
layout-circle sort nod s 50

courrt nodes)

irs
s + 1
set: pp.. 1

do-p 0 ,n
end

c -Conn iv / Z) I

(Cp ... k) mod count nodes)
,co node

Figure 7.4: Netlogo code fragment to construct a regular lattice

- 137-

Figure 7.5: Netlogo output: Regular lattice of 40 nodes and connectivity of 25.

Figure 7.6: A regular lattice rewired to a small world model

- 138-

7.3 Scale-Free and Random Systems

In the previous chapter it was noted that the majority of real world large, complex

systems have been observed to exhibit forms of organisation, in their global topologies

that emerges from some low level component behaviour. Previously random graphs were

the main representational means for large network systems, where nodes connected with

uniform probability across the network. The Barabasi-Albert construction algorithm

introduced the notion of preferential attachment to partially explain the appearance of

power law tails in the nodes connectivity. In order to appreciate the difference in

outcomes between random connectivity and preferential attachment versions of the

models were implemented through Netlogo from the Situation Calculus propositional

approach. Thus, for the propositional account, from the observer's perspective, there are

two actions addNode and addLink(i, j) meaning make a connection between node i and

node j. The addLink action is a stochastic action, in that the action may succeed or fail so

can be decomposed into two deterministic actions: s_addLink(i, j) and f_addLink(i, j)

(meaning the action succeeds or fails respectively). The action addLink is assumed to be

under some cognitive systems autonomous control. If the system elects to perform the

action then non-determinism arises and exactly one of either s_addLink(i, j) or

f_addLink(i, j) is enacted with associated probabilities. So more formally:

choice(addLink(ij),a) E a=s_addLink(ij) v a=f_addLink(i,j)

Some fluents may be introduced: nodeNumber(s) is the total number of nodes in the

system at situation s, requestConnection(i, I. s) means the autonomous cognitive system

has requested that a link be established between node i and node j and connectedil, j, s)

means node i is connected to node j in situation s. Note this ought to be a directed

relationship in a complex network so that node j is not necessarily connected to node i.

The successor state axioms are:

nodeNumber(do(a,s»=N~nodeNumber(s)=N Aa.addNode) v

(nodeNumber(s)=N-l A a=addNode)

requestConnection(ij,do(a.s) ~requestConnection(i,j, s) A a-s_addLink(i, j)

connected(ij,do(a.s) ~onnected(ij,s) v a=s_addLink(l, j)

- 139-

It is not known, in the nondeterministic setting, which of the choices is performed but the

probabilities for node degree are known in the situation. It is necessary to align the

information in the axioms with the probabilistic information. So, as previously let

prob(a,b,s)=p == choice(b, a)Aposs(a,s)Ap=probo(a,b,s) v

[+choicetb.ajv-cpossta.sj] Ap=O.

Here probo(a, b,s) will be a specification of the probability that a is selected in situation s

as the outcome of stochastic action b given that a is one of the nondeterministic choices

for b and that a is possible to enact in s. So the probability for a new node j to connect to

an existing node ican be stated for:

a) Barabasi-Albert preferential attachment

probo(s_addLink(ij),addLink(i,j),s) =_4_
~d,
r

probo(CaddLink(i,j),addLink(i,j),s) = 1-__4_
~d,
r

b) Random connectivity

probo(s_addLink(ij),addLink(i,j),s) = 0.5

probo(CaddLink(ij),addLink(i,j),s) = 0.5

An small anomaly is apparent here in that the probabilities for s_addLink(ij) and

CaddLink(i,j) ought always to sum to 1. So for this example it must be assumed that at

least one of the choices is always possible.

The Netlogo implementation produced includes:

• The option to construct a generic scale-free or random connectivity system

consisting of a user defined number of nodes.

• A visual output screen to enable the identification of the various visible

topological properties of random and scale-free connectivity

• A graphical representation of the resulting node degrees, showing the degree

distribution.

• A "showlhide node size" button giving the option to scale the visible size of the

node to its the degree.

- 140-

• A "Tidy Nodes" button implementing the arrangement of the nodes into a more

easily observable format using the Fruchterman-Reingold layout algorithm

(Fruchterman and Reingold, 1991); adapted from the Netlogo models library

(Wilensky,2005).

Figure 7.7 shows a scale-free system constructed from 1012 nodes, whilst Figure 7.8

shows the same number of nodes connected according to random principles. In both cases

the node's size represents its relative degree. The system of connected hubs is readily

observable in the scale-free system, whilst most nodes in the random system have about

the same degree. This arises solely from the code that is used to generate the systems

from the interaction of nodes in finding connections. The connections are generated as

specified through the Situation Calculus specification and coded in Netlogo as shown in

Figure 7.9. The code fragment is from this system's observer's perspective. The portion

of the Observer system implemented is just that which deals with the monitoring,

influence and deliberation over this part of the system. Each node depicted may also

possess its own observation module that interacts with this level in the Observation

system as described in the previous chapter. Likewise the observations made at this part

of the system may also feed up the Observation hierarchy to inform an observer module

higher-up in the system, as described. Thus, for examples, the ask nodes forms a norm

based command delivered to the nodes via the Observer System, whilst the report

connection is a monitoring function served by the tuplespace, where the data for Observer

System deliberation is held. Additionally, as output from the model, the degree

distributions, shown to the left of the visualisations in Figures 7.7 and 7.8 show very

marked differences in the connectivity of the two networks illustrated. Most nodes in the

random system have a degree close to the mean degree around 1 with the highest degree

nodes having 10 or 11 connections, consistent with the more rapid decrease away from

the mean observed in a normal distribution. In contrast the scale-free system degree

distribution has a much slower decay rate, indicative of a power law tail, with the small

number of highest degree nodes having upwards of 90 connections.

- 141-

713

dz
~
dz

OM~'~ ~ J;;

Figure 7.7: Netlogo implementation showing scale-free system topology

Figure 7.8: Netlogo implementation showing random system topology

- 142-

to-report Sfconn!Ction
let "rob SIJII [length neighbor-nodes) of nodes
1et COMectton nobody
ask nodes
[
if connection. nooo<!y
(
Heise length netghbor-nodes > 9.5 • prob
[set COMectlon self)
(set prob prob - (length nel~nodes)

to-report fa connection
let connection nobody
ask nodes
(

f connec 10 • nobody
(felse random 2 • 1
(set co nection self)
[set connection one-of nod sJ

)
)
report COMeCtion

end

J
J
report connect on

end

Figure 7.9: Netlogo code to give a scale-free (left) or a random (right) network.

7.4 The Hub Connection Density

Several approaches have been taken for analysing the network structures that emerge

from large-scale complex systems. The growth and preferential attachment algorithm for

scale-free networks (Barabasi-Albert, 1999), the small world model (Watts and Strogatz,

1998), a transition between a regular lattice, where each node is uniformly connected to

each of a fixed number of its neighbours arranged in a circle, and the network that results

from randomly rewiring some of the links to connect diametrically opposed nodes have

been described previously. Furthermore in (Kawachi et al, 2004) it was shown that a

combined algorithm could be used to demonstrate phase transitions from a regular lattice,

through small world and random networks, to a scale-free network.

The Hub Connection Density measure, introduced in the previous chapter, reflects the

topological changes these phase transitions exhibit. In a regular circular lattice the

measure is fixed at a local maximum for the metric based on the maximum connectivity

of the nodes. If the connectivity of each node is k then the Hub Connection Density

measure is fixed at k' no matter what size the network. Figure 7.10 shows the typical

values obtained for the Hub Connection Density in a regular lattice, random network and

scale-free network. The values for a Small-World scenario are similar to the regular

lattice as the small world-world is obtained from the regular lattice by rewiring a

relatively small number of links (Watts and Strogatz, 1998). The regular lattice, used in

this experiment, represents a regular network where each node is connected to its 6

nearest neighbours. Figure 7.10 shows the value of the Hub Connection Density for

random systems to be constant around 18, no matter what size of system is under

- 143-

consideration. As the self-organisation exhibited by the scale-free topology emerges the

measure rises. If the number of connections at each node are bounded (by kwnx say) then

the measure will approach kma}. Figure 7.10 shows the Hub Connection Density, for

scale-free systems, increases slowly as the system size increases. This is to be expected

because the number of hubs and hub-hub connections inevitably increases with system

size. These experiments assumed unlimited connections per node. The values obtained

are based on averaging the values from a number of system construction simulations of

the sizes indicated. For all sizes of systems the figure obtained for the random systems

was always very close to 17 or 18. The values obtained for Scale-free systems, however,

vary by as much as a 30% from the values shown in Figure 7.10. Again this is to be

expected, as there are many ways to wire a scale-free system consisting of the same

number of nodes. The main result is that the values for scale-free systems are always

significantly higher than the baseline 17/18 observed for random systems.

Figures 7.11 and 7.12 show the measurement being taken for a scale-free and random

system, respectively, consisting of 500 nodes, whilst Figure 7.13 shows the code, from

the observer module, to calculate the Hub Connection Density. It may be noted that the

Hub Connection Density for the exhibited scale-free system of 500 nodes is 64 whilst the

value for the randomly connected system of 500 nodes is 17. Thus a measure is available

to the Observer System whereby a range of values for the Hub Connection Density

provides conclusive evidence that a system is conforming to scale-free principles.

250

~ 200
III
C
GI
Q
C 150
0
:;
u
GI
C 100
C
0
U
oD
::I SO
::z:

0
500 10000 25000 50000 100000

Number of Network Nodes

....... Scale·free
___ Random

_-Regular

Figure 7.10: The value of the Hub Connection Density measure

- 144-

'of l10des
500

'~C~"'
o Node De ree 53

Figure 7.11: Scale-free network Hub Connection Density measure

'ij ~ ".
o NodeDe ret 10

Figure 7.12: Random network Hub Connection Density measure

to calculote-HU Dens ty
se b ns ty e
ask nod s
set n e
set tot 0
set: 0001 e

le n < length
et onod tt: n ne

set tot tot + 1 ngth sJ of anode
set n n 1

set: looolhub length n hbor-nod s • tot:

set HobO s ty SI.In ('localhUb 0 nod s / count nodes
nd

Figure 7.13: Netlogo code fragment for Hub Connection Density calculation

- 145-

7.5 Acquaintance Monitoring

Once the network has been constructed, and the hub density is calculated to be in the

range associated with scale-free systems, the natural properties of the system can be

utilised to determine an optimum monitoring strategy without using any global data and

avoiding exhaustive monitoring of the network: The Acquaintance Monitoring Selection

algorithm, detailed in the. previous chapter, is used on a scale-free system, whereby a

randomly selected node is required to nominate a random node to which it is connected

(an acquaintance). This will always tend to select a higher degree node because of the

system topology. So a random fraction of the node population is asked to indicate an

acquaintance node with which they are connected. The acquaintances, rather than the

randomly selected nodes, are the designated monitoring points: The probability that a

node with k connections is selected for monitoring is proportional to its degree, k. Thus,

using this algorithm, the probability that a hub is not monitored is very low, tending

towards O. Therefore system concepts that tend to propagate across a network such as

knowledge or a virus are easily disseminated to the hub backbone evident in scale-free

systems. As most knowledge is held in the hubs, the fraction of the nodes required to give

good monitoring coverage is usually quite small. This hub backbone of super-peers is

often used to maintain connectivity in peer-to-peer overlay networks such as in sensor

and actuator networks (Traversat et al, 2002). Consequently this process may be

additionally utilised to determine the best monitoring strategy in these peer-to-peer

overlay networks.

For this experiment, a number of simulations were conducted with varied proportions of

selected nodes indicating the percentage chosen. As shown in Figure 7.14, r = 0.20 and,

for each selected node, one of their acquaintances was randomly selected for monitoring.

The proportion chosen was an optimised value, as indicated in work on acquaintance

immunisation, tested on random proportions of a population (Cohen et al, 2003).

In Figure 7.14, the white nodes are the monitored nodes, whilst the blue nodes are those

originally selected to point to an acquaintance. Hence it can be visually observed that the

main network spine and all the high degree nodes have been selected for monitoring by

the Acquaintance Monitoring Selection strategy. Also, the monitoring of this system is

achieved through the observation of only 79 of the 500 nodes if = 0.158, 15.8%) rather

than upwards of 25% when using a random walk algorithm on a scale-free network or

100% when exhaustive monitoring of the network is required .

• 146-

i! i

326

iz
o
Z

Figure 7.14: An implementation of Acquaintance Monitoring Selection

It may be further observed, in Figure 7.15 that using the same strategy on a randomly

connected network results in a greater number of nodes (90) requiring monitoring

facilities. It is also obvious, from the display, that the monitoring coverage gained would

not be adequate for efficient observation; so that AMS is only applicable to scale-free

systems.

- -
~ .. ~~! ~, ~f!""

Figure 7.15: Acquaintance Monitoring Selection on a random network

- 147-

Thus once scale-free connectivity has been detected, by the Hub Connection Density

measure for instance, then the Acquaintance Monitoring Selection procedure can be

deployed by the Observer System to provide efficient information gathering from specific

high data capacity nodes without the need for global information regarding the system.

To illustrate the deliberative process that occurs for node n where monitored is a Boolean

quantity assessing whether the node is monitored, selected is a Boolean quantity

measuring the truth value of whether a node has been selected to nominate an

acquaintance, proportion is the user defined ratio, expressed as a percentage. of the

number of nodes initially selected from the total number of nodes and the actions of

select, choose, undo and applyAMS are self-explanatory:

monitored(n,do(a,s)) <=> [monitored(n.s) sasundo] va=choosei n)

seleeted(n,do(a,s)) .:::.[selectedtn.sisavundojvaeselecttn)

AMS(do(a,s)).:::.

[AMS(s)lI[a=senseHcoIlSR(senseHco»4011v [AMS(s)lI(a~senseHCD)]va=applyAMS

proportion(do(a,s)) =r .:::.
[proportlonist=r II-dr'(a-setProportion(r')lIr"q-')jva=setProportion(r)

posstchooseint.sps 3ndselected(n"s)lIneighbors(n,n/,s)]

posse select! n),s) =AMS(s)

poss(appiyAMS,s) =HCD(s»40

prob(s_seieet(n),seieet(n),s) = proportion(s)/JOO

prob(f_select(n),select(n),s) =J_ proportion(s)/J 00

This translates into the Netlogo code fragment shown in Figure 7.16. It is noted that the

select, choose, undo and applyAMS actions are nominally under the control of the

Observer System as select and choose provide normative statements to the nodes and thus

provide low-level interaction. The applyAMS and undo actions are global in nature

triggering the lower-level actions. These are in tum triggered by the global emergent

outcome of a HCD that is greater than 40.

- 148-

to sel.ec1::
ask nodes
[

'-1' Crandom-float: No.Nodes:> -c No.Hod,es .. Cproport'l.on:> /' 100
set col.or bl.ue
e- se1.ected7 tru

]

end

to 04005-
ask nod s w~th se1.ected7

ask one-of' ne,- hoor-nodes
set co\.or Wh'tte

set chos' ru
J
nd

to undo
ask node:s
:set se\.e

set ehos n7 .o1se
set co1or red

Figure 7.16: Netlogo code fragment for Acquaintance Monitoring Selection

7.6 Distributed Knowledge Retrieval

Finally in this series of implementations/simulations the efficiency of the monitoring is

evaluated. This is achieved through placing an identifiable piece of data or, "knowledge

nugget", at each node in the network. It is assumed each node has access to its own

knowledge and the knowledge initially held by its neighbours, but not the knowledge

held by the neighbour gained from its neighbours. Thus the proportion of the knowledge

held in the system that is gathered by the Observer, through its monitoring strategy can be

evaluated. This was tested, in the Netlogo simulation, on three scenarios with varying

system size:

• A scale-free system with the Acquaintance Monitoring

• A scale-free system without Acquaintance Monitoring but with monitoring spread

randomly across the system.

• A randomly connected system with monitoring spread randomly across the

system.

Figure 7.17 shows a graphical analysis of the results, Figure 7.18 shows the

implementation in operation and Figure 7.19 illustrates the code fragment for retrieving

the knowledge in an Acquaintance Monitoring Selection scenario.

- 149-

- AMS on a Scale-Free System

System Observer Strategies

80
>-~
" 70 -.,
e
'i 60e.,
CII

1~50

!E 40
:Ie.

VI

!830
~
>-
III 20..
0

•CII 10..
I-

0
500

- Random Monitoring on a Scale-
Free System
Random Monitoring on a
Randomly Connected System

10000 25000
No_ of Nodes;

50000 100000

Figure 7.17: Graphical analysis of observer monitoring strategies

Figure 7.18: AMS on scale-free network showing 67.3% knowledge retrieval

7.7 Summary

This chapter has reported on implementations of the specification for autonomic self-

governance in a relatively small-scale scenario, where normative positions supply the

control parameters using parametric adjustment, and for larger scale systems, where

- 150-

mission oriented adaptation is more appropriate, using Netlogo to illustrate the operations

of parts of the Observer System.

to calculat~knowledg retrie 01
let v 0
set knowledge 0
whUe [v QI eau t turtles)
[if (is-node? turtte v)
rtf ([chosen?] of node v)

[set knowled (sentence (node v) knowled e (neighbor-nodes] of node v)JJ
set v v + 1)

set knowledge remove~duptlcates knowledge
end

Figure 7.19: Code fragment implementing Knowledge retrieval with AMS

The smaller scale system, comprising an autonomic controller, required only one level of

observation and system control could be achieved through the system controller either

monitoring or providing the access to the distributed tuple system space. More involved

procedures are required for larger scale systems necessitating cognitive deliberation over

observed or monitored system metrics and measures. There are obviously many different

metrics and measures that can be used, by the Observer System, to indicate the current

overall state of a system.

The prevalence of power-law connectivity distributions, high clustering and the robust

handling of random attacks, observed in the real world systems, makes it beneficial to

actually construct systems to these principles. Thus, after displaying a Netlogo

implementation of the interpolation between a regular lattice construction and a small-

world situation, the next implementation showed an Observer controlled construction of a

scale-free system based on the Barabasi-Albert algorithm and a simple randomly

connected system with the implementation achieved directly from the Situation Calculus

formulisation. The visualisation clearly showed the differences in structure between the

systems with an ordered hub structure apparent in the scale-free system. The resultant

plotting of the nodes connectivity also revealed a normal distribution for the random

system in contrast to the long power law tail evident for the scale-free system.

The implementations produced were then used to experimentally evaluate the Hub

Connection Density measure, introduced in the previous chapter, for a variety of

networks. It was found that, no matter what size of system was encountered for random

connectivity the measure remained constant, within very close bounds. For scale-free

- 151-

systems the measure was considerably higher and increased fairly slowly according to

system size. Trivially the highest values occur in well-connected lattices and the

associated small-world models.

Acquaintance Monitoring Selection was shown with a clear visualisation that the

algorithm specified for deliberation in Situation Calculus and implemented in NetIogo,

produced a highly efficient monitoring strategy for scale-free systems. It was also clear,

from a visualisation, that the algorithm would not produce similar results when random

connectivity is the primary system construct, confirming previous analytical analysis.

The final testing of the implementation assessed the amount of knowledge, which was

uniformly distributed over a network, available to the Observer for different sizes of

system with various monitoring strategies. Acquaintance Monitoring Selection was

clearly a very efficient strategy no matter what scale of system it was applied towards.

Further work in this area is illustrated in Appendix 2, a recently published, co-authored

technical paper. The work is shown applied to a simple emergent phenomenon, akin to

behavioural examples observed in ant nests (Bonabeau et aI, 1999), with the signal for the

emergent behaviour grounded by the techniques described herein. The action history is

captured situation by situation and, thus, may be subject to the situation space-trimming

process previously described.

- 152-

Chapter 8

Evaluation: Two Case Studies

The evaluation of the proposed approach, to provide scalable self-governance facilities to

large-scale autonomic systems, has been carried out through two main case studies. The

central notion to the work is the establishment of a formal specification mechanism to

permit not only the definition and enforcement of a system's normative positions towards

itself, as a whole, and its comprising components, as normally apparent in centralised

architectures, but also the establishment of a deliberative cognitive system for the run-

time analysis of emergent system behaviour that may become evident in distributed

systems with autonomous components. In Chapter 4 the Stochastic Situation Calculus

was proposed as a formalism that displays many features to make it suitable for such a

task. The first case study uses the formalism in a more traditional setting by providing the

specification of a decision support system for breast cancer clinicians. This includes both

the logical statement of decision tree rules and the specification of the deliberation by the

cognitive system to reason on the runtime system's operation. The second case study

involves a proposed NASA space mission where very many small spacecraft cooperate

and interact to explore the asteroid belt. The formalism is used to specify the interactive

behaviour of the component spacecraft and to consider the three aspects of this work

described and analysed in Chapter 5: The detection of new emergent behaviour, the

replication of previously observed interactions to engineer emergence and the utilisation

of a known topology upon the system's detection of particular classes of prevalent self-

organisational behaviour, such as scale-free connectivity.

The perspective used throughout is that of the Observer System, which is a separate

concern to the system itself, although the norms and guards placed on the individual

components, including the system itself, are relayed through the Observer System.

8.1 A Decision Support System for Breast Cancer Clinicians

This case study was completed as part of an Engineering and Physical Sciences Research

Council (EPSRC) funded project entitled: Towards a Disciplined Approach to Integrating

Decision-Support Systems for Breast Cancer Care Activities (The 2nrich Project, 2006).

The project represented collaboration between computer scientists, statisticians and

- 153-

clinicians from Liverpool John Moores University, the Christie Hospital, Manchester and

the Linda McCartney Centre of the Royal Liverpool Hospital to provide decision support

for post-operative breast cancer care. A major concern of the project was that clinicians'

decisions ought not to be supplanted, but rather supported and adapted to, by such a

system. Thus it was necessary for the system to possess a separated cognitive meta-

system to reason on the behaviour of the system as a whole, including the clinician's

actual decision. This facilitated the three stated aims of the project: Supporting the

clinician's decision within the National Institute for Health and Clinical Excellence

(NICE) guidelines; the analysis of historical data to produce new rules for treatment

choice and a combination of the previous two notions to provide a decision support

system that is adaptive to clinicians' needs and changing environments. Thus, in

presenting this case study, the proposed Situation Calculus formalism is shown to be

equally useful for defining application system rules as well as specifying meta-system

operational procedures. The specification describes a centralised; observation controlled

decision support system, which nevertheless may also be considered as a distributed

component subject to monitoring by a higher-level observer. Through this case study the

specification of a separated observer system is demonstrated for the establishment of self-

governance norms with deliberation based on reward and cost functions for norm

adaptations.

8.1.1 The Decision Support System

This medical decision support system, based on guidelines, can be viewed as a human

and artificial/component multi-agent system (Moreno, 2003). The medical decision

process comprises of an information field that includes all the agents and objects involved

in the decision with a shared ontology to describe the environment. So the information

field is defined by the common ontology in the form of a normative structure where the

human and artificial agents, involved in the decision process, abide by the norms.

However some autonomy must also be allowed within the componentJhuman decision

processes so that an agent can 'choose' not to follow a norm in certain circumstances.

Thus this case study represents a fairly routine application of the concepts described in

this work. The Observer System takes the form of a single meta-system governing the

operation of a decision support component. The meta-system is required to maintain

quality of service through the monitoring of system performance measures, such as

response time, and quality of process through the assessment of compliance to a guideline

- 154-

model and the inference of new rules based on the feedback from previous decision

instances.

So the medical decision process is a goal-governed collection of individual agents. The

agents may be autonomous, heterogeneous, rational and social. Norms arise from a social

situation in that they involve providing rules for a community of more than one

individual (Borman, 1999). The norms can be associated with the decision-making

process, as a practical application, or with the separate meta-system for governance of the

system and clinical processes. The provision of adjustable autonomous agent behaviour is

necessary to deliver the system services in a way where the majority of the administrative

tasks are handled within the software itself. However this autonomy must be reconciled

with the governance of the system process.

Typically a medical decision support system consists of a set of patient data inputs that

are matched against a range of treatment options resulting in the best treatment option

being output as a decision. The PROforma system (Fox et al, 1996) advanced this notion

to consider the medical decision support system in an object-oriented manner. A simple

repre entation of the class structure is shown in Figure 8.1.

Figure 8.1: Class structure for object- oriented decision model

The deci ion may then be reached through employment of a regular decision process with

some adaptation a illustrated in Figure 8.2.

- 155-

GOI LS.~------------~ +------ ACTIO:r-l

ALTER.~ATIVES---_'~ ARGUMENTS N\ /
DATABASE: REASONING AND BELIEFS

Figure 8.2 Decision process and update

Although this procedure, as illustrated, allows adaptation of the decision making process

with feedback of outcome into the knowledge base, the governance process is very

difficult to achieve as there is no provision for runtime adaptation of the system itself. As

detailed in Section 2.2.2 messages need to be passed before classes or aspects can

become active in the system. This work thus provides the formal setting of a separated

Observer type system to handle the runtime deliberation encompassing quality of service

and quality of process concerns for the system, whilst also providing a formal means to

address the decision making processes that are the system's core functionality. This basic

functionality is shown in Figure 8.3.

CHEMO

CONSIDER
TAMOXfFEN

NO
TREATMENT

TAMOXfFEN&
CHEMO

TAMOXIFEN

PLANS

Figure 8.3: Decision options for post-operative breast cancer care

The decision support system considered in this case study was required to output

treatment options based on rule sets with patient data as inputs. Additionally, however,

- 156-

the system was also required to exhibit self-governing features. Thus, for instance, a

simple treatment rule such for using the drug tamoxifen, which is recommended in the

guidelines for post menopausal patients with positive oestrogen receptors, can be

formally stated as:

NICEtreatment(patient, tamoxifen.dol a,s))=I NICEtreatment(patient, tamoxifen.s) II

...3treatment(a=nice_treament_decision(patient, treatmentts

{treatmentseamoxifenttjv

[a=nice_treatment_decision(patient,tamoxijen) J

with

poss(nice_treatment_decision(patient,tamoxifen),s)~oesreceptor(patient,s)=pos)II

(menostatus(patient,s)=post)

Similar rules can, trivially, be stated for the other options, within NICE or any other set of

guidelines. These rules are, however, irrelevant for the purposes of this work; merely

forming a plug in component to be managed by the completely separated meta-system

observer/controller. The main concerns of the autonomic type meta-system requirement

are the maintenance of quality in service and process.

Quality of Process: The rules governing the meta-system are required to reason over the

operation of the system. A quality of process concern may involve assessing the

clinician's adherence to a specified guideline treatment:

compliance(patient, treatment.serviceidecision, do(a, s)) <=>

[compiiance(patient,treatment,service_decision,s) II

avtreament decisionipatient, treatment J)] v

[a=treatment_decision(patient,treatment) II

service-decisionipatient, s)=treatment 1

In order to express the efficacy of the treatment decisions for the quality of process it is

obviously appropriate to consider the outcomes of courses of treatment. These courses of

treatment occur over a period of time and it is thus necessary to employ the Situation

Calculus technique that deals with the duration of actions. Therefore the treatment

duration is covered by two instantaneous actions start'Ireatment and endTreatment with a

- 157-

fluent treating through the duration of the treatment. So, for a patient p, continuing with

the example of tamoxifen treatment given above, there may be a reward function such as:

reward(treatment(p,tamoxijen), do(a.s))=r~ =endTreatment(p,tamoxijen) A

ltr=100 A livinglp.s) v

(r=-5OOA -o/iving(p,s»]

with

fitness((treatment(tamoxifen) »menostatustp.s) =post soesreceptortp.si =pos),do(a.si)»

fitness((treatment(tamoxijen) smenostatustp.s)=post soesreceptortp.s) =pos),s)+

reward(treatment(p,tamoxijen), do(a,s»

In this way the success of each rule occurrence can be assessed including previously

untried treatments instigated by the clinician and flagged for non-compliance. Thus less

successful treatments will be deleted from the decision options whilst the decisions that

lead to more favourable results will be chosen, improving the quality of process.

Quality of Service: Quality of service concerns can be dealt with by the meta-system

through monitoring demand against system capacity. If response time is too slow, for

instance, it may be necessary to regenerate the service at a location closer to areas of

higher demand. The service location may be specified as:

atilocation, service, do(a.s) ~ (attlocatlon, service, S)A(awnovet servlce.locationl] v

avdeletei service, locationn) v(aeregeneratei service, location»

To facilitate the regeneration of a service due to high demand requires the specification of

a procedure to detect the behaviour and prescribe the action to take to rectify the potential

failure. The CPU load can be monitored as in Section 6.2

cpuloadidota, s) =n ~[cpuload(s) =n A a,-senseCPUWAD] V [a =senseCPUWADA

SR(senseCPUWAD>s)=n]

heavyloadidoia, s) ~ [heavyload(s) ,1((a-senseCPUWAD) v

-o(a= senseCPULOADASR(senseCPUWAD' s) <60»] v

[a = senseCPUWADA SR(senseCPUWAD>s) >60J

with response time given as

- 158-

roundtriptime(do(a, s)) =n ~[roundtriptime(s) =n A a.senseROUNDTRIPTIMEJV

[a=senseROUNDTRIPTIMEASR(senseROUNDTRIPTIME's)=nJ

unresponsiveidoia.st) ~ [unresponsive(s) A((a. senSeROUNDTRlPTlME)V

...(a= senseROUNDTRIPTIMEASR(senseROUNDTRIPTlME's) <1000)) J v

[a = senseROUNDTRIPTIMEA SR(senseROUNDTRIPTIME's) >lOOOJ

regenerated(service, location, doea,s)) ~ regeneratedi service, location, s) v

a=regeneratei service, location)

with

poss(regenerate(service, location), s) ~ heavyloadis) v unresponsivets)

This shows the specification from an immediate observers perspective giving an example

of an autonomic system based on parametric adaptation as defined in Section 3.3.1. The

representation describes a centralised control structure, where the observer acts as the

system controller. The actors, within the system, are mandated to act within the

normative position of the system as monitored by the Observer System. A full

implementation of this system was completed as part of the EPRSC funded project; this

is, however outside the scope of the work presented in this thesis. Further details may be

found in (Miseldine et ai, 2006), (Taleb-Bendiab et ai, 2006), (Miseldine and Taleb-

Bendiab, 2oo5b) and (Randles et aI, 2005). The decision support system component

produced in this way may form part of a wider distributed system. The next case study

shows the observer system ranging over very many autonomous interacting components

providing an example of centralised norm based governance from the top down coupled

with cognitive observation based monitoring utilising system emergence from the

bottom-up.

8.2 The NASA ANTS Project.

This second case study is adapted from the behaviour specification of worker/ruler robots

in the NASA Autonomous Nano-Technology Swarm (ANTS) project (Rouff et al, 2004).

Formulation and deliberation of emergent properties occur at observer level with the

necessary checks and guards incorporated as a norm based deliberative model. This

shows how the specification method, proposed in this work, may be deployed through a

large-scale system comprised of very many individual components.

- 159-

Briefly stated the ANTS project arises from a class of space exploration missions termed

nanoswarms, where many cooperating intelligent spacecraft work in teams, based on the

efficiency and coordination of a hive culture. In particular the project, which is under

conceptual development, by NASA, to occur in the 2020s, envisages a thousand

picospacecraft working cooperatively to explore the asteroid belt. Once commissioned

the teams consist of three classes of spacecraft combined in specific ways to form teams

that explore individual asteroids, as shown in Figure 8.4. Workers make up 80% of the

swarm and carry the instruments to gather data. Rulers coordinate data gathering by

assembling teams of appropriate workers. Messengers manage communications between

workers, rulers and mission control on earth.

Figure 8.4: The NASA ANTS project (Routt et aI, 2004)

This case study addresses the specification of the system through establishing logical

consequences, from the top-down specification of the interactions of the participants,

based on the formal setting of federated behaviour. and observing. deliberating on and

utilising emergent behaviours that occur from the bottom up. Firstly a minimal rule set is

formed so that additional behavioural rules follow as a result of the specification.

followed by an analysis of emergent system features that might occur within the Observer

system. The frameworks, previously described to specify federated behaviour. as in

Section 2.4 and to deliberate on the emergence of various forms in large-scale system

- 160-

tendencies, as described through Chapter 5, are particularly applicable to this NASA

project. This is because the mission is knowledge critical. The overall aim is to gain

knowledge for use by scientists, back on earth, whilst the epistemic state of the swarm

members is crucial in stabilising the behaviour of the swarm to carry out its intended

duties. Firstly the team assembly is considered through the formalism established for

federated behaviour; imperatives for the mission may be stated and properties shown to

be entailed as logical consequences. Secondly the formation of the ruler team is

considered and it is shown how this leads to the system self-organising to robust

topologies. The (Stochastic) Situation Calculus is used throughout as the logical

formalism.

8.2.1 NASA ANTS Formal Specification

Firstly, for this specification, it is necessary to account for the domain behaviour as a

large team of interacting component spacecraft. This builds upon the work reported in

Chapter 2, in particular the federated behaviour described in Section 2.4 set in a Situation

Calculus representation.

It is known that as complexity increases and failures tend to occur more frequently

federations of component agents, or spacecraft in this case, waste fewer resources and are

more robust than solipsistic entities (Jennings, 1995). The formation of a component

federation is characterized, as described in Section 2.4, by the concept of a Joint

Persistent Goal (JPG). Thus member spacecraft are committed to the team, as it is

comprised during their membership. The JPG formalises the joint commitment of the

collective. That is the JPG imbues the federation of Pico-spacecraft with the goal-directed

behaviour of a single component agent. Tasks, to realise completion of the goal, are

performed by sub-agents, within the team, as part of the federated society. To have a joint

intention to perform an action, a, the team will have a JPG to do a within a particular

subset of the situation space. The joint intention assumes the initial belief, by all the

members, that the swarm is going to complete the intended action next. Following the

enactment of a joint intention the team of spacecraft will mutually come to believe one of

three things, from the initial mutual belief that the team members are going to work

jointly on the intended action:

1. That a has been done.

2. That a is impossible to do.

- 161-

3. That a is irrelevant

Firstly considering for a single craft a persistent goal can be represented in the Situation

Calculus by:

PG(p, dora, s)) ~

(PG(p,S)A"(=Bip.s) vknows(p,s))) v(a=setPG(p) vknows(.,p,s))

As previously introduced, in Chapter 4, knows is the knowledge operator in the Situation

Calculus with the analogous belief operator B [B(P) = =knowsr-pj]. Obviously with only

one component agent these are knows. and B., with the number of agents, ne l. This

agrees with an intuitive notion that a goal persists while an agent doesn't know p to be

true and doesn't know that p cannot be true. Replacing the belief operator with its

corresponding formulation using the knowledge operator in the above formula and

working through the expression gives an equivalent formula:

PG(p, dora, s)) ~

(PG(p,S)A (.,knows("'p,s) A.,knows(p,s))} v(a=setl'Gip) va=SR(sensep' s)-.,p)

Now to extrapolate this to n component team members in a multi-agent type setting,

following the reasoning of Section 2.4, it is necessary to think of the spacecraft team as

acting as a single entity. However this is not sufficient as it must also be possible for any

agent to become aware individually that a goal has been achieved or is impossible to

reach. So when a team member comes to believe a fact, regarding the goal, which entails

the dropping of the commitment by the individual member, the federation must also drop

the commitment. Thus each member has as a sort of lesser goal one of three choices.

Either it believes p not to be the case but has p as a goal or it believes p does hold and has

a goal to make this common knowledge or it believes p to be impossible and has a goal to

make this common knowledge. So if there is a lesser individual goal, for each component

spacecraft i, relative to the other members of the team T, LIGj:

UGlr,p, do(a,s)) ~ UGlr,p,s)A ..,((knows["'p,S)IIG,{p,S)) vtknowsip.s)»

G,(C(p),s)) v(..,B,(p,S)AG,(C(..,p),S)))

Where C is the common knowledge operator, as defined in Section 2.4 with a situational

term. In this way each federation member of the spacecraft team doesn't assume that the

other federation members of t have p as a goal but rather as a lesser individual goal. Thus

any federation member may have discovered p has been achieved or is impossible and be

in the process of making this common knowledge in the federation. So a joint persistent

- 162-

goal is established, using the "everyone knows" operator defined in Chapter 2, through

team mutual belief with single agent belief replaced by common knowledge and lesser

individual goal as appropriate:

IPG(t,p, do(a,s»~

JPG(t,p,s) A(-{E(-'p,s)vE(p,s»A(3iET(LIGj(p,s»»v (a=setJPG(p)vE(-,p,s»

This then provides an example mathematical model of the teamwork behaviour, required

in the system, to set defining goals for the spacecraft federation. In this way a scaleable

method of specifying distributed control emerges, from a minimal set of system

imperatives for the component entities, to determine behaviour by logical entailment and

emergent novelty.

The goals to be satisfied rely on team-work within the federation. So without team

formation, or the notion of the logical process of team assembly, it is impossible to

continue with the process. The workers under each Ruler obviously form a federation,

additionally the Rulers can be conceived of as forming a Ruler team that is connected to

the workers so that the most appropriate team members can be selected for particular

mission tasks. Each Pico-spacecraft, in a team, is committed to successfully performing

its quota of tasks as well as to the success of the team as a whole. So the formalism of the

domain can proceed as follows with situation terms added, as the final argument of the

fluents, where required:

• worker(w) w is a worker spacecraft

• ruler(r) r is a ruler spacecraft

• W. R are worker and ruler teams with t representing a general team that may

consist of heterogeneous units.

• knows(w,p) means p follows from a worker w's knowledge

• G(w.p) means p follows from a sequence of worker w's available actions

• I(w,a) means a is an intention of worker w

• Ett.p) means everyone believes p in team t (eg knows(w.,p)Aknows(w2,p)

• A knowstw..p) where t={w., w2 wn}

• C(t.p) means p is common knowledge in team t [ie E(t. p) "E(E('t'. p»"].

This represents universal mutual belief in that every team member believes that

every other team member believes p

• member(r,R) means ruler r is a member of ruler team R

• registered(w,R) means worker w is registered with ruler team R

- 163-

• connected (w, r) means worker w is connected to the ruler team via ruler r.

Using the formalism of joint persistent goals set in the Situation Calculus. an augmented

variation of dynamic logic (Harel, 1979). based on the composite action defined in

Section 4.4.2. will be applied to the Situation Calculus representation to produce a logical

implementation. similar to pseudo-code. to provide formal reasoning techniques for the

ensuing programs. So:

• p? means give p a valuation (ie true or false)

• a.;a2 means action al followed by action a2

• a.la, is non deterministic choice

• Complex action expressions can be used such as IF-THEN and WHILE-DO

• occurs (a*) means a sequence of actions a* (= al.a2, aJ is scheduled to happen

next. It is noted that a·=do(~,do(~_do(a •• So») in the Situation Calculus

where So is the starting situation for the action sequence.

• finished (a*) means the sequence of actions has occurred.

This treatment is mostly achieved using First Order Logic (FOL). There is an appeal to

some Second Order Logic (SOL). however this is solely to describe smallest sets with

certain properties, there is no requirement to quantify over function variables.

This is done in order to more easily semantically state the properties of actions and their

consequences.

Now it is possible to state some imperatives that the teams must follow. In this way low

level interactions are specified that promotes emergent self-organisation.

Ruler Team Perspective: Imperative I: When a worker (w) registers on the mission, by

registering with the Ruler team (R). and has not entered any failure state leading to its

"death ", the Rulers possess a team intention to connect with the worker, should tt ever be
disconnected.

So in situation s, after the team is formed, the ruler team have a Joint Persistent Goal

JPG([tlw3rER(connected(w.r))], s)

The connected fluent can take the situational value independent of its goal attribution

connected(w,r,do(a,s))~connected(w.r.s)Aa;l!ISR(senseWfs)=nil]) va«connecttw, r)

poss(connecti w.r),s)=:{ rER) sregisteredi w.Ris)

This converts into a dynamic logic representation:

~ tlw [(worker,w) s finlshedtregisterediw, R)?)::;.

- 164-

(I(R, connectiw, R»]

Where connect(w, R)= (WHILE registerediw.R) DO

[IF -,3R connectediw, r) THEN

[UNTIL [3rER connectediw, r)] tt r I(r, connect(w, R» J]

It should be noted that a team intention (I(R, connecuwj) in the above formula) is

stronger than just a collection of individual team member intentions. It is based on the

team joint persistent goal, which requires the team members to have beliefs regarding

team membership. This requires team members to hold the lesser individual goals (LIG)

in certain circumstances. That is if a ruler team member believes that the goal p (say) is

not achieved it has an individual goal to see to it that p eventually holds.

If it believes: the goal has been achieved; cannot be achieved or is of no consequence

then it has an individual goal to make this mutually believed by the ruler team. If it

believes there to be a new team member or that a member has left the team then it has a

lesser individual goal to make this a belief for all the other team members. Thus for each

rER:

LIG'(f(ttr'ER)C(R, (r'ER)],s)A LIG,(p,s)

This lesser individual goal for rER is represented by

LIG,(R,p) ~

[[-,knows(r,p) AG(r,p)] v[knowstr.p) AGtr, C(R,p»] vfknowsir,« p)AG(r,C(R,-'p»J] A

[[ttr' (knowstr, 3l(jinished(member(r',R»?;a;-'member(r',R)?»)]=>

G(R, as; -'member(r',R»)]t.

[['rIr' (knowsir, 31 (jinished(-'member(r',R»?;a; member(r',R)?»)]=>

G(r, C(R, member(r',R»)]

Where a is a single action

A lesser team goal (LTO) means that the ruler team mutually believes that every

ruler in the team has the LIG:

LTG(R,p)~ C(R,(ttrER LIG,(R, p»)

So now the team R has p as a mutual goal when the team mutually believes p is not

achieved, there is a mutual goal to achieve p and there is a lesser team goal to achieve p

until the team come to believe that p is achieved, unachievable or irrelevant:

G(R,p)~knows(R,-'p)AG(R,p)A[UNTIL[knows(R,p)vknows(R,-'p)]LTG(R,p)]

So finally it can be written:

- 165-

I(R,connect(w» ~ G(R,finished(C(R, occurs(R, connect(w,R»)?,'connect(w,R» (1)

This gives the power of mutual beliefs (from common knowledge) leading to mutual

team goals to give team intentions and shows how the team intention I(R,a), for action a,

is syntactically different from the worker intention I(w,a) just because the goal G(R,p) is

similarly different from the goal G(w,p).

In general this formalism also holds for any team. So the team under consideration could

be the worker team or a heterogeneous team of variable members. This distinction then

makes it relatively straightforward to specify team goals, in a similar way to individual

goals, but with the proviso that the above team goal formalism holds.

So a number of logically provable consequences emerge as a result of imperative I. For

instance:

When a registered worker becomes disconnected the ruler team have a team commitment

to reconnect with the worker throughout the lifetime of the team.

Proof: The assertion can be logically stated as:

rt7'wlC(R, registered(w,R))AC(R, (-drER connectedtw.rhlj=

G(R, (finishediconnectiw, R»»

So assume the left hand side of the implication is true then expanding imperative Iusing
the definition of team intention (1) gives a team goal:

G(R, (finished(C(R, occursiconnecttw.Rnnt xonnecttw, R»)

So let

connectiw.R) =pre(w,R);(registered(w,R»?;

l(-drERconnected(w,r»? tconnecti w,R) I (3rER connected(w,r)?];post(w,R)

Where pre(w,R) represents the previous iterations and postiw.R} denotes the remaining

iterations.

So substituting gives the ruler team goal of:

G(R, (finished(C(R, occurs(connect(w,R»»?;pre(w,R»;(regisrered(w,R)?;

[(-,3rERconnected(w,r»?;connecr(w,R)I(3rER connectediw.rli? [ipostiw.R)

The iteration of interest is the one where the conditional becomes true. So assume the

action sequence

C(R,(occurs(connect(w,R»»?,pre(w,R);registered(w,R)?,'(-,3rER connected(w, r»?

has just occurred. Now for actions a and b with a general

team t it is known that:

faCT, finished! atb »AC(TJinished(a»AC(T, ;/inished(b»=XJ(TJinished(b»

- 166-

Applying this to connect(w,R) in imperative I gives:

G(R, (jinished(C(R, occurs(connect(w.R))))?,'[Jre(w,R));(registered(w.R)?,·

[(...,3rERconnected(w.r))? tconnectiw.Rtu 3rER connectediw.r))?j;post(w,R))=>

G(R,finished(connect(w,R)),'[Jost(w,R))

However by assumption C(R •+connectediw.Rs) holds so that members of the ruler team

mutually believe that the action [..,3rER connected(w,r)]? has occurred so they then have

a team commitment to do connect(w,R). Thus:

G(R, finishedt connect(w,R));post(w,R)) =>G(R, (finishedi connect(w,R))))

which was the result to be proven?

In this way logical consequences of the specification emerge as verifiable, provable

outcomes for the system. Thus, with a meaningful specification of teamwork, imperatives

can be stated from which emerge additional, not necessarily intended, features of the

system. To continue a further imperative for the team might be stated as:

Ruler team: Imperative n: The ruler team must have be made up of at least a specified

number of ruler units:

The Joint Persistent Goal for a team of rulers R, where the minimum ruler number is N is

JPG(numberojRulers(R»=N, s)

with the usual Situation Calculus definitions:

numberojRulers(R,do(a.s))=M ¢;>(numberojRulers(R,s)=M) v

l(numberojRulers(Ris) =M- J) A

3r a=join(r, R)jv{(numberojRu/ers(R,s)=M+J)A)A3r aeleavetr, R)j

poss(join(r,R),s)=>ru[er(r,s)

poss(1eave(r,R),s)~member(r,R,s)

So the imperative states:

~ G(R,numberojRulers(R»=N)

A number of results follow in a logically provable manner, for example:

Rulers as individuals have a commitment to maintain the number of rulers above a

specified level.

Thus when one ruler believes that the number of rulers is less than required and believes

that it is not mutually believed by the team and believes it is not impossible to establish

mutual belief for the team then it has an individual commitment to bring about this

mutual belief.

Proof: The assertion states:

- 167-

fG(R,p)~'tfrER[knows,(-'pA-'C(R,-'p»A-'knows,(-'C(R,-,p»~

O(r,C(R, -'p)A knOWS,(-'p»]

where p=(numberofRulers>=N)

proof: Let rER and assume

'tfrER knows,(-'pA -.C(R, -'p»A -.knows,(-,C(R, +p}

Now from the definition of team goal it can be stated:

knows,(-'p)A -.C(R, -'p)~(r, C(R, -'p»

and O(r, C(R, -'p» is satisfied because if one member of the team does not believe there is

mutual belief then there is no mutual belief. So since the consequent of an implication

must remain true until the antecedent or the implication statement becomes false

Gir, C(R,-,p» holds until rER knows,(-'pA-,C(R,-'p»A-.knows,(-.C(R,-'p» doesn't; that

is until

=knowsf=p] vC(R, -,P) vknows,(-'C(R, =p} is true.

So all the conjuncts in the definition of O(r,C(R, -'p)AknoWS,(-'p» are satisfied thus

proving the result.

The complex nature of such a system is evident in the aggregation, labelling, data flow,

nonlinear responses and diversity, which occur to provide a meta-monitoring structure

from the agents. The entire mission comprises of an aggregated team of robots whilst

individual workers, for example, consist of aggregated systems for propulsion,

monitoring, communication, etc. As such each system can be labelled from worker/ruler

down through lower level systems. Data flow is evident in the sensing functions to

determine action. The nonlinear response occurs in the teamwork dynamic.

Diversity occurs as separate federations develop and evolve to specialize at separate

specific tasks. The prerequisites for self-organising behaviour, as defined in Section 2.5

(Glansdorff and Prigogine, 1978), can be accommodated in the proposed knowledge

acquisition framework, namely:

1) The interaction of Pico-spacecraft, in the swarm, is mutually causal in that the

state of one component causes an action to be instigated in another and vice

versa.

2) Autocatalysis is common as when a ruler, for instance, fails another is

influenced to increase itself to take on the extra duties or impel the collective to

do so.

- 168-

3) The system is open to the environment. Indeed its main concern is to deal with

environmental effects taking in resources from the environment, building itself

into an ordered structure and feeding back into the environment.

4) Random variations are very evident in such systems with hardware

malfunctions, variable demand, exogenous actions etc.

Hence although a simple system scenario is presented the interaction between

components enforce a complexity that engenders self-organising behaviour. Simple

norms in the form of imperatives can be laid down which in turn affect the system

through the consequences of logical entailment that can be rigorously established.

Additionally certain behaviours can emerge that are completely separate from any rules

that can be derived logically. For instance certain team formations may emerge as more

efficient in carrying out specific tasks. In this treatment it is the observer's perspective of

the ruler team that has been considered. However the general perspective of the observer

can be treated in a similar manner to provide the signal grounding, emergence

engineering and utilization of known properties of widely prevalent large system

emergent outcome, such as scale-free connectivity.

For example the ruler team can be assembled, to robust organisational principles, where

the large-scale organisation emerges from the small-scale actions/interactions, as

described above, under the influence of the hierarchical observer systems equipped with

the self-organising epistemology.

In the first instance a ruler team is required to be in place before any workers can register

with it. So, in order to assemble the system to the robust scale-free principles, it would be

advantageous for the rulers to form the hub structure spine of the system as the earliest

'nodes' introduced. This is similar to the usual Leadership Election Algorithm (Francis

and Saxena, 1998). Additional to this, as shown in the initial specification given above, it

is also required that rulers are allowed to fail with existing rulers possessing a Joint

persistent Goal to connect and take up their responsibilities with new rulers available as

required. So a mechanism needs to be in place, at the small scale, to ensure new leaders

can emerge, at the large scale, throughout the life of the mission. Thus the combined

effect of preferential attachment, through being the first assembled nodes, and fitness, to

be rulers, can be used to make up the ruler team, to an augmented Leadership Election

Protocol. The nodes that become ruler nodes have a high fitness value that ensures their

- 169-

position is promoted to ruler status. In the previously described formalism this is stated,

for a node a as:

fitnessia, do(a,s))=F -::> [fitness(a,s)=F l.a¢A,(a)jv3m[fitness(a,s)=F-ml. valueia.si=m]

where A(a) is the action set of component/node a and value is a function from the set of

actions to the integers, mapping each action to a reward (positive integer), cost (negative

integer) or no effect (0).

A simple reward system, where the main features necessary to be a ruler consist of a

communicator and controller module together with the successful deployment of worker

controller and location analysis software may be:

reward(getComponent(c),s)=r. cecommunicator I.r=50 v c=controllermodule I. r=1oo v

component(c) I.crcommunicator I. cecontroltermodule Ior=10

reward(s_deployFunction(j),s)=r == f=workertlontroller I.r=1oo v

j=locationmonitor I.r=50 vfunctionifts jiIfWorkerController I.j"zocationmonitor I.r=20

reward(j_deployFunction(j),s)=r • f=workertlontroller I.r=-50 v

j=locationmonitor I.r=-20 vjunction(j) I.jiIfWorkerController I.j.locationmonitor I.r=-10

This gives for each potential ruler:

fitness(doea,s)) =fitness(s) + reward(a.s)

There are then probabilities associated with the actions. So, for instance it may be the

case that:

ProbJ s_deployFunction(j), deployFunction(j), s) = 0.8

ProbU_deployFunction(j), deployFunction(j), s) = 0.2

ProbJgetComponent(c), getComponent(c), s) = 1

This is a typical form of a Markov Decision Process (MOP), expressed in the Situation

Calculus, as previously described and analysed: There is a specification of a dynamic

probabilistic domain together with a reward function giving a value for each deterministic

outcome of a stochastic action. Any state the system may find itself in can then be

measured for fitness. (In this case via the fitness(doea,s)) =fitness(s) + reward(a.s) linear

- 170-

relationship) So rulers are 'elected' based on their fitness to be rulers and the rulers are

programmed to attain fitness for purpose. It is outside the scope of this paper to define

what features contribute to a ruler's fitness. Rather mission scientists would need to

define and specify costs and rewards for these properties. To assemble the system, so that

the probability that a new worker/ruler/messenger connects to a particular existing ruler r,

the formal representation of the system defines

probJ s_addLink(worker,ruler),addLink(worker,ruler),s) as

" f ruler drulertr:,
where Ir is the fitness of rand d, is its degree.

Corresponding probabilities for action failure will also apply. In this way the system is

initially assembled, under observer influence, to a scale free model. In practice, however,

it will be necessary for rulers to be added or built through the entire lifetime of the

mission. This is where the fitness functions are crucial to enable specified craft to take on

ruler duties at later stages in the mission's execution, as specified in the previous analysis

of the federated behaviour.

The Pico-spacecraft, initially joining the team with few links to other craft, will rapidly

acquire links if it possesses a high fitness parameter. Additionally, as discussed in Section

6.5, if the power law governing the connectivity has an exponent of 3 or less then nearly

all the links would have to be removed before the network broke down (Cohen et al,

2002). Thus it would be beneficial to ascertain the exponent of the power law distribution

determining this process.

This method of assembling the ruler team may be concisely portrayed in the algorithm for

a team of rulers. At each time step the following two steps are performed:

(i) A new potential ruler (ie high fitness) entity is created and connects to a randomly

chosen ruler.

(ii) Two randomly selected rulers are chosen. If the rulers were connected the link is

removed and the two rulers are merged into one new ruler. Multiple links are

removed.

If the second process is run at lower rate than the first then the team grows, as required in

the initial composition stage of the mission. A fixed team is described if the processes are

run together.

To illustrate: The ruler creation algorithm for the main mission may be stated as:

- 171-

When a ruler fails; transfer all of its connections to an established ruler and introduce
(send, build or convert) a new highly fit (jor rulership) craft connected to a randomly
chosen existing craft. An efficient method of maintaining and transferring ruler

connections was provided in specification for federated behaviour.

The worker (less fit for ruler) craft connect to the new and existing rulers via the

probability for the expression

probJ s_addLink(worker, ruler),addLink(worker, ruler),s)

given above, whilst the ruler connections may be specified:

connectionsi r, do(a,s))=N ~ I(connections(r.s) =N)Aa "'l:onnection_transfer J v
connectionsir.s) =N-mA3r'(jailed(r's) sconnectionstr'st=m)

poss(connection fransfer.s)=>3r'failedt r' .s)

rulerNumber(do(a.s))=M <:>rulerNumber(s)=MA .. 3r'Jailed(r',s) v

(rulerNumber(s)=M +1Aa=connection_transfer) v

(rulerNumber(s)=M-l saeaddcrafttr) Afitness(r,s»JOO)

So if r is the existing craft that acquires the connections of a failed unit and r' is the failed

unit and r" is the new ruler created then:

connectionsir, doiconnection.Jransfer.s) =conections(r,s)+connections(r',s) - m.;» h;»

connectionsir", dotconnection jransfer.s) = 1 [A]

where 1trr, = 1 if r was connected to r' and 0 otherwise and m". is the number of craft with

mutual links to rand r':

Now the probability that the connection r to r' exists is:

connections; r ,s)connectionj(r',s)
rulerNumber(s} < connectionsrulerssi >

where «connectionslrulers.s) is the average number of connections for the ruler team.

Similarly, denoting c,for the number of connections r has in sand N for the number of

rulers in s, the average number of rulers connected to rand r' is

\' crcp clr'
< mrr• >- i.J

p N < crr1m > N < crrle" > [B]

- 172-

which is Kc.c; where
2K _ < C",le,.. >

N < C",lm >2

Now substituting in the probability generating function for power law distributions, using

the expression given by [A] and observing that m".. is a Poisson variable with its mean

given by expression [B) gives

P(c) - .!.E(cc,+c,.-m".-h".-h,.,) +.!.c
2 2

= ![e + E(ec,+c"eKC,c,,'(C)(l + e,e ,.g(e)))]
2 N<e,lIIm>

where g(e)=(J-e)le. Also note h", is a random bit.

Now as N-oo K and 1 -0
N < C,,.u,, >

So letting KO _ I . pre) can be expanded as a convergent power series in K
N < Cru}"" >

and KO. The first term when K=K°=Ogives 2P(e) = p2(e)+e so that

P(c)-l-~- I ,\,f(r-1/2) r

2f(l/2)f-1 r!

with r = eTU/m.

p() f(cndm-I/2) -3/2
Thus for N-oo cndtrJ• 2f(1I2)c

ndt
,,! "" cndm

So the connectivity of the ruler team is determined by a power law distribution with

exponent 1.5. This means that the average number of connections to a ruler grows with

system size so that the total number of connections grows faster than the number of team

members. This, in tum, gives a greater degree of clustering, a more highly developed hub

structure. Additionally the cut-off for the maximum number of connections a ruler can

attain diverges with the system size, In contrast when the exponent, in the power law

distribution, is greater than 2 the average number of connections is finite and the

maximum number of connections settles to be of the order .INwhere N is the total

number of rulers. Thus the ruler team possess a high clustering coefficient indicative of

the high-density core. So the average number of connections for a ruler grows with the

number of Pico-spacecraft assembled for the mission. This suggests that connecting to an

existing ruler is relatively inexpensive.

- 173-

This specification of the ruler team assembly has been described entirely in terms of the

low-level interactions of the participant component spacecraft. The above analysis has

shown that this leads inevitably to a system with connectivity given by a power-law tail

with exponent 1.5. In addition various properties of the system are derivable as demanded

by the Knowledge Representation Hypothesis: Determining how a system behaves

amounts to deducing how it must behave given the system's logical description. The

Observer System applied to this scenario would thus determine the existence of scale-free

connectivity exactly as shown in the implementations of Chapter 6 and be able to apply

its knowledge base of monitoring and governance techniques appropriate to the system

domain and topology. For instance the Acquaintance Monitoring Selection would follow

in an identical manner to that shown in the implementations. Thus the observer system

would not be required to exhaustively monitor the entire ruler team, rather the majority of

relevant data could be gained from a selected subset of the team as determined by the

algorithm and analysis.

8.3Summary

The main contribution of this work is to provide a formal representation technique to aid

the provision of self-governance and autonomic functions to any scale of system. A

unifying formalism was, thus, proposed to handle both the centralised top-down control,

most often seen in traditional distributed application, and the emergence of topology and

function from the bottom-up, most often observed in large-scale natural and man-made

systems subject to organic growth, such as the World Wide Web. Two case studies have

therefore been presented in this chapter. The first, describing an adaptable decision

support system for a medical application, represented a system that was entirely

controllable through a centralised meta-system. The novel features of the system were

evident in the use of parametric adaptation to adapt the response of the autonomic meta-

system to the runtime state of the system. This is in contrast to most current

implementations of autonomic systems that rely on passive adaptation. As described in

Section 3.2.1 the current state of the art in autonomic systems is in parametric adaptation,

where the parameters used to determine autonomic response are deduced from the run-

time system and the system remains adaptable throughout runtime. The case study

showed that the logical specification could be used in a traditional manner to encode the

rules for deriving a treatment decision. The main use of the formalism, however, was to

provide a meta-system that was capable of adapting the system as required, to clinicians

- 174-

needs, for example. The system concerns analysed were in the provision of quality of

process and quality of service. Quality of process was specified in the mechanisms used

to improve the process decision models with extra input from clinicians deviating from

expected treatment decisions. Quality of service was illustrated through the decision

support service being kept available throughout periods of high demand through the

monitoring of key metrics. This case study was fully implemented as part of an EPRSC

funded project.

The second case study described the NASA ANTS project where very many components

interact to produce global system outcomes. This represents the current state of research.

At present there is little or no support for the mission-oriented adaptation, of Section

3.1.1, for reasoning on emergent behaviour in large-complex systems. The formalism was

shown to be equally adept at specifying system properties and deriving behaviour through

logical entailment as well as reasoning on emergent outcome in the global system. The

system considered, with a specified algorithm for robustness, was mathematically proven

to display a classic scale-free connectivity topology, most often displayed in large-

complex, dynamic systems. In addition the topology exhibited could be ascertained to be

particularly robust to random or accidental attacks. This analysis could be further utilised

by the Observer System to harness the properties of the topology to implement efficient

strategies in system monitoring and governance. The more generic implementation of the

scale-free topology with Acquaintance Monitoring Selection, described in Chapter 6, is

entirely relevant to this case study: The implementation would follow in exactly the same

manner.

Thus the same formalism has been shown to work at the application level, specifying

decision rules; at the level of specifying a meta-system that is centralised to maintain full

governance over the system and at a level to reason on the outcome of low-level

component interaction to detect new behaviour, engineer emergence and utilise known

properties of prevalent emergent network topologies.

- 175-

Chapter 9

Conclusions

The research work reported on in this thesis describes the analysis and design for the

specification of a meta-system implementation based on a mathematical logical approach,

giving system self-governance in an autonomic manner, to any scale of system through

the handling of emergence both through the engineering and utilisation of previously

observed instances and signal grounding. This chapter concludes the thesis with a review

of the results and proposals, described in the work, set against the identified problems and

challenges.

9.1 Motivations and Approach

The high performance and maintenance requirements emerging from the pervasive and

ubiquitous distributed networks of computational devices and software, including grid-

based applications, that are becoming evermore prevalent has led to a demand for agile

and efficient meta-systems enabling system self-governance. These larger-scale and

complex systems, whilst being beyond the scope of any single person's control, due to

the vast amount of observational data emanating at any instance from the system, also

present extreme challenges for purely computational systems in interpreting and acting on

this observational data. Thus, while large amounts of data can be handled efficiently by

an automated computational meta-system, additional support is required in manipulating

and interpreting this data for optimum self-governance. It is only by the execution of the

most appropriate actions by the self-governance meta-system, as a result of system

observation, that the high assurance, dependability, availability, ease of use and managing

of complexity can be achieved.

For the most part, following IBM's autonomic initiative, the autonomic meta-systems

have been composed of rule sets and policies dictated for the system at design time. Such

approaches, however, do not scale to larger systems or remain applicable for planet scale

systems: Design time software meta-system solutions cannot cope with dynamic

heterogeneous environments, where there is an absence of any centralised system, for the

sharing of resources, enforcing security, maintaining effective management strategies,

enabling communication between and allowing common data and system representation

- 176-

among components and the comprised system. This work, therefore addresses the

specification of a meta-system for self-governance in an autonomic system, which is

applicable to large-scale complex systems, whilst also permitting the formal specification

of smaller systems that may indeed form the components at the larger scale. A substantial

portion of this work, however, necessarily concentrates on the features and monitoring

techniques for larger-scale systems. In this way a unified formalism is gained whereby

middleware services are specified to permit effective autonomic self-governance for the

smallest sized system up to very large-scale planet wide networks. The proposal is to

specify system self-governance for autonomic systems by a combination of observation

and deliberative capabilities. Furthermore the application system, itself, the knowledge,

observation and sensing and the deliberative capabilities can all be specified using the

same formalism.

The initial impetus for the work arose from viewing system behaviour, for monitoring

and influence by the meta-system, as the result of individual responses to a collectivist

position. The Knowledge Representation Hypothesis naturally led to the adoption of

mathematical logic as the primary formulation to account for the propositional

account of the knowledge that the overall process exhibits". This brought up a number of

theoretical and technical issues that were required to be addressed in order to further this

work:

• Emergent Self·Organisation: The collectivist position that arises from

individual actions and interactions cannot be predicted. It has been observed that

in large, man-made and natural complex systems, behaviour or events emerge for

the whole system that are inexplicable and thus unpredictable simply in terms of

the actions executed, within the system, by its participant components.

• Relevant Models (Autonomic Self·Governance): Currently contrived

autonomic system models do not allow for system evolution away from a design

time model, as the rules governing the system are set at deployment: All states

must be enumerated beforehand. The most recent research permits parametric

adaptation whereby new values for threshold adjustment, for instance, may be

inferred from the runtime system. There are no facilities, however, to specify

autonomic response for global emergence, which requires mission-oriented

adaptation. The problem identified in this work is that presently autonomic self-

governance is achieved on the smaller-scale simply by symbol manipulation: The

- 177-

system on observing a certain symbol or signal. comprising a particular ordered

set of symbols. merely matches the symbol/signal to a pre-described set of action

commands. without having any notion of the intrinsic meaning for the systems

operation of the occurrence of the symbol/signal. This has been termed. through

this work. as the Signal Grounding Problem.

• Relevant Models (Formal Specification): There is currently little or no support

to facilitate the specification andlor detection of emergent self-organisation in

component/agent architecture/systems. Following models based on Beliefs-

Desires-Intentions (BDI) there have been many attempts to provide a formalism to

adequately specify federated behaviour. These have given methods to capture the

dynamics of cooperation and coordination in multi-agent systems. for example.

through the notions of utility and obligations in normative settings. An associated

specification of emergent outcome for the global ensemble. using the formalisms

is. however. lacking.

• Experimental Representation: This work is concerned with the formal

specification of self-governance for autonomic systems. Full details of any

implementation are outside the scope of this work. Nevertheless it is necessary to

evaluate and demonstrate the functions and operation of the specification in an

executing environment.

Addressing these motivations and associated challenges this thesis describes specification

formalism. based on a cognitive observation system. which can be applied to any scale of

system. A number of research subject areas from Computing. Artificial Intelligence and

Graph Theory were utilised in the proposed specification procedure:

• Federated Behaviour: Independent of any specific formalism the mechanism for

joint intentions in a teamwork setting was investigated. as a joint intention

involves more than each team member possessing the intention. Rather the

specification must be based on logic with the modal operators of Mutual Belief,

General Knowledge and Common Knowledge.

• The Autonomic Computing Model: The Autonomic computing model is used

to design and develop the specification technique. In particular, further work, to

advance the model. is used to attribute adaptive classifications to systems based

on passive. parametric or mission-oriented adaptation.

- 178-

• Distributed Artificial intelligence (DAI): There are many formal setting for

specifying concepts and deriving solutions in a distributed environment. This

works seeks the utilisation of the most relevant and applicable.

• Network Theory: Recent discoveries relating the underlying dynamics of large-

scale networks to a widely observed global arrangement with associated

transitions through system types are used to harness the properties of regular,

small world, random and scale-free large-scale systems.

In particular this work provided a means of specification for a self-governing autonomic

meta-system that is scalable to planet wide capabilities by:

• A Practical Specification Formalism: Stochastic Situation Calculus is

identified as possessing many desirable characteristics for specifying large-scale

system self-governance:

o System specification based on normative positions can be described as

well as the deliberative capabilities necessary for the associated cognitive

system in the Observer Model.

o A logical specification means the behaviour of the system is entailed by

the specification of the system, thus removing the necessity of prior state

enumeration.

o Knowledge, sensing and joint intentions, using previously defined logical

models of the modal operators, are easily specified in the Situation

Calculus.

o Stochastic actions permit deliberation in partially observable

environments and provide facilities to model and engineer, through

parameter adjustment, naturally occurring emergent behaviour through

Markov Decision problems and other DAI techniques.

o Its applicability in dynamic environments gives conterfactual reasoning

facilities and methods to address the Signal Grounding Problem.

• An Observer Model: The specification of the application system and the

normative positions controlled by the autonomic meta-system is achieved

through the same formalism that provides for the deliberation necessary to detect

newly emergent signals (Signal Grounding), the specification of component level

- 179-

interactions that lead to a known global outcome (engineering emergence) and

the utilisation of the properties of widely prevalent network topologies, upon

detection of such organisational behaviour occurring (using the properties of

scale-free networks for efficient observation).

9.2 Thesis Summary

Succeeding generations of computational systems will be characterised by increasing

levels of complexity and distribution, which is required to be hidden from the users. Thus

middleware services must be in place to handle the system management and relieve the

users of any notion of the technical or complex processes occurring in the service

delivery. Hence, at a low level, rules and normative positions must be provided by a

meta-system to ensure the system operates within safe limits. At a higher level, however,

facilities must exist to permit the autonomic type control of the system based on its

observed operation. In order to achieve this for large-scale systems, subject to emerging

behaviour patterns, cognitive systems are required within the middleware resident meta-

system. This thesis has, therefore presented a specification method that can be used

across all types and scales of system using techniques from the related disciplines of

psychology, Artificial Intelligence, robotics, mathematical logic and advanced software

engineering. The detailed descriptions of the work are presented in the following manner:

• Chapter 1 provides the motivation for the work, setting up the challenges that

needed to be addressed with the research hypothesis and questions, outlining the

approach and applicability of the research and providing an indication of the

contribution.

• Chapter 2 introduces the notion of a complex system and presents a review and

background for the current procedures for looking at complex systems including

the representation of the complexity in a specification. It is observed that in large

interacting systems the whole system behaviour is quite often more than the sum

of its component parts. This meant that a fully reductionist approach is not

appropriate leading to the understanding that a model and modal logic of

federated behaviour is required to consider interaction between components or

agents. Additionally emergent outcome is a major feature of large complex

systems; the various types of emergence seen in nature are described and the sort

of emergence seen in large man-made systems is described through the example

- 180-

of the World Wide Web. The proposal for a knowledge plane, for the web, is

considered as being someway addressed by this work.

• Chapter 3 provides the basic background and concepts of autonomic computing;

the most widely accepted method of providing self-governing meta-systems. The

Signal Grounding problem is identified as a major obstacle in achieving

autonomic functions in large-scale systems requiring mission-oriented adaptation.

The background covers the major properties of autonomic computing standards,

architectures and capabilities. The architectures, systems and agent frameworks

that can provide the decision mechanisms for actions in meta-system middleware

are reviewed and the state of the art is assessed against the classes of system

adaptation that can be realised. It is noted that natural models of self-organisation

can be incorporated into many middleware services. Most meta-systems for self-

governance, as exemplified by autonomic systems, are seen to rely on passive

adaptation: The system acts according to a meta-system founded on a static

preconceived rule set. The more recent research allows parametric adaptation. A

fundamental requirement for large-systems, however, is mission-oriented

adaptation to cope with emergent outcomes necessitating the addressing of the

Signal Grounding problem.

• Chapter 4 gives a literature review of mathematical formalisms for specifying

systems. The two main types considered are process algebras and logical

formalisms. It is discovered that the algebraic specifications require prior

enumeration of the state space. In logical formalisms it is observed that the

Situation Calculus allows a good representation of all the notions requiring

formulisation, in particular only Situation Calculus permits counterfactual

reasoning.

• Chapter 5 introduces the Observer System in relation to systems exhibiting

emergent outcomes. It shows the specification of Observer System reasoning to

address the Signal-Grounding problem and to engineer emergence through

adjusting the parameters in a Situation Calculus representation of a Markov

Decision Problem specifying the emergent outcome of the previously defined

food foraging example.

- 181-

• Chapter 6 further introduces properties and evolutionary features of large-scale

systems and networks that can be utilised by the Observer System when such

behaviour is detected. The classes of behaviour and connectivity are reviewed

through a model of phase transitions leading from a regular lattice to a scale-free

connected topology. A metric is proposed, the Hub Connection Density Measure,

to determine what topological phase a particular system is exhibiting, permitting

the deployment of the most appropriate monitoring strategy. In particular, when a

scale-free topology is detected, a newly defined Acquaintance Monitoring

Selection algorithm can be employed by the observation system to ensure

optimum system knowledge gathering. Moreover a representation of the situation

space that gives a scale-free topology can utilise similar methods to remove less

important or redundant data.

• Chapter 7 gives details of the implementations based on the work in the previous

chapters. Quantitative results are also presented for the simulations to validate the

use of previously defined metrics and properties.

• Chapter 8 presented two case studies as evaluation of the power of the

specification methods. Accordingly the specification was shown for a norm based

adaptable system and for a more large-scale system where federated behaviour

was specified through which further properties could be inferred by a cognitive

observation system. Additionally this gave rise to scale-free connectivity being

detected, giving a particularly robust construction to this application.

• Chapter 9 gives the motivations and approach, detailing the contributions,

discussing the outcomes and suggesting further work.

9.3 Achievements and Contributions

This thesis has presented a procedure to aid the development of a specification for self-

governance meta-systems to enable autonomic management for varying scales of system.

The thesis commenced by recognising the importance of knowledge dynamics in large

distributed groups of components or agents. This is necessary because the meta-system

for self-governance must be able to extract meaningful knowledge from the system.

Additionally it was observed that exhaustive monitoring of the components does not

necessarily provide a complete picture of the knowledge contained in the system: Global

properties of behaviour emerge in the global setting of the system that cannot be

- 182-

explained by aggregated actions. In other words component interactions may be

responsible for emergent outcome in the system. This gives rise to observable system

signals which. in order to accomplish the adaptations necessary for autonomic self-

governance. require a grounded definition by the system. Thus the Signal Grounding

problem was identified. A major feature of this work is that the specification method

proposed is equally valid for use in norm based centralised control meta-systems based

on feedback and control commands as well as for meta-systems applied to decentralised

distributed autonomous components in large-seale systems. The latter case includes the

facilities to detect newly emergent behaviour (ground system signals), engineer, from

previously observed instances of component interactions, globally emergent properties or

make use of the properties of widely occurring emergent topologies in autonomic

networks: Address Signal Grounding, engineer emergence and utilise the statistical

mechanics of large-seale networks. This is achieved through the use of mathematical

logic enabling the verification of specifications as well as providing the specification for

the inferential properties for a cognitive observation system providing facilities for

system autonomic self-governance. Thus this work has ranged over a number of issues.

as outlined above, and made a variety of contributions, including addressing the aims and

objectives stated in Section 1.4.4:

• An Identincation or the Signal-Grounding problem: It was noted that for

systems to perform genuine self-governance the systems themselves must possess

grounded definitions for the observable phenomena emanating from the system.

• Proposals ror addresslng the Signal-Grounding problem: A deliberative

mechanism was proposed to analyse the results of action histories and assess the

recurrence of observed phenomena. This was further refined to give an adjustable

engineering of emergence, through obtaining the solutions of (Partially

Observable) Markov Decision Problems, which was illustrated through a

specification of ant food foraging.

• The adoption or Situation Calculus for autonomic systems specification: The

Situation Calculus was shown to possess many useful characteristics for the

specification of self-governance meta-systems. In particular

- 183-

o A specification of federated behaviour was given in the Situation

Calculus based on an introduced concept of the modal logic of mutual

knowledge.

o A treatment of stochastic actions in Stochastic Situation Calculus allows

support for the specification of self-governance meta-systems in partially

observable domains subject to uncertainty.

o Sensing and knowledge manipulation for deliberation, based on the

central notion of action histories, provides means to address the identified

Signal Grounding problem and harness some often occurring generic

properties of large-seale complex systems.

o The Stochastic Situation Calculus is a very natural specification medium

for Markov Decision Problems allowing deliberative observers to solve

the problems and thus optimise the system.

• A unirylng specification procedure for autonomic self-governance: The work

presented in this thesis gives methods to support autonomic software engineering

10 give self-governance 10 software systems. This is achieved through a unifying

formalism, based on Situation Calculus, that gives the specification for a

deliberative observation system that can represent the norm based control of

centralised command and the deliberative properties required for the monitoring

influence and induced self-* capabilities of large planetary seale systems: The

(Stochastic) Situation Calculus permits the specification of:

o Bounded autonomy, specifying individual component system norms of

any form.

o Interactive social behaviour, a model of social federated behaviour, for

teamwork solutions, was proposed in a form suitable to be specified in

Situation Calculus.

o Deliberation, it was shown how the Situation Calculus specification

allows the cognitive facilities to detect newly emergent outcomes based

on grounding signals. engineer emergence from previously derived

models and utilise the features, such as seale-free connectivity, associated

with the evolution of large-seale networks.

- 184-

• An assessment or the evolution and properties or large-scale networks: It was

shown how large-seale networks maybe transformed, through a phase transition

process from a regular to a small world to a random to a seale-free network. This

led to the proposal of the Hub Connection Density measure to assess the phase a

particular system maybe in, influencing the chosen monitoring strategy.

• A postulated means by which stored system knowledge may be reduced

without global system awareness: Based on the scale-free model an initial

proposal was outlined to identify important data in the Situation Space without

necessarily having global knowledge of the content. In this way it is possible to

remove less crucial data from the Situation Space, improving the speed and

efficiency of deliberation.

• An Implementation/simulation: The implementations were reported upon

together with fully implemented simulations quantitatively showing the efficacy

of the deliberative procedure, for the Observation System, to choose the optimum

monitoring points. Itwas shown, through the simulation results, that a significant

proportion of system knowledge was returned by such techniques; much more

than would be gained through any other currently available scalable method.

• An evaluation: The specification technique was evaluated through two case

studies, showing the proof of concept, the ease by which a specification may be

achieved and the deliberative processes that may occur within the Observation

System. The applications considered, to demonstrate the approach to all system

scales, firstly showed a relatively straightforward, norm based meta-system. The

second application showed the model of federated behaviour in operation leading

to observable and analysed emergent outcome. The applications presented were:

o A decision support system for post-operative breast cancer care. The

specification was shown working through rule representation and the

specification of meta-system concerns involving quality of service and

quality of process issues. This equipped the system with facilities to

handle demand spikes and to adapt to clinicians requirements whilst

allowing the assimilation of novel treatments and treatment combinations.

Although full details of the achieved implementation are outside the

- ISS-

scope of this work. a fully functional prototype was produced as part of

the EPSRC funded project.

o The NASA ANTS space mission. The interactions of the numerous Pico-

spacecraft were firstly modelled using the Situation Calculus specification

of federated behaviour. It was shown how the Observation System's

deliberation would proceed to infer extra knowledge about the system,

demonstrating that the approach does not require a prior complete

state/situation enumeration. The further analysis showed that scale-free

behaviour results from the described topology, thus allowing customised

observation system techniques to be applied.

9.4 Conclusion and Discussion

The purpose of this work. as summed up in the stated research hypothesis, is to provide a

method, applicable to varying sizes and complexities, for the specification of self-

governance giving the system autonomic management. Typically, in presently deployed

systems, this is achieved by the prescription of a set of rules stipulating the action that

ought to occur for a specific set of observed circumstances. It can readily be seen that

such approaches do not scale for two main reasons: Firstly the behaviour as systems

become larger and more interactive, quickly outstrips the representative capacities of

finite rule sets and secondly such an approach demands that all behaviour must be

predictable at design time so a rule can be formulated, this is obviously infeasible.

particularly given circumstances of emergent behaviour. Thus it is postulated that the best

way to achieve self-governance Over a system is to combine the data handling capacities

of a computational system with the cognitive reasoning techniques of an observer.

Furthermore the observer is required to be a separated software component to enable

deliberation for self-governance. This leads to the central tenet for the motivation of this

research that there is very little formal support for the specification of autonomic systems

or for self-governance in general. Furthermore mechanisms to enable the necessary

deliberation to achieve this are fragmented between a relatively wide variety of

centralised command and control type architectures and a very few offering support for

the increasingly prevalent decentralised architectures subject to self-organisation and

emergence, capable of confronting the Signal-Grounding problem.

- 186-

Deliberation, in centralised control meta-systems, has been extensively investigated

through extensions to BDI, as described in Section 3.2 whilst deliberation in a

decentralised architecture has received less attention. Some approaches have tended to

investigate the emergence of component roles in such systems (Hales and Edmonds,

2(03) whilst others seek merely to define emergence (Gillett, 2(02). The emergent

outcome of large-complex systems, seen as a multi-agent system, usually follows a

biological inspired approach (Mano et al, 2(06) or focuses on the social interactions of

the participants (Watts and Strogatz, 1998). The most usual approach seeks to emulate

previously observed instances of naturally occurring emergence by re-enacting the low-

level component interactions that presaged the exhibited global outcome by engineering

emergence (Zambonelli et ai, 2004). The algorithms proposed for engineering emergence

provide the assurance that the system will converge to the eventual predicted global state

that is stable to perturbation from further low-level interactions. Stigmergy (Grasse,

1959) is one such technique that has aroused some interest in this regard. It is based on

the indirect interactions of system participants, where messages are deposited through the

environment to be picked up by subsequent encountering entities. It has been applied to a

number of practical problems including manufacturing control scenarios control (Hadeli

et ai, 20(4) and agent meditated security (Foukia, 2(05). There is little support, however,

(or a related general formal specification and there is no proof of convergences to the

required emergent state. In the Observer System, proposed in Ihis work, signal-grounding

may be achieved through the establishment of a proposed grounding assessed for

accuracy and relevance by the future recurrences of the signal: Behaviour is adapted

according to reinforcement. The model of adaptive agents (Weyns et al, 2004)

dynamically adapts logical relations between different behaviours in a manner that can be

utilised so that the observer system may monitor the recurrence of some recognised

emergence. Cooperation at the component level is frequently used to engender desired

collective behaviour, emerging to provide the system's functionality. AMAS theory

(Gleizes et al, 1999) specifies that each cooperative agent is able to rearrange its local

interactions dependent on its knowledge of the emerging system function. It is also

possible to model systems based on meta-models of agent organisation. The PROSA

architecture (Bongaerts, 1998) for example, involves a holonic hierarchy model. Agents

participate in holons, forming holonic structures with self-organisation occurring by

adapting the holonic hierarchy to environmental perturbations. A model where there is

- 187-

direct interaction between system participants allows the engineering of emergence

through previously observed outcomes; this is only useful, however, for simple global

equilibrium states modelled in a strictly linear manner (Zambonelli, 2004). Stigmergy

type scenarios have the added benefit of giving an implementation from an observed

calibrated simulation. This gives some ideal solutions for specific application domains

but, as mentioned earlier, does not permit a general formal explanation. Cooperation

behaviour requires an exhaustive enumeration of cooperative states and adaptations,

which is not always possible for large systems. Additionally the formal setting for such

systems is allied to the system classification. Thus there are separate specifications for

norm-based operation, cooperative, coordinated or socially interactive systems and for

situations where emergent self-organisation may occur. This thesis has proposed a

method of specification, (or a self-governance system giving autonomic response,

suitable for all types and scales of system. The proposal for use of the Situation Calculus.

augmented with the modalities suggested in Chapter 4, gives the basis for specification

formalism for autonomic self-governance appropriate to all seales of systems. The next

section presents a number of areas where further research may populate the observational

systems with additional functionality to better deliberate over the system state. restrict

their deliberations to the more relevant system data and further address the Signal-

Grounding problem. The Situation Calculus remains as a powerful specification medium

through which to represent the further development of these ideas. Indeed the tools and

techniques established through this work can be applied to many other areas of

application. other than autonomic middleware. For instance smart devices to aid the

disabled would gain in robustness and versatility with the addition of cognitive facilities.

In practice any applications that call for large data set manipulation. such as GPS

information for road pricing, can be better handled by the establishment of the type of

systems proposed throughout this thesis.

9.5 Proposed Further Works

The work presented in this thesis is intended to advance the notion that a specification of

self-governance for autonomic systems is achievable for any scale of system using a

single formal specification method. This has been demonstrated within this work. The

deliberation, however, requires content or monitoring data to reason over and established

models to reason against.

- 188-

• Further work is required to refine and develop new models of autonomic

networks. The transitions through regular, small world, random and seale free

topologies are characterised by wide limits in the low-level parametric

specification and the global measures. More fine-grained models may lead to

better use of more targeted monitoring resources. Indeed alternative models of

emergent topological outcome can provide extra deliberative resources for the

meta-systems.

• The accumulation of monitoring data, such as complete action histories, is very

difficult to regulate and utilise efficiently. As the system develops more and more

data needs to be retained and the associated searches, through the data, become

more laborious. A method has been proposed in this work to trim the situation

space by ensuring it arrangement into a seale-free system and using that topology,

in a similar way to acquaintance monitoring/immunisation, to remove some stored

action histories (situations) without complete global knowledge of the system.

Although initial results are promising much more work is required in this area to

assess the best way in which the situation space may be represented for trimming

and how often the trimming may occur.

• The specification of the self-governance does not account for the timeliness of the

specified deliberation. In practice the results of deliberation are always going to

lag behind the actual system's state. In the implemented simulations, described in

Chapter 7. the deliberation required within the system caused many long delays in

constructing the systems from the component interactions, gathering data and

executing algorithms.

• Further work is needed in extracting the most timely and greatest volume of data

from the system. One approach is to investigate the use of a connected dominating

ut of nodes to delegate the monitoring tasks to a subset of nodes in the system.

These nodes are called supervisor nodes. Each supervisor has to monitor a limited

number of nodes called supervised nodes. In order to monitor the entire system,

the nodes of the network must be either supervisor or supervised nodes. Further

investigation can improve the robustness of this system by constructing a k-

connected dominating set, where each supervisor node possesses, in effect, k
replacements. This all requires further analysis and research to incorporate these

- 189-

techniques into autonomic system monitoring, including the optimization of the

data flow between nodes.

• The Signal-Grounding problem is still relevant and improved methods are

required to address the timely runtime detection of emergence. An indication of

one future direction of this work is detailed in the workshop paper reprinted in

Appendix 2, where the storage of situations or action histories is used to ground a

particular system signal. All action histories are stored in the system as individual

objects, which are subject to trimming by the specified process. This work,

however, still requires a proper evaluation to determine suitable parameters to

maintain maximum knowledge with minimal storage.

- 190-

References

2nrich Project (2006) Towards a Disciplined Approach to Integrating Decision-Support
Systems for Breast Cancer Care Activities. http://www.cms.livjm.ac.ukl2nrich/

Aicklen U., P. Bentley, S. Cayzer, J. Kim, J. Mcleod (2003) Danger Theory: The Link
Between AIS and IDS? In J. Timmis, P. Bentley, E. Hart (editors) Springer LNCS 2787
pp: 156-167.

Aiello, W., F. Chung, and L. Lu (2000) A Random Graph Model for Massive Graphs. In
Proceedings of the 32nd Annual ACM Symposium on Theory of Computing (STOC), pp:
171-180. ACM Press.

Albert, R., R. H. Jeong, A.-L. Barabasi (1999) Internet: Diameter of the World-Wide
Web. Nature 40 I, pp: 130.

Albert, R., A.-L. Barabasi (2002) Statistical Mechanics of Complex Networks. Reviews
of Modern Physics 74, pp: 47-98

Albrecht, C.C., D. D. Dean, J. V. Hansen (2003) Using Situation Calculus for E-business
Agents. Expert Systems with Applications, 24(4}, pp: 391-397.

Alvarez-Ramirez, J., C. Ibarra-Valdez, E. Rodriguez, R. Urrea (2007) Fractality and
Time Correlation in Contemporary War. Choas, Soliton and Fractals 34(4}, pp: 1039-
1049.

Andrzejak A., S. Graupner, V. Kotov, H. Trinks, (2002) Algorithms for Self-
Organization and Adaptive Service Placement in Dynamic Distributed Systems, Tech.
Rep. HPL-2002- 259, Hewlett-Packard Labs Palo Alto.

Appavoo J., K. Hui, C. A. N. Soules, R. W. Wisniewski, D. M. Da Silva, O. Krieger,
M. A. Auslander, D. J. Edelsohn, B. Gamsa, G. R. Ganger, P. McKenney, M. Ostrowski,
B. Rosenburg, M. Stumm, and J. Xenidis (2003) Enabling Autonomic Behaviour in
Systems Software with Hot Swapping. IBM Syst. J., 42(1) pp: 60-76.

Arnold K., A. Wollrath, B. 0'Sullivan, R. Scheifler, J. Waldo (1999) The Jini
Specification. Addison-Wesley, Reading, MA, USA.

Ashby, W. R. (1947) Principles of the Self-Organizing Dynamic System. Journal of
General Psychology (1947), volume 37, pp: 125-128

Badr N., A. Taleb-Bendiab, M. Randles, D. Reilly (2004) A Deliberative Model for Self-
Adaptation Middleware Using Architectural Dependency. In Proceedings of the 15th
International Workshop on Database and Expert Systems Applications (DEXA'04),
SAACS'04: 2nd International Workshop on Self-Adaptable and Autonomic Computing
Systems, pp: 752-756.

- 191-

http://www.cms.livjm.ac.ukl2nrich/

Baeten. J.C.M. (1993) The Total Order Assumption. In S. Purushothaman and A.
Zwarico, editors, Proceedings First North American Process Algebra Workshop,
Workshops in Computing, pp: 231-240. Springer Verlag.

Baillie, J.C. (2004) Grounding Symbols in Perception with Two Interacting Autonomous
Robots. Proceedings of 4thIntI. Workshop on Epigenetic Robotics: Modelling Cognitive
Development in Robotic Systems 117 pp: 107-110.

Barabasi, A.-L. (2002) Linked: The New Science of Networks, Perseus Publishing.

Barabasi, A-L. and R. Albert (1999), Emergence of Scaling in Random Networks,
Science 286, pp.509-512.

Baresi, L., M. Baumgarten, M. Mulvenna, C. Nugent, K. Curran, P. Deussen (2006)
Towards Pervasive Supervision for Autonomic Systems. In Proceedings of IEEE
Workshop on Distributed and Intelligent Systems, Prague, pp: 365-370.

Becht, M., T. Gurzki, J. Klarmann, M. Muscholl, (1999) ROPE: Role Oriented
Programming Environment for Multi-agent Systems. Proceedings of the Fourth IFCIS
Conference on Cooperative Information Systems (CoopIS'99), Edinburgh, Scotland,
September 1999.

Beer, S. (1979) The Heart of the Enterprise. John Wiley & Sons, Chichester, UK.

Belleghem, van K.. M. Denecker, D. De Schreye (1997) On the Relation Between
Situation Calculus and Event Calculus. The Journal of Logic Programming 31(1-3), pp:
3-37

Bellman R. E. (1957) Dynamic Programming. Princeton University Press, Princeton,
USA.

Beneken, G., U. Hammerschall, M. Broy, M.V. Cengarle, J. JUrjens, A Pretschner, B.
Rurnpe, M. Schoenmakers (2003) Componentware State of the Art 2003 Background
Paper for the Understanding Components Workshop of the CUE Initiative at the
Univerita Ca Foscari di Venezia Venice, October 7th-9th 2003.

Bergstra, J. A. and J. W. Klop (1984). Process Algebra for Synchronous Communication.
Information and Control60(1/3), pp: 109-137.

Bernon, C.• V. Chevrier, V. Hilaire, P. Marrow (2006). Applications of Self- Organising
Multi-Agent Systems: An Initial Framework for Comparison. Informatica 30(1).
http://aLijs.silinformaticalPDF/30-1/06_Carolle-Applications%200f%20Self-
Organising%20Multi-Agent. ..pdf (Accessed April, 2(07)

Boella G.. L. van der Torre (2003) Permissions and Obligations in Hierarchical
Normative Systems. Proceedings of the Eighth International Conference on Artificial
Intelligence and Law (ICAIL'03). pp: 109-118.

Bollobas., B. (1985) Random Graphs, Academic Press, NY,

- 192-

Bonabeau E., M. Dorigo, and G. Theraulaz (1999) Swarm Intelligence: From Natural to
Artificial Systems. Santa Fe Institute Studies on the Sciences of Complexity. Oxford
University Press, UK.

Bongaerts L. (1998) Integration of Scheduling and Control in Holonic Manufacturing
Systems. PhD Thesis, Katholieke Universiteit, Leuven.

Booch, G. (1994) Object-Oriented Analysis and Design with Applications. Addison
Wesley.

Boman, M. (1999) Norms in Artificial Decision Making. AI and Law 7(1), pp: 17-35.

Boutilier, C., T. Dean, and S. Hanks (1999) Decision Theoretic Planning: Structural
Assumptions and Computational Leverage. Journal of Artificial Intelligence Research 11.
pp: 1-94.

Boutilier, C., R. Reiter, R. Price (2001) Symbolic Dynamic Programming for First-order
MDPs. In Proceedings of the Seventeenth International Joint Conference on Artificial
Intelligence (IJCAI-Ol), Seattle, pp: 690-697.

Bratman, M.E. (1987) Intentions, Plans, and Practical Reason. Harvard University Press:
Cambridge, MA.

Bratman, M. E., 0.1. Israel, M.E. Pollack (1988). Plans and Resource-Bounded Practical
Reasoning. Computational Intelligence 4 (4), pp: 349-355.

Broersen, J., M. Dastani, J. Hulstijn, Z. Huang and L. van der Torre (2001) The Boid
Architecture. In Proceedings of the Fifth International Conference on Autonomous
Agents (Agents'OI), Montreal, Quebec, Canada, pp: 9-16.

Brooks, F.P. (1995) The Mythical Man-Month. Addison Wesley.

Brooks, R.A. (1991) Intelligence Without Representation. Artificial Intelligence 47 pp:
139-159

Bourjot, C., V. Chevrier, V. Thomas (2003). A New Swarm Mechanism based on Social
Spider Colonies: from Web Weaving to Region Detection. Web Intelligence and Agent
Systems. 1(1), pp: 47-64.

Bullock, S., D.Cliff (2004) Complexity and Emergent Behaviour in ICT Systems.
Technical Report HP-2004-187, Semantic & Adaptive Systems, Hewlett-Packard Labs.
Available from: http://www.hpl.hp.com!techreportsl2004IHPL- 2004-187 .pdf (Accessed
May,2oo7).

Cardelli, L., A.D. Gordon (1998). Mobile Ambients. In Proceedings of the First
international Conference on Foundations of Software Science and Computation Structure
M. Nivat, Ed. Lecture Notes In Computer Science 1378 pp: 140-155.

Camazine, S., J.-L. Deneubourg, N. Franks, J. Sneyd, G. Theraula, E. Bonabeau (2003)
Self Organization in Biological Systems, Princeton Univ Press.

- 193-

http://www.hpl.hp.com!techreportsl2004IHPL-

Cerone, A., G.J. Milne (2005) Property Verification of Asynchronous Systems.
Innovations in Systems and Software Engineering 1(1), pp: 25-40, Springer-Verlag
London, UK.

Clark, D. D., C. Partridge, J. Christopher Ramming, John T. Wroclawski (2003) A
Knowledge Plane for the Internet. In Proceedings of Special Interest Group on Data
Communications (SIGCOMM'03) Karlsruhe, Germany, pp: 3-11

Chomsky, N. (1965) Cartesian Linguistics. Reprinted in Cartesian Linguistics. A Chapter
in the History of Rationalist Thought. Lanham, Maryland: University Press of America,
1986.

Cohen, P.R. and H. J. Levesque (1990). Intention is Choice with Commitment. Artificial
Intelligence, 42 pp: 213-261.

Cohen, R., S Havlin, D ben-Avraham (2002)Structural Properties of Scale Free
Networks, S. Bornholdt and H. G. Schuster(eds) Chap. 4 in Handbook of Graphs and
Networks, Wiley- VCH.

Cohen, R., S. Havlin, D. ben-Avraham (2003) Efficient Immunization Strategies for
Computer Networks and Populations,"Physical. Review Letters 91(24), 247901.

Conte, R., C. Castelfranchi, (1995). Understanding the Effects of Norms in Social Groups
through Simulation. In Artificial societies: the computer simulation of social life. Eds.
G.N. Gilbert and R. Conte, London, UCL Press.

Deussen P.H (2006) Supervision of Autonomic Systems. International Transactions on
Systems Science and Applications 2(1), pp: 105-110.

Dawkins, R. (1996) The Blind Watchmaker. W. W. Norton & Co. New York

Denecker, M., D. De Schreye (1995) Representing Incomplete Knowledge in Abductive
Logic Programming. Journal of Logic and Computation 5(5), pp: 553-577.

Denecker, M., E. Ternovska (2007) Inductive Situation Calculus. Artificial Intelligence
171(5-6), pp: 332-360

Dignum F. (1999) Autonomous Agents with Norms. Artificial Intelligence and Law 7(1)
pp: 69-79.

Dignum, V., J.1. Meyer, F. Dignum, H. Weigand (2003) Formal Specification of
Interaction in Agent Societies. In: M. Hinchey, J. Rash, W. Truszkowski, C. Rouff, D.
Gordon-Spears (Eds.): Formal Approaches to Agent-Based Systems (FAABS), Lecture
Notes in Artificial Intelligence, Springer-Verlag, Volume 2699.

Dong, W., K. Xu, M. Lin (2004) A Situation Calculus-based Approach To Model
Ubiquitous Information Services. Computing Research Repository (CoRR)
cs.AII0311052. Available at: http://arxiv.orglabs/cs.AII0311OS2 (Last Accessed May,
2(07)

- 194-

http://arxiv.orglabs/cs.AII0311OS2

Erdos, P.,A. Renyi (1959). On random graphs I. Pub!. Math. Debrecen 6, pp: 290-291.

Erdos, P.,A. Renyi (1961). On the Evolution of Random Graphs. Bull. Inst. International
Statistics. 38, pp: 343-347.

Fagin, R. and 1. Y. Halpern (1988). Belief, Awareness, and Limited Reasoning. Artificial
Intelligence 34, pp: 39-76.

Fagin, R., J.Y. Halpern, Y. Moses, M. Vardi (1995) Reasoning about Knowledge. MIT
Press, Cambridge, MA, USA.

Faloutsos M., P. Faloutsos, C. Faloutsos (1999) On Power Law Relationships of the
Internet Topology. ACM SIGCOMM Computer Communication Review 29(4), pp: 251-
262.

Ferber J., O. Gutknecht (1998) AALAADIN: A Meta-Model for the Analysis and Design
of Organizations in Multi-Agent Systems. In Proceedings of the Third International
Conference on Multi-Agent Systems (ICMAS), Cite des Sciences - La Villette, Paris,
France, July 1998.

Feurzeig, W., S. Papert (1968) Programming Languages as a Conceptual Framework for
Teaching Mathematics. In Proceedings of NATO Science Conference on Computers and
Learning, pp: 37-42.

Filipe, J., K. Liu, (2000) The EDA Model: An Organisational Semiotics Perspective to
Norm based Agent Design. Proceedings of Workshop on Norms and Institutions in
Multi-Agent Systems, Barcelona, Spain.

Fikes, R.E., N.J. Nilsson (1971) STRIPS: A New Approach to the Application of
Theorem Proving to Problem Solving. Artificial Intelligence 2(3-4), pp: 189-208

Finger, J. (1986) Exploiting Constraints in Design Synthesis. PhD. Thesis, Stanford
University, Stanford, CA, USA.

FIPA (2003) Agent Communicative Act Library Specification. http://www.fipa.org

Floridi, L. (2004) Open Problems in the Philosophy of Information, Metaphilosophy 35,
pp:554-582,

Floyd, S. (2007) Adaptive Web Cache, http://www.icir.org/floyd/web.html (Accessed
April, 2007)

Francis, P., S. Saxena (1998) Optimal Distributed Leader Election Algorithm for
Synchronous Complete Network. In Proceeding of the International Conference on
Global Connectivity in Energy, Computer, Communication and Control (TENCON '98),
pp: 86-88.

Foukia N. (2005) IDReAM: Intrusion Detection and Response executed with Agent
Mobility. In the Proceedings of the International Conference on Autonomous Agents and

- 195-

http://www.fipa.org
http://www.icir.org/floyd/web.html

Multi-Agent Systems (AAMAS'05), pp: 264-270, Utrecht, The Netherlands.

Fox, J., N. Johns, A. Rahmanzadeh, R. Thompson (1996) Proforma: a Method and
Language for Specifying Clinical Guidelines and Protocols. In J Brender, J P
Christensen, J-R Scherrer P McNair (editors) Medical Informatics Europe '96 lOS Press,
Amsterdam, pp: 5 16-520.

Fruchterman, T.M.J., E.M. Reingold (1991) Graph Drawing by Force-Directed
Placement. Software-Practice and Experience 21(11), pp: 1129-1164.

G. T. Ltd. (2002) GigaSpaces Platform, White Paper (February 2002).

Galli, A., A. Signorini (2005) The Indexable Web is more than ll.5 Billion Pages. In
proceedings of the 14tbInternational World Wide Web Conference (WWW'05) pp: 902-
904.

Gamma, E., R. Helm, R. Johnson, J. Vlissides (1994) Design Patterns: Elements of
Reusable Object-Oriented Software. Addison Wesley.

Ganek, A.G., T.A. Corbi (2003) The Dawning of the Autonomic Computing Era. IBM
Systems Journal, 42(1) pp: 5-18,

Garlan, D., S. Cheng, A. Huang, B. Schmerl, P. Stennkiste (2004) Rainbow: Architecture
Based Adaptation with Reusable Infrastructure. IEEE Computer 37(10), pp: 46-54

Gasser, L. (1991) Social Conceptions of Knowledge and Action: Distributed Artificial
Intelligence and Open Systems Semantics Artificial Intelligence, January/February 1991.
Reprinted in Michael N. Huhns and Munindar P. Singh (eds). Readings in Agents,
Morgan Kaufmann, 1997.

Gelernter D., N.Carriero (1992) Coordination Languages and Their Significance,
Communications of the ACM 35 (2) pp: 96-107.

Genesereth, M. R., S.P. Ketchpel (1994) Software Agents. Communications of the ACM
37 pp: 48-53

Gilbert Nigel, Matthijs den Besten, Akos Bontovics, Bart G.W. Craenen, Federico
Divina, A.E. Eiben, Robert Griffioen, Gyorgy Hevfzi, Andras Lorincz, Ben Paechter,
Stephan Schuster, Martijn C. Schut, Christian Tzolov, Paul Vogt and Lu Yang (2006)
Emerging Artificial Societies Through Learning. Journal of Artificial Societies and Social
Simulation 9(2), pp: 9.

Gillett C. (2002) The Varieties of Emergence: Their Purposes, Obligations and
Importance. Grazer Philosophische Studien 65 pp: 89-115.

Gilmore S., J. Hillston (1994) The PEPA Workbench: A Tool to Support a Process
Algebra-based Approach to Performance Modelling. In Proceedings of the Seventh
International Conference on Modelling Techniques and Tools for Computer Performance
Evaluation, number 794 in Lecture Notes in Computer Science, Springer-Verlag pp: 353-

- 196-

368.

Glansdorff, P., I. Prigogine (1978) Thermodynamic Study of Structure, Stability and
Fluctuations Wiley New York 1978

Gleizes M.-P., V. Camps, and P. Glize (1999) A Theory of Emergent Computation Based
on Cooperative Self- Organisation for Adaptive Artificial Systems. Fourth European
Congress of Systems Science. Valencia, 1999.

Godel, K. (1931) Uber formal unentscheidbare Satze der Principia Mathematica und
verwandter Systeme, I. Monatshefte fur Mathematik und Physik 38: 173-98. In On
Formally Undecidable Propositions Of Principia Mathematica And Related Systems, tr.
B. Meltzer, Basic Books New York 1962.

Gordon, MJ.C., T.F. Melham (1993) An Introduction to HOL-a theorem Proving
Environment for Higher Order Logic. Cambridge University Press.

Grasse Pierre-Paul (1959) La Reconstruction du nid et les Coordinations Inter-
Individuelles chez Bellicositermes Natalensis et Cubitermes sp. La theorie de la
Stigmergie: Essai d'interpretation du Comportement des Termites Constructeurs. Insectes
Sociaux, 6, pp: 41-81.

Green C. (1969) Application of Theorem Proving to Problem Solving. In Proceedings of
the First International Joint Conference on Artificial Intelligence (UCAI-69) pp: 219-239

Grosz, B., C. Sidner (1990) Plans for Discourse. In P.R. Cohen, J. Morgan and M.E.
Pollack (Editors) Intentions in Communication, MIT Press, Cambridge, MA, USA

HP World (2003) Adaptive Infrastructure, Atlanta, Georgia, 11-151h August, 2003

Hadeli, P. Valckenaers, M. Kollingbaum, H. van Brussel (2004) Multi-Agent
Coordination and Control using Stigmergy Computers in Industry 53(1) pp 75-96.

Hadeli, P. Valckenaers, B. Saint-Germain, P. Verstraete, C. B. Zamfirescu, H. Van
Brussels (2005) Emergent Forecasting using a Stigmergy Approach in Manufacturing
Coordination and Control. Engineering Self-Organising Systems. S. Brueckner et al.
(Eds), Lecture Notes in Artificial Intelligence, volume 3464, pp: 210-226, Springer-
Verlag, Berlin, 2005.

Hales D., B. Edmonds (2003) Evolving Social Rationality for MAS using 'Tags', In
Proceedings of the 2ndInt. Joint Conf. on Autonomous Agents and Multi-Agent Systems
(AAMAS 2003). Melbourne, Australia: ACM Press, pp: 497-503.

Halpern, J.Y., Y. Moses (1990) Knowledge and Common Knowledge in a Distributed
Environment Journal of the ACM 37(3) pp: 549-587

Halpern, J.Y., Y.Moses (1994) A Guide to Completeness and Complexity for Modal
Logics of Knowledge and Belief Reprinted from Artificial Intelligence 54 1992 pp:311-
379

- 197-

Halpern, J.Y., L.C. Rego (2006) Reasoning about Knowledge of Unawareness. In
Proceedings of Tenth International Conference on Principles of Knowledge
Representation and Reasoning (KR 2(06), pp:14-24

Harel D. (1979) First-Order Dynamic Logic. Lecture Notes in Computer Science, 68,
Springer- Verlag, New York.

Hamad, S. (1990) The Symbol Grounding Problem. Physica D, pp: 335-346.

Hewitt, C. (1990) Towards Open Information Systems Semantics. In the proceedings of
10th International Workshop on Distributed Artificial Intelligence. October 23-27, 1990.
Bandera, Texas.

Hewitt, C. (1991) Open Information Systems Semantics. Journal of Artificial
Intelligence. January 1991.

Hintikka,1. (1962). Knowledge and Belief. Ithaca, N.Y.: Cornell University Press.

Hoare, C. A. R. (1978). Communicating Sequential Processes. Communications of the
ACM 21 (8), pp: 666-677.

Hoare C. A. R. (1985). Communicating Sequential Processes. Prentice-Hall.

Holland J.H. (1995) Hidden Order: How Adaptation Builds Complexity. Addison-
Wesley, Redwood City, CA, USA

Hom P. (2001) Autonomic Computing: IBM Perspective on the State of Information
Technology. Presented at AGENDA 2001, Scottsdale. IBM, T.J. Watson Labs, New
York. Available from:
http://www.research.ibm.com!autonomic/manifesto/autonomic_computing. pdf (Accessed
April, 2(07)

IBM (2003) An Architectural Blueprint for Autonomic Computing. http://www-
03.ibm.com/autonomic/pdfsl ACBP2_2004-1 0-04.pdf (Accessed April, 2(07)

IBM and Cisco Systems (2003) Adaptive Services Framework. White Paper, October,
2003

Jenning, N. R. (1995) Controlling Cooperative Problem Solving in Industrial Multi-
Agent Systems using Joint Intentions Artificial Intelligence. 75(2) pp: 195-240.

Jennings, N. R. (2001) An Agent-Based Approach for Building Complex Software
Systems. Communications of the ACM 44(4) pp: 35-41.

Jennings, N.R., M. Wooldridge Editors (1998) Agent Technology: Foundations,
Applications and Markets. Springer Verlag, Berlin

Jeong, H., B. Tombor, R. Albert, Z.N. Oltvai, A.L. Barabasi (2000). The Large-Scale
Organization of Metabolic Networks. Nature 407, pp: 651-654.

- 198-

http://www.research.ibm.com!autonomic/manifesto/autonomic_computing.

Jones A., M. Sergot (1993) On the Characterisation of Law and Computer Systems: the
Normative Systems Perspective. In Deontic Logic in Computer Science: Normative
System Specification, pp: 275-307. J. Wiley and Sons.

Kawachi, Y., K. Murata, S. Yoshii, Y. Kakazu (2004) The Structural Phase Transition
Among Fixed Cardinal Networks. Proceedings of the 71h

• Asia-Pacific Conference on
Complex Systems, Cairns Australia, pp: 247-255.

Kephart. J.O., D .M Chess (2003), The Vision of Autonomic Computing. Computing
Vol. 36 No. 1,2003 pp.41-52.

Kiczales, G., 1. Lamping, A. Mendhekar, C. Maeda, C. Videira Lopes, J.-M.Loingtier,
and J. Irwin (1997), Aspect-Oriented Programming In Proc. ofECOOP 1997.

Klemm, K., V.M. Egufluz (2002) Highly Clustered Scale-Free Networks. Physical
Review E65, 036123, arXiv:cond-matJOI07606vl.

Kowalski, R. A., F. Sadri (1997). Reconciling the Event Calculus with the Situation
Calculus. Journal of Logic Programming 31 (1-3), pp: 39-58.

Kowalski, R.A., M. Sergot (1986) A Logic Based Calculus of Events. New Generation
Computing 4(4), pp: 319-340

Kripke, S. (1963) Semantical Analysis of Modal Logic I: Normal Modal Propositional
Calculi, Zeitschrift fUrMathematische Logik und Grundlagen der Mathematik 9 pp: 67-
96

Kuo, B.C., F. Golnaraghi (2003) Automatic Control Systems. 8th Edition, Wiley New
York.

Labrou, Y., T. Finin (1997) A semantics Approach for KQML: A General Purpose
Communication Language for Software Agents. Proceeding of the Third International
Conference on Information and Knowledge Management (CIKM'94) Gaithersburg,
Maryland, USA.

Lawrence, S. and C. L. Giles (1999) Accessibility and Distribution of Information on the
Web Nature 400, pp: 107-109.

Laws, A., A. Taleb-Bendiab, S. Wade, D. Reilly (2003) From Wetware to Software: A
Cybernetic Perspective of Self-adaptive Software. Lecture Notes in Computer Science
2614, pp: 341-357.

Lesperance, Y., H. Levesque, F. Lin, D. Marcu, R. Reiter, R. Scherl (1994) A Logical
Approach to High-Level Robot Programming-A Progress Report. In B. Kuipers (Ed.)
Control Of the Physical World by Intelligent Systems: Papers from the 1994 AAAI Fall
Symposium, pp: 79-85, AAAI Press, Menlo Park, CA, USA.

Lesperance, Y., H. Levesque, R. Reiter (1997) A Situation Calculus Approach to
Modeling and Programming Agents. In A. Rao, M. Wooldridge (Eds.) Foundations and
Theories of Rational Agency, Kluwer Academic Press, New York, USA.

- 199-

Levesque, H. (1986), Making Believers out of Computers, Artificial Intelligence 30 pp:
81-108

Levesque, H. J., P.R. Cohen, J.H.T. Nunes (1990). On acting together. In Proceedings of
the Eighth National Conference on Artificial Intelligence (AAAI-90), pages 94-99,
Boston, MA.

Levesque, H. J., F. Pirri and R. Reiter (1998) 'Foundations for the Situation Calculus'.
Linkoping Electronic Articles In Computer and Information Science,
http://www.ep.liu.se/ealcislI998/018/

Levy, F., Quantz, 1. 1. (1998). Representing Beliefs in a Situated Event Calculus. In H.
Prade (Ed.), Proceedings of the Thirteenth European Conference on Artificial Intelligence
pp: 547-551, John Wiley, Chichester, UK.

Li, L., D. Alderson, J.C. Doyle, W. Willinger (2005) Towards a Theory of Scale-Free
Graphs: Definition, Properties and Implications. Internet Mathematics 2(4), pp: 431-523.

Lin, F., R. Reiter (1994) How to Progress a Database (and Why) I: Formal Foundations.
In J. Doyle, E. Sandwall, P. Torasso (Eds.) Proceedings of 4th International Conference
on Principles of Knowledge Representation and Reasoning (KR'94), pp: 425-436.

Lindahl, L. (1992) Stig Kanger's Theory of Rights. In 9th International Congress of
Logic, Methodology and Philosophy of Science. Stig Kanger Memorial Symposium on
the Logic of Rights and Choices, Uppsala.

Litzkow, M.J., M. Livny, M. W. Mutka (1988) Condor: A Hunter of Idle Workstations,
In: Proceedings of the 8th International Conference on Distributed Computing Systems.

Maes, P. (1987) Concepts and Experiments in Computational Reflection. In Proceedings
of the ACM Conference on Object-Oriented Languages (OOPSLA)

Magnani, L. (2005) "Chance Discovery and the Disembodiment of Mind", Knowledge-
Based Intelligent Information and Engineering Systems: 9th International Conference,
KES 2005. pp: 547-553 Melbourne, Australia.

Mamei, Marco, Ronaldo Menezes, Robert Tolksdorf, Franco Zambonelli (2006) Case
Studies for Self-Organization in Computer Science. Journal of Systems Architecture
52(8), pp: 443-460

Mamei M., F. Zambonelli (2004) Programming Pervasive and Mobile Computing
Applications with the TOTA Middleware, In Proceedings of the International Conference
On Pervasive Computing (Percorn), IEEE CS Press,

Mamei M., F. Zambonelli, L. Leonardi (2004) Co- Fields: A Physically Inspired
Approach to Distributed Motion Coordination, IEEE Pervasive Computing 3 (2) pp: 52-
61.

- 200-

http://www.ep.liu.se/ealcislI998/018/

Mano J-P., C. Bourjot, G. Leopardo, P. Glize (2006) Bio- inspired Mechanisms for
Artificial Self-Organised Systems. Informatica 30(1) pp: 55-62.

Mayfield, J., Y. Labrou, T. Finin (1995) Evaluating KQML as an Agent Communication
Language. In M. Wooldridge, IP. Muller and M. Tambe (Editors) Intelligent Agents II,
Springer pp: 347-360

McCarthy, J. (1959) Programs with Common Sense. In Proceedings of the Teddington
Conference on the Mechanization of Thought Processes. HMSO, London, pp: 75-91

McCarthy, J. (1963) Situations, Actions and Causal Laws. Technical report, Stanford
University, 1963. Reprinted in Semantic Information Processing, ed: M. Minsky, pp 410-
417, MIT Press, Cambridge, Massachusetts, 1968

McCarthy, J. and P. Hayes (1968) Some Philosophical Problems from the Standpoint of
Artificial Intelligence. Machine Intelligence, 4(1): pp: 463-502.

Menezes, R. R. Tolksdorff (2004) Adaptiveness in Linda-based Coordination Models, In
Proceedings of the First International Workshop on Engineering Self-Organising
Applications (ESOA 2003) LNCS 2977, Springer, 2004.

Meyer J.-J., R. Wieringa (1993) Deontic Logic in Computer Science: Normative System
Specification. J. Wiley and Sons.

Microsoft Corporation (2007) (COM) Component Object Model Technologies.
http://www.microsoft.comlcomldefault.mspx (Accessed Apri12007)

Microsoft Corporation (2004) Dynamic Systems Initiative Overview, White paper, 3111

March,2004

Miller, R., & M. Shanahan (2002). Some Alternative Formulations of the Event Calculus.
In A. C. Kakas & F. Sadri (Eds.), Computational logic: Logic programming and beyond:
Essays in honour of Robert A. Kowalski, part II Vol. 2408, pp: 452-490. Berlin:
Springer.

Milner, R. (1980) A Calculus of Communicating Systems. Volume 92 of Lecture Notes
in Computer Science. Springer-Verlag.

Milner, R. (1983) Calculi for Synchrony and Asynchrony. Theoretical Computer Science
25(3), pp: 267-310

Milner, R., J. Parrow and D. Walker (1992). HA Calculus of Mobile Processes".
Information and Computation (100) pp: 1--40.

Miseldine P., A. Taleb-Bendiab, D. England, M. Randles (2006) Addressing the Need
. for Adaptable Decision Processes within Healthcare Software. In the Proceedings of the
23rd Annual Conference on Health Informatics in the UK (HC2006), 2006, pp.: 117-
124.

Miseldine, P., A. Taleb-Bendiab, (2oo5a) A Programmatic Approach to Applying

- 201-

http://www.microsoft.comlcomldefault.mspx

Sympathetic and Parasympathetic Autonomic Systems to Software Design, in Self-
Organisation and Autonomic Informatics (1) (Ed: H. Czap et all pp: 293-303, lOS Press,
Amsterdam,

Miseldine P., A. Taleb-Bendiab (2oo5b) An Empirical Study into Governance
Requirements for Autonomic E-Health Clinical Care Path Systems. In Proceedings of the
1st International Workshop on Requirements Engineering for Information Systems in
Digital Economy (REISDE 2005) within ICETE05, pp: 171-178.

Miseldine, P., A. Taleb-Bendiab (2006) CA-SPA: Balancing the Crosscutting Concerns
of Governance Autonomy in Trusted Software. In the Proceeding of the IEEE Workshop
on Trusted and Autonomic Computing Systems 2006. Vienna, Austria, pp: 471-475.

Montoya,1. M., R.V. Sole (2000) Small World Patterns in Food Webs. arXiv.org:cond-
matJooll195.

Moore, R.C. (1985) A Fonnal Theory of Knowledge and Action. In J.B. Hobb, R.C.
Moore (Eds.) Formal Theories of the Commonsense World, pp: 319-358, Ablex
Publishing Corporation, Norwood, NJ.

Moreno, A. (2003) Agents Applied in Healthcare. AI Communications 16(3), pp: 135-
137.

Moses Y., M. Tennenholtz (1995) Artificial Social Systems. Computers and Artificial
Intelligence, 14(6), pp: 533-562.

Mueller, E. T. (2006) Commonsense Reasoning. Morgan Kaufmann, San Francisco,
USA.

Mueller, E. T. (2007) Discrete Event Calculus with Branching Time. In Eyal Arnir,
Vladimir Lifschitz, & Rob Miller (Eds.), Logical Formalizations of Commonsense
Reasoning: Papers from the 2007 AAAI Spring Symposium (pp. 126-131). Technical
Report SS-07-05. AAAI Press Menlo Park, CA.

Naur, P., B. Randell (eds.) (1968) Software Engineering, Report on a Conference
sponsored by the NATO Science Committee, Garmisch, Germany, October 1968.

Netcraft (2005) August 2005
http://survey.netcraft.com!Reports/0508/

Web server Survey.

Netcraft (2007) The April 2007 Web Server Survey.
http://news.netcraftcomlarchi vesl2oo7 /04/02Japril_2oo7 _web_server_survey.html
Object Management Group (1998), The Common Object Request Broker: Architecture
and Specification Revision 2.2. OMG, 492 Old Connecticut Path, Framingham, MA
01701, USA.

Newman, M.E.J. (2001) The Structure of Scientific Collaboration Networks. In the
Proceedings of National Academy of Sciences of the USA 98, pp: 404-409.

Nilsson, N.J. (1984) Shakey the Robot. SRI Technical Note No. 323, Stanford Research

- 202-

http://survey.netcraft.com!Reports/0508/
http://news.netcraftcomlarchi

Institute, Menlo Park, California.

Odelstad, J., L. Lindahl (2002). The Role of Connections as Minimal Norms in
Normative Systems. Legal Know ledge and Information Systems. Eds. T. Bench- Capon.
A. Daskalopulu and R.Winkels. Amsterdam: lOS Press.

Ohsawa Y. (editor) (2001) "Proceeding of the 1st International Workshop on Chance
Discovery", Japanese Society for Artificial Intelligence.

Onody, R.N., P.A. de Castro (2004) Complex Network Study of Brazilian Soccer
Players. Phys. Rev. E, 70, 037103: arXiv:cond-mat/0409609v2

Paczuski, M., D. Hughes (2004) A Heavenly Example of Scale Free Networks and Self-
Organized Criticality. Physica A 342(1-2) pp: 158-163.

Padget, 1. (2003) The Role of Norms in Autonomic Organisations. In Proceedings of
IleAl Workshop on AI and Autonomic Computing: Developing a Research Agenda for
Self-Managing Computer Systems, Acapulco, Mexico, 101h August, 2003.

Parunak, H. (1997) Go to the Ant: Engineering Principles from Natural Multi-Agent
Systems, Annals of Operations Research 75,pp: 69- 101.

Petri, C.A. (1962) Kommunikation mit Automaten. PhD thesis, Institut fuer
Instrumentelle Mathematik, Bonn.

Poole, D. (1997) The Independent Choice Logic for Modelling Multiple Agents Under
Uncertainty. Artificial Intelligence 94(1-2) pp: 7- 56.

Power, R. (1984) Mutual Intention. Journal for the Theory of Social Behaviour 14(1),
pp:85-102

Randles M., A. Taleb-Bendiab, P. Miseldine, A. Laws (2005) Adjustable Deliberation of
Self-Managing Systems. In proceedings of the 12th IEEE International Conference and
Workshops on the Engineering of Computer-Based Systems (ECBS2oo5), pp: 449-456.

Randles, M., A. Taleb-Bendiab, P. Miseldine (2006a) Mind out of Programmable Matter:
Exploring Unified Models of Emergent Autonomy in LNCS Volume 3825, pp: 65-73,
Springer Berlin I Heidelberg.

Randles, M., A. Taleb-Bendiab, P. Miseldine (2006b) Addressing the Signal Grounding
Problem for Autonomic Systems. In Proceedings of International Conference on
Autonomic and Autonomous Systems (ICAS06), pp: 21,Santa Clara, USA, July 19-21,
2006.

Rao, A. S., M.P. Georgeff (1991). Modeling Rational Agents within a BDI-Architecture
In Proceedings of Knowledge Representation and Reasoning (KR&R-91). Morgan
Kaufman Publishers, San Matteo, CA. pp: 473-484.

Ratner, C. and H. Lumei (2003) Theoretical and Methodological Problems in Cross-
Cultural Psychology. Journal for the Theory of Social Behavior, 2003, 33, pp. 67-94.

- 203-

Redner, S. (1998) How Popular is your Paper? An Empirical Study of the Citation
Distribution. The European Physical Journal B 4, pp: 31.

Reiter R. (1991) The Frame Problem in the Situation Calculus: A Simple Solution
(sometimes) and a Complete Result for Goal Regression. Artificial Intelligence and
Mathematical Theory of Computation: Papers in Honor of John McCarthy, ed: V.
Lifschitz, pp: 359-380, Academic Press, San Diego, California

Reiter, R. (1996) Natural Actions, Concurrency and Continuous Time in the Situation
Calculus. In A.C. Aiello, J. Doyle, S.C. Shapiro (Eds.) Principles of Knowledge
Representation and Reasoning: Proceedings of 6thInternational Conference (KR '96), pp:
2-13. Morgan Kaufman, San Francisco, CA, USA.

Reiter, R. (2001) Knowledge in Action. MIT Press, Cambridge, MA, USA.

Resnick, M. (1994) Turtles, Termites, and Traffic Jams, MIT Press, 1994.

Reynolds, C. (1987) Flocks, herds and schools: A distributed behavioral model,
Computer Graphics 21 pp: 25-34.

Rouff, C., M.G. Hinchey, J. L. Rash, W. F. Truszkowski (2005) Towards a Hybrid
Formal Method for Swarm-Based Exploration Missions. In Proceedings of the 29th
Annual IEEElNASA Software Engineering Workshop sew, pp. 253-264.

Rouff, C., A. Vanderbilt, W. Truszkowski, J. Rash, M. Hinchey (2004) Verification of
NASA Emergent Systems. In Proceeding of the 9th International Conference on
Engineering Complex Computer Systems (ICECCS2004), pp. 231-238.

Rouff, C., A. Vanderbilt, W. Truszkowski, J. Rash, M. Hinchey (2004) Verification of
NASA Emergent Systems. In Proceedings of the 9th International Conference on
Engineering of Complex Computer Systems, pp:231-238.

Sanner S.. C. Boutilier (2006) Practical Linear Value-approximation Techniques for
First-order MOPs. In Proceedings of the 22nd Conference on Uncertainty in Artificial
Intelligence. AUAI Press, Arlington Virginia, USA.

Schelling, T.C. (1971) Dynamic Models of Segragation. Journal of Mathematical
Sociology 1(2), pp: 143-186

Scherl, R., H.J. Levesque (1993) The Frame Problem and Knowledge Producing Actions.
In the Proceeding of the 11thNational Conference on Artificial Intelligence (AAAI-93),
Washington DC, USA, pp: 689-695

Schiffel S., M. Thielscher (2006) Reconciling Situation Calculus and Fluent Calculus. In
Proceedings of the 21st National Conference on Artificial Intelligence and the 18th
Innovative Applications of Artificial Intelligence Conference (AAAI06).

Schmidt D., M. Stal, H. Rohnert, and F. Buschmann (2001) Pattern-Oriented Software
Architecture, vol. 2. John Wiley, 2001.

- 204-

Schubert. L.K. (1990) Monotonic Solution of the Frame Problem in Situation Calculus:
An Efficient Method for Worlds with Fully Specified Actions. In H.E. Kyberg, R.P. Loui,
G.N. Carlson (Eds.) Knowledge, Representation and Defeasible Reasoning, pp: 23-67,
Kluwer Academic Press.

Searle, lR. (1980) Mind, Brains and Programs, Behavioural and Brain Sciences 3. pp:
417-457.

Sergot, M.J. (2001) A Computational Theory of Normative Positions. ACM Transactions
on Computational Logic, 2(4) pp: 581- 622.

Seyeed-allaei, H.• G Bianconi, M Marsili (2005) Scale-Free Networks with an Exponent
less than two, Condensed Matter Eprints, arXiv:cond-matl0505588.

Shanahan. M. (1996). Robotics and the Common Sense Informatic Situation. In W.
Wahlster (Ed.), Proceedings of the Twelfth European Conference on Artificial
Intelligence. pp: 684-688 Chichester. UK: John Wiley.

Shoham, Y. (1993) Agent-Oriented Programming. Artificial Intelligence. 60 pp: 51-92

Simon. H.A. (1996) The Sciences of the Artificial. MIT Press, Cambridge, MA, USA.

Singh, A.. M. Haahr (2006) Creating an Adaptive Network of Hubs Using Schelling's
Model. Communications of the ACM 49(3), pp: 69-73

Smith B. C. (1982) Reflection and Semantics in a Procedural Language PhD. Thesis.
MIT, Cambridge. Mass .• USA.

Stamper. R.K. (2000) Information Systems as a Social Science: an Alternative to the
FRISCO Formalism. In E.D.Falkenberg, K.Lyytinen, A.A.Verrijn-Stuart. (eds.),
Information Systems Concepts: An Integrated Discipine Emerging, pp: 1-51 Kluwer
Academic Publishers, Boston,.

Steiner. J.• M. Hagner (2007) Runtime Analysis of a Self-Adaptive Hard Real-Time
Robotic Control System. In proceedings Fourth IEEE International Workshop on
Engineering of Autonomic and Autonomous Systems (EASe'07) pp: 53-60.

Strogatz, S. (2003) Sync: The Emerging Science of Spontaneous Order. Hyperion Press.

Sumpter. D. J. T. (2000) From Bee to Society: An Agent-Based Investigation of Honey
Bee Colonies. PhD. Thesis. The University of Manchester. UK.

Sun Microsystems (2002) Nl- Introducing Just-in-time Computing. White paper

Szyperski C. (1999) Component Software: Beyond Object-Oriented Programming.
Addison-Wesley. 1999.

- 205-

Taddeo, M., L. Floridi, (2005) Solving the Symbol grounding Problem: A Critical
Review of Fifteen Years of Research, Journal of Experimental & Theoretical Artificial
Intelligence, 17(4), pp: 419-445.

Taleb-Bendiab, A., D. England, M. Randles, P. L. Miseldine, K. Murphy (2006) A
Principled Approach to the Design of Healthcare Systems: Autonomy vs Governance.
Reliability Engineering and System Safety Journal91(12), pp: 1576-1585.

Thielscher, M. (1998) Introduction to the Fluent Calculus. Linkoping Electronic Articles
in Computer and Information Science, 3(14) http://www.ep.liu.se/ealcis/19981.1·1

Tianfield, H., R. Unland (2004) Towards Autonomic Computing Systems. Engineering
Applications of Artificial Intelligence 17(7), pp: 689-699.

Tofts, C., (1993) Processes with Probabilities, Priority and Time. Formal Aspects of
Computing 6(5) pp: 536-564

Toner, J., Y. Tu (1999) Flocks, Herds and Schools: A Quantitative Theory of Flocking,
Physical Review E. 58 4828-4858.

Travers, J., S. Milgram (1969) An Experimental Study of the Small World Problem.
Sociometry, Vol. 32, No.4, pp: 425-443.

Traversat, B., A Arora, M. Abdelaziz (2002) Project JXTA 2.0 Super-Peer Virtual
Network; www.jxta.orglprojectlwww/docs/JXTA2.0protocolsl.pdf

Tuomela, R., K.Miller (1988) We-Intentions. Philosophical Studies 53, pp: 367-389

Turkkan.T, (1989) Classical Conditioning: the New Hegemony. Behavioural and Brain
Sciences 12, pp: 121-179

Vassos, S., H. Levesque (2007) Progression of Situation Calculus Action Theories with
Incomplete Information. In Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI-07) pp: 2029-2035.

Want, R., T. Pering, D. Tennenhouse (2003) Comparing Autonomic and Proactive
Computing. IBM Systems Journal 42(1) pp:129-135.

Watts, DJ., S.H. Strogatz (1998) Collective Dynamics of 'Small-World' Networks.
Nature 393 pp: 440-442.

Weyns D., K. Schelfthout, T. Holvoet, and O. Glorieux (2004) Role based model for
adaptive Agents. Fourth Symposium on Adaptive Agents and Multi-agent Systems at the
AISB '04 Convention, 2004.

Widom, J. and S. Ceri (1995) Active Database Systems. Morgan-Kaufmann, San Mateo,
California.

- 206-

http://www.jxta.orglprojectlwww/docs/JXTA2.0protocolsl.pdf

Wilensky, U. (2005). NetLogo Preferential Attachment Model.
http://ccl.northwestern.edulnetlogo/modelslPreferentialAttachment. Center for Connected
Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.

Wilensky, U. (2007) NetLogo Simulation Software Version 4betal
http://ccl.northwestern.edulnetlogo Center for Connected Learning and Computer-Based
Modeling, Northwestern University, Evanston, IL.

Wooldridge, M., N.R. Jennings (1995) Intelligent Agents: Theory and Practice. The
Knowledge Engineering Review 10(2) pp: 115-152.

Wu, K., A. Liu (1995) Rearrangement Inequality. Mathematics Competitions 8(1), pp:
53-60.

Yahoo (2005) Our Blog has Grown and so has our Index.
http://www.ysearchblog.comlarchiveslOOO 172.html

Zambonelli, F., N. R Jennings, M. J Wooldridge (2003) Developing Multi-agent
Systems: the Gaia Methodology. ACM Transactions on Software Engineering and
Methodology, 12(3), September 2003.

Zambonelli F., M.-P. Gleizes, M. Mamei, and R. Tolksdorf (2004) Spray Computers:
Frontiers of Self-Organisation for Pervasive Computing. Second International Workshop
on Theory and Practice of Open Computational Systems (TAPOCS 2004) in 13th IEEE
International Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE'04), pp: 397-402. Los Alamitos, USA.

Zhu, H. (2005) Formal Reasoning about Emergent Behaviours of Multi-Agent Systems.
In Proceedings of 17th International Conference on Software Engineering and Knowledge
Engineering (SEKE'05), pp: 280-285

·207·

http://ccl.northwestern.edulnetlogo/modelslPreferentialAttachment.
http://ccl.northwestern.edulnetlogo
http://www.ysearchblog.comlarchiveslOOO

Appendix 1

Adaptive Middleware

Adaptive middleware becomes more necessary as the complexity of systems increases.

Emerging distributed applications often involve multimedia communication, mobility,

embedded computing, group communications, and high availability. Addressing these

issues means that systems must adapt to changing conditions, such as unexpected security

attacks, hardware failures, and dynamic environments. Existing technologies are

available to provide extensive middleware services, through Object Request Brokers

(ORB), Tuple-Spaces, Peer-to-Peer software and Message and Event Oriented systems.

The Microsoft.NET framework, based on DCOM (Microsoft Corporation, 2007) and the

Common Object Request Broker Architecture (CORBA) (Object Management Group,

1998) are typical of current standards in middleware. It is not the intention here,

however, to provide a review of middleware systems/architectures. The problem of

specifying and implementing self-governing systems is a middleware concern, as the self-

governance is treated as a separate concern within the middleware. Thus the usual

middleware software technologies of: Computational Reflection (Maes, 1987),

Component-based design (Szyperski, 1999), Aspect-Oriented Programming (Kiczales et

al, 1997) and software design patterns (Schmidt et al, 2(01) can be utilized. In this work

these concepts will be utilized in a different manner and emphasis then current practice

permits, by considering a system as collective of components with adjustable autonomy.

• Computational Reflection sees a system as a controller of itself. Thus reasoning

and analysis of its own actions and operation can proceed at runtime, as an

integral part of the systems operation emanating from a logical specification that

provides for deliberation and adaptation at global level, through an observation

system, and at local level with the component/agents autonomous behaviour.

• Component-based design is used as a means to model the system with agent like

entities/components. In this way these active components can be arranged with

autonomous functionality to operate in their local environment and provide the

basis for a bottom-up engineering of function.

• Aspect Oriented Programming gives the necessary separation of concerns

allowing the self-governance of the system to be considered apart from the

- 208-

many other middleware concerns, but crucially enabling the middleware, as well

as the application system construction, to be adapted at runtime.

• Software design patterns become even more useful when applied to autonomous

components or agents. The whole subsystems and flexible interactions can be

reused: Agent designs and implementations can be reused within and between

applications.

There are a number of middleware-resident self-governance initiatives currently

proposed, including: Hewlett Packard's Adaptive Infrastructure (HP World, 2003), Sun's

NI (Sun Microsystems, 2002), Microsoft's Dynamic Services Initiative (Microsoft

Corporation, 2004), Cisco's Adaptive Network Care (IBM and Cisco Systems, 2003) and

Intel's Proactive Computing (Want et al, 2003). The most widely studied and most well

known is IBM's Autonomic initiative (IBM, 2003). It is this that currently provides the

state of the art in research regarding systems self-governance and implementations.

- 209-

Appendix 3

Publications by the Author

N. Badr, A. Taleb-Bendiab, M. Randles, D. Reilly, "A Deliberative Model for Self-

Adaptation Middleware Using Architectural Dependency". In the Proceedings of DEXA

Workshops 2004 pp: 752-756

M. Randles, A. Taleb-Bendiab, P. Miseldine, "A Stochastic Situation Calculus Modelling

Approach for Autonomic Middleware", In the Proceedings of the 5th Annual Conference

on the Convergence of Telecommunications, Networking and Broadcasting

(PGNET2004) pp: 317-322, Liverpool, UK, 2004

M. Randles, A. Taleb-Bendiab, P. Miseldine, A. Laws "Adjustable Deliberation of Self-

Managing Systems." Proceedings of IEEE International Conference on the Engineering

of Computer Based Systems (ECBS 2(05) pp: 449-456, Maryland, USA, 2005

D. W. Bustard, R. Sterritt, A. Taleb-Bendlab, A. Laws, M. Randles, Frank Keenan,

"Towards a Systemic Approach to Autonomic Systems Engineering". In Proceeding of

ECBS 2005 pp: 465-472

A. Taleb-Bendiab, D.England, P. Misedine, M. Randles, K. Murphy, "Sources of

Complexity in the Design of Healthcare Systems: Autonomy vs. Governance". Workshop

on the Complexity in Design and Engineering University of Glasgow, March 2005.

M. Randles, A. Taleb-Bendiab, P. Miseldine "Using Stochastic Situation Calculus to

Formalise Danger Signals for Autonomic Computing" Proceedings of the 6th Annual

Conference on the Convergence of Telecommunications, Networking and Broadcasting

(PGNET2005) pp: 241-246, Liverpool, UK, 2005

A. Taleb-Bendiab et al, "Model-Based Self-Managing Systems Engineering", In

Proceeding of 3rd IntI. Workshop on Self-Adaptive Autonomic Computing in

DEXA2005, Copenhagen, Denmark, 2005

M. Randles, A. Taleb-Bendiab, P. Miseldine, "Mind out of Programmable Matter:

Exploring Unified Models of Emergent System Autonomy for Collective Self-

- 221-

Regenerative Systems" Workshop on Radical Agent Technology (WRAC2005), NASA

Goddard Space Flight Centre Greenbelt, MD, USA, 2005

M. Randles, A. Taleb-Bendiab, P. Miseldine, "A Logical Treatment for the Emergence of

Control in Complex Self-Organising Systems" In Self-Organisation and Autonomic

Informatics (ISBN 1-58603-577-0) (Editors: Hans Czap, Rainer Unland, Cherif Branki,

Huaglory Tianfield),pp: 3-17, lOS Press, Amsterdam, 2005.

M. Randles, A. Taleb-Bendiab, P. Miseldine, "Mind out of Programmable Matter:

Exploring Unified Models of Emergent Autonomy" in LNCS Volume 3825, pp: 65-73,

Springer Berlin I Heidelberg, 2006

P. Miseldine, A. Taleb-Bendiab, D. England, M. Randles, "Addressing the Need for

Adaptable Decision Processes within Healthcare Software". In the Proceedings of the

23rd Annual Conference on the Health Informatics in the UK (HC2006), pp: 117-124,

Harrogate, UK. March 2006.

M. Randles, A. Taleb-Bendiab, "Analysing Infrastructure and Emergent System

Character for Ubiquitous Computing Software Engineering" In the Proceedings of the

International Workshop on Software Engineering Challenges for Ubiquitous Computing

(ed. G. Kortuem), pp: 9-10, Lancaster University, June, 2006

P. Miseldine, M. Randles, D. Lamb, A. Taleb-Bendiab, "Towards the Automated

Engineering of Autonomic Systems" Proceedings of the 7th Annual Conference on the

Convergence of Telecommunications, Networking and Broadcasting (PGNET2006) pp:

393-398, Liverpool, UK, 26th/27th June 2006

M. Randles, A. Taleb-Bendiab, P. Miseldine, " Addressing the Signal Grounding

Problem for Autonomic Systems". Proceedings of International Conference on

Autonomic and Autonomous Systems, 2006 (ICAS06), pp: 21,Santa Clara, USA, July

19-21, 2006·· AWARDED BEST PAPER IN CONFERENCE··

A. Taleb-Bendiab, David England, Martin Randles, Philip Miseldine and Karen

Murphy,"A Principled Approach to the Design of Healthcare Systems: Autonomy vs

Governance", Reliability Engineering & System Safety, Volume 91, Issue 12, pp: 1576-

1585, December 2006

- 222-

Martin Randles, A. Taleb-Bendiab, Philip Miseldine, "Towards Scaleable Self-

Governance through Situated Cognitive Systems: Utilising Deliberative Logic to Provide

an Encompassing Epistemic Layer", In Proceeding of 4th IntI. Workshop on Self-

Adaptive Autonomic Computing in DEXA2006, Krakow, Poland, 6th September, 2006,

pp: 114·118.

Martin Randles, A. Taleb-Bendiab, Philip Miseldine, "Harnessing Complexity: A Logical

Approach to Engineering and Controlling Self-Organizing Systems", International

Transactions on Systems Science and Applications Volume 2, Number 1 (2006), pp: 11·

20

Ali Obied, A. Taleb-Bendiab, Martin Randles, "Self Regulation in Situated Agents", In

Proceedings of 1st IntI. Workshop on Agent Technology and Autonomic Computing,

Erfurt, Germany, Sepember 2006.

P. Miseldine, A. Taleb-Bendiab, D. England, M. Randles,"Addressing the Need for

Adaptable Decision Processes within Healthcare Software", Medical Informatics & The

Internet in Medicine, Vol. 32 (I), 2007, pp: 35-41

Martin Randles, A. Taleb-Bendiab, Philip Miseldine, David Lamb, "Using Signatures of

Self-Organisation for Monitoring and Influencing Large Scale Autonomic Systems", In

proceedings of fourth IEEE Workshop on Engineering of Autonomic and Autonomous

Systems (EASe'07), 2007 pp: 24·26

Martin Randles, Hong Zhu, A. Taleb-Bendiab, A Formal Approach to the Engineering of

Emergence and its Recurrence In the Proceedings of The Second International Workshop

on Engineering Emergence in Decentralised Autonomic Systems (EEDAS 2(07) at the

IEEE International Conference on Autonomic Computing (ICAC07) Jacksonville,

Florida, USA,1une 11,2007.

·223·

