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ABSTRACT 

Resistance exercise has been a popular form of muscle strength development for sport 
participants. This type of exercise activates a wide variety of physiological mechanisms 
involved with the exercising of muscle. The aim of this thesis was to investigate responses 
to dietary supplementation on muscular strength and biochemical indices to resistance 
exercise in female subjects. Firstly, to determine the reliability of the isometric test 
designed, and the number of trials required to-obtain reproducible measurements of 
maximum voluntary isometric force and rate of force development. Secondly, to establish 
heavy resistance exercise volume and intensity to produce a fatigue effect of a 40% 
reduction in measured force variables. Thirdly, to determine the optimal recovery period 
required to overcome the effect of fatigue responses to heavy resistance exercise after 
ingesting carbohydrate supplement (CHO). Finally, to determine the effect of creatine 
supplementation (Cr) on fatigue and recovery responses after resistance exercise in female 
subjects. 

Study one (1. A): The objective of study one was to quantify for female subjects, maximum 
voluntary isometric contractions (MVC) and rate of force development (RFD) and to 
evaluate the repeatability (between-days) of measurements. The data showed a small 
systemic bias between days for both, right and left leg and showed good reliability between 
days for MVC (range 5.4% to 11.5%), (9.55% to 36.3%) and (5.8% to 11.4%) for both 
legs, right leg and left leg, respectively. The LOA for RFD showed good reliability between 
days for all conditions (range 0.1% to 7.4%). It was concluded that the average of 3 trials 
between days is satisfactory for the repeatability of MVC and RFD. 

Study one (1. B) This second part of study one was to determine if there was a fatiguing 
effect of the testing protocol and also to establish the fatigue effect of the heavy resistance 
exercise. The same subjects were used as in study IA, but with the fatigue effects of an 
exercise trial between sessions 2 and 3. Subjects performed three sets of six different 
resistance exercises involving the lower body at an intensity corresponding to 60% of 1- 
RM (8-10 repetitions). The LOA for MVC was 0.6%, 13.7%, and 6.7%, for both legs, right 
leg and left leg respectively, and for RFD was 0.3%, 4.4%, and 5.3% for both legs. It was 
concluded that using both legs for studying the MVC was more reliable than using one leg 
for within-day and between-days force measurements. 

Study 2: The objective of study two was to establish the heavy resistance exercise volume 
and intensity to produce a fatigue effect of a 40% reduction in measured force variables and 
to establish the fatigue and recovery responses over a 48 hour period. Subjects were 
familiarised with the same testing procedures as in the pilot study 1B. All subjects 
performed three sets of six different exercises (lying leg curls, dumbbell lunges, barbell 
squats, leg extensions, straight leg deadlift, leg presses) at an intensity corresponding to 
70% of 1-RM (8-10 repetitions). Measurements were obtained after 2h, 24h and 48h 
recovery for MVC and RFD. A significant main effect was found for time on MVC and 
RFD for both legs and the dominant leg (P < 0.001) across recovery time, but there was no 
significant difference for MVC at 48h for both legs and 24h, 48h for the dominant leg, and 
no significant difference for RFD between pre-exercise and 24h and 48h for the dominant 
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leg. The fatigue protocol reduced measured force variables by 23.7% and 34.2%, and 
recovery from fatigue had been achieved after 48 hours. 

Study 3: The objective was to quantify the effect of carbohydrate supplementation on 
muscular strength after resistance exercise in females. Carbohydrate (CHO) 
supplementation and placebo trials were randomised and conducted at the same time of day 
(9: 00 am), on two separate occasions with one week between sessions. For the CHO trial, 
participants ingested a carbohydrate solution (0.5g CHO per kg/BM). The resistance 
exercise protocol described in study 2 was employed in this experiment. Instead of using 
70% of the 1-RM, a work load in this study corresponding to 80% 1-RM was used. A 
significant (P<0.05) overall main effect for condition and time on MVC and RFD was 
found, but there was a non-significant interaction between condition and time. The data 
showed that there was a faster recovery in the CHO condition with a suggestion of super- 
compensation. The resistance exercise for the lower body resulted in a significant decrease 
(P<0.05) in MVC immediately after resistance exercise, and this occurred similarly in both 
CHO and placebo trials. 

Study 4: The objective was to quantity the effect of creatine (Cr) supplementation on 
muscular strength and biochemical responses to resistance exercise in female subjects. The 
methodological studies described in the pilot and main studies were use to create the 
protocols to reliably assess MVC and RFD. Subjects undertook a resistance exercise 
session at an intensity corresponding to 80% of 1-RM. They were required to consume 20g 
of creatine monohydrate or placebo in a double-blind experimental design for 5 days before 
being-tested. Blood samples were taken before each session of tests, and analyzed for blood 
biochemical variables which included: creatine kinase (CK), growth hormone (GH), 
Myoglobin (MYO). A significant effect of Cr was found on MVC and RFD recovery 
(P<0.01). Body mass was not significantly different between sessions (P= 0.14) but there 
was a slight increase (1.0 kg) following Cr supplementation compared to other conditions. 
The CK and MYO, data revealed no significant main effect on time and conditions 
(P>0.05). Indicating that the fatigue protocol did not induce muscle damage the GH data 
showed a significant mean effect of time and conditions (P<0.05), conforming an hormonal 
response to exercise. It was concluded that oral creatine supplementation enhances recovery 
following a resistance exercise challenge with a suggestion of a super-compensation at 48 
hours. 

In summary, the procedure of resistance exercise was used in the four experimental studies 
and nutritional supplementation (CHO and Cr) significantly reduced the decline in maximal 
peak force and enhanced recovery following resistance exercise. It was concluded that the 
recovery from heavy resistance exercise in female appears to be aided by dietary 
supplementation producing an increase in the recovery of both maximal voluntary 
contraction force and rate of force development. 
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INTRODUCTION 

1.1. INTRODUCTION 

Human skeletal muscle is capable of generating immense force and power output when 

properly activated (Astrand and Rodahl, 1986). Muscular strength is one of the major 

factors influencing the performance of sports activity. An adequately functioning 

musculoskeletal system is a key factor for functional capacity and good quality of life 

(McBride et al., 2004) and an enhanced musculoskeletal fitness is often associated with 

an improvement in health status (Kay et al., 2000; Wojtys et al., 1996). Therefore, 

success in many sports is closely related to the athlete's ability to develop muscular 

strength. 

There are several ways to measure muscle strength. Currently the most common 

methods of measurements are isotonic, isometric, and isokinetic. In the past, muscle 

strength assessments were done in the isometric condition as movement changes muscle 

length and function, and hence affects muscle strength. Best and Taylor (1973) and 

Winter (1979) reported that the isometric condition is theoretically simple and 

experimentally well controllable. It allows a rather easy measurement of muscular effort 

and therefore most of the information currently available on human strength is described 

by the outcomes of isometric testing. Many studies have used isometric tests as a 

common form of muscular strength assessment in the laboratory. The main reason for the 

isometric mode to have been the standard for strength assessment was that the force 

developed in a concentric contraction decreases as a function of movement speed, and so 

the maximum active force production occurs during an isometric contraction (Wilson et 

al., 1993). Measurement of isometric strength appears to yield a reasonable estimate of 

the maximal possible effort for most slow body movements. The peak torque obtained 

from a maximal voluntary contraction (MVC) during an isometric test is a common 
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INTRODUCTION 

variable used to quantify strength (Andrews and Bohannon, 2000). Strength may also be 

quantified by examining the rate of force development (RFD) which is typically 

quantified as the greatest slope of the force-time curve obtained from a maximum effort 

isometric contraction (Wilson et al., 1993). 

During exercise, the magnitude and mechanisms of human skeletal muscle fatigue vary 

widely and depend to a large extent on the individual, the type of muscle, and the 

exercise stimulus or task. The exercise prescription of the specific program design 

reflecting these targeted program goals includes variables such as option of exercises, 

order of exercise, amount of rest used between sets and exercises, number of repetitions 

and sets used for each exercise, and the intensity of each exercise (Kraemer, 2002; 

Kraemer and Ratamess, 2005). 

The consequence of muscle fatigue is that there will be some limitation on physical 

performance, regardless of individual circumstances. Muscle fatigue is defined as a 

decline in the maximal voluntary force produced by a muscle following a period of 

exercise, coupled to a time-dependent reduction in the force-generating capacity of the 

muscle and an inability to maintain adequate force during voluntary contraction (Hainaut 

and Duchateau, 1999; Gandevia, 1992). Fatigue may also be accompanied by slowing of 

relaxation, reduced muscle shortening velocity, and recruitment of additional motor units 

in an attempt to maintain force output. Muscle fatigue may occur due to factors related 

to the muscle itself or to extra-muscular factors which influence how the muscle 

contracts. The concept of muscle fatigue is thought to have two main components these 

being central fatigue and peripheral fatigue. For example, a reduction of maximal 

voluntary contraction (MVC) of the quadriceps muscles has been found after 2-h cycling 
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performed at a constant power output (Leveritt et al., 2000). This reduction resulted from 

changes in central and peripheral mechanisms such as decrease of neural input and 

alterations of the M-wave and isometric muscular twitch. 

A common well-known problem studying human muscles is the difficulty in controlling 

factors such as the individual's nutritional status (Mujika and Padilla, 1997). Creatine 

and carbohydrate are essential nutrients that are found in balanced diet. Many athletes 

nowadays consume nutritional ergogenic aids such as carbohydrate and creatine in an 

attempt to increase muscle mass and force output (Vandenberghe et al., 1997). Balsom et 

al., (1994) and Volek and Kraemer, (1996) reported that creatine has become one of the 

most popular nutritional supplements of the past decade. Many, but not all, scientific 

research studies to evaluate creatine as an ergogenic aid have found that creatine 

ingestion improved repetitive, short-term, strenuous exercise performance, thereby 

leading to an increase in muscle strength and girth. Creatine is an osmotic agent in 

skeletal muscle and increases water retention in cells also leading to an increase in 

muscle size through stimulation or protein synthesis (Volek and Kraemer, 1996). 

Similarly, carbohydrate supplementation is usually associated with improvement of 

exercise performance and capacity and results in rapid repletion of muscle glycogen (Ivy 

et al., 1988). Further, a low carbohydrate intake can be detrimental to performance. 

Some evidence suggests that high-carbohydrate diets optimise muscle and liver glycogen 

stores (Bergstrom et al., 1967; Nilsson and Hultman, 1973) and have been shown to 

optimise performance during prolonged, moderate intensity exercise, intermittent 

exercise (Hargeaves, et al., 1984) and also in high-intensity exercise of short duration 

(Maughan and Poole, 1981; Pizza, et al., 1995). 
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A true gender difference exists between males and females in muscular strength, as well 

as metabolic and hormonal profiles (Ditor and Hicks, 2000). Comparison between males 

and females has shown important metabolic and hormonal differences in response to 

strength exercise (Nissen, 2001). The endocrine system secretes anabolic hormones, e. g. 

growth hormone, which has an influence on resistance training-induced adaptations in 

skeletal muscle (Sheffield-Moore and Urban, 2004). Also growth factors are produced 

locally in worked muscles. These functional and physiologic adaptations are similar in 

nature among men and women at all ages. However, sex and age differences may exist in 

the absolute magnitude of adaptation to resistance training (Deschenes and Kraemer, 

2002). 

Young women are capable of longer-duration contractions than young men when 

performing sustained sub-maximal isometric contractions to failure at low-to-moderate 

intensities (Hicks et al., 2001). This sex difference is observed for several muscle groups, 

including the adductor pollicis (Ditor and Hicks, 2000), elbow flexors (Hunter and 

Enoka, 2001; Hunter et al., 2002), the extrinsic finger flexors (Petrofsky et al., 1975; 

West et al., 1995), the back extensors (Clark et al., 2003), and the knee extensors 

(Maughan et al., 1986). While men are stronger than women, the latter are able to sustain 

a contraction for a longer duration before failure of the task (Hunter Enoka, 2001). These 

results are consistent with the hypothesis that men, who are usually stronger than women 

and sustain greater absolute forces when the contraction is performed at a relative 

intensity, experience increased intramuscular pressures, greater blood flow occlusion, 

increased accumulation of metabolites and impairment of oxygen delivery to the muscle 

(Mitchell, 1980; Sadamoto et al., 1983), and an earlier onset of task failure during a 

sustained contraction. Consistent with these results is that the sex difference in muscle 
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fatigue for maximal contractions is eliminated when blood flow to the muscle is 

occluded (Russ and Kent-Braun, 2003). 

Although muscular strength is an important factor in achieving optimum sports 

performance in female athletes, the majority of studies on the effects of resistance 

exercise using indices pertinent to muscular strength along with biochemical and 

hormonal responses have generally been carried out in male populations. 
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INTRODUCTION 

1.2 Aim of the thesis 

The aim of this thesis is to explore the fatigue and recovery responses to resistance 

exercise and the effects of nutritional supplements in females. 

1.2.1 Objectives of the thesis 

The aim of this thesis was achieved by following objectives: - 

1. To establish the reliability of measurements of maximum voluntary isometric 

force (MVC) and rate of force development (RFD) in females. 

2. To establish the intensity of exercise required to produce a pre-determined 

reduction in MVC in females. 

3. To characterise the fatigue and recovery responses to heavy resistance exercise 

in females in terms of isometric force variables 

4. To examine the effects of carbohydrate supplementation on the neuromuscular 

responses to heavy resistance exercise in females 

5. To examine the effect of creatine supplementation on the neuromuscular and 

biochemical responses to heavy resistance exercise in females. 

These objectives were achieved with reference to the studies reported within the 

thesis. Objectives 1 and 2 are addressed in the first study, whereas objectives 3,4 and 

5 are addressed in studies 2,3 and 4 respectively. 
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1.3 Operational definitions 

Central fatigue: Fatigue affected by those factors influencing the central 

nervous system control of voluntary contraction. 

Endurance: The capacity to continue a physical performance over a 

period of time. 

Fatigue: A loss of strength to continue a given level of physical 

performance. 

Isometric: A condition in which the length of the muscle-tendon 

complex remains constant. 

Isometric contraction: A muscle contraction characterized by rising tension 

production but no change in muscle-tendon 

complex length. 

Muscle: A bundle of fibres, able to contract or be lengthened. 

In this context, striated (skeletal) muscle that 

moves body segments about each other under 

voluntary control. 

Muscle contraction: The result of contractions of motor units distributed 

through a muscle so that the muscle length is 

shortened. 

Muscle strength: The ability of a muscle to generate and transmit 

tension in the direction of its fibres. 

Maximal voluntary contraction: Maximal voluntary contraction (MVC) means the 

muscle has contracted to the best of its ability. 
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Torque: The product of force and the perpendicular length of the 

lever-arm at which it acts. 

One Repetition Maximum (1-RM): The maximum resistance with which a person can 

execute one repetition of an exercise movement. 
See repetition. 

Peripheral fatigue: Fatigue affected by the factors within the muscle. 

Resistance: The force that a muscle is required to work against. 

Repetition: Performing the same activity more than once. 

Strength: The amount of muscular force that can be exerted. 

Set: A group of repetitions of an exercise movement done 

consecutively, without rest, until a given number, 

or momentary exhaustion, is reached. 
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Chapter 2- Review of the literature 

The Review of the Literature is divided into three sections. The first section introduces 

the physiological responses and adaptations to individual strength and endurance 

training sessions. The second section outlines the findings of concurrent training 

research including the effects of prior bouts of endurance or strength training on 

subsequent muscle force generating capacity and recovery dynamics. Finally, the third 

section presents possible mechanisms for compromised responses and adaptations with 

concurrent training. Furthermore, due to the vast volume of literature in relation to 

muscle strength and endurance training responses and adaptations, the Review of the 

Literature could only cover those areas that are deemed most relevant to the concept of 

training. 

2.1. Muscle strength 

2.1.1. Physiological Muscle strength 

Muscular strength is important in sport as well as in daily activities. The need for 

muscular strength runs across a spectrum of people from elite athletes attempting to 

optimize sports performance to frail elderly trying to perform activities of daily living. 

An adequately functioning musculoskeletal system (musculoskeletal fitness) is a key 

factor for functional capacity and good quality of life (McBride, et al., 2004) and an 

enhanced musculoskeletal fitness is often associated with an improvement in health 

status (Kay et al., 2001, Hunter et al., 2001). Furthermore, if muscle strength is not 

maintained, musculoskeletal fitness is then compromised which can significantly affect 

physical health and well-being (Kay et al., 2001). 

Strength is generally defined as the capacity to produce force or torque generated during 

maximal isometric contraction (Atha, 1981). As early as 1903 Fick, at the Croonian 
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Lectures, reported that the strength of a muscle depends upon the number of fibres in 

what is known as the physiological cross-section area. In a muscle with parallel or nearly 

parallel fibres which have the same direction as the tendon, this corresponds to the 

anatomical cross-section, but in uni-pinnate and bi-pinnate muscles the physiological 

cross-section may be nearly at right angles to the anatomical cross-section as shown in 

Figure 2.1, Within the muscle fiber, strength is developed by filament contraction in the 

longitudinal direction. The filament tensions combines to give a resultant tension of the 

muscle. Its magnitude depends mostly on the number of muscle fibers involved, i. e. on 

the cross-sectional thickness of the muscle. Maximal isometric stress in human skeletal 

muscle is reported in the range of 16 - 61 N/cm; Enoka, (1988) uses 30 N/cm as a typical 

value. 

Figure 2.1. A, fusiform; B, unipinnate; C, bipinnate, the physiological cross-section 
(Enoka, 1988). 

Elevated muscle tension has been linked to an increased incidence of injury and 

accelerated depletion of muscular fuel stores. Athletes can reduce muscle tension by 

maintaining flexibility. Stretching disengages the cross bridges, which allows blood to 

flow to this area, removing accumulated metabolic by-products from heightened muscle 

tension (Atha, 1981). 
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2.1.2. Gender and muscle function 

In terms of muscle contractile characteristics and the ability to produce force, muscle is 

identical in both males and females. The difference that exists in strength levels are 

primarily a function of total muscle mass. Only 24 percent of the typical female body is 

muscle mass, whereas the male is 40 percent muscle mass. Strength of the female lower 

body is similar to that of men relative to body mass and lean body mass. Men are 

stronger in the upper extremities due to their greater development of muscle mass in that 

area. Because of this and the fact that a female typically uses the muscle mass in her 

lower body to a much greater degree then she uses the muscle mass of her upper body, 

the female is seldom as strong in absolute measurements as the male (Margareta et al., 

2005; Barry and Gallagher, 2003; Lambert et al., 2002). 

The literature on muscle fatigue suggests that women generally have longer endurance 

times than men, especially at low-to-moderate forces (Kahn et al., 1986; West et al., 

1995; Zijdewind and Kernell, 1994). For example, the endurance time of women was 

longer than that of men when performing an isometric contraction at 20% of maximum 

with the knee extensor muscles but not at 50 or 80% of maximum. Similarly, women 

were able to perform a greater number of repetitions with the elbow flexor muscles when 

lifting loads that were 50,60, and 70% of maximum but not with loads that were 80 or 

90% of maximum (Maughan et al., 1986). 

Resistance exercise programs for women do not need to be drastically different from 

those for men, except for a few physiological issues (e. g. joint laxity, menstrual cycle). 

Nevertheless, understanding differences in how women generally respond and adapt to 

exercise can facilitate design of an individualized and optimal exercise program for 

women. Fulco, (1999) reported that research on resistance exercise is mostly studied on 
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men. However some studies investigate muscular strength and function for both genders 

(Margareta et al., 2005; Barry and Gallagher, 2003), were performed: hand-grip strength; 

abdominal strength; arm/shoulder strength; quadriceps muscle strength; and a functional 

test of leg muscle endurance. It is well known that there are differences in muscular 

strength and function between healthy men and women. 

Generally, males have a higher capacity for anaerobic metabolism and their muscles 

generate a higher maximum power output than females. There are also important 

differences between female and male muscles during prolonged intense activity leading 

to fatigue, where female muscles have been found to be more fatigue resistant and to 

recover faster than male muscles (Fulco et al., 1999; Lindle et al., 1997). Conversely, 

other studies did not observe any change in muscle function in response either to 

increased estrogen levels (Greeves et al., 1999) or to fluctuations during the menstrual 

cycle (Janse et al., 2001). There is still a dearth of consistent results for female subjects. 

Another confounding point of many studies is the conditioning status of the subjects: 

trained or untrained individuals. The exercise response in trained individuals is often 

several times different than that of untrained individuals. This complicates extrapolation 

of results from one group to the other. 

2.2. Strength Training 

Muscle strength can be defined as the maximum force generation capacity (Macaluso 

and De Vito, 2004). The neural factors regulate muscle force generation. Increased levels 

of muscle activation and consequent increase in muscular force are achieved by increases 

in the firing rate of each motor unit, changes in the model of motor part activation and 

the recruitment of more motor units (Komi, 1978; Häkkinen, 1994; Drew et al., 2002; 
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Kamen and Ratamess, 2005). Regular contact to heavy resistance exercise will result in 

increases in maximal muscular strength and changes in both neuromuscular function and 

muscle morphology (Tesch, 1988; Haff et al., 1997; Aagaard, 2002; Fry, 2003). 

However it has been well known that systematic resistance training, especially among 

untrained healthy subjects, has a powerful effect in promoting increases in size and 

strength of skeletal muscle. This is true both in men and women. Although women have 

lower absolute strength than men, the relative increases in strength following a training 

programme are similar between genders, at least in the beginning of resistance training 

(Häkkinen and Pakarinen, 1993; Stroud et al., 1994; Häkkinen et al., 2000). 

2.2.1. Neural adaptations to resistance training 

Neuromuscular performance depends not only on the quantity and quality of the 

involved muscles, but also by the ability of the nervous system to appropriately activate 

the muscles. Adaptive changes in the nervous system in response to training are referred 

to as neural adaptation (Moritani and DeVries, 1979; Sale, 1991; Moritani et al., 1995). 

Resistance training may cause adaptive changes within the nervous system that allow a 

trainee to more fully activate prime movers in specific movements (Sale, 1991). 

Adaptations of the neuromuscular system to resistance training are focused on the 

development and maintenance of the neuromuscular unit needed for force production. 

Resistance training induces adaptations are mediated by supraspinal mechanisms, which 

include increased excitation (Aagaard et al., 2002; Gandevia, 2001) and changes in the 

organization of the motor cortex (Barry and Gallagher, 2003). This can influence the 

manner in which trained muscles are recruited by the Central Nervous System (CNS) 
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during related functional tasks (Carroll et al., 2001). Nervous system adaptation to 

resistance training may also include descending neural tracts and spinal cord circuitry. 

Resistance training-induced changes in synaptic efficacy within the moto-neuron pool 

(Semmler et at., 1999) and neural pathways at the spinal cord may help the way in which 

muscles are co-ordinated during related movement tasks (Carroll et al., 2001). Nervous 

system adaptation to resistance training may also include the motor end plate 

connections between moto-neurons and muscle fibres (Carroll et al., 2001). Increased 

activity of the myo-neural synapse results in morphological changes of the 

neuromuscular junction which are associated with functional alterations in 

neuromuscular transmission that enhance neuromuscular transmission (Deschenes et al., 

2002). These adaptations can enhance the activation of muscles and are likely to be 

expressed whenever the moto-neuron pool of the trained muscle is activated (Carroll et 

al., 2001; Barry and Gallagher, 2003). 

Early increases in muscle strength due to resistance training are thought to result from 

neural adaptations and improvements in coordination while later strength increases arise 

from increased muscle hypertrophy (e. g. Komi and Viitasalo, 1977; Sale, 1991; Staron et 

al., 1994). During the first few weeks of resistance training there is an increase in 

maximal muscle force output that cannot be accounted for by muscle hypertrophy 

(Griffin and Cafarelli, 2005). Increases in muscular strength due to resistance training 

may be produced by increased neural drive resulting increases in motor unit release rate 

to agonist muscles (Schillings et al., 2003; Aagaard et al., 2002) and maybe also 

increases in the recruitment of additional motor units (Barry and Gallagher, 2003). 
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Furthermore, cross-sectional studies suggest that years of resistance training may be 

associated with increased maximal firing rates (Griffin and Cafarelli, 2005). Also 

synchronization among motor unit firing rate and frequency of firing may increase 

during resistance training (Enoka, 1997; Van Cutsem et al., 1998; Griffin and Cafarelli, 

2005; Kamen, 2005). Neural adaptations to resistance training include reductions in the 

level of coactivation of the antagonist muscles (Sahin, 1992; Häkkinen et al., 1998, 

2000) and changes in synergistic muscle activation (Rutherford, et al., 1986; Rate et al., 

2003), which could contribute to maximal force generation. 

Resistance training may cause adaptive changes within the nervous system that allow a 

trainee to better organize the activation of all relevant muscles, thereby effecting a 

greater net force in the intended direction of movement (Sale, 1991). While resistance 

training leads to strength increases by increasing the force-generating capacity of 

individual muscles, it is likely that neural adaptations also comprise changes in the 

neural activation of muscles, with modifications occurring in both intramuscular and 

inter-muscular coordination (Rutherford, et al., 1986; Enoka and Stuart, 1992; Häkkinen 

et al., 1998,2000). Some of the adaptations associated with resistance training may be 

regarded as motor learning, i. e. learning to produce the specific patterns of muscle 

recruitment that are associated with optimal performance of movement task (Carroll et 

al., 2001). 

2.2.2. Rest Intervals 

Rest interval is the pause between exercise sets that allows muscles to partially recover 

before beginning the next set, the rest interval between strength training sessions depends 

on the conditioning level and recovery ability of the individual, the training phase, and 
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the energy source used in training. Well-conditioned athletes always recover faster, 

especially as training progresses toward the competitive phase, when they are supposed 

to reach their highest physical potential (Fox et al., 1974). Sale (1991) suggested that 

one minute of rest be provided between trials. Caldwell et al., (1974) and Chaffin (1975) 

recommended a rest interval of two minutes between trials if a large number of trials 

(e. g., 10). In addition Diane et al. (2006) used 2- to 3-minute rest interval between each 

block of contractions, but rest intervals may be as short as 30-s if only a few trials are 

performed. Collectively, the available literature suggests that a one-minute rest period 

should be sufficient to allow adequate recovery between trials. It should be noted 

however, that these recommendations are derived from testing experience as opposed to 

experimental validation. 

2.2.3. Number of Repetitions 

Edwards et al. (1977) used three maximal voluntary contractions in testing the 

quadriceps since the first contraction was usually "tentative", while the second and third 

maximal contractions were usually similar to one another (coefficient of variation = 

2.8%). Zeh et al. (1986) reported that the mean of three trials was highly correlated with 

the first score of the three and concluded that one repetition provides "a reasonably good 

indicator of the subject's strength in that position". They also noted that use of two 

repetitions increased the precision of the measurement. The advantage of using few test 

repetitions is decreased injury risk, especially for testing that stresses the lumbar spine 

(Zeh et al., 1986). In addition, fewer repetitions will minimize the confounding effects of 

fatigue on the strength data. However, their regression analysis did not address potential 

systematic bias in the use of only one or two trials. While there is no consensus in the 

literature, three test repetitions are likely to be sufficient to elicit a maximal value. 
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2.3. Muscular Strength Testing 

2.3.1. Isometric strength 

The term isometric in physics refers to static, because there is no change in movement. 

Isometric resistance refers to a muscular action during which no change in the length of 

the muscle-tendon complex takes place. This type of resistance training is normally 

performed against an immovable object such as a wall, a barbell, or a weight machine 

loaded beyond an individual's maximal concentric strength (Fleck et al., 1997). The 

static condition is theoretically simple and experimentally well controllable. It allows for 

a rather easy measurement of muscular effort. Apart from maximum isometric strength 

and isometric force-time curve characteristics, such as the rate of force development, are 

important capacities of the neuromuscular system for developing maximal force rapidly, 

and are related to athletic performance (Katartzi et al., 2005; Papadopoulos, 1997). 

These force-time parameters are the starting force at 100 ms, the peak force relative to 

body mass, and the rate at which isometric force can be developed (rate of force 

development RFD); (Katartzi et al., 2005; Papadopoulos et al., 2006; Papadopoulos and 

Salonikidis, 2000). In isolated muscle preparations, contractile RFD is obtained from the 

slope of the force-time curve (force/time), whereas, for intact joint actions, RFD is 

calculated as the slope of the joint moment-time curve (_moment/ 
_time). 

The time period for which the rate of change in force is determined has varied from an 

interval of 5 ms (Wilson et al., 1993) though to 60 ms (Christ et al., 1994) with most 

researchers tending to use a value towards the lower end of this range as it produces 

significantly higher values for RFD (Wilson and Murphy, 1996). The RFD parameter has 

important functional significance in fast and forceful muscle contraction. Measurement 

of isometric strength appears to yield a reasonable estimate of the maximal possible 
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effort for most slow body link movements. Force-velocity curves reported by Best and 

Taylor (1973) and by Winter (1979) indicate that the largest tension or force is indeed 

developed at zero velocity of muscle shortening or lengthening, which is the isometric 

case. However, the strength developed in faster motions, especially when concentric and 

ballistic, is not similar to that under static conditions 

2.3.2. Isometric testing 

The isometric technique requires the individual to push or pull maximally against a 

recording device without movement taking place. Isometric testing is also called static 

testing. The primary advantage of isometric strength testing is that with the proper 

equipment, it is relatively quick and easy to perform which lends itself to testing of large 

groups of subjects (Fry et al., 1991). Varieties of devices have been used to measure 

isometric strength. These include cable tensiometers, strain gauges, and isokinetic 

dynamometers (with speed set to zero). In addition, with the exception of isokinetic 

devices, testing equipment is relatively inexpensive. Further, computer interfacing with 

isometric recording devices allows for the calculation of additional variables besides 

strength, such as the rate of force development (Haff et al., 1997). Isometric strength 

maximal isometric force of the leg extensor muscles was measured in a sitting position 

(knee and hip angle 90 degrees) (Katartzi et al. 2005) and testing as a highly reliable as 

assessed by reliability coefficients correlations between 0.85 and 0.99 (Abernethy et al., 

1995). Testing at multiple joint angles allows for determination of strength throughout 

the range of motion. 

Sale, (1991) suggested that isometric contractions of five seconds duration are long 

enough to allow for peak force development. As maximal force can only be maintained 
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for less than 3 seconds, Caldwell et al., (1974) recommended that contraction duration of 

four seconds with a one second transition period from rest to maximal force should be 

used. They also suggested that a four-second effort ensures that a three-second plateau 

will occur and that the mean force over this three-second period be recorded. 

Collectively, the available literature indicates that a contraction period with a one- 

second-transition period and a four to five second plateau should be adequate to achieve 

a maximal isometric contraction. 

The disadvantage of isometric testing is that the strength values recorded are specific to 

the point(s) in the range of motion at which the isometric contraction occurred, and 

strength scores at one position may be poorly correlated with strength scores at other 

positions (Bigland and Lippold, 1945; Drew et al., 2002). It has been questioned whether 

static strength measures provide strength data that are specific to activities of interest 

(Murphy, 1995; Zeh, 1986) and there are conflicting results in the literature as to whether 

isometric testing is predictive of dynamic performance (Wilson and Murphy, 1991). 

However, conflicting results regarding static versus dynamic relationships may be a 

reflection of the joint angle used during isometric testing (Murphy et al., 1995). 

2.3.3. One repetition maximum test (1-RM) 

The gold standard for muscular strength testing is the 1-RM. Fry and Kramer, (1991) 

suggest the following protocol for 1-RM testing. The test procedure begins with a warm 

up of 5-10 repetitions at 40% to 60% of the subjects estimated maximum. After a brief 

rest period, the load is increased to 60% to 80% of the estimated maximum for 3-5 

repetitions. At this point a small increase in weight is added to the load and a 1-RM lift is 

attempted. The goal is to determine the 1-RM in 3 to 5 trials. The subject should be 
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allowed rest at least 3-5 minutes before each 1-RM attempt. Therefore, Fry and Kramer, 

(1991) emphasize that ongoing encouragement and communication with the subject 

during this testing is crucial to obtain the best performance. 

In addition to improved muscular strength, guidelines recommend beginner and 

intermediate exercisers train for 8 to 12 repetitions, at 60 to 70 percent of their maximum 

capacity for one lift (American Fitness, 2002). They should progress at a2 to 10 percent 

increase depending on the muscle group, when one or two repetitions, more than the 

desired repetition range can be performed on two consecutive training sessions. 

2.3.4 Measurement of maximal voluntary muscle strength (MVC) and contractile 

rate of force development (RFD) 

Strength measured with a dynamometer can be quantified in different ways. Peak torque 

obtained from a maximal voluntary contraction (MVC) during an isometric test is a 

common measure of strength. MVC is typically defined as the maximal muscle force that 

a highly motivated subject is able to produce voluntarily under particular contractile 

conditions. The reductions in MVC force associated with muscle fatigue persist over the 

entire timescale of the progression of the degenerative and regenerative process i. e. until 

the muscle returns to its pre-fatigue condition (Warren et al., 1999). The assessment of 

skeletal muscle function as fatigable or a marker of damage necessitates reliable 

measures of maximal force. Routine measurements of maximal muscle force may 

include many potential sources of error of which the most important may be the possible 

lack of central drive to the muscle fatigue (Merton, 1954; Rutherford et al., 1986). 

Therefore, reliability should be considered as the amount of measurement error that has 

been deemed acceptable for the practical use of a measurement tool. Logically it is 
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reliability that should be first tested in a new measurement tool, since it will never be 

valid if it is not adequately consistent in whatever value it indicates from repeated 

measurements. 

Although a number of researchers have examined the reliability of the twitch 

interpolation technique for the assessment of maximal quadriceps muscle force and 

voluntary activation (Behm et al., 2001; Oskeui et al., 2003; Todd et al., 2004), to the 

author's knowledge none have tested the reliability of these variables (using the twitch 

interpolation technique) across a timescale of several days (Morton et al., 2005). Such 

temporal evaluations of reliability estimates are of particular importance given that the 

reliability of any assessment should always be established with respect to its intended use 

or `analytical goal' (Atkinson and Nevill 1998). 

Strength can also be quantified by examining the rate of force development (RFD) 

(Aagaard et al., 2002). Explosive muscle strength is the rate of rise in contractile force at 

the onset of contraction, exerted within the early phase of rising muscle force 

(Schmidtbleicher and Haralambie, 1981; Sleivert and Wenger, 1994). In isolated muscle 

preparations, RFD is obtained from the slope of the force time curve (force/time), 

whereas, for intact joint actions, RFD is calculated as the slope of the joint moment-time 

curve (moment/time). The RFD parameter has important functional significance in fast 

and forceful muscle contraction (Figure 2.2). For example, fast movements such as sprint 

running, karate, or boxing typically involve contraction times of 0.50-2.50 ms. In 

contrast, it typically takes a longer time to reach maximum force in most human muscles, 

i. e., 300 ms for the elbow flexors (Sukop and Nelson, 1974) and knee extensors 

(Thorstrensson et al., 1976). During fast limb movements, therefore, the short 

contraction time may not allow maximal muscle force to be reached. As a result, any 
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increase in contractile RFD becomes highly important as it allows reaching a higher level 

of muscle force in the early phase of muscle contraction. In addition to RFD, another 

important strength parameter is the total contractile impulse that can be produced within 

a given contraction time (Baker et al., 1994). In accordance with classic mechanical 

physics, the angular impulse, defined as the time-integrated moment of force, is identical 

to the momentum reached during limb movement. 

Figure 2.2 Rate of force development (RFD) for explosive muscle action. Also shown in 

maximum force (MVC). (Baker et al., 1994). 
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2.4. Physiology of Muscle fatigue 

2.4.1. Muscle fatigue 

Physiologists have several definitions of fatigue, all of which describe progressive loss of 

force-producing capacity and ultimately the inability to perform a desired level of 

physical work. Piper et al. (1987) and Meyerowitz (1979) described fatigue as a multi- 

component sensation with behavioural, affective, sensory, and cognitive components. 

They also designed a simple measurement tool for assessing fatigue that combined 

multiple fatigue-associated elements into an overall fatigue score. It is divided into 

peripheral and central components, a division based on whether a loss of capacity to 

generate a maximum force is found to originate in the muscle tissue or in the central 

nervous system, respectively. During a sustained maximal voluntary contraction (MVC), 

healthy subjects develop both peripheral and central fatigue (Kent-Braun, 1999; 

Schillings et al., 2003). 

Muscle fatigue is thought to have both central and peripheral origins. By convention, 

central fatigue is confined to the breakdown in any process proximal to the 

neuromuscular junction and may comprise branch point failure in the motor unit, failure 

of axonal propagation, some non-specific inhibition at the level of the anterior horn, or a 

reduction of central drive from the supraspinal structures. Transmission failure at the 

neuromuscular junction, the sarcolemma or perhaps the T-tubular system are possible 

peripheral sources of fatigue, whilst other peripheral sites may be localized within the 

contractile apparatus, as the muscle contraction requires energy. This later is supplied via 

metabolic energy conversion in the mitochondria, cells located within the muscle. They 

release energy from the breakdown of adenosine triphosphate (ATP) to adenosine 
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diphosphate (ADP), which in turn is restored to ATP using energy derived from nutrients 

(Lymn and Taylor, 1971; Bagshaw and Trentham, 1974). 

Central Fatigue The central component to fatigue is generally described in terms of a 

reduction in the neural drive or nerve-based motor command to working muscles those 

results in a decline in the force output. (Gandevia 2001; Kay et al., 2000; Vandewalle et 

al., 1991) It has been suggested that the reduced neural drive during exercise may be a 

protective mechanism to prevent organ failure if the work was continued at the same 

intensity. (Bigland-Ritchie and Woods, 1986; Noakes, 2000) The exact mechanisms of 

central fatigue are unknown although there has been a great deal of interest in the role of 

serotonergic pathways (Davis, 1995; Newsholme and Blomstrand, 1995). Peripheral 

Fatigue during physical work is considered an inability for the body to supply sufficient 

energy to the contracting muscles to meet the increased energy demand or a failure of 

energy producing capacity of skeletal muscle. This is the most common case of physical 

fatigue-affecting a national average of 72% of adults in the work force in 2002 (Aagaard 

et al., 2002 ). This causes contractile dysfunction that is manifested in the eventual 

reduction or lack of ability of a single muscle or local group of muscles to do work. The 

insufficiency of energy, i. e. sub-optimal aerobic metabolism, generally results in the 

accumulation of lactic acid and other acidic anaerobic metabolic by-products in the 

muscle, causing the stereotypical burning sensation of local muscle fatigue. 

The fundamental difference between the peripheral and central theories of fatigue is that 

the peripheral model of fatigue assumes failure at one or more sites in the chain that 

initiates muscle contraction. Peripheral regulation is therefore dependent on the localised 

metabolic chemical conditions of the local muscle affected, whereas the central model of 
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fatigue is an integrated mechanism that works to preserve the integrity of the system by 

initiating fatigue through muscle derecruitment, based on collective feedback from the 

periphery, before cellular or organ failure occurs. In summary, the conscious sensation of 

fatigue does not arise directly from the action of metabolites in the periphery but rather 

from the regulatory centres in the subconscious parts of the brain, the function of which 

is to ensure homoeostasis during all forms of exercise. 

2.4.2. Metabolic characteristics of fatigue 

`Metabolic fatigue' is a common term for the reduction in contractile force due to the 

direct or indirect effects of the reduction of substrates or accumulation of metabolites 

within the muscle fibre. This can occur through a simple lack of energy to fuel 

contraction, or interference with the ability of (Ca2+) to stimulate actin and myosin to 

contract. 

Karl and Kroemer, (1999) reported that this metabolic process requires sufficient supply 

of the muscle tissue with arterial blood. Blood brings the needed energy carriers and 

oxygen and it removes metabolic by-products, particularly lactic acid and potassium as 

well as heat, carbon dioxide and water liberated during metabolism. Sufficient blood 

supply and its unimpeded flow through the muscle's capillary bed into the venueles and 

veins are crucial because they determine the ability of the metabolic processes and hence 

of the contractile efforts of the muscle to continue (Astrand and Rodahl, 1986; Kahn and 

Monod, 1989). A strongly contracting muscle generates strong pressure inside itself, as 

can be felt by touching a tightened biceps or calf muscle. By this pressure, the muscle 

compresses its own blood vessels thus shutting off its own circulation. Therefore, a 

maximal contraction can be maintained for only a few seconds. 
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Figure 2.3 Exercise Limitation: Muscular fatigue from (http: //www. unm. edu), accessed 

on (11.06.2008). 

Haylock (1979) and Piper (1987) repeated that muscular effort was made possible 

because chemically stored energy is released in the mitochondria of cells in muscle 

tissue. To keep this metabolic process going, blood flow through the tissues is necessary. 

If the flow is insufficient, muscle fatigues occurs. 

Regardless of the mechanism, the damage appears to result in a pronounced weakness, 

the recovery of which, at least in unconditioned individuals, may take several days or 

even weeks (Newham et al., 1983; Clarkson and Tremblay, 1988). During high-intensity 

activity, this non-metabolic component would be expected to be progressive with the 

duration of the activity and, in fact, may represent a major aspect of the fatigue observed. 
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2.4.3 Resistance exercise-induced muscular fatigue 

A heavy resistance exercise procedure performed with progressive overload leads to 

acute responses observed as a temporary decrease in maximal force production and 

electromyographic activity of the loaded muscles associated with increases in blood 

lactate concentrations (e. g. Tesch et al., 1983, Häkkinen et al., 1988). Therefore, the 

magnitude of neuromuscular responses can be measured as important indicators of 

training effects of different heavy resistance exercises. The performance of muscle 

gradually declines when muscles are used repeatedly at near their maximum force. This 

muscle fatigue is reflected in reduced force production, reduced shortening velocity and 

a slower time-course of contraction and relaxation (Allen, 2004). 

Fatigue may be caused by diminished efferent neural direct to activate muscles from the 

central nervous system (i. e. central fatigue) which inhibits exercise activity before any 

severe damage to muscles and organs occurs. Fatigue may also be caused by factors 

within the muscle cells (i. e. peripheral fatigue) (St Clair Gibson et al., 2001; Westerblad 

et al., 2000). Phosphocreatine (PCr) depletion, intramuscular acidosis and carbohydrate 

depletion are all potential causes of the fatigue during resistance exercise (Lambert and 

Flynn, 2002). 

Metabolic acidosis during the resistance exercise is caused by an increased reliance on 

non-mitochondrial ATP turnover. Lactate production is necessary for muscle to produce 

cytosolic NAD+ to support continued ATP regeneration from glycolysis. However, 

accumulation of lactate within skeletal muscle or blood directly contributes to 

intracellular acidosis and is therefore good indirect indicators of increased proton release 

and decreased cellular pH (Robergs et al., 2004, Lindinger et al., 2005). 
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2.4.4 Recovery from muscle fatigue 

Recovery from fatigue has been found to be complex, with both fast and slower 

components. The faster component is due to reversal of the metabolic changes which 

caused periphery fatigue in the first place; for example, wash-out of lactic acid and 

restoration of the PCr store which take up the excess of phosphate ions. These processes 

are relatively fast and are completed in minutes. There remains a second component of 

fatigue, which recovers much more slowly, taking several hours or even days for muscles 

to regain their normal capacity. Experiments on isolated muscles suggest that this 

delayed recovery is caused by reduced Ca2+ release (Westerblad et al., 2000). The action 

potential is normal and the resistance session is normally loaded with Ca2+ but the 

coupling between the action potential and Ca2+ release is damaged. One suggestion is 

that some Ca2+ activated process might damage the proteins involved in Ca2+ release. 

With too much training the slow phase of recovery is never completed and performance 

can start to decline. Some athletes respond to this decline by training even more and a 

vicious overtraining cycle develops. 

Various studies have also provided evidence of a failure at the level of the sarcoplasmic 

reticulum, for the sarcoplasmic reticulum to be implicated in fatigue, the coupling signal 

from the T-tubule, designed to elicit elevations in Ca2+f consistent with maximal 

activation under non-fatigued conditions, must result in an inappropriate response from 

the sarcoplasmic reticulum (Golinick et al., 1991; Allen et al., 1995). 

This enzyme, as with the other major enzymes involved in excitation and contraction, is 

capable of hydrolysing ATP for the production of the energy necessary to pump the 

cytosolic Ca2+ against a concentration gradient, into the lumen of the sarcoplasmic 
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reticulum, where it is stored or used for release through the Ca2+ channel of the 

sarcoplasmic reticulum. The energy supplying systems, oxidative phosphorylation, 

glycolysis and high-energy phosphate transfer, must be precisely geared to regenerate 

ATP at a rate necessary to prevent any substantial depletion of ATP, which exists only in 

low concentration in the muscle (Sahlin, 1992). 

Pascoe et al. (1990) reported that recovery of muscle glycogen stores underpins the 

recovery of endurance capacity for moderate to high intensity exercise. Low intensity 

exercise can be pursued when muscle glycogen stores have not been restored fully, 

although the duration and intensity will be limited by the inadequacy of the carbohydrate 

stores. 

Furthermore, glycogen granules are physically associated with a number of proteins 

(including glycogen phosphorylase, phosphorylase kinase, glycogen synthase, 

glycogenin and phosphatases) that are involved in the metabolism of glycogen itself and 

other substrates such as glucose. This information implies that glycogen is not only a 

substrate for exercise metabolism, but may also have an important role in metabolic 

regulation (Marchand et al., 2002). 

Reduction of muscle glycogen during exercise activates glycogen synthase (Nielsen and 

Richter, 2003), and this activation is greater when muscle glycogen is lower (Zachwieja 

et al., 1991), resulting in a faster rate of glycogen resynthesis in the early post-exercise 

period. The link between glycogen and glycogen synthase may be mediated by protein 

phosphatase 1, which is targeted to the glycogen molecule. The regulatory getting 

subunit of protein phosphatase 1 is essential for the exercise-induced activation of 

glycogen synthase in skeletal muscle (Aschenbach et al., 2001). As glycogen is 
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associated with the sarcoplasmic reticulum (Marchand et al., 2002), it is possible that 

glycogen has a key role in excitation-contraction coupling. It has been shown that low 

muscle glycogen following fatiguing contractions is associated with reduced 

sarcoplasmic reticulum Ca2+ release (Chin and Allen, 1997) and hence reduced force 

development. 

2.4.5. Effect of fatigue and recovery during strength exercise 

The type of fatigue-resistance exercise utilised by athletes for their training purposes 

leads to acute decreases not only in maximal peak force but also in the explosive force 

production capability (Hakkinen et al., 1988). The differences in magnitude of the 

decreases in neuromuscular performance and the various mechanisms leading to muscle 

fatigue and recovery may also be related in part to the type of fatiguing load (Hakkinen 

et al., 1988). For example, neuromuscular fatigue and recovery in the period up to 48 

hours post-exercise has been investigated following maximum strength loading and 

explosive strength loading force (Linnamo et al., 1998). The authors attributed the 

specific motor unit recruitment patterns which may occur during explosive training. And 

suggested that fatigue after heavy exercise loading is of both central and peripheral 

origin, supporting the finding by Hakkinen (1992,1994), whereas fatigue after explosive 

loading seems to be primarily central. 

It is well known that impairment of performance resulting from muscle fatigue differs 

according to the types of contraction involved, the muscular groups tested, and the 

exercise duration and intensity. Depending on these variables, strength loss with fatigue 

can originate from several sites from the motor cortex through to contractile elements. A 

great number of studies have examined the event of fatigue after heavy resistance 

32 



Chapter 2- Review of the literature 

exercise. However, when comparing men and women, besides lower absolute forces, 

women have been shown to have lower rates of maximal force production (Komi and 

Karlsson 1978; Ryushi et al., 1988). Also women have been shown to demonstrate less 

fatigue than men in heavy resistance exercise (Hakkinen, 1994). It would be of interest 

therefore to examine whether the differences in fatigue and recovery period would be 

remain for resistance exercise. 

With resistance exercise there is an immediate increase in epinephrine and nor- 

epinephrine (Kraemer and Ratamess, 2005). These hormones increase blood glucose and 

are important for increasing force production, muscle contraction rate, and energy 

production (i. e., the synthesis of ATP-the energy currency of cells). These hormones 

actually begin to rise prior to the resistance training aerobics (Kraemer and Ratamess, 

2005). This is a preventative response of the body preparing for the challenging exercise 

to follow. Interestingly, the elevated blood glucose levels do not typically lead to an 

increase in insulin unless protein/carbohydrate supplementation precedes the workout 

(Kraemer and Ratamess, 2005). The increased uptake of blood glucose by the skeletal 

muscle is occurring due to the increase in function of the cell's glucose transporters, 

which increase glucose uptake and thus glucose metabolism in the muscle cell. Thus, 

regular resistance exercise training has been shown to increase 'insulin sensitivity', 

meaning the body can intake and use glucose more effectively (Pollock et al., 2001). 
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2.4.6. The Menstrual Cycle 

One striking difference between male and female athletes can be attributed to the female 

hormonal cycle during exercise performance with the female reproductive hormone 

concentrations fluctuate significantly (Sarwar et al., 1996). There are four hormonal 

markers of the menstrual cycle and these are oestrogen, progesterone, follicle stimulating 

hormone (FSH), and luteinising hormone (LH). These hormones vary with the cycle and 

the fluctuations in female steroid hormones affect the autonomic nervous system and 

metabolic functions (Florini et al., 1996). Oestrogen concentration measurements are 

important in identifying the late-follicular oestrogen peak. Measurement of both 

oestrogen and progesterone is the only method that can identify between the three 

distinct phases: (i) early-follicular phase (low oestrogen and progester one); (ii) late- 

follicular phase (high oestrogen and low progesterone); and (iii) mid-luteal phase (high 

oestrogen and progesterone) [see Table 2.1 ]. 

Table 2.1 Menstrual cycle phase terminology with corresponding days of the menstrual cycle, where 

possible accompanied by an indication of corresponding hormone concentrations of oestrogen and 

progesterone (Xanne and Janse, 2003). 

Therefore certain physiological parameters and athletic performance could be influenced 

by the phase of the menstrual cycle. However, the influence of the menstrual cycle phase 

on exercise performance, particularly muscle strength, is unclear. 
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Figure 2.4 Phases of the menstrual cycle. www. britannica. com/EBchecked/topic- 

art/375300/112920/Cyclical-changes-during-a-womans-normal-ovulatory menstrual-cycle". 

Interestingly, while some research has shown a significant difference in exercise-induced 

hormone changes during different phases of the menstrual cycle (Jurkowski et al., 1978; 

Hornum et al., 1997), others have demonstrated no significant phase effect. (Bonen, et 

al., 1983; Kanaley et al., 1992). However, these studies used very different exercise 

protocols, and the training status of the participants ranged from highly trained (Kanaley 

et al., 1992) to untrained, (Hornum et al., 1997) which could influence the results. To the 

authors' knowledge only one study has attempted to compare the short-term anabolic 

hormone responses between an endurance and resistance session, in the same group of 

pre-menopausal women. Consitt et al. (2001) reported that 40 minutes of cycling (75% 

of maximal heart rate) was capable of increasing serum levels of testosterone and 

oestradiol, compared with a resting session. Although increases were observed in these 

hormones after a resistance-exercise session including three sets of eight exercises at 10- 

RM (RM), they did not reach statistical significance when compared with the resting 

session 
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2.4.6.1. Muscle strength during phases of the menstrual cycle. 

Sarwar et al. (1996) tested skeletal muscle strength, relaxation rate and fatigability of the 

quadriceps during the menstrual cycle. They found no changes in these parameters for 

women taking oral contraceptives, whereas in women not taking oral contraceptives, the 

quadriceps were stronger, more fatigable and had a longer relaxation time at mid-cycle 

(day 12-18). Phillips et al. (1996) reported a higher adductor pollicis strength during the 

follicular phase than during the luteal phase, with a rapid decrease in strength around 

ovulation. They suggested that oestrogen has a strengthening action on skeletal muscle, 

although the underlying mechanism is not clear. Greeves et al. (1999), however, reported 

the highest quadriceps strength during the mid-luteal phase and found a positive 

relationship between strength and progesterone concentration. They showed that females 

undergoing in-vitro fertilization, in which there are those supra-physiological levels of 

oestrogen, did not cause any changes in strength of the first dorsal interosseus muscle. So 

the findings that suggest an effect of oestrogen on strength can be questioned. 

Several other studies have found no changes in skeletal muscle strength over the 

menstrual cycle (Lebrun et al., 1993; Gür, 1997). Elliott (2003) and others (Janse de 

Jonge et al., 2001) found that menstrual cycle phase had no affect on skeletal muscle 

contractile characteristics in humans. The main problem in the measurement of 

maximum voluntary strength is ensuring that the contraction truly reflects the maximum 

force-generating capacity of the muscle. Even well-motivated subjects may not always 

reach full neural activation of their muscles (Rutherford et al., 1986). The extent of 

neural activation can be evaluated by applying a superimposed electrical stimulus to the 

muscle during the performance of a maximal voluntary contraction (MVC). When 
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comparing strength over a period of time, such as in menstrual cycle research, it is 

especially important to ensure maximal neural activation during each test. 

A further problem encountered in research on the influence of the menstrual cycle on 

physical performance is the timing of the testing. It is difficult to predict the exact phases 

of the menstrual cycle and the concurrent reproductive hormone concentrations. 

Counting days from the onset of bleeding and basal body temperature charting can be 

used to estimate the different phases of the menstrual cycle. These methods, however, 

only provide predictions, and serum hormone level measurements of at least oestrogen 

and progesterone are necessary to confirm the menstrual cycle phase. 

Janse et al. (2001) measured muscle function during three phases of the menstrual cycle 

with significantly different concentrations of circulating female reproductive hormones 

(Table 2.2). The results showed similar isometric quadriceps strength at menses (571 ± 

114N), and decline the late follicular (551 ± 114N) and luteal (570 ± 109N) phases. No 

correlations were found between any of the strength and fatigue parameters and the 

serum concentrations of oestrogen, progesterone, LH and FSH. 

Table 2.2 Serum hormone concentrations of oestrogen, progesterone, follicle stimulating hormone 

(FSH) and luteinising hormone (LH) throughout the menstrual cycle (Janse et al., 2000). 
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Muscle function measures show no correlations with any of the hormone concentrations. 

The studies suggest that the fluctuation in female reproductive hormones throughout the 

menstrual cycle does not significantly affect muscle strength, fatigability and contractile 

properties. 

2.4.7. Nutritional considerations and fatigue 

Energy balance is an important nutritional consideration for strength athletes, particularly 

women. Differences between men and women in substrate use during moderately intense 

exercise may be related to the reproductive hormones oestrogen and progesterone. 

Elevated concentrations of oestrogen and progesterone that occur during the luteal (Lut) 

phase of the menstrual cycle have been associated with enhanced glycogen storage 

(Hackney et al., 1994; Nicklas et al., 1989) and fat utilization during rest and exercise 

(Hackney et al., 1994). Although, this change in substrate metabolism may be beneficial 

during prolonged low-intensity exercise (Gollnick, 1988), higher intensity endurance 

exercise in the absence of glucose feedings may be adversely affected (Davis, et al., 

1995). Furthermore, the effects of menstrual cycle phase on the potential positive effect 

of CHO supplementation on endurance performance during prolonged exercise are 

unknown. 

Stephen et al. (2000) reported that the performance-enhancing effects of CHO 

supplementation during prolonged exercise at 70% VO2max are not influenced by 

menstrual cycle phase. Furthermore, menstrual cycle phase did not alter endurance 

performance or any hormonal and metabolic factors that could influence endurance 

performance. 
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Furthermore, when women were matched for lean body mass with men and compared, 

consuming a high carbohydrate diet resulted in absolute and relative increases in muscle 

glycogen that were much lower than for men, and only significant for women if total 

energy intake was substantially greater than habitual intake Tarnopolsky et al. (2001). 

Over time, the increased energy required to obtain adequate glycogen synthesis in 

women would lead to an energy imbalance. A number of studies showed that endurance 

exercises performed previously to strength exercises may have prejudicial effects on 

these, such as impairment of acute performance on specific tests. A possible explanation 

for such is that an endurance exercise session could promote acute metabolic changes on 

a subsequent strength training session (Leveritt et al., 2000). 

On the other hand, a large body of scientific literature over the last decade has 

documented the physiological and performance effects of creatine supplementation. 

Short term creatine supplementation improves anaerobic performance, and long term 

creatine supplementation consistently augments strength and lean body mass gains with 

resistance training. Although the majority of studies have been in men, a significant 

amount of research indicates women are also responsive to creatine supplementation 

Volek and Rawson, (2004). Short term creatine supplementation enhanced high intensity 

exercise performance in women, (Eckerson et al., 2004; Tarnopolsky and MacLennan, 

2000). 

Earnest et al. (1995) have reported that short-term creatine intake increases fat-free mass 

in strength trained athletes. Accordingly, some (Bessman, and Savabi, 1990; Ingwall, 

1976) but not all (Fry and Morales, 1980) in vitro findings indicate creatine stimulates 

the biosynthesis of muscle myosin. Given these earlier in vivo and in vitro findings, it is 

reasonable to consider that oral creatine supplementation may produce an anabolic action 
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in humans and thus is likely to enhance the effects of resistance training on muscle mass 

and strength. In summary, the nutritional needs of women engaged in strength training 

are important and are generally similar to those recommended for men. 

Women in particular should ensure enough energy is consumed to optimise adaptations 

to training and improve general health Volek, (2004). There are gender differences in 

exercise metabolism that may give good reason for specific nutritional recommendations 

for women. These include less importance on carbohydrate intake after exercise. In 

addition, generous consumption of a healthy diet from a variety of sources is encouraged 

to support a positive energy balance, hormonal balance, and optimal health. Like men, 

women respond to the favourable effects of creatine supplementation during resistance 

training. 

2.5. Blood parameters and hormonal responses to resistance exercise. 

Resistance exercise acts as a powerful stimulus leading to the acute increases in serum 

concentrations of several hormones such as growth hormone, testosterone, oestradiol and 

cortisol. The nature of this stimulation varies according to the direction of the acute 

programme variables i. e. intensity (load) of exercise, number of sets and repetitions per 

set, length of rest periods between sets, and muscle mass involved (Häkkinen and 

Pakarinen, 1993) as well as subject characteristics of age, gender, health, and nutritional 

and training status (Sheffield-Moore and Urban, 2004). The acute decreases in maximal 

isometric force were quite similar in degree after "hypertrophic" resistance exercise 

performed with a 1O-RM protocol for ten sets (Häkkinen, 1994) as compared to the 
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respective acute decreases after the "neural" high loading 1 RM protocol of twenty sets 

(Häkkinen and Pakarinen, 1993). 

In contrast to the 1-RM protocol, hypertrophic heavy resistance exercise is known to 

induce the greatest acute hormone responses when performed by multiple sets per 

exercise (e. g. 3-5 sets) with short rest periods (e. g. 60-120 sec. ) between the sets and 

with a moderately high number of (e. g. 8-12 RM) repetitions per set (Häkkinen and 

Pakarinen, 1993). Therefore, the data of these previous studies suggest that the training 

mode seems to have an important influence on the magnitude and/or duration of acute 

hormonal responses. A previous study by Häkkinen et al., (2001) also suggests that acute 

hormone responses might have a relationship with gains in muscle mass or strength 

during resistance training. Thus, exercise-induced stimulation of the hormonal system 

may be a cause for the adaptation processes in skeletal muscle cells leading to increases 

in the contractile proteins. It is well known that the secretion of anabolic steroids results 

from resistance training, yet it is not clear why women show similar responses to training 

(compared to men) in the absence of increased testosterone levels (Taylor et al., 2000). 

Taylor (2000) examined the differences in growth hormone (GH) response to acute bouts 

of resistance exercise in weight-trained and non-weight-trained women. Growth 

hormone is responsible for increasing protein synthesis and for mediating the release of 

insulin-like growth factor (IGF-1), which is another potential anabolic factor (Taylor et 

al., 2000). They hypothesized that women with weight training experience would have a 

greater GH response to the exercise stimulus than the non-weight-trained women (Taylor 

et al., 2000). These findings established that both weight-trained and non-weight-trained 

women have an acute rise in GH levels following resistance exercise, although, the 
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weight-trained women were able to continue exercise at the increased GH levels for a 

longer period of time. 

Table 2.3 Main functional responses to exercise and glandular tissues and hormones involved in 
acute adaptation in men and women (from Robergs and Roberts, 1997). 

FSH; follicle stimulating hormone: LH; lutenizing hormone: ACTH; drenocorticotropin 

2.5.1 Creatine Kinase 

Creatine Kinase (CK) is found predominantly in muscle and is released into the 

circulation during muscular lesions. Consequently, serum CK activity has been employed 

as a marker in exercise physiology and sports medicine for the detection of muscle injury 

and overload (Clarkson and Tremblay, 1988; Houmard et al., 1990; Schneider et al., 

1995; Totsuka et al., 1996). However, some studies on CK release have not clearly 

demonstrated its value as a marker for these states (Nakaji et al., 1992; Newham et al., 

1987). 

Numerous studies have evaluated changes in CK activity after exercise and found that it 

differs markedly according to exercise conditions. For example, following isometric 
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muscle contraction, peak serum CK activity is observed relatively early i. e. 24-48 h after 

exercise (Clarkson et al., 1985; Graves et al., 1987; Kirwan et al., 1986), whereas it is 

seen 3-7 days after exercise following eccentric muscle contraction (Newham et al., 

1987; Nosaka and Clarkson, 1992; Smith et al., 1994), and a biphasic pattern is observed 

after weight training (Tokuda, 1985). 

These studies used short-duration, high-intensity workloads, which damaged muscle 

tissue and induced CK release, so their relevance to the actual process of CK release 

during and after strength exercise is not clear. There is a clear social trend toward 

increased physical activity, and regular physical activities with low or moderate intensity 

have been recommended for improving general health. However, non-athletes often 

experience fatigue and injury from daily exercise. This may be due to the lack of an 

objective marker for overtraining. Serum CK activity may act as a marker for fatigue or 

overwork in non-athletes, and it is therefore important to examine the effects of daily 

repeated aerobic exercise on serum CK activity in such subjects during and after non- 

injurious endurance exercise. 

It is also possible that the CK response to exercise depends on the individual's physical 

characteristics or training background (Hortobagyi et al., 1989; Nakaji et al., 1992; 

Norton et al., 1985). Newham et al., (1986) found high and low responders after a 

stepping exercise. 
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2.5.2.1 Changes in CK activity 

Serum concentrations of CK are increased after muscle is damaged by physical or 

biochemical injury. This has been reported after strenuous physical activity, (Schneider, 

et al., 1995) pain, crush injury, myositis, and muscular dystrophy. Other enzyme markers 

for skeletal muscle injury such as aldolase, enolase, aspartate aminotransferase, and 

lactate dehydrogenase isoenzyme 5 are not as specific as CK, Laurence, 2000; Wu and 

Perryman, (1992). The best studied of the muscle proteins that efflux into the blood 

following exercise damage is creatine kinase (CK). Because CK is found almost 

exclusively in muscle tissue, serum or plasma, it is considered an indicator of muscle 

damage (Armstrong, 2000). The role of CK is the hydrolysis of creatine phosphate 

within the muscle cell. Following muscle damage, changes in cell membrane 

permeability results in a release of CK into the blood (Nosaka et al., 1992). 

There is large inter-subject variability in serum CK response after eccentric exercise, 

questioning the reliability of CK as an indicator of muscle damage. In one study, 10 

males performed 24 maximal eccentric contractions. Over 72 hours post-exercise, peak 

CK response ranged from 236 U" L'' to 2524 U" L"1 (Nosaka and Clarkson, 1992). This 

is exaggerated further with significant differences observed between genders (Ebbeling 

and Clarkson, 1989). It appears that androgenic steroids increase CK efflux while, 

oestrogens inhibit CK release, resulting in women exhibiting lower CK responses after 

exercise (Amelink and Bär, 1986). Nosaka and Clarkson, (1992) hypothesised that larger 

post-exercise increase in plasma CK activity would be produced when a larger amount of 

muscle was damaged by eccentric exercise. In comparing eccentric work done on one 

arm followed by the other five weeks later to eccentric work on both arms on the same 

day, it appeared that CK activity did not reflect total muscle damage. 
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Nosaka and Clarkson (1996) found that peak CK correlated significantly with peak 

changes in isometric strength, range of motion, and circumference. These results 

contradicted the earlier experiment, but still contained massive inter-subject variations. 

At present there is no clear explanation for CK variability. Finally, it should be noted that 

when measuring CK in plasma or serum, total CK concentration represents both the 

efflux and clearance of the enzyme. Thus, interpretation of peak changes in CK should 

be made with caution (Ebbeling and Clarkson, 1989). 

2.5.3 Growth hormone 

Interactions of GH with other hormones have been noted. Therefore, it is often difficult 

to distinguish effects due to GH versus its influence on other hormones such as the 

somatomedins, testosterone, insulin-like growth factor-I (IGF-1) and insulin-like growth 

factor-2 (IGF-2) (Florini, 1996; Kraemer, 1988). However, GH is considered an anabolic 

hormone since experimental evidence supports its associations with muscle hypertrophy, 

increased protein and RNA content in muscle, and increased activities of RNA 

polymerases, and increased ribosomes (Florini, 1987). Approximately 30 years ago, it 

was first reported that GH administration stimulated amino acid uptake in rat diaphragm 

muscle (Kostyo, 1968). Follow-up studies indicated RNA synthesis increased in muscles 

following GH administration in hypophysectomized rats, although the effect is delayed 

18-24 hr. If GH administration is continued there is increased DNA content in the 

muscles by 7 days (Kostyo and Reagan, 1976). As is the case with testosterone, intensity 

of exercise may play a role on increased serum GH response that is typically seen 

following acute resistance exercise. 
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Takano et al. (2005) reported that three sets of low-intensity resistance exercise (20% 1 

RM) performed under an occlusive stimulus (1.3 times greater than systolic blood 

pressure) was capable of elevating GH concentrations to near 100 times that of baseline 

values, but exercise at the same intensity without occlusion did not result in similar GH 

responses. Interestingly, these studies reported that ISC plus low-intensity exercise 

conditions resulted in GH responses similar to those reported during resistance exercise 

at much higher intensities (75% 1 RM) without occlusion (Kraemer et al., 1999). 

Kraemer et al. (1991) found increased serum GH in both male and female subjects 

following a high volume, 1 O-RM protocol with 1-min rest between sets in comparison to 

a high-intensity protocol involving loads of 5-RM and 3-min rest between sets. The GH 

values observed during high-volume exercise were more than double those reported for 

the high-intensity protocol. Blood samples taken pre-, mid-, immediate post-, and 5,15, 

30, and 60 min after the high-volume protocol continued to show significant differences 

from pre-exercise levels as well as from the high-intensity protocol. 

There are minimal data regarding effects of long-term resistance training on GH 

secretion (Kraemer, 1988). McMillan et al. (1993) found a 100% higher GH response 

immediately following resistance exercise in untrained versus trained subjects although 

both demonstrated larger responses than non-exercised controls. They felt the higher 

serum free fatty acids seen in the trained subjects following the exercise session would 

suggest a GH sensitivity response with training. Other studies have suggested that higher 

GH leads to increased free fatty acid mobilization, which may be related to the inhibition 

of glucose by GH (Yarasheski, 1994). 
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Chandler et al. (1994) examined serum GH responses following the resistance exercise 

protocol and consumption of different macronutrient beverages immediately and 2 hr 

post-resistance exercise. Although all groups showed an elevated serum GH response 

immediately post-exercise, GH responses were elevated 6 hr post-exercise for both the 

carbohydrate-protein beverage and the carbohydrate beverages compared to protein and 

water. These results were interpreted as a more favorable environment for protein 

synthesis with ingestion of carbohydrate-protein beverage. Thus, post-exercise nutrient 

consumption has the potential to modify the GH response to resistance exercise. 

2.5.3.1 Acute growth hormone response to resistance exercise 

The release of GH is sensitive to many physiological stimuli, including exercise 

(Godfrey et al., 2003). Multiple-set protocols have elicited greater GH responses than 

single-set protocols (Craig and Kang, 1990; Gotshalk et al., 1997). Moderate- to high- 

intensity, high-volume programmes using short rest periods have shown the greatest 

acute GH response compared with conventional strength or power training using high 

loads, low repetitions and long rest intervals in men (Kraemer et al., 1990,1991,1993; 

Häkkinen and Pakarinen, 1993; Bosco et al., 2000; Williams et al., 2003; Goto et al., 

2003; Smilious et al., 2003). The magnitude appears dependent upon exercise selection 

and subsequent amount of muscle mass recruited (Kraemer et al., 1992), muscle actions 

used (i. e. greater response during concentric than eccentric muscle actions) (Durand et 

al., 2003), intensity (VanHelder et al., 1984; Pyka et al., 1992), volume (Gotshalk et al., 

1997), rest intervals between sets (Kraemer et al., 1990,1991) and training status (e. g. 

greater acute elevations based on individual strength and the magnitude of total work 

performed) (Rubin et al., 2005). 
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Acute resistance exercise can increase GH release in men and women of all age groups 

(e. g. Kraemer et al., 1993,1999; Nicklas et al., 1995, Marcell et al., 1999, Bosco et al., 

2000, Nindl et al., 2000; Takarada et al., 2000; Hymer et al., 2001). The serum GH 

concentration peaks at or slightly after the termination of resistance exercise and returns 

to baseline levels by approximately within 90 minutes post-exercise (Wilder et al., 

2002). GH is an anabolic hormone, and therefore, heavy resistance exercise-induced 

increases in secretion of GH may be important for the process of training-induced muscle 

hypertrophy (Kraemer et al., 1987). However, the inter-individual GH response to acute 

resistance exercise is highly variable. Dependent on the protocol employed, the average 

peak GH concentration attained during acute resistance exercise in young men and 

women ranges between 5-25 µg/L. Similarly, the average peak GH concentration 

attained during acute aerobic exercise is also between 5-25 µg/L (Wideman et al., 2002). 

Resistance exercise programmes that elicit the greatest GH response also elicit the 

greatest demand on anaerobic glycolysis and lactate formation as well as acute cortisol 

response (Roemmich and Rogol, 1997, Takarada et al., 2000, Kraemer and Ratamess, 

2005). The isoforms of GH that are measurable in the circulation may be altered by 

muscle afferent stimulation (McCall et al., 1996). It may be possible that the nervous 

system has an important role in regulating GH secretion during resistance exercise and 

this regulatory mechanism may be sensitive to specific muscle actions used during 

resistance training (Kraemer et al., 2001). With progressive overload, motor unit 

recruitment increases (Sale, 1991). The anterior pituitary is innervated by nerve fibres 

from the central nervous system, i. g. the motor cortex (Ju, 1999). Therefore, hormonal 

responses to exercise may be triggered by the central motor command to working 

muscles (Galbo et al., 1987; Kjaer et al., 1987) and the responses are further modulated 
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by muscle afferent-pituitary axis feedback such as from cholinergic pathways and 

proprio and metaboreceptors in muscles (Few and Davis, 1980; Kjaer et al., 1989,1992; 

Thompson et al., 1993; McCall et al., 1996; Giustina and Veldhuis, 1998; Gosselink et 

al., 1998). 

The research suggests that women should be encouraged to engage in resistance exercise, 

since there may be an influential effect of growth hormone response in women 

attempting to develop strength and power. However, further investigations are necessary 

to fully describe the relationship between hormonal responses and resistance-training in 

women. 

2.5.1 Myoglobin 

Myoglobin and haemoglobin are haemeproteins whose physiological importance is 

principally related to their ability to bind molecular oxygen. Myoglobin is a monomeric 

haeme protein found mainly in muscle tissue where it serves as an intracellular storage 

site for oxygen. During periods of oxygen deprivation oxy-myoglobin releases its bound 

oxygen, which is then used for metabolic purposes. 

"Each myoglobin molecule contains one haeme prosthetic group inserted into a 

hydrophobic cleft in the protein. Each heure residue contains one central coordinately 

bound iron atom that is normally in the Fee+, or ferrous, oxidation state. The oxygen 

carried by hemeproteins is bound directly to the ferrous iron atom of the heure prosthetic 

group. Oxidation of the iron to the Fei+, ferric, oxidation state renders the molecule 

incapable of normal oxygen binding" (Michael, 2006). Hydrophobic interactions 

between the tetrapyrrole ring and hydrophobic amino acid R groups on the interior of the 
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cleft in the protein strongly stabilize the heure protein conjugate. In addition a nitrogen 

atom from a histidine R group located above the plane of the haeme ring is coordinated 

with the iron atom further stabilizing the interaction between the heure and the protein. In 

oxymyoglobin the remaining bonding site on the iron atom (the 6th coordinate position) 

is occupied by the oxygen, whose binding is stabilized by a second histidine residue 

Michael, (2006). 

2.6 Dietary supplementation 

2.6.1. Creatine intake 

Creatine is produced naturally by the body and helps to improve muscles' performance 

during exercise. Foods such as meat and fish provide much of the body's creatine and the 

rest is made in the body by the liver, kidneys and pancreas. It is stored in the muscles as 

phosphocreatine contributing to the body's energy stores used during intense exercise 

Increasing the muscle stores of phosphocreatine by taking a creatine supplement 

theoretically improves the ability to maintain power output during intensive exercise. 

Taking creatine supplements can increase muscle stores of phosphocreatine by roughly 

20% on average. However, the exact increase can vary depending on the individual- 

ranging between 10% and 40% (Hultman et al., 1996). 

Evidence suggests that creatine supplementation is probably more useful for those sports 

whose activities require a good anaerobic performance (Volek, 1996). Such activities 

include weight lifting, sprinting, football and rugby. There have been many studies to 

examine its effect in this area and over half of these have shown quite positive outcomes. 
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However, for sports requiring mainly aerobic performance there is less evidence that 

creatine supplementation is helpful. So, for the athletes' individuals - such as runners, 

cyclists and long distance swimmers - the case is not so strong. Nevertheless, a few 

studies have shown some improvement in performance. For example, Prevost et al. 

(1997) found that creatine supplements delayed the onset of muscle fatigue in endurance 

athletes by boosting their lactate thresholds. Studies have shown that creatine 

supplementation does increase body weight and also has an effect on body composition 

(Kreider, 1996; Clark, 1997). 

In particular, creatine supplement increases muscle mass and this effect has been found 

in both male and female athletes. Weight increases of up to 4 kg have been reported after 

a period of six weeks with creatine supplementation. It is thought that this weight gain 

occurs because increases in the concentration of creatine in the muscles has the effect of 

drawing water into the muscle cells, thus increasing cell volume. This increase in volume 

acts as an anabolic signal which helps to reduce protein breakdown and improves the 

body's usage of protein. The end result is an increase in lean body tissue. Creatine 

supplementation in humans elevates total creatine (TC) and phosphocreatine (PC) 

concentration in the muscle (Willoughby and Rosene, 2001). This is usually associated 

with enhanced power and strength performance due to an increase in muscle mass 

(Vandenberghe et al., 1997). Because of these effects, creatine has been used as 

therapeutic agent in neuromuscular disease and in muscular dystrophies (Tarnopolsky 

and Martin, 1999). 

2.6.1.1 Creatine in human muscle metabolism 

The weight of scientific evidence, together with subjective reports from athletes, points 

to an important role for creatine supplementation; In broad terms, exercise can be 

51 



Chapter 2- Review of the literature 

considered as "short-term, high-intensity" and "prolonged, sub-maximal. " For many 

years, athletes involved in prolonged exercise have been aware of the benefits of 

carbohydrate loading, but until recently there has been little in the way of dietary 

supplementation that has been shown scientifically to aid high-intensity exercise 

performance. 

Most of the total creatine is restricted in skeletal muscle, with about 65% in a 

phosphorylated form as phosphocreatine (Casey, 1996). Phosphocreatine assumes a 

pivotal role in the energetics of muscle contraction during high-intensity (maximal) 

exercise. Muscle contraction and relaxation are fuelled exclusively by free energy 

liberated from the dephosphorylation of ATP, and thus muscle function depends 

critically on ATP availability. The ATP concentration of skeletal muscle amounts to 

about 24 mmol/kg dry mass (Harris et al., 1992), but ATP use during maximal, short- 

term, voluntary exercise (Gaitanos et al., 1993; Bogdanis et al., 1995) is such that the 

store of skeletal muscle ATP would be exhausted within 1-2 s of the onset of contraction 

without a means of resynthesizing ATP at an equally rapid rate. During such exercise, 

resynthesis of ATP is achieved mostly by the anaerobic degradation of phosphocreatine 

and glycogen (Hultman et al., 1991) resulting in a increasing rate of ATP production 

close to 15 mmol " kg dry mass '1 "s "1 during the first 6s of maximal exercise (Gaitanos 

et al., 1993). In this manner the concentration of skeletal muscle ATP can be maintained 

to some degree during both a single bout (Boobis et al., 1987; Nevill et al., 1989) and 

repeated bouts (Gaitanos et al., 1993; McCartney et al., 1986) of short-term maximal 

exercise. 
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Therefore, these findings raise the question of just how important is the availability of 

phosphocreatine and glycogen to ATP resynthesis, and thus to performance, during high- 

intensity exercise. It is well documented that in mixed muscle the glycogen concentration 

is still relatively high at the end of this type of exercise (McCartney et al., 1986). 

2.6.1.2 Creatine supplement and resistance Exercise 

The early studies on Cr supplementation in the 1990s in humans focused on exercise 

performance, which served as a basis for subsequent scientific research and applications. 

As mentioned earlier, supplementation increases intramuscular t-Cr content. The increase 

in Cr in young healthy males has been shown to anaerobic exercise performance by 

increasing power output (Earnest et al., 1995), muscular strength and work 

(Vandenberghe et al., 1997; Volek et al., 1999), and muscle fibre size (Volek et al., 

1999). Studies have also been performed on young healthy females, middle-aged males 

(30-60 years) of age, and the elderly (60 years) of age. Both females (Vandenberghe et 

al., 1997) and middle-aged males (Smith et al., 1998) benefited from Cr 

supplementation, but the elderly did not show an exercise performance enhancement 

(Rawson et al., 1999; Rawson and Clarkson, 2001). The lack of an effect in the elderly 

may be explained by changes in transporters density related with aging and decreased Cr 

uptake. The American College of Sports Medicine recently had a discussion group on the 

physiological and health effects of Cr supplementation (Terjung et al., 2000). 

Performance has been enhanced in swimming, all-out cycling, sprinting, repeated 

jumping, and resistance training (Juhn and Tarnopolsky, 1998). The greatest 

improvements in performance have been found in series, high-power output exercises 

and the final exercise bouts of a series, those performance that are repetitive in nature 
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and those of high-energy output, which would stress the PCr system, would likely benefit 

from Cr supplementation (Terjung et al., 2000). 

Although the majority of studies have been in men, a significant amount of research 

indicates women are also responsive to creatine supplementation (Volek and Rawson, 

2004). Short-term creatine supplementation enhanced high intensity exercise 

performance in women (Eckerson et al., 2004; Tarnopolsky and MacLennan, 2000) but 

in contrast to the situation in men, suggesting other mechanisms are responsible for the 

long term effects creatine on lean body mass (Volek and Rawson 2004). Studies have 

examined strength and body composition responses during a resistance training program 

indicate women respond favourably to creatine supplementation (Brenner et al., 2000; 

Vandenberghe et al., 1997). 

2.6.2 Carbohydrate intake 

Carbohydrate (CHO) is a broad term used to describe sugars involved in nutrition. CHO 

or sugar is one of the body's primary sources of energy for life in general, as well as 

during exercise. In our diet, CHO takes two forms, simple CHO (sugars) and complex 

CHO (starches). Following digestion, CHO enters the blood stream in the form of 

glucose where it circulates until it is stored in the muscle or the liver as glycogen first has 

to be transported by the blood, and taken up by the muscle before it can be oxidised 

(Jeukendrup, 1997). Gluconeogenic substrates such as lactate, glycerol and amino acids 

can be converted to glucose in the liver and so indirectly serve as an energy substrate. 

Some simple CHO, sugars like glucose and fructose, are found naturally in many fruits. 

Other simple CHO are sucrose (common table sugar) and lactose (milk sugar). Starches, 

54 



Chapter 2- Review of the literature 

which are found in grains and vegetables, are "complex" because they are simple CHO 

related together into long molecules (Kreider, 2003). 

The total amount of muscle glycogen of an 80 kg man is about 400 grams in which each 

gram of CHO stored also retains about 3g of water, further decreasing the efficiency of 

CHO as an energy source. Liver glycogen represents about 80-100 g. The total amount 

of plasma substrates (glucose and lactate) is about 20 g. Expressed in terms of energy; 

the body CHO stores represent approximately 8000 kJ. In comparison with this, fat 

stores are large and theoretically they could provide energy for days whereas the 

glycogen stores can become depleted within 60-90 min. 

CHO are important to athletes because they can produce energy at a faster rate for 

exercise if they use CHO instead of fat. Basically, CHO is a more efficient fuel than fat. 

Unfortunately, CHO in the muscles and the liver has limited storage possible, whereas 

the body's fat supplies are general, CHO is also necessary for efficiently burning fat. 

While the oxygen energy system is designed for endurance, an insufficient supply of the 

optimal fuel, CHO, can limit performance (Costill et al., 1992; Zachwieja et al., 1993). 

Muscular fatigue is associated with severe muscle glycogen store depletion (Akermark et 

al., 1996). Research has found that by consuming a high CHO diet (60-95% or 7-10g 

CHO/kg/d) a few days prior to exercise/competition while reducing exercise intensity 

causes muscle glycogen stores to become super-compensated (Ward, 1996; Goforth et 

al., 1997). Elevated muscle glycogen stores do not influence muscle power, strength or 

performance during short-term exhaustive exercise (anaerobic modes) but do prolong 

performance time during exercise (aerobic modes) at high intensities (Goforth et al., 

1997; Ward, 1996; Akermark et al., 1996; Walberg-Rankin, 1995). Consuming a meal 
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high in easy to digest CHO's 3-4 hrs before exercise improves endurance running and 

cycling capacity (Williams and Nicholas, 1998). 

2.6.2.1 Metabolic responses to carbohydrate supplement 

The majority of well-controlled studies show that, compared with men, women rely more 

on fat and less on carbohydrate (CHO) oxidation during aerobic exercise performed at 

the same relative strength. The differences in the metabolic response to exercise could 

have implications for nutritional recommendations and physical performance for male 

and female athletes (Tarnopolsky, 2000,2003). In this respect, the metabolic and 

performance responses to the ingestion of CHO during exercise have been investigated 

over the last 25 years, although the amount to which sex directly influences these 

responses has not been methodically studied. 

CHO supplementation during exercise increases endurance exercise capacity and 

performance in females (Bailey et al., 2000; Campbell et al., 2001). This effect is largely 

qualified to increased CHO oxidation and protection of euglycemia during exercise, 

particularly as exercise duration increases and endogenous CHO stores become low 

(Coggan and Coyle, 1989; Coyle et al., 1986). In addition, in men (Bosch et al., 1994; 

Jecukendrup et al., 1999; McConell et al., 1994) and women (Campbell et al., 2001), 

CHO ingestion during exercise reduces and replaces hepatic glucose production, which 

is indicative of liver glycogen careful. It is generally accepted that CHO feeding does not 

affect the rate of muscle glycogen utilization during exercise (cycling) in males (Bosch et 

al., 1994; Febbraio et al., 2000; McConell et al., 1994). In contrast, it has been reported 

that CHO ingestion during cycling exercise could reduce muscle glycogen consumption 

during exercise in females (Campbell et al., 2001). 
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In one study, muscle glycogen stores were unchanged in women in response to a 4-day 

high-CHO diet (HCD; - 75% CHO) compared with a moderate-CHO diet (MD; -57% 

CHO), whereas the men increased muscle glycogen content by -40% after the high-CHO 

regimen (Tarnopolsky, et al., 1995). Furthermore, only men increased cycle time to 

exhaustion (80-85%VO2 max, after 1h at 70-75% V02 max) in response to the dietary 

CHO-loading regimen. Therefore, women may not be able to super-compensate muscle 

glycogen stores before exercise and increase exercise performance in response to 

increases in dietary CHO. 

The female athletes engaged in the above studies were tested during the follicular phase 

(FP) of the menstrual cycle when circulating reproductive hormones are low (Horton, et 

al., 1998; Tarnopolsky, et al., 1999; 2000). Hackney et al. (1994) found a 13% higher 

resting muscle glycogen content in the luteal phase (LP) compared with the FP of the 

menstrual cycle when they controlled for diet and exercise in the 36 h before muscle 

glycogen sampling. In contrast, Nicklas et al., (1989) studied moderately trained women 

and reported no significant difference in muscle glycogen content between phases of the 

menstrual cycle after a glycogen-depleting exercise bout and 3 days of a controlled diet 

(-56% CHO) with no exercise. However, a significantly greater amount of muscle 

glycogen repletion occurred during the 3 days in the LP vs. the FP [379 ± 20 vs. 313 ± 

25 mmol/kg dry muscle]. These studies suggest that glycogen synthesis may be increased 

during the LP of the menstrual cycle. Therefore, the testing of women during the LP of 

the menstrual cycle may show that female athletes are able to super-compensate muscle 

glycogen stores and improve exercise performance. 
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It has been recommended that athletes ingest CHO following exercise in order to 

enhance glycogen resynthesis, promote an anabolic hormonal environment, enhance 

PRO synthesis, and/or lessen the immuno-suppressive effects of intense exercise 

(Campbell, et al., 2007; Conley and Stone, 1996). The type of CHO ingested is an 

important consideration because the glycemic index of a CHO may enhance glycogen 

storage and/or anabolic responses to exercise by promoting a greater glucose and insulin 

response (Burke and Hargreaves, 1993; Burke et al., 1996). These recommendations are 

based on findings that ingestion of CHO following exercise increases insulin levels 

promoting glycogen restoration (Roy, Tarnopolsky, 1997; Zawadzki et al., 1992). 

Additionally, increasing insulin levels following exercise optimizes an anabolic 

hormonal environment and can serve as a potent stimulator of PRO synthesis pathways 

(Tarnopolsky et al., 1999; 1995). 
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2.7 Summary. 

In summary, several authors (Baker et al., 1982; Hunter and Enoka, 2001) have studied 

the metabolic and physiological responses difference between males and females and 

have shown important metabolic and hormonal differences in response to resistance 

exercise. Even though muscular strength is an important characteristic in achieving 

optimum sports performance, the majority of previous studies on the effects of resistance 

exercise on indices related to muscular strength along with biochemical and hormonal 

responses have been carried out in male populations. Therefore, there is a need to 

examine the characteristics of fatigue and recovery responses to heavy resistance 

exercise in females in terms of isometric force and blood analysis variables. There is also 

a need to examine the effect of dietary supplementation on the neuromuscular and 

biochemical responses to heavy resistance exercise. 
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Chapter 3- The between-day reliability 

3.1. The between-day reliability of maximal voluntary isometric contraction and 

rate of force development measures 

3.1.1 Introduction 

Reliability refers to the precision of values of a test, assay or other measurements in 

repeated trials on the same individuals. Greater reliability implies better precision of 

single measurements and better tracking of changes in measurements in research or 

practical settings. In sports science, a frequently assessed variable is the maximal 

voluntary isometric contraction (MVC) which is typically defined as the maximal muscle 

force that a highly motivated subject is able to produce voluntarily under particular 

contractile conditions. Another measure employed is the rate of force development 

(RFD). Although some researchers have examined the reliability of the technique for the 

assessment of MVC, few studies have been undertaken using women (Constance et al., 

1994). 

Several studies have established a high reliability of maximal force measurements and 

intra-individually reproducible values in men for the voluntary activation of the single 

quadriceps during isometric knee extension (Morton et al., 2005). The MVC and RFD 

have been shown to be reliable (Viitasalo et al., 1980; Bemben et al., 1992). For 

example, Bemben (1992) reported correlations of 0.92 to 0.98 between test scores 

administered on successive days for a variety of muscle groups. Maximal isometric 

strength tests generally have high test-re-test reliability. Viitaslo et al. (1980) reported a 

high correlation between repeated maximal isometric trials which were conducted with a 

5-min rest interval. Similar reliability values were achieved by Bemben et al. (1992) for 

subjects of differing ages, and greater reliability was achieved when several practice 
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tests were provided prior to data collection and data collected over a 2-day period and 

the values averaged. 

As rehabilitation training programs aim at enhancement of functional performance, it is 

also important to know what development in values indicates a good physical 

performance and therefore a better training status. Several scientific studies have dealt 

with reliability issues of muscle function variables during knee extension (McDonnell et 

al., 1987; Feiring et al., 1990; Oldham and Howe, 1995; Behm et al., 1996; Norregaard 

et al., 1997; Pincivero et al., 997; Oeffinger et at., 2001; Dauty and Rochcongar, 2001; 

Larsson et al., 2003; Horemans et al., 2004; Todd et al., 2004; Symons et al., 2004; 

Mathur et at., 2005; Morton et at., 2005). Several of them have established a high 

reliability of maximal voluntary force measurements Intra-Class Correlation coefficients 

(ICC > 0.8) for men in the single quadriceps during isometric (Oldham and Howe, 1995; 

Behm et al., 1996; Horemans et al., 2004; Symons et al., 2004; Morton et al., 2005) and 

isokinetic knee extension (Feiring et al., 1990; Pincivero et al., 1997; Dauty and 

Rochcongar, 2001; Larsson et al., 2003; Symons et al., 2004; Todd et al., 2004). 

One study presented data on woman, for isometric function of six muscle groups 

(Constance et al., 1994). Repeated measures of maximal force, maximal rate of force 

increase, total impulse, time to maximal force, average rate to maximal force, and time 

between 90% maximal force and maximal force were obtained on the finger flexors, 

thumb extensors, forearm flexors, forearm extensors, dorsiflexors and plantar flexors. 

Repeated measures ANOVA yielded significant day effects for the finger flexors 

maximal rate, dorsiflexors (maximal force, average rate to maximal force), and plantar 

flexors, and significant trial effects for the forearm extensors and plantar flexors 
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(maximal force, average rate to maximal force). Intra-class correlation coefficients (ICC) 

varied among muscle groups and parameters of muscle function, ranging from ICC= 

0.30 to 0.94. Estimates of the component variances also varied among muscle groups and 

parameters of muscle function. Coefficients of variation ranged from 7.7% to 44.1 %. 

Morten et al. (2001) determined reliability measurements of maximal voluntary 

contractions (MVC) in females during isometric back flexion, back extension, shoulder 

elevation, shoulder abduction and handgrip. All tests showed reasonable reliability at 

group level judged by 95% confidence intervals, although the variation was wide 

according to the calculated limits of agreement at the individual level. If this variation is 

not taken into consideration the tests can be of limited use at the individual level. Finally, 

this study clearly showed the correlation coefficients as a single number to estimate 

reliability. 

The few studies reviewed on the reliability of female strength measures suggests that 

reliability, while good, is also variable in females. In particular, no study exists that has 

examined the reliability of isometric quadriceps strength with single and both legs 

together for females. Therefore, the aim of this study was to establish the between-day 

reliability of the testing protocol for maximum force isometric contraction and rate of 

force development with similar procedure for both legs and each leg separately when 

using an isometric chair with female subjects. 
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3.1.2 Methods 

3.1.2.1. Subjects and study design 

Subjects. Eight healthy females volunteered to participate in the study. All subjects were 

medically screened (Appendix 1) to determine their health and exercise habits prior to 

exercising lower body muscles. Each individual gave written informed consent to 

participate in the study, which was approved by the Ethics Committee of Liverpool John 

Moores University. The mean (±SD) age, height and body mass of the subjects were 25± 

2 years, 1.78 ± 0.04 m and, 58.3 ±3.11 kg, respectively. 

Experimental design. The knee extensor muscle strength of each leg was obtained using 

a strain gauge dynamometer attached to an adapted Lido Dynamometer chair (Loredan, 

USA, see figure 3.1). The subject was seated with the trunk vertical with 90° flexion at 

the hip and knee. To prevent extraneous body movements, Velcro straps were applied 

tightly across the thorax and distal thigh. The subject was seated in the adjustable chair 

and strapped at the waist and chest to maintain muscle length and prevent substantial use 

of the hip extensors. Quadriceps muscle force was measured from the ankle where the 

attachment was connected to a strain gauge (previously calibrated with known weights) 

by a metal rod. A separate device was used for each leg. The subject was instructed to 

exert maximal force as rapidly as possible and maintain that force for 6s while verbal 

encouragement was given. Force data from the strain gauge were amplified and collected 

on-line by computer via a 12 bit analogue-to-digital converter (figure 3.1). Data were 

recorded for MVC, and smoothed used a Hanning 3-point filter. The RFD was calculated 

as the first differential of the smoothed force data. Data were collected on 3 successive 

days at the same time of day (Figure 3.2). 
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Figure 3.1 Isometric strength testing chair and measurement equipment. 

7. Computer 4. Analog- to digital converter 

w 

wa. ýý 
ý` 

'rk 
I# 

P !, 

W 
. `f 

3. Signal/amplifier 

/ksupport. 

1. 

5. Lod cell 

Figure 3.2 The experimental design for study one (A). 
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3.1.2.2. Measured variables 

3.1.2.2.1 Body mass (BM) 

Body mass of each subject was measured to the nearest 0.1 kg using calibrated balance 

scales (Cranlea and Company, Bournvile, Birmingham, UK), in light clothing, and 

without jacket, and footwear. The subject stood on the scales with their feet together, 

arms hanging loosely by their sides and head facing forward. Body mass was measured 

in the first session of each experiment. 

3.1.2.2.2 Body height (BH) 

The height of each subject was measured without shoes using a calibrated stadiometer 

(Cranlea and Company, Bournvile, Birmingham, UK). Measurements were recorded to 

the nearest 0.5 cm. The subject's head was held straight looking forward with their line 

of vision parallel to the floor. 

3.1.2.3 Determination of one repetition maximum (1-RM) 

Two familiarisation sessions were designed to habituate subjects with the testing 

procedures and laboratory environment. Subject's 1-RM was required for the exercise 

used for the exercise component of the protocol, used in later studies. The main aims of 

these sessions were to familiarise subjects with resistance exercise using weight-training 

equipment. Subjects reported to the weight training room in their appropriate sporting 

attire. During the familiarisation sessions, it was ensured that all subjects performed the 

correct technique for all exercises prior to taking part in the main testing trials. Following 

familiarisation, subjects were asked to report to the laboratory for an additional session 

designed to determine 1-RM. 
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The leg 1-RM muscular strength tests were used to evaluate each subject's maximal level 

of strength for each of the six exercises which was used in later studies in order to 

determine the loads (percentage of 1-RM) used. The 1-RM has been defined as the 

weight that can be successfully lifted no more than once, through a specific range of 

movement (Sale, 1991). 

During the leg-press the subjects lowered the weight to a flexed knee angle of 90° 

(Hoeger et at., 1990), measured manually using a goniometer. The subjects were given 

two standardized sub-maximal warm-up trials with descending (10 and 5) repetitions 

with progressively heavier loads before performing a series of one-repetition trials with 

progressively heavier weights to determine their 1-RM (Humphries et al., 1999; Sale, 

1991). The weight was increased in increments until the subject could not complete the 

lift (Murphy and Wilson, 1997). The heaviest weight lifted across the trials was used for 

estimating 80% of each subject's 1-RM in each exercise (Feigenbaum and Pollock, 1997; 

Hoeger et al., 1990) and corresponding 10-12-repetition for each strength-exercise 

(Figure 3.3). 
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Figure 3.3 An example of a muscle resistance exercise. 

3.1.2.4. Maximal Voluntary Isometric Contraction Assessment 

Prior to commencing the test, the subjects warmed up on a cycle ergometer for five- 

minutes at a workload of I watt per kilogram (kg) of gross-body-mass and performed 

light stretches of the major leg muscle groups (quadriceps hamstrings and calves). 

Isometric assessments are generally performed to quantity various force-time 

characteristics such as the MVC and RFD. Subsequent to each strength test session, the 

subjects completed an identical progression of MVC (right and left leg separately then 

together) at 900 of knee flexion on a custom-built testing chair. Ninety degrees of knee 

flexion was chosen due to its association with force production during the down stroke of 

the isometric chair pedal action (Cavanagh and Sanderson, 1986). The subjects were 

given a series of progressive warm-up trials before performing the three MVCs with a 1- 

2 min rest period between each contraction (Bennet and Stauber, 1989). The subjects 

performed the contractions in response to a verbal command and held the contractions 

for a period of 6 seconds. 

68 



Chapter 3- The between-day reliability 

3.1.3. Statistical analysis 

In order to evaluate the between-day repeatability, the averages of the first and second 

day, and second and third day. The CV was calculated to represent intra-subject variation 

between the two testing sessions. A one-way ANOVA with repeated measures was used 

with Tukey's post hoc test of honestly significant differences to assess the systematic 

bias between tests with statistical significance set at P<0.05. The limits of agreement 

(LOA) were determined (Bland and Altman, 1986,1999). The data for all subjects were 

expressed as mean ± standard deviations, unless otherwise stated. 

3.1.4. Results 

The mean (±SD) values of MVC and RFD for both legs together and each leg separately 

Figure 3.4. The one-way ANOVA with repeated measures revealed a significant trial 

effect across days determined between dayl vs. day2 and day2 vs. day3. The LOA 

comparisons were made for each variable MVC and RFD and for both legs and each leg. 
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Figure 3.4 Mean of three trials for MVC and RFD (units= N) of both legs, right and left 

leg (D=days). 
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3.1.4.1. Reliability of MVC for both legs together and right and left leg separately. 

The day-to-day measurements of MVC are presented in Figure 3.4. The three days data 

for MVC were approximately similar. There was a small systemic bias between days for 

both legs, right leg and left leg. The one-way ANOVA with repeated measures 

established that there was significant main effect when the data was compared across 

days for both legs and left leg (F2,14 = 5.77, P <0.05), and for the right leg (F2,14 = 9.12, 

P <0.01). The reliability of the measured variables had wide-ranging levels of 

consistency, with CV's across days ranging from 5.4% to 28.8% (Table 3.1). The 95% 

limits of agreement showed good reliability between-days, The variables displayed a 

relatively low-degree of systematic bias on the both legs, as the vast majority of the 

observed variance was due to random error (Table 3.2). 

Table 3.1 Between-days limits of agreement for MVC (N). 

Mean SD diff Mean 
DAYS Mean Mean Grand diff * 1.96 CV 

(1) (2) mean (Bias) (error) as % 
Both legs 
D1 vs. D2 249.2 224.5 236.8 24.7 12.9 5.4 
D2 vs. D3 224.5 226.8 225.7 -2.3 14.5 6.4 
Right leg 
D1 vs. D2 304.7 266.0 285.4 38.7 27.0 9.5 
D2 vs. D3 266.0 267.4 266.7 -1.4 76.8 28.8 

Left leg 
D1 vs. D2 287.3 253.8 270.6 33.5 46.4 17.1 
D2 vs. D 253.8 264.7 259.3 -10.9 15.1 5.8 

[Grand mean= (1+2)/2, Mean diff= (1-2), %CV= SD diff/Grand mean * 100], 
1.96 = the 95th percentile. 
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3.1.4.2 Reliability of RFD for both legs together and right and left leg separately. 

The day-to-day measurements of RFD are presented in Figure 3.5 which were very 

similar across days. The one-way ANOVA with repeated measures established that there 

was significant main effect when the data was compared across days for just the both 

legs condition (F2,14 = 19.97, P <0.01), and a significant interaction (P < 0.01) for 

day*time, but no significant difference a cross days for both left and right leg (F2,14 = 

3.48, P> 0.05). The reliability of the measured variables had wide-ranging levels of 

consistency, with CV's across days ranging from 0.1% to 7.4% (Table 3.2). The 95% 

limits of agreement showed good reliability between-days, The variables displayed a 

relatively low-degree of systematic bias on the both legs, as the vast majority of the 

observed variance was due to random error (Table 3.2). 

Table 3.2 Between-days limits of agreement for RFD (N/s). 

Mean SD diff Mean 
DAYS Mean Mean Grand diff * 1.96 CV 

(1) (2) mean (Bias) (error) % 
Both legs 
D1 vs. D2 786.1 709.8 747.9 18.5 24.1 3.2 
D2 vs. D3 709.8 720.3 715.1 19.1 11.4 1.6 

Right le 
DI vs. D2 856.3 784.6 820.5 71.7 17.4 2.1 
D2 vs. D3 784.6 811.8 798.2 -27.2 0.8 0.1 

Left leg 
DI vs. D2 852.2 807.8 829.9 44.5 61.6 7.4 
D2 vs. D3 807.8 807.8 807.8 0.01 0.04 4.9 

[Grand mean= (1+2)/2, Mean diff (1-2), %CV= SD diff/Grand mean *100], 
1.96 = the 95th percentile. 
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3.1.5 Discussion and conclusion 

The aim of this study was to assess the reliability of MVC and RFD measurements for 

knee extension using an isometric chair system in females across three days for each leg 

separately and for both legs together. It was found that the mean between-days LOA for 

MVC for both legs was less than the right leg or left leg separately, and that the left leg 

was less than the right leg. Although previous studies (e. g. Tillman et al., 2004) have 

used either the dominant leg or each leg separately for MVC measurements, the MVC 

data for both legs were more reliable than MVC measured separately for each leg and 

The relative reliability of MVC was rather good for both, right and left legs, and 

evaluating the reliability of MVC using the LOA method indicated that a small amount 

of systematic bias (-2.3, -1.4, -10.9N) was present between the day2 and day3 for all 

conditions (Table 3.1), and so it is recommended that the MVC measurements are made 

using both legs instead of using each leg independently. However, for the RFD 

measurements, the typical error in all three conditions (both legs, right leg and left leg) 

were similar and so there was no difference in their reliability when the three days data 

were compared. 

The reliability of this measure was rather good and ranged approximately (CV = 2.4%, 

1.1 %, 6.2%) for both, right and left leg evaluating the reliability of MVC using the LOA 

method indicates that a small amount of systematic bias was present between the day 2 

and day3 for all conditions (Table 3.2). The between-days reliability reported in this 

study ranged from very good to moderate for isometric knee extension. Studies with 

testing sessions separated by several weeks tend to report lower reliability (Gabriel, et 

al., 2000; Kollmitzer, et al., 1999). It has been suggested that when a longer duration of 
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time separates testing sessions, the reliability of isometric strength is compromised 

(Kollmitzer, et al., 1999). The findings do not support this previous observation as 

excellent reliability in assessing MVC and RFD was observed even when testing 

sessions were separated by a relatively long-time period as in the between-days 

reliability data (Table 3.1 and 3.2). 

However the systematic bias was significant when compared data between days for both 

legs and left leg (P <0.05) and was either right leg (P <0.01). The LOA measure of 

absolute reliability and represent the range within which a participant's difference score 

(D1, D2, and D3) would occur most of the time (Hopkins, 2000). Therefore, assuming 

that the errors are normally distributed, 95% of the participant's difference scores should 

lie within plus or minus two standard deviations of the mean of the difference scores 

(Portney and Watkins, 2000). Like CV the limits of agreement should be presented as a 

ratio because of the heteroscedastic data (Atkinson and Nevill, 1998). Data from the 

current study revealed LOA values for both leg, right and left leg ranging from 12% to 

15%, 27% to 76% and 15% to 46.4. Consequently, any difference between the two tests 

of the previously mentioned isometric measures should differ by no more than the 

corresponding percentages above and below the mean bias. The percentages above and 

below the mean bias for all measures observed were again larger than desired. 

In conclusion, the results of the present study demonstrated that the reliability of 

measurement presented the relative and absolute reliability of different methods and 

subsequent variables commonly used to asses the isometric strength muscle of humans. 

Using to measures both legs together is acceptable and that the method of muscle 

strength evaluation using an isometric chair is a reliable method for testing female 
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muscle strength. In this pilot study it was found that using both legs to measure isometric 

contraction force was more reliable for between-days measurements than using one leg. 
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3.2. The within-day reliability of MVC and RFD measurements and the effect of 

fatigue induced by resistance exercise. 

3.2.1 Introduction 

Fatigue is a complex, multi-factorial phenomenon and has been associated with 

impairments at a number of sites, ranging from central activation to myofilament 

interaction (Fitts, 1994; Stephenson, 1998). Further complication arises from the fact that 

fatigue is task specific, in that for a given task one particular site or mechanism may be 

more or less responsible for the decline in muscle performance (Enoka and Stuart, 1992). 

Fatigue after repeated heavy resistance loading results in momentary decreases both in 

voluntary activation and force production, but their magnitudes may be specific to the 

type of exercise loading (Komi and Viitasalo, 1977; Hakkinen, 1994). 

Some researches suggest that a combination of resistance machines and free weights are 

recommended for beginners, while advanced exercisers should emphasize using free 

weights (Brill et al., 1998). It has been recommended that during weight training, a) large 

muscle groups should be challenged before smaller muscle groups, b) multiple joint 

exercises should precede single joint exercises, c) higher intensity exercises should be 

done before lower intensity, and (d) the training should be started with slow to moderate 

velocities. Moderate velocities are recommended for intermediate exercisers, while 

advanced exercisers can use a continuum of slow to fast velocities (Kraemer, 2002). 

Therefore a fatigue indicating protocol should follow these general recommendations. 

Consequently, the first pilot study suggested that MVC and RFD measurements for knee 

extension using an isometric chair system in females could be used to quantify the 

improvement following resistance exercise from one day to another during studies. 
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Therefore, the purpose of this study was to establish exercise volume and intensity to 

produce fatigue effect defined as 40% reduction in measured force variables, and as a 

consequent of the protocol used, to assess the within-day reliability of muscle strength 

measures in females. 

3.2.2 Methods 

Eight female subjects, as used in the pilot study 1, took part in this study. The subjects 

were required to attend the laboratory in the same day. The within-day repeatability of 

the measurements for MVC and RFD was calculated by comparing the test results from 

session 1 and 2, where the time interval between sessions was one hour and the subjects 

were allowed on three sessions to rest. Session 2 was followed by the exercise protocol. 

Measurement for session 3 was conducted within 30-min of the completion of the 

exercise protocol. The fatigue effect of the resistance exercise was established by 

comparing between sessions 2 and 3. The apparatus and measurement protocol designed 

in first study one were used with both legs, right and left leg separately. The subjects 

were instructed to exert their maximal force as rapidly as possible and maintain that 

force for 6 s. Verbal encouragement was given to each subject during exercise. On each 

testing session subjects were required to perform three maximal isometric contractions. 

The time interval between maximal efforts was 6 s. 

Figure 3.5 The experimental design for study one (B) 

The interval 
between sessions 
is an hour 

Session 1 Session 2 Session 3 

MVC, RFD MVC, RFD MVC, RFD 
45mins Resistance 

exercise (60 % 1-RM) 

Mh Right Left Bi Right 
kft 

Both'Righ Let 

76 



Chapter 3- The within-day reliability 

For the resistance exercise, subjects performed three sets of six different weight exercises 

(leg curls, dumbell lunges, barbell squats, knee extensions, squat exercise, leg presses) at 

an intensity corresponding to 60% of 1RM (8-10 repetitions). The resistance exercises 

used was designed to produce fatigue in the quadriceps. A one-minute rest period was 

allowed between exercises and a 3-min rest period allowed between sets. The duration of 

the session was approximately 45 min. 

3.2.3 Familiarization 

Subjects underwent extensive familiarization prior to participating in the study. During 

the resistance exercise session, the subjects were introduced to and familiarised with the 

performance of the MVC. Approximate loads for the 1-RM were determined during the 

familiarization session (Section 3.1.2.3). 

3.2.4 Statistical analysis 

In order to evaluate within-day repeatability, 95% Limits of Agreement was determined 

between the first and the second sessions (Bland and Altman, 1999). The CV was 

calculated to represent intra-subject variation between the two testing sessions. The 

mean values of MVC and RFD in session two and three was compared using a t-test with 

a level of significance of P<0.05. Data are presented as means ± SD, unless otherwise 

stated. 
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3.2.5 Results 

The within-day repeatability of measurements and the effect of fatigue was evaluated 

using the data in Table 3.4. 

 B  R QL 
450 
400 
350 
300 
250 
200 
150 
100 
50 
0 

Si S2 S3 

 B  R QL 
1800 
1600 
1400 
1200 
1000 
800 
600 
400 
200 

0 
Si S2 S3 

Figure 3.6 Mean of three sessions for MVC (N, N/s) per session of both legs, right 

and left leg. (S= Session) 

3.2.5.1 Reliability of MVC for both legs together, right and left leg. 

The variability in measurements of MVC across sessions is presented in Figure 3.6. The 

data for MVC were approximately similar when compared between sessions 1 and 2. 

The reliability of the measured variables had wide-ranging levels of consistency, with 

CV's between sessions for both legs condition (0.6%), and other two conditions were 

6.7% to 13.7% for right and left leg (Table 3.3). There was little bias between sessions 

for both legs, right leg and left leg which ranged from (1.3 to 32.8). The 95% Limits of 

Agreement showed good within-day reliability for both legs (Table 3.3). 
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Table 3.3 Mean value, bias and random error for MVC. 

S1 vs. S2 
(MVC) 

Sl S2 Grand mean 
Mean 
diff 
(Bias) 

SD diff* 
1.96 

(Error) 
% CV 

Both Legs 322.3 321.01 321.7 1.3 1.8 0.6 

Right Leg 349.5 316.7 333.1 32.8 45.5 13.7 

Left Leg 326.2 310.8 318.5 15.5 21.4 6.7 

[Grand mean= (1+2)/2, Mean dill= (1-2), %CV= SD diff/Grand mean * 100]. 

3.2.5.2 Reliability of RFD for both legs together and right leg, left leg. 

The variability in measurements of RFD across sessions is presented in Figure 3.6. The 

RFD data were approximately similar when compared between sessions 1 and 2. The 

reliability of the measured variables had wide-ranging levels of consistency, with CV's 

between sessions for both legs condition (3.0%), and other two conditions were 4.4% to 

5.3% for right and left leg (Table 3.4). There was little bias between sessions for both 

legs, right leg and left leg which ranged from (1.3 to 32.8). The 95% Limits of 

Agreement showed good within-day reliability for both legs (Table 3.4). 

Table 3.4 Mean value bias and random error of RFD. 

Sl vs. S2 
(RFD) 

Sl S2 Grand mean 
Mean 
diff 
(Bias) 

SD diff 
1.96 

(Error) 
%CV 

Both Legs 1057.0 1034.7 1045.8 22.3 31.0 3.0 

Right Leg 1601.5 1551.7 1576.6 49.8 69.0 4.4 

Left Leg 1315.3 1266.3 1290.8 49.0 67.9 5.3 
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3.2.5.3 T-Test between session 2 and 3. 

Analysis using a t-test on the data in Table 3.5 showed that fatigue induced by exercise 

decreases the MVC measured in both legs [t 7= 10.36, P<0.001], the right leg [t 7_ 

11.95, P<0.001 ] and the left leg [t 7=7.21, P<0.0011 leg separately. Data analysis 

revealed that there was a significant effect of fatigue induced by exercise on RFD in both 

legs (t 7= 14.94, P<0.001), in the right leg [t 7=5.76, P<0.001] and in the left leg [t 

=7.21, P<0.001]. 

Table 3.5 Means and standard deviations for Session 2 and 3 for MVC (N) and RFD 
(N/s) of both legs and right and left legs. 

TRIAL 
(Mean of both leg) 
MVC RFD 

(Mean of right leg) 
MVC RFD 

(Mean of left leg) 
MVC RFD 

Session 2 
1 329.7±47.5 1133.6±189.3 344.5± 74.3 1525.3±389.8 328.0±65.3 1297.7±321.9 

2 333.3±61.9 1122.2±157.3 335.4±80.7 1622.7±357.9 324.7±60.0 1234.8±308.5 

3 320.9±60.7 982.9±212.1 330.2±55.7 1507.2±354.6 327.3±58.8 1254.0±362.7 

Session 3 
1 269.6±49.3 950.6±101.8 254.6±31.4 927.0±264.5 263.7±56.3 837.7±206.8 
2 

249.1±42.8 936.6±127.0 220.3±40.2 894.8±268.3 240.0±66.4 756.8±233.9 
3 

215.6±47.7 746.1±206.1 190.5±35.2 794.5±261.3 211.9±62.8 687.7±239.1 
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3.2.6 Discussion and conclusion 

The aim of the second pilot study was to assess the effect of fatiguing resistance exercise 

and to establish the within-day reliability of MVC and RFD in females. There was no 

change found from session 1 to session 2 in MVC and RFD within a one-hour period. 

The reliability of within-day measurements was assessed using the 95% LOA. It was 

therefore concluded that there was no `learning effect' on the measured variables or 

fatigue produced by the test protocol itself. The data therefore indicated that well 

familiarised subjects are competent at producing their perceived maximal force during a 

within-day protocol. 

The reduction in force following the exercise session was due to some form of peripheral 

fatigue. These findings are in agreement with that of Bigland-Ritchie et al. (1986) who 

reported a reduction in force following exercise. The change between the second and 

third session is in agreement with reports of the effect of a high-intensity strength 

training session in men. Häkkinen (1992) reported a significantly greater reduction in 

maximal strength along with a significant reduction in RFD. 

While the relative reliability of MVC was rather good for both, right and left leg, 

evaluating the reliability of MVC using the LOA method indicated that a small amount 

of systematic bias was present between two sessions for all conditions (Table 3.1). 

However, for the RFD measurements the typical error in all three conditions (both legs, 

right leg and left leg) were similar and there was no difference in their reliability, when 

the two session's data were compared. Therefore it is recommended that the MVC and 

RFD measurements are made using both legs instead of using each leg independently. 
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These findings indicated that the level of fatigue in MVC following the resistance 

exercise program was around 25.4%, 34.1% and 27% for both legs, right and left leg 

respectively. Although data on resistance exercise session showed significant reduction 

in RFD for both legs, right and left leg of 18.7%, 43.8% and 39.7%, respectively. The 

force reduction achieved by the exercise was around 25-30% at an intensity 

corresponding to 60% of 1-RM (8-10 repetitions) which did not reach the required 40% 

reduction as described on male subjects by Fell (2002). Therefore, the intensity will need 

to be increased for future study. 

In conclusion, the findings of the present study showed good within-day reliability. 

Future studies will need to use a more intense exercise programme. Although all 

previous studies have used one leg or the dominant leg (Tillman et al., 2004) for 

measuring MVC or RFD, in these pilot studies it was found that using both legs for 

studying the MVC was more reliable within same day and between-days contractions 

force measurements than using one leg. 
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Chapter4- Neuromuscular and fatigue and recovery 

4.1. Introduction 

Fatigue is one of the major factors limiting human performance during sporting activity, 

in everyday life and in any occupation that involves physical effort. A great deal is 

known about the metabolic changes associated with muscle failure during high intensity 

exercise, but the sensations of fatigue do not necessarily relate well to the more obvious 

physiological changes. Muscle fatigue occurs when physical tasks require high-power, 

short-duration repetitive contractions, or when there is low power, sustained or repetitive 

contractions (Faulkner and Brooks, 1997). Muscle fatigue can be defined as the 

reduction in maximum force-generating capability of the muscle. During exercise, the 

magnitude and mechanisms of human skeletal muscle fatigue vary widely and depend to 

a large extent on the individual, the type of muscle, and the exercise or task. 

Fatigue is caused by a combination of different physiological mechanisms occurring at 

both the central and peripheral levels (Noakes, 2000) affecting afferent neuromuscular 

pathways, observed as proprioceptive deficiency (Skinner et al., 1986; Lattanzio and 

Petrella 1998) and efferent neuromuscular pathways, for example, a delay in muscle 

response (Nyland et al., 1994; Wojtys et al., 1996). Thus, muscular fatigue leads to a 

decline in work performance. A decreased ability to maintain balance in single-limb 

position (Johnston et al., 1998; Yaggie and McGregor 2002; Ageberg et al., 2003) after 

fatiguing exercise (i. e., higher values after exercise) has been reported in uninjured 

subjects, and it has been suggested that individuals are therefore at increased risk of 

injury when fatigued (Yaggie and McGregor 2002; Johnston et al., 1998; Lundin et al., 

1993). 
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To enhance development and decrease risk of injury of muscular strength with heavy- 

resistance exercise, the best possible conditions for recovery from the individual exercise 

training sessions are necessary. Therefore, recovery involves the coordinated functioning 

of several physiological processes that are heavily influenced by the availability and 

actions of specific individual characteristics. However, the understanding of these 

complex interactions is incomplete, especially related to heavy-resistance exercise in 

which several other aspects of programme design (e. g., strength and duration, rest 

periods) and individual characteristics (e. g., age, gender, training status) also contribute 

to the exercise-induced hormonal responses (Kraemer, 1988). 

Although recent studies have shown that women have greater muscular endurance than 

men (Hunter and Enoka 2001; Clark et al., 2003), there is a lack of information on sex 

differences in fatigue patterns considering the amount of information documenting 

strength differences (Clarke, 1986). The mechanisms for these differences are largely 

unknown, but there are two widely proposed hypotheses; 1) differences in muscle mass, 

and 2) differences in activation model (Clark et al., 2003). Recent research (Hunter and 

Enoka 2001; Clark et al., 2003) appears to indicate that the first hypothesis is most likely 

related to the sex differences in muscular fatigue due to similar findings that differences 

in endurance times during a fatiguing task were not related to differences in the 

neuromuscular recruitment strategy when both men and women were assessed (Albert et 

al., 2006). 

It is well known that impairment of performance resulting from muscle fatigue differs 

according to the types of contraction involved, the muscular groups tested, and the 

exercise duration and intensity. Depending on these variables, strength loss with fatigue 
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can originate from several sites from the motor cortex through to contractile elements 

(Strojnik and Komi, 2000). 

Neuromuscular fatigue also appears to develop differently, depending on the muscular 

action modes. Defined as the decline in muscle performance during and after repetitive 

contractions, fatigue has been shown to be task dependent (Nicolas et al., 2005). 

However, most studies dealing with the comparison of the different contraction modes on 

neuromuscular fatigue have used quite similar fatiguing procedures that produced 

different torque decrements (Kay, et al., 2000; Perry-Rana et al., 2002; Nicolas et al., 

2005). When comparing men and women, besides lower absolute forces, women have 

been shown to have lower rates of maximal force production (Komi and Karlsson 1978; 

Ryushi et al. 1988). Also women have been shown to demonstrate less fatigue than men 

in heavy resistance exercise (Hakkinen, 1994). It would be of interest therefore to 

examine whether the differences in fatigue would be the same after resistance exercise in 

females. Accordingly, the present study was designed to examine the effects of maximal 

strength (heavy resistance) loading on neuromuscular fatigue and recovery in female 

during period of 48 hours post-exercise. 
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4.2 Methods 

Ten trained female volunteers (18-30 years) participated in this experiment. The mean 

(±SD) age, height and body mass of the subjects were 25± 2 years, 1.78 f 0.04 m and, 

58.3 ±3.13 kg, respectively. 

4.2.1 Resistance exercise protocol 

All subjects were familiarised with the testing procedures. Subjects performed a 

resistance exercise session as described in section 3.2.2, which consisted of 45 minutes 

of weight training including 3 sets of 10-12 repetitions of six exercises (lying leg curls, 

dumbbell lunges, seated calf raises, leg extensions, straight leg deadlift, leg presses) but 

at an intensity corresponding to 70% of 1-RM. This was greater than used in the pilot 

study in order to obtain a greater fatigue effect. A 1-min rest period was allowed between 

exercises and a 3-min rest period between sets. The isometric force measurements were 

taken before and after exercise, and after 2,24 and 48 hours of recovery (Figure 4.1). 

Figure 4.1 The experimental design for study two. 

Familiarization 

session 

Day 1 Day 2 Day 3 

MVC, RFD MVC, RFD MVC, RFD 

Exercise 

MVC, RFD MVC, RFD 

VV 
Pre post +2h +24 h +48 h 
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4.2.2 Measurement of MVC and RFD 

Subjects were required given a standard warm-up and then asked to perform three 

maximal isometric contractions each as each rapidly as possible and maintain that force 

for 6s for both legs together. Both legs were used as recommended from the results of 

pilot studies. Verbal encouragement was given to each subject during each trial and 

visual feedback of their performance was provided during and after each trial via the 

projection of the computer display onto a large screen placed in front of the subject. The 

time interval between each maximal effort was 60 s. Data on MVC and RFD were 

computed as described in pilot study one (in section 3.1.2.4). 

4.2.3 Statistical analysis 

The average of the three contractions was calculated for each variable and compared 

across each time point. Descriptive statistics (mean and ±SD) were calculated for all 

measured variables. The significance of differences between five times points in same 

group for each condition was assessed by a one-way analysis of variance (ANOVA) with 

repeated measures for within-subject. Post-hoc comparisons using the Bonferroni 

method were applied to determine pair-wise differences. Statistical significance was set 

at P<0.05. 
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4.3 Results 

The mean and standard deviations of the averages of the three contractions for MVC and 

RFD are presented in Table 4.1 and figures 4.2 and 4.3. The one-way ANOVA with 

repeated measures revealed that when MVC and RFD were compared across all time, a 

significant trial effect was observed (P<0.05), which reflects the changes in MVC and 

RFD after 2,24 and 48 hours. 

4.3.1 Maximum voluntary isometric force (MVC) for both legs and dominant leg 

Statistical analysis of data showed that there was a significant main effect of time on 

MVC for both legs (F 4,36 = 17.25; P=0.001). Post-hoc analysis revealed a significant 

difference between pre-exercise and post-exercise (P= 0.001), pre-exercise and 2h, 24h 

(P= 0.002) but no significant difference for 48h (P= 1.00). 

There was a significant main effect of time on MVC (F 4,36 = 18.92; P<0.001) for the 

dominant leg. Pairwise comparisons showed a significant difference between pre- 

exercise and post-exercise at 2h (P= 0.001), but no significant difference between pre- 

exercise and after 24h and 48h (P= 1.00) 

500 ý 
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z 
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0 
pre 

  Both legs   Dominant leg 

post +2h +24h +48h 

Time 

Figure 4.2 The mean ±SD of two trials (n=10) for MVC (N) pre and post-exercise 

and into recovery time for both legs and the dominant leg. 
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4.3.2 Rate of force development (RFD) for dominant and both legs 

Statistical analysis of data showed that there was a significant main effect of time ou 

RFD for both legs (F 4,36 = 26.21; P<0.001). Post-hoc analysis revealed a significant 

difference between pre-exercise and post-exercise (P= 0.001) and at 2h, but no 

significant difference between pre-exercise and 24h and 48h (P= 1.00). 

There was a significant main effect of time on RFD (F 4.36 = 11.44; P<0.001) for the 

dominant leg. Pair-wise comparisons showed a significant difference between pre- 

exercise and post-exercise (P= 0.000) but no significant difference between pre-exercise 

and 2h, 24h and 48h (P= 1.00). 
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Figure 4.3 The mean ±SD of two trials (n=10) for RFD (N/s) pre and post-exercise 

and into recovery time for both legs and the dominant leg. 
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4.4 Discussion and conclusion 

It has already been established from the pilot studies that the average of three 

contractions was sufficient to obtain repeatable MVC and RFD data between test 

sessions. It was also established that repeatable measurements could be made over 

successive days and when using the average of three contractions at each time point 

without any concomitant effect on the measured variable. Therefore this allows an 

experimental protocol which has both within-days and between-days reliability 

requirements. 

The aim of the present study was to examine the characteristics of fatigue and recovery 

responses to heavy resistance exercise in females in terms of isometric force variables. 

Specifically, the effects of resistance exercise on MVC and RFD at each time interval of 

2,24, and 48 hours post-exercise were investigated. The results showed a significant 

effect of fatigue induced by resistance exercise for the both legs condition on MVC 

measured pre-exercise and post-exercise and at 24 hours but no significant difference at 

48 hours of recovery. Similar results were found for the dominant leg except recovery 

appeared to have been achieved by 24 hours. 

For the RFD, recovery appeared to have been achieved by 24h in the both legs 

conditions. The non-significant difference at 2h for the dominant leg condition is 

probably due to the large standard deviation of the data (Table 4.2), as the mean value is 

only a little greater than the both legs condition. 

The fatigue recovery of the both legs compared to the dominant leg condition is probably 

due to a weaker-non-dominant leg. If that were the case, than the use of either the both 

legs condition or the weaker leg condition would be more likely to show difference in the 
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further studies. However, in order to retain consistency, comparison with other studies 

and to avoid any learning effects it is recommended that the both legs and the dominant 

leg protocol be retained. 

The subjects were familiarized with the performance of maximal isometric contraction 

one week prior to the testing sessions and there appear to have been no learning effect as 

the data at 24 and 48 hours did not differ significantly from the pre-exercise level. The 

familiarization of the subjects was deemed sufficient in order to remove any learning 

effect. The reduction in force following the exercise session was due to some form of 

peripheral fatigue. The findings indicated that the level of fatigue in MVC and RFD 

percentage drop following the resistance exercise program was around 23.7% and 25.2% 

for MVC in the dominant leg and both legs respectively, and 32.9% and 34.2% in RFD, 

at an intensity corresponding to 70% of 1-RM (10-12 repetitions) which did not reach the 

required 40% reduction as described on male subjects by Fell (2002). 

In conclusion the results suggest that fatigue under both leg conditions caused by 

muscular work depends on the amount of effort exerted. Contraction at 70% 1 -RM was a 

significant contributor to the loss of muscle strength after resistance exercise, observed 

clearly in the females. In this study it was found that using both legs at 70% of 1-RM 

was still not enough for the desired reduction, so further studies should increase the 

intensity of 1-RM. 
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Chapter 5- carbohydrate ingestion and resistance exercise 

5.1 Introduction 

It is well documented that carbohydrate supplementation improves prolonged aerobic 

exercise performance, and numerous studies have shown that carbohydrate ingestion 

delays fatigue during such exercise (Coggan and coyle, 1988; Costill et al., 1992; 

Zachwieja et al., 1993). Mechanisms suggested to explain the beneficial effects of 

carbohydrate ingestion include maintenance of blood glucose concentration, promotion 

of high rates of carbohydrate oxidation, and muscle glycogen sparing (Bailey et al., 

2000; Campbell et al., 2001). In addition, carbohydrate supplementation prior to 

endurance exercise decreases markers of protein and membrane breakdown 

(Tarnopolsky, 1999; 2000). In spite of the wealth of documented evidence for the 

beneficial effects of ingested carbohydrate on prolonged exercise, evidence is sparse in 

relation to resistance exercise. 

It is generally accepted that resistance exercise performed on a regular basis elicits sport- 

related and health-related benefits in men and women (Tarnopolsky, 2001,2003). 

Therefore, resistance exercise training is recommended by the American College of 

Sport Medicine. Available literature suggests that nutrition has a major effect on the 

physiological and biochemical responses to resistance exercise in men and women and 

plays a pivotal role in exercise performance (Angus et al., 2000; Bailey et al., 2000; 

Campbell et al., 2001). In addition, the nutritional needs of women engaged in resistance 

exercise training are, to a great extent, similar to those for men (Tarnopolsky, 2002). It is 

important therefore to recognise that sound nutritional strategies, as an adjunct to the 

training process, facilitate strength development and enhance exercise performance. 

Strength athletes and habitual resistance exercise performers usually ingest various 

mixtures of water, carbohydrate and electrolytes (Jeukendrup, 2004). The alleged 
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benefits include improved performance and or reduced physiological stress induced by 

resistance exercise. 

Earlier studies indicated that carbohydrate drinks consumed before and during exercise 

are beneficial when exercise intensity is low and the duration is long (Friedlander et al., 

1998; Horton et al., 1998; Jarvis et at., 1999). However the value of carbohydrate on 

delaying fatigue and enhancing performance in high intensity exercise of shorter duration 

such as resistance exercise is equivocal. Furthermore, reports on the effect of 

carbohydrate ingestion before and during resistance exercise on metabolic and 

neuromuscular responses are limited and produced conflicting results (Braun and Horton 

2001; Friedlander et al., 1998; Horton et at., 1998; Tarnopolsky et al., 2001). 

Understanding the physiological basis for, and the beneficial effects of, carbohydrate 

ingestion before and during resistance exercise, and elucidation of biological control 

mechanism (s) that affects the strength indices is therefore of scientific significance. 

Although the effect of sex-related differences on metabolic responses and exercise 

performance has received considerable interest in the last 20 years (Jeukendrup, 2004), 

meagre information is available on the effects of nutritional ergogenic aids such as 

carbohydrate on muscular of strength in females. Information on the influence of sex on 

strength-related indices response to resistance exercise is needed. The previous study 

indicated that the level of fatigue in MVC and RFD as indicated by the percentage drop 

following the resistance exercise program was around 25.2% for MVC and 34.2% in 

RFD in both legs. Since carbohydrate ingestion is understood to be beneficial in helping 

performance of other activities it would be of benefit in reducing fatigue following 

resistance training. In addition, we wished to promote fatigue to a greater level than the 

previous study and so the aim of this study was to investigate the effect of ingestion of 
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carbohydrate on MVC and RFD during recovery after resistance exercise by use an 

intensity increased to 80% of 1-RM in females. 

5.2 Methods 

5.2.1 Subjects and study design 

This study was approved by the Ethics Committee of the Liverpool John Moores 

University. After the experimental protocol and testing procedures were fully explained, 

eight moderately trained female subjects gave their written consent before participating 

in the study (Appendix A) having read and understood the details of the experiments 

(Appendix B). Criteria for inclusion were a recent training history of at least 12 months 

of resistance exercise training. This was ascertained using a questionnaire (Appendix C). 

The mean (±SD) age, height and body mass of the subjects were 26.1 ± 2.7 years, 1.74 f 

0.05 m and, 64.3 ±3.21 kg, respectively. 

5.2.2 Design and experimental protocol 

One week prior to the main experiment, the 1-RM for six resistance exercises for the 

lower body part was ascertained using the procedures described in section 3.1.2.3. 

Thereafter, all subjects were asked to report to the laboratory to undertake two further 

trials to examine the effects of carbohydrate supplementation or placebo on muscular 

strength indices. These trials were randomised and conducted at the same time of day 

(9: 00 am), on two separate occasions with one week intervening. Subjects were either 

supplemented with carbohydrate (CHO) solution or carbohydrate-free placebo solution 

(CF) prior to the performance of a resistance exercise session encompassing different 

muscle groups of the lower body part. Prior to the main experiments, all subjects were 
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familiarized with the laboratory environment and equipment, testing procedures, and 

exercise protocol. 

5.2.3 Protocol for the administration of the solutions 

When a subject reported to the laboratory for testing, body weight was determined using 

the procedures described in section 3.1.2.2. The total volumes of test drink ingested 

were the same for each subject participated in the experimental trials and the apportioned 

volumes of drink ingested pre and post resistance exercise were equivalent in both trials. 

For the CHO trial, participants ingested a 500m1 stock of a carbohydrate solution (0.5g 

CHO per kg/BM) was prepared for each subject and divided into two equal portions. The 

first portion was given to each subject at 15-20 min before exercise, while the second 

portion was administered immediately after the completion of a resistance exercise 

session. In the placebo trial, a 500 ml stock of a carbohydrate-free solution as the placebo 

(CF) was prepared for each subject and divided into two equal portions and administered 

at the same points of time as in the carbohydrate trial. The carbohydrate and 

carbohydrate-free solutions were indistinguishable in appearance and taste. This was 

ascertained through a small pilot study using 3 subjects who participated in the main 

experiments. 

5.2.4 Resistance exercise protocol 

The resistance exercise protocol described in section 4.2.1., was employed in this 

experiment. However, instead of using 70% of the 1-RM, a work load corresponding to 

80% 1 -RM was utilised, as the result found in last study that the level of fatigue in MVC 

and RFD percentage drop following the 30-minute of resistance exercise program was 
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around 23.7% and 25.2% for MVC in the dominant leg and both legs respectively, and 

32.9% and 34.2% in RFD, therefore the difference was still found to be not enough for 

the desired 40% reduction, so in the this study the an intensity was increased to 80% of 

1-RM. 

5.2.5 Measurement of MVC and RFD 

Using the procedures described in section 4.2.2., the MVC and RFD were measured 20- 

min following the oral administration of the test solution, and immediately following the 

completion of the resistance exercise session. Further measurements of MVC and RFD 

by using both leg and were ascertained at 2 h, 24 h and 48 h into recovery after exercise. 

The average of three contractions of MVC at each time point was calculated and utilised 

in the statistical analysis. Similarly the average of RFD was calculated and employed in 

the statistical analyses of the data. 

5.2.6 Statistical analyses 

Descriptive statistics were used for the calculation of the means, ±SD. Data presented in 

the text are means ±SD and data presented in tables and figures are means ±SE unless 

otherwise stated. In order to determine the effects of carbohydrate ingestion on MVC and 

RED, data were analysed using a two-way ANOVA with repeated measures for 

treatment (carbohydrate and control) and time (pre-exercise, immediately after exercise, 

2h, 24h and 48h into recovery). When a significant F ratio was found, differences in 

mean values between specific times points were determined by student's paired t-test. 

Significance was accepted with alpha level of P<0.05. A computerised statistical 

package (SPSS version 14.0) was used for all data analyses. 
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5.3 Results 

The mean and standard deviations of MVC and RFD before and after resistance exercise 

and into recovery are presented in and graphically illustrated in figures 5.1 and 5.2. 

5.3.1. Maximum Voluntary Contraction (MVC) for both legs together. 

Statistical analysis of data showed that there was a significant main effect of treatment 

on MVC (F1.7, = 18.99; P=0.003), time (F4_28, = 38.48; P= 0.00), and non-significant 

interaction between treatment and time (F4.28, = 2.72; P= 0.08). Post-hoc analysis 

revealed pre-exercise MVC mean values were similar when comparing carbohydrate 

(CHO) and placebo (CF) trials. 

There was a non significant difference within pre and post-exercise for both conditions 

(P > 0.05), but a significant within 2h (P= 0.025), 24h (P= 0.029) and at 48h (P < 0.008). 

Resistance exercise resulted in a significant decrease (P<0.05) in MVC immediately after 

exercise and this occurred similarly in both CHO and CF conditions. The relative 

decrease in force immediately after resistance exercise session did not recover within the 

first 2h after exercise for both conditions and a deficit in force production was still 

evident after 24 h even. Even on the other hand, MVC did fully recover after 48 h and 

there was evidence a faster recovery and super-compensation in the CHO trial. 
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Figure 5.1 The mean and ±SD of MVC pre- and post-exercise and into recovery 

over CHO and CF trials (* = p< 0.05 between CHO and CF conditions). 

5.3.2 Rate of Force Development (RFD) 

Statistical analysis of data showed that there was a significant main effect of treatment 

on RFD (F1_7, = 20.73, P= 0.003) and time (F4_28, = 45.19, P= 0.00) and a significant 

interaction between treatment and time (F4_28, = 10.69, P= 0.001). Post-hoc analysis 

revealed pre-exercise RFD mean values were similar when comparing CHO and CF 

trials (P< 0.05). 

There was non significant difference within pre and post-exercise (P > 0.05), but a 

significant within 2h recovery (P = 0.034), at 24h (P= 0.003) and at 48h recovery (P< 

0.001) for both conditions. The strong resistance exercise for the lower body part 

resulted in a significant decrease (P<0.05) in RFD immediately after resistance exercise 

and this occurred similarly in both CHO and CF trials. The relative decrease in RFD 

immediately after the resistance exercise session did not recovery within the first 2h after 

exercise for both conditions and a deficit in rate of force production was still evident 
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after 24h. On the other hand, RFD did fully recover after 48h and there was evidence of 

super-compensation for the CHO trial as indicated by the significant interaction. 

2500   CF   CHO 

2000 

1500 TT 

1000 

500 

0 
pre post 2h 24h 48h 

Figure 5.2 The mean and ±SD of RFD pre- and post-exercise and into recovery over 

CHO and CF trials (* = p< 0.05 between CHO and CF conditions). 
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5.4 Discussion and conclusion 

The results from this study demonstrate that when relatively high amounts of CHO are 

fed before and after exercise, there was a beneficial contribution of CHO during the 

recovery period when compared with the ingestion of a placebo. Specifically, when CHO 

was ingested both before and after exercise, MVC and RFD performance increased over 

the recovery times compared with the ingestion of a placebo. The beneficial effects CHO 

ingestion on MVC and RFD when undertaking resistance exercise lasted for at least 48 

hours of recovery post-exercise. 

Training or competition can only be continued when there is an adequate amount of 

carbohydrate available to fuel muscles. Fatigue is closely associated with depletion of the 

limited stores of carbohydrate in the muscle and in the liver. Therefore, it is not 

surprising that strategies have been developed to ensure that not only are the 

carbohydrate stores well stocked before exercise but that they are also restored as soon as 

possible after 2 hours of resistance exercise. Consuming carbohydrate immediately after 

exercise increases the rate of muscle glycogen resynthesis and also results in greater 

capacity during the subsequent recovery period. Conley et al., (2000) this may decrease 

recovery time following resistance exercise and enable an increase in training volume 

which may enhance physiological adaptations. Also, carbohydrate ingestion during or 

immediately after resistance exercise has been shown to increase post-exercise plasma 

insulin which may lead to increased protein synthesis. Additionally, insulin has been 

reported to be a potent stimulator of protein synthesis (Rasmussen et al., 2000; Tipton et 

al., 2007; Biolo et al., 1999). Some research has shown that ingesting CHO following 

exercise promotes a more rapid resynthesis of muscle glycogen (Blom et al., 1987; Burke 
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et al., 1996) and that ingesting CHO following exercise increases muscle glycogen 

replacement (Roy and Tarnopolsky, 1998; Tarnopolsky, et at., 1997). 

During high intensity resistance exercise, recovery periods play an important role in 

limiting fatigue (Ratel et al., 2002). There is evidence to suggest that the provision of 

fluids and carbohydrate during intermittent exercise may improve physiological 

performance and also help to delay fatigue caused by dehydration (Welsh et al., 2002). 

Indeed, Williams (2004) found that the type of carbohydrate ingested in recovery has an 

influence on endurance capacity the following day. The findings in this study indicated 

that the level of fatigue for MVC and RFD after resistance exercise and after consuming 

CHO was reduced around 30.3% and 22.4% respectively, and 30.9% and 24.1% for 

placebo session. Some studies have shown that CHO supplementation may also be 

beneficial during intermittent exercise of shorter duration (Coombes and Hamilton, 

2000). Athletes engaged in duration events or events that involve higher intensity 

exercise or multi-events are likely to deplete short muscle glycogen stores during the 

event, and so would benefit from CHO supplementation. CHO supplementation would 

provide glucose which can then be converted to glycogen for use in ATP production 

during the high intensity exercise. It should also be noted that during sporting events less 

than 30 minutes of continuous exercise, fluid replacement is a higher priority than 

replacing CHO in the muscle or liver (Pearce, 1996). 

Although, the decrease in force was not enough for the desired 40% reduction, this was 

greater than the findings from the previous study without using CHO supplementation. 

This may represent a limit of fatigue for this type of exercise and gender as the findings 

indicated that the level of fatigue in MVC percentage drop following the resistance 
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exercise program was around 40% in maximum force by used male participants (Fell, 

2002). 

It must be noted that the effect of a CHO supplement on females is purely an 

observation, and more precise methods are needed to describe a mechanism for 

macronutrient feeding. Future research on the CHO supplementation should include 

measurements of blood glucose and some blood hormones to be more certain whether 

the exercise session did challenge circulating endogenous glucose, and that the 

supplement effectively countered that effect in females. 

In conclusion, the aim of the present study was to gain a better understanding and 

provide more information on the response of women to CHO augmentation. On the basis 

of the findings, the results suggest that for trained female participants, the presence of 

CHO supplement results in quicker recovery after resistance exercise than placebo. Thus, 

the intake of carbohydrates after resistance exercise will improve the effect of exercise 

with females. This nutritional strategy may be critical for female athletes who need to 

engage in multiple events or training sessions during the course of a day. 
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Chapter 6- the effect of creating supplementation 

6.1 Introduction 

Most of the research in the areas of sports nutrition, muscle metabolism and exercise 

physiology has been conducted predominantly using men. The physiological responses 

to exercise are similar between men and women. Strength training for healthy women is 

authorized by the American College of Sports Medicine and has many beneficial effects 

on health (Asikainen et al., 2002; Pollock et al., 2001) while also enhancing performance 

in other activities, (Kraemer et al., 2001) Women engaging in strength training range 

from young high school athletes, (Faigenbaum, 2000) to post-menopausal women, 

(Asikainen et al., 2002) to those competing in strength training sports such as weight 

lifting, power lifting, and body-building. Nutrition has a major influence on the 

magnitude of adaptation to training. Therefore nutritional recommendations for men and 

women strength athletes share many common elements (Volek, 2003; 2004). 

In the last few years many athletes and persons engaged in recreational sports activities 

have used creatine supplementation. Recent research has also suggested that there may 

be a number of potential therapeutic uses of creatine. Over 500 research studies have 

evaluated the effects of creatine supplementation on muscle physiology and/or exercise 

capacity in healthy, trained, and various diseased populations (MacLaren, 2000). 

Many studies show that creatine supplementation has positive effects on performance of 

short-duration exercises, (Harris et al., 1993; Birch et al., 1994; Balsom et al., 1995; 

Maughan 1995; Volek et al., 1997) as well as repeated isokinetic or isometric 

contractions of the quadriceps muscle, jumping, or high-intensity cycling exercises. 

Although the majority of studies have been in men, a significant amount of research 

indicates women are also responsive to creatine supplementation. Short term creatine 
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supplementation has been shown to enhance high intensity exercise performance in 

women (Eckerson et al., 2004; Tarnopolsky and MacLennan, 2000). Studies that have 

examined strength and body composition responses during a resistance training program 

indicate women respond positively to creatine supplementation (Brenner et al., 2000; 

Vandenberghe et al., 1997). 

Phosphocreatine stores play a key role for ATP resynthesis during muscle contraction 

and recovery. The changes in performance following creatine supplementation is 

dependent on the characteristics of the exercise, and it has been suggested that human 

skeletal muscles have a higher limit for total creatine concentration. In contrast with 

sedentary subjects, athletes and well-trained subjects who have high initial total creatine 

concentrations in skeletal muscle, show only a slight provement in exercise performance 

(Bigard, 1998). 

Dietary creatine supplementation (20-30 g/day for 4-6 days) has been reported to 

increase muscle creatine concentration by as much as 50% and enhance muscle 

performance during intermittent high-intensity exercise bouts (Earnest et al., 1995; 

Greenhaff et al., 1993; Harris et al., 1992). The performance enhancing effect of creatine 

may result from increased muscle creatine availability that sustains the initially rapid rate 

of PCr resynthesis further into recovery and increases available PCr during later exercise 

bouts (Balsom et al., 1995; Greenhaff et al., 1994; Harris et al., 1992). Taken together, 

the results of most studies published to date suggest that only performances of repetitive 

high-intensity exercise bouts are completely affected by creatine supplementation. 

During this type of exercise, the expected increase in total creatine contributes to the fast 

resynthesis of phosphocreatine during recovery. 
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The majority of these studies have used a normal dosing regimen for the duration of their 

investigations. A typical creatine supplementation regimen involves a "loading phase" 

(0.3 g/kg) for 5 days to maximize muscle creatine stores, followed by a maintenance 

phase of (2 g /day) (Harris et al., 1992; Hultman et al., 1996; Kreider et al., 1998; Wilder 

et al., 2002). There is only one investigation that has shown the ergogenic benefits of a 

low-dose creatine supplementation (Burke et al., 2000). However, in that study, a dose 

0.1 g/kg was used during 28 days of supplementation. Although this was a longer 

supplementation period than typically seen during short-term studies, it is the first study 

to show efficacy with a low-dose and more prolonged supplement regimen. 

Nutritional needs of women engaged in strength training are important and are generally 

similar to those recommended for men (Volek, 2003; 2004). Women in particular should 

ensure adequate energy is consumed to optimise adaptations to training and improve 

general health. In addition, generous consumption of healthy fats from a variety of 

sources is encouraged to support a positive energy balance, hormonal balance, and 

optimal health. The biochemical events that occur with intense exercise are multiple and 

complex and involve metabolism, generation of reactive oxygen species, and disruption 

of cell membranes. The disruption to the cell membrane results in leakage of cytosolic 

proteins into the circulation, such as creatine kinase (McBride et at. 1998), and 

myoglobin (Volek et al., 1999). Like men, women respond to the favourable effects of 

creatine supplementation during resistance training. Therefore, the purpose of this 

investigation was to examine the effects of creatine supplementation on fatigue and 

recovery after resistance exercise in females. Such data are needed to provide direct 

evidence regarding the efficacy of creatine supplementation on the performance of 

typical resistance exercises used by females. 
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6.2 Methods 

6.2.1 Subjects and General 

The methodological studies described in the pilot and main studies were use to create the 

protocols to reliably assess MVC and RFD and were given to subjects on an information 

sheet. Ten subjects were medically screened to determine their health and exercise habits 

prior to exercising lower body muscles. Each individual gave written informed consent 

to participate in the study, which has been approved by the University Research Ethics 

Committee of Liverpool John Moores University, and asked to complete the diet and 

physical activity sheet. The subjects attended the laboratory on four different testing 

occasions. An initial unit was used for the purpose of familiarisation of the details of test 

(Atkinson and Reilly, 1996). A total of 24 hours was allowed between familiarisation 

and the further testing sessions. On each testing session the subjects were required to 

perform three maximal isometric force contractions from which MVC and RFD were 

evaluated. Venous blood samples were taken except during the 2nd control session which 

was to minimise discomfort to subjects. After the first test, subjects undertook a 

resistance exercise session for the lower body at an intensity corresponding to 80% of 

one repetition maximum (1-RM). Tests were also obtained at 2h, 24h and 48h of 

recovery (Figure 6.1). The participants were also tested with no supplementation (a 

placebo) as a control condition. 

Subjects then were required to consumed either 20 g of creatine monohydrate for 5 days 

or a placebo before being tested again. Blood samples were taken before and after the 

exercise session, and analysed for creatine kinase (CK), growth hormone (GH), 

myoglobin (MYO), haemoglobin (Hb) and hematocrit (Hct). It was hypothesised that 
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Figure 6.1 The double blind cross-over experimental design 
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creatine loading reduces the fatigue effects of exercise and improve the recovery 

responses in both neuromuscular and biochemical variables. 

6.2.2 Height and Body-Mass 

Each subject's height and BM was measured as described for Study 1 and 2. 

6.2.3 Protocol for the administration of the solutions 

Subjects were randomised in a double-blind cross-over experimental design; placebo 

group (n= 10) and creatine-supplemented group (n= 10). The supplements were provided 

to the participants in identical, unmarked, sealed containers. Following session 1, 

subjects were providing with 20 doses (4 *5g doses per day) of creatine monohydrate or 

placebo. Subjects in placebo group consumed the same amount of all ingredients except 

creatine which were indistinguishable in appearance and taste from the creatine. The 

creatine component in the placebo was replicated by cellulose powder and 

methylcellulose. Compliance during the 5 days of supplementation was 100%. The 

subjects were then instructed to take the next five doses with 240 ml of water on an 

empty stomach for four times a day and one dose was required on the first and second 

day of testing. Prior to beginning the study, subjects were weighed before and after the 

three-day period of testing. The seven-day food records were subsequently photocopied 

via written dietary diary sheet and returned to subjects and were encouraged to eat 

similar diets, during all testing period before the heavy resistance session and recovery 

period. 
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6.2.4 Resistance exercise protocol 

The resistance exercise protocol described in section 4.2.1. was employed in this 

experiment. However, instead of using 70% of the 1-RM, a work load corresponding to 

80% 1-RM was utilised 

6.2.5 Measurement of MVC and RFD 

Using the procedures described in section 4.2.2., the MVC and RFD were measured 

before and immediately following the completion of the resistance exercise session. 

Further measurements of MVC and RFD were ascertained at 2 h, 24 h and 48 h into 

recovery after exercise. The average of three contractions of MVC by using both legs at 

each time point was calculated and utilised in the statistical analysis. Similarly the 

average of RFD was calculated and employed in the statistical analyses of the data. 

6.2.6 Blood sampling 

Approximately 10 ml of venous blood was sampled from the antecubital fosse vein via 

catheterisation prior to the resistance exercise session (baseline), and 2h, 24h, 48 h. The 

blood was immediately placed into an ethylediniaminetetra-acetic acid (EDTA) tube, and 

gently inverted and rolled several times. Blood was then transferred into Eppendorf tubes 

0 
and centrifuged at 3000 rpm for 15 min at 4 C. Plasma was removed and aliquot into 

0 
labelled tubes and stored at -80 C for subsequent analysis of CK, GH and MYO. 

6.2.6.1 Blood analysis 

Analyses of frozen samples from all five sessions were performed at the same time 

using the same batch of reagents for CK, GH and MYO to minimise differential analyses 

effects. 
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6.2.6.2 Plasma Creatine Kinase 

Aliquots of the plasma from the whole blood samples were left to return to room 

temperature before being analysed in duplicate by spectrophotometry using a Kodak 

Ektachem DTSC Module (Kodak Co, New York, and U. S. A). Ten micro-litres (10 ml) 

of plasma was deposit on a Kodak Ektachem DT CKMB slide (Johnson and Johnson 

Clinical Diagnostic Inc., New York, U. S. A) and inserted into the module for the 

determination of creatine kinase (CK). The module was calibrated prior to use using 

known references. 

6.2.6.3 Growth hormone and Myoglobin 

Blood sampling was conducted via a heparin lock catheter placed in a forearm vein at the 

start of the experimental day. Subsequently, blood samples were taken before, after 

exercise and 2 h, 24 h and 48 h recovery period. Blood drawn from the forearm vein was 

placed into Vacutainers prepared with EDTA and chilled to preserve the integrity of the 

samples. All samples were centrifuged at 3,500 rpm for 15 min at -10°C. Upon 

separation, the plasma was aliquotted to microcentrifuge tubes and frozen at -80°C until 

analysis. 
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6.3. Statistical analyses 

Subject characteristics are reported as means ± SD. In the order to evaluate the fatigue 

and recovery characteristics in response to the four loading conditions all data were 

analysed using a two-way ANOVA (Condition x Time) with repeated measures on both 

MVC and RFD. Data are means and standard errors of means (± SE). The significance of 

differences between five times in same group for each condition was assessed by a one- 

way analysis of variance (ANOVA) with repeated measures as the within-subject, 

following post-hoc comparisons using the Bonferroni method were applied to determine 

pair-wise differences. The effect of creatine supplementation was investigated using the 

average of the three contractions calculated for each variable and compared across each 

time point. Statistical significance was accepted at P<0.05. The statistical analyses were 

performed with the SPSS software package version 14.0 for Windows (SPSS Inc., 

Chicago, Ill., USA). 
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6.4. Results 

The mean and standard deviations of MVC and RFD before and after resistance exercise 

and into recovery are and graphically illustrated in figures 6.2 and 6.3. 
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Figure 6.2 Mean ±SD of three trials (N=10) for MVC (N) for all conditions across 

five times points. 

6.4.1 Maximum voluntary isometric force (MVC) 

Statistical analysis of data showed that there was a significant main effect of condition 

on MVC [F 3,21 = 25.33, P =0.001], and time (F4,28 = 156.36, P=0.001) with a 

significant interaction between condition and time (F12 84=3.52, P= 0.02). With regard to 

condition, post-hoc analysis revealed a significant difference between Cr supplement 

sessions with all other conditions (P < 0.05). There was no significant difference between 

the placebo condition and the control condition. 

With regard the time, post-hoc analysis revealed a significant difference between pre- 

exercise and post and 2h of recovery but no significant difference at 24h and 48h of 

recovery although a deficit was still evident at 24h. With regard to the interaction term, 
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the Cr condition started a faster recovery from 2h to 48h than the placebo and control 

conditions, leading to a significant interaction and a super-compensation. The 80% 

resistance exercise for the lower body after Cr supplementation resulted in a significant 

decrease in MVC value of 123.2 N in the Cr supplement condition and 120 N in the 

placebo condition, immediately after resistance exercise. 
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Figure 6.3 Main ±SD of three trials (n=10) for RFD (N/s) for all conditions across 

five times points. 

6.4.2 Rate of force development (RFD) across conditions and times. 

Statistical analysis of data showed that there was a significant main effect of condition 

on RFD [F 3,21 = 13.36, P=0.001], and time (F4,28 = 65.41, P <0.001) with a significant 

interaction between condition and time (F, Z, 84 =4.87, P= 0.004). With regard to condition, 

post-hoc analysis revealed a significant difference between Cr supplement sessions with 

all other conditions (P < 0.05). There was no significant difference between the placebo 

condition and the control condition. 
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With regard the time, post-hoc analysis revealed a significant difference between pre- 

exercise and post, 2h and 24h of recovery but no significant difference at 48h of recovery 

on RFD. With regard to the interaction term the Cr condition started a faster recovery 

from 2h to 48h than the placebo and control conditions, leading to a significant 

interaction and a super-compensation. The 80% resistance exercise for the lower body 

after Cr supplementation resulted in a significant decrease for RFD of 348.4 N/s in the 

Cr supplement condition and 366.9 N/s for the placebo condition, immediately after 

resistance exercise. 

6.4.3 Body mass 
After 5 days of Cr supplementation, the body mass of the Cr group increased from 60.1 

kg to 61.1 kg, whereas the control and placebo group increased from 60.1 kg to 60.4 kg. 

There were no significant change between conditions (F 2,14=3.67, P= 0.14). 

Table 6.1 Resting values (mean ± SD) of haematological variables over the time 

intervals of pre-, post-, 2,24 and 48 hours recovery (n= 10) for control 1 (Con), 

supplement (Cr) and placebo (P) conditions. 
Variables Pre-exercise Post-exercise +2h + 24h + 48h 

Con 69.3± 25.8 78.1± 24.3 84.9± 37.1 94.0± 42.6 81.0± 37.2 

CK 

F 

Cr 85.8±29.8 89.4±24.8 91.6±28.4 116.1±38.6 100.8±41.9 
(IU/1) P 87.1± 42.8 102.1± 42.1 97.6± 39.8 102.0± 39.5 97.5± 46.7 

Con 0.58± 0.76 2.55± 0.99* 0.18±0.14+ 0.70±0.88+ 0.48±0.56+ 

GH Cr 0.62± 0.59 1.73± 0.57* 0.28± 0.32 + 0.75± 0.84 + 0.31± 0.33 + 
(ng/ml) 

P 0.56± 0.69 1.91± 0.79* 0.25± 0.33 + 1.03± 0.96 + 0.80±0.70k 

Con 15.1± 4.41 19.06± 6.31 22.4± 11.94 16.3± 4.41 17.4± 5.94 

MYO Cr 17.1± 4.70 17.9± 6.19 20.1± 8.69 18.3± 4.89 16.3± 4.38 
(mcg/1) P 16.2± 6.60 18.6± 7.01 23.1± 6.43 21.0± 8.68 19.7± 6.35 

CK creative kinase (tu/i); vti grown normone (ngtmi); MYU myogioom (mcgn). 

*Implicates significant increase compared to pre-exercise, (P < 0.05) 

+denotes significant decrease compared to post-exercise (P < 0.05) 
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6.4.3 Blood biochemistry 

6.4.3.3 Creatine kinase (CK) 

Changes in CK over the 3 days testing period are shown in table 6.1 and figure 6.4. 

Statistical analysis of data showed that there was no significant main effect of time (F 4, 

28 = 1.41, P=0.28), although the CK peaked at 24 h of recovery and no significant effect 

for condition (F2,14 = 0.23, P=0.76) nor for interaction between condition and time (F 8, 

56 =1.63, P= 0.22). 
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Figure 6.4 The mean ±SD values CK (IU/1) of all conditions; control 1, Cr 
supplement and placebo group cross five times points. 
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6.4.3.5 Myoglobin (MYO) 

Changes in MYO over the 3 days testing period are shown in table 6.1 and figure 6.8. 

Statistical analysis of data showed that there was no significant main effect of time (F 4, 

28 = 1.08, P=0.38), nor for conditions (F2,14 = 1.41, P=0.28), nor for interaction 

between condition and time (F8,56 =1.5 1, P= 0.24). 
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Figure 6.6 The mean ± SD values MYO (mcg/l) of all conditions; control 1, Cr 
supplement and placebo group a cross five times points. 
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6.4.3.4 Growth hormone (GH) 

Changes in growth hormone (GH) over the 3 days testing period are shown in table 6.1 

and figure 6.5. Statistical analysis of data showed that there was a significant main effect 

of time on GH (F 4,28 = 45.10, P=0.001) and condition (F 2,14 = 14.40, P=0.03), but no 

interaction between condition and time (F 8,56 = 1.57, P=0.22). With regard the time, 

post-hoc analysis revealed a significant difference between post-exercise, and 2h, 24h 

and 48h of recovery on GH. With regard to condition, Cr produced lower levels of GH 

from post-exercise to 48h than the placebo and control conditions. 
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Figure 6.5 The mean ± SD values GH (ng/ml) of all conditions; control 1, Cr 

supplement and placebo (free Cr) group a cross five times points. 
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6.5 DISCUSSION 

6.5.1 The effect of creatine supplementation on MVC and RFD 

This study identified that 5 days of ingesting Cr improved performance for MVC and 

RFD after 48 hours of recovery, but did not affect body weight and the hormonal 

responses except growth hormone. The significant change in isometric contraction 

muscle strength was higher during recovery from resistance exercise in the creatine 

supplementation session compared to placebo and control sessions, which also showed a 

beneficial effect from creatine supplementation on indirect markers of muscle damage. 

These results support the work by Santos et al. (2003). In the present study, the results of 

the average of recovery bouts indicate that PCr resynthesis might be enhanced during the 

latter part of the recovery from high-intensity isometric exercise in agreement with the 

results of Greenhaff et al. (1994) during recovery from ischemic exercise. 

With regards to changes in MVC and RFD, large differences were evident between the 

conditions and time period and were significant. At forty-eight hours of recovery there 

was no significant difference when compared with the pre-exercise session and was 

sufficient to allow full recovery. In contrast to the previous strength measurements 

discussed, creatine supplementation had a significant time effect on MVC and RFD for 

isometric contractions post-exercise. Recovery of mean MVC and RFD was complete 

after 24 hours with evidence of compensation due to the resistance exercise session. This 

agrees with Zatisorsky (1995), Branch (2003) and Nissen and Sharp (2003) who have 

concluded that creatine supplementation has positive effects on strength. While it is 

understood that 80% of each participants strength (1-RM) should illicit the same 

proportion of damage, and hence, similar decreases from the reduction of 146.6 N and 

398.4 N/s in the Cr supplement condition and 120 N and 366.9 N/s in the placebo 

condition, it was evident that the 1-RM for the creatine-supplemented participants was 

121 



Chapter 6- the effect of creating supplementation 

greater compared to the I -RM of participants consuming the placebo over both the pre- 

exercise and the recovery period. It is generally accepted that creatine supplements 

increase phosphocreatine in muscle and thus improves recovery (by increasing the rate of 

phosphocreatine resynthesis in muscle) and increases the intensity and the length of 

muscular contraction during short term, high intensity work. 

6.5.2 The effect of creatine supplementation on body mass 

The present study examined the effects of Cr supplementation on body mass. A non 

significant mass gain of 1.0 kg was observed in the Cr session following 

supplementation. There was no gain in mass in the placebo or control conditions. This 

increase in body mass was indicative of the muscle 'loading' the excess Cr ingested 

through supplementation. Hultman et al., (1996) found that the decline in urinary volume 

following Cr supplementation closely resembled the increase in body mass suggesting 

that the gain in mass was due to water retention. Although urine samples were not taken 

in this study to verify that the supplementation Cr was retained within the body, the 

observed increase in body mass indirectly suggests that the Cr supplementation was 

effective. This assumption is consistent with this study that has found a mean increase in 

body mass of 1.0 kg following supplementation with 20g of Cr/day for 5-7 day (Balsom 

et al., 1995; Earnest et al., 1995; Greenhaff et al., 1994; Plisk, and Kreider, 1999; Volek 

et al., 1997). It is therefore reasonable to assume that the Cr supplementation period was 

effective in increasing the Cr stores in the muscle. Three studies (Thompson et al., 1996; 

Hamilton-Ward et al 1997; Terrillion et al., 1997) involving female subjects reported no 

significant increase in body mass following creatine supplementation. Thus, there may 

be an operational gender effect. Overall, it would appear that short-term creatine 
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supplementation may contribute to increased total body mass, although much of the 

increase in body mass may be attributed to water retention. 

6.5.3. Creatine kinase (CK) 

Plasma CK activity was not significantly different across the times of recovery nor 

between conditions, where the difference was small and did not reach the assigned level 

of significance. The CK data showed the changes in MVC after each loading condition 

was not significantly difference across the recovery time on all sessions due to high 

variability. These results are comparable to Rawson et al. (2001) who demonstrated no 

significant changes in plasma CK levels post-exercise following 5 days of creatine 

supplementation. Indeed the lower CK levels during recovery post-exercise may also be 

critical in minimising protein degradation and thus, muscle damage. 

The mechanical and biochemical stress responses to exercise are complex and involve 

generation of reactive oxygen species and disruption to the contractile apparatus and cell 

membranes that ultimately contribute to fatigue by adversely impacting the metabolic 

and functional integrity of muscle. Serum CK concentrations were not significantly 

different during recovery points of the study during Cr supplementation. It would appear 

that Cr supplementation has no effect on muscle membrane integrity. During ingestion of 

the placebo, there was no change in the total CK response to exercise at 2 h, 24 h and 48 

h post-exercise. Plasma CK continued to increase above pre-exercise values to 24 h post- 

exercise but started to decrease at 48 h of recovery. Although there are proportional 

changes in all conditions during recovery points, it is generally accepted that the creatine 

kinase concentration is not altered during exercise and does not interact significantly 

with Cr metabolism in the circulation. Another possible explanation for the lack of an 
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increase in CK could be relatively small amount of Cr supplementation or maximal 

exercise session versus a sub-maximal resistance exercise session. 

6.5.4 Myoglobin (MYO) 

Myoglobin was not significantly different across times of recovery nor for conditions, 

where the difference was small and did not reach the assigned level of significance. 

These results are similar to these study findings in older (Gotshalk et al., 2002) and 

younger (Volek et al., 1997; 1999) men and women. In the normal condition myoglobin 

should start rise within 1-3 hours of muscle damage and highest value by about 8-12 

hours before returning to normal by about 24 h after muscle damage. In the results of this 

study myoglobin started to fall back by 24 and 48 hours recovery for all conditions and 

was greater in the Cr condition. Myoglobin was increased after post-exercise but was 

greater with the Cr condition. Much research has shown the beneficial effects of creatine 

supplementation on muscle force and power production over longer-term 

supplementation. Analyses included in this study do not easily explain performance 

differences observed between conditions, so it is possible that some other factor may be 

responsible. In general, myoglobin does not seem to be limiting during high intensity 

exercise (Volek et al., 2004). Although there are proportional changes in all conditions 

during recovery points, it is generally accepted that the myoglobin concentration is not 

altered during exercise and does not interact significantly with Cr supplementation 

metabolism. It is important to note that in this study, blood samples were taken as 

subjects reached a certain fatigue level, regardless of total exercise time. Establishing a 

similar intermittent high intensity protocol that enabled muscle samples to be taken after 

the same number of intervals in all conditions may give more insight into time-dependent 

changes in metabolites and myoglobin function. 
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6.5.5 Growth hormone (GH) 

Growth hormone was significantly different across times of recovery and significant 

between conditions. Most studies have sampled pre-exercise, at some time intervals 

during exercise and at varying intervals post-exercise for up to several hours. Regardless 

of the sampling intervals or the resistance protocol, the pattern of GH release is similar. 

In all cases, the GH concentration peaks at or slightly after resistance exercise session 

and returns to baseline levels by 2 hours post-exercise. The data in this study was largely 

in agreement. 

Concentrations of serum GH were higher in the control and placebo session post- 

exercise, than in the Cr group for all time points. Although the GH secretion needs to be 

considered when interpreting resting measures, resting GH concentrations have been 

shown to change significantly during the resistance exercise session and over the 

recovery period (Kraemer et al., 1999). The data showed that the level of GH was 

depressed at 2 hours of recovery but gradually increased to baseline level after 48 h. The 

decrease in plasma GH concentration was much greater in Cr session than the control 

and placebo sessions. Kraemer, et al. (1998) demonstrated a reduction in post-exercise 

concentrations of growth hormone even after 3 days of intense exercise. 
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6.6 Conclusion 

In conclusion, this study investigated the effects of creatine supplementation (Cr) on 

maximal muscle strength following fatigue and recovery, and hormonal responses after 

high intensity (80% 1 -RM) resistance exercise with females. The present study suggests 

that Cr supplement enabled subjects to develop more MVC and RFD, and there was 

evidence of Cr induced responses to the recovery period but did not reduce the effect of 

acute fatigue. This effect is not easily interpreted with regard to blood variables, as there 

was no change in CK and myoglobin across the recovery time but there was a change on 

GH levels that indicated the effect of Cr ingestion on muscle damage. Because hydration 

status and muscular activity after exercise were not different between groups, the blunted 

CK and MYO response was likely due to inactivation of CK activity before entering 

circulation. These data have clearly shown that creatine supplementation increases the 

effect of resistance exercise on maximal muscle strength following fatigue and the 

capacity to perform high-intensity exercise in females. These data suggest that oral 

creatine supplementation does not reduce muscle damage but enhances recovery 

following a resistance exercise challenge. These partially explain the increases in 

strength and improvements in exercise performance following oral creatine ingestion and 

has strong support as a nutritional strategy for females. 
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Chapter 7- General discussion 

7.1 Introduction 

Resistance exercise is widely used, not only in elite sports, but also in recreational and 

health related exercise as well as occupationally related training. Isometric tests have 

been used extensively to assess neuromuscular function although this test modality can 

be obtain information on ability of muscle. The rate of force development (RFD) has 

been quantified using isometric testing protocols (Bemben et al., 1992; Hakkinen, 

1994; Linnamo et al., 1988). Resistance exercise programmes are part of most male 

athletic and health training programmes today, since regular exercise and physical 

conditioning may reduce fatigue accrued early in sports events. Strength of the female 

lower body is similar to that of men relative to body mass and lean body mass. Extensive 

investigations have been undertaken on the effects of exercise on physiological and 

biochemical profiles. Little attention, however, has been devoted to examining the effect 

of dietary supplementation on blood parameters and hormonal response to resistance 

exercise with female individuals. 

Fatigue is a multi-dimensional and complex phenomenon that can originate from a large 

array of sources ranging from metabolic factors such as the accumulation of metabolites, 

impairment of neuromuscular and muscle damage (MacLaren et al., 1989; Pyne, 1994). 

In addition, no previous reports have compared blood parameters in different conditions 

over the fatigue and recovery period in response to resistance exercise with females. To 

effectively address these issues, this research has been divided into four parts: (1 A) ; to 

establish the between-day reliability of the testing protocol, and (IB); to determine the 

degree of fatigue induced by resistance exercise and the within-day reliability of the 

testing protocol; (2) to examine the effects of heavy resistance exercise on fatigue and 

recovery during period of 48 hours post-exercise in females (3) to investigate the effect 
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of ingestion of carbohydrate on MVC during recovery after resistance exercise in 

females, and finally (4) to examine the effects of creatine supplementation on hormonal 

responses during fatigue and recovery after heavy resistance exercise in females. 

7.2 Synopsis of findings 

In chapter 3 the measurement and the reliability of MVC and RFD by using an isometric 

chair system in females across three days for each leg separately and for both legs 

together was assessed, it was found that the mean MVC for both legs was less than the 

right leg or left leg separately, and that the left leg was less than the right leg. Although 

previous studies (e. g. Tillman et al., 2004) have used either the dominant leg or each leg 

separately for MVC measurements, the MVC data for both legs were more reliable than 

MVC measured separately for each leg and so it is recommended that the MVC 

measurements are made using both legs instead of using each leg independently. 

However, for the RFD measurements the typical error in all three conditions (both legs, 

right leg and left leg) were similar and there was no difference in their reliability, when 

the three days data were compared. The between-days reliability reported in this study 

ranged from very good to moderate for isometric knee extension when using both legs to 

measure isometric contraction force than using each leg separately. 

The reliability of within-day measurements was assessed in part two of this chapter. No 

change was found from session 1 to session 2 in MVC and RFD within a one-hour 

period, therefore it was concluded that there was no `learning effect' on the measured 

variables or fatigue produced by the test protocol itself. The data therefore indicated that 

well familiarised subjects are competent at producing their perceived maximal force 

during a within-day protocol. The reduction in force following the exercise session was 
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due to some form of peripheral fatigue. These findings indicated that the level of fatigue 

in MVC following resistance exercise showed a greater reduction in MVC and RFD for 

both legs than the right and left leg separately. The force reduction achieved by the 

exercise was around 25-30% which did not reach the required 40% reduction. Therefore, 

in this chapter it was found that using both legs for studying the MVC was more reliable 

than using one leg. Furthermore, this allows for an experimental protocol which has both 

within-day and between-day reliability requirements. 

In chapter 4 the effects of resistance exercise on MVC and RFD at each time interval of 

2,24, and 48 hours post-exercise were investigated. The results showed a significant 

effect of fatigue induced by resistance exercise for the both legs condition on MVC 

measured pre-exercise and post-exercise and at 24 hours but no significant difference at 

48 hours of recovery. Similar results were found for the dominant leg except recovery 

appeared to have been achieved by 24 hours. Further, the RFD recovery appeared to 

have been achieved by 24 hours in the both legs conditions. The fatigue recovery of the 

both legs compared to the dominant leg condition is probably due to a weaker-non- 

dominant leg. The findings indicated that the level of fatigue in MVC and RFD 

percentage drop following the resistance exercise program was still found to be not 

enough for the desired 40% reduction, so further studies would need to use an intensity 

increased to 80% of I -RM. 

In chapter 5 the results demonstrated that when CHO was ingested both before and after 

exercise, performance was increased during recovery compared with the ingestion of a 

placebo. The results showed a significant effect of conditions and time on MVC 

measured pre-exercise, post-exercise, 24h and 48h. Pre-exercise MVC and RFD mean 
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values were similar when comparing carbohydrate (CHO) and carbohydrate free (CF) 

trials. However, recovery was achieved more rapidly in the CHO conditions and had 

fully recovery after 48h, while the CF condition required longer. As a result, the mean 

value of MVC and RFD after during recovery from exercise in the CHO trial was greater 

than that observed in the CF trial. 

During high intensity resistance exercise, recovery periods play an important role in 

limiting fatigue and may improve physiological performance and also help to delay 

fatigue caused by dehydration. Therefore, it is not surprising that strategies have been 

developed to ensure that not only are the carbohydrate stores well stocked before 

exercise but that they are also restored as soon as possible 2 hours after a resistance 

exercise session. The restoration of muscle glycogen after depletion by exercise is a 

central component of the recovery process. To maximize the rate of muscle glycogen 

storage during short-term recovery, it is important to consume a carbohydrate 

supplement as soon after exercise as possible. In contrast, Mitchell et al. (1997) found 

that after a2 days low CHO diet, resistance exercise performance was not affected. The 

authors concluded that although muscle glycogen level was low, there was adequate 

CHO to fuel the activity. Consuming carbohydrate immediately after exercise is know to 

increase the rate of muscle glycogen resynthesis and results in greater capacity during 

subsequent recovery periods. 

The findings support Williams (2004) who found that the type of carbohydrate in the 

recovery diet also has an influence on endurance capacity the following day. It must be 

noted that the effect of a CHO supplement on females is purely an observation, and more 

precise methods are needed to describe a mechanism between macronutrient feeding and 
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performance. Therefore, in trained female individuals using the both legs condition, the 

presence of a CHO supplement resulted in greater recovery time adaptations after 

resistance exercise than a placebo supplementation. 

In chapter 6 the immediate effect of creatine supplementation after high intensity (80% 

1-RM) resistance exercise with female subjects showed Cr supplementation significantly 

improved muscle force recovery compared to a placebo. Thus, the current study 

demonstrated that creatine supplementation was able to reduce muscle damage caused by 

a resistance exercise session and may have also aided muscle recovery for female 

participants. Isometric contraction muscle strength was significantly higher during the 

recovery period from resistance exercise-induced muscle damage in the creatine 

supplemented trial compared to placebo trail. These results support the work by Santos et 

al. (2003), who also showed beneficial effect from creatine supplementation on indirect 

markers of muscle damage, suggesting that creatine supplementation is not only an 

effective strategy in maintaining muscle integrity during and after intense prolonged 

exercise, but it may also be successful at protecting muscle fibres from more damaging 

exercises as used in the present study. 

The last study also examined the effects of Cr supplementation on some anthropometric 

and blood variables. One of these, the body mass, showed a non-significant mass gain of 

1.0 kg in the Cr session following supplementation. Yet there was no significant gain in 

mass in the other conditions. This increase in body mass was indicative of the muscle 

'loading' the excess Cr ingested through supplementation. The observed increase in body 

mass indirectly suggests that the Cr supplementation was effective. A similar assumption 

however, could not be made with respect to the female subjects that were supplemented 
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with dietary Cr, as it was not significant. This is similar to the findings of Bermon et al. 

1998) who failed to observe a gain in mass in females Overall, it would appear that 

short-term creatine supplementation may contribute to increased total body mass, 

although much of the increase in body mass may be attributed to water retention. The 

effect of creatine supplementation on blood variables was also established. Plasma CK 

activity did not change significantly across times of recovery and feeding conditions. The 

differences were small and did not reach the assigned level of significance (P = 0.05) 

although did peak at 24h. These results are comparable to Rawson et al. (2001) who 

demonstrated no significant changes in plasma CK levels post-exercise following 5 days 

of creatine supplementation. At the start of exercise, the speed of this reaction will be 

close to maximum, and therefore to increase the substrate (phosphocreatine) 

concentration further will not affect the speed of this reaction and consequently 

maximum force output and short-term of resistance exercise performance. However, 

creatine supplementation improved performance and recovery from fatigue in the 

supplemented group than placebo. As performance was improved, it seems possible that 

even 20 g creatine per day for 5 days may raise the muscle creatine content, thus 

providing a mechanism for the improvement. Therefore, the mechanism of improvement 

in the recovery period in the present study may have been that creatine concentration was 

maintained above the K- value for the creatine kinase reaction, thereby increasing the 

rate of phosphocreatine resynthesis (Greenhaff et al., 1994). The improvements in the 

test may additionally have been caused by improved buffering through the increase in 

muscle creatine. Adenosine triphosphate resynthesis from ADP and phosphocreatine 

consumes a hydrogen ion (H+) in the process. An increase in phosphocreatine turnover 

rate through greater creatine content in the muscle will therefore consume more H+ and 
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improve muscle buffering capacity. However, in the present study, the changes in CK 

were similar with or without supplementation during recovery period time. 

Growth hormone was significantly different across times of recovery and all conditions, 

following resistance exercise-induced muscle fatigue. Most studies have sampled pre- 

exercise, during exercise and at varying intervals post-exercise for up to several hours. 

Regardless of the sampling intervals or the resistance protocol, the pattern of GH release 

is similar. In all cases, the GH concentration peaks by 45 minutes post-exercise. The GH 

data showed the mean percentage changes in MVC and RFD after each loading 

conditions. Concentrations of serum GH were higher in the control and placebo sessions, 

post-exercise, than in the Cr session. Although the GH needs to be considered when 

interpreting resting measures, resting GH concentrations have not been shown to change 

significantly over the recovery period. 

It has been suggested that creatine has an indirect anabolic effect. In this comparative 

cross sectional study, (Schedel et al., 2000) a significantly higher growth hormone level 

was observed after acute creatine loading (20g). The peak plasma values of growth 

hormone were generally obtained immediate after resistance exercise session on control 

and placebo conditions higher than creatine condition. In this study, venous blood was 

sampled before, immediately after and 2 h, 24 h and 48 hours after the training session, 

but no measures were done after 27 hours creatine administration, when the potential 

indirect anabolic effect of creatine is higher. Therefore, this mechanism is not clear at 

present and further research is warranted. 

The last variable measured was myoglobin. It was not significantly different for MVC 

across times of recovery and between conditions. These results are similar to the findings 
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in older (Gotshalk et al. 2002) and younger (Volek et al. 1997,1999) men and women. 

There was no significant difference between conditions, but the difference was greater in 

Cr condition although did not reach the assigned level of significance (P = 0.5). In the 

normal condition, myoglobin should start to rise within 1-3 hours of muscle damage and 

highest value by about 8-12 hours and fall back to normal by about one day after muscle 

damage occurred. In this study myoglobin started to fall back by 24 and 48 hours 

recovery with all conditions but it was greater in the Cr condition and when compared 

across conditions. 

In summary, the aim of this thesis was to examine the effect of dietary supplementation 

on fatigue and recovery in athletically trained females following sort-term and high 

intensity resistance exercise. The result of this thesis clearly demonstrate that short-term 

resistance exercise for the development of strength produces fatigue but the recovery is 

quicker when nutritional supplements are used by females. Ingestion of CHO allowed 

full recovery after 48 hours, quicker than the placebo but more precise methods are 

needed to describe a mechanism explaining this performance. Creatine supplement also 

improved muscle force recovery compared to a placebo. Blood variables were 

established and although plasma CK and Myoglobin did not change significantly across 

times of recovery, growth hormones did change significantly across the times of 

recovery following an expected pattern. 
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7.3 Conclusion 

It is concluded that the recovery from heavy resistance exercise in women appears to be 

added by dietary supplementation producing an increase in the recovery of both maximal 

voluntary contraction force and rate of force development. The same procedure of 

resistance exercise was used in the four experimental studies and nutritional 

supplementation significantly reduced the decline in maximal peak force following 

resistance exercise. The benefit of CHO feeding is that it is immediate, while using Cr as 

a supplement requires a prolonged period of ingestion and is associated with a small gain 

in body mass. Following short-term resistance exercise with a high intensity of 80% of 1- 

RM, a statistically significant difference in favour of the experimental groups was 

detected. 
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7.4 Limitations 

The following are potential limitations of this study: 

1. The results of this study may only be generalized to females of similar age and 

training status as defined by the subject sample employed her. 

2. Although exercise sessions were given, the subjects' lack of familiarity with exercise 

training may have influenced their effort during the isometric testing, one repetition 

maximum testing, and eccentric resistance exercise. 

3. The timing of blood draws was pre-, post-exercise, 2 hr, 24 hr and 48 hours post- 

exercise on day 5. Therefore, the response of serum CK and MYO to the Cr supplement 

is limited to these time points. More frequent sampling was not possible due to 

technician availability during Cr supplementation, and subjects' work schedules. 

4. A dietary baseline period was limited to five days and may have affected baseline 

blood and urine measurements. 

5. No biochemical assessments of nutritional status were performed on the subjects prior 

to the start of the experimental period. 
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7.5 Recommendation for future work 

From conducting series of experimental studies in the present thesis and from reviewing 

the literature, the researcher recommends the following directions for future work in the 

area of dietary supplement with resistance exercise on females subjects. 

" Establishing the biomechanical responses to CHO supplementation after 

resistance exercise would provide more complete data to support study 3, in 

which it was not possible to collect this data. 

" Examination of the effects of a low and high carbohydrate status in terms of 

muscle glycogen level, before and after resistance exercise as this is thought to 

increase the rate of muscle glycogen resynthesis and results in greater capacity 

during subsequent recovery periods. This may lead to a substantial increase in 

performance and recovery after high CHO loading over 24h of recovery. 

" It would be important to investigate the effect of using CHO together with Cr 

supplement on fatigue and recovery responses in female subjects after resistance 

exercise. 
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APPENDICES 



APPENDIX 1 
SUBJECT INFORMATION 



SUBJECT INFORMATION SHEET 

Title: 

Effects of muscular strength and biochemical responses to resistance 
exercise in females. 

Investigator: 

Majda Taher Touba 

Supervisors: 

" Professor. Adrian Lees (Director of Studies) 

" Professor. Don MacLaren (Supervisor) 

Department: 

School of Sport and Exercise Science Liverpool John Moores University 



Aims of the study: 

The overall aim of the research programme is to determine the effects of dietary 

supplementation on muscular strength fatigue and recovery and biochemical 

responses to resistance exercise in females. 

To achieve this aim experiments will be designed to fulfil the following 

objectives: 

1. To establish the reliability, of measurements of maximum voluntary isometric 

force and rate of force development in females. 

2. To establish the intensity of exercise required to produce a fatigue in MVC in 

females. 

3. To characterise the fatigue and recovery responses to heavy resistance exercise 

in females in terms of isometric force and blood variables 

4. To examine the effects of carbohydrate supplementation on the neuromuscular 

and biochemical responses to heavy resistance exercise in females 

5. To examine the effect of creatine supplementation on the neuromuscular and 

biochemical responses to heavy resistance exercise in females. 

Pre-test procedure: 

" The experimental protocol and testing procedure will be fully explained. 

" The correct technique of all exercise will be explained and shown by researcher 

before the subjects practice the correct technique. 

0 Habituation and familiarizations sessions will be undertaken; these are orientation 

and practice sessions. 



. Tests will establish you one repetition maximum (1-RM) for six exercises including 

lower body part. 

" Do not engage in vigorous exercise and physical activity for 24 hours before tests. 

Warm-up and stretching for five minutes will be carried out on upper and lower 

body parts. 

Experimental protocol: 

Muscular strength measurements: 

Muscular strength indices will be measured using the isometric chair Data on 

voluntary maximal peak force, rate of force development and rate of force 

decline will be generated. All measurements will be ascertained before and after 

a session of resistance exercise for lower body extremity at an intensity 

corresponding to 70% of 1 repetition maximum (1RM). Measurement will also 

be obtained 2h, 24h and 48h after the completion of the exercise protocol in 

order to assess fatigue and recovery characteristics, the possible effects of dietary 

manipulations on muscular strength. 

Resistance exercise session: 

All subjects will perform three sets of six different exercises (lying leg curls, 

dumbbell lunges, Seated Calf Raises, leg extensions, straight leg dead lift, leg 

presses) involving lower body part at an intensity corresponding to 70% 1RM (8-10 



repetition). One-minute rest period will be allowed between exercises and 3 min rest 

period will be allowed between sets. 

Anthropometrics measurement (age, weight and height) will be obtained before exercise; 

2 ml of finger blood will be obtained before, immediately after exercise and recovery. 



Liverpool John Moors University Strength Muscle Laboratory 
Pre-test Questionnaire 

Physical Activity Readiness Questionnaire (PAR-Q) 

This questionnaire is designed to help you. For your health and safety, please answer 

the following questions and inform the experimenter of any factors that might affect 

your performance in the test. It is important to ensure that you are in a fit and healthy 

state to complete the exercise test, because testing involves strenuous activity. If there 

are any questions you don't understand you should ask the experimenter for 

clarification. 

All information you provide will be treated with the strictest confidence 

I am interested in participating in the " strength training programme and test " 

Name 

Age 

Date of Birth 

Address 

Telephone No. I 

Marital Status 



Liverpool John Moors University 
Health and Human Science 

Pre-Test Health History Questionnaire 

ANY INFORMATION CONTAINED HEREIN WILL BE TREATED AS CONFIDENTIAL 

Please tick � appropriate box (Yes or No) 

Has your Doctor ever said you have? 

YES NO 

High blood pressure / any heart trouble 
r 

Disease of arteries 

Varicose veins 

Lung disease 

Asthma ý. J 

Liver disease ýLJ "LJ 

Kidney disease 
C 

Diabetes 
C 

LJ 

Epilepsy LJ 
C 

Any blood clotting disorders 

Any other medical problems: 



Do you currently smoke? 

Yes n No n 

If yes, how much per day? 

Have you ever given up smoking? 

For how long did you smoke? 

How many caffeinated beverages do you consume per day? 

What type? Coffee (cups) n Tea (cups) n Other 1 

-7 
How would you describe your state of well being at this time? 

(Please lick one). 

Excellent fl 

Very good 

Good C 

Poor r`j 



APPENDIX 2 

FORM OF CONSENT TO TAKE PART AS SUPJECT IN 
RESARCH PROJECT 



LIVERPOOL JOHN MOORES UNIVERSITUY 
FORM OF CONSENT TO TAKE PART AS SUPJECT IN RESARCH 

PROJECT 

Project title: 

The effect of dietary supplementation on muscular strength and biochemici 
responses to resistance exercise in females. 

19 .................................................... agree to take part in the above named 
(Subject full name) 

Project/Procedure, the details of which have been fully explained to me 

Singed ..................................... Date.............................................. 

I ................................................. certify that the details of this project/Procedure 
(Investigator's full name) 

Have been fully explained and described in writing to the subject name above and have 
been understand by him/ her. 

Singed ........................................ Date...................................... 

I ................................................. certify that the details of this project/Procedure 

Have been fully explained and described in writing to the subject name above and have 
been understand by him/ her. 

Singed ........................................ Date......................................... 

NB: The witness must be an independent third party. 



APPENDIX 3 



Participant personal details (female) 

Name: 
Address: 
Date: 

Date of birth: 
Contact number: 

Have you ever had? Yes No 

Knee joint injury F-I 
Quadriceps muscle injury a 

Hamstring injury 17 

Other F-I 

IIhow long ago? 

ow long ago? 
E Dhow long ago? 
[:: ýow long ago? 

Have you ever suffered from? 
Arterial hypertension? 
Chronic fatigue syndrome? 
Loss of sleep, sleep deprivation, insomnia? 

Yes No 

Did you practice any sport(s)? Yes No 
Which one(s)? ------------------------- 
How many times: 
A day ------------- a week ------------------- (including competitive events)? 
At which time(s) of day? --------------------------------------------------------- 

Do you avoid practising sport or physical activity at which period(s) of your 
menstrual cycle? 
During your period? ---------------- 
Just after your period? ----------------- 
Just before your period? ----------------- 
Other? ----------------- 
Do you prefer practising sport or physical activity at which period(s) of your 
menstrual cycle? 
During your period? -------------------- 
Just after your period? -------------------- 
Just before your period? -------------------- 
Other? --------------------- 

Are you taking any contraceptive or hormonal pills? Yes No 
If yes, which one(s)? QQ 

An appointment will be made for you to undertake the testing protocol at a suitable time 
for you. 



APPENDIX 4 
EXERCISE TESTING FORMS 



Name: 

Date of first measures: 

Date of second measures: 

Date of third measures: 

Date of fourth measures: 

Blood 
Variable First session 

After 2 
hours 

After 24 
hours 

After 48 
hours 

Pre-1 Pre 2 post- 

Exercise Exercise Exercise 

Haemoglobin 

Haematocrit 

Creatine 
Kinas 

Growth 
hormones 

Myoglobin 



APPENDIX 5 



Body Weight and Anthropometric Data 

Subject: Height: in. 
cm m 

Age: lb Weight: kg. 
Date: 

Bodv Weight (no shoes. indoor clothing) 
Day/ 

Pre-test 
Weight (Kg) Time 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 
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Isometric Contraction Exercise Protocol 

Subject: 
Date: 

Age: Weight: 
Time: 

Set Repetitions Time Begin Time End 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 



Exercise program 

Set (1) 

exercise(1) 1 mi exercise (2)(1 min xercise(3) 1 min 

se (4) (1 minim exercise(5) (1 min) exercise(6) 

Rests I (3min) 

Set (2) 

(1 min)exercise (2)(1 min) exercise(3)(1 min 00- -00. 
exercise(3)(1 min) exercise(5) (1 min) exercise(6) 

Rests 1(3min) 

Set (3) 

1) (1 min)exercise (2)(1 mine xercise(3)(1 min gl. 
exercise(3)(1 min) exercise(s) (1 min) exercise(6) 

No No 
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One-Repetition Maximum (1-RM) Protocol 

Subject: Age: Weight: 

Date: Time: Dominant Leg: R or L 

w 

1-RM: 
80% 1-RM: 

(Resistance exercise) 
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Borg Rating of Perceived Exertion Scale 

6 

7 Very, Very Light 

8 

9 Very Light 

10 

11 Fairly Light 

12 

13 Somewhat Hard 

14 

15 Hard 

16 

17 Very Hard 

18 

19 Very, Very Hard 
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Food Record - Day 1 

Name Day/Date 

Serving Size / Food & Beverage Description 

Breakfast Time of Day: AM/PM 

Lunch Time of Day: AM/PM 

Dinner Time of Day: AM/PM 

Snacks Time of Day: AM/PM 

Estimated Daily Water intake = mt/ounces/ cups 

Was this a typical day's intake? (V/N. If no, please explain. ) 



Food Record - Day 2 

Name Day/Date 

Serving Size / Food & Beverage Description 

Breakfast Time of Day: AM/PM 

Lunch Time of Day: AM/ PM, 

Dinner Time of Day: AMIPM 

Snacks Time of Day: AM/PM 

Estimated Daily Water intake = mi/ounces/cups L:::: j 

Was this a typical day's intake? (Y/N. If no, please explain. ) 



Food Record - Day 3 

Name Day/Date 

Serving Size J Food & Beverage Description 

Breakfast Time of Day: AM/PM 

Lunch Time of Day: AM/PM 

Dinner Time of Day: AM/ PM 

snacks Time of Day: AM/PM 

Estimated Daily Water intake = mi/ounces/cups 

Was this a typical day's intake? (Y/N. If no, please explain, 


