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A Hull Structures Perspective

Selkirk Settler - North Atlantic Swell (Capt. G. laniev)

But in all my experience, J have never been in an accident ...of any sort worth speaking

about. J have seen but one vessel in distress in all my years at sea. J never saw a wreck

and never have been wrecked nor was J ever in any predicament that threatened to end

in disaster of any sort. E. J. Smith, 1907 (Captain of Titanic).
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Disclaimer

The views and conclusions expressed in this thesis are those of the author alone and do

not necessarily represent the views of the institution with which the author is affiliated.
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Abstract

Recent high profile accidents involving environmental damage caused by structural

failures in ageing oil tankers and bulk carriers has highlighted the importance of

structural integrity issues involving these types of ships. Between 1980 and 1996, there

were 186 total losses of bulk and combination carriers and 1,278 lives lost. These

events have led to concerns from the public, media and within the international

maritime community, about deteriorating ship structural safety standards and the

environmental impact. Evidence suggests that structural failure may account for more

ship losses than hitherto believed. Industry critics have complained that the quality of

designs for new tonnage and effectiveness of the present control mechanisms governing

structural condition for vessels in service, are inadequate.

Due to the relatively low safety margins inherent in modern commercial ship structural

designs, a buyer beware policy prevails in ship procurement. A weakness in current

ship design practice appears to be the difficulty of incorporating an owner's individual

preferences. Recognising that to be effective, improvements in ship structural design

must be implemented at the design stage, this study addresses the challenge of further

improving the structural safety and performance of large bulk ships through exercising

specific options related to the structural design of the ship within the remit of the buyer.

A broad comprehensive literature survey was conducted to cast a wide net around the

problem. The complex web of regulatory controls affecting the design and operation of

bulk ship hull structures was analysed and problems involving design, construction and

maintenance of these vessels were uncovered to build evidence to justify proposing an

improved method. An analysis of recent high profile tanker and bulk carrier accidents

involving structural failure was performed, to determine root causes. These findings

formed the basis for a proposed novel risk-based "design for safety" framework

The core of the method is the new evidential reasoning (ER) algorithm developed on

the basis of a MCDA evaluation framework and the evidence combination rule of the

Dempster-Shafer (D-S) Theory. A number of structural design options focused on the

cargo tank mid body area of a typical double hull VLCC were evaluated. A set of
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quantitative and qualitative criteria were identified and articulated, leading to a

structural evaluation framework for eliciting preferences for competing options. The

MCDAlER model provides a risk-based, rational, transparent methodology for rapid

techno-economic evaluation of alternative structural designs, putting buyers in a

stronger position to balance risks and determine the expected structural safety outcomes

of different designs. The ER modelling is performed using the Intelligent Decision

System (IDS) software program developed by Yang and Xu. The method was tested

with an example and validated through a sensitivity study.

Finally, the evidence necessary for constructing and demonstrating the MCDAlER

structural evaluation framework was used to build the arguments for a safety case

approach to hull structures using the Australian Offshore safety case model. The safety

case for hull structures is built upon a foundation of existing prescriptive statutory and

classification society structural regulatory requirements. The advantages of the safety

case applied to oil tankers were explained, including suggestions for a new regulatory

approach. The application of new technology and tools was discussed.
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Chapter 1 - Introduction

SUMMARY

This chapter contains the background and explanation necessary to justify the final

research objectives and sub-objectives stated in section 1.2 which have been developed

through a broad and comprehensive literature survey effort. Section 1.3 justifies the

work. In view of the breadth of the research attempted, section 1.7 contains a detailed

account of the delimitations and scope.

1.1 Background to the Research

The current PhD thesis involves ship structural management, with a focus on large oil

tankers and bulk carriers in particular, and is founded upon and extends the author's

earlier work entitled Technical Management of Oil Tankers Based on Safety Case

Principles, submitted to Heriot-Watt University, Edinburgh, culminating in the award

of Master of Philosophy (M.Phil) by research in July 2001. The foregoing work

primarily argued the hypothesis that safety case principles could successfully be

applied to the technical management of hull structures for a fleet of large oil tankers

owned principally by independent oil majors and national oil companies.

Following practical experience as a superintendent/naval architect with a major Middle

Eastern national oil tanker owner, the writer became convinced of the need to

conceptualise a practical method in which the buyer's preferences in relation to the

structural design could more easily be incorporated into the design/procurement process

for new VLCC tonnage. Recognising that ship owners are able to exert considerable

influence on the design and safety of oil tankers in regard to specification of global

loads, special materials, method of analysis, detail design etc, the search for a

performance based approach to the problem continued. Initially, as a first step, a

conference paper was written and presented at the Royal Institution of Naval Architects

International Conference on Design and Operation of Double Hull Tankers held in

London in February 2004 (Lee et ai, 2004).



In this work, a detailed framework is presented including a description of the current

regulatory system highlighting shortcomings arising from a passive prescriptive

approach to technical management activities during design, construction and operation

of large bulk ships. A critique of the current highly prescriptive safety regime is used

to introduce a proposed new proactive methodology centred on a decision based

concurrent design for safety approach involving the designers and the owner in a

practical and effective partnership. The methodology is shown to be applicable to

standard ship designs from the major ship production centres in the Far East.

The proposed method fully integrates the existing prescriptive classification and

statutory systems and procedures, whilst emphasising the fundamental responsibilities

of the principal stakeholders. This is consistent with the principles embodied in The UK

offshore safety case approach recommended as a model worthy of consideration for the

safety management of international shipping in the 1992 Carver Report into ship safety.

The work herein has resulted in a number of proposals for changes to the existing

regulatory system affecting the design, construction and operation of large vessels.

1.2 Research Objectives

Unstable supply/demand, sustained low freight rates, changing ownership patterns,

diverse standards of flag State performance, elimination of in-house technical support

and increasingly onerous regulatory burdens are all factors affecting today's ship

owners and operators. Two recent spectacular and widely publicised oil tanker losses

resulting in environmental pollution, led to a deep introspection within the industry and

from industry critics, about the effectiveness of the measures currently in place. These

concerns included the quality of new double hull tanker designs and the requirements

for survey and maintenance of hull structures imposed by the major lACS societies in

the form of the enhanced survey programme (ESP) introduced in 1993. The loss of the

Erika due to structural failure in 1999, led directly to major regulatory changes in the

European Union and in the rules of the major classification societies. The subsequent

loss of the Prestige three years later, sent further shockwaves through the industry.
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The focus of the research effort is to challenge the prevailing dominant discourses on

the adequacy of current procedures for design and operation of large oil tanker and bulk

carrier structures. On the one hand, progressive tightening of regulations following

major accidents suggests that current measures are now adequate. On the other hand,

the consequences of even minor pollution arising from a leaking crude oil cargo tank

are severe enough to warrant even more proactive measures on the part of those

responsible for transporting the cargoes. The original research objective began to

evolve out of the realization that the maritime industry continues to rely heavily on the

prescriptive minimalist approach, in spite of the widespread availability of superior

technical solutions including formal safety and risk assessment methods widely used in

other industries. This led to the following set of preliminary research questions related

to large bulk ship structures:

• What is the true nature of these structures?

• Are the structural hazards and risks adequately addressed by a prescriptive rule

approach during the design phase?

• Is the current regulatory system governing structural integrity effective?

• How is structural integrity management of these structures practiced in

comparison with offshore structures?

•

Can the root causes of recent structural failures in large bulk ships be identified,

and is structural failure underestimated as a leading cause of accidents and

environmental pollution?

Is the quality of new double hull tanker structural designs adequate?

How can the buyer's preferences be conveniently incorporated into the design

process?

Can multiple criteria decision analysis (MCDA) be successfully applied to the

ship structures problem?

• Can the offshore safety case model be adapted to regulation of ship structures?

•

•
•

The above questions led to the following principal research objectives.
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Principal Research Objective

To build evidence confirming that the customer can effectively enhance the quality

safety and performance of large bulk ship structures by managing risks at the design

stage using a novel structural selection framework, evolving the arguments for a hull

structures safety case as an outcome from the selection process, and to demonstrate

how the safety case can be successfully applied to the technical management of these

types of ship structures.

Sub-Objectives

The above principal research objective was addressed through satisfying the following

sub-objectives related to large bulk ship hull structures;

Objective No.1: To review the safety management systems affecting these types of hull

structures, and to identify the needfor an improved management of ship safety.

Objective No.2: To analyse selected casualties in order to reveal possible root causes

associated with inadequate quality in structural design or maintenance procedures.

Objective No.3: To analyse the current approach to ship procurement and structural

design quality and existing knowledge of the use of risk-based approaches to hull

structures integrity.

Objective No.4: To articulate a set of structural performance criteria as the basis for a

comprehensive structural evaluation framework used to compare alternative VLCC

structural design options using the new evidential reasoning (ER) algorithm developed

on the basis of a multiple criteria decision analysis (MCDA) evaluation framework and

the evidence combination rule of the Dempster-Shafer (D-S) Theory, and to

demonstrate and validate the method using an example.
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Objective No.5: To examine the applicability of the offshore safety case approach in

the context of these structures using the above structural selection framework to evolve

the arguments for a hull safety case.

Firstly, it is argued that the current levels of safety and performance of large bulk ship

hull structures (including oil tankers and bulk carriers) can and should be improved by

identifying weaknesses in the contemporary ship design process and in the existing

regulatory systems through a comprehensive review and analysis of the hull structures

question, including recent structural failures. Secondly, a risk-based design for safety

approach is proposed, incorporating the customer's preferences directly into the design

process, utilising a new and unique techno-economic framework for comparing

alternative structural design options. A design for safety framework based on the

Dempster-Shafer theory of evidence incorporating traditional multiple criteria decision

analysis (MCDA) methods is developed. Thirdly, it is demonstrated that a safety case

approach to hull maintenance subservient to the existing International Safety

Management (ISM) Code and evolving from the recommended performance based ship

structural design method is an improved paradigm, which addresses the shortcomings

identified in the present systems.

1.3 Justification for the Research

An important factor in the safety of large bulk ships is thought to be adequate hull

integrity throughout the life-time of the asset. Safe and economic operation is also

highly dependent on operability involving human factors. The starting point for the

achievement of a successful and safe hull stems from the design process itself and

determines performance outcomes. At this time, decisions are taken that will

profoundly influence levels of risk. The requisite levels of safety and quality are

reasoned to be impossible to address merely through surveys and inspection activities

during the progress of construction of minimum compliance designs.

Industry critics have lashed out at the perceived drop in quality of design and

construction involving oil tankers, allegedly compromising safety. New goal based
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common structural rules (CSR) have been developed with the intent of eliminating

competition on ship structural design standards. Critics have already suggested that the

new rules will not result in more robust ships as claimed and the new rules, like the

previous ones should be regarded as minimum standards. In this regard, purchasers of

new ships would be empowered by understanding the assumptions inherent in the

design. On the other hand, excessively robust ships suggested by some critics may not

be cost effective or environmentally acceptable in terms of economy of construction

and utilisation of finite resources.

Currently hull lifetime is dictated by freight rates, regulations, and the owners

individual requirements. Hazards due to nuisance cracking caused by fatigue related

problems or local corrosion resulting in cargo leakage into the sea represent relatively

high risks in modern tanker design. The inconvenience of dealing with such events in a

loaded tanker is believed to constitute a very sound reason to seek ways to minimise

these hazards throughout the vessel lifetime. In the current economic climate, oil

majors are discriminating against unreliable vessels and an outstanding condition of

class can result in the loss of a charter. Further, even minor pollution incidents can lead

to serious consequences. Environmental pollution carries a heavy financial and political

burden.

UK P&l Club statistics in 1993 indicate that structural failures accounted for only 12%

of the total major claims (Boisson, 1999). However, it is believed that the hull question

is disproportionately important in the safety equation. Classification societies often

contend that 80% of losses are caused directly or indirectly by human error. However,

technical problems including structural failures in tankers and bulk carriers are

conjectured to be an understated and possibly latent cause of loss of life or pollution.

From 1980 to 1996, over 1,200 sea-farers died on bulk and combination carriers due to

sudden and unexplained circumstances, possibly involving loss of reserve buoyancy,

loss of stability or hull girder failure (Paik et aI, 1998). In many cases the root cause is

suspected to be linked to hull failure. Some critics unequivocally condemn the industry

for not recognizing that structural failure is a leading cause of vessel casualties

(Devanney,2006).
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Recent accidents involving crude oil tankers, coupled with widespread condemnation

of prescriptive controls governing shipping safety performance, suggests that a high

risk industry such as bulk transport of goods by sea, should seek alternatives other than

exclusively relying upon prescriptive rules and services driven by recognized

organisations. Leading figures in the classification industry have recently called for a

re-invention of the industry'S primary self-regulation system in response to these

developments. A precedent has already been established for the use of goal-based

standards in the UK offshore industry and a decade of positive experience has accrued.

The legal aftermath of the Erika & Prestige accidents has resulted in a vigorous debate

and the implications are discussed. The Carver Report in 1992, contained 20

recommendations, including applying the safety case to individual ships. The UK

Government conceded that the time was right for exploration of safety case principles

in shipping due to the attractions of the concept. However, various concerns were

raised about the transferability of the safety case from the offshore industry. In this

light, an alternative form of regulation for hull structures based on safety case

principles, but embodying the current prescriptive controls is proposed. The safety case

approach adapted to large tankers would seem to be a paradigm worthy of further

investigation and a logical step forward in the transition to a goal-based safety system

built upon existing prescriptive rules. It is believed that the hull structures question

deserves primary focus and is the area best suited to direct application of the safety case

methodology.

1.4 Methodology

In table 1.1, the respective sections in which the five principal research sub-objectives

listed in section 1.2 are addressed are listed. The first two objectives listed are achieved

in the literature survey carried out in chapter 2. Objective no.3 which analyses the

current approach to ship procurement and structural design quality and existing

knowledge of the use of risk-based approaches to hull structures integrity is addressed

in chapter 3 as part of a discussion on the problem associated with the contemporary

ship production environment.
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Oblective Cha_ll_ter
I 2
2
3 3
4 4,5 and 6
5 7

Table 1.1. Chapters in which the Sub-Objectives are Addressed

Objective no. 4, articulates a set of structural performance criteria as the basis for a

comprehensive structural evaluation framework using the new evidential reasoning

(ER) algorithm based on multiple criteria decision analysis (MCDA) and the evidence

combination rule of the Dempster-Shafer (D-S) Theory. Demonstration and validation

of the method using an example is covered in chapters 4, 5 and 6. Finally, objective

no.5 examines the applicability of the offshore safety case approach using the structural

selection processes, framework and model to evolve the arguments for a hull safety

case presented in chapter 7.

1.5 Outline of the Research

The structure of the thesis is laid out in figure 1.1 on page II. There are eight chapters

and the individual chapters are laid out as follows:

Chapter 2: In chapter 2, a comprehensive and broad literature survey has been

conducted to cast a wide net around the boundaries of the research problem and to

establish a theoretical foundation upon which the research is based as described in

section 1.7. All aspects of the hull structures integrity question were examined

including:

• The history and background of structural integrity management in relation to

ship structures.
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• The major economic and political determinants in relation to sea

transportation of oil and other bulk commodities, and their impact on design

and operation of ship structures.

• The importance of hull integrity In relation to the wider economic

consideration m relation to the operation of large oil tankers and bulk

carriers.

• The network of regulatory controls applicable to hull structures, the

relationships between stakeholder and responsibilities.

• Quality aspects of contemporary bulk ship designs in terms of comments

made by critics.

• A forensic examination of selected tanker and bulk carrier losses involving

structural failure in order to establish possible common causes.

• Comparison of the Erika and Prestige casualties in order to establish

possible commonalities.

• The principle structural hazards from the literature.

• The adequacy of the c1assification- driven repair process.

Chapter 3: In chapter 3, the current ship production environment IS described.

Commercial ship design is seen to be characterised by compliance with the prescriptive

rules of the international classification societies. Classification rules for ship design

have evolved over ISO years and they have been developed incrementally in response

to failures and represent a huge accumulation of experience. The fundamental purpose

of classification rules and services is to ensure that the asset is fit for the purpose with

adequate levels of safety and reliability. Whilst this has stood the test of time, recent

events have highlighted the need for a risk-based approach which is described in

sections 3.3, 3.4 and 3.5.

Chapter 4: In chapter 4, problems with the current methods of ship procurement and

quality are identified forming the incentive to develop a risk-based structural

assessment framework intended to facilitate the buyer's input into the design process. A

review of decision support methods and performance based ship design is undertaken.
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A set of 35 structural assessment criteria and an assessment hierarchy construct is

developed as the basis of the proposed MCDAlER structural assessment framework.

Chapter 5: In chapter 5, the criteria and hierarchy constructs proposed in chapter 4 are

used to demonstrate an example involving selection between competing structural

options. In section 5.4, detailed examples of procedures used for calculating the main

commercial and technical numeric data including net present value (NPV) and ultimate

limit state (ULS) are presented and explained. Four alternative VLCC structural designs

are evaluated and ranked by utility using the software supported MCDAlER framework

developed previously.

Chapter 6: In this chapter, a range of sensitivity studies are performed to validate the

model.

Chapter 7: The structural assessment framework developed in chapters 3, 4 and

validated in chapter 5 is used to evolve the evidence and arguments for an offshore

style hull safety case based on the Australian offshore (NOPSA) safety case model.

The implications of the safety case approach relative to responsibilities and regulation

are discussed. The benefits of the improved approach are analysed in section 7.5.

Chapter 8: This chapter contains the conclusions from the study.
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1.6 Definitions

Dempster-Shafer Theory: Dempster-Shafer Theory (D-S Theory) is an alternative to

traditional probabilistic theory for the mathematical representation of uncertainty. In a

finite discrete space, D-S Theory can be interpreted as a generalisation of probability

theory where probabilities are assigned to sets as opposed to mutually exclusive

singletons. In traditional probability theory, evidence is associated with one possible

event. In D-S Theory, evidence can be associated with multiple sets of events (Sentz

and Ferson, 2002).

Evidential reasoning: The ER approach uses a belief structure in the decision matrix

which allows qualitative and quantitative criteria with uncertainties to be modelled.

Each criterion is assessed at each alternative by a two-dimensional variable: possible

criterion referential values (assessment grades) and their associated degrees of belief

(Xu and Yang, 2005).

Multiple criteria decision analysis (MCDA): Is an umbrella term to describe a

collection of formal approaches which seek to take explicit account of multiple criteria

in helping individuals or groups explore decisions that matter such as in corporate

decision making or in other situations where multiple stakeholders are involved. Often

the information is complex and of conflicting nature reflecting different viewpoints and

changing with time. The principal aim is to help decision makers to organize and

synthesize information in such a way which leads them to feel comfortable and

confident about decisions. There are over 70 multi criteria decision making (MCDM)

methods in the literature (Belton and Stewart, 2002).

Safety Case: A written document prepared by the operator of an installation to

demonstrate that the major potential hazards have been reduced to risk levels which are

as low as reasonably practicable and that they will be effectively managed and

controlled throughout the lifetime of the installation (Kuo, 1998).
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1.7 Delimitations of Scope and Key Assumptions

The research objective central to this thesis is to build evidence that the customer can

effectively enhance the quality, safety and performance of new oil tanker and bulk

carrier hull structures. This is achieved by managing risks at the design stage using a

novel structural selection framework to evolve the arguments for a hull structures safety

case as an outcome from the selection process, and to demonstrate how the safety case

paradigm can be successfully applied to the technical management of large oil tankers

and bulk carriers.

problem set by research
sub-objectives

Parts of the research problem
studied in previous research

Main objective not answered
by previous research

Figure 1.2. Research Boundaries

To establish a theoretical foundation upon which the research is based, a

comprehensive literature review was conducted over an extended period of time with

reflection on the researcher's current experience as a practicing classification society

surveyor in the field. The broad literature review encompassed the field of vessel safety

with emphasis on hull structures aspects for large crude oil tankers and bulk carriers,

and this is indicated diagrammatically in figure 1.2. The work began in October 2002
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and was completed by part-time research during a normal full-time working career. The

first three years were focused on collecting published literature, studying and gathering

published data, much of it available through technical journals and internet resources.

The second two years were spent interpreting and synthesising data. These processes

helped the researcher to determine the final research question and objectives listed in

section 1.2.

Several key developments determined the direction of the research. Firstly, there was

the huge controversy caused by the loss of the oil tankers Erika and Prestige in 1999

and 2002 respectively. These accidents occurred in spite of a progressive tightening of

regulatory requirements for oil tanker and bulk carrier structures after the IMO adopted

Resolution A.744 (18) in November 1993. Secondly, lACS, Greece and the Bahamas

proposed the new goal-based common structural rules (CSR) to the IMO in November

2002, with the objective of eliminating class society competition on structural standards

(Hoppe, 2007). Six years later, controversy persists as to the effectiveness of these new

measures. Thirdly, the researcher's professional experience reinforced a long-held

belief that tanker safety could be improved by more effectively exercising the owner's

options at the structural design stage. Fourthly, the work already undertaken as part of

the researcher's M.Phil (Lee, 2000), had previously explored and validated the

applicability of the offshore safety case concept to large tanker structures.

Recognising the complexity of the subject and the apparent futility of attempting to

critically examine hull structural standards in comparison to the magnitude of the

contribution by the major class societies, the author has endeavoured to ensure that the

modest effort herein was conducted critically, independently and dynamically. The

work has evolved over a six year time period and has been self-funded. The temptation

to restrict the scope of the study to consider only the structural assessment framework

or only the applicability of the offshore safety case to tanker structures would have

reduced the work, but was resisted because it was felt that the proposed structural

assessment framework led naturally to the evolution of a hull structures safety case.

As a starting point, the ship structures problem was examined holistically in the overall

context of design, regulatory, degradation, maintenance and other aspects including

hull failure. To narrow the focus of the research, only large crude oil tanker and bulk
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carrier structures were considered as proposed in section 1.2, justified in section 1.3 and

indicated in figure 1.2. Although the focus was on VLCCs in development of the

structural assessment framework, large bulk carriers (VLBCs) are specifically included

in the study due to the impact of the structural safety issues affecting this type of vessel,

as demonstrated in the literature.

The boundaries of the current research problem are further narrowed to consider hull

structural quality and safety aspects directly affected by the customer's preferences as

indicated by the solid inner circle in figure 1.2. The objectives listed in section 1.2 not

answered by previous research are justified in chapter 2. Thus the principal objective

arising from the research is to examine whether ship structural quality can be improved

at the design stage by the buyer's intervention and whether the improved structural

design can form the basis of a hull structures safety case subservient to the mandated

ISM Code safety management system.

Evaluation of structural designs is usually undertaken on the basis of engineering

analysis to determine stresses and deflections based on a set of loads. A direct

comparison of stress levels or fatigue factors in longitudinal strength members or in

critical areas could then be used to establish preferences. Alternatively, comparison of

options could be based on defining a set of structural assessment criteria, capturing the

key quality characteristics of the hull design, as defined by the buyer. The method

would involve assessment of information available to the customer, involving a

combination of quantitative, qualitative, and sometimes incomplete data. A multi

criteria decision analysis (MCDA) approach incorporating the Dempster-Shafer theory

of evidence was selected as a suitable methodology for dealing with the complex array

of criteria involved in the structural assessment framework. A limited amount of expert

input was solicited and some discussions were held with a number of industry experts

to test the validity of the chosen criteria.
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1.8 Conclusions

This chapter lays the foundations for the research, by introducing the background to the

problem, the research questions and the hypothesis. Justification for the research is

presented, the methodology is outlined, a set of definitions is given, and limitations are

described. The detailed research proceeds on these foundations.
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Chapter 2 - Traditional Hull Structures Safety Management

Systems Affecting Large Bulk ships - A Literature Review

SUMMARY

In this chapter, the safety management systems used to regulate large bulk ship hull

structures are investigated with a view to identifying the need to improve ship safety.

Firstly, a wide ranging literature survey was conducted to examine the hull structures

safety question from a very broad perspective, including the nature of large bulk ship

structures, structural degradation mechanisms, and an analysis of the current

approach to structural integrity management for ship structures. Shortcomings in these

control mechanisms evidenced by a number of recent high profile casualties involving

structural failure are identified, and possible root causes found. This chapter

represents the foundation work necessary for building the theoretical and empirical

validity needed to support the principal research objective, confirming that the buyer

can effectively enhance the quality, safety and performance of VLCC/VLBC hull

structures by managing risks at the design stage. Building upon this foundation, the

numerical and qualitative input data for a novel structural selection framework based

on multi criteria decision analysis (MCDA) and evidential reasoning (ER) is further

developed in the following two chapters.

2.1 Introduction

As the title of this research work suggests, essentially two types of vessels have been

considered, the very large crude carrier (VLCC) and the very large bulk carrier

(VLBC). Bulk cargo is meant to be any cargo that is transported by sea for economy of

scale. Firstly, focus is on vessels with length greater than 300m and deadweight in

excess of 280,000 tonnes. This includes liquid bulk cargo vessels, the largest segment

of which carries homogeneous bulk cargoes such as crude oil and products (major bulk

products). Although other major bulk cargoes such as grain, iron ore, coal, bauxite and

phosphate are shipped in Capesize and other smaller bulk vessels, the primary focus of

this research is on the particular hazards associated with the shipment of bulk cargoes

in large vessels.
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In 2007, Brazilian mining giant Vale controlled approximately one third of global iron

ore trade which reached roughly 800m tonnes. Vale planned to ship 100m tonnes of

iron ore to China in 2008. At the time, freight rates for shipment of iron ore from

Brazil to China were USD 108/tonne, almost exceeding the value of the cargo at USD

118/tonne, an increase of 500% over a two year period. Under a 25 year contract with

BW Group (Bergesen), Vale ordered 6 very large ore carriers (VLOCs), 4 of which

were 388,OOOdwt, from Bohai Shipbuilding Heavy Industries PRC, and at the time of

writing these vessels are in service with BW Group. In May 2008, Vale announced

further plans to construct 20 new VLOCs in China, 14 of which were to have

deadweight of 400,000 tonnes. Future plans to construct 500,000 dwt vessels were also

mooted (http://www.lloydslist.com. 21st May 2008). Dramatic events on Wall Street in

the third quarter of 2008 and during the first months of 2009 indicate that Vale may

cancel plans to build a1l20 vessels (http://lloydslist.com,Friday ih November, 2008).

Given the size of these vessels and the operational routes which include the North

Atlantic, and the consequences of structural failures, VLOC structures have also been

included in this study, although frequent specific reference will be made to VLCC

structures by examples throughout the development of the structural assessment

framework and the MCDAlER model. For consistency, VLCCIVLBC has been used

generally, and this should be understood also to refer to large oil/product tankers and

bulk carriers including Capesize vessels ..

The first objective of this research is to review the current safety management systems

affecting the design and operation of VLCCs and VLBCs, with primary emphasis on

hull structural performance aspects. State-of-the-art structural reliability studies from

the civil engineering fraternity involve calculation and prediction of the probability of

limit state violation for the structural system (Melchers, 1999). The number of failure

modes and complexity of the load and resistance formulations for ship structures

illustrates the difficulty in attempting such predictions for maximising the structural

utility of large oil tankers and bulk ships. For this reason the current approach to the

design and operation of ships is richly code based, with the empirical rules of the

international classification societies underpinning ship design and operation and the
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regulatory systems which apply. To identify weaknesses in this traditional approach, a

wide net has to be cast round the subject.

Firstly large oil tanker and bulk carrier structures are investigated to determine their

true characteristics within the wider set of load-bearing welded plate structures

including bridges, buildings, and offshore structures. Secondly, the published literature

describing the principal hazards affecting ship structures is examined for the purpose of

incorporating the findings into a structural assessment framework developed in the

following chapters. Thirdly, the regulatory system affecting the design and operation of

large ship structures is described analysed and weaknesses identified. The second

objective of the research is to reveal possible root causes associated with inadequate

quality in structural design or maintenance procedures arising from a review of

selected, published marine casualties. Shortcomings arising from the critical assessment

of the regulatory controls imposed on hull structural performance by the various

stakeholders in the safety system are identified in order to determine whether failures

discussed in section 2.6 can be traced to faults in design or operation. Further, structural

failure is hypothesised to be an understated root cause of vessel loss.

In the second phase conducted in the following chapters 3 and 4, the evidence needed

to support the principal research objective, confirming that the buyer can effectively

enhance the quality, safety and performance of VLCCIVLBC hull structures by

managing risks at the design stage is gathered. This forms the numerical and qualitative

input data for a novel structural selection framework based on multi criteria decision

analysis (MCDA) and evidential reasoning (ER), proposed, developed and validated in

chapters 3 to 6 of this work

19



2.2 The Nature of Ship Structures

2.2.1 What Are Ship Structures?

Ships are the largest mobile man-made structures in existence. Practitioners refer to the

size, complexity and multiplicity of function of structural components and the random

or probabilistic nature of the loading that characterises ship structures. In a seaway,

large tanker and bulk carrier hull structures are subjected to considerable internal

stresses due to wave loading and inertia forces. The residual stresses inherent in modem

welded construction and the geometrical complexity of the internal structural

arrangements, complicate attempts to accurately determine dynamic stress levels

experienced by individual structural elements. Uncertainties in analysis methods,

materials of construction and variances in the integrity of ship construction add further

complexity to the problem.

Figure 2.1 (a). Typical Double Hull VLCC (LBP 310m)

Figure 2.1(a) above shows the typical arrangements for a double hull (DH) VLCC of

approximately 300m length. These vessels typically have a transverse frame spacing of

5.0m and a longitudinal frame spacing ofO.9m and contain approximately 16,500 key

structural intersections formed by the penetration of relatively closely spaced
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longitudinal framing penetrating the main transverse structures including web frames

and bulkheads at main deck, side shell, longitudinal bulkheads, inner sides, and double

bottom. These are regions of high stress due to the geometry of the opening and the

residual stresses inherent in fillet welded joints.

Figure 2.1 (b). Typical Capesize Bulk Carrier (Paik et al, 1998)

.Figure 2.1 (b) shows the arrangements for a typical Capesize bulk carrier of length

264m. Figure 2.2 on page 22 shows a typical penetration through a transverse member

such as a web frame and the areas of increased stress indicated by the red arrows. In

these locations, fluctuating local dynamic stresses are magnified considerably in

relation to average global stresses, and have to be controlled to avoid fatigue failures.

Commercial steel ships are constructed fit for the purpose and are primarily designed

for ease of productivity and economy (refer to section 3.2.5 for a full discussion on this

topic). Ship structures are invariably fabricated from low carbon steel, grades A, B, D

and E, and higher strength steels, grades AB, DH and Ell, produced to lACS standards.

In mild steel designs, grade-A with a nominal yield point of 235MPa is used, with no

impact test requirement. In high tensile steel designs, EB-36 steel with nominal yield

point of 355 MPa is required to be Charpy tested at -40C.
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Figure 2.2. Typical Penetration Detail Showing Stress Concentrations

(DNV,2005)

By comparison, the rules for offshore steel structures are much more onerous. Offshore

structural codes such as NORSOK (2004) require special steels where joint complexity

is high and failure will have substantial consequences, defined as loss of human life or

significant pollution, and this applies to joints where the geometry of connected

elements and weld type leads to high restraint and triaxial stress pattern. For offshore

ship structures the NORSOK Code N-004 specifies design class 4 (DC4) butt welds in

the deck, recognising the substantial reserves of residual strength inherent in ship

structures. The corresponding material quality is level Ior III. Level Isteel quality for

plates (MDS Y20) implies a low carbon steel equivalent to the European standard EN

10025 S355G IO+N/G lO+M. This material has a nominal yield point of 355 MPa

depending on the thickness, and a minimum average Charpy Impact value of 50 J at -

40C.
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The common structural rules (CSR) for new oil tankers define three structural

categories, secondary, primary and special (classes I, II and III). These rules allow the

use of grade AIAH steels up to a thickness of 20mm with the exception of class III

material which has to be grade B. The CSR requires special materials only in limited

zones in the mid body, including the sheer strake, deck stringer plate, the deck strake at

the longitudinal bulkhead and the bilge strake. Effectively therefore, the majority of the

steel structure is fabricated from grades-AiAH steels.

The fabrication of large ships structures from rolled steel plate leads to an inherently

complex internal arrangement involving a multitude of structural member intersections

in tanks, zones where in-service fluctuating field stresses are locally amplified.

Production considerations dictate the extended use of cheaper materials and careful

minimisation of welding. Such commercial constraints result in a significant departure

from the more rigorous offshore requirements described above. For production

reasons, ships structures are almost entirely fillet welded or at best, partial penetration

welded with full penetration welding enforced only in certain areas such as the double

hull lower hopper comer joint. Industry insiders have strongly criticised the designers

of new tankers for allowing fillet weld throat thicknesses to be optimised to suit

production constraints (Devanney, 2006).

Efficiency in the hull structural system is measured by the ratio of strength to weight.

Mild steel used for decades was reliable, forgiving but low in yield strength and

therefore relatively inefficient (Wilson, 1975). During the 1980s, optimisation by ship

builders together with the extended use of high tensile steel (InS) to take advantage of

the improved strength to weight ratio, resulted in the lightweight of large SH tankers

reduced to approximately 36,500 tonnes. This is roughly 15% less than the lightweight

of the current generation OH VLCCs. However, the lighter scantlings displayed much

greater sensitivity to fatigue failure since the HTS material had the same nominal

fatigue life as mild steel, although the dynamic stress levels and deflections were

significantly higher (Magelssen, 2004).

The foregoing considerations lead to a number of interesting preliminary findings and

conclusions. Firstly large bulk ship structures are much more complex than usually
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thought of in industry circles, indicating a perception problem in understanding as to

what really are ship structures? Secondly, there is a tendency to understate the

differences between the much more rigorous offshore requirements and the

requirements for large commercial ships. Thirdly the minimum requirements for

disposition of special materials and the adequacy of welding design required by

classification rules for large bulk ships appear to be marginal. Fourthly, the continued

use of A-grade steels having no guaranteed fracture toughness and susceptibility to

brittle fracture phenomena in tankers and bulk carriers appears to be a curious anomaly

which has been the subject of repeated criticism from industry critics in the past and is

linked to the bulk carrier problem discussed in section 2.6.1.

2.2.2 Structural Utilisation. Loads and Operating Environment

Primarily, tankers and bulk carriers are intended to transport huge consignments of bulk

commodities safely, including crude oil, products, iron ore, grain etc. across the major

oceans of the world in all types of weather conditions. The double hull VLCC Sea

Energy, built by Hyundai Heavy Industries in 2004, had summer deadweight of

299,998 tonnes and a lightweight of 43,969 tonnes. Filled with cargo, this represents a

structural utilisation factor of 6.82 based on cargo lift relative to the lightweight mass.

A Capesize bulk carrier built in Brazil in 1987, with a length of 277m had a deadweight

of 151,493 tonnes. The lightweight for this vessel was 21,896 tonnes and the utilisation

factor 6.92. Clearly, these structures are unique in terms of their load carrying ability

relative to their own structural weight.

In their re-assessment of the loss of the OBO Derbyshire in September 1980 (refer to

section 2.6.1), Paik and Faulkner concluded that large tankers and bulk carriers when

fully laden, carry cargo 6-8 times heavier than the structure supporting it, "in seas that

we are not presently designing for" (Paik and Faulkner, 2003b). This criticism of the

inadequacy of a major structural design parameter driving the design of large bulk ships

is surprising when it is viewed in the context of when the observations were made. The

significance of this statement is that the stochastic wave loading and dynamic load

response experienced by these vessels may not be properly accounted for in the design.

In the following section this hypothesis will be examined.

24



2.2.3 Global and Local Strength Aspects

The ship structural design problem is essentially the prediction of dominant hull girder

response in the form of vertical bending moments and shear forces in terms of the

lifetime probability of occurrence, and the cyclic loads tending to cause fatigue

damage. Static loads include mass and buoyancy forces, thermal and docking loads.

Low frequency dynamic loads include hull pressure variations due to waves, oscillatory

motions and inertial reaction forces due to the mass of the ship and its cargo. High

frequency loads include hydrodynamic loads due to engine or propeller impulses, wave

induced loads due to springing and whipping phenomena, and impact loads due to bow

slamming (Faltinsen, 1990; Hughes, 1988; Paulling, 1998).

The principal indices of longitudinal strength for tankers and bulk ships are found in the

rules of the international classification societies and the unified interpretations given by

lACS In classical allowable stress design (ASD), the primary indices of hull girder

longitudinal strength are the rule section modulii for deck and bottom. These are

derived from a combination of the wave-induced and stillwater bending moments. For

normal strength steel designs, the allowable stress level was traditionally set by the

international classification societies at 175 Nzmm" The allowable shear and wave

bending stresses were limited to 11ON/mm2
• In rule-based design, the minimum value

of the section modulus was established to keep the wave bending stress within

acceptable limits, as no explicit check for hull girder fatigue was carried out (Hughes,

1988).

The stillwater bending moment M. is specified III lACS UR S11.2.1.2 and is a

function of the design loading conditions, which for oil tankers includes homogeneous

loading, ballast, non-uniform loading and mid voyage conditions including tank

cleaning operations. The value of M. can be derived from direct calculations. Earlier

studies on wave induced bending moments for ships include the work of Little et al
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(1998). The common acceptance of longitudinal strength standards for large ships has

been the subject of much academic effort and a great deal of variance until the eleven

lACS societies agreed on the basic requirements for longitudinal strength at the 22nd

session of the lACS Council meeting in April 1991. This development work resulted in

the S11 Longitudinal Strength Standard described in detail by Nitta et al (1992). For

commercial ships under the S11 standard, the design minimum wave-induced bending

moment Mw is the mean value of the extreme wave bending moment which the vessel

is likely to encounter during an assumed lifetime of 20 years. Until recently, the

standard wave environment, assumed was typically worldwide service wave data.

M wh = +0.19CL2 BCb (kNm) for hogging

M ws = -0.11CL2 B(Ch + 0.7)(kNm) for sagging

where C = wave co-efficient (10.75 for 300m ~ L ~ 350m), and L = vessel length, B =

vessel breadth, C; = vessel block coefficient (Paik and Faulkner, 2003b).

The lACS wave bending moments are now incorporated in the Joint Tanker Project

(JTP) rules issued by ABS, DNV and LR, and in the Joint Bulker Project (JBP) Rules

discussed in section 3.4. Paik and Faulkner (2003b) have conclusively demonstrated

that, in the case of the OBO carrier Derbyshire. short-term response analysis involving

storms of a specific duration used to determine Mw resulted in wave-induced bending

moments 25-32% higher than the lACS standard values derived from the above

formula. Because of the large size of tankers and bulk ships, the effects of bad weather

on the ship's structure are not readily observed by the crew. Ship structures are mobile

and assumed to avoid bad weather (Lacey & Chen, 1995). Clearly, the handling of a

vessel during a severe weather event has a significant impact on the structural

performance. Faulkner (200 I) notes that "master mariners generally have little

confidence in the safety aspects of weather routing" and the tragic loss of the OBO

Derbyshire appears to support this conclusion.

A number of other researchers have recently reported (Stiansen and Thayamballi, 1987;

Kendrick and Daley, 2007; Smith, 2007) that the wave bending moments assumed in
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hull girder assessment to lACS S11 standards may be routinely exceeded in service.

Recently, Kendrick et al have shown that, based on a mean likelihood of 10-5.4 (hog)

and 10-6.9 (sag), the expected return periods are 2.9 weeks and 1.8 years for hogging

and sagging BM's respectively. The conclusion is that these average design values

indicated in figure 2.3 are "not exceedingly rare" and are somewhat surprising, as

revealed further in the following discussion.

Figure 2.3. lACS S11 Standard for WBM (Kendrick and Daley, 2007)

Rare wave events occurring with an annual probability of 10-4are accounted for in the

accident limit state (ALS) design of offshore structures, whereas ship structures are

designed for a 20 year return period ultimate limit state (ULS). Bitner-Gregersen et al

(2003) concluded that, for offshore structures, the 100 year wave load with appropriate

safety factors in ULS is applied. Recent meteorological data interpreted by Magnusson

et al (2006), suggests that the 100 year North Sea wave corresponds to a significant

wave height of around 16.0m. These are the grounds for recent criticism by Freize and

Paik (2007) and Frieze and Lin (1991) of the very different and reducing reliability

levels of ships observed, compared to their offshore counterparts.

The current research into extreme waves conducted by Bitner-Gregersen and colleagues

referred to earlier indicates that wave heights between 20-30m may be experienced in
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certain ocean areas during extreme weather events. For ship design, the US Navy

assumes that the largest wave likely to be encountered is 21.4m. Smith (2007) reported

that current lACS classification standards assume that about 88% of waves have

periods between 7-14 seconds and significant heights in the range l.Om to 10.9m and

only 0.2% of these significant wave heights fall within the range of II-17m. Typically,

a 300m length bulk ship will be dimensioned to a wave height of approximately

10.75m. Statistically, a vessel operating in the North Atlantic will experience 55 x 106

waves during its lifetime, and 99.8% of these waves have a significant wave height less

than 11.0m. However, approximately 110,000 of these waves over 11.0m height could

be encountered during the vessel's lifetime (Smith, 2007). In a re-assessment of the

sinking of the Derbyshire in September 1980, Paik and Faulkner (2003b) refer to

"prima facie evidence" for an in-depth examination of the adequacy of the lACS

standard UR S11 for large tankers and bulk carriers.

For adequacy of global strength, the lACS longitudinal strength standard Unified Rule

(UR) S7, prescribes a minimum midship section modulus as a function of the principal

dimensions for ships with 90m ~ L ~ 500m fabricated from steel. According to Paik

and Thayamballi (2003a), the lACS minimum value is given by:

where Cl = wave co-efficient (10.75 for 300m ~ L ~ 350m), K = high tensile steel

factor (K = 1.0 for normal strength steels), and the other parameters are defined above.

Typically, the actual section modulus for the deck and bottom of large bulk ships will

exceed the required lACS minimum. For example, the section modulus of the deck Zd =

77.195 m3 for the least cost option VLCC_2 described in section 5.3, is 13.6% above

the lACS minimum requirement. This margin is typical for many tanker designs, and

just exceeds the allowable 10% reduction in section modulus to allow for the effects of

corrosion while the vessel is in service.

These criteria are contained in IMO Resolution MSC.105(73) adopted on 5th December

2000. The IMO standard contains the same formula given above and has now been

integrated into lACS procedures. The dangers of strict adherence to an ASD approach
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involving small margms above lACS minimum section modulii criteria have been

highlighted in relation to bulk carrier designs. Bottom structures with large plate

slenderness ratios of 2.5 or more have been shown to be highly susceptible to buckling

failure under vessel hogging mode, even though the ratio of section modulii at bottom

to deck Zn/ZD has been close to 1.33 as in the case of the Derbyshire (Paik and

Faulkner,2003b).

Whilst the global strength considerations described above drive the mam scantling

requirements primarily from a buckling viewpoint, a combination of global loads and

lateral loads experienced by plated grillages is part of the structures problem. A detailed

in-depth consideration of local strength aspects leads to further important discoveries

relative to the real nature of ship structures, normally the domain of specialised naval

architects. Recent independent critical analytical work performed by Daley et al (2007)

involved comparative studies of ship structural design standards which was published

by the Ship Structure Committee, report no SSC-446. This work examined the strength

aspects of a typical bottom panel or grillage from a 50,000 dwt bulk carrier. The panel

measured 1O.08m length x 3.32m width having a longitudinal frame spacing of 830mm

and a transverse frame spacing of 3,360mm. The combined loading consisted of the

longitudinal hull (hogging) bending stress of 126 MPa and a lateral pressure on the

shell plating of 21OkPa. The structure was found to be capable of withstanding 2-3

times the local design pressure without any visible local deformation (buckling). The

maximum lateral deflection at twice the design pressure was 2.0mm.

Recently, criticism has been directed at the lack of transparency in the rule making

process for ship structures. It has been pointed out that ships are the only form of major

structures world-wide not built on the basis of independent and transparent standards.

Frieze and Paik (2007) refer to a ''judge and jury approach" to the development of rules

by the classification societies. This concern is heightened by their observation of a

downward trend in reliability of ship strength accounting for the effects of corrosion

and wastage. In conclusion, the review conducted in this section related to global

strength aspects for large tanker and bulk carrier structures revealed a number of

important findings and conclusions.
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Firstly, the lACS minimum standard SII for wave bending moment does not account

for a survival design approach which has been strongly advocated in important

independent research. Secondly, the ASO approach is no longer adequate for the design

of large tankers and bulk carriers and has been described as "absurd" (Paik and

Faulkner, 2003b). Thirdly, ships typically rely heavily on the substantial plastic reserve

characteristics of plated grillages in order to create a significant strength reserve and

classification rules lack a significant factor of safety against yield at the design point.

These plastic reserves are invoked on a regular basis with the ship in service, although

the accompanying plating deformations are not normally observed.

2.2.4 Political/Economic Factors

Over the last 25 years, the key driver for the major bulk commodities market including

crude oil, products and iron ore has undoubtedly been rapid urbanisation and

development in China which commenced in 1976. China has currently around 20% of

the world's population. The Chinese economy has grown to be the third largest in the

world with a gross domestic product (GOP) of USO 4.3 trillion (2008), making it the

fastest growing major nation in the world. The average annual GOP growth rate has

been more than 10%, effectively doubling every 7 years. Predictions made in January

2008, indicate that 400 million Chinese are expected to populate the urban communities

to be built during the next 15 years. With the worldwide economic crisis unfolding in

late 2008, huge state investment into China's infrastructure and heavy industry will

undoubtedly slow growth rates down to more sustainable levels, although a strong

demand for commodities is expected to continue (http://www.worldyards.com. 15th

January 2008). The design and operation of bulk ship structures are fundamentally

driven by the commercial constraints imposed by such worldwide markets for

commodities which dictate freight rates.

Increasingly, political factors such as regional strife and terrorism have influenced

markets. Figure 2.4 illustrates how the oil price has been affected by major political

events over the period 1947 to 2003. Tanker shipping suffered the effects of the

supply/demand imbalance created during the period 1973-1977 when approximately 80

million tonnes deadweight was constructed (Osborne, 1992). More recent black swan
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events involving speculation on commodities in global financial markets have led to oil

prices reaching approximately $140 per barrel in mid 2008. Historically, tanker single

voyage freight rates for crude oil shipment from 1947 to 1990 show distinct spikes

related to world political and economic events. Beenstock and Vergottis (1993) suggest

that four basic perennial market factors affect the economics of the bulk trades,

explaining the aggregate fluctuations in market conditions, viz freight rates,

shipbuilding costs, 2nd hand and scrap value.

Figure 2.4. The Effect of Major Political Events on Crude Oil Prices 1947-2003

(http://www.wtrg.com. 28th July 2008)

Figure 2.5. Total Loss Ratio 1945 to 2005 (Soma, 2004)
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Ships carry about 95% of international freight and shipping costs are about 25 cents per

tonne mile (Faulkner, 2003). Low freight rates are said to be a factor negatively

impacting safety in shipping. Faulkner suggested increasing freight rates by 40-50%

over 10 years. In a recent study exploring the data interrogation approach for

identification of safety characteristics in shipping organisations, Soma (2004) found an

inverse relationship between freight rates and loss ratio. In figure 2.5 from Soma's

study, the post World War II freight rates (solid line) are overlaid and compared to the

total loss ratio trend (dotted line). Fluctuations in freight rates were tuned down using a

moving average approach. Because freight rates generally increase over time and the

loss ratio decreases, the freight rates are inversed. The only exception to the trend was

shown to be the inverted peak in the 1980s due to a market drop which forced

speculators out when speculation in buying and selling of ships was not viable.

During the most recent prolonged recession of the 1980s, asset play, or the buying and

selling of vessels when the market value was less than the future value, meant that a 15

year old vessel could be purchased for approximately 30% of the new construction cost

and traded under a flag of convenience for the remaining lifetime, operating on a

minimum maintenance budget. These owners took advantage of high freight rates and

low operating costs to maximise profits. Their reputation and safety standards were

regarded to be of secondary importance, giving huge benefits for least costs. The

1980's is characterised as a period when a small number of orders for new buildings led

to the extension of vessel lifetimes to 30 years. By 1987, spot trading of crude oil had

reached 50%. Further, speculators driving the market were not interested in ship

condition. A recent Organisation for Economic Co-operation and Development study

(OECD, 2001) concluded that these circumstances led to the "sub-standard ship"

syndrome. Leading shipping companies maintaining good technical condition and well

qualified crews were not able to compete on this basis.

Over a decade ago, Shashikumar (1995) reported that market forces were having a

direct and dramatic impact on the nature of the crude oil transportation market. In the

golden years of the 1960's and early 1970's, a tanker owner did not require an

administrative structure, entrusting the technical management of the ship to the master
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and crew. In this period, bank loans could be recovered in less than 5 years and funding

was readily available. Investment in tankers was considered to be low risk. Economic

planning could be carried out independently for each vessel and decisions made on an

out-of-pocket and opportunity-cost basis (perfect competition). By 1989, the total

tonnage owned by the oil majors had declined to 13% of the total tanker fleet.

Ownership by the traditional oil majors has declined dramatically since the 1970's. On

the other hand, subsidiaries of state-owned oil companies including Vela International

Marine, the National Shipping Company of Saudi Arabia (NSCSA), the Kuwait Oil

Tanker Company (KOTC) and the National Iranian Oil Tanker Company (NlTC) have

all expanded their tanker fleets.

More recently, the tanker industry has become very cyclical in nature, and there is no

reliable method to pre-determine freight rates. Global oil prices have spiralled and

fallen. World stock markets are currently extremely volatile in nature, leading to a near

melt down of the global financial system in October 2008. In these conditions, ship

owners often find circumstances changing precipitously in the down slide. Shipping is

a very cyclical activity with periods in which the market cannot support operating costs.

It is highly sensitive to currency exchanges which can wipe out entire trades. Seven

years ago, Mikelis (2001) observed that shipping was becoming a high volume/low

profit-margin business and unpredictable fluctuations were seen to be devastating.

Recent events including the collapsing of freight rates and the forced lay up of

thousands of smaller bulk carriers confirm this view, and highlight the forthcoming

risks faced by the shipping industry and the wider international community when faeed

with prolonged periods of low freight rates and uncertainty following economic

downturns.

2.3 Structural Degradation Mechanisms

2.3.1 The Corrosion Hazard

Two particular challenges have been identified with respect to the fitness for purpose of

double hull tankers, namely design to prevent corrosion and design to prevent fatigue as

reported by several studies including (Violette, 1994; Paik and Thayamballi, 2003a;
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Paik et al, 2003c; 2003g). ClassNK has observed that approximately 70% of failures of

hull structural members are caused directly by corrosion and wastage and is the prime

cause of the loss of bulk carriers and ore carriers (Mizukami et ai, 1994a). Corrosion is

stated to be the major cause of marine structural failure, leading to fatigue damages

identified by many studies (Wang et ai, 2003a; 2003b; Garbatov et ai, 2005; Benoit,

1994; Contraros, 2003; DNV, 1999; Emi et al, 1994a; 1994b; Magelssen, 2000; Guedes

Soares et ai, 1996; Soares and Garbatov, 1996; RINA, 1994; ISSC, 2007; Ivanov et ai,

2004) and others.

Steel structures operating in sea water are exposed to particularly severe corrosion

hazards. Corrosion damage in oil tankers may lead to loss of integrity in oil/water tight

boundaries causing pollution, cargo mixing or gas accumulation. Water ballast tanks

represent the highest risk areas relative to corrosion in oil tanker hull structures as

concluded by several studies including those of Violette (1994), Bea (1993) and

Towers (1994). The repeated cycle of filling and emptying ballast tanks with sea water

of varying quality creates conditions inside the tank very conducive to a variety of

corrosion mechanisms. Ballast tank temperatures in bulk carriers and double hull

tankers can range between 0-70° C. Ballast tanks are always wet and accumulate mud

on the bottom and horizontal surfaces which facilitates microbial corrosion. In double

hull tankers, the surface area of the ballast tanks has been dramatically increased 2-3

times that for an equivalent size single hull tanker. Pre-MARPOL tankers were not

required to have the ballast tanks protected against corrosion. Since about 1970,

classification societies allowed owners to apply coatings in order to reduce scantlings

by 5-10%. Special class notations were introduced such as Lloyds Register 'cc'

notation. This option is no longer allowed by the lACS member societies as reported by

Towers (1994).

In crude oil tankers, cargo tanks are exposed to a number of specific corrosion hazards

including general corrosion, local corrosion, pitting corrosion and weld metal

corrosion. Excessive crude oil/water washing can cause erosion corrosion through

impingement. Crude oils with high sulphur content can react with sea water to form

acidic compounds, causing pitting corrosion. The Oil Companies International Marine

Forum (OCIMF) have warned that poor quality inert gas may also pose a hazard in the
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vapour space of cargo tanks due to acid formation associated with condensation. "Sour"

crude oil is known to cause higher corrosion rates compared to "sweet" crude. With

certain crude oil cargoes, the presence of hydrogen sulphide has been reportedly

associated with accelerated corrosion rates in deck structures (OCIMF, 1997).

In bulk carriers, cleaning cargo holds with sea water after carrying high sulphur coals,

led in some cases to rapid corrosion affecting side frames and their end connections to

hopper and top wing tanks and catastrophic loss of side structure. Structural

optimisation in the upper wing tanks of certain bulk carrier designs has resulted in deck

strips up to 6.0m in length, having marginal buckling capacity. Andreassen et al (1999)

concluded that the presence of corrosion combined with these marginal strength

reserves may have been the root cause of sudden catastrophic structural failure and loss

of life in bulk carriers.

Recently, an improved understanding of the relation between structural strength and

coating condition has emerged. In HTS designs involving reduced scantlings,

deflections are increased compared to mild steel designs. In areas of high shear stress,

buckling of plating may lead to local coating breakdown, loss of section, higher

stresses, higher deflections and load re-distribution to adjacent areas, culminating in

what Contraros (2003) refers to as the "domino effect". Failure to maintain coatings in

vessels with up to 50% HTS, meant that steel of substantially less thickness and

inherently high residual tensile stresses due to welding, was exposed directly to sea

water. Stress corrosion with associated accelerated deterioration and cracking resulted

in many instances. Yamamoto (2007) suggested that this was the primary reason for a

reversal in the trend of HTS in VLCC hull structures from 30-40% to 80-90% in the

mid 90s, and recently back again to approximately 25-30%. Yamamoto concluded that

the high tensile steel ratio for new double hull tankers under the new common structural

rules (CSR) would converge into one design incorporating approximately 50% HT steel

due to the more onerous global and buckling loads required by the CSR.

From an engineering perspective, using a high percentage of HTS in VLCC and VLBC

structures would appear to be desirable for increased economy of construction due to

the reduced steel mass. In this regard, the comments from Yamamoto support the
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shipbuilder's viewpoint. However, the fatigue characteristics of HTS are similar to

those for NS steels. Therefore, the higher stresses and greater deflections inherent in

HTS designs require much stricter control of the design and execution of critical

structural details including geometric stress concentrations and welded joints. In HTS

rich designs, the importance of protective coatings is paramount. Higher stresses and

greater deflections are conditions which can lead to initiation points for early failure of

protective coating systems, leading to the "domino effect" referred to above. Exposure

of steel surfaces to a corrosive environment accelerates corrosion induced fatigue

phenomena, formerly a widespread problem in some HTS rich bulk carrier and tanker

structures.

2.3.2 The Fatigue Hazard

In the past, many studies have focussed on the fatigue problem in ship structures

including ISSC (2006a), Mizukami et al (1994b), Liu et al (1981), Ma et al (1995),

ISSC (2006b), Jubb (1995) and Storhaug et al (2001). Prior to 1990, classification rules

contained only explicit fatigue criteria expressed as a material factor introduced in the

late sixties due to the introduction of HTS (Magelssen, 2000). In 1990, a series of 3-4

year old Japanese built single hull VLCC's suffered cracking in way of the side

longitudinal connections to the transverse bulkheads. In some cases the cracking led to

leakage of oil into the sea through the side shell. The cracks were concentrated in the

side structure from the load water line to approximately 8.0m below. Most cracks

occurred in way of the cargo tanks and involved unsymmetrical longitudinal sections.

The problem was found in ships built from HT32/HT36 steels and utilising the newly

developed thermo mechanically controlled processing (TMCP). A full discussion of the

investigations and findings performed by the Japanese classification society ClassNK is

given by Yoneya et al (1993). As a result, classification societies after 1990, introduced

explicit fatigue criteria, resulting in increased scantlings of the side longitudinals.

The simplified fatigue method for ship structures described by Cramer et al (1994)

assumes that the long-term stress histogram of the hull structure resulting from random

sea loading follows the Palmgrens-Miner Rule of linear cumulative damage and the
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local long term stress range response can be described with n, stress cycles in stress

block i.

k n. 1 k m
D= ~_' =- ~nA.a.~N <c: I I

;=1 ; a ;=1

where D = the accumulated fatigue damage, Ii.m are S-N fatigue parameters, k = the

number of stress blocks, and N; = the number of cycles to failure at constant stress

range tso, If the long term stress range can be described by Weibull distributions for

the different load conditions, with scale and shape parameters q and h respectively, the

cumulative damage is expressed by:

where nd is the number of stress cycles over the design life, and ~ 1+ :) is the

Gamma Function taken from tables in fatigue codes.

A rational design procedure was put forward by Violette (1995). Guidelines for fatigue

assessment (DNV, 2005; BV, 1994) have been developed by the major classification

societies, and these typically are software supported. In DNV eN 30.7 (2005), a

simplified method based on fatigue tests (S-N data) and estimates of cumulative

damage (Palmgrens-Miner Rule above) are prescribed. The long-term stress range can

be determined by either of two alternative methods. In the first simplified approach, a

postulated Wei bull distribution can be assumed, with the load effects derived from the

ship rules. Nominal stresses are multiplied by the various stress concentration factors to

get the local notch stresses for the S-N curves. In the second more complex approach,

the long-term stress range has to be calculated from a given wave climate and

combined with structural FEM analysis.
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Horn et al (1999) have described the methodology used for fatigue assessment in the

SafeHull approach, where Weibull shape parameters for structures at various locations

in the ship are in the range 0.8 to 1.1.

Figure 2.6. UK Department of Energy S-N Curves (110m et ai, 1999)

Two slope S-N curves were used, based on statistical analysis of experimental data

taken at 2 standard deviations below the mean lines. Eight curves, each representing a

class of welding detail were chosen according to UK Department of Energy data,

reproduced in figure 2.6 above. The fatigue behaviour of different types of structural

details is evaluated by constant cycle fatigue tests and the results plotted as straight

lines on log-log paper. The designations B, C, D and E in figure 2.6 indicate individual

S-N plots for the various structural details tested.

38



According to pre-CSR classification rules, the nominal fatigue life of the hull girder

was given as 20 years, based on world wide wave data.

Table 2.1. Effect of Trade Route on Fatigue Life (Magelssen, 2004)

The new CSR rules described in section 3.4.3, require 25 years life based on North

Atlantic wave data. Magelssen (2004) has presented a comparison of relative fatigue

lives for the various routes shown in table 2.1. It is obvious that there is a remarkable

difference between the respective trade routes.

Despite the initial efforts made by the classification societies to introduce explicit

fatigue criteria into ship design after 1990, recent Norwegian research (Storhaug, 2007;

Storhaug and Berstad, 2001) concluded that current fatigue design procedures for ships

using classification society rules were insufficient to avoid fatigue cracking, since only

a very limited number of susceptible areas were usually considered. The criticism was

related to vibratory effects induced by springing and whipping phenomena not

accounted for in current fatigue design procedures. Ship owners were advised to take

precautions and use more advanced methods for both new and existing ships, similar to

offshore applications. Previously held views regarding the contribution of springing

and whipping phenomena to total fatigue damage were challenged.

In the 1960s the first published studies appeared on whipping and springing. In the

1970s, a number of full scale measurements were carried out on tankers including the

255,000 dwt Esso Bonn followed by the ARCO tanker California in 1995 described in

section 2.5.2, and more recently, full scale measurements carried out in 1997 on a 300m

length ore carrier in the trans Atlantic ore trade (Moe et al, 2005). In 2002, DNV

initiated an extended workshop on springing with participants including DTU, NTNU,
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Marintek and CSSRC. Four different non-linear hydrodynamic codes were used to

predict the observed wave loading including wave induced vibration, and the

theoretical results were compared to full scale data, indicating under prediction of the

actual wave induced stresses in all four codes.

Storhaug (2007) recently conducted a comprehensive and definitive study on the

subject of wave induced vibrations in ships, part of his Doktor Ingenior thesis,

involving a series of model tests of an iron ore carrier using a 4 segmented model, 8.7m

in length. The contribution from vibration damage was found to have increased from

19% in the North Atlantic environment to 26% in world wide trade. The dominating

wave and vibration damage came from waves with significant height of only 5.0m. The

conclusion was that current codes are incapable of accurately predicting the effects of

whipping and springing response in terms of its full contribution to overall fatigue

damage for a general design. Storhaug found these discoveries indicated that the

decision to remove the whipping addition from the new lACS Joint Tanker Project

(lTP) and Joint Bulker Project (JBP) Rules, actually reduced the safety level.

After World War II, improvement in materials technology and attention to detail design

virtually eliminated the serious fatigue and fracture problems which had plagued ship

designers during and just after the war. In the late 1970s, some of the world's largest oil

tankers were constructed including Seawise Giant of 564,763 dwt. With the

introduction of HTS to take advantage of the higher strength to weight ration, these

mega structures began to experience fatigue failures. Ship designers had three options,

safe-life. fail safe or damage tolerant design. In safe-life design normally adopted for

aerospace structures, fatigue cracks could not be allowed to develop during the nominal

lifetime of the structure, normally 20 years for ship structures. To achieve this goal, the

design fatigue life was necessarily several multiples of the target life time of the

structure. In the fail-safe approach, fatigue cracks were allowed to develop but were

controlled within a limited area (Wilson, 1975). Choosing the first option would have

meant that designers could not take advantage of HTS because it was virtually

impossible to economically design lightweight structures that would not display

fatigue cracks inside 20 years. The fail safe/damage tolerant approach has been adopted

in the current generation of large bulk ship designs, where it is assumed that flaws of
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detectable length (critical flaw size) will be found during regular calendar based

surveys.

In conclusion, large bulk ships have been deliberately designed on the assumption that

fatigue cracks will occur and that the structure will be fail-safe and damage tolerant

because flaws can be detected by visual inspection before they reach critical length.

The weakness in this approach lies in the practical difficulties encountered in the

inspection of such huge structures (refer to section 2.5.3 for a discussion on this topic).

As a further consideration, because the majority of ship structures are fabricated from

material without guaranteed fracture toughness values (A-grade normal and higher

strength steels), the critical defect size is much reduced, highlighting the importance

and reliance on structural inspections to find flaws before they propagate in a brittle

manner, as observed by Jubb (1995). The general view today is that the crack initiation

period in as-welded steel joints is insignificant due to the existence of welding defects.

This means that crack growth is initiated in the very early stages of the structural

lifetime (Ye et aI, 2007). Fatigue and buckling phenomena can become the governing

failure modes driving the design (ABS, 1998).

Despite these realities and the limitations on the effectiveness of inspections to detect

flaws, and to guarantee safe structures, the maritime industry has only explicitly

addressed fatigue in the design of large bulk ships after 1990. There are concerns that

the standard minimum compliance approach to current fatigue design may not be

sufficient to ensure reliable and robust structures. Other concerns include the failure to

address the combined effects of springing and whipping vibratory phenomena into the

new CSR rules. This aspect has been a long standing complaint from sectors of the

industry, most recently by the Greek bulk shipping community (lACS, 2006a).

2.3.3 Corrosion Ratcs & Margins

In the recent past, crude assumptions have generally been made in relation to estimation

of corrosion rates for ship design purposes. A number of sources from the literature

(Wang et al, 2003b; TSCF, 1992; ISSC, 2007) contain corrosion rate estimates. TSCF

typically quote 0.3mmlyear general corrosion in seawater ballast tanks.
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Figure 2.7. Corrosion Process Model (Paik et al, 2003c; 2003d)

From the early eighties, evidence of a more sophisticated approach has emerged,

including phenomological probabilistic models representing the corrosion of steel in a

marine environment such as the work done by Melchers (1994). A number of key new

studies based on analysis of statistical data from thickness measurements have been

presented in the literature, including the model developed by Paik et al (2003c; 2003d),

shown in figure 2.7. The Paik theory shows three distinct phases in the corrosion

process. In the first phase, the coating remains intact, followed by a transition period in

phase two involving initial break down. In the third phase, corrosion proceeds, steel

loss occurs and the process may be linear or non-linear. The following expression was

given:

t = C TC
'r I e

where t , =corrosion depth (mm), T, =exposure time (years) after coating break-down

(T, = T - T, - ~) and T = the age of the structure (years), T; = the life of the coating

(years), T, = duration of transition (years) which can be taken as zero. Cl and Cl are

coefficients.
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The coefficient C2 has been estimated by curve fitting of corrosion measurement data

from more than 100 bulk carriers and found to be in the range 0.3-1.5, but for practical

purposes can be assumed to be 1.0. Based on a fixed value of C2 = 1.0, Cl can be

estimated from a Weibull distribution of corrosion data. In other research work, Ivanov

et al (2004) have described a linear model of the corrosion process involving four

phases. A non linear corrosion wastage model based on the solution of a differential

equation originally proposed by Guedes Soares and Garbatov has been validated

against corrosion data contained in the ABS database in relation to deck plates of

ballast and cargo tanks (Garbatov et al, 2005).

Andreassen et al (1999) quoted a range of corrosion rates for general corrosion in a

number of bulk carrier types, obtained from Weibull distributions, which varied

according to the structural location. The maximum corrosion rate given for the main

deck plating was O.ISmmlyear and for the stiffeners in the upper wing tanks it was

0.07mmlyear. General corrosion rates in cargo and sea water ballast tanks in FPSOs

have been studied by MacMillan et al (2004). The average rate (upper to lower zone)

was 0.08 to 0.3Smmlyear. The average rate in cargo tanks (upper to lower zone) was

0.1 to 0.5mm1year. The authors of this study noted that a temperature increase of 10°C

doubled the corrosion rate based on an ambient temperature of 20°C. A number of other

factors influencing corrosion rates in low alloy steels were observed including oxygen

in sea water, salinity, chlorinity, flow, sulphide pollution, humidity etc.

OCIMF (1997) studies related to oil tankers concluded that, in uncoated cargo tanks,

general corrosion rates were typically 0.1mmlyear, but in some cases, the corrosion rate

was as high as 0.24mm/year involving ships less than 3 years old. Crude oil at high

temperatures in excess of 50°C is routinely loaded in the Arabian Gulf. Double hull

tankers are known to be susceptible to microbe induced corrosion (MIC) due to the

insulating effect of the double bottom and sides resulting in cargo temperatures being

maintained for longer periods, as reported by several studies (Thygesen, 2002; Hill and

Hill, 1994). In the study referred to above, some OCIMF members reported pitting

corrosion rates in the uncoated bottom of cargo tanks as high as 2.0mmlyear.
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In traditional ship design, corrosion allowances were based on 10 years service life.

Corrosion margins were utilised as safety factors, assuming breakdown in tank coating

systems. This was a reasonable assumption, since the mean nominal lifetimes of most

ballast tank coating systems were approximately 10 years which has been confirmed by

several researchers including MacMillan et al (2004) and Towers (1994). Assuming

general corrosion rates in sea water ballast tanks described in section 2.3.3, the average

wastage in an unprotected 20mm plate over a 20 year period could be as high as 45% of

the original thickness. Until recently, classification societies allowed a maximum 20-

25% thickness reduction in individual scantlings including plates and stiffeners as a

"rule of thumb". Devanney (2006) in his critique of the tanker industry refers to 25%

allowable loss in steel thickness as "horribly wasted". However, the overall section

modulus of the hull girder was not allowed to degrade to less than 90% of the lACS

minimum requirement given in the formula quoted in section 2.2.3. Recent studies

(Paik and Thayamballi, 2002a, 2002b, 2003e; 2003f) concluded that when deck or

bottom buckling was taken into account in corroded tankers and bulk carriers, these

modest margins were often violated unintentionally.

Under Resolution A.744(18) adopted by the lMO on 4th November 1993, a means of

monitoring corrosion through "substantial corrosion" was introduced by the

classification societies. This was defined as 75% of the allowable wastage. If the

wastage limit was 25% of the gross thickness, the substantial corrosion" threshold was

reached at 0.25 x 0.75 = 18.75% of the gross thickness. During ultrasonic thickness

(UT) measurements carried out in conjunction with Class Renewal Surveys, the

substantially corroded areas were recorded. In latter developments, a "condition of

class" with a strict time limit was imposed, forcing owners to carry out annual surveys,

UT measurements and possible repairs. During vetting inspections, some charterers

refused to accept vessels found with substantial corrosion.

With the introduction of the CSR in April 2006, the philosophy for establishing

corrosion margins in tanker and bulk carrier structures changed significantly. The "net

thickness concept" meant that the strength of the structural members was assessed

using the structural capacity in the wasted condition, or net thickness. A general

average global hull girder and primary support member wastage was assumed, such
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that the overall strength of these members was maintained. The corrosion values

included in the new rules were obtained from a database of lACS members with more

than 600,000 measurements (Yaney a, 2004). The new rules are based on specific

corrosion margins stated in the rules, applied to plating and primary support members,

and added to the required net thickness. In service, 0.5mm of the corrosion margin has

to be retained, being the maximum predicted corrosion loss over the 2.5 year period

between the main class renewal (MCR) surveys, as explained by Horn (2005).

The authors of a recent paper on the lifecycle costs of bulk carrier hull structures and

the impact of the new lACS Common structural rules (Gratsos and Zachariadis, 2005),

presented a impassioned argument for significantly increasing corrosion margins.

Reasoning that some class societies had promoted vessel designs requiring steel

renewals after 10 years, the authors believed that adequate corrosion margins have a

lower life cycle cost per annum. Greek shipping industry experience was said to have

indicated that corrosion margins for a 25 year lifetime in the ballast tanks of the

Panamax bulk carrier example studied, should be up to 7.5mm in places (e.g. deck and

side transverse web plating). This was approximately double the 10 year corrosion

margins which were numerically similar to those required by the new CSR. The debate,

sometimes acrimonious and with comments largely from the Union of Greek Ship-

Owners, was taken to lACS and the records have been published (lACS, 2006a).

In section 5.3, four alternative VLCC designs of similar dimensions will be presented

for comparative purposes. The least cost option has a total steel mass of 25,731 tonnes.

By contrast, the high quality option has a steel mass of 31,965, an increase of 24.2%.

The additional cost of the 6,234 tonnes of steel is roughly USD 12.5 million based on

an assumption of USD 2000/tonne for new steel given in section 5.4.1.1. The corrosion

margins adopted in the above VLCC designs are 3.5-4.0mm average, or approximately

25% of the gross shell plating thickness (refer to table 5.12 in section 5.4.1.2). This

finding is not surprising since it generally corresponds to the lACS wastage allowance

for corrosion as discussed in the foregoing sections. A doubling of the corrosion

margins in the case of the least cost option VLCC_1, would result in a steel mass

similar to that for the high quality option VLCC_4, and an additional cost of USD 12.5

million or about 8.3% of the capital cost of the vessel. In section 3.2.5 product quality
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related to large bulk ships is discussed. Quality implies performance optimisation and

cost minimisation. These objectives are the result of compromise which is the essence

of good engineering design. Therefore indiscriminate doubling of corrosion margins

due to failure of protective coatings is not seen as good design.

2.3.4 Importance o[Coatings

In the 1980s a number of tankers and bulk carriers were constructed with a high

percentage of HTS and reduced scantlings. Owing to a combination of mediocre flag

state and class society intervention, speculative owners and poor technical

management, severe structural problems were experienced (OECD, 2001). The

resulting criticism, often directed at class societies, led to the introduction of many

changes to the regulations including the amended MARPOL, SOLAS and other IMO

conventions.

The new SOLAS Regulation II-l/3.2, applicable from the l " July 2008, addresses the

effectiveness of the corrosion prevention systems in dedicated seawater ballast tanks in

all types of ships and the double skin spaces of bulk carriers. From 2000, the segregated

ballast tanks of all new double hull tankers must be protected with a light-coloured hard

coating such as modified tar epoxy. The Performance Standard for Protective Coatings

(PSPC) is designed to provide a target coating lifetime of 15 years. The coating system

shall be approved and the application and verification processes are defined in the

PSPC standard. The choice of major coating system parameters above the PSPC

standards, including surface preparation, number of coats, edge preparation, dried film

thickness etc is specified by the buyer. Effectively therefore, the coating lifetime and

hull durability is directly controlled by the ship owner (ABS, 1995a; Buxton and Cain,

1994; DNV, 1999; Emi et aI, 1994a, I994b ).

These above measures intended to improve the performance of tank coating systems are

currently new and there is no database of experience. However, it is expected that the

envisaged controls over the application of coatings during new construction will lead to

an improvement in coating lifetime which in tum will mitigate the risks of

unanticipated coating failures and the subsequent onset of structural problems during
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the in-service phase. If corrosion is eliminated during the lifetime of the vessel, the

intervention measures necessary to deal with the accelerated onset of corrosion-induced

fatigue failures will be reduced.
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2.4 The Regulatory System Affecting Ship Structures

2.4.] Main ]MO Instruments

Figure 2.8 presents an overview of the international maritime system, with the 1982

United Nations Law of the Sea (LOS) Convention at its apex, which came into force in

November 1994.

Figure 2.8. Overview of the Maritime Regulatory System (after Soma, 2004)

The LOS Convention provides the regulatory powers assigned in accordance with the

zones where the vessel is located. Outside territorial waters, the principle of res nullius
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(belonging to no one) reigns. Under the convention, the IMO is tacitly acknowledged to

be the proper body to formulate international maritime regulations for the purpose of

protection of the environment and safety at sea, and its role is defined in Article 2 of the

1948 Geneva Convention. The equal and sovereign states which make up the

international maritime community are signatories to the various IMO Conventions.

Effectively, the law of the sea provisions divide up the regulatory powers over maritime

navigation between the respective shipping states. States base their regulatory

responsibilities on the principles of international law, utilising the IMO Conventions as

instruments (Boisson, 1999).

At the centre of the international maritime regulatory effort is the International

Maritime Organisation (lMO). The IMO is a specialised agency under article 57 of the

United Nations charter. IMO as an intergovernmental organisation is financed by its

157 member states.

liMO Conventions 1
Ir ~ ~ 1

SOLAS ILLC TONNAGE MARPOL
- Strength - Strength - Gross - Arrangements
- Damage Stability - Freeboard - Net - Damage
- Machinery - Watertightness - Accidental
- Electrical -Weathertightness - Operational
- Fire - Intact Stability
- Life saving
- Communications
- Navigation
- Operation

Figure 2.9. Main IMO Conventions

The basic IMO structure comprises the Assembly, the Council, the Maritime Safety

Committee (MSC), the Legal Committee, the Marine Environment Protection

Committee (MEPC), the Technical Co-operation Committee, the Facilitation

Committee and the Secretariat. The MSC is the highest technical body of IMO and is
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responsible for construction and equipment of vessels (IMO, 2008). Figure 2.9 above

shows the main IMO Conventions which are briefly described as follows:

2.4.1.1 SOLAS Convention

SOLAS Chapter II-I addresses construction, structure, water tightness and stability.

Although it is not widely understood, the SOLAS Convention implicitly mandates the

prescriptive structural maintenance standards formulated by the international

classification societies. In July 1993, lACS issued Unified Rule Z.IO.2 containing

guidelines on the "enhanced programme of inspections during surveys of bulk carriers

and oil tankers (ESP), originally referred to as MARPOL 13G. In November 1993, the

IMO adopted resolution A.744 (18) In 1995, the IMO gave explicit recognition to

classification by adopting amendments concerning ships structures into the SOLAS

Convention. SOLAS Convention 11-1/3-1 requires that "all ships shall be maintained in

compliance with the structural mechanical and electrical requirements of a

classification society which is recognised by the administration".

Hence prompted by the United States, classification became compulsory from 1si June

1998, making conformance to classification rules a statutory requirement.

MSC/Circ.1070 contains obligations to ship owners under SOLAS regulations 1111 and

II-l/3-1 chapter IX and regulation 111 of the 1966 ILLC. The ILLC stipulates that, in

order to receive a Load-Line Certificate, a vessel must be of "adequate strength".

Consequently, it is a statutory obligation to maintain the ship structure to the standards

in the rules formulated by the international classification societies. Evidence of

compliance with this obligation is manifested primarily in the main IMO instruments

which are the vessels Classification, Safety Construction and International Load Line

Certificates (Boisson, 1999).
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2.4.1.2 MARPOL Convention

The current MARPOL regulations have had a profound effect on the design,

construction and operation of vessels with respect to tank size, and arrangements, hull

configuration, subdivision and stability. For tank ships, the MARPOL 73/78 rules have

become the principal driving force in the since adoption in the early eighties. Prior to

the adoption of Resolution A.744(18) in SOLAS, Regulation 13G of MARPOL 73/78

(as amended) stated that "an oil tanker to which this regulation applies shall be subject

to an enhanced programme of inspections during periodical, intermediate and annual

surveys, the scope and frequency of which shall at least comply with the guidelines

developed by the organisation". Essentially MARPOL 13G(3)(a) contained the same

prescriptive requirements contained in the lACS societies survey rules prior to 1993

with three major exceptions. Detailed prescriptive requirements for close-up surveys,

UTM and formal requirement for survey documentation to be kept onboard the vessel.

Regulation 13G, Annex I of MARPOL, dictates a framework for the progressive

imposition of double hull standards for existing tankers.

2.4.1.3 The International Load-Line Convention (ILLC)

lACS can trace its roots to the first International Load Line Convention (ILLC) of

1930. The convention recommended collaboration between classification societies to

secure as much uniformity as possible in the application of the standards of strength

upon which freeboard is based. The 1966 International Load Line Convention (ILLC)

addressed three areas of safety, survey, conditions of assignment and minimum

geometric freeboard. The convention comprises a set of important prescriptive

regulations which are absolutely fundamental to vessel integrity and safety of design

and operation. As stated previously, the 1966 ILLC stipulates that, in order to receive a

Load-Line Certificate, a vessel must be of "adequate strength". In a recent paper,

Hoppe (2007) explained that "the functional requirement on structural strengths goes

actually into quite some detail and has borrowed heavily from the load line provisions

in there which basically says that structures will be designed with suitable safety

margins to withstand environmental conditions anticipated for the ship's design life and

the loading conditions appropriate for them".
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2.4.1.4 The International Safety Management (ISM) Code

The International Safety Management (ISM) Code is a direct result of the Herald of

Free Enterprise and Scandinavian Star accidents in 1987 and 1990 respectively. A

safety management system is a structured set of controls for managing the business

through five basic components; policy, organisation, implementation, measurement and

review.

PLAN

I Policy + Objectives I
Organizing & Planning I

•
I Corrective Action IImplementing the Risk

Assessment Process

I Measuring I• t
I Auditing I

FEEDBACK

I

I Reviewing I

Figure 2.10. Safety Management System

Figure 2.10 above shows the typical safety management system structure. Policy and

strategic objectives have to be defined by top management. Organisational structure,

responsibilities and resource allocation have to be specified. The risk assessment

process provides assurance that hazards are identified and associated risks controlled.

Regular audits are conducted to ensure compliance with the SMS. Management has the

responsibility of conducting annual reviews (Kuo, 1998; Wang and Trbojevic, 2007). A

safety management system is used to ensure that the organisational goals are achieved

safely and efficiently. The ISM Code is a safety management system and was

introduced into the shipping industry in 1994 to provide an international standard for

the safe management and operation of ships and for the protection of the environment.
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The code lays down three mam goals for safety management, to provide for safe

practices in ship operation and a safe working environment, establish safeguards

against all identified risks, and to continuously improve safety management skills of

personnel ashore and onboard ships. In 1994, the ISM Code was incorporated into

Chapter IX of the SOLAS 74 Convention (Management for the Safe Operation of

Ships). ISM Code element 10 is devoted to the establishment of procedures for the

maintenance of equipment and systems. This includes the hull structure, although the

ISM Code does not specifically refer to how this should be achieved. Weaknesses in

the ISM Code in relation to risk assessment and maintenance are discussed further in

section 7.3.2.

2.4.2 The Flag States (The Regulator)

The flag States are the prime movers in their role as regulators. According to the LOS

Convention article 94.3, "every state shall take such measures for ships flying its flag,

as are necessary to ensure safety at sea with regard interalia to, the construction,

equipment and seaworthiness of ships etc". Under the principle of freedom of the

high seas, the vessel becomes res nullius (no-one's property). This means that no

territorial sovereignty can be exercised over it, only the individual powers of the flag

State in relation can be applied. "Performance of inspections and surveys onboard

ships, or delivery of safety or anti-pollution certificates, by their very nature, cannot

be commercial activities". Flag States are able to hide under sovereign immunity

under the provision of the LOS Convention, and this fact practically prevents legal

action against states that are in breach of their obi igations (Boisson, 1999).

Article 94.4 of the LOS Convention places an obligation on flag States to regulate the

construction, equipment and seaworthiness of ships flying their respective flags, and to

ensure that each ship is surveyed by qualified surveyors of ships. The generally

accepted international regulations, procedures and practises contained in Article 94.5 of

the LOS Convention related to the regulatory activities of the flag States, are largely
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satisfied by adherence to classification rules, the IMO Conventions and the individual

requirements of the flag States. In figure 2.8 (p.48) , these relationships were shown

and it is noteworthy that the international classification societies are commonly

delegated by the flag States (the regulator) as recognised bodies responsible for the

statutory certification of ships.

In summary, maintenance of large bulk ship hull structures is enforced explicitly

through a system consisting primarily of the IMO's SOlAS conventions, and implicitly

through lACS URZIO.l and URZIO.2 calendar based survey rules and procedures

applicable to oil tankers and bulk carriers (enhanced survey programme), although the

vessel's flag Administration is the underlying guarantor of effective performance of

inspections and surveys. There are a number of layers of responsibility affecting the

outcomes of what Boisson (1999) refers to, as this "unique and complex system". Flag

States generally delegate the authority to survey vessels to classification societies stated

in SOlAS Ch.l Reg.I O. The Classification Certificate then becomes the cornerstone of

the quality system for ageing ships.

The shipping industry operates in an international domain where local, federal and

international jurisdictions prevail. Boisson, refers to the current diversity of sources for

the setting of safety standards in the maritime history, a legacy of maritime history.

Lack of uniformity, imprecision, complexity and loopholes in regulations are all

characteristics of the worldwide maritime regulatory system. They are the product of a

difficult compromise between divergent or contradictory interests which pose a threat

in the form of future potential unilateral action from individual states.

Condition Assessment Scheme (CAS): Following the Erika and Prestige disasters in

December 1999 and November 2002 respectively (refer to section 2.6.2), a number of

measures were introduced to improve the maritime regulatory system. Revised

regulation 13G of MARPOl 73/79, Annex I adopted by MEPC by Resolution

MEPC.95(46) and amended by Resolution MEPC.ll1(50) entered into force on s"
April 2005, imposing specific requirements on single hull oil tankers. Regulation

13G(6) required that category 2 and 3 oil tankers of 15 years and over after their date of

delivery should be subject to the Condition Assessment Scheme (CAS).
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The intention behind the statutory requirement of the CAS survey was to

independently supplement the requirements of the lACS ESP survey regime required

under Resolution A.744 (18) as amended. The CAS survey had to be conducted in

conjunction with Main Class Renewal (MCR) Surveys carried out by the classification

societies. Following the CAS survey, class surveyors were obliged to issue an Interim

Statement of Compliance (SOC) valid for five months, subject to verification by the

flag Administration who issue the final CAS Statement of Compliance. In this way, the

flag States have been encouraged to arbitrate over the structural condition of the vessel.

2.4.3 Classification Societies and JACS Procedures

In new construction, the classification society is contracted by the builder to provide

classification services. Classification services include design review, survey during

construction and possibly consulting services across other business areas. Classification

rules are generally adopted by ship builders effectively as design codes. This common

practice has been criticised (Spencer et al, 1998), a view supported by lACS on its

official web site, containing the following restriction: "classification rules are

developed to assess the strength and integrity of essential parts of the ships hull etc.

Classification rules are not intended as a design code and in fact cannot be used as

such". Classification rules include sub-sections containing the prescriptive rules for

ship operation and maintenance.

Classification rules are a vital part of the statutory legislation under SOLAS Ch 11-1,

and compliance with both the ship classification rules of the lACS major societies and

the various IMO Conventions is considered essential to provide a safe ship. The

condition of the steel structure of ships is subject to the requirements of the

international classification societies on the one hand, and to statutory regulations

specified in the IMO resolutions on the other hand.

The technical skills possessed by the classification bodies aided by their world-wide

service networks has led governments to delegate the public service role of enforcing

the regulations contained in the IMO international conventions related to pollution

prevention and safety at sea (Boisson, 1999). As a consequence, class societies have
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become key players in the maritime safety regime, and are often expected to fulfil the

duties of the regulator in enforcing the regulations ensuring minimum acceptable

structural standards. This dual role played by classification societies in providing

classification and statutory services appears to be commonly misunderstood

2.4.4 Port State Control (PSC). Voluntary Measures and Insurance

Increased public and media focus on the environment and recent casualties involving

oil tankers has highlighted the phenomenon of substandard shipping. Gray (2000)

traces the origins of port State control (PSC) in the United States with the break up and

spill of 30,000 tons of fuel oil from the Argo Merchant off Nantucket Island in 1976.

This was followed by the grounding of the oil tanker Amoco Cadiz off Brittany spilling

220,000 tons of crude oil, leading to the first true PSC agreement known as the Paris

MOU. In International law and under the dual arguments of the right of self protection

and the international policing of navigation, the port States exercise their duties to

enforce the application of international conventions on safety at sea and prevention of

pollution. Knapp (2004) has outlined the various coastal State safety regimes currently

in effect in table 2.2. Negligence and leniency by flag States has led some coastal States

to act, resulting in harsh policing of substandard ships and owners (Boisson, 1999).

Table 2.2.Coastal State Safety Regimes (Knapp, 2004)

The Parliament of the Commonwealth of Australia (1992) published a land mark report

entitled Ships of Shame, in response to the mysterious loss of six bulk carriers in quick

succession off the Australian coast in the period January 1990 to August 1991.

56



According to Hare (2003), this study was the catalyst for maritime authorities around

the world to "sit up and take notice of the malaise permeating the industry". The 1982

Paris MOU required each contracting authority to conduct inspections on 25% of

foreign merchant vessels calling at its ports, acting under detailed guidelines regarding

inspection procedures and detentions. Detention lists were published and PSC has

evolved as the principal indicator of classification society performance in terms of

detention rates. In a recent paper, Gray (2000) concluded that in-port inspection of

ships during cargo operations by PSC officers revealed "next to nothing about

structural condition". A number of voluntary measures have evolved in response to

shipping accidents and the sub-standard ship syndrome referred to earlier, including the

condition assessment programme (CAP) and vetting inspections described in the

following:

CAP Surveys: In ISSC (2007), the background for the introduction of the condition

assessment program introduced by DNV in 1989 was discussed. CAP surveys were

introduced prior to the enhanced survey program (ESP) in response to a requirement by

the industry for an independent estimation of ship condition. CAP was a systematic

means of quantifying a vessels condition in accordance with a rating scale. This was a

service performed by classification societies, independent from and complementary to

classification. CAP could be applied to vessels which mayor may not have been

classed by a society. CAP covered hull, machinery, electrical, cargo and ballast

systems. CAP normally included a fatigue assessment. CAP was intended to evaluate

and report on the vessels condition in relation to the minimum class standard. The

scope was more comprehensive than that for class surveys with respect to analysis of

thickness measurements, structural strength evaluation, and reporting. CAP surveys

were covered by a separate contract with the owner.

Vetting Inspections: The pattern of tanker ownership changed during the 19705-1980s.

The move away from independent ship-owners with substantial fleets resulted in a drop

in quality of vessels. The Oil Companies International Marine Forum (OCIMF).

commenced with ship vetting inspections at that time, based on OCIMF developed

inspection guidelines. The intention behind vetting inspections was to provide OCIMF

members with a reliable view of a vessel's suitability for charter purposes (sec the loss
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of the oil tanker Erika in section 2.6.2). The ship inspection report programme (SIRE)

was also developed as a project under OCIMF supervision. For some years, the vetting

inspectors proactively enforced additional controls on the industry. In the event that

"conditions of class" imposed by classification society surveyors were found during

routine vetting surveys, a vessel on the spot market was occasionally prevented from

loading due to the vetting inspector's report.

Insurance: The role of underwriters and insurers is of particular importance. Without

insurance, vessels could not sailor enter foreign ports. P&l Clubs covering ship

owners' third party liability applied premiums based on claims records. Risk profiles

were usually linked to the premium levels and "deductibles". The largest insurers set up

their own vessel inspection systems to verify the quality of ships they were about to

insure. In 1993, the joint hull committee of the London Underwriters established

clauses JH 115 and JH lISA in their "structural condition warrantee (JH722). Eighty

percent of surveys conducted by the Salvage Association surveyors on behalf of the

underwriters in 1993 resulted in major repairs (Boisson, 1999).

2.4.5 Problems With Current Reg'ulatorr Controls

The international maritime industry is characterised by an extreme diversity in

stakeholder interests including insurance companies, intergovernmental organisations,

maritime legal institutions, professional bodies, maritime universities, maritime unions,

meteorological and hydrographic organisations, and society itself. The emergence of

flags of convenience, some of which appear to have failed to live up to their obligations

under the international conventions, has tended to aggravate this phenomenon. In her

study, Knapp (2004) criticises the complexity of the maritime safety regime. The legal

framework is said to be created by the UN, ILO and IMO, supported by country

specific legislation. Classification societies provide technical expertise during

construction and operation of the vessel. "The line between the ship owner, operator or

technical manager of the vessel is not completely clear in shipping and therefore

complicates enforcement of the legal instruments". It seems clear that compliance with

classification rules and statutory conventions is a prescriptive and minimalist approach.
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Prescriptive regulation is seen to be commercially safe providing a degree of assurance

for a given design. Compliance is also easier to verify. A major motivating factor in

devising new prescriptive regulations has been based on analysis of past marine

accidents. In a recent paper, Vassalos (2007) observed that the tendency to make

compromises over economy and technical performance means that safety is often

restricted to rule compliance only, and is therefore a constraint in the design process.

This approach is seen to be associated with two major misconceptions, that investment

in safety compromises financial returns and compliance with prescriptive rule

minimum standards is deemed to be appropriate. In a recent critical review following

the Erika disaster, the OECD (2001) summarised the weaknesses in the current

regulatory system. In particular, the failure of charterers and shippers to accept liability

for oil pollution damage involving oil tankers was identified as a leading case of

substandard vessels (see section 2.6.4 for post Erika developments in this regard).

2.5 Structural Integrity Management

2.5.1 SIM in the Context o(Ship Structures

Structural integrity management (SIM) is a term borrowed from the offshore oil

industry. The SIM approach to offshore structures is contained in the ISO standards

19901 (2002) and 19902 (2004), which recommend structural integrity management

systems for major structural components of all types of offshore structures and vessels

IlSSC Committee lII.2 (2006). ISO 19904 covering floating offshore structures used

for the petroleum and natural gas industries is currently under development and the

version reviewed was a draft international standard (lSOIDIS 19904,2004). ISO 19904

is significant, as it contains lengthy guidance on condition monitoring, based around a

structural integrity management system. The SIM system then becomes the framework

within which fitness in service is monitored and maintained.

Structural integrity management of ships is usually thought of in terms of classification

rules. Early studies (Liu and Bakker, 1981) investigated technical and economic aspects

of hull structural repairs from a first principles approach. In shipping, it is commonly

believed that SIM aspects are covered explicitly by compliance with classification
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society rules, and implicitly through compliance with the IMO statutory conventions

relating to hull integrity, covered in section 2.4.1. In 1993, the implementation ofIMO

Resolution A.744 (18) for bulk carriers and introduction of the ISM Code requiring

ship owners to formalise onboard maintenance procedures was the incentive for the

trend towards a planned maintenance system for the hull structure in excess of the

minimum regulatory requirements, and this is described further in section 7.3.1.

Prior to the early 1990's, voluntary owner-driven SIM systems for ships were virtually

unknown, and despite the current widespread availability of the technology, only a few

owners had implemented truly integrated proactive SIM measures, as discussed by Bea

(1992) in SSC-365. Two studies which appeared in the public domain one year ahead

of the mandatory enhanced survey programme (ESP) introduced by lACS in 1993 are

described in the following section.

2.5.2 Review o(Seiected SIM Studies

Brooking & Barltrop (1992): Brooking & Barltrop considered structural safety of

ships as a concern given the prevailing commercial pressures leading up to the early

1990's, including "low freight rates and fierce competition", ahead of the introduction

of IMO Resolution A.744(18) in 1993. They proposed a ship structural management

system (SSMS) designed to provide constant assessment of ship structures in order to

identify defects and failures to ensure that a minimum level of structural safety was

maintained. Figure 2.11 shows the structure of the SSMS.
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Figure 2.11. Ship Structural Management System (SSMS)

(Brooking & Barltrop, 1992)

Melitz, Robertson and Davison (1992): In the early 1990s, Melitz, Robertson and

Davison introduced a risk-based approach using fatigue and fracture mechanics

principles, incorporating offshore technology in a ship structures application. All of the

co-authors were employed by BP Shipping Limited and members of the fleet technical

department. The authors recognized "an opportunity for developing a strategy to more

comprehensively and more objectively examine the structural ageing process in a class

of vessel". Work was commenced in about 1990. The concept of a full-scale structural

monitoring system was said to have developed in 1989. The strategy consisted of three

main components: enhancement, inspection and monitoring.

Experience with structural problems across a mixed fleet of tankers and other types of

vessels, and largely founded on a "new method" proposed by Bishop and Price, a core

"risk-assessment procedure" was formulated. The structural design basis was

classification society rules and a wave bending analysis including dynamic loading, a

corrosion sensitivity study, a fatigue durability study and evaluation of crack growth

rates for sensitive structural locations using fracture mechanics. Complex risk analysis

procedures were not considered to be appropriate. Longitudinal member scantlings

were based on rule values. A 3D FEM analysis was conducted against classification
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rules using a 1.5 tank length structural model and conventional static considerations for

transverse member strength assessment. The authors described a new approach to

wave bending analysis involving quasi-static wave bending, dynamic response of the

hull girder to wave frequency loading ("springing") and to bow impact events. Melitz et

al were overtaken by events after 1993 when the major international classification

societies introduced sophisticated computerised structural assessment systems capable

of conducting the types of structural evaluation attempted. This was confirmed during

an interview with Melitz in 1997.

Bea et al, University of California at Berkeley (1990-1995): During the period 1990-

1995, the Department of Naval Architecture and Offshore Engineering at the VeAL,

conducted the Structural Maintenance for New and Existing Ships Project under the

direction of Professor R.G. Bea. Sponsors included the sse and the USCG. The

technical objectives were to develop practical tools and procedures for analysis of ship

structural repairs and to provide guidelines for cost effective design and construction of

"lower maintenance" ships structures to facilitate inspections, maintenance and repair.

Part of the objectives was to provide an open forum for the industry to develop new and

innovative strategies for the design and maintenance of ship structures. Most of this

research effort involving hundreds of pages of published work was made available on

the SSC website. The project had three phases, SMP I, SMP IIand SMP III. Table 2.3

outlines the objectives in each study.

In 1992, the Ship Structure Committee (SSC) published report no SSC-365, describing

a procedure for the development of a marine structural integrity program (MSIP) for

commercial ships, with particular emphasis on oil tankers. This substantial work was

said to be the fruit of many interdisciplinary groups, national and international meetings

with key individuals, and field trips to ship construction and repair yards. The

motivation was said to be "the result of recent extreme political and public pressures

being brought upon regulators, owner's operators and classification societies, along

with environmental concerns relative to crude carriers".
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Table 2.3. Scope of MSIP Studies (Bea, 1992)

Citing extreme cost cutting and manpower reductions in the maritime industry, a legacy

of the 1980's economic slump, Bea refers to a crisis in terms of poor structural

performance of tankers, succumbing to the combined effects of fatigue and corrosion

(Bea, 1992, 1993, 1994a, 1994b). In order to formulate a framework for an advanced

MSIP, Bea carried out an in-depth assessment of the airframe structural integrity

program (ASIP) in the United States for both commercial and military aircraft. A

number of ASIP applications to MSIP were identified (Dry et aI, 1996; Schulte-

Strathaus and Bea, 1994b). The components of the advanced MSIP are shown in figure

2.12.

Bea's vision for a comprehensive owner-driven SIM system based on a common

platform appears to have been overtaken by events. New software products recently

developed by the leading classification societies described in sections 2.5.5 and 7.5.1,

now appear to offer equivalent solutions. The development of these tools has been

achieved in a relatively short time frame following the Erika and Prestige disasters,

driven by outside pressure and industry self-recognition that the quality of procedures

required to monitor hull structures in service needed to be improved ..
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Figure 2.12. Components of the Advanced MSIP (Bea, 1992)

USCG Critical Area Inspection Plan (CAIP): Due to the high frequency of fatigue

cracks found in the vessels operating on the Trans-Alaska Pipeline (TAPS) service, the

United States Coast Guard introduced a requirement for a critical area inspection plan

(CAIP) specifically for these vessels (USCG, 1999).

Chevron Shipping: Chevron Shipping recognised the need for an owner's computer

aided maintenance system in the early nineties when they developed their own in-house

system, computer-aided tanker structure inspection and repair system (CATSIR).

Temus (1991) in describing the CATSIR system, states that classification rules "cannot

be used as a guide for a maintenance program which will ensure that a ship can be

operated for an extended number of years at reasonable cost."

Lacey and Chen (1995): In mid 1992, Arco Marine initiated a structural monitoring

program in conjunction with Ocean Systems Inc. This involved a fleet of 10 tankers

engaged in the Alaska to US crude oil trade to US west coast ports. The focus of the

Arco investigations was primarily on the transient response phenomena associated with

hull slamming and hull girder response (springing and whipping), with possible

reduction of hull girder fatigue life. The Arco study concluded that slam induced high

frequency whipping vibrations could significantly amplify mid ships wave bending

moments, exceeding the class rule allowable value in typical seas under normal loading
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conditions. Further, slam-induced high frequency stresses were found to be an

important contributor to structural fatigue damage, reducing the nominal fatigue life by

up to 30%. This subject has been extensively discussed in section 2.3.2. It was noted

that classification rules did not explicitly account for slam-induced loads and hull

springing phenomena when computing fatigue life. The safe operating envelope

concept developed by Arco provided ships captains with valuable operating guidelines

reflecting company policy and actual operating experience obtained on a particular

ship.

Witmer & Lewis (1995): Witmer & Lewis published the findings of a four year study

involving structural monitoring for the Trans Alaska Pipeline Services (TAPS) tankers

shipping crude in the North Pacific and Gulf of Alaska, from Valdez to North Pacific

east coast ports and Hawaii. These six ships commissioned in 1977-1979 were

constructed by Avondale Shipyards and included the SS Thompson Pass, SS Keystone

Canyon, SS Atigun Pass and SS Brooks Range. The vessels were built entirely from

AH-36 steel under ABS class. The Witmer & Lewis study is actually an extension of

the BP Shipping effort commenced by Melitz et al (1992) referred to earlier. The

objectives of the study were related to the structural monitoring aspect of the previous

work. The authors stated that the hull stress monitoring system (lISMS) installed on the

Atigun Pass tankers, had become an integral part of the company's tanker fleet

structural management program. "The units have greatly increased the awareness of the

ship's officers regarding their role in helping to control the amount of structural

damage done to the ships. A substantial effort was made through the study and

investment in technology intended to provide feedback and guidance to the master &

crew in relation to improved ship handling and weather avoidance as a means of

mitigating structural damage".

2.5.3 Structural Surveys of Large Vessels

Structural surveys routinely performed on VLCCs or VLBCs represent a hugely

challenging and almost impossible task for a single surveyor to effectively survey the

vast internal structures in the time available. The difficulties involved in inspecting

large bulk ship structures have been described in a number of studies including
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Thygesen (2002) and Demsetz et al (1996). A VLCC has typically 15 centre cargo

tanks each measuring approximately 50m in length, and 30m depth, and lOwing ballast

tanks, each 50m in length and 30m depth. Cargo holds in VLOCs are of similar scale.

In tankers, crude oil sludge is difficult to remove, depending on the characteristics of

the cargo. Crude oil and hot water washing are used to improve the cleanliness of tank

surfaces prior to conducting Main Class Renewal (MCR) Surveys. In ballast tanks, mud

and scale are difficult and expensive to remove. If corrosion is not removed from

corroded surfaces by hydro or grit blasting, the surface condition makes ultrasonic

thickness measurement impossible or unreliable due to the build up of heavy corrosion

scale, possibly up to 5-IOmm thick.

The Demsetz study referred to earlier used benchmarked inspection data, and found

that inspection performance varied greatly, depending upon the location in the vessel,

indicating the importance of access, lighting and cleanliness. Poor lighting was thought

to affect the "readily detected" crack size based on Probability of Detection (POD)

curves. Jubb (1995) identified the absence of a quality system for visual inspection of

bulk carrier structural condition and noted the differences between inspection

philosophies for commercial aircraft compared to commercial ships, pointing to a lack

of understanding of the importance of visual inspections and structural welding details

in the maritime industry.

Re-capping from section 2.3.2, the fail-safe/damage tolerant approach is the basis for

contemporary large bulk ship structural designs, wherein it is assumed that undetected

flaws of small size will not lead to significant structural consequences. The underlying

assumption in fail-safe design is that cracks of detectable length (critical defect size)

will be found during regular calendar based surveys in tanks (every 2.S years). Because

the crack initiation period in as-welded steel joints is insignificant due to the existence

of welding defects, crack growth is initiated in the very early stages of the structural

lifetime. The weakness in the fail-safe/damage tolerant approach lies in the practical

difficulties encountered in the effective inspection of large ships structures, and this

difficulty has been borne out by the number of incidents involving undiscovered

structural failures reported in the literature survey conducted in chapter 2.
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2.5.4 Assessment Criteria

The calendar based prescriptive requirements for survey of oil tanker and bulk carriers

structures can be found in the rules of the lACS classification societies. The rules detail

the scope and extent of overall and "close-up" (arms length) surveys and hull thickness

measurements required in tanks during Annual, Intermediate and Main Class Renewal

Surveys (Special Surveys). The survey scope increases with the age of the vessel and

after the second Special Survey (l0 years of age), the scope increases substantially,

depending on the condition of the tank coatings. In table 204 the lACS UR ZIOA close-

up survey requirements are listed for a double hull tanker at the third Main Class

Renewal (MCR) Survey (lACS, 2006b). These criteria have been explained in a study

by Hoppe (2002).

Table 204. OH Tanker, Minimum Requirements for Close-Up Surveys

(ONV,2008)

The lACS criteria also list the thickness measurement requirements associated with the

respective MCR surveys. After the Erika disaster, the Intermediate Survey scope for oil

tankers more than 10 years of age was increased to a similar extent to that of the

Renewal Survey, so effectively major hull surveys are conducted at nominal intervals

of 2.5 years. Although the lACS survey scope has progressively increased in response

to recent accidents including the Erika and the Prestige, these calendar-based surveys
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are considered to be minimum standards III relation to effective hull maintenance

(Ternus, 1991).

2.5.5 New Developments in SIM Products

In the early 1990s, a number of the leading lACS classification societies introduced

computerised rule formulations and software-supported structural assessment systems,

allowing easy public access to these powerful solutions. Nearly two decades on, these

tools are increasingly being adopted by the industry, and afford a means for rapid

preliminary structural design assessment based on the data contained in the key

structural drawings including the Mid Ship Section. These software tools at the most

basic level, contain routines for rule check of section scantlings, buckling analysis,

ultimate limit state (ULS) check of hull girder capacity and fatigue analysis.

Mars Rule 2000 from Bureau Veritas, is intended for calculating scantlings of plating

and ordinary stiffeners of any transverse section based on Bureau Veritas Rules for

Classification of Ships and lACS CSR for bulk carriers and tankers. Mars Rule 2000

includes fatigue checks for structural details. The program is available as freeware on

the internet (http://www.bureauveritas.com).

Nauticus Hull from ONV Software is ONV's solution for strength assessment of ship-

structures, both for design and verification. Nauticus Hull contains a basic rule check

package with the option of advanced systems for wave load and finite element analysis.

Nauticus hull features Brix Explorer as the main entry point to Nauticus Hull

programmes and the FEM package contains the user interface GeniE

(http://www.dnv.com).

Poseidon ND from GL is intended for fast modelling of the hull structure through the

program module Hull Wizard which automatically generates the typical structural

topography of mid ship sections by selecting key parameters defined by the user.

Poseidon NO automatically determines scantlings based on rule requirements

applicable to the respective vessel parameters, rule requirements, class notations, global

loads and sea pressures. Poseidon ND automatically generates an FEM model of the
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ship structure defined by the modelling and scantling phases. The FEM analysis is

performed by the programme GL-FRAME (http://www.germanlloyd.org).

PrimeShip-HULL from ClassNK is described as a revolutionary new way to conduct

advanced ship strength structural assessments. PrimeShip-HULL covers direct strength

analysis, fatigue strength and ultimate hull girder strength assessment. The background

to the development of PrimeShip-HULL and the description of the effort by ClassNK to

propose rational, accurate and practical methods of strength assessment and to simplify

the set of design loads have been published previously (Yoneya et al, 2004).

RULESCALC 2008 is the latest version of a software tool intended to enable ship

designers to rapidly assess structural designs against Lloyds Register rules and

regulations for ship classification and the lACS CSR. In 2006, LR released RulesCalc

and ShipRight structural design assessment (SDA) tools in conjunction with the official

publication of the lACS CSR. RulesCalc and ShipRight, ensuring compatibility with

LR's software interface tool, claimed to allow designers to seamlessly import industry

standard structural data such as from NAPA and Tribon (http://www.lr.org).

Safellull . The development of the ABS Safellull system has been fully described in

several published works including (Chen et aI, 1998), (ABS, 1997). The first part of the

system is the newly developed strength criteria. The second part is said to be the

software supported development of initial scantlings preceding the more detailed

strength assessment. A finite element solver is fully integrated into Safellull.

Alternatively, other FEM programmes such as NASTRAN can be linked directly to the

SaJeHull application, allowing seamless integration into established shipyard design

and production systems. Safellull is said to be a fully integrated structural design

system (http://www .eagle.org).

2.5.6 InfOrmation Resources

Prior to 1993 when radial changes took place in the developments associated with the

regulation of ships structures discussed in section 2.4, and preceding the advent of the

internet in 1989, information relevant to ship structures was obtained largely through
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published papers and journals. Today, virtually unlimited access to published

information is available through the web and electronic media. In late 2008, the

researcher is struck by the sheer volume of information on ship structures technology

available to the industry in the form of published material, technical material produced

by The IMO and non-governmental institutions.

The Ship Structure Committee (SSC) was formed in 1943, principally to research the

brittle fracture problem which plagued welded ships during the WWll years. The SSC

(http:///.www.shipstructure.org) is one of the most prolific sources of information

available today with over 503 published reports dating back to 1946, most of them

available on line. The SSC currently comprises eight member organisations: ABS, the

US Maritime Administration (MARAO), the Maritime Sea Lift Command (MSC),

NAVSEA Structures, the Canadian Defence Research & Development Atlantic

(ORDA), Transport Canada, the USCG and SNAME. A second major source of

information is the lACS member societies. These organisations provide important

research papers, often published in international journals.

In section 2.5.2, Bea, one of the most prolific workers in the field of ship structural

integrity research in recent times, in summing up the results of a 5 year long intensive

research effort conducted by the University of California at Berkeley, stated, "the

primary problems associated with the commercial ship industry are not fundamentally

technical. Basically the industry has the technical background to do what is required to

achieve durable and reliable ship structures. The primary problem is that in the majority

of cases, this technology is not being wisely used or applied" (Rea, 1993).

2.6 Significant Structural Failures

2.6.1 The Bulk Carrier Problem

Although a few industry spokespersons have publicly defended the safety record in the

maritime industry including Iarossi (2003) and Curry (1998), the twenty year period

from the late 1970s through to the late 1990s was characterised by a number a

casualties involving bulk carriers. With media focus primarily on the safety of the
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environment and oil tankers, catastrophic accidents involving bulk ships often leading

to considerable loss of life, appeared to pass relatively unheeded. Some industry

insiders campaigned against these negative trends. Jubb (1995) remarked that

"hundreds of seamen have died and continue to die in bulk carriers subject to hull

failure. This is a scandal which merits public discussion and international pressure to

bring these losses down to a minimal and acceptable level" Subsequently, the full

impact of this serious problem became more apparent when accident statistics from

various sources were published in the literature.

Table 2.5. Bulk Carrier Casualties 1978-2001 (Vassalos et aI, 2002)

In a study on the impact of lACS Unified Rule UR21 on existing hatch covers,

Vassalos et al (2002) observed that from 1978 to 2001, a total of 43 bulk carrier

casualties involving hatch cover failure in heavy weather were recorded. 13 of which

resulted in 325 fatalities, as summarised in table 2.5. Citing Lloyds Maritime

Information Services (LMlS) from September 1980 to end 1991, Boisson (1999)

concluded that there were approximately 280 bulk carrier accidents with the loss of

over 800 lives. In a study on strength and reliability of ageing bulk carrier structures,

Paik and Thayamballi (1998) reported 1,278 lives lost and a total of 186

bulk/combination vessels from 1980 to 1996.

In the early 1990s, a sharp peak in losses heightened concerns about the safety

standards for these types of vessels. In 1992, following the crude tanker Kirky disaster,

an Australian government inquiry (Parliament of the Commonwealth of Australia,

1992) concluded that unilateral and international efforts were necessary to improve the

safety of shipping and reduce the risk of damage to the environment. The catalyst for

the inquiry was the loss in close succession over a 19 month period between January

1990 and August 1991, of six bulk carriers including Mineral Diamond off the Western
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Australian coast. Frequent bulk carrier losses in the early nineties led the IMO to

initiate a number of procedures intended to improve the ship inspection regime,

resulting in a new chapter XII in the SOLAS Convention. lACS also initiated a number

of research programmes after 1991, and a set of unified rules were developed, including

UR S17 for longitudinal strength and UR S12 for the side structures of single skin bulk

carriers. In the following, the loss of the aBO Derbyshire will be discussed due to its

significance.

The Derbyshire: The Derbyshire (ex Liverpool Bridge), ship no.57, the last of a class

of six vessels built by Swan Hunter at Wallsend Yard in 1970-1976, was a UK flagged

Capesize Oil/Bulk/Ore carrier. The vessel was of double hull construction and

remarkable size, being 281.94m in length, 44.20m breadth with nine cargo holds. In

1980, loaded with 158,000 tonnes of fine iron ore concentrates distributed in seven of

the nine holds and en route from Canada to Japan, severe weather (typhoon Orchid)

was encountered, and the vessel was lost with all hands (44 people) near Shikoku

Island, Japan. As the vessel was lost in deep water and there were no survivors, much

speculation surrounded the loss of the Derbyshire and in 1986, the UK Department of

Transport issued a report, concluding that the most likely cause was "total structural

failure". Structural problems affecting several ships of the same class led to further

speculation fuelled by rumours of poor construction practises (Faulkner, 2001).

Led by the Derbyshire Family Association (DFA), and supported by the International

Transport Workers Federation (lTF), a series of underwater surveys were conducted the

first of which was in May 1994. In 1995, Lord Donaldson was appointed to lead a

formal inquiry with the goal of finding the possible cause in the interests of ship safety

and further underwater surveys of the wreck site in April 1997 were conducted. A

detailed independent forensic analysis of the loss of the Derbyshire has been published

by one of the appointed UK assessors in the survey of the wreck site (Faulkner, 200 I).

He concluded that the loss of Derbyshire could be attributed directly to a weakness in

the structural design of the hatch covers. His findings included a recommendation for a

substantial revision of the 1966 ILLC requirements related to hatch cover strength in

view of the deficiencies discovered in the design hatch coaming loads and safety
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factors. Faulkner concluded that the use of Grade A steel could lead to brittle fractures

in structures under dynamic wave conditions, a view supported by Jubb (1995).

Historical weaknesses in the structural designs of bulk carriers are well documented in

the literature (Grove et al, 1998; Faulkner, 2001; IMO, 2002b; IMO, 2003; Paik and

Faulkner, 2003b). In a FSA study on bulk carriers carried out by Japan under

MSC/75/5/2, data from ClassNK, suggested 68 instances of hull structural failure in

bulk carriers under 20,000 dwt, during the period 1990-1997. Paik et al (2003b) in a re-

assessment of the Derbyshire sinking recommended a 20-30% increase in the lACS UR

S11 standards for wave bending moments. The revelation that the "surprisingly weak

bottom structure" of a Capesize bulk carrier may he inadequate in hogging response

exposed the dangers in relying solely on allowable stress design, raising the spectre of

'jack knife" collapse of the hull girder as a possible cause for the loss.

Figure 2.13. F-N Curves for Bulk Carriers (lMO, 2002)
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With the above examples of flaws in the design of bulk carriers, the further deleterious

effects of fatigue and corrosion in these already sensitive structures are obvious. The

main problem areas have been identified as the hold side frames, cross deck structures,

corrugated transverse bulkhead, fore and aft transition zones and hatch covers.

The flexibility of the bulk carrier structural design having no longitudinal bulkheads to

support the double bottom differs radically from that of the much more rigid tanker

structure. The criticality of the no. I hold side frames and the consequences of water

ingress leading to a domino like collapse of the corrugated bulkheads are well

documented in many sources in the literature including Contraros, (2003). In figure

2.13, reproduced from the Japanese FSA study into bulk carrier safety MSC 75/5/2, the

F-N curves show that the safety performance particularly for Capesize bulk carriers

appears to be quite marginal.

2.6.2 Recent Tanker Disasters

Tanker loss statistics from 1991-1995 show that more than 80% of accidents involve

ships more than 15 years old. Fires and explosions accounted for almost half of all

accidents (Boisson, 1999). The safety focus on oil tankers is usually related to oil

pollution and environmental damage. The first major oil spill in history was caused by

the Liberian tanker Torrey Canyon, which grounded as a result of a navigational error

off the coast of Cornwall near the Scilly Isles on 18th March 1967. The amount spilled

was 119,000 tonnes and it caused severe environmental damage on the UK and French

coastlines. The worst ever oil spill from a tanker was that involving the Atlantic

Empress off Tobago West Indies in 1979 with a spill of 287,000 tonnes.

In 1983 the Castillo de Bel/ver spilled 252,000 tonnes of oil off Saldanha Bay South

Africa. On 16th March 1978, the Liberian tanker Amoco Cadiz grounded off Persall in

Brittany due to steering gear failure, spilling 223,000 tonnes of oil. In March 1989,

Exxon Valdez grounded in Prince William Sound in Alaska. Although the amount of oil

spilled was only 10% of that involving Amoco Cadiz, eleven years earlier, the massive

media attention sent shock waves through the maritime industry and resulted in an

amendment of the MARPOL Convention. In 1990, Surf City exploded and sank off
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Dubai with loss of life and environmental damage. In 1991, there were 3 large oil spills

involving tankers. The ABT Summer spilled 260,000 tonnes about 700nm off Angola.

The Haven spilled 164,700 tonnes off Genoa and the previously mentioned Kirki was

responsible for 20,300 tonnes of oil spilt off Western Australia.

Table 2.6. Selected Major Oil Spills Involving Structural Failure

(Devanney, 2006)

Devanney (2006) concluded that a number of accidents involving oil spills from ships

allegedly related to hull failure, and these are listed in table 2.6. More recently, the

Erika and Prestige spills have been the latest incidents.

The tanker industry often suggests that 99.9986% of all oil cargoes loaded into tankers

arrives safely (Slater, 2000; Iarossi, 2003) and that the industry is fundamentally a safe

one. Despite the convincing evidence showing that the safety performance of the bulk

shipping segments continues to improve, public, media and some industry insider

perceptions apparently continue to decline. According to the International Union of

Maritime Insurance, since 1993, only 12% of major ship casualties were said to be

traceable directly to structural integrity problems (Boisson, 1999). This claim was

contested by some industry insiders including Devanney (2006), who hypothesised that

structural failure is a major and hidden cause of vessel losses. In the following, a

number of high profile accidents involving structural failure in tankers are forensically

examined to test this assertion further.

Betelgeuse: In 1979, the Betelgeuse was discharging cargo at Gulf Oil's Bantry Bay

terminal when it exploded and broke into two. A sworn public inquiry was conducted

under a high court judge, eventually blaming the owners, Total Oil and the
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classification society BV, for the accident. The Betelgeuse was said to be in an

appalling condition. An inspection of the tanker nine months before the explosion

revealed 37 cracks in its crude oil tanks. A major oil leak had been reported to the

ship's owners one week before the disaster. Ballast tanks were so badly corroded they

could have been a possible cause of the explosion. The tribunal revealed that "the cause

of the disaster was the buckling of the ship's structure at about deck level; followed by

explosions in the permanent ballast tanks and the breaking of the ship's back" (Irish

Examiner, 8th January 2004). "Horribly corroded segregated ballast tanks and lack of an

inert gas system contributed to the accident" (Devanney, 2006).

The Surf City: In February 1990, just prior to the invasion of Kuwait, the US flagged

81,283 dwt tank ship Surf City loaded with naphtha and automotive fuel outbound from

the Arabian Gulf, exploded and burned north of Dubai UAE. The conflagration claimed

the lives of the master and chief mate who had entered the No.4 (S) ballast tank

immediately prior to the accident. The spill volume was estimated to be 28,000 tonnes

and the vessel was declared a total constructive loss. The subsequent official National

Transportation Safety Board (NTSB) report stated that naphtha vapour was found in

way of No.4 (S) ballast tank (supported by 3 independent crew observations), and that

the most likely source was through a fracture in the common transverse bulkhead

between No.5 (S) cargo tank and No.4 WBT. According to the report, USCG inspectors

involved with re-flagging the vessel during the Iran-Iraq war, had observed a generic

problem affecting the structural integrity of 4 sister vessels including the Sur/City. The

problem was related to repetitive cracking found in No.2 and No.4 WBT's. Two

months prior to the accident, the former chief mate testified finding 3 fractures In

12.5mm plating of No.4 (S) tank stringers at bulkhead No.52 (NTSB, 1990).

The Erika: The Erika, (Ex Shinsei Maru, 1975 and ten previous names) was a 37,283

dwt products/crude carrier built by Kudamatsu Shipyard of the Kasado Dock Co. Ltd.

(hull no.284) in Japan (1975). Second in a series of 8 oil tankers built between 1974

and 1976, Erika was used to carry heavy oil. The vessel had multiple owners and

several flags, generally open register. On December 11th 1999, during loaded passage

from Dunkirk to Leghorn (Italy), approximately 30 miles south of the Pointe de

Penmarc'h in Brittany, the vessel suffered a catastrophic structural failure and sank in
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120m of water. At the time, the vessel was loaded with 30,884 tonnes of No.2 heavy

oil.

Figure 2.l4. Loss of The Erika

At the time of the accident, the vessel was 24 years of age (approaching the 5th special

hull survey). As built, the Erika was fitted with 15 cargo tanks (13 + 2 slop tanks).

Only no.3 centre tank was a dedicated ballast tank. In view of the construction date

(1975), the vessel was considered as pre-MARPOL (i.e. single hull without segregated

ballast tanks). In 1990, No.2 (P+S) cargo wing tanks and No.4 (P+S) cargo wing tanks

were converted to clean ballast tanks (CBT). In 1993, No.2 (P+S) CBT's were

converted to segregated ballast tanks (SBT's). In 1998, No.4 (P+S) CBT's were

converted to SBT's at Bijela Shipyard (BEAIMER, 1999).

From the official French agency Bureau d' Enquetes sur les Accidents en Mer (BEA)

report, structural surveys had been carried out by class immediately prior to the loss of

the vessel. The BEA report states that three different flags (Panama, Liberia and Malta),

8 different vessel names, 4 different class societies (NK, ABS, BV and RlNA) and 4

different ship managers had been involved since 1975. The last major steel repairs in

tanks were carried out during the special survey required for transfer of class from BV

to RlNA at Bijela Shipyard in June-August 1998, 16 months before the loss of the

77



vessel. The total amount of steel replaced was 100 tonne (approximately 1.4% of the

vessel's lightweight). Some of the main deck plating of original thickness 16.0mm was

renewed using 14.0mm thick plating (12.5% less than the original thickness).

According to the official findings of the BEA/MER report, the total loss of the Erika

could be attributed to the following:

• The rupture of an element of the LBHD between No.3 centre tank and No.2 S

ballast tank.

• The subsequent weakening of one on more transverse webs in No.2 S ballast

tank, leading to the appearance of cracks in the side (shell) plating.

• The appearance of cracks in the deck plating resulting from the weakening of

the transverse web frames.

These events are thought to have brought about a gradual collapse of the side structure

in way of No.2 S ballast tank. This is hypothesised to have led to the collapse of the

bottom structure, buckling of the main deck and eventual fracture of the hull girder at

the aft part of no.2 tanks. The Erika had undergone 8 port State control inspections

during the 3 years prior to her sinking. In no case did the PSC inspectors enter the tanks

to assess the condition. "The "appalling condition" of her tanks went undetected, as

port State control Inspectors do not enter tanks" (Devanney, 2006).

The Prestige: (ex Gladys) was an 81,564 dwt oil tanker built by Hitachi Zosen-

Sakurajima Shipyard in Osaka Japan (1976). The Prestige broke in two and sank on

Tuesday 19th November 2002 approximately 130 miles off the north west coast of

Spain, while on a loaded passage from Ventspils (Latvia), southbound. The vessel

contained approximately 76,972 tonnes of heavy fuel oil with a density of 0.9906

tonnes/m". The resulting spill caused extensive environmental damage to the coastline

of the Basque region in Spain. The Prestige disaster occurred almost 3 years after the

Erika accident in apparently similar circumstances. Following the loss, a major inquiry

was conducted by concerned groups including lACS, the flag State and the vessels

classification society. A number of reports were subsequently published including

lACS's ad hoc audit report (lACS, 2003), ABS's Technical Analysis of the casualty

(ABS, 2003) and the Bahamas Flag Administration's official report (BMA, 20(4). The
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loss of the Prestige was surrounded by enormous media interest and public controversy

related to the perceived inadequacy of shipping safety.

Figure 2.15. Sinking of the Prestige

Cargo Distribution on Departure

Figure 2.16. Cargo Distribution in Prestige During Final Voyage

(ABS,2003)

In figure 2.16, the tank arrangements and the cargo distribution on the final voyage of

the Prestige are depicted. The vessel was rated as category I under MARPOL 13 G, and

was approved for either hydrostatic balanced loading (HBL) as a crude tanker, or as

clean ballast tank (CBT) with 30% side protection as a product tanker. The vessel was
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operating in conformance with CBT requirements at the time of the casualty. Structural

repairs were carried out in Guangzhou China, 18 months prior to the loss of the vessel.

Following completion of the hull repairs in which 362 tonnes of steel were replaced,

the vessel's Interim Classification Certificate was renewed without conditions of class

relating to "substantial corrosion" (lACS, 2003).

It may be possible to hypothesise on the fate of the Prestige based on the published

findings referred to earlier and from the maritime press and publications summarised in

IMO's library services on the Prestige (IMO, 2008). Both the flag Administration and

the classification society involved, stated that the initiating event appeared to be

structural failure. This view was supported by a statement from a member of the crew:

"it started with an explosive sound, followed by a shudder that was felt throughout the

ship" (Fairplay, is" January 2007, Vo1.35g, No.6413, p.6). This observation appears to

be consistent with a sudden catastrophic structural failure. The official report stated the

sequence of events thus; "At 1510, the ship was struck by a large wave and a loud bang

was heard. The ship shuddered as she rolled to starboard and the butterworth covers

were displaced from the vessel's tanks." The vessel rolled to starboard reaching a 20

deg. list within 10 minutes of the event (BMA, 2004). The above sequence of events

suggests that structural failure possibly led to flooding of one of the empty starboard

side wing tanks, either No.2 aft or No.3 wing tank. Given that the majority of the steel

repairs carried out in China in 2001 involved the No.2 aft and No.3 (port and starboard)

wing tanks, there would seem to be a probability that the search for an initiating event

should start in these tanks.

2.6.3 Regulatory and Legal Consequences ofthe Erika and Prestige Accidents

After the sinking of the Erika, a number of significant changes were made to lACS

Z.IO.1 requirements and these changes were made applicable from 1st of July 200 I,

three years before the loss of the Prestige in November 2002 (the so-called Erika

measures). These changes intended primarily to strengthen the ESP rules were as

follows:
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• All ballast tanks sharing a common plane boundary with cargo tanks with any

means of heating shall be examined internally on an annual basis after the ship

has reached 15 years.

• Intermediate Hull Surveys of ESP ships over 15 years of age shall be enhanced

to the same extent as the scope of the preceding renewal survey etc and a

Bottom Survey (afloat or in dry dock) shall be carried out in conjunction with

the Intermediate Survey, and after Is1 of July 2002, the Intermediate Bottom

Survey has to be carried out in a dry dock.

• Any damage in association with wastage over the aIlowable limits (including

buckling, grooving, detachment or fracture) or extensive areas of wastage over

the allowable limits which affects or in the opinion of the surveyor, will affect

the vessel's structural, watertight or weather tight integrity is to be promptly and

thoroughly repaired.

There were additional requirements for two exclusive surveyors and onboard

verification of UTM readings. Specifically one of the post-Erika initiatives introduced

by lACS for oil tankers age 15 years and over, was for any water ballast tank adjacent

to a cargo tank with heating coils to be examined internally at Annual Surveys. The

main consequences of the Prestige accident described in IMO (2008) can be

summarized as follows:

• Fierce controversy over ports of refuge debate amongst EU members.

Incarceration of the vessel's master in Spain.

Questions regarding quality of tanker safety.

Banning of pre-MAR POL SH tankers in European waters.

The owner's withdrawal from the oil tanker market.

USD 700 million law suit by the Government of Spain versus the

classification society (ABS) in a US court, and counterclaim against Spain

by ABS.

Move by Spain to have the class society revoked by the EU.

Intensive public scrutiny of the classification industry.

Questions regarding quality of repairs carried out in Chinese shipyards.

•
•
•
•
•

•
•
•
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As a direct consequence of the Erika accident followed by Prestige three years later,

the phasing out of SH tankers was accelerated in amendments to IMO Regulation 13G

of MARPOL Annex I.The amended regulation allowed for a certain amount of trading

provided that a Condition Assessment Scheme (CAS) described in section 2.4.2 was

satisfactorily carried out. One year after the Prestige accident, the EU initiated a set of

legislative changes. There was an immediate ban on SH oil tankers with deadweight

above 20,000 tonnes carrying heavy gas oil (HGO) in European waters. Category I

tankers (pre-MARPOL) built on or before s" of April 1982, were effectively banned

from trading past 5th of April 2005. Non DH category 2 oil tankers with deadweight

above 20,000 tonnes were given a final cut off date of 20 I O.

Early in 2007 the Erika legal case, the biggest trial of its type, commenced in Paris,

involving 15 organisations and individuals including Total, the vessel's charterer and

the world's fourth largest oil company. The other defendants included two of its

subsidiaries, the ship's captain, the management company, four French maritime

officials and the Italian classification society RINA. Sixty nine witnesses took part in

the proceedings. The prosecution alleged that the principle cause of the vessel's loss

was cost-cutting over repairs done in conjunction with the special hull survey in Bijela

Montenegro. The naval architect Jean-Paul Christophe, told the court that only 35

tonnes of steel had been replaced instead of 209 tonnes need to conduct a satisfactory

repair. After seven years of disputes and investigations, on 17thJanuary 2008, the Paris

court announced its verdict and Total was found guilty of "carelessness" in chartering

the Erika, and fined a maximum penalty of USD 560,000. The vessel's classification

society RINA was fined the maximum amount "for issuing certificates without

undertaking the necessary checks ..(www.shippingtirnes.co.uk, 27/4/2007). Durr (2007)

from the University of Capetown, has recently discussed the liability aspects of

classification services including the Prestige case.
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2.6.4 Critique

Changes to the MARPOL Regulations in the late 1990's,meant that 25 year old SH

tankers of 20,000 dwt or more were required by MARPOL 73178, Annex I, Reg.13G to

comply with Reg.13F i.e. be fitted with double hull. Alternatively a 5 years grace

period (30 years) was allowed under Reg.13G (4) and Reg.13G (7). Regulation 13G(4)

accepted wing tanks as double bottoms not used for the carriage of oil, meeting the

width and height requirements of 13 E(4), covering at least 30% of the cargo tank

length (full depth). As a further alternative, pre-MARPOL tankers compliant with IMO

guidelines contained in MEPC-64 (36), permitted IlBL (Robinson, 1999).

Such arrangements were required to be approved by the flag Administration (or their

delegates). Ships operating in the HBL mode would in fact be operating in conditions

different from previous modes of operation. It was stated to be a requirement for

candidates for HBL to be screened at the 5th special hull survey. For Prestige, This

would have coincided with the Guangzhou Survey in April-May 200l. According to

the Bahamas investigation, when operating in HBL mode, Prestige could carry cargo in

No.3 wings (P+S) under MARPOL Reg.13 G(?). However, when operating in CBT

mode, No.3 wings (P+S) were designated as clean ballast tanks, in accordance with

Reg. 13G (4) of MARPOL, Annex 1. At the time of the accident, No.3 (P+S), wing

cargo tanks were empty, coinciding with the employment of the vessel in CBT mode,

However No.1 centre cargo tank was noted to be 58% full. The transcripts of the

official Bahamian report and the ABS investigative report referred to earlier, indicate

that the vessel was restored to satisfactory condition at the conclusion of the special

hull survey in China in May 2001. Approximately 360 tonnes of steel was replaced

mainly in way of No.2 Aft (P+S) ballast tanks and No.3 (P+S) cargo wing tanks. No

structural conditions of class (CC's) were apparently issued at this time and no

"substantial corrosion" was recorded.

The conversion of the vessel to CBT as required by Reg. 13G (4) of MARPOL Annex

I, meant that No.3 (P+S) cargo wing tanks were utilised as ballast tanks. Ilowever,

these same tanks were uncoated. Only No.2 aft (P+S) wing tanks were designated as

segregated ballast tanks (SBT's) and coated with Fair Condition. The consequences of
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failure to mandate coating of cargo tanks designated as ballast tanks in CST vessels

have been pointed out by various critics including Devanney (2006). A period of 18

months transpired subsequent to the major repairs to Prestige followed by loss of the

vessel. The classification society reported that, under normal conditions, corrosion

wastage during the period May 2001 to November 2002 would not have been

substantial (ABS, 2003). However, the BMA report states that rates of corrosion in

uncoated ballast tanks (i.e. No.3 S) "may be exacerbated if heated cargo is carried in

adjacent tanks", which was the case with Prestige. According to the lACS Ad Hoc

report, all steel repairs were executed satisfactorily. However, it was noted that No.2

(P+S) ballast tanks had not been surveyed in conjunction with the last annual survey

carried out in Dubai, May 2002. The report noted that this was a requirement arising

from the Erika disaster 3 years earlier.

There are many similarities between the Erika and Prestige accidents. Both vessels

were proceeding southbound in the same area and at the same time of the year, carrying

heavy gas oil (HGO) cargo. The vessels were of similar age and both were Pre-

MARPOL, with cargo tanks converted to SBT's. Both suffered damage initiated on the

starboard weather side of the vessel. Both were fitted with heating coils in the cargo

tanks and had loaded high temperature cargoes. The ballast tank coating condition for

both vessels was less than good. The Erika disaster demonstrated the risk presented by

old ships and the need to tighten up the existing regulatory framework beyond the level

of the minimum IMO standards. In an analysis of substandard shipping, the OECD

(2001) concluded that the Erika had been built with a light mass approximately 1000

tonne less than for similar designs. Four of the seven sister vessels had experienced

serious structural failures in the early 1990s. It was alleged that some hull surveys had

been carried out without all the cargo and ballast tanks gas-freed to permit safe entry.

Devanney (2006), in the book The Tankship Tromedy - The Impending Disasters in

Tankers, is unequivocal about the contribution of hull failure to loss statistics for

tankers. "In terms of spill volume, hull structural failure is by far the most important

cause of tanker casualties. Structural failure is by far the most likely reason a loaded

inerted cargo tank would catch fire. It's a safe bet that just about all tank

explosions/fires on loaded tankers are structural related. The Erika and Prestige are
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only the latest in a long line of structural failures". Other industry figures disagree with

this view. "Tankers rarely suffer from structural failure with the exception of the poorly

maintained and badly operated fringe elements of the industry, just a few bad apples"

(Slater, 2000). At the time of writing, the European Commission has approved USD

777,000 towards a 2 year project investigating dangers which accumulate from repairs

throughout a ship's life (Fairplay, 18th January 2007, Vo1.359, No.6413, p.6). The

debate over the Prestige continues and the legal issues including ports of refuge and

classification society liability are unresolved.
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2.7 Conclusions

A primary objective of this research was to build evidence confirming that the customer

can effectively enhance the quality, safety and performance of large bulk ship

structures by managing risks at the design stage. In the first phase, a comprehensive

literature survey was conducted by casting a wide net around the problem to examine

the safety management systems affecting these types of hull structures and to identify

the need for an improved management of ship safety. In the second phase, selected

casualties were examined in order to reveal possible root causes associated with

inadequate quality in structural design or maintenance procedures. This has led to the

following main conclusions:

• Large bulk ship structures are subjected to considerable random stochastic

environmental loads, and they are heavily utilised in terms of their load carrying

ability, which places them in a class of their own when compared with most

civil structures of comparable size.

• Large bulk ships belong to a class of welded plated steel structures which

display a high degree of redundancy and yet are remarkably sensitive in terms

of the risks posed by relatively minor structural failures. Their inherent nature,

involves thousands of complex structural intersections with a high degree of

restraint. Triaxial stress eonditions and residual stresses in fillet welded joints

significantly increase the risk of fatigue failure. The reduction in scantlings

associated with the use of high tensile steel, leads to inereased deflections often

associated with pre-mature breakdown in coatings, resulting in accelerated

corrosion conditions, sometimes referred to as the domino effect. They are

unique, sensitive, highly utilised structures, exposed to particularly severe

environmental loadings.

• Ships rely on the plastie characteristics of plated grillages in order to create a

significant strength reserve. Due to the lack of significant factors of safety
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against yield at the design point, these plastic reserves are invoked on a regular

basis with the ship in service, although the effects are not normally observed.

• These structures may be exposed to loads exceeding the assumed design load

values, depending on the vessel's route and speed, largely under the control of

the owner. An assumption in the design of ships is that the vessel will take

avoidance action and reduce speed in heavy weather conditions to mitigate the

risk of structural damage.

• Corrosion and fatigue are the twin and interrelated hazards causing the majority

of structural problems involving large bulk ships, as amply demonstrated in the

literature. Water ballast tanks in oil tankers and bulk carriers represent the

highest risk areas and the integrity of coating systems is of paramount

importance in ensuring structural integrity. HTS rich optimised structural

designs are particularly sensitive to the corrosion and fatigue hazards and

require more intensive maintenance effort. Until recently, the mean lifetime of

ballast tank coating systems was typically 10 years.

• Attempts have been made recently to introduce a theoretical approach to

prediction of corrosion rates in bulk ship structures. These models have

generally been calibrated against thickness measurement data bases compiled

by the classification societies. In ballast tanks, a corrosion rate of 0.3mm/year is

usually assumed. In cargo tanks corrosion rates as low as 0.1mm/year have been

assumed. Much higher corrosion rates have been recorded in both ballast and

cargo tanks and accurate prediction of corrosion rates remains an area of

controversy.

• Corrosion margins are considered as an additional safety factor in the design of

large bulk ship structures, with recent practise assuming a margin of up to 25%

of the gross plating thickness after breakdown of coatings. In some cases, these

margins were invoked when market conditions dictated restraint on

maintenance spending. However, the dangers in this approach have become

apparent due to the difficulty in predicting the combined effects of corrosion
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and fatigue in HT rich designs, and the rapid degradation of structural integrity.

Members of the Greek Bulk shipping community recently suggested that the

newly adopted CSR corrosion margins should be doubled in Panamax bulk

carriers.

• Lack of intervention in the form of maintenance of coating systems can lead to

accelerated structural degradation and rapid loss of hull girder section modulus

to below 90% of the required lACS UR S7 minimum value. The onset of

corrosion and accelerated fatigue damage is difficult to predict and control. This

threat is thought to be a possible cause of unexplained losses of oil tankers and

bulk carriers. Hull failure is postulated to be a leading cause of vessel loss, often

concealed in statistics, where the root causes arc often not correctly identified.

• The Jail-saJe/damage tolerant approach has been adopted in the current

generation of large bulk ship designs. Large bulk ships have been deliberately

designed on the assumption that fatigue cracks will occur and that the structure

will be Jail-saJe and damage tolerant because flaws can be detected by visual

inspection before they reach critical length. The weakness in this approach lies

in the practical difficulties encountered in the inspection of such huge

structures, as discussed in section 2.5.3. As a further consideration, because the

majority of ship structures are fabricated from material without guaranteed

fracture toughness values (A-grade normal and higher strength steels), the

critical defect size is much reduced, highlighting the importance and reliance on

structural inspections to find flaws before they propagate in a brittle manner.

The crack initiation period in as-welded steel joints is insignificant due to the

existence of welding defects. This means that crack growth is initiated in the

very early stages of the structural lifetime. Fatigue and buckling phenomena can

then become the governing failure modes driving the design.

• The maritime industry has only explicitly addressed fatigue in the design of

large bulk ships after 1990. There are concerns that the standard minimum

compliance approach to current fatigue design may not be sufficient to ensure

reliable and robust structures. Other concerns include the failure to address the
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combined effects of springing and whipping vibratory phenomena into the new

CSR rules. This aspect has been a long standing complaint from sectors of the

industry, most recently by the Greek bulk shipping community (lACS, 2006a).

• Commercial and political factors such as freight rates, shipbuilding costs,

second hand prices and scrap value hugely influence ship design. Commercial

ships are designed and constructed within these constraints. The structural

design of large bulk ships is a largely a trade-off between economic constraints

and environmental risk.

• The oil and bulk trades and the charter market operated in a highly competitive

atmosphere. Finding the cheapest vessel was an essential part of the operation.

In the recent past, the cheapest available tonnage offered by the oldest ships

dictated prices. It was therefore difficult to create a situation where quality paid.

This phenomenon posed a significant risk to safety.

• The regulatory system controlling the design and operation of ship structures

comprises a chain of responsibilities, starting with the UN Law of The Sea

(LOS) Convention of 1982, administered by the flag States under their

obligations enshrined in UN conventions detailed in IMO and ILO specialised

instruments to safeguard life at sea and for protecting the environment.

Regulatory control for the safe design and performance of ship structures is

enforced primarily through the lACS member society rules, as required by the

SOLAS convention and addressed implicitly by the 1966 International Load

Line Convention and reflected in the vessel's Classification, Load Line and

Safety Construction Certificates. However, these requirements represent a

minimum standard.

• Port state control (PSC) is regarded as the last line of defence in the safety

chain, as viewed by a number of observers, chiefly because PSC does not

involve tank inspections and structural condition is therefore not normally a part

of the PSC intervention procedures.
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• Experience with the operation of large bulk carriers in the trans Atlantic ore

trade within the last decade and reports of fatigue cracking of the main deck

structure within one year of operation has confirmed long held suspicions that

these phenomena may be partly responsible for rapid structural degradation of

hull structures of bulk carriers and tankers. Further, the contribution towards

accumulated structural damage in the ballast mode due to hull girder vibration

effects, currently disregarded in ship design practice, has been estimated as

similar in magnitude to the wave induced fatigue damage.

• Following the loss of the oil tankers Erika in December 1999 and the Prestige

in November 2002, the operations, engineering and management sectors

involved in tanker safety have been subjected to intense scrutiny and criticism

from the media and the public. Leading figures in the industry have called for a

complete overhaul and re-invention of the industry's primary self-regulation

system in response to these developments. In the post ESP era, these two

spectacular and widely publicised accidents involving hull structural failure and

pollution of the environment, have led to a deep introspection within the

industry and from industry critics, about the effectiveness of the measures

currently in place.

• Owner driven SIM systems were virtually unknown prior to the 1990's, and

despite the widespread availability of the technology, only a few quality ship

owners were seen to have implemented truly integrated proactive SIM

measures. In 1993, the implementation of IMO Resolution A.744 (18) for bulk

carriers and introduction of the ISM Code requiring ship owners to formalise

onboard maintenance procedures was the incentive for a planned maintenance

system for the hull structure in excess of the minimum lACS and IMO

regulatory requirements. Underpinning these developments has been the

progressive tightening of the lACS enhanced survey programme (ESP)

requirements.

• The controversy associated with recently observed failures, coupled with

widespread condemnation of safety performance by critics, suggests that major
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bulk transport by sea continues to dependent largely upon a framework of

minimalist prescriptive rules and services driven by the service providers.

Traditionally, safety is thought of in terms of the prescriptive regulatory

approach. Recent systematic failures suggest that those responsible for the

safety system governing bulk transport by sea (a high risk industry), should seek

alternatives.

In summary, a number of specific findings have been identified concerning deficiencies

in the current safety management systems responsible for the design, construction and

operation of large bulk ship structures. In chapter 3, a concise summary of problems

associated with the current approach to design and procurement oil tankers and bulk

carriers is presented, building upon many of the findings referred to above. The

concept of a construct which will permit the buyer's preferences to be conveniently

incorporated in to the design process will be explored further. The research performed

in chapters 2 and 3 provides a suitable foundation of evidence as the basis for a

proposed novel and unique structural assessment framework which will be developed

in chapters 4, 5 and 6. The use of formal safety assessment (FSA) and a goal based

approach to hull structures will be explained. A structural hazards and risk assessment

is given as a prelude to detailed articulation of a set of numerical and qualitative

assessment criteria in chapter 4 as input for the model demonstrated by an example in

chapter 5 and validated in chapter 6.
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Chapter 3 - Ship Procurement, Structural Design Quality and a

Risk-Based Approach to Hull Structures Integrity

SUMMARY

In the first phase, research sub-objective no.1 in section 1.2 was to review the safety

management systems affecting the design of large bulk ship structures and to identify

the needfor an improved management of ship safety. Sub-objective no.2 was to analyse

selected casualties in order to reveal possible root causes associated with inadequate

quality in structural design or maintenance procedures. In this chapter, the third

research sub-objective no.3 in section 1.2 will be dealt with i.e. to analyse the current

approach to ship procurement and structural design quality, and the existing

knowledge of the use of risk-based approaches to hull structures integrity. This forms

the second phase of the evidence building needed to support the principal research

objective, confirming that the buyer can effectively enhance the quality, safety and

performance of VLCC/VLBC hull structures by managing risks at the design stage. This

leads to satisfying research objective no.4 which is to formulate the numerical and

qualitative input data for a novel structural selection framework based on multi criteria

decision analysis (MCDA) and evidential reasoning (ER), proposed, developed and

validated in chapters 4 to 6 of this work. Arising from the foregoing studies, objective

no.5 which is to examine the applicability of the offshore safety case model to the hull

structures question will be first considered here and subsequently fully developed in

chapter 7.

3.1 Introduction

The findings from the comprehensive literature survey conducted in chapter 2, revealed

significant problems in the way large bulk ship structures have been designed, managed

and regulated. Forensic examination of recent high profile tanker and bulk carrier

casualties unveiled a direct and often understated link between structural hazards and

failures. As critics have suggested, the current approach to contracting, designing and

building new tanker tonnage is inadequate. Prescriptive rules and classification society

minimum standards have been the defacto standard for many years. A risk-based

92



design-far-safety approach has been strongly advocated in recent times. Formal safety

assessment (FSA), originally developed by the nuclear industry in the 1950's, has

recently been adopted by the IMO and applied to the bulk carrier structures safety

problem. Recognizing historical problems with declining performance of ship

structures designed to minimum prescriptive rules, the IMO initiated a goal based

standards approach to ship structures, resulting in new rules published by the lACS

societies in 2006. In a parallel development, the SAFEDOR Project was set up by a

European consortium, with the objective of integrating safety into the design process to

minimise risk. This chapter deals with all the above developments in ship structures

technology, advocating a risk-based approach driven by the customer, the first step in a

performance based framework.

Traditional naval architectural texts describe the design process as iterative, starting

with defmition of mass, volume, principal particulars, underwater form, speed, power,

propulsion, intact stability, architecture, sea keeping and so forth, and converging to a

solution in a "design spiral" as described by Rawson and Tupper (1994a). The aim in

ship design practice is to deliver a vessel that performs in accordance with the

expectations defined by the owner's operational or functional requirements, while

complying with statutory rules and regulations (rule based design). Those operational

or functional requirements may be contained in an outline specification. In

contemporary ship design practice and for large tankers and bulk carriers in particular,

ship yards in the Far East offer standardised designs. These are optimised for

production and the timeline is generally very short, giving an owner very limited

opportunity to positively influence the quality outcomes. Rapid changes in technology

are leading to the possibility of a virtual design environment where the buyer may play

a more definitive role.

The FSA method and the hull safety case paradigm are assessed for relevance to the

ship structures problem. Examples will be given where the offshore safety case has

been recommended for ships but has so far not been seriously considered by the

industry as a model worth adopting. Goal based standards introduced by the lMO and

applied to the development of ship structures standards are discussed. Moves to

introduce a risk-based approach to ship design holistically through the SAFEDOR
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project are described, and the first steps towards a risk-based design for safety approach

to hull structures are outlined, through a structural hazard identification process

outlined in section 3.5.

3.2 Statement of the Problem

3.2. J Ship Production and the Product Model

Commercial ship design and production in today's world represents a quantum leap

from the time honoured approach. Modem commercial shipbuilding practise is

characterised by one-of-a-kind designs, fluctuating workloads and strong competition

on price, delivery and quality. Up to 70% of the value creation in ships is based on

vendor items and services. The tremendous changes which have taken place during the

last two decades in relation to the widespread use of computer aided design (CAD)

methods and electronic media has resulted in a data explosion and consequently

problems managing data in all organisations globally. The ship design process involves

a large number of often disparate software design tools, and in many cases involving

duplication of effort. The first discussions related to product information systems in

ship building occurred in 1980, with the definition of the product model as "a logically

structured product oriented database" (Whitfield et aI, 2003). The product model offers

a collaborative approach to design (Bong et aI, 1994; Bronsart et aI, 2004).

In the mid 1990s, the Standard for the Exchange of Product Data (STEP) application

protocols (AP), were adopted by the industry and these efforts were described in detail

by Howard et al (1995), documenting the initiatives taken by Lloyds Register to

develop a common standard for data exchange to maintain their competitiveness from a

classification viewpoint. STEP was intended to be a complete and unambiguous

representation of the product (vehicles, aircraft, offshore platforms or ships) in a

computer interpretable neutral format intended for the product lifetime. The application

protocols in STEP were intended to subdivide the product into recognisable and useable

parts.
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Figure 3.1. Shipbuilding Application Protocol (AP)

(Howard et al, 1995)

A seven part application protocol model described by Howard consisting of "islands of

AP's" jointly developed in 1985 by the US Navy/Industry digital data exchange

standards committee (NIDDESC) and other groups including the Japanese Maritime

Standards Association (JMSA) was agreed in 1993 and shown in figure 3.1 (Note: the

mission systems functional area has been removed, as it is considered more applicable

to naval vessels). This work was continued by the International Standards Organisation

(ISO) through the STEP ship team. Various AP standards including AP 215 (ship

arrangements), AP 216 (ship forms model), and AP 218 (ship structures model) have

been developed as described in detail by Whitfield et al (2003).

In 2008, the product model using STEP AP's is in widespread use by the leading

classification societies. The primary intention behind the effort by classification

societies, ship builders and other industry stakeholders to develop the 3D product

model was to provide a mechanism for concurrent engineering development and virtual

prototyping. The future may involve a paradigm shift in the techniques presently used

to enable the distributed design of ships using a continuous product model, eventually

using technology from the computer games industry. The product model database

serves as a framework and repository for information concerning all phases of the
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vessel lifetime including operations, and hence the planning for surveys and all survey

input can now be carried out a common data base.

The goal of a comprehensive ship structural integrity information system (SSIS)

envisaged by Bea and modelled on commercial aviation industry best practises

(discussed in section 2.5.2), has effectively been realized. However, the development of

multiple databases and systems across the major classification societies was perhaps an

undesirable and unexpected outcome. With the announcement of common structural

rules (CSR), The Joint Tanker and Joint Bulker Projects (see section 3.4.2), it was

anticipated that there may be a common approach to software development in the

industry. Recently however, the major classification societies have stated that mutually

exclusive software development as described in section 2.5.5 is beneficial to the

industry. Effectively therefore, the international classification societies have become

the keepers of their own databases, and this includes structural maintenance activities.

3.2.2 The Outline Specification

Negotiations with prospective ship builders usually commence with a general outline

specification. The outline structural specification is the basis for the owner's input into

the design as illustrated schematically in figure 3.2, and should contain all the relevant

technical requirements. The form of the general outline specification may be based on

one previously written by an owner's technical department, or on "templates" such as

the one produced from a Maritimt Forum (1992) project. This specification for a crude

oil tanker was said to have followed ship owners' recommendations and information

supplied by Norwegian manufacturers and vendors, and consisted of 10 chapters,

chapter 2 being devoted to hull.
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Figure 3.2. The Outline Structural Specification

Chapter 2 of the Maritimt Forum template dealt with hull materials and material

protection (coatings), the major structurally related owner's requirements are listed

below:

• The vessel shall be designed for carrying oil in all centre tanks. Due

consideration shall be given for the ship partly loaded and with tanks reinforced

for sloshing.

• Minimum use of ballast water in part loaded condition to be applied.

• One centre cargo tank to be arranged as "heavy weather ballast tank" and coated

accordingly.

• All steel shall be new and of good quality mild steel well suited for this type of

vessel and certified by the class.

• Use of high tensile steel (HTS) shall be a bare minimum.

• All welds to be double continuous in the main hull structure and in areas where

humidity can occur.
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• Reduction of scantlings based on corrosion control not to be used for the hull

structure.

• Steel thicknesses to be increased % or mm over thicknesses given by

classification requirements in the following parts of the steel structures .

(Note: intentionally left blank).

• The structural work shall be executed in accordance with good shipbuilding

practice.

• The ship to be equipped with instruments for early warning of abnormal hull

stress levels during operation in waves and bad weather, and during

loading/unloading operations.

The above broad requirements contained in a mere 5/141 pages of detailed

specifications devoted to machinery and equipment, suggests that the hull specification

was potentially poorly considered by ship owners procuring new tonnage. As a rule of

thumb, roughly 30% of the initial cost of a large bulk vessel is attributed to steelwork.

However, evidence suggests that unplanned costs due to early hull degradation,

followed by major unscheduled steel replacement, exceed any short term gains

achieved by imprudent trade offs in the structural design and integrity of the vessel.

3.2.3 Responsibilities (Builder, Class and Buyer)

In delivering a ship, the builder's obligations are diminished normally after one year,

and the transfer of responsibility is as follows. Firstly, the owner generally assumes

responsibility following the end of the guarantee period. Secondly, the vessel has to be

operated within the parameters set by the ship designer and classification society.

Thirdly, it has to be maintained according to the standards set by the classification

societies. The responsibility for ensuring that these requirements are met clearly rests

with the ship owner (ONY, 2008). Critics have suggested that the warrantees provided

by ship builders are totally inadequate. Oevanney (2006) has noted that the standard I

year warrantee for a YLCC is "similar to that for a toaster". Experience during the past

three decades with the operation of large tankers suggests that the risks associated with

corrosion or fatigue hazards during the nominal 20 year service life are excessively

high as discussed in detail in sections 2.3.1 and 2.3.2. The consequences of even minor
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structural failures in crude tankers are well documented. A crack in the side shell of a

single hull tanker can lead to leakage of crude oil into the sea. A crack in the inner

containment system of a double hull VLCC can lead to cargo leakage into the ballast

tanks with the risk of explosion.

3.2.4 View o(Critics

Large tankers and bulk carriers represent unique, made-to-order products. New tonnage

is ordered across a spectrum of owners requirements ranging from standard builders'

designs to fully bespoke specifications from high quality owners. Recently, much

discussion has taken place in the maritime press in relation to the quality of design and

construction of tank ships and the alleged deterioration of new building standards.

During the tendering process, the customer has an opportunity to submit bespoke

requirements and this usually takes the form of an owner's written specification. Ship

builders appear to be less willing to consider bespoke requirements which negatively

impact production schedules. Owners may be forced to accept ship yard terms, which

often translate to reduced specifications and compromised quality. Yards sometimes

take advantage of the limited timeframe in which owners can effectively leverage the

design process. This usually manifests itself in substandard structural performance.

Over 30 years ago, Wilson (1975) remarked that the average customer has no interest in

supporting tool-sharpening or in advancing the status of marine technology. He wants

as much ship as his money can buy". This focus on least cost in commercial ship design

has arguably led to unacceptable quality levels, a view confirmed by leading figures in

the industry (Carlsson, 2000; Devanney, 2006; Devanney and Kennedy, 2003; Mikclis,

200 1; Woinin; 2000, 200 1; Papachristidis, 200 1). Critics have deplored the lack of

customer involvement in the ship design and construction process, and Devanney and

Kennedy (2003) suggested that collusion between the yards and the classification

societies was driving the "down ratchet". Some owners described their experience with

having to re-engineering ship designs leading to significant conclusions regarding

contemporary ship building quality. In a full page Lloyds List article, Papachristidis

(200 I) made a number of critical observations relative to how large tankers are

designed:
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• Ships are designed for economy of construction, not quality.

• No tolerance is made for corrosion or fatigue.

• Yard specifications are generally too low.

• Construction procedures generally undermine quality.

• The task of the yard is to build a ship as quickly and cheaply as possible.

• Yards bear virtually no responsibility for the quality of their product.

• Classification societies set minimum standards.

Other high profile critics, some of them industry insiders (Bea, 1993a; Woinin, 2001;

Carlsson, 2000), lent support to his views. Due to the lack of standards and consensus

by the rule-making bodies, the primary structural variables were often said to be

decided on the basis of production considerations, driven by the ethos of least cost

designs. Mikelis (2001), formerly principal surveyor to Lloyds Register, director of

Lyras Shipping in London, and Intertanko chairman, observed a noticeable drop in

quality of tonnage built during the eighties, stating that minimum specifications barely

covered the requirements of the authorities and the class societies. Rules and

regulations were said to be "minimum requirements". He raised a number of issues

related to the balance between cost, competition and enhanced safety summarized

below:

• Fatigue life based on 20 years.

• Design hogging and sagging moments.

• Design ballast configuration.

• Corrosion margins.

• Negative plate rolling tolerances.

• Cargo tank coatings.

• Class involvement in coating application.

• Access arrangements.

• Level of supervision.

• Choice of classification society.

• Guarantees.
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• Operational factors.

Mikelis (2001) concluded that new building standards for tankers were in need of

improvement, and that owners were not aware of the implications. Tankers, he said,

were "lacking in robustness and longevity".

3.2.5 Product "Quality"

Perceptions of quality vary, and there appear to be many definitions in common usage.

Because quality is used over such a wide spectrum of applications including products

and services, there can be no one definition to fit all situations. Deming suggested that

quality is defined by the customer and has many measurement scales, one for each of

the characteristics deemed important by the customer (Wikipedia, 2008). Juran viewed

quality as "fitness for purpose" with each product having multiple characteristics of two

types: l-customer-desired product features and 2-freedom from defects (ASQ, 2008).

Crosby (1979) defined quality as conformance to requirements based on a set of

specifications defining the product. The ISO 9000 definition of quality (ISO, 2005)

relates to the degree to which a set of inherent characteristics fulfil requirements. The

American Society for Quality (ASQ) states that quality is a subjective term for which

each person has his or her own definition, but in technical usage means the

characteristics of a product or service that bear on its ability to satisfy stated or implied

needs or a product or service free of deficiencies.

When referring to the quality of a vessel design, and in particular to the structural

aspects, it is considered essential to define what quality actually means in the particular

context. When dealing with a complex engineered product such as a large bulk ship, a

common definition is sought from an engineering reliability viewpoint. Lewis (1994)

links quality to reliability and safety in the following definition: "In very general terms,

quality may be defined as the totality of features and characteristics of a product or

service that bear on its ability to satisfy given needs". This interpretation is identical to

the ASQ definition given earlier. Further and importantly, Lewis believes that quality

also implies performance optimisation and cost minimisation. The above discussion

leads firstly to an understanding that product quality in the context considered here,
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relates to a set of performance characteristics which are highly optimised to meet

customer needs, linking quality, safety and reliability. Secondly, these performance

characteristics should not be susceptible to variability (defects in the manufacturing

environment or process, defects in the operating environment or deterioration from

wear or ageing).

Figure 3.3. Target Safety Level (Skjong, 2007b)

The general relationship between cost and quality in terms of property, life and the

environment for a range of ship types has been demonstrated by Skjong (2007b), based

on a formal safety assessment cost benefit approach, taking into account the cost of

property, safety of life and the environment as shown in figure 3.3. The target safety

level is plotted as the log of the probability of failure (safety index). This would imply

that an optimum target safety level exists for different vessel types.

The European E3 tanker initiative described by Gutierrez-Fraile et al (1994), was a

result of collaboration between 5 major European ship builders. The goal was to design

a new generation of safe, environmentally friendly, high quality DH VLCC's. To the

author's knowledge, few of these vessels were ever constructed. When considering

quality related to crude tankers, Hayer (1994) reviewed 18 VLCC specifications from

twelve prospective yards tendering for a five ship project, questioning whether a

USD 15 million premium related to additional options constituted a "quality" design. In
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relation to the hull, Carlsson (2000) defines quality as value for money, long reliable

service and voluntary quality and safety measures such as extra corrosion protection in

tanks, but concedes that the industry is lacking a transparent and comprehensive

yardstick for quality. Recounting Hellespont Shipping's experience with quality issues

when placing an order for four ULCC's with Korean Yards in 1999, chief executive

Papachristidis (2001) listed the following changes which were negotiated by the owners

relative to the original structural specification offered by the builder, resulting in a 20%

increase in the light weight (more than 48,000 tonnes):

• A 50% increase in the design sagging and hogging bending moments.

• A 10% margin on top of classification stress and buckling factors.

• Unrestricted tank filling.

• A 40 year fatigue life instead of the yard's standard of 20 years.

• A limit on the high tensile steel content of35%.

• No thermo mechanically controlled processing (TMCP) steel to be used.

The views of critics in relation to perceived deficiencies in the quality of design and

construction of tank ships discussed in the preceding sections indicates a gap between

customer expectations and observed levels of product performance. This is especially

evident in the failure of the product to perform according to the required levels of

reliability, evidenced by the number of corrosion and fatigue failures reported in the

literature in chapter 2. More spectacular structural failures previously discussed in

section 2.6 emphasise these shortcomings. However, the argument for improved quality

should be balanced against the need to optimise the product performance

characteristics. The stated objectives of ship builders are to improve productivity

through computer-based least-cost structural optimisation of the kind described in by

Hughes (1988). This optimisation is not necessarily at odds with the performance

expectations of the product from the client's viewpoint, provided that the speci fications

for design and construction are robust enough to ensure that the target safety levels are

optimised as indicated in figure 3.3.

It will be contended that the documented failures in structural performance are related

to three main factors. Firstly, there is the lack of a procedure for ensuring that the
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customer's stated performance objectives are adequately integrated into the structural

design process. Secondly, there is the failure of some ship owners to exercise their

options in the structural design. Thirdly, this is recognition by the industry that

prescriptive rules are a minimum standard for structural design. In section 3.4.2, the

new goal-based common structural rules (CSR) are discussed. The new rules are

claimed to offer an improved basis for product quality (Horn et al, 1999; Kim et al,

2007). However, the design of robust bulk ships must be based on a combination of a

risk-based approach, founded upon the CSR baseline prescriptive standards as a starting

point. This assumption is central to the proposed structural assessment framework,

which relies on the various risk-based measures forming layers on top of the basic

underlying prescriptive foundational elements of the system.

3.3 Formal Safety Assessment (FSA) and Hull Structures

3.3.1 Design for safety

Maritime safety is currently in a transition phase from a prescriptive certification

regime to a goal-based one (Billington and Caruana, 2002; Wang, 2002; Wang, 2006a).

Over a decade ago, Wang and Ruxton (1997) argued that safety aspects should be

systematically integrated into the design process for large made-to-order products such

as ships and offshore platforms, as indicated in figure 3.4. Design for safety (DFS)

means identifying hazards, estimating and evaluating risks, and conducting design

reviews to reduce the risk. Ship safety when viewed as a top-down process, is governed

by a handful of factors, that can be managed individually or in combination, comprising

a manageable set of design scenarios with calculable probabilities of occurrence and

consequences, involving the major accident categories, derived from formal hazard

studies (Vassalos, 2007). The most important phase in a design for safety approach for

large marine artefacts is in the design itself. Effective intervention in the design process

is thought to have the most impact on the satisfactory safety and structural performance

of the vessel. Failure to ensure adequacy in design means that quality and safety cannot

be inspected into the product during the construction process.
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Problem definition phase

Hazard identification phase

Risk estimation phase

Risk evaluation phase

Design review

Figure 3.4. The Design for Safety Process

3.3.2 Formal Safety Assessment (FSA)

Following the Herald of Free Enterprise disaster in 1989 and according to White

(2002), the UK Government rejected a proposal from Lord Carver's 1992 llouse of

Lords Select Committee Report for the safety case regime to be applied to shipping,

based on preliminary safety goals administered through the IMO by the flag States. The

concept of FSA was said to have evolved from subsequent research efforts. Attraction

in the concept was the potential to prioritise safety issues and derive cost-effective

regulations. In 1997, preliminary FSA guidelines were agreed by IMO. Over the last

decade, formal safety assessment (FSA) has developed and is now an acknowledged

safety management method based on risk assessment techniques. It consists of

systematic identification of hazards, risk assessment, risk management, cost benefit

analysis and making decisions from a set of options (Wang and Trbojevic, 2(07). The

design for safety approach and formal safety assessment are essentially similar,

although FSA is intended as a more generic approach, and it incorporates a cost-benefit

analysis which sets it apart from DFS. FSA was developed by the UK nuclear industry,

predating the safety casco
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Figure 3.5. Formal Safety Assessment (Skjong, 2007a)

The UK Civil Aviation Authority utilise FSA in the design construction and operation

of air traffic control systems. The UK Navy has used FSA methods to operate its

submarine fleet (Pudduck, 1997). Wang and Trbojevic (2007) maintain that maritime

safety applications of FSA methods have been generally extensively researched and

satisfactorily demonstrated. FSA methods are now being tested in the shipping industry

for classification rule development and application to a number of specific problems

such as bulk carrier strength, Ro-Ro stability and code development for dynamically

supported craft. Kormatzis et al (2000) from DNV, has described the adoption of FSA

as the basis for a comprehensive review of all classification rules. FSA leads to "useful

insights" into the nature of risks. FSA is viewed as having the potential to be of benefit

to classification societies, ship-owners and society as a whole.
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In figure 3.5, Skjong (2007a) has described the basic structure of the FSA process in

relation to hull structures applications. Although the principles for FSA and the safety

case are the same, FSA is intended to be applied to generic safety issues across various

ship types and the safety case is ship specific. However the use of FSA by the

regulators to drive rule development and the safety case by the individual ship owner is

entirely consistent (Wang and Trbojevic, 2007). Background information on maritime

applications of the FSA method can be found in IMO (1997), Sekimizu, (1997) and

RINA (2002). Kuo (2002) proposed enhancing FSA with a safety management system

(SMS).

3.3.3 Applications To Hull Structures

At the vo" session of the IMO's MSC in December 1998, the United Kingdom

proposed that a FSA study of bulk carrier safety be conducted in accordance with the

guidelines adopted by the organisation. An international Project Steering Board (IPSB)

was established including a broad cross section of the dry bulk industry stakeholders. A

series of five work packages were defined and distributed. In parallel with this work,

the Japanese classification society ClassNK and the Shipbuilding Research Association

of Japan conducted their own study. An overview of the structure of the project can be

found in Luntz et al (2002). In September 2002, the Royal Institution of Naval

Architects (RINA) conducted an international conference on FSA, publishing many of

the findings of the bulk carrier FSA study (RINA, 2002).

Arima (2002) investigated water ingress through hatch covers and structural failures

using an event tree analysis (ETA) approach, commenting on the need for the industry

to develop acceptable risk evaluation criteria. The Cyprus Bureau of Shipping and

consultants carried out a study (Lockett, 2002) into safety of bulk earriers less than

150m in length using a risk matrix approach, identifying five major hazards and

ranking of risk control options. BV developed a risk estimation approach using risk

contribution trees for hull envelope failure, enabling a breakdown of causal factors (top

events). The BV study identified the most significant high level event to be side shell

failure due to fatigue/wastage (Astrugue et ai, 2002).
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The Ship Stability Research Centre (SSRC) of the University of Glasgow and

Strathclyde UK, investigated existing hatch cover structural failure in relation to lACS

UR S21. A first principles non-linear FEM calculation of the fore hatch of a Capesize

bulk carrier was carried out. It was concluded that the probability of failure in the

design condition to the requirements of the ICLL 66 with B minus 60 freeboard and 20

years severity was 100% (Vassalos et al, 2002). In the same conference proceedings,

the ship design laboratory of the National Technical University of Athens (NTUA)

conducted a cost-benefit study into the safety of double skin bulk carriers, using a fault

tree approach. Under the IMO guidelines, the FSA method has tested over a period of

years, first with high speed craft and later with bulk carriers as explained above.

Experience with the application of the FSA method including IMO (2002) opened the

way for a much wider adoption of risk-assessment principles in shipping, coinciding

with the remarks of Wang and Trbojevic (2007).

3.3.4 The Offshore Safety Case Model

The Flixborough disaster in the United Kingdom in 1974, resulted in the requirement

for onshore facilities to submit a safety report consisting of a hazards assessment, a

review of preventative measures, safeguards and mitigation, risk management and

emergency response procedures. After the loss of Alexander Kjelland and Piper Alpha

in the North Sea, the UK and Norwegian governments instituted a system of

performance based safety controls, which in the UK was known as the safety case

regime (Pitblado and Smith, 2000). The first draft of the offshore installations (safety

case) regulations (SCR) was produced in 1992 and for existing installations, came into

force in November 1993, affecting more than 250 offshore facilities in the UK sector.

Safety cases are required for all fixed and mobile installations operating in British

waters and the UK Continental Shelf. Health and Safety Executive (HSE) acceptance

is in the form of a written notification to the duty holder (DH) that they are satisfied

with the case. The fundamental difference between the safety case and prescriptive

rules is that the safety case embodies goal setting: ie a first principles approach to

safety. According to Aupec Ltd (1999), the UK regulatory framework is recognised as

among the best in the world, offering a balanced combination of clear structure ,
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sophistication, rigor and flexibility associated with a goal-setting approach. The UK

offshore safety case model has been widely adopted in aviation, rail safety and software

development around the world.

In Australia, a ministerial council on mineral and petroleum resources in 2002, made

the decision to adopt a consistent national approach based on the UK safety case

regulatory model, using a clear legislative framework. This led to the formation of the

new safety regulator, the National Offshore Petroleum Safety Authority (NOPSA) on

1sI January 2005. The SCR were subsequently applied to approximately 57 fixed

facilities in Australian waters (Clegg, 2005). Proponents of the safety case (Heiler,

2006) have argued that the merits of a SCR regime applicable to the Western Australian

mining industry should be examined based on NOPSA experience. According to the

NOPSA model, a safety case has to have three basic elements: a description of the

facility, a formal safety assessment (FSA) and a safety management system (SMS). The

NOPSA safety case must demonstrate to the satisfaction of the regulatory authority by

its contents and supporting material, that the operator is aware of both technical and

human activities and how safety is managed accordingly. Further, the safety case has to

identify methods for monitoring and review of all activities to ensure continual

improvement in safety performance.

3.3.5 A Safety Case Approach for Ship Stn/cfures

Safety case regulations were introduced into the UK offshore industry as a direct result

of failure of prescriptive systems identified by the Cullen Inquiry following the Piper

Alpha disaster in July 1988. Subsequently, the 1992 House of Lords select committee

or Carver Report into shipping safety, observed that modern science and technology

were not being applied to ships' safety and that the systems to enhance safety at sea

were not conducted on a scientific basis. The Carver Report recommended applying the

safety case to individual ships due to the attractions of the concept. Concerns were

raised about the transferability and practicality of the safety case in relation to its

offshore context. Firstly, agreement on the parameters of the safety case for shipping,

and secondly a perceived lack of uniformity in implementation and policy (White,

2002). As a consequence, the main protagonists of the safety case, the UK Maritime &
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Coastguard Agency (MCA), proposed to the IMO in 1993, that an alternative approach

(formal safety assessment) should be applied to ships to facilitate safety and pollution

prevention.

Following the loss of the tanker Braer in the Shetland Islands in 1993, New Scientist

magazine reported that the business director of the UK Atomic Energy Commission's

safety and reliability consultancy had suggested that shipping should adopt a safety

case approach, in line with the Cullen Report, referring to the MOD requirement for a

safety case for nuclear submarines (Hamer, 1993). In the same article, the head of

Lloyds Register Safety Technology Department was quoted as supporting this view,

with reservations. After the Erika disaster, a DNV spokesperson reportedly confirmed

that the society was sympathetic to the idea of a safety case for tankers. Rawson,

formerly chief naval architect of the UK MOD, Professor of Naval Architecture at

University College London and BruneI University, and a strong advocate of the safety

case approach for tankers, refers to the "sensible discipline of the safety case" and the

adoption of prescriptive standards in the safety case format. HA safety case may have

drawn attention to the potential losses of oil tankers by a reduction in their strength

through corrosion and misuse which are not embraced by prescriptive formulations. It

could have identified critical areas for survey and examined the increase in perceived

risk with age" (Rawson, 1994b).

A safety case approach has been implemented in branches of the UK MOD. Under the

letter of delegation, DNV has full authorisation to issue a "Certificate of Safely -

Structural Strength" on behalf of the MOD Naval Authority for patrol craft, survey

craft, ice patrol ships, landing craft, royal fleet auxiliary ships and other support ships".

Full delegation provides DNV with authorisation to certify the compliance of the ship

against the specified rules, standard or conventions, and where there is a discrepancy,

accept equivalence to the intent of the rules. Due to perceived failings in the

prescriptive approach, O'Reilly (2008) asserts that the Canadian Navy should also

adopt a "goal setting" approach, citing the example of the UK Health & Safety

Executive offshore safety case model.
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The safety case model would seem to be a worthy paradigm in relation to the hull

structures question. The NOPSA philosophy is considered to be a simple and suitable

framework. The envisaged safety case could be developed to cover safety aspects

related purely to the design, construction and operation of the hull structure for large

tankers. The safety case would be subservient to the safety management system (ISM

Code) already in place. The safety case would cover both machinery and hull and

address weaknesses existing in the current ISM Code. This concept will be further

explored in the succeeding chapters, by first establishing a performance based

framework for design involving the buyers input.

3.4 Goal Based Standards for Hull Structures

3.4.1 Goals & Functional Requirements

Goal based standards were introduced into the maritime sector from the UK civil

aviation industry. Goal based standards already exist in SOLAS Chapter II-2, 2000

amendments, with provisions allowing for alternative arrangements for fire fighting

systems. In November 2002, goal based ship construction standards were introduced at

the 89th session of the IMO Council, put forward by IACS-Bahamas-Greece in a joint

submission. The aim was to set clear and demonstrable goals against which ship safety

can be verified at design and construction stages and during ship operation. The goals

could be achieved either by compliance with published technical standards or by

alternative solutions providing an equivalent level of safety."(Hoppe, 2007; 2008).

Figure 3.6 represents the framework of the new five tier goal based standards for hull

structures. The first three tiers represent the standards to be developed by IMO and tiers

IV and V contain provisions to be developed by classification societies, industry

participants and other recognised organisations. The major tier I goal (safety objective)

for all types of new ships is:

Ships are to be designed and constructed for a specified design life to be safe and

environmentally friendly, when properly operated and maintained under the
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specified operating and environmental conditions in intact and specified damage

conditions, throughout their life.

Figure 3.6. Goal Based Standards (GBS) under MSC 78/6/2 (Hoppe,2007)

1 DESIGN
11.1 Design Life
11.2 Environmental Conditions
11.3 Structural Strength
IlA Fatigue Life
11.5 Residual Strength
11.6 Protection Against Corrosion

11.6.1 Coating Life
11.6.2 Corrosion Addition

11.7 Structural Redundancy
11.8 Watertight & Weathertight Integrity
Il.9 Human Element Considerations
11.10 Design Transparency

2 CONSTRUCTION
11.11 Construction Quality Procedures
11.12 Survey

3 IN-SERVICE CONSIDERATIONS
11.13 Survey & Maintenance
Il.14 Structural Accessibility

4 RECYCLING CONSIDERATIONS
11.15 Recycling

Table 3.1. Functional Requirements (Tier II)
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The design life of new oil tankers and bulk carriers was set at not less than 25 years and

the environmental conditions adopted were the North Atlantic and relevant long-term

wave state scatter diagrams. The tier II functional requirements shown in table 3.1 are

applicable to new oil tankers and bulk carriers and comprise design, construction, in-

service and recycling considerations. The structural strength requirements are contained

in II.3 and are given below:

• To withstand at net scantlings in the intact condition, the environmental

conditions anticipated for the ship's design life and the loading conditions

appropriate for them which should include full homogeneous and alternate

loads, partial loads, multi-port and ballast voyage, and ballast management

condition loads and occasional overruns/overloads during loading/unloading

operations, as applicable to the class designation.

• Appropriate for all design parameters whose calculation involves a degree of

uncertainty, including loads, structural modelling, fatigue, corrosion, material

imperfections, construction workmanship errors, buckling and residual strength.

Tier III includes an appropriate verification framework to ensure that the technical

procedures and guidelines in tier IV comply with the functional requirements in tier II.

Prior to the introduction of the new GBS for hull structures outlined above, the pre-

existing requirement for hull structures within the IMO was in SOlAS chapter II -1

which stated that "ships should be constructed according to the requirements of the

classification society which is recognised by the organisation". IMO membership was

split on the philosophical issues concerning the introduction of GBS by the IMO

(Hoppe, 2007). Half of the members were in favour of a complex holistic risk-based

safety approach and half wanted a prescriptive/goal based approach for tankers and

bulk carriers. In the end, it was agreed that both methods should be developed III

parallel, but the risk-based approach was to be used for tankers and bulk carriers.
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3.4.2 JTPlJBP and Common Structural Rules (CSR)

The background to the development of the new common structural rules (CSR) for oil

tankers has been published recently. This was known as the Joint Tanker Project (ABS,

DNV, LR, 2005; Card et al, 2004; Chen et ai, 1998; Liu et aI, 1998). In 2002, LR, ABS

and DNV agreed to jointly develop goal based structural rules for tankers (JTP). The

lACS members undertook the development of a set of common structural rules for bulk

carriers, or Joint Bulker Project (JBP). The first drafts of the new rules were published

in June 2004. The project goals included eliminating competition between class

societies on structural standards, to embrace IMO goal-based standards, to develop a

single standard resulting in the same structural requirements irrespective of which

society classes the vessel, to ensure that ships would be at least as safe, robust and

durable as would have been required by any of the existing rules, to reduce the cost of

dealing with similar but different rule sets, and to ensure common scantling

requirements.

The CSR rules are mandatory for tankers with L> 150m, and consist of 13 sections and

682 pages. The rules came into force on 1st April 2006. The CSR rules are mandatory

for bulk carriers with L>90m and comprise 13 chapters and 558 pages. The

development of the above rule sets for tankers and bulk carriers by the lACS member

societies represents a remarkable effort in terms of the collective will to complete this

hugely complex task. This development took place in parallel with IMO's efforts to

develop broad reaching goal-based standards (GBS) referred to earlier. Undue

complexity of structural design standards has been criticised on the grounds that it

requires additional effort to generate outcomes and increases the risk of possible

misunderstandings or undetected errors (Kendrick and Daley, 2007). Given that

practical use of the CSR rule sets for tankers and bulk carriers is considered almost

impossible without member society software support, it is clear that the rules arc

equally if not more complex than the rules which they replace. The CSR now resemble

the familiar prescriptive codes from the past, albeit with a great deal more complexity.

Prior to common structural rules for tankers and bulk carriers taking effect in April

2006, lACS responded to written concerns expressed by the Union of Greek Ship

owners (UGS). The detailed somewhat acrimonious lACS response to UGS, is an
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indication that some sectors of the industry had deep reservations regarding the

outcome of the new JTP/JBP rules (lACS, 2006a). As discussed in section 2.3.3, the

adequacy of the corrosion margins adopted in the new rules proved to be a particularly

thomy subject (Gratsos et al, 2005). The UGS allegations may be summarized as

follows:

• The CSR corrosion additions are clearly inadequate for the stated lifetime of 25

years.

• Mandatory coating performance standards were not included in the CSR.

• The CSR rules require a software-based approach using different versions of

proprietary software.

• The use of FEA using different software systems permits the approval of

designs of varying scantlings against the intent of the CSR.

• Robust ships will not result from the CSR rules which relax existing rules in

many crucial areas, reduce minimum thicknesses, relax welding requirements,

do not correct known defects, neglect scientific knowledge etc.

• The CSR will not produce significantly heavier vessels (more steel).

• The CSR Rule wave bending moment was not changed to reflect 25 years

instead of 20 years.

• Wave induced vibrations which may contribute up to 50% of fatigue damages

were not considered.

• No real safety margin and spurious assumptions are incorporated in fatigue

analysis as the damage records indicate.

• Fillet welding is extensively allowed in ship design, except for certain limited

areas where full penetration welding is specified.

• Capesize bulk carriers with 11.0mm web thickness will soon be permitted

again.

All of the above allegations by UGS were vigorously refuted by lACS in a detailed

written response published on the web. The background to the technical discussions can

be found in (lACS, 2005; 2006a; 2006b; 2006c). One of the more serious issues,
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namely the failure to include wave induced vibration into the new rules has since been

substantiated by Storhaug's recent research fmdings, discussed in section 2.3.2.

3.4.3 CSR and Design Quality

Only relatively modest increases in steel weight due to the implementation of the CSR

have been reported for large bulk ship structures. In a consequence assessment of the

impact of the CSR carried out by ABS, ONV and LR (2005), two VLCC designs were

assessed and the average total scantling increases in the mid body cargo zone were

+3.0% and + 4.0% for each case. For an Aframax and Panamax tanker, the increases

were +5.0% and +3.0% respectively. According to Oaewoo Shipbuilding & Marine

Engineering Co Ltd (OSME) who delivered over 80 VLCC's, the average total increase

in steel weight resulting from the introduction of the CSR is 5 tolO% (Kim et aI, 2007).

In some quarters, it is believed that the post CSR designs will not be any more "robust"

than the previous ones. Clearly, others expect CSR designs to out perform their non

CSR predecessors. To draw a conclusion from these developments, although the net

increase in steel weight is marginal in most cases, it is reasonable to accept that

incremental improvements in hull structures will arise from the adoption of risk-based

principles, goal based standards and a holistic approach to safety management adopted

by the IMO described in the preceding sections. This optimism should be tempered by

caution due to the lack of failure data, and the CSR should continue to be regarded as a

minimum standard.

Commercial ship design has unquestionably been an exercise in design optimisation

and profitability (Hughes, 1988). In the past, empirical methods based on accumulated

experience were relied upon and structural failures drove the development of

prescriptive codes. Ship yards designing and building the product were focussed on

minimisation of capital cost. By reduction of work content including simplifying the

geometry of the hull and standardisation of plate and stiffener dimensions, fabrication

costs were reduced. The introduction of cheap and available computing allowed

rationally-based structural design procedures to be used in which the objective function

was maximised, as per the methods advocated by Hughes.
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The problem with the foregoing rationally-based, computer-aided approach during the

introductory phases of this new technology (the last 25 years), has been the

underestimation of the impact of the actual loads acting on large bulk ship structures

and the severity of the degradation mechanisms in relation to highly optimised ship

structures. In reality, the separation between the probability distributions for structural

load and capacity was not always known or sufficient, giving a higher probability of

failure. Despite this, the argument for improved quality should always be balanced

against the need to optimise performance characteristics in accordance with good

engineering practise and wise use of scarce resources. This optimisation is not

necessarily at odds with the performance customer's objectives, provided that the

specifications for design and construction are robust enough to ensure that the target

safety levels are met.

In essence two extremes can be envisioned. On the one hand, a structural design has

been optimised to the extent that the reliability, robustness and safety have been

seriously compromised. On the other hand, a design has been selected which is grossly

wasteful in terms of additional steel and cost required due to an unnecessarily large

separation between load and capacity probability distributions. In reality, the boundary

for the first extreme needs to be clearly defined such that the minimum standard can be

used as a reference and baseline for the structural selection problem. This is the

fundamental reason why emphasis should be directed at exercising the buyer's input

into the design using a layered risk-based approach, founded upon the minimum

classification and statutory standards including the goal-based CSR. This is the

essential philosophy behind the proposed multi criteria decision analysis (MCDA) and

evidential reasoning (ER) structural assessment framework developed tested and

validated in chapters 4, 5 and 6.

3.5 Risk-Based Hull Design

3.5.1 The SAFEDOR Project

In rule based design, safety is often thought of as simplistic rule compliance and a

design constraint. Investment in safety was sometimes seen as compromising returns.
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The developers of SAFEDOR envisaged a modernised risk-based regulatory system

linking performance prediction with risk assessment. SAFEDOR was conceived to

focus on ship design and ultimately modernise the maritime industry through a new

risk-based regulatory framework for the rule-makers (Vassal os, 2007). The 1995

SAFEDOR project was led by Germanischer Lloyd (GL) and funded partly by the EC

and 53 consortium partners. Sames (2007) has described SAFEDOR's origins in the

first EU thematic network Safer Euro, as aimed at promoting a new design philosophy

under the theme "design for safety", integrating safety and cost effectively, in such a

way that safety would "drive" ship design and operation. A formal state-of-the-art

design methodology (risk-based design) was envisaged to support and nurture a safety

culture paradigm by treating safety as a design objective.

The primary intention behind SAFEDOR was to deliver a vessel that performed in

accordance with the owners operational and functional requirements. Although

SAFEDOR was intended primarily for individual ship designs of a novel nature having

significant economic value for Europe including mega cruise vessels, the SAFEDOR

philosophy was said to be directly applicable to standard ship designs. Safety goals

were associated with company values, policies and safety considerations. In

SAFEDOR, Hazards could be identified using systematic and rational hazard

identification techniques such as those described by Skjong (2007a), and include what-

if/checklists, hazard and operability analysis, failure mode & effect analysis, failure

modes, effects & criticality analysis and fault tree methods. From the list of hazards,

specific functional requirements and evaluation parameters could be formulated,

Additional classification notations could be applied e.g. for bridge ergonomics.

Established optimisation tools and techniques allow the designer to explore a wider set

of possible design solutions during concept development, as described by VassaJos in

the reference quoted earlier.

SAFEDOR acknowledged that approval of risk-based designed ships required a new

approval paradigm, involving qualitative and quantitative assessment of innovative

concepts and knowledge of current risk levels (Sames, 2(07). SAFEDOR was also

envisaged to embrace approval and operational phases for risk-based designed ships.

Risks identified during the design process were intended to be mitigated in operation.

118



Where the initial design assumption were invalidated (by changes to route speed etc),

periodic assessment of risks during the in-service phase were intended to be carried out

onboard ship.

Figure 3.7.Comparison Between SAFEDOR and IMO's Goal Based Standards

(adapted from Vassalos, 2007)

Similarities between the SAFEDOR risk-based design approach and the IMO goal-

based procedure are shown diagrammatically in figure 3.7 as explained by Vassalos

(2007). The goal-based verification of compliance criteria shown in tier III of the GBS

procedure discussed in the previous section 3.5.1 is linked to a corresponding tier III set

of procedures in SAFEDOR, shown in the left hand side of the figure. SAFEDOR

effectively fulfils the design for safety approach outlined by Wang et al over a decade

ago (Wang and Ruxton, 1997). At the time of writing, SAFEDOR has matured and is

due to be completed in 2009 and the findings of SAFEDOR workshops and

proceedings have been published and are available on line (www.safedor.org).
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3.5.2 Risk-Based Approach to Hull Structures

The broad objectives of the SAFEDOR project described in the previous section

approach the design problem holistically, and the initial published data from

SAFEDOR dealt with defining risk criteria. To date, few specific risk-based structural

studies have emerged from this work. However, the published findings from the IMO

FSA study on bulk carriers detailed in section 3.3.2 contain many references to the risk-

based design methodology applied to ships. Very recently, industries worldwide have

adopted a risk management approach. The marine classification societies have been

transformed into universal providers of risk management services, publishing

guidelines for risk assessment including those from the American Bureau of Shipping

(ABS, 2000). The shipping fraternity appears to be a latecomer in adopting formal risk

management techniques, although it is probable that the concept of risk management

has its roots in shipping. A clear tendency is emerging, with a move away from

prescriptive to performance-based approaches to safety internationally, and this in turn,

is paving the way for drastic evolutionary changes in design, where safety is dealt with

as a central issue with serious economic implications rather than basic compliance with

minimum prescriptive standards (Sames, 2007).

In section 3.2, the current approach to ship procurement was described. In sections 3.3

and 3.4, application of new risk-based safety procedures such as formal safety

assessment (FSA) and the goal-based common structural rules (CSR) into the

development of ship structural standards were discussed. These initiatives were noted

to be at the very formative stages since most of the recent FSA studies on bulk carriers

were done after 2000 and the CSR rules were introduced only in 2006. While increased

involvement of the IMO in ship structural standards and the wider use of risk-based

techniques for the development of class and statutory rules will undoubtedly steadily

improve the performance of hull structures, there is no evidence of any improved scope

for the buyer's influence in the design. In the following sections a methodology is

presented which is intended to overcome this deficiency.
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3.5.3 Stnlcturai Hazard Identification

To properly address safety explicitly, a consistent and transparent framework is

necessary and the most flexible means of establishing such a framework is through the

concept of risk. Using risk assessment, ship design becomes a multi-objective, multi-

criteria optimisation problem (Vassalos, 2007). Risk-based approaches involve a

systematic and rational assessment of threats (hazards). The primary structural hazards

affecting bulk carriers and oil tankers are undoubtedly corrosion and fatigue. Together,

these two serious and interrelated hazards are believed to be responsible for over 80%

of ship structural failures as discussed extensively in the literature survey sections 2.3.1

and 2.3.2. The contribution from yielding and buckling phenomena is of far less

importance; however these additional hazards need to be properly addressed. There is

considerable evidence to support the hypothesis that a number of mysterious structural

failures involving the sudden loss of bulk carriers and in some cases, pollution by oil

tankers, can be attributed directly to the effects of undetected or uncontrolled corrosion

as the loss of the tanker Erika attests.

Figure 3.8. Prioritization Process for CSD's

(adapted from Ma et al, 1997)

Risk-assessment applied to hull structures is complex owing to the lack of data and

difficulty in calculating failure probabilities. Ma et al (1997), in conjunction with the

University of California at Berkeley, proposed a priority rating approach based on
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categorisation of critical structural details (CSD's) depicted in figure 3.8. Although this

concept was originally intended to identify structural areas subject to risk-based

inspections (survey), the method is equally valid for categorisation of structural areas at

the design stage for evaluation purposes, which is the aim of this work. Ma et al

experimented with priority classification based on a risk index approach: P = S.C ,

where P was the priority rating, S is the susceptibility rating and. C is the criticality

rating. The calculated defect criticality ratings for the four categories were given as

Extreme (108), High (106), Moderate (104) and Low (103). In table 3.2, the

susceptibility ratings used by Ma et al and attributed to ASME 1991 are reproduced.

Table 3.2. Structural Defect Susceptibility Ratings (Ma et ai, 1997)

In Ma et ai's study, notional criticality ratings were given due to the difficulty III

obtaining representative data of this type.

Figure 3.9. Structural Categorisation Used in RBI Prototype

(Lee et ai, 2006)
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Since their work, a significant amount of published data relative to acceptable risk

criteria for marine pollution has appeared, including the 2005 SAFEDOR Risk

Evaluation Criteria Project findings IP-516278 (Skjong et al, 2005b). In section 3.5.5 a

risk matrix approach for critical structural detail assessment will be developed using

data from these findings. As a prelude to developing a multi-level risk-based inspection

strategy or to create a baseline of relevant critical structural details for design

evaluation purposes, a list of structural areas needs to be established. As an example,

the structural categorisation for a wing cargo tank is shown in figure 3.9 on the

previous page, from a recently developed prototype computerised risk-based inspection

(RBI) system intended for FPSOs (Lee et al, 2006).

The objective behind the above multi-level risk-based approach described by Lee et al,

was to offer an alternative to the simplified deterministic method afforded only by the

use of classification rules. In describing the philosophy behind this novel approach, the

major contribution or "foundation of experience" provided by classification rules was

acknowledged by the authors. ABS described an initial screening assessment involving

the use of SafeHull Phase A & B to provide a set of strength and fatigue results in the

form of class renewal thicknesses and deterministic fatigue lives forming the basis of a

simplified risk-assessment using a risk matrix approach. Risk scores calculated based

on the product of likelihood and consequence were determined by the software, for risk

ranking or prioritisation.

A primary objective of this study was to search for a construct in which the buyer is

able to perform rapid preliminary techno-economic assessments to compare alternative

structural design options in a limited time frame. As a starting point, a procedure for

ranking and identifying structural hazards was defined. Since Lee et al's approach

differed significantly in complexity, scope and intent, the categorisation of critical

structural details proposed here was based on a relatively simpler definition of generic

critical structural areas (zones) within the transverse cross section of the hull. In table

3.3, a list of the defined critical areas is shown. Each of the areas is considered to be a

zone containing longitudinal and transverse sub-elements. For instance, the main deck

would include deck plating, longitudinal stiffeners and attached girders including

transverse web frames. Similarly, other zones are defined and collectively sub-divide
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the hull structure transversely in a convenient way. Frame numbers can be used to

describe longitudinal extent of the structural elements.

No Generic Critical Areas
1 Main deck
2 Side shell
3 Bottom
4 Inner Bottom
5 Sl~i~ Hopper
6 Inner side
7 Longitudinal Bulkhead
8 Transverse Bulkhead
9 Bulkhead Stringers
10 Swash Bulkhead

Table 3.3. Generic Critical Areas

This type of construct allows threats or hazards associated with the individual structural

zones and elements to be systematically categorised. In the following section, the

procedure for listing corrosion and fatigue hazards associated with the individual

structural zones will be outlined.

3.5.4 Ranking & Prioritizing Hazardo;

The proposed risk-based structural assessment framework formulated for the benefit of

the buyer relies on identification of critical structural details, then assessing the risks

associated with those elements. As acknowledged by Ma et ai, corrosion and fatigue arc

the most pervasive types of structural problems experienced by ship structures.

Therefore, these combined hazards are addressed with priority. In table 3.4 a list of

corrosion threats (hazards) and consequences has been presented. In row one, the threat

posed by aggressive environmental conditions associated with oil cargoes in the vapour

spaces of cargo oil tanks is listed. The specific associated consequences can be

identified and documented as shown. The information required to compile the data in

the table can be readily obtained from the literature. A valuable source was the Tanker

Structures Co-Operative Forum publication TSCF (1992). Numerous references were

also provided in sections 2.3.3 and 2.3.4. Such a list could also be derived using a team

approach based on the structured what if technique (SWIFT). Practical use of this
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technique has been described by Skjong (2007). This is an opportunity to utilise the

combined input of experts, consultants and ship operators to identify ship specific or

fleet wide hazards.

CORROSION THREAT
THREAT CONSEQUENCE

Aggressive environmental Accelerated and possibly undetected corrosion damage to
conditions associated with the critical main deck structure including deck plating, weld
nature of certain oil cargoes connection between deck longitudinals and at penetration
in vapour spaces of cargo with deck web frames, compromising structural integrity of
tanks. the deck.
Conditions for Microbes in Rapid localized pitting attack in inner bottom plating
cargo tanks. resulting in risk of leakage of cargo into the double bottom

ballast tanks.
High saline content, humidity Risk of coating breakdown and accelerated failure of ballast
and high temperatures in tank coating system.
upper parts of segregated
ballast tanks.
Poor surface preparation in Risk of failure of tank coating system and early onset of
way of major hull block joints corrosion damages in a localized band around the girth of
at the erection stage. the vessel, which if undetected, can have serious

consequences.
High temperature cargoes in Increased risk of pre-mature and accelerated localized
cargo tanks. failure of ballast tank coati~" in w<lYof existif!£_damages.
Designs featuring more than Localized spalling of coatings due to increased flexibility
30% High Tensile Steel and larger structural deflections associated with these
(HTS) such as HT-32 or HT- designs, leading to risk of pre-mature coating failure and
36. accelerated structural degradation through corrosion and

fatigue.
Use ofTMCP steel. Possible increased risk of corrosion due to the use of TMCP

steels.
High velocity fluids under Rapid accelerated localized pitting and reduction of
suction bell mouths in tanks. thickness of inner bottom and bottom shell_Qlatif!£_.
Excessive tank water Excessive water washing in cargo tanks can increase the
washing. rate of corrosion damage.
Excessive Crude Oil Washing Can cause localized structural degradation in cargo tanks.
(COW) or leaking COW
guns.
High flow rates through drain May cause localized thinning of the web of longitudinals
holes in longitudinal which is costly to rectify, since it involves a large number
members in cargo or ballast of structural inserts which is a high cost repair method.
tanks.

Table 3.4. List of Corrosion Hazards

Iligh quality hazard identification sessions require the combined efforts of a multi-

disciplinary team, and this could include a naval architect, members of new building
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project teams, marine engineers, and ship board operational staff including mates,

captain and chief engineer.

FATIGUE THREAT
THREAT CONsf6uENCE

High stress concentrations at Risk of cracks/fractures at connections leading to the
penetrations between possibility offractures progressing into primary structures
longitudinal elements and or tank boundaries.
transverse primary structures
(web frames and transverse
bulkheads).
Poor quality fillet welds or Risk ofleakage of cargo into ballast tanks with associated
insufficient throat thickness of high clean up costs or risk of explosion.
fillet welds in welded joints
between cargo containment
system and Segregated Ballast
Tanks.
Poor design of critical areas. Heightened risk of failure of critical areas including lower

hopper connection, with serious structural consequences,
including leakage of cargo into ballast spaces.

Table 3.5. List of Fatigue Hazards

Similarly, an initial general list of generic fatigue hazards can compiled from the hazard

identification sessions as per the examples illustrated in table 3.5 above. In row one,

high stress concentrations between longitudinal elements and transverse structures,

typically transverse web frames and deck longitudinals in the transverse bulkheads

have been identified. The captioned table is intended only to demonstrate the general

procedure. The references given earlier in relation to table 3.4 (p.I25) arc appropriate

here also. Having established the main categories of corrosion and fatigue damage

mechanisms, detailed hazard sessions and feedback from vessels in operation may

reveal specific areas prone to damage and these should be identified as illustrated in

table 3.6. In row one, the connection of the inner bottom (tank top) to the hopper slant

plate has been identified as susceptible to fatigue damage. The information used to

compile the sample data presented in table 3.6 on the following page was obtained from

a number of published papers including TSCF (1992), ABS (1995b), Bea (1993), Liu

and Bakker (1981) and Ma (1995). Feedback from fleet experience with other simi lar

vessels may also be a source of valuable data.
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Zone Specific Fatizue Damazes
Inner bottom Connection of the hopper plate to the inner bottom
Inner side Connection of hopper plate to outside longitudinal bulkhead
Transverse bulkhead Connection oflongitudinals to transverse bulkhead
Double bottom Connection of lon~tudinals to ordinary floors
Inner bottom At stiffener connection to bottom and inner bottom longitudinals
Inner bottom At toe ofwcb frame bracket connection to inner bottom
Cross Ties At cross tics and their end connections
Main deck At cut-outs around transverse bracket ends
Main deck Connection of transverse web tripping brackets to longitudinals
Transverse bulkhead Transverse bulkhead stringers to transverse web frames
Main deck Ends of deck transverse girder
Main deck Deck lor!_gitudinal tripping bracket at intercostal deck girders
Main deck Deck plating in way of deck pipe support stanchions amid ships

Table 3.6. Specific Fatigue Damages

The literature survey conducted in chapter 2 revealed the extent of information readily

available in the public domain on ship structures problems, and the variety of sources

of data used to compile the threat consequences tables, including the Ship Structure

Committee (SSC). Refer to section 2.5.6 for a summary of information sources from

the published literature review. Having documented corrosion and fatigue hazards as

indicated in the foregoing tables 3.4 and 3.5, the hazard identification exercise may be

extended to include other threats, including operational, as listed in table 3.7 on page

128. Here the emphasis is placed on operational threats leading to structural

consequences only. As an example, the data provided in row one of table 3.7 will be

discussed.

In section 2.5.2, Lacey and Chen (1995) and Witmer & Lewis (1995) reported the

benefits in providing hull stress monitoring systems (HSM) onboard vessels to provide

feedback and guidance to the vessel's master in relation to improved ship handling and

the avoidance of structural damage to the ship in heavy weather. In row one of table

3.7, the consequences of not fitting the HSMS can be seen. Again, the data provided is

incomplete and intended to serve only as an example of the decision making processes

necessary for collating real data, although the data sources may be similar.
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OPERATIONAL THREATS
THREAT CONSEQUENCE

Lack of a feed back system Risk of severe structural damage including local
giving information to the deformation, fractures and a significant reduction in the
crew associated with designed fatigue capacity of the hull structure due to
navigation during adverse wave induced impact phenomena.
sea conditions.
Loading cargoes outside the Risk of sloshing related damages cargo tank structural
range of cargo densities elements.
approved in the design.
Incorrect cargo/ballast Risk of damages to structural elements including cross
loading sequence. ties due to excessive shear forces and stresses.
Filling of ballast in cargo Risk of exceeding total design bending moment and
tanks. shear force limitations on the hull girder if cargo tanks

not rated for 1.025.
Excessive berthing forces. Risk of deformation and fractures in side shell plating

and side ballast tank internal structures.
Uncontrolled conditions Risk of bottom plating and internals and docking
during dry docking. brackets set-up during routine dry docking and

associated additional off-hire and repair costs.
Tank overpressure during Risk of major structural damage to tanks with associated
operation. off-hire and repair costs.
Excessive sloshing forces in Risk of major structural damage to tanks with associated
cargo tanks. off-hire and repair costs.
Lack of Swash Bulkheads Risk of major structural damage to tanks with associated
in cargo tanks. off-hire and repair costs.
Partial filling of ballast Risk of major structural damage to Forepeak Tank
tanks during Normal Ballast including fracture of horizontal stringers with associated
condition. off-hire and repair costs.
Falling objects (e.g. during Risk of major structural damage to deck with associated
crane operations). off hire and repair costs.
Vibration caused by Risk of cracks or fractures in SLOP tank or adjacent
machinery or propeller. cargo/ballast tank structures.
Excessive impact pressures Risk of major structural damage to foredeck or loss of
in the bow area. equipment with significant off hire and repair costs.
Doubler plates or enclosed Increased risk of accidents (explosion hazard) during
structures (e.g. piping subsequent hot repairs.
fixtures such as hand rails).

Table 3.7. List of Operational Threats (Structural)
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3.5.5 Risk-Assessment

Having developed a list of hazards using techniques similar to the ones described in the

previous section, the risks associated with those hazards can now be assessed. The

consequences of structural failure in bulk ships are well known and could involve:

• Unscheduled off-hire to effect temporary repairs.

• Unscheduled dry docking repairs.

• A refusal from ports to offload a tanker due to oil leakage into the sea.

• Offloading of cargo due to a crack in the shell (single hull tankers).

• Catastrophic hull failure caused by corrosion and fatigue and major oil pollution

involving severe economic consequences.

• Explosion, fire and possible loss of the vessel due to leakage of cargo into the

ballast spaces in a double hull tanker.

The consequence or "criticality" ratings are difficult to establish. It is important to

distinguish between failure consequences caused directly by human error, such as

collision and grounding as opposed to failures directly related to root structural causes,

which is the focus of this study. It is acknowledged that this separation is not always

clear, since the structural integrity is heavily influenced by the way in which a vessel is

operated, which has been highlighted previously in section 2.2.2. In other cases the

initiating event (e.g. explosion and fire, or unexplained loss) may have been structural

and this has not always been correctly identified as the root cause, as discussed in

section 2.6.

Acceptable risk criteria associated with human life have been presented as part of the

SAFEDOR initiative, although development of appropriate risk criteria within the lMO

is a work in progress (Skjong, 2007). In order to properly associate consequence ratings

with structural assessment, economic consequences have to be linked to the risk of

failure. To do this, the consequences of environmental pollution or off-hire due to

unscheduled repairs have to be converted into financial risk. The Norwegian Petroleum

Directorate (NPD) has released risk acceptance criteria related to oil spills on the

Norwegian continental shelf (Wang and Trbojevic, 2007). The SAFEDOR project
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released risk acceptance data related to oil pollution recently. It was claimed that 85%

of spills were of less than 7 tonnes. Collisions and groundings accounted for more than

60% of all spills of more than 700 tonnes. Clean up costs ranged from USD

1,300/tonne in The Middle East to USD 33,000/tonne in Asia, with a global weighted

average of USD l6,000/tonne. The cost elements considered in the development of

appropriate risk acceptance criteria were said to be a combination of environmental

clean up costs, safety (costlhuman life) and monetary costs (property, off-hire etc).

Skjong (2005b) describes the cost of averting a tonne spilt (CATS) criterion where

CATS < F x USD 40,000, and F is an insurance factor between 1.0 and Fmax.

From an FSA viewpoint, such criteria will eventually be used to set a socially

acceptable level of risk (i.e. through the courts). In this study, a simpler approach is

adopted, where consequence is derived from an assumed cost of an oil spill which is

directly linked to the structural failure event. Past events have proven that the total

costs of major oil spills may exceed one billion dollars, as was the case for Exxon

Valdez. In table 3.8, costs exceeding this level establish the very high consequence

category. Spills involving> 700 tonnes may exceed USD I million as the SAFEDOR

data implies (i.e. at the lower limit for the Middle East USD 1,300/tonn x 700 =

approximately USD 1.0 million). Medium spills are set by USD 100,000 and above,

based on 3 days off-hire at current daily break even rates for VLCCs of approximately

USD 30,000/day. Similarly the lower limits are given using this approach to establish

reasonable consequence categories.

Consequence Cost USI)
(ship-year)

Very Low 1
Low 10
Medium 104

High IOh
Very High )()'}

Table 3.8. Consequence Criteria - Cost of Oil Spills

Annual target reliabilities for marine structures have been published by DNV as far

back as 1992, shown in table 3.9. The target reliability indices associated with the
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annual probabilities of failure are indicated in brackets. The difficulty in using this type

of information for preliminary assessments of the kind attempted here has been pointed

out by Ma et al (1997). "Assigning a susceptibility rating is usually considered more

difficult than assigning a criticality rating unless substantial in-service experience

records are available". For this reason, the susceptibility criteria given in Ma et al's

study are notional (see table 3.2, p.122).

Table 3.9. Annual Failure Probabilities for Marine Structures (ONY, 1992)

In this study the seven frequency indices proposed by Skjong (2007) are adopted and

shown in table 3.10. The criteria range from very frequent (100) to extremely remote

(0.00001) failures/ship/year. These frequency criteria are used to construct a 7 x 5 risk-

matrix shown in table 3.11.

Table 3.10. Frequency Indices (Skjong et al, 2(07)

The risk criteria in matrix form are the product of the frequency indices listed in table

3.10 multiplied by the consequence criteria listed in table 3.8. The results are presented

above in simple standardised risk matrix format and the coloured zones represent the
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views of the decision maker regarding high, medium and low risk acceptance

categories.

~ ~~~~----~------r-------U ~~~~ __~ ___
Z
~ 1--=-'==-=-,-----
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Table 3.11. CSD Risk Matrix

The methodology for the risk-matrix approach is covered in many textbooks including

Wang & Trbojevic (2007). The risk matrix approach is recommended for preliminary

screening assessments of critical structural details which form part of the structural

assessment framework developed further in chapters 4 and 5.

In the above sections, a methodology has been presented for documenting threats and

consequences associated with the main structural damage mechanisms affecting large

bulk ships (corrosion and fatigue). A formal risk assessment approach has been

suggested as a preliminary procedure for screening critical structural details (CSDs). In

chapter 4, a multi-level set of structural assessment criteria will be developed including

the (level J) sub-criterion Strength. In turn, this criterion will be shown to be composed

of a number of (leveI4) sub-criteria including Critical Areas. In section 5.4.4 it will be

demonstrated how the sub-criterion Critical Areas can be assessed based on the

approach outlined above. These processes form part of a multi-layered risk-based

methodology, forming the input for the proposed MCDA/ER structural assessment

framework which will be developed fully in chapters 4 and 5.
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3.6. Conclusions

The current economic environment in which ship owners interested in procurement of

new bulk ship tonnage find themselves, is challenging. Productivity considerations and

least cost constraints are the primary drivers for ship builders to optimise designs and

lower costs. The new common structural rules (CSR) were initiated by the IMO and

developed by the major classification societies in response to criticism from the

industry over "the down ratchet" perceived by Devanney (2006) and others.

Technological developments like the product model will result in an increasingly

collaborative web-based approach to the design of ships, engaging the builder,

classification societies and vendors in the product development. Buyers may either take

a passive role in these developments and accept a baseline product or exercise their

options in the design process to improve the quality based on their own stated

performance expectations. A number of conclusions naturally arise from this chapter:

• Large bulk ships represent unique made-to-order products. New tonnage is

ordered across a spectrum of owners' requirements ranging from standard

designs to full bespoke designs of "high quality". Industry perceptions of

quality are widely different, and the definition has to be linked to the buyer's

expectations. Numerous industry critics have expressed serious concerns over

the current quality of new oil tankers and bulk carriers.

• Commercial ship design has unquestionably been an exercise In design

optimisation and profitability. Empirical methods based on accumulated

experience were traditionally relied upon, and structural failures drove the

development of prescriptive codes. Ship yards designing and building the

product were focused on minimisation of capital cost.

• The problem with the, rationally-based, computer-aided approach to ship

structural design has been the underestimation of the stochastic loads acting on

large bulk ship structures and the severity of the degradation mechanisms in
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relation to highly optimised ship structures which were not adequately

maintained.

• In an engineering sense, quality also implies performance optimisation, cost

minimisation and wise use of scarce resources. This optimisation is not

necessarily at odds with the customer's objectives, provided that the

specifications for design and construction are robust enough to ensure that the

target safety levels are met.

• A balance has to be struck between structural designs optimised to the extent

that the reliability, robustness and safety have been seriously compromised and

designs which are grossly wasteful in terms of additional steel and cost

required. In reality, the minimum standard can be used as a reference and

baseline to work up from for the structural selection problem.

• Least cost minimum standards bulk ship designs are sensitive structures which

rely on increased levels of maintenance effort over the lifetime of the vessel in

order to compensate for the reduced safety levels incorporated in the design

(assumed loads, materials, increased scantlings etc), This connection between

quality and maintenance effort appears to be poorly understood. Historically,

the phenomenon of speculative interests operating ships has been associated

with failure to maintain vessels adequately.

• Post CSR oil tanker and bulk carrier designs may not be any more robust than

the previous ones. As the net increase in steel weight is marginal in most cases.

However, it is reasonable to accept that incremental improvements in hull

structures will arise from the adoption of risk-based principles, goal based

standards and a holistic approach to safety management adopted by the IMO,

although the CSR should continue to be regarded as a minimum standard.

• Emphasis should be directed at exercising the buyer's input into the design

using a layered risk-based approach, founded upon the minimum classification

and statutory standards including the goal-based CSR. This is the essential
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philosophy behind the proposed multi criteria decision analysis (MCDA) and

evidential reasoning (ER) structural assessment framework.

• A balance of views is always necessary between the position of the strident

critic and the vested interests. However, the sensitive nature of large bulk ship

structures, combined with the threats of a poorly specified and executed

structural details, rapid hull degradation due to unmitigated corrosion and

fatigue, and a minimum compliance approach to hull maintenance represent an

irresistible conspiracy against good safety standards in an age when societal

concerns for the environment are heightened.

• Shipping companies interested in extended vessel lifetimes and reliable

structural performance are likely to have heightened expectations relative to hull

robustness and durability

• The transfer of risk-based safety methods from industrial and offshore

applications is occurring in the marine shipping industry. While increased

involvement of the IMO in ship structural standards and the wider use of risk-

based techniques for the development of prescriptive class and statutory rules

will undoubtedly steadily improve the performance of hull structures, there is a

lack of evidence of any improved scope for the buyer's influence in the design.

This major weakness in current ship design and procurement will be addressed

through the further development of a risk-based structural assessment

framework which is one of the main objectives of the present study.
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Chapter 4 - Articulating Product Performance Criteria and the

MCDNER Structural Assessment Framework

SUMMARY

In the previous chapter, problems with the current methods of ship procurement and

quality were identified. In this chapter a unique approach to the selection between

alternative ship structural designs is adopted. and a model is developed based on

multiple criteria decision analysis (MCDA), evidential reasoning (ER) and the

Dempster Shafer evidence combination rule. The method relies on articulation and

identification of a set of key structural performance criteria or attributes developed

here, some of which may be directly specified by the buyer. This method is chosen to

deal with the complex array of quantitative and qualitative data, and sometimes

incomplete or uncertain subjective judgements encountered in this type of problem. The

model takes into account both economic and technical criteria. The method is proposed

as a useful framework for the purchaser, by improving transparency in conducting fast

preliminary rational techno-economic capital expenditure project evaluations, such as

the purchase of new ships. The above goals for this chapter partially satisfy the sub-

objective no.4 stated in section 1.2.

4.1 Introduction

In chapter 2, a literature survey was conducted, revealing recurring performance

problems in large tanker and bulk ship structures, posed mainly by the combined

hazards of corrosion and fatigue, and the failure of the current prescriptive rule-based

regulatory system to properly address these hazards. In chapter 3, the current ship

production environment, characterised by optimised designs, short delivery schedules,

baseline designs and underscored by the prevailing seller's market conditions were

outlined. In section 3.2, flaws in the minimum prescriptive standards approach to

procurement of large bulk carriers and tankers were exposed. In section 3.3, a range of

new risk-based safety technologies recently introduced into shipping were described

including design for safety, formal safety assessment, the safety case model and the

goal-based common structural rules. In section 3.5, a risk-based method of structural
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categorisation using critical structural details, priority ratings and a risk-matrix was

proposed.

The background to MCDA decision support methods will be briefly explained as a lead

up to the reasoning for the selection of the evidential reasoning (ER) theory for this

application. The ER method is based on multi attribute utility theory (MAUT) and

evidence theory advanced by Dempster & Shafer. The MCDAlER method has been

extensively used for a variety of engineering and business applications in a

contemporary context (Yang et al, 2002a). The ER method forms the kernel of a unique

structural assessment framework indicated as the primary objective of this research

work. In section 4.4 as a prelude to the use of the ER framework, a set of structural

attributes is articulated in order to construct a rational framework for use in the ER

algorithm and for eventual utility ranking of alternative structural design options.

4.2 Decision Support Methods

4.2.1 Multiple Criteria Decision Analysis (MCDA)

There is a growing consensus of opinion that the principal function of engineers is to

make decisions, that the heart of design is decision making, and engineering design

essentially consists of identification of options and selection of the best option (Mistree

and Bras, 1991; Mistree et aI, 1990). To deal with selection decisions involving trade-

offs between multiple conflicting attributes associated with risk or uncertainty, methods

such as the utility-based selection decision support problem (DSP) for rapid

prototyping of products, and the work of the Georgia Institute of Technology is

noteworthy in this regard (Fernandez et al, 2001). There are a number of other decision

support methods relying on identification of relevant product characteristics or

attributes including quality function deployment (QFD), the house of quality (1IoQ),

Pughe's selection method, scoring and weighting methods, analytical hierarchy process

(AHP), multi-attribute utility theory (MAUT), physical programming, the Taguchi loss

function and Suh's axiomatic design (Olewnik et aI, 2003).
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Multiple criteria decision analysis (MCDA) refers to decision-making in the presence

of complex, often conflicting criteria. MCDA methods have a relatively short history

spanning approximately 35 years. Business applications of MCDA such as the

European Foundation for Quality Management (EFQM) business excellence model are

in common use (Xu et aI, 2003). In the medical sector, the Canadian llealth Utilities

Index (HUI2 & HUB) is a multiple attribute health status classification system,

combined with a generic utility scoring system (BRQL) providing a comprehensive

framework within which to describe health status. The BUIl2 system contains 7

attributes - sensation, mobility, emotion, cognition, self-care, pain and fertility, each

with 3-5 levels, describing 24,000 unique health states. Information for the system is

provided by HUI questionnaires. According to Vassal os (2007) earlier in section 3.5.3,

risk-based ship design has been referred to as a typical case of a multi-objective, multi

criteria optimisation problem.

4.2.2 Techno-Economic Considerations

When assessing the benefits of new capital expenditures including ships, the aggregate

changes in the welfare of all stakeholders have to be evaluated. These changes are

usually measured in monetary terms, but the effect on life or the environment cannot

easily be calculated on the basis of cash disbursements. Investment decisions represent

major commitment of corporate resources and can have significant impact on the

financial stability of an organisation. Companies can easily incorporate economic,

environmental and social aspects in dollar terms. This research proposes that all major

capital expenditure decisions like the purchase of a new oil tanker or bulk carrier

should be carried out on the basis of a full techno-economic evaluation according to a

comprehensive rational and transparent procedure. Only then can the latent financial

risks associated with improper tradeoffs in the list of technical options be properly

anticipated.

Recurrent accident scenarios have a relation to market conjectures. So-called "blue-

chip" companies should keep operational management independent from commercial

management, as reported by Soma (2004), following an in-depth study of the link

between freight rates and ship loss ratios, adopting the term "commercial accidents" in
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section 2.2.4. Possibly, commercial considerations have often taken precedence over

technical concerns in the inevitable capital expenditure trade-offs which occurred

during the purchase of new tonnage. In the past, where cargo owners had no interest in

safety and quality, substandard ships and shipping companies could trade under all

flags ands class societies and find insurance. There appeared to be little incentive for an

improved techno-economic approach (OECD, 2001).

4.2.3 Product Characteristics and Quality

The product attribute "quality" is often loosely defined and commonly misunderstood.

Often quality is perceived as fitness for purpose or for intended use. In discussions

concerning quality of ship structures, there are many varied viewpoints. There arc those

who consider current quality levels to be high. On the other hand, many critics contend

that current quality levels are unacceptably low. Many definitions of quality can be

found in the literature as discussed in section 3.2.5. This subjectiveness in interpreting

the quality attribute makes a precise definition impossible. Therefore, to capture the

meaning of quality in order to define it, one must look to the general product

engineering field for an answer.

High product quality involves performance characteristics that are highly optimised to

meet customer expectations together with robust product performance. Generally, the

majority of performance characteristics are quantitative. Quality is diminished by

variability in manufacturing, variability in adverse operating environments and by

product deterioration (Lewis, 1994). Current markets for consumer products, high

technology equipment, medical, automotive, aerospace and the defence related

industries, dictate meeting customer needs and providing superior value through

quality. Where there is no one monolithic voice of the customer in consumer markets,

the aim is to capture multiple and diverse customer needs and convert them into better

perspectives for product development.

139



Fig 4.1. Generic House of Quality (Olewnik & Lewis, 2003)

In a recent article, Olewnik and Lewis (2003) have described the quality function

deployment (QFD) technique for translating customer requirements into product

requirements, through a comprehensive matrix called the house of quality (lIoQ)

depicted in figure 4.1. QFD was developed by Akao and was implemented first at

Mitsubishi Heavy Industries Kobe Shipyard in 1972 and later adopted by Toyota

between 1977 and 1984. The HoQ represents a basic design tool which depicts the

relationship between the customer attributes listed in the rows of the matrix and the

product engineering or technical requirements listed in the columns of the matrix. In the

relationship matrix, the effects of each engineering attribute on each customer attribute

are determined. The HoQ paradigm is widely used in product development as attested

by a large number of web sites offering related services (e.g. http://www.sixsigma.com)

4.2.4 Selection o(an Appropriate Method

Unfortunately, large scale real world problems often involve a mixture of quantitative

and qualitative attributes with uncertainties. Therefore, a need exists to provide a

rational, transparent and repeatable procedure for dealing with MCDA problems of this

nature (Xu et ai, 2003). Developments in computing and information technology have

made it possible to conduct systematic analysis of complex problems. Since design is
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essentially selection between options, and options are best compared using a set of

performance attributes, the starting point in developing a risk-based approach to

selection between alternative structural design options therefore, is to firstly identify the

relevant performance attributes, and secondly to select an appropriate theoretical

method for the selection process.

MCDA Metboc1 for
rational comparison of
competing $trucmrll
design options

Preliminary
Design

II

Figure 4.2. Risk-Based Ship Structural Design - Buyer's Perspective

In phase I, a formal safety assessment (FSA) is performed by the buyer, in conjunction

with the preliminary structural design process. In phase II, the performance criteria and

objectives arising from the results of the MCDA/ER structural assessment framework

are input into the preliminary design process as shown diagrammatically in figure 4.2.

The MCDA/ER method has been chosen for this particular application in view of the

extensive number of published papers and research reports which have been generated

including engineering safety related applications discussed in section 4.5.1 and the

availability of the Intelligent Decision System (IDS) software package developed by

Xu and Yang (2005).
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4.3 Perfonnance-Based Ship Design

4.3.1 Performance Based Marine Design(PBD)

The first efforts to adopt a performance based approach to marine design came with the

establishment of the EU Thematic network, SAFER EURORO in 1997, with the

objective of promoting the design for safety philosophy in the maritime industry

(Vassalos, 2007). This initiative led to the 1995 SAFEDOR project led by GL and

funded partly by the EC and 53 consortium partners, described in detail in section 3.5.1.

SAFEDOR was intended primarily for cruise vessels in Europe. Safety goals were

associated with company values, policies and safety considerations. Hazards could be

identified using systematic and rational hazard identification techniques. From the list

of hazards, specific functional requirements and evaluation parameters could be

formulated. Established optimisation tools and techniques allowed the designer to

explore a wider set of possible design solutions during concept development, as

described by Vassalos (2007).

The same trend has been noted in land-based industries. In recent years, an alternative

to the specification-based, prescriptive approach is emerging in the civil engineering,

community. This new approach is being driven by seismic engineers seeking a

performance-based approach (Aktan et ai, 2006; Deru and Torcellini, 2004). Generally,

the design of buildings is driven by the need to satisfy a set of minimum criteria, such

as budget constraints, time schedules, functionality requirements, safety regulations and

energy codes. This is said to produce buildings just meeting minimum criteria. To

achieve better than average or exceptional performance, the design team should include

the building owner working together with a focussed effort towards performance goals

to provide direction to these efforts. These performance goals need to be set during the

initial stages of design, and the design team buys into the goals or establishes them

(Spekkink, 2005). As a result, a clear tendency is emerging of a move away from

prescriptive to performance based approaches to safety across international and

industrial boundaries.
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4.3.2 PBD of Ship Structures

In section 3.2, the limitations of the current approach to the design and construction of

large bulk ships were described and failure to properly engage the customer in the

design process was indicated as a factor in the perceived quality problems associated

with bulk ship designs. A spectrum of design options ranging from least cost minimum

standard ship yard designs, barely complying with classification standards, through to

high quality ships built to bespoke specifications, considerably in excess of

classification rule requirements was identified. Itwas also recognized that the non blue-

chip shipping interests identified by Soma and the OEeD studies referred to earlier in

section 2.2.4 would not be motivated beyond a minimal compliance level for ship

design and this philosophy could extend to ship operation and hull maintenance.

However, for shipping companies interested in extended vessel lifetimes, and

maintaining good reputations with port States and other stakeholders, structural

robustness and reliability of the fleet would be factors which would encourage these

owners to have more influence over the way their vessels were designed and

constructed.

Performance based design of ships has been envisioned as the functional requirements

established by the owner and institutional requirements established by governmental

and regulatory bodies concerned with safety and pollution prevention. The principal

elements of the ship structure are designed in such a way that the ship will efficiently

perform its function for the intended lifetime. Performance based design of ships is an

exercise in philosophy, engineering and project management. The philosophy used to

develop the hull structure of the 12,000 DWT Millennium Class tankers for ARCO

Marine was recently described by Read et al (2000). These ships were built to operate

in the Gulf of Alaska, one of the most severe ocean environments in the world. "The

overall intent was not to build a ship that just met the rules of class. The intent was to

construct a vessel that would meet or exceed the rules as required, to a degree that the

vessel became uniquely suited to meet the owner's need for extended service in a

severe environment".
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4.3.3 The Buver's Options

The ship owner (customer) potentially has the opportunity to control major ship design

parameters including global strength criteria, selection of materials, definition of

corrosion margins etc which can profoundly influence the structural performance of the

vessel. Aspects of the structural design which may be directly specified or influenced

by an owner are listed below (Lee, 2000):

• Combination of cargo patterns and draught.

• Design bending moments.

• Higher cargo density for fatigue.

• Major design parameters (cargo density, scantling draught etc).

• Special full and part loading conditions.

• Ballast arrangements and unrestricted filling.

• Ballast exchange.

• Cargo Tank arrangements.

• Measures to prevent cargo sloshing.

• Structural configuration.

• Additional scantlings.

• Corrosion margins.

• Coating Specifications.

• Materials.

• % High tensile steel (IUS).

• Lightweight mass.

• Fatigue life (global + local).

• Access and ventilation arrangements.

• Detail design.

• Vibration analysis.

• Classification (+ notations).

• Construction quality (welding + fit-up).

• Coating application.
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It should be noted that section 2 (5.1.9) of the new lACS Common structural rules for

tankers contains a list of "owners extras" (lACS, 2006b), partially including the above

listed aspects.

4.3.4 Structural Performance Goals

In a performance based structural design approach, an owner should establish written

performance goals or objectives. These should be compared to the stated goals

developed in conjunction with the IMO goal-based structural standards described in

section 304.1. The owner's performance objectives will reflect his own specific

requirements similar to the example below:

• At least 25 years continuous and environmentally safe operation based

exclusively on The Gulf to Europe and The Gulf to the Far East routes, based on

normal operating conditions and reasonable duty of care obligations and an

operational profile of 335 days per year at sea, in cargo mode 50% of the time,

and in ballast mode 50% of the time.

• The annual probability of serious fractures or cracks leading to cargo leakage

from the inner containment system into the segregated ballast tanks to be less

than 1 x 10-4 during 25 years of continuous operation based on the above

specified operational profile.

• The annual probability of initial breakdown of coating systems inside the

segregated ballast tanks to be less than 1 x 10-4 during 15 years of operation,

assuming the above specified operational profile.

• The hull structure to be designed for safe access and ease of maintenance

• The vessel to be designed for safe and environmentally friendly operations

including cargo loading and discharge operations, including emergency

conditions which may involve ballasting designated cargo holds ("gale ballast

condition") and ballast transfer operations to comply with MARPOL

requirements.
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The above list is intended to illustrate the nature of an owner's performance objectives

and therefore serves as an example only.

4.4 Articulation of Structural Assessment Criteria

4.4.1 Structural Assessment Framework

In a recent paper dealing with the vessel selection problem, Xie et al (2008), list the

main uncertainties encountered by decision makers as different types of assessment,

imprecise assessment due to insufficient data, shortcomings in expertise, inadequate

time for evaluation, the inability of experts to provide a fully detailed assessment and

the lack of proper and robust aggregation of subjective and objective assessments made

on multiple decision criteria. The basic problem is to aggregate the input data, where

linguistic and numerical assessments have to be transformed into a unique plane either

by transforming numerical data into qualitative forms, or by assigning numerical values

to the linguistic terms. The proposed structural assessment framework therefore,

represents a departure from the usual analytical approach based on calculation and

comparison of stresses, because it relies upon a combination of qualitative (linguistic)

and quantitative (numerical) assessment criteria, subject to the considerations outlined

above.

As a means of assessing optional structural configurations, in this case large bulk ship

hull structures, against the performance goals stated above, a suitable set of linguistic

and numerical performance criteria must be established. The assessment criteria allow

the use of standard decision support techniques such as MCDA. Due to the subjective

judgments and imprecise numerical data normally available during an owners

assessment of structural designs, the evidential reasoning (ER) algorithm was

considered to be the most suitable technique as described by Yang et al (1997; 2002a;

2002b). This allowed a rational transparent framework to be developed for comparison

of alternative but similar VLCC structural design options by ranking in order to

facilitate preferences, as described in the following sections.
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4.4.2 Top Level Criteria

For the purpose of demonstrating the generality of the proposed structural assessment

framework, the example chosen was a typical 300,000 dwt oil tanker (VLCC) similar to

that shown in figure 2.l(a). In section 5.3, a description of the structural arrangements

and scantlings will be presented. A five level structural assessment framework

comprising a number of main criteria and sub-criteria has to be assembled in an

assessment hierarchy in order to model the selection process. In this section, the

selection criteria will be developed and articulated.

Levell Criterion Level 2 Sub-Criteria
Design Selection - Commercial

- Technical

Table 4.1. Top Level Criteria, Levels 1&2

At the top level (level 1), a number of alternative VLCC structural designs are to be

evaluated under the main criterion, Design Selection. The basic hierarchical framework

for structural assessment of VLCC structural options proposed in this study, comprises

a combination of both Commercial and Technical (level 2) performance criteria shown

in table 4.1.

Level 2 Criteria LevelS Sub-Criteria
Commercial -NPV

- Warrantee
- Classification

Table 4.2. Commercial Sub-Criteria, Levels 2 & 5

As the top criterion is assessed on the basis of a combination of a set of both

commercial and technical sub-criteria, the method is techno-economic. The

Commercial criterion comprises three (level 5) sub-criteria: NPV. Warrantee and

Classification listed in table 4.2.
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4.4.3 Commercial Criteria

Net Present Value (NPV): There are a number of established capital budgeting

techniques used in conjunction with the planning of major capital outlays such as the

acquisition of new ships. Erroneous forecasts of asset requirements can result in serious

consequences. To satisfy boards of directors responsible for approval of major capital

outlays, and to organise the necessary funding, alternative proposals have to be

evaluated according to an established capital expenditure ranking procedure. Four

methods for ranking mutually exclusive investment proposals are the payback method

or payback period, return on assets (ROA), the net present value (NPV) method and the

internal rate of return (lRR) method. Due to flaws in the payback and ROA methods,

discounted cash flow (DCF) techniques were developed including the net present value

method which is in widespread usage, according to Weston & Copeland (1989). The

equation for the net present value is:

[
CF.. CF2 CF. 1 I In CF, INPV = + + + - = -(l+k)1 (l+k)2 ... (l+kt 0 1~1(I+k)' 0

where CFt represent the net cash flow, k is the firm's cost of capital, Iii is the initial

capital expenditure and n is the project lifetime. The NPV method has been chosen as

the most appropriate index of project viability (Weston & Copeland, 1989). When the

discount rate is zero, the NPV of the project is simply the sum of the cash flows. As

the NPV of a project is exactly the same as an increase in the shareholder's wealth,

projects can be ranked on the basis of the highest NPV and this is the method adopted

in the model. A zero NPV means that the debt and equity holders are compensated for

risk. A positive NPV project earns more than the required rate of return. Ilowever, the

IRR can also be used for ranking of projects. If the projects are mutually exclusive, any

project which has an IRR greater than the cost of capital (e.g. I0%) would be accepted

for comparison purposes.

Classification: The choice of classification society is normally considered to be an

owner's option, although classification is actually a commercial decision because

formally, the classification society is contracted by the builder to provide classification
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services. The relationship with the owner does not normally commence until vessel

delivery.

Warranty: Structural warrantees for commercial ships are usually only valid for 12

months following the delivery date, coinciding with the end of the builder's guarantee

period. In some cases, an extended structural warrantee may be negotiated with the

builder and therefore it is also considered to be a commercial decision in the proposed

structural assessment framework.

4.4.4 Technical Criteria

The literature survey carried out in chapter 2 revealed weaknesses in the current

approach to the safety performance in design, construction and operation of large bulk

ships. In chapter 3, the views of critics in relation to design quality were critically

examined with a view to establishing a set of key performance attributes or criteria

which could be used in a structural assessment framework described in the introductory

remarks to this chapter. In this section, the Technical criteria will be articulated as part

of the proposed MCDAlER structural assessment framework.

Level 2 Criteria Level 3 Sub-Criteria
Technical - Strength

- Durability
- Arrangements
- Operational

Table 4.3. Technical Sub-Criteria, Levels 2&3

The main technical considerations involved in the decision-making process can be

captured by four distinct sub-attributes. To achieve this, the level 2 Technical criterion

has been sub-divided into four (level 3) sub-criteria, Strength. Durability,

Arrangements and Operational listed in table 4.3. The level 3 Strength criterion is

further sub-divided into five (level 4) sub-criteria Global, Fatigue. Buckling. Dynamic

and Critical Areas listed in table 4.4 on the following page.
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Level 3 Criteria Level 4 Sub-Criteria
Strength - Global

- Fatigue
- Buckling
- Dynamic
- Critical Areas

Table 4.4. Strength Sub-Criteria, Levels 3&4

In tum, the five (leve14) sub-criteria in table 4.4 are further sub-divided into the lowest

level (level 5) Strength sub-criteria listed in table 4.5

Level4 Sub-Criteria LevelS Sub-Criteria
Global - Longitudinal

- Transverse
Fatigue - Hull Girder

- Side Structure
Buckling - Main Deck

- Member 1
- Member 2
- Member 3

Dynamic - Berthing
- Sloshing

Critical Areas - C'.4-1
- CA-2
- ('.4-3

Table 4.5. Strength Sub-Criteria, Levels 4&5

Global Strength is described by Longitudinal Strength and Transverse Strength sub-

criteria. To illustrate the framework for structural evaluation, a detailed explanation of

the determination of the above strength criteria is given in the following sections. In

section 4.5.3 it will be demonstrated how these numerical and qualitative criteria will

be used to construct the hierarchical framework for the ER model. For the purpose of

illustrating the method, examples of the processing of the individual data will be given.

A calculation of the ultimate strength ratio for the hull girder will be presented in

section 5.4.1.2.

At an early stage in the ship design process, the hull girder global, fatigue and buckling

strength can be assessed based on preliminary design information made available by the
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builder. If drawings are supplied by a number of competing ship yards, they could be

used as a basis for evaluation of alternative structural designs. These drawings may

include the General Arrangement, Midship Section, Longitudinal Profile, Transverse

Sections, Structural Details and Capacity Plan. The information obtained from the

builders drawings may be used as input data for the strength assessment using the

criteria listed. In the following sections, a brief outline of the theory behind the chosen

longitudinal strength evaluation approach is presented. In the following, the criteria will

be articulated in detail.

4.4.4.1 Global Strength

Longitudinal: Ship structures have traditionally been designed according to the global

strength and allowable stress criteria established by the international classification

societies as described in section 2.2.3. However, it is now well recognized that the

limit state approach to the design of steel plated structures is a much better basis for

design (Frieze et al, 2007; Paik & Thayamballi, 2003a; 2003e; 2003f; Paik and

Faulkner, 2003b; Sun and Wang, 2005). The simplified methods used to analyse ship

structures in the past have relied upon estimates of the elastic buckling strength with a

plasticity correction. The true ultimate strength is not revealed by allowable stress

design (ASD) as in typical ship structures, due to the onset of buckling, where the cross

section is not able to develop its full plastic moment resistance.

Under an applied vertical bending moment, the yield point is reached in deck or bottom

flanges, progressing through the side shells and plastic deformation spreads over a

substantial portion leading to structural failure. Failure may then occur either through

fatigue cracks, spreading plasticity, instability or sudden brittle fracture. Ultimately, a

fully plastic moment is reached when yield has developed at every point throughout the

depth of the structure (Frieze and Lin, 1991). In double hull tankers, deck buckling is

likely to occur in sagging, reducing the collapse response substantially. To obtain a safe

and economic structure, it is essential to calculate the true ultimate strength. According

to Paik and Thayamballi (2003a), and in the most general sense, the partial safety

factor-based design criterion relating demand to capacity for a structure under multiple

simultaneous load types can be expressed as follows:
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Where Dki (Fki, r fi) = characteristic measure of demand for load type i calculated from

the characteristic measures of loads F, and magnified by the partial safety factors Yf

and Yo

c, d safetv measure i I· h c,Design capacity = Cd = - an satety measure Imp res t at - > 1rM Dd

where F, = characteristic measures of loads, Yf = partial safety factor related to loads,

Yo = partial safety factor related to safety and serviceability, C, = characteristic

measure of capacity, YM = YmYe = capacity related safety factor, Ym = partial safety

factor related to materials and re = partial safety factor related to quality of

construction.

The practical application of the reliability approach in relation to ship structures is still

in the research domain, although the incorporation of a requirement to calculate the

ultimate strength of the hull has already been introduced in the common structural

rules. Recently, more efficient non-linear analysis methods utilising very large-sized

structural elements have been developed to analyse the progressive collapse behaviour

of ships hulls. Such methods were first proposed in the mid 1970s, and have become

more practicable due to the progressive development of the modem finite element

method. Unlike conventional FEM, the idealized structural unit method (lSUM) utilises

specially formulated ISUM unit assemblages comprising groups of plate stiffener

combinations. Paik and Thayamballi (2003a) have shown that the progressive collapse

behaviour of ships hulls can be predicted using an automated version of the ISUM

approach, known as ALPS/ISUM. The method has been benchmarked against a

physical test performed on a frigate in 1991 (Dow Frigate). The ISUM model

comprised an assemblage of rectangular plate units and stiffeners between two

transverse frames. Since then the ALPS/ISUM approach has been widely used and in

the following, the collapse behaviour for a DH tanker will be discussed.
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Figure 4.3 Collapse Behaviour of a 313k dwt OH Tanker

(Paik and Thayamballi, 2003a)

In figure 4.3, the progressive collapse behaviour of a 313,000 dwt double hull VLCC is

illustrated. A series of buckling events are observed to occur in both hogging and

sagging at vertical bending moment levels below the design total bending moment

M, = 16.489 X 103 MNm (points 1,2,3,12,13 and 14). Consistent with Paik et al's

findings in section 2.6.1, an allowable stress design approach may be non conservative

with respect to buckling failure of the bottom structure in bulk carriers.

Critics have suggested that the minimum design vertical bending moment for a VLCC

should be in the region of 1 x 106 t-m. This should be compared with the standard rule

vertical bending moment of around 620,000 t-rn according to classification rules, This

is estimated to add approximately 1000 tons of steel to a VLCC at a marginal cost of

$500,000, representing an increase of 61% above the builder's recommendations.

Hellespont Shipping have reported (Papachristidis, 2001) that the design bending
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moment for a series of four 440,000 dwt VLCC's built in Korea in 1999, was increased

by 50% above the rule value to ensure the following (see section 3.2.4):

• Any transverse combination of cargo tanks across to be empty at or near design

draught.

• A reasonable range of asymmetric cargo loads at full draught.

• All ballast tanks to be 100% full for a range of bunkers.

• Ship to ballast down to a reasonable draught without resorting to ballasting

cargo tanks.

• Any single ballast tank to be empty with all the other ballast tanks full.

• Normal ballast exchange (not flow through) sequence without restrictions.

• Any OH tanker should withstand flooding of any single ballast tank and any

single contiguous pair, trio and quartet of ballast tanks when loaded to scantling

draught, without exceeding design stresses.

The increase in bending moment reportedly resulted in a 20% increase in steel weight.

Others have suggested that an assumption of 40 years instead of the standard 20 years

for the wave return period would result in an increase of the design wave bending

moment by just 3.7%, and 60 years would mean less than 6% (Mikelis, 2001).

The above findings strongly suggest that a prudent buyer should investigate the basic

longitudinal strength data offered, including the design bending moment. Adequate

margins on these aspects of the design are expected to have far more impact on the

long-term structural robustness and quality than any other factor. An owner can decide

whether to accept the standard rule bending moment or to require additional bending

moment capacity to ensure increased flexibility in operation. This decision will increase

the light mass (and cost) of the vessel.

Transverse: The previous discussion relates only to the longitudinal strength

considerations for large bulk ships. Data given in tables 5.5 and 5.6 for a typical

300,000 dwt oil tanker (VLCC _1), indicates that the ratio of the mass of the transverse

structures (web frames, transverse bulkheads etc) to the total steel mass in the mid ships

cargo area (26,303 tonnes) is just over 13%. This relatively small portion of the total
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structural weight has a vital role to play in relation to structural efficiency. Transverse

bulkheads have a dual role in resisting hydrostatic and dynamic loads from tank or

cargo hold contents, and together with web frames, supporting the side, bottom and

strength deck plating. In bulk ore carriers, corrugated bulkheads have been problematic

due to a combination of factors including corrosion together with fundamental design

flaws discussed earlier in section 2.6.1. New research work by Paik and Thayamballi

(1998) focussing on this problem has highlighted certain areas in which the knowledge

of the structural behaviour of transverse corrugated bulkheads was demonstrated to be

deficient for the reasons listed as follows:

• Variation in bulkhead buckling strength due to the influence of the corrugation

angle, not properly understood.

• Lack of consideration of compressive and lateral loads acting simultaneously on

the bulkhead.

• Failure to include the effects of shedder plates on the bulkhead modelling.

• Improper modelling of rotational restraints at corrugation ends.

• Lack of"Z quality" steels in the lower bulkhead stool.

• Use of partial penetration welding of corrugated bulkhead plating to stool plate

instead of full penetration welding required for fatigue strength.

The above findings indicate that assessment of corrugated bulkhead designs should

account for all of these factors and the quality of the FEM modelling requires careful

consideration. In OH tankers, conventional transverse bulkhead arrangements arc

usually employed involving vertical tee stiffeners with the section modulus increasing

from strength deck down to inner bottom, and bracketing top and bottom. The design of

the brackets, horizontal stringers, their terminations and the penetrations of vertical

stiffeners through the stringers are critical structural areas. The penetration of all

longitudinal stiffeners at side shell, bottom, inner bottom, deck and longitudinal

bulkhead through the water tight transverse bulkhead and web frames, give rise to

thousands of critical areas (refer to section 2.2.1 and figure 2.2).
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4.4.4.2 Fatigue Strength

Hull Girder: The cyclic wave-induced hull girder bending stresses in 1970's built bulk

ships constructed from normal strength steel with plate thicknesses of 30mm or more,

meant that the section modulus of the hull girder was adequate to prevent fatigue

fracture of the hull, and no explicit fatigue check was necessary. In current rule-based

designs, the section modulus requirement is specified as a function of the principal

dimensions of the vessel (see section 2.2.3). S-N curves are commonly used as

explained in section 2.3.2, to specify the allowable stress range, although S-N curves

are derived from constant amplitude stress cycles whereas ships experience stress

ranges as random variables. Based on the operating environment and the assumed wave

scatter diagram for the long-term distribution of stresses, a nominal fatigue life

calculation can be performed. For ships constructed from high strength steels, with

deck plate thicknesses in the region of 20mm, the increased stresses and reduced

section modulus of the hull girder warrant closer attention to the hull girder fatigue

problem, and this is linked to the hull girder ultimate strength capacity discussed above.

The concerns raised in section 2.3.2 in relation to significant slam induced vibratory

stresses and their role in overall fatigue failure need to be addressed.

Side Structure: In contemporary bulk ship designs, the stress range acting on the side

structure located between the loaded and ballast waterlines is approximately twice that

of the bottom shell due to wave action. This phenomenon is largely caused by high

cycle wave action on the shell. In section 2.3.2, problems involving 1990's built

VLCCs having a high percentage of HTS were recounted, where side longitudinals in

way of cargo tanks were found cracked, primarily at the intersections with the

transverse bulkheads. After 1990, the major classification societies introduced specific

fatigue criteria for these areas. Due to the particular fatigue phenomena involved in the

area between the load water line and the ballast water line, this area of the side shell has

to be considered as a special area. Software supported longitudinal strength assessment

tools such as MARS Rule 2000 used in section 5.4.1.2 are capable of determining the

nominal fatigue strength of individual structural members.
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4.4.4.3 Buckling Strength

Main Deck Buckling: Due to the structural configuration, the main deck in a DII

VLCC typically has a section modulus approximately 70% of that for the double

bottom. When the vessel is in a loaded condition with cargo tanks full, the main deck

will experience high buckling stresses, making the deck structure a critical area. This is

clear from figure 4.3, by the smaller margin between the onset of failure for the main

deck plates in sagging (point 17) and the total bending moment (Mt). This should be

compared to the collapse of the inner bottom shown by point lOon the hogging

response curve and the total bending moment. In large bulk carriers, buckling

considerations may lead the focus to elements in either the strength deck or bottom

structure which have been shown to be sensitive to buckling failure, as discussed in

section 2.6.1.

Buckling of Members 1-3: The collapse response curve for the individual design can

be used to determine the sequence of buckling events. This process is similar to those

depicted by Paik and Thayamballi (2003a) in figure 4.3. For assessment purposes, the

evaluation could be limited to several specific structural details (e.g. members 1-3).

4.4.4.4 Dynamic Strength

Berthing: During normal berthing operations, the side structure of bulk ships is

particularly exposed to the hazard of low velocity, high energy impact. Collisions may

be due to environmental influences or human error, resulting in the risk of deformation

of the shell plating and buckling of associated internals. The consequences of such

damage may be immediate off hire of the vessel with the associated losses. The

thickness of the side shell therefore, is a major determinant in the capacity of the side

structure to withstand these abnormal berthing forces.

Sloshing: Current double hull VLCCs and ULCCs can have centre tanks SO-60m long

without swash bulkheads. The natural frequency of a half filled cargo tank may be in

the region of 12-13 seconds, which roughly corresponds to the vessel's natural

frequency in pitching. This can lead to high impact forces on tank boundaries. The
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design liquid density for sloshing calculations is sometimes assumed to be less than

1.025 (e.g. 0.9). This subtle change can lead to unforeseen restrictions on certain types

of cargoes and may even mean that, for structural reasons, the "gale" ballast tank

cannot be filled with seawater in an emergency in accordance with the provisions of

MARPOL. An owner may influence the decision whether or not to fit swash bulkheads

in long tanks. Critics have suggested that the minimum subdivision for a 300,000 dwt

VLCC should be 3 x 9 cargo tanks. This it is argued would obviate the need for swash

bulkheads, and the smaller tanks are required because sloshing forces "cannot be

predicted" (Devanney, 2006). Since standard designs for VLCCs currently feature 3

tanks across x 5 lengthwise, it is unlikely that smaller tanks could be considered by the

builder, and sloshing should therefore be carefully evaluated in relation to the potential

consequences.

4.4.4.5 Critical Areas

Critical Areas: For evaluation purposes, critical structural details should be

categorised as per the method discussed in section 3.5.4. As an example, three

alternative arrangements for the lower hopper comer detail in a double hull tanker arc

indicated in figure 4.5. In describing ARCO Marine Inc.'s experience in building the

new Millennium Class tankers at Avondale Industries in 1996, Read et al (2000)

defined nine critical areas throughout the structure, including the lower hopper corner.

Figure 4.4. Lower Hopper Corner Arrangement Options (Kim et ai, 20(7)
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Figure 4.5. FEM Analysis of Lower Hopper Comer

These critical structural areas were analysed using FEM and detailed solid element

mesh of the order of the plate thickness in the critical regions. Eight loading conditions

were used to determine stresses. The improvements to the lower hopper design

included re-arrangement of the hopper longitudinal, a reduction of the hopper radius

and increased web frame thickness in way of the hopper. The above example illustrates

a process which may include FEA strength calculations of the kind described.

Alternatively, at the simplest level, an evaluation of critical areas can be done based on

expert judgement and published information such as the Ship Structure Committee and

other resources listed in section 2.5.6.

4.4.4.6 Durability

From the top level (level 2) criteria listed in table 4.3, the second and third of the four

level 3 Technical sub-criteria Durability and Arrangements are articulated in detail

here. These have been further decomposed into the eight lower level (level 4) sub-

criteria indicated in table 4.6. Like Strength, Durability is considered to be one of the

key structural attributes and reflects softer technical considerations, many of which

have to be described using linguistic terms, such as Design and Quality. Important

technical aspects such as structural robustness lead to a focus on performance
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characteristics such as Durability. Durability is influenced by the quality of design and

steel protection which is a function of the quality and appl ication of the coating systems

in tanks and design of structural details. Structural arrangements including distribution

of ballast and access for inspections inside cargo and ballast spaces also have a

profound influence on the structural design and performance.

Level 3 Sub-Criteria Level 4 Sub-Criteria
Durability - Design

- Protection
- Structural Details
- Quality

Arrangements - Ballast
- Structural
- Access
- Peak Tanks

Table 4.6. Technical Sub-Criteria Durability & Arrangements, Levels 3&4

This categorisation of key (level 4) technical sub-criteria can be broken down into

additional lower level (level 5) sub-criteria listed in table 4.7. For example, the quality

of design may be strongly influenced by either the builder's reputation or the owner's

experience with operation of the same type of vessel. The articulation of individual

criteria follows.

Level 4 Sub-Criteria Level 5 Sub-Criteria
Design - Builder's Reputation

- Owner Experience
Protection - Corrosion Margins

- Scantlings
- Coating Specifications
- Anodes in Tanks
- Materials in Hull

Structural - Penetration Details
- Welding Design

Quality - YardQAIQC
- Owner Effort

Table 4.7. Durability Sub-Criteria, Levels 4&5

160



Builder's Reputation: Established yards with good reputations may be rated higher

than new yards with less experience.

Owner's Experience: An owner with a history of operating a fleet of vessels will have

acquired considerable experience which can be directly incorporated into a new build

programme. Alternatively, consultants or other companies can also provide information

which can be used to improve the quality of new construction.

Corrosion Margins: The level of hull durability and robustness is strongly influenced

by the adequacy of corrosion margins which have been identified as a crucial factor in

design. Table 6.3.1 in the CSR for tankers, contains the local corrosion additions

required by the new rules. e.g. deck and side plating within I.5m below the weather

deck (4.0mm). The CSR table 6.3.2, contains the corrosion additions for structural

elements outside the cargo tank region e.g. exposed upper deck plating (3.Smm).

Following the introduction of the new CSR for tankers and later the JTP proposal for

bulk carriers, a fierce debate took place between various industry stakeholders and

lACS regarding the adequacy of the corrosion margins adopted in the new rules (lACS,

2006a). Corrosion margins currently vary between 3.0 to 7.0mm for VLCC designs.

Baseline ship designs will feature minimum corrosion margins according to

classification rules. Additional corrosion margins are decided by the buyer, and this is

one of the most crucial decisions to be made by the purchaser. Corrosion margins were

discussed in detail in section 2.3.3.

Scantlings: Thicknesses of II.5mm have been permitted in previous bulk ship designs

(bulkhead plating, stiffener webs etc). Generally, thin elements exposed to corrosion

are at greater risk of corrosion damage since the corrosion rates arc the same for thick

or thin members. Therefore, a minimum thickness of I5.0mm is specified on high

quality designs.

Coating Specifications: The specification of the corrosion protection system including

the application of coatings during new construction, have a very significant impact on

hull durability. For many years, the defacto standard for ballast coating systems in oil

tankers was one coat of tar epoxy, and this led to short nominal coating lifetimes of
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between 5-10 years as discussed in section 2.3.4. DNV have for many years, proposed

3 optional performance standards for coating systems (Types I, II and III). Type I was

one coat of tar epoxy at 200 microns thick, types II and III were 2 coats of tar epoxy,

thickness 150-200 microns each, and paint systems II and III featured edge treatment

(rounding). The target lifetimes of the different paint system options, was said to be 5,

10 and 15 years with a variance of +/- 3 years in each case (DNV, 1999).

Anodes in Tanks: The traditional means of ensuring ballast tank integrity is by the use

of corrosion margins and an adequate coating system backed up by cathodic protection

using zinc anodes. Although anodes are not a classification requirement, they are

recommended as back up for the primary coating barrier.

Materials in Hull: Special hull materials are required according to classification rules.

Normally the sheer, bilge and main deck strakes in way of the longitudinal bulkheads

are of higher quality, such as lACS grades D or E. Elsewhere, either grade A or higher

strength steels such as AH32 or AH36 are generally used. BP Shipping is reported to

have specified D-grade steels for main decks after experiencing failures in tankers

according to Melitz et al in section 2.5.2. The use of high strength steels with a yield

point of 315MPa (HT -32) and 355MPa (HT -36) as an alternative to normal strength

steels (yield point 235MPa) has culminated in optimised low steel weight designs with

associated cost advantages. However, HTS has almost the same fatigue resistance as

NS steel. Therefore, lighter scantlings accompanied by higher stresses led to spalling of

coatings, as previously discussed in section 2.3.1. Accelerated corrosion followed by

fatigue cracks, resulted in cargo leakage into ballast tanks or in the case of SH oil

tankers, into the sea. Such controversy associated with high HTS designs meant that

some owners specified a limit on the amount of HTS, typically 35% maximum. After

the introduction of the CSR in 2006, at least one shipbuilder suggested a re-introduction

of HTS for improved structural safety (Kim et ai, 2007) an aspect which warrants

careful consideration for new ship designs.

Penetration Details: A typical DB VLCC design features 15,000 to 16,500 main

structural intersections in way of longitudinal elements (deck, bottom, side and inner
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bottom longitudinals) passing through the primary transverse web frames (90-100 per

vessel).

Figure 4.6 Standard Penetration Details CDNV, 2005)

Each penetration represents a geometric stress concentration which is designed from

the viewpoint of reducing the stresses, either by improving the shape of the cut out or

by connecting the web of the longitudinal to the plating with a lug or closing plate.

These generic structural details CABS, 1995b) such as the example given in figure 4.6,

can be compared using standard stress concentration factors obtained from fatigue

codes such as DNV (2005), or BV (1994), or analysed using an FEM model and unit

loads to determine the stress concentration factors CSCF). A simplified approach can be

adopted based on SN curves of the type illustrated in figure 2.6, section 2.3.2.

Welding Design: Minimum welding standards are defined in classification rules. An

owner may require full penetration welding or additional throat thicknesses in defined

areas. Inadequate welding design has been identified as a serious weakness in

contemporary ship design (Mikelis, 2001; Devanney, 2006).

Yard QAJQC: The build quality can be heavily influenced by a number of factors

including fit-up, welding, coating systems application, the effectiveness and experience

of the builder's QA/QC system, the experience of the builder and the owner's

representatives, environmental conditions prevailing during the construction period
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(wind, ram, low temperatures, high humidity etc), or the builder's facilities and

production schedule. The shipyard QNQC performance will vary across the spectrum

of ship production facilities in the established markets and in the emerging ship

building nations. Interactions with the classification societies will also affect the quality

of yard QNQC systems. An owner's perception will vary according to experience or

other sources of information.

Owner Effort: Shipyard quality can be improved through the owner inspection effort.

Traditionally, an owner employed a team of representatives to monitor the progress of

construction. In some cases, direct intervention in the production process may have

been necessary to ensure a satisfactory level of quality. This approach may be less

effective in more experienced yards producing higher quality.

4.4.4.7 Arrangements

The level 3 technical sub-criterion Arrangements can be further broken down into the

level 4 & 5 sub-criteria listed in table 4.8. These are articulated in the following section.

Level4 Sub-Criteria Level 5 Sub-Criteria
Ballast - Distribution

- % Filling
Structure - Cross ties

- Subjective
Access - Ballast Tanks

- Cargo Tanks
Peak Tanks - Forepeak

- Afterpeak

Table 4.8. Arrangements Sub-Criteria, Levels 4&5

Ballast Distribution: Large DB hull oil tanker designs normally feature evenly

distributed segregated wing ballast tanks typically 3.0m width from the side shell and

along the length of the cargo block on both sides of the vessel. This even distribution of

ballast increases the design stillwater bending moment in hogging compared to designs

which feature mid ships ballast tanks (Magellsen, 1996).
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% Filling: Some VLCC designs do not allow the forepeak tank to be filled when in

the normal ballast condition, without exceeding the stress limits, and critics have

pointed out that this is totally unacceptable. A slack forepeak tank can result in

structural damage due to sloshing (Devanney, 2006).

Cross Ties: Cross ties can be located either in the wing cargo tanks or in the centre

cargo tanks. Figure 4.7 shows the alternative structural arrangements for a DII tanker

normally specified by the builder, but subject to the buyer's approval.
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Figure 4.7 Alternatives - Cross Tie Configuration

The first SH tankers delivered in the 1960's were fitted with cross ties (struts) in the

side tanks connected to web frames to support the side structure. When the first DB

vessel was delivered in the early 1990s, advantage was taken of the increased rigidity

of the side wing ballast tanks and the struts were placed in the centre cargo tanks.

Figure 4.8. Cracking Associated with Centre Tank Cross Tics

(Yamamoto, 2007)
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Ship yards favoured the centre tank cross tie arrangement for ease of construction.

Yamamoto (2007) reported damages similar to those depicted in figure 4.8 at the

intersection of the transverse and longitudinal bulkheads in double hull tankers with

centre tank cross ties. With the centre tank cross tie arrangement, asymmetric loading

conditions cause additional forces and moments generated in the cross tie itself and

especially at the ends of the longitudinal bulkhead vertical transverse girder. These

concerns have to be carefully considered by the owners during the design review and

may have an impact on the flexibility of operation of the vessel.

Subjective: A subjective assessment of the structural design based on the user's

experience. This has been described by Devanney (2006) as "how the structure "flows".

Ballast Tank Access: Secure and practical means of access into cargo tanks and ballast

spaces is mandated for new ship construction through IMO MSC/Circ.686 Guidelines

on the Means of Access to Structures for Inspection and Maintenance of Oil Tankers

and Bulk Carriers dated 2nd June 1995 (lMO, 2002a). Proper access to the structure is

essential to minimise the cost of intermediate and special hull surveys. The CSR section

5 (5.1) specifics the minimum required arrangements for access into and within spaces

in and forward of the cargo tank region. These requirements cross-reference the

International Convention for the Safety of Life at Sea (SOLAS), 1974, as amended,

Chapter 11-1, Part A-I, Regulation 3-6 as required by the flag Administration. Tanks

and subdivisions of tanks having L > 35m shall have at least 2 access hatchways and

ladders as far apart as practicable. Further, a Ship Structures Access Manual approved

by the administration is required to be kept onboard. Individual owners may choose to

go beyond the minimum compliance approach and incorporate their own specifications

for improved tank access.

Cargo Tank Access: In cargo tanks, permanent staging and walkways are provided at

strategic locations below the tank top. Permanent walkways are recommended along

the longitudinal and transverse bulkheads. Enlarged access openings in swash and

centreline, and side girders are intended for easy access of rafts at special hull surveys

(every 5 years). Owners may choose to incorporate additional measures such as
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hanging staging or permanent walkways at the top of the inner hull and longitudinal

bulkheads.

Some 70's built ULCCs were stiffened with primary deep longitudinal girders. These

structures had 5 or 6 horizontal stringers inside the periphery of the wing tanks, several

metres in width. Hence they could be used as walkways right round each level in the

tank. Guard rails were provided for safe access. Earlier generation VLCCs often

featured horizontal stringers at cross tie level, openings through transverse web frames,

access walkways under the main deck along the length of the cargo tank and walkways

across the top of the cross ties. Later, the pre-MARPOL designs adopted a 3 cross tie

arrangement to connect primary deep transverse web frames, stiffening up the side shell

and longitudinal bulkhead structure.

Forepeak: The forepeak tank area is subjected to high intensity dynamic loads

including bottom and bow slamming and sloshing loads due to partial filling. The

fore peak structures have to be specially considered to reduce the likelihood of

structural damage from these additional hazards.

Aftcrpeak: The afterpeak is sometimes subject to vibration damage from engine or

propeller, and these hazards should be specially considered.

4.4.4.8 Operational

The level 3 technical sub-criterion Operational shown in table 4.3 can again be broken

down into the two level 5 sub-criteria listed in table 4.9. These arc articulated in the

following section.

Level3 Sub-Criteria Level 5 Sub-Criteria
Operational - Hull Stress Monitoring (HSMS)

- Operability

Table 4.9. Operational Sub-Criteria, Levels 4&5
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Hull Stress Monitoring System (HSMS): A hull stress monitoring system is usually

covered by an optional class notation. Baseline designs do not usually offer an HSMS.

High quality designs may be fitted with systems which can provide feedback to the

ships crew to prevent structural overloading in a seaway and record data which can be

used to plan structural maintenance as discussed in section 2.5.2. This is considered to

be a valuable aid to the crew since a major factor in hull lifetime is the loading history

of the ship, largely determined by the operators.

Operability: This criterion addresses how difficult it is to operate the vessel from the

standpoint of the hull arrangements and structure. Maintenance can be evaluated on the

basis of crew perceptions on the ease with which the structure can be accessed and

maintained. Cleaning will be a function of the arrangement of internal surfaces and the

tank cleaning systems. In the wing and centre cargo tanks of DB tankers, there are

longitudinal sections, making cleaning much easier compared to SH vessels. However,

in the event that cargo oil contamination did occur in the ballast tanks, the cleanup

operation would be hazardous and hugely expensive. Cleaning of mud from ballast

spaces in bulk ships is made more difficult by the necessity to adopt symmetrical tee

sections in the side structure to improve fatigue performance. Ventilation of tanks for

survey purposes can be improved by utilising the vessel's ballast system, and this

feature would have to be incorporated into the design. Human factors can be considered

based on an assessment of the human-machine interaction.

4.5 The Evidential Reasoning (ER) Method

4.5.1 Theory & Applications

In multiple criteria decision analysis (MCDA), both numerical and qualitative data have

to be dealt with including information containing uncertainty. To be successful, rational

decision analysis must deal properly with this data. The evidential reasoning (ER)

approach is capable of handling this type of problem. Evidence theory was developed

by Dempster in 1967 and extended and refined by Shafer in 1976. Like Bayesian

theory, ER deals with subjective beliefs (probabilities). The ER method relies on
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generating an appropriate set of evaluation criteria m the form of a hierarchical

structure. The ER process is intended to rank a set of structural alternatives in order of

preference arising from a risk-based techno-economic assessment procedure described

in the following sections.

The evidential reasoning method provides a flexible rational approach for dealing with

synthesis problems involving uncertainty, using evidence combination for multiple

attributes. The ER approach is used to narrow individual evaluations and provide a

combined distributive evaluation for each option (Yang and Xu, 1998). Let S(y)

represents the assessment of criterion y. Then S(£) = {(Hn./3n),n = I, ,N} represents

that criterion E is assessed to grade H nwith degree of belief fin' n = 1, ,N

i = 1,...,L

Let OJ; be the weight of criterion e, reflecting its relative importance to its parent

L

criterion E and 0 s OJ; $ 1, L OJ; = 1.
j=l

Suppose mn,; is an individual degree to which ej supports the synthesis conclusion and

m II; is the unassigned probability to which e; supports the synthesized conclusion. Then

such basic probability masses can be calculated as follows:

n = 1,..... , N; i = 1,2, ... , L

If

mil.; = 1-Lmn.;
n=l

i = 1,2, ... , L

In the above, mil.; = mil,; + mil.; where mH,; is caused by the relative importance of

e; and m /I)s due to the incompleteness of the belief degree assessment. The iterative

calculation can be performed for i =1,2, .... ,L-l to obtain the coefficients:
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KI(i+I) =fl- ffml'/(i)mj,i+lj_l
1=1 j=1

/*1

where K1(i+l) is a normalization factor and;

mn'/(i+I) =K'(i+l)tmn,l(i)mn,i+1 +mH'/(i)mn,i+1 +mn,l(i)mH,i+1J and n= 1,2,...... ,N

mH'/(i+I) = K1(i+l) lmH'/(i)mH,i+1 + mH'/(i)m H,i+1 + mH'/(i)mll,i+1 J

mll,l(i) = mll,/(i) + mH,I(i) and i = 1,2, .... ,N

The combined degrees of belief in the assessment S(E) can be expressed as:

mfJ = n,I(L) n = 1.2..... ,N
n I-mH,I(L)

m
fJ = H,l(L)

II 1 -
- mJ/,l(L)

Yang and Sen (1997) applied the ER method to assess options for the retro-fitting a

typical short haul sea ferry. Yang and Xu (1998) compared five types of executive cars

based on data collected from the media. An assessment of construction contractors

based on MCDA was described by Sonmez et al (200 I). Maritime security has been

assessed in a study by Yang et al (2007). Recently, the ER method has also been

applied to the bridge condition assessment problem (Wang et ai, 2008). The ER

approach has been adapted to problems in engineering and management including

cargo ship design, system safety analysis and ferry design. Xie et al (2008) studied the

ship selection problem using a MCDA approach. Yang and Xu (2002a; 2002b) have

provided a detailed explanation of the new ER algorithm for MCDA, supported by

examples.

There have been five major milestones in the development of the ER approach. Firstly

the belief degree concept was introduced into the decision matrix, Secondly, the

170



Dempster-Shafer theory with its powerful evidence combination rules was introduced

into the ER framework so that the distributive information contained in a belief

decision matrix could be aggregated to produce rational and consistent results. Thirdly,

rule and utility based information transformation techniques were introduced to

transform sets of evaluation standards to a unified set to allow quantitative and

qualitative data to be handled in a consistent manner. Fourthly, the approximate

reasoning process in the original ER approach was enhanced to correct irrationalities in

the original format when dealing with conflicting evidence. Finally, an implementation

of the improved ER approach was developed in the form of a Windows based software

package IDS. This advance greatly simplified the otherwise tedious mathematical

calculations involved in MCDA calculations for the aggregation process using belief

matrices (Xu and Yang, 2003). In section 5.4, the use of the IDS software will be

demonstrated by selecting one alternative VLCC structural design out of 4 competing

similar options.

4.5.2 Structural Performance Criteria

An attribute or criterion has been defined as a property, quality or feature of an

alternative. In MCDA, attributes and criteria are sometimes used interchangeably. The

ER framework consists of a hierarchy of assessment criteria, the distributed assessment

structure using belief degrees and the evidential reasoning approach to aggregate

degrees of belief from lower to higher level attributes. Grades are assigned for

assessing qualitative attributes. For example in the candidate ship selection problem

described by Xie et al (2008), a set of 5 grades {worst, poor, average, good, excellent}

was assigned. Different attributes may be assigned different grades. Belief degrees are

subjective probabilities associated with assessment grades and describe the confidence

level of an attribute evaluated to a grade. The ship selection problem involved

evaluation of 6 tanker designs. The performance of tanker 1 in terms of safety was

considered to be good to a degree of 0.6 and excellent to a degree of 0.2, with a degree

of incompleteness equal to 0.2. The assessment was represented by the set of belief

degrees (0, 0, 0, 0.6, and 0.2).
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In section 4.4, a set of performance criteria suitable for evaluating alternative structural

designs for VLCC's was articulated. A total of 35 bottom level (level 5) sub-criteria

have been identified, and these are now presented in table 4.10 below.

No Lowest Level Sub-Criteria QL. !LN.
I Net Present Value{NPV) X
2 Warrantee j_Structural) X
3 Classification X
4 Longitudinal StrengJh X
5 Transverse strength X
6 Hull Girder fatigue X
7 Side Structure fEtiK!le X
8 Main Deck buckling X
9 Members 1-3 buckling
10 Berthing_ resistance X
11 Sloshin_g_resistance X
12 Critical area-1 X
13 Critical area - 2 X
14 Critical area - 3 X
15 Builder's rep_utation X
16 Owners ep_erience X
17 Corrosion Margins X
18 Minimum. Scantling X
19 Coating_ Sp_ecijjcations X
20 Anodes in Tanks X
21 Materials in Hull X
22 Structural Details X
23 Welding Design X
24 YardQAIQC X
25 Owner Effort X
26 Ballast Distribution X
27 Ballast Filling % X
28 Cross Ties Location X
29 Subj_ectiveis/ruetural) X
30 Ballast Tanks Access X
31 Cargo Tanks Access X
32 For~ak Tank Design X
33 Aflerpeak Tank Design X
34 Hull stress monitoring system X
35 Operability X

Table 4.10. Lowest Level (Level 5) Sub-Criteria

Technical quality is measured by multiple criteria and is a combination of qualitative

and quantitative attributes as indicated. Structural performance cannot be defined by a

single criterion such as Longitudinal Strength although this characteristic can be
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quantified and is obviously of more importance than some of the other criteria. The

table indicates quantitative (QL.) versus qualitative (QN.) criteria. The above unique set

of structural assessment criteria developed in this chapter, are the basis of the proposed

MCDNER framework, which will be demonstrated in section 5.4 using an example. In

the proposed assessment scheme, some attributes will have more importance than

others. For example, the Net Present Value will be intuitively more important than

Access in cargo tanks. These differences will be reflected in the weights assigned to the

individual attributes in the model.

In developing the structural assessment criteria in section 4.4, no suitable benchmark

was found in other published work. Therefore, as part of the process, the author

informally sought the opinions of a number of structures experts and naval architects

involved in the field of ship structures. Articulating the main criteria and constructing

the assessment hierarchy presented in the following section 4.5.3 occurred over a

lengthy period of time, and was an evolutionary process. The selection of the 35 sub-

criteria articulated in section 4.4 and summarised in table 4.10, forming the basic

structure of the model was founded upon a wide range of information obtained from

various sources in the published literature survey in chapter 2, including the Ship

Structure Committee (SSC). The practical experience of the writer was used to

advantage in evolving and filtering the assessment criteria and the structural assessment

framework. Therefore the criteria described here were considered to be valid,

reasonable, technically sound and a suitable starting point for the MCDA/ER model

described in section 5.

An objective of this study was to develop and demonstrate a rational framework for

comparison of alternative structural design options for large bulk ships on the basis of

the cargo block, scantlings including all longitudinal and transverse structures in this

zone. Restricting the area to the structural zone between the forward bulkhead of the

slop tanks and the after bulkhead of the fore peak tank is considered entirely relevant,

although the framework allows inclusion of the fore and after peak tanks separately.
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4.5.3 Assessment Hierarchy

Arising from the published literature review and the hazard assessment carried out in

section 3.5.3 a comprehensive hierarchical framework for assessment of alternative

VLCC structural designs was constructed and is presented in figure 4.9 (p.175). The

above set of criteria, articulated in detail in section 4.4, appear here in the form of a

defined hierarchical structure. The overall performance of a number of VLCC design

options will be evaluated in terms of the top level criterion Design Selection with two

main sub-criteria, Commercial and Technical.

Four main level 3 technical sub-criteria Strength, Durability, Arrangements and

Operational are used to make comparison between the candidate structural designs.

These four criteria are decomposed into level 4 & 5 sub-criteria. A number of the

criteria such as NPV and Longitudinal Strength can easily be evaluated using numerical

data. Other qualitative criteria are general and have to be expressed using linguistic data

which is difficult to assess directly. To facilitate cross comparison of trade-offs among

different attributes, weights are assigned reflecting their relative importance. Finally

belief functions are used to model the decision maker's preferences relative to the

grades used to measure the attributes. A software package (IDS) is used for the ER

modelling.

In table 4.10 (p.l72), a total of 35 criteria have been identified as the lowest level (level

5) in the assessment hierarchy. Based on the respective criteria and the assessment

grades, expert judgement and observed data/fact can be converted to belief degrees

associated with the respective grades. In order to assess the performance of a candidate

VLCC design, the lower level criteria have to be assessed either quantitatively or

qualitatively, depending on the data sources. The evaluation can be conducted by a

single individual or a team of assessors. The results can be expressed using linguistic

terms or numerical grades.
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Figure 4.9. Structural Assessment Hierarchy
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In the proposed MCDAlER framework, seven grades have been adopted throughout:

N=7,H
J

={Unacceptable},H2 ={VeryPoor},HJ ={Poor},H4 ={Fair},Hs ={Good},
H6 = {VeryGood},1l7 = {Excellent}

4.5.4 General Procedure

To enable a performance based design approach incorporating the buyer's goals and

preferences, a procedure is proposed here, adapted from the methodology used in the

ship selection problem referred to earlier (Xie et ai, 2008). For practical reasons, the

framework for the buyer's assessment should be based on a rational decision support

technique, allowing all assumptions to be fully documented and transparent.

Increasingly, public concerns are encouraging companies to pursue corporate social

responsibility (CSR) principles in decision making. Transparency of assumptions made

when purchasing major items of capital expenditure can be achieved using a techno-

economic framework. The eight step procedure adopted in the model and used in the

example given in chapter 5 appears below:

1. Statement of the problem and evaluation hierarchy.

2. Evaluating techno-economic quantitative criteria.

3. Setting the criteria grades and weightings

4. Transforming basic quantitative criteria.

5. Assessing qualitative criteria.

6. Pre-assessment process

7. Aggregating assessment results

8. Ranking and decision making

The assessment data may be based on expert subjective judgement, use of specialist

consultants and software supported strength calculations. The collation of the

assessment data must be accomplished within the strict time limit normally imposed by

the builder (3-4 weeks). The ER model is used to rank the alternative structural design

options on the basis of belief degrees assigned to each of the qualitative and

quantitative criteria, by the buyer's team. This forms a comprehensive, rational and
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transparent method suitable for evaluating major capital expenditure decisions. In the

structural evaluation hierarchy shown in figure 4.9 (p.l75), the assessment problem is

how to arrive at an aggregated assessment for a higher level attribute given the

subjective judgements at the basic level. For example, qualitative assessments can be

summarised using an approach where subjective judgements are captured using

attributes, evaluation grades and degrees of belief. To illustrate the aggregation process,

a calculation is presented below to show how the assessment for the higher attribute

quality, is performed by aggregating the two basic attributes Yard QAIQC and Owner

as shown in table 4.11. The belief functions are shown below.

S(Yard QAIQc) = {(indifferent, 0.1), (average, 0.7)}

S(Owner) = {(indifferent, 0.5), (average, 0.5)}

Degree of Belief (f3) Evaluation Grade
Poor Indifferent Average Good Excellent

Quality I Yard QAIQC 0.1 0.7
I Owner 0.5 0.5

Table 4.11. Subjective Judgements for Evaluating the Criterion Quality

Let y = el EEl e2 where the symbol EEl denotes the aggregation of two attributes.

Assuming equal importance for the two attributes, then L = 2, and all = al2 = 0.5. The

basic probability masses mn•i are:

mil = 0, ml2 = 0.0500, m'3 = 0.3500, m'4 = 0

mlff =0.5, mlH =0.1000, mlH =0.6000

m21 = 0, m22 = 0.2500, m23 = 0.2500, m24 = 0

m2lf = 0.5000, m211 = 0, m2H = 0.5000

Using the recursive equations to calculate the probability masses:
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-I
(m11m22 +mllm23 +mllm24)

+ (m12m21 + ml2m23 + m12m24)1-
K = + (m13m21 + m13m22 + m13m24)

+ (m14m21 +ml4mn + m14m23)

K = {l- [0+0 +0+0 + 0.0125 +0 +0+0.0875 + 0 + 0 +0 + OD-I = 1.1111

ml =K(m11m21 +m11m2H +mIHm21)= 1.1111 (0+0+0)=0

m2 = K(m12m22 + m12m2H + m1Hm22) = 1.1111 (0.0125+0.0250+0.1500) = 0.1875

m3 = K (m13m23 + ml3m2H + mlHm23) = 1.1111 (0.0875+0.1750+0.1500) = 0.4583

m4 = K(m14m24 +ml4m2H + mlHm24) = 1.1111 (0+0+0) = 0

mH =K(mIHm2H +mIHm2H +mIHm2H)= 1.1111 (0+0.0555+0)=0.0555

mH = K(mlHm2/l)= 1.1111 (0.5 x 0.5) = 0.2777

The combined degrees of belief are;

/32 = __!!!_]_ = 0.2884
I-mil

/33 = _!!2_ = 0.6345
I-mil

=0

/3 = __!!!_!!_ = 0.0077
Il 1 -=m»

The aggregated assessment for VLCC quality is therefore given by the following

distribution:

S(Quality)=S(YardQAIQC ED Owners) = {(indifferent,0.2884),(average,0.6345)}
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4.6 Conclusions

In this chapter a set of 35 structural performance criteria has been conceptualised and

articulated as the first step in developing a comprehensive structural assessment

framework. In section 4.2, the MCDA method was reviewed in terms of its suitability

in respect to the structural assessment problem. Each of the assessment criteria has been

explained. These were assembled into a hierarchy which will allow the use of an

MCDAlER synthesis approach. The ER algorithm will be used to aggregate the

assessments and rank the structural options. This fulfils objective no.4 in section 1.2,

which was to articulate a set of product performance characteristics (criteria) part of an

MCDA methodology incorporating the Dempster-Shafer theory of evidence as the basis

for a structural evaluation framework, used to compare alternative structural design

options for VLCCs and to demonstrate and validate the method using an example.

Central to the engineering discipline it is recognized that engineering design consists of

compromise, identification of preferences and selection of the best option. Capital

investment decisions represent major commitment of corporate resources and can have

a significant impact on the financial welfare of shipping companies. Companies can

easily incorporate economic, environmental and social aspects estimated in monetary

terms, by adopting suitable techno-economic decision-making techniques. This

research proposes therefore, that all major capital expenditure decisions like the

purchase of new tonnage, should be carried out in this way, according to a

comprehensive rational and transparent procedure. Only then can the latent financial

risks associated with improper tradeoffs in the list of technical options be properly

anticipated. In the next chapter the process will be demonstrated by an example.
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Chapter 5 - Selection Between Alternative VLCC Structural

Design Options - An Example

SUMMARY

In this chapter, a method is presented for selecting a preferred structural design from a

number of alternative VLCe structural design options. The method is based on a multi-

criteria synthesis approach which incorporates the evidential reasoning algorithm, to

facilitate decision-making under conditions of uncertainty. The array of product

performance criteria are assembled into a techno-economic hierarchy which can then

be evaluated using the evidential reasoning algorithm, to aggregate the criteria. To

demonstrate the method, the principal quantitative performance criteria including

"NPV" and "ULS" are calculated by example. The method is shown to be capahle of

handling a large number of qualitative technical attributes involving complex,

subjective and often incomplete data. The aggregation of quantitative and qualitative

assessments using the ER approach is accomplished easily using the Windows based

Intelligent Decision System (IDS) software. Preferred structural candidate designs are

ranked in order of preference according to their utility values calculated by the

programme. The results of the ER model are discussed in terms of their contribution to

the evidence required for the evolving hull structures safety case explained in chapter

7.

5.1 Introduction

The technical problem relating to comparison of alternative ship structural designs is

usually thought of as an exercise in conventional structural analysis performed by

standardised procedures. This involves determination of structural response based on a

given set of loads and load combinations obtained from classification rules or by direct

assessment methods. Given alternative structural designs, a direct comparison of

stresses and scantlings would then be undertaken to elicit preferences. A less common

approach, would involve definition of a set of structural attributes or criteria to be

simultaneously measured and evaluated. These attributes may involve a combination of
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subjective, sometimes incomplete quantitative and qualitative data. The MCDA

synthesis method using ER has been used in relation to selection of a preferred ship

from a group of candidate vessels for a new design (Xie et al, 2008). In this thesis, a

novel and unique framework for comparison of alternative structural designs of VLCCs

is developed, based on the ER algorithm.

From the detailed historical perspective of ship structural operation and maintenance

performed in chapter 2, key regulatory controls were identified and some recent high

profile structural failures were forensically examined to find possible common root

causes. The literature review served to highlight the primary structural hazards and

risks associated with contemporary management of large ship structures and the

effectiveness of these measures. From chapter 3, it is apparent that there is an

increasing trend away from total reliance on prescriptive rules in favour of performance

based standards for constructed systems, including civil and marine structures. In

chapter 4, a set of evaluation criteria suitable for performing a rational techno-

economic appraisal of competing VLCC structural designs was proposed and

articulated. These criteria will be combined using the MCDAJER approach and the

Dempster-Shafer theory.

5.2 Statement of the Problem and Assessment Hierarchy

Within the realm of design and construction of large engineered structures, commercial

ship procurement is usually thought of, as selecting the best option which represents the

highest profit or lowest transportation cost, while complying with all mandatory rules

and regulations. However, failure to properly address important technical

considerations at the design stage may increase the risk of unexpected consequences

such as pre-mature failure of tank coating systems or hull fractures leading to cargo

leakage into the sea. Such undesirable outcomes can result in environmental damages

which may dramatically affect the economic performance and reputation of a ship

owner or manager.
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Although high level bespoke specifications have been used to improve the quality of

vessel structural designs (see section 3.2.5), generally there are commercial and

practical difficulties limiting this approach. The opportunity for the buyer to exert

influence on the quality of a given ship design is often restricted to requirements

expressed in an outline specification and by performing a review of key structural

design drawings. This opportunity is constrained by strict time limits imposed by the

builder. Contractually, the buyer has to return his comments related to the structural

design usually within 3-4 weeks of contract signing.

In section 3.2, the current ship production environment characterised by an emphasis on

production considerations and moves towards a collaborative approach by the shipyards

and international classification societies to develop a 3D product model for eventual

concurrent engineering development and virtual prototyping were described. The view

of critics, alleging that shortcomings in the ship procurement process had led to

deficiencies in ship design quality was examined. The deficiencies in standard current

ship structural design specifications were highlighted. The responsibility of the ship

owner in relation to the consequences of structural failures was emphasised. In section

3.5, the benefits of a risk-based approach to the hull structures question were outlined.

In chapter 4, a set of structural performance criteria were developed, part of a proposed

new structural assessment framework based on conventional MCDA and synthesis

using the ER Algorithm, incorporating the Dempster Shafer evidence combination rule

explained in section 4.5. For convenience, the structural assessment hierarchy is

reproduced in figure 5.1 on the following page. At the top level, two major

performance criteria Commercial and Technical are sub-divided into four principal sub-

criteria Strength, Durability, Arrangements and Operational. These in turn are further

decomposed down into 35 individual (levelS) sub-criteria as indicated. The

hierarchical structure of the model in the format shown was modelled directly in the

Intelligent Decision System (IDS) software as illustrated in figure 7.7 on page 212. In

the following sections, the structural assessment framework will be demonstrated by an

example.
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5.3 VLCC Structural Design Options (Description).

For comparison purposes, four alternative similar double hull VLCC structural designs

have been selected with the principal particulars indicated in table 5.1.

Option Dimensions (LxBxD) Deadweight (mt) Description
VLCC 1 316 x 58 x 30 299,000 Pre-CSR Enhanced scantlings
VLCC 2 318 x 58 x 31.25 308,500 Pre-CSR Fully HTS Korean design
VLCC 3 320 x 58 x 31 300,000 CSR standards
VLCC-4 320 x 58 x 31 300,000 High Qualitydesign CSR+

Table 5.1. Four Alternative VLCC Structural Designs

In a typical 300,000 dwt VLCC, each cargo tank is approximately 50m in length and

the total length of the mid ships cargo tank zone from the aft bulkhead of the aft cargo

tank to the forward bulkhead of the forward cargo tank is approximately 250m. The

cargo tank length for VLCC_2 was SO.8m and for all the other options, was taken as

52.0m.
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Figure 5.2. Structural Zone under Consideration

For the purposes of the structural assessment framework and to demonstrate the model

developed herein, attention was directed to the structural zone under consideration, as

indicated in figure 5.2 above. For simplicity, only the cross sectional area extending

from the aft bulkhead of the aft cargo tank to the forward bulkhead of the forward cargo

tank (zone included in cargo block steelweight estimate in figure 5.2) was considered.

Details of the transverse structures discussed in section 4.4.4.1 (p.1Sl) have not



specifically been considered in this example but are part of the structural assessment

process since they are assessed by the lower level sub-attribute Transverse under

Global. However, the total steel masses include the weights of the transverse structures

and these are listed in table 5.5 on page 188. In focussing on the longitudinal structures,

valid comparisons can be drawn based on a systematic risk-based evaluation

framework, one of the principal objectives of this study. Most of the information

required for the assessment process can be obtained directly from the Midship Section

drawing showing all the required data including materials, plate thicknesses and

scantlings of longitudinal members.

Both VLCC_1 and VLCC_2 were designed prior to the introduction of the common

structural rules (CSR). VLCC_1 has enhanced scantlings compared to VLCC_2 and

this is reflected in the greater steel weight for this option. The second alternative

VLCC_2, was based on a ten year old (1999) South Korean design, and it has the least

steel weight of the four options. VLCC_3 was designed to comply with the CSR

requirements and has a significantly higher steel weight compared to the previous two

options. VLCC _4 represents the high quality option having the highest steel weight

among the other alternatives. Table 5.1 on the previous page shows the deadweight for

the various options. It can be seen that the deadweights are similar for each of the four

options. For simplicity it was assumed that the breadth was the same in all cases, and

the spacing of the longitudinal members was similar.

For the purposes of demonstrating the model and in the absence of real data due to

propriety restrictions on the use of such data, realistic simulations had to be developed,

based mainly on published information. With the exception of VLCC_2, the

longitudinal scantlings (stiffeners sizes, plate thicknesses and materials) were taken

from the examples given in the Joint Tanker Project (HP) Consequence Assessment

rd draft rule values published jointly by three major class societies (ABS, DNV, LR,

2005). In the captioned study, the full details and the origin of the original designs were

not revealed for confidentiality reasons. In tables 5.2, 5.3 and 5.4 on the following

pages, the main mid ship longitudinal scantlings and materials arc listed for the four

structural design options.
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VLCC 1 No. Mat. VLCC 2 No. Mat.
Main Deck 400x13+ JOOx19A 29 HT315 350x12+IOOx17A 29 HT355
Bottom 550x12+150x34T 27 HT315 580x 12+ 180x24T 27 HT355
Inner Bottom 600x 12.5+ 150x38T 21 HT315 600x12+180x28T 21 HT355
Side 650x13+150x38T 5 NS 550x 11.5+ 150x25 5 HT355

550x11.5+150x34T 3 NS 550x 11.5+ 150x20T 3 11'055
500x II + 150x30T 5 NS 550x 11.5+ 150x25T 4 NS
500x II + 150x22T 5 NS 550x 11.5+ 150x20T 3 NS
500xll+150x16T 3 NS 500x 11.5+ 150x 18T 3 NS
450xll+150x14T 5 NS 450x 11.5+ 150x 18T 6 IIT355
350x12+IOOx15A 3 HT315 400x13+IOOx18A 2 HT355
--- --- NS 350x12+IOOx17A 3 H'055

Inner Side SOOxl1+ISOx34T S NS SSOx11.5+ ISOx22T 3 II'OS5
SOOxII + ISOx28T 4 NS SOOxII.S+ 150x 18T 2 IIT3S5
SOOxl1+ ISOx22T 4 NS SOOx11.5+ ISOxIXT 3 HT355
SOOxl1+ISOxl9T 6 NS 4S0x II.S+ ISOx16'1' 3 H'055
450xll+1S0x16T 3 HT3IS 400x13+100x1XT 6 HT355
--- --- NS 350x12+IOOx17A 2 IIT355

Long. Bhd. 600x 12.5+ 150x34A 6 NS 500x 11.5+ 150x22T 10 H'1'355
550x 11.5+ 150x34A 4 NS 500x 11.5+ 150x20T 4 H'1'355
550x 11+ 150x32A 4 NS 450xll.5+ 150x IXT 4 11T355
500xll+150x25A 4 NS 450xll.5+150xI6T 6 IIT355
500xll+150x19A 6 NS 400x 13+ IOOxl8A 3 IIT3S5
500x 11+ 150x 14A 6 NS 400x II.S+ IOOx16A 5 11'1'355
500x 12+ IOOx18A 2 HT315 --- --- 11'1'355

Lower Hopper 550x12+ISOx36T 4 IIT315 5~mx11.5 t 150x24T 4 11'1'355
550x 11.5+ 150x36T 3 NS 550x 11.5 t 150x24T 3 11'1'355

Table 5.2. Longitudinal Stiffeners for VLCC_l and VLCC_2

Footnotes

I. Numbers in columns refer to the number of longitudinal stiffeners in each group.

2. Longitudinal stiffeners arc either Tee section (T) or angle stiffeners (A) as indicated.

3. HT315 and HT355 refer to High Tensile Steel and NS is normal strength steel.

4. Sec figure 5.4 for typical mid ship section from MARS Rule 2000 output.

5. VLCC_2 inner side fitted with extended longitudinal stiffeners 1350x16+150x16T (3)
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VLCC 3 No. Mat. VLCC 4 No. Mat.
Main Deck 400x 12+ 150x20A 29 HT315 550x15+200x25T 29 11'1'315
Bottom 650x 13+ 175x25T 27 HT315 650x15+200x30T 27 HT315
Inner Bottom 625x 12.5+ 175x25T 21 HT315 625x15+175x30T 21 HT315
Side 600x 12.5+ 175x25T 5 HT315 600x 13.5+ 175x26T 5 HT315

600x 12.5+ 175x20T 3 HT315 600x 13.5+ 175x21 T 3 1IT315
600x 12.5+ 175x25T 4 NS 600x 13.5+ 175x26T 4 NS
600xI2.5+175x20T 3 NS 600x 13.5+ 175x21 T 3 NS
575x12+150x20T 3 NS 575x13+150x21T 3 NS
550x12+150x20T 3 NS 550x 13+ 150x21 T 3 NS
525x 12+ 150x20A 5 NS 525xl3+ 150x21T 3 NS
375x12+150xI5 3 HT315 550x13+150x21T 2 1IT315
--- --- --- 500x 15+200x25T 3 ---

Inner Side 625x 12.5+ 175x20T 4 lIT315 625x 14+ 175x26.5T 4 1IT315
600x12+175x20T 2 NS 600x 13.5+ 175x2I.5T 2 NS
575x12+150x20T 4 NS 575xI3.5+ 150x21.5T 3 NS
550xI2+150x20T 3 NS 550x 13.5+ 150x21.5T 4 NS
525xI2+150x20T 7 NS 525x 13.5+ 150x21 Sf 6 NS
325xl2+150x15 2 NS 325x 14.5+ 150x 17.5T I NS
--- --- --- 350x 15+ 150x20T 2 ---

Long. Bhd. 625x 12+ 175x25A 4 NS 625xl3+175x26T 4 NS
57Sx12+175x20A 6 NS 575x13+175x26T 6 NS
625x 12.5+ 175x20A 4 NS 625x 13.5+ 175x21 T 4 NS
600x 12+ 175x20A 4 NS 600x 1.5+ 175x21 T 4 NS
575x 12+ 150x20A 6 NS 575x 13.5+ 150x21 T 6 NS
550x 12+ 150x20A 3 NS 550x 13.5+ ISOx21T 3 NS
450x 12+ 175x20A 3 1IT3IS 4S0x15+175x23T 3 IInl5
375x12+150x15 2 HT315 375x 15+ 150x20T 2 111'315

Lower Hopper 600x 12.5+ 175x25T 4 lIT315 600x 14+ 175x26.5T 4 IIDI5
600x 12.5+ 175x20T 3 nrars 600x 14+ 175x21.5T 3 111'315

Table 5.3. Longitudinal Stiffeners for VLCC_3 and VLCC_ 4

Footnotes

1. Numbers in columns refer to the number of longitudinal stiffeners in each group.

2. Longitudinal stiffeners are either Tee section (T) or angle stiffeners (A) as indicated.

3. HT315 and HT355 refer to High Tensile Steel and NS is normal strength steel.

4. See figure 5.4 for typical mid ship section from MARS Rule 2000 output.
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Zone VLCC 1 VLCC 2 VLCC 3 VLCC 4

Keel Strake 22.5 19.5 27.5 27.5

Bottom Shell 18.0 20.0 19.5 19.5

Side Shell 17.5-19.5 19.0-21.0 18.0-24.0 20.0-25.0

Main Deck 19.5 19.5 18.5-19.0 22.0

Inner Bottom 19.5 21.0-22.0 21.0 22.0

Lower 23.0-30.0 20.0-22.0 23.0-25.0 24.5-26.5

Hopper
Inner Side 15.0-20.0 15.0-19.5 16.0-21.0 17.5-22.5

Long. Bhd 15.0-21.5 15.0-19.0 15.5-20.0 16.5-21.0

DB Girders 16.5-21.0 16.5-23.0 17.0-18.0 18.5-19.5

BT Stringer 12.5-14.5 13.0 14.0-15.0 15.5-16.5

Materials Bottom & Deck Fully HT355 Bottom & Deck Bottom & Deck
HT315 HT315 HT315

Table 5.4. Plate Thickness and Materials for VLCC Options

The mass of the longitudinal material for VLCC_1 in the mid ship cargo tank region

(length 3 x 52m) was 12,514 tonnes. The breakdown of the mid ship region transverse

structures for VLCC_1 is shown in table 5.5. The total steel mass in the mid ships cargo

area was 12,514 + 3,456 = 15,970 tonnes. The transverse material in the mid body

section comprised approximately 21.6% of the total. The combined mass of the no. I

and no.5 cargo tanks was 10,333 tonnes.

Transverse Structures Mass (tonneS)
Transverse bulkheads 863
Swash bulkheads 722
Webframcs 1,871
Total 3,456

Table 5.5. Breakdown of Transverse Structures for VLCC 1

The total steel masses were calculated for each option per table 5.6 on the following

page. Note that column 2 is the mass of the mid ships cargo tank zone (3 cargo tank

lengths) and column 3 the total mass of the zone under consideration as shown in figure

5.2 (p.184). As noted previously, VLCC_2 was based on a 1999 built, pre-CSR Korean

double hull design, having the least amount of steel in the design, and therefore the

differences in steel weight and percentages for the other 3 options arc listed in columns

4 & 5 relative to VLCC_2.



Option Lone. Steel Mass Total Steel Mass (mt) Difference (mt) 0/0

VLCC 1 12,514 26,303 572 2.22
VLCC 2 11,996 25,731 --- ---
VLCC 3 13,341 29,203 3,472 13.50
VLCC 4 14,902 31,965 6,234 24.22

Table 5.6. Steel Mass and Mass Distributions VLCC_l to VLCC_ 4

Given the known lightship mass of 43,000 tonnes for a 300,000 dwt VLCC, the steel

mass can be roughly estimated as 70% of the lightweight. The calculated steel weights

shown in table 5.6 do not include the slop tanks, the after body, the forepeak tank and

the accommodation block. In the last column, the % difference in steel mass can be

seen relative to VLCC_2. The high quality option (VLCC_ 4) is seen to have 24.2%

more steel compared to the baseline option. It should be noted that the above individual

breakdowns for each VLCC option were determined to provide a means of comparing

all four structural options. The variation in steel mass between options has a direct

relationship to corrosion margins as discussed in section 2.3.3.

5.4 Application of the MCDAlER Methodology

5.4. J Evaluation of Quantitative Techno-Economic Criteria

5.4.1.1 Commercial Criteria

Using examples, the detailed techno-economic calculations which can easily he

performed to derive typical numerical data for the commercial and technical assessment

criteria developed in chapter 4, including the Net Present Value and the Ultimate

Longitudinal Strength are presented here. The net present value (NPV) criterion was

introduced in section 4.4.3 as the most appropriate commercial index for this type of

project evaluation. Published DNV studies have used the building cost of an

HT36/HT32 OH VLCC design as a basis for using accumulated net present value of

costs associated with additional steel to compare life cycle costs (Magelssen ct al,

1998). A series of net present value (NPV) calculations for each of the four optional



designs have been carried out, using the following published commercial data for

VLCCs.

Recent press reports indicated that PTT Pel, Thailand's biggest energy company hired

the tanker Xin Jin Yang for World Scale (WS) 138. WS 132 is approximately

equivalent to USD 100,030 per day, and this is currently typical for a voyage from

Saudi Arabia to Korea (Gulfnews, 2008). In the same article Frontline, the worlds

largest VLCC operator, reported that an income of USD 31 ,400/day was required, just

to break even. In March 2008, strong demand for steel led primarily by China, resulted

in scrapping rates of USD 725 per Idt.

No Eaminas/Costs (per annum) lJSD M
1 Average gross earnings 35.01
2 Operating costs 11.00
3 Net earnings 24.01
3 Scrap price at 2008 levels (VLCC 2) 19.93
4 Construction Cost 150.00

Note: assuming 350 days/year operational time.

Table 5.7 Average VLCC Earnings/Costs 2008

At the time of writing (October 2008), tanker rates had plummeted to WS 87 (USD

65,760/day). This confirms the observations made earlier when discussing rapidly

changing economic circumstances in section 2.2.4. Current VLCC construction costs in

Korea are in the region of USD 150 million for a standard design. Steel is estimated to

cost around USD 2,000/tonne based on current unofficial data sourced from Korean

and Chinese Shipyards. The differences in total steel mass between the four optional

designs shown in table 5.6 reflect the additional capital costs and assumed scrap values

used in the NPV spreadsheet. Using the above data, average annual earnings for

VLCC_l based on March 2008 data have been compiled in table 5.7. The data has been

converted into a Microsoft Excel spreadsheet analysis and is reasonably representative

of actual current project cash flows, but is greatly simplified for the purpose of

demonstrating the method. The calculations are easily performed on spreadsheets and

have the advantage that sensitivity studies can be performed with ease,
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YEAR CF PVIF PV
0 -151.14 1.0000 -151.14
1 24.01 0.9091 21.83
2 24.01 0.8264 19.84
3 24.01 0.7513 18.04
4 24.01 0.6830 16.40
5 24.01 0.6209 14.91
6 24.01 0.5645 13.55
7 24.01 0.5132 12.32
8 24.01 0.4665 11.20
9 24.01 0.4241 10.18
10 24.01 0.3855 9.26
11 24.01 0.3505 8.42
12 24.01 0.3186 7.65
13 24.01 0.2897 6.95
14 24.01 0.2633 6.32
15 24.01 0.2394 5.75
16 24.01 0.2176 5.23
17 24.01 0.1978 4.75
18 24.01 0.1799 4.32
19 24.01 0.1635 3.93
20 24.01 0.1486 3.57
21 24.01 0.1351 3.24
22 24.01 0.1228 2.95
23 24.01 0.1117 2.68
24 24.01 0.1015 2.44
25 43.94 0.0923 4.06

NPV= 68.64

Table 5.8. Results of NPV Calculations for VLCC 1

Table 5.8 shows the results for VLCC_l. A vessel lifetime of 25 years has been

assumed. The capital cost has been adjusted for the additional steel weight of VLCC_1

compared to the baseline cost for the least cost option, VLCC_2 (USD 150 million).

The NPV is calculated based on the estimated net cash flows listed in table 5.7. The

assumed capital expenditure of USD 151.4 million and the scrap value of usn 19.93

million are indicated in column 2 in years 0 and 25 respectively. In column 3, the

present value interest factor (PVIF) has been calculated using the method presented

earlier in section 4.4.3. In column 4, the product of the PVIF and the present value (PV)

for each year are summed. The results indicate an NPV of USD 6g.64 million at 10%,

interest rate. A summary of NPV results for all four options appears in table 5.9,

assuming an interest rate of 10%, which is considered a reasonably representative

opportunity cost for capital project evaluation purposes (Weston and Copeland, 1999).
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Option Additional Steel CAPEX Scrap NPV
USD(M) USD(M) USD(M)

VLCC 1 572 151.14 19.93 68.64

VLCC 2 Baseline 150.00 19.50 69.74

VLCC 3 3,472 156.94 22.13 63.01

VLCC 4 6,234 162.47 24.22 57.71

Table 5.9. Estimated Capital Costs, Scrap Value and NPV.

For VLCC_l, a sensitivity analysis was performed by varying the discount rate, as

depicted in figure 5.3. The internal rate of return (IRR) is the point where the discount

rate causes the NPV to be zero (>13%).
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Figure 5.3. NPV of Project Options at Different Discount Rates

For the purposes of this study, the NPV has been calculated for the vessel's Iifecycle of

25 years, and includes all projected costs including initial capital expenditure, all

operating cash flows throughout the vessel lifetime and disposal costs.

5.4.1.2 Technical Criteria

To illustrate in detail the method for producing typical representative numerical data for

the technical criteria, two important examples will be given, Ultimate Strength and

Corrosion Margins.
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Ultimate strength: In the early 1990's, a number of the major lACS societies

introduced computerised rule formulations and software-supported structural

assessment tools. Cheap computing power and ready availability through the internet,

meant that some of these tools became available in the public domain. Use of such

products has allowed yards, consultants and in some cases the owner's technical

department, to perform rapid preliminary structural design assessment from data

contained in the key structural drawings, principally the Midship Section. A brief

description of a number of these products appears in the literature survey, section 2.5.5.

Software based scantling assessment tools such as MARS2000 (B V). RULESCALC

2008 (LR). SafeHull (ABS). POSEIDON ND (CL). and Nauticus /lull (DNV) are

capable of calculating sectional area, neutral axis, section modulii (deck and bottom),

and in most cases, perform a hull girder ultimate limit state check. These data can be

used directly for comparative purposes in the evaluation model. In section 2.2.3, it was

suggested that the vertical bending ultimate limit state (ULS) was a preferred index of

hull capacity, compared to the contemporary use of the section modulus arising from an

allowable stress design (ASD) approach.

Each of the four structural options listed in section 5.3 was modelled using Bureau

Veritas's MARS Rule 2000 V2.2d software, available as freeware on the internet. The

purpose in selecting MARS Rule 2000 was to demonstrate that these sophisticated tools

are readily available in the public domain, although other products would have been

equally or more suitable. MARS Rule 2000 is capable of computing scantlings of

plating and ordinary stiffeners of any transverse section located along the ship length

according to the April 2007 Bureau Veritas Rules for the classification of Ships and

lACS common structural rules (CSR) for tankers (www.veristar.com). MARS Rule

2000 computes geometric properties, hull girder strength criteria, ultimate strength and

rule scantlings. The detailed calculations are omitted from the thesis as the main

purpose here was to obtain realistic comparative data using readily available and

powerful tools. Figure 5.4 on the following page, shows a typical mid ship section

output from the MARS Rule 2000 software program.

193



10 15 25 30

Stiffeners
AI.. - 'alltl- HodtI-zal,J$ -C'CflIfW

12

20

30

25

15

BV RULES. Marsin2000v2.2dDjDcD VLCC_1
41912008 Midship Section

1
x - 174.7 m

Figure 5.4. OH YLCC Mid Ship Section - Basis for Longitudinal Strength Calculations

In table 5.10 the BY Rule values of stillwater and wave bending moment are given,

together with the shear force assumed in the longitudinal strength calculations for all

four options.

Design Load (kN-m) "022in2 Sa22in2
Stillwater Bending Moment 7,161300 6602 130
Wave Bending Moment 9746946 10,384960
Shear Force 153654

Table 5.10. Design SWBMIWBM and Shear Force Applied

In table 5.10, the rule design stillwater and wave bending moments (hogging and

sagging) assumed in the Mars Rule 2000 models are listed.
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Option A (mA2) Mass Zd (mA3) Zb (mA3) MtiMu
(tIm) 0/0

VLCC-I 10.270 80.62 78.668 106.965 96.62
VLCC 2 10.027 78.71 77.195 105.347 88.62
VLCC 3 10.834 85.05 81.662 111.061 92.15
VLCC-4 12.169 95.53 100.017 124.826 70.89

Table 5.11. Results From Longitudinal Strength Calculations

Table 5.11 summarises the main structural results obtained from the MARS Rule 2000

calculations, where A = cross sectional areas, Zd and Zb are the section modulii of the

deck and bottom respectively, and Mt/Mu is the ratio of the total bending moment (Mt)

to the ultimate bending moment (Mu) in sagging mode, which is an index of the hull

girder capacity in vertical bending. All the above calculations were performed on the

basis of Bureau Veritas's classification rules (2007). This was done to permit direct

comparison between all options on the same basis. The MARS Rule 2000 software uses

a code developed by the Technical University of Szczecin to calculate hull girder

ultimate strength. No details of the code are given by BV, and this aspect was not

investigated further, as it was considered to be outside the scope of this research work.

Corrosion Margins: In section 2.3.3, corrosion margins were discussed. For

comparison purposes, corrosion margins for a range of structural elements in the four

alternative structural options have to be estimated. Corrosion margins for the first two

options (VLCC_l and VLCC_2) were calculated assuming 20% maximum wastage for

individual structural members, corresponding to pre-CSk practice. In VLCC _l, the

main deck plating thickness was 19.5mm, and the corrosion allowance was 3.9mm. It

should be emphasised that this rule of thumb may not apply to deck plating on double

hull tankers due to high buckling stresses For VLCC_3 (CSR compliant). Nominal

corrosion margins were taken from the data given in lACS Background Document

Section 12 _ Ship in Operation Renewal Criteria (lACS, 2006c), and these are shown

in table 5.l2. For VLCC _4, the corrosion margins were estimated based on 20°!t,of the

actual scantlings, and since the thicknesses are greater for option 4, the corrosion

margins are correspondingly higher. Finally, an average is taken for each option, and

this value represents a nominal corrosion margin for each .. This numeric data has been

used directly in the ER model.
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Structural Elements VLCC 1 VLCC 2 VLCC 3 VLCC 4
Deck plating 3.9 3.9 4.0 4.4
Sheer strake 3.5 3.8 3.5 4.2
Bilge& bottom plating 3.6 4.0 3.0 3.9
Upper strake of inner skin 4.0 3.8 4.0 4.2
Upper strake of long. bulkhead plating 3.5 3.7 4.0 4.0
Main deck longitudinal stiffeners (web) 2.6 2.4 4.0 3.0
Bottom shell longitudinal stiffeners (web) 2.4 2.4 3.0 3.0
Side shell plating at Y2 depth 3.9 4.2 3.5 5.0
Inner skin and hopper plating at Y2 depth 4.6 4.0 3.0 5.3
Longitudinal bulkhead plating 3.0 3.0 2.5 3.7
Inner bottom plating 3.9 4.2 4.0 4.4
Longitudinal girders (in double bottom) 3.3 3.3 3.0 3.7
Upper longitudinal stringers (in WBT) 2.5 2.6 3.0 3.1
Average 3.4 3.5 3.4 4.0

Table 5.12. Estimation of Corrosion Margins

Reference can be made to table 5.4 (p.188) showing the thickness ranges of plate

scantlings for each of the 4 options.

5.4.2 Setting the Criteria Grades & Weightings

In table 4.10 (p.I72) of section 4.5.2, a total of 35 criteria for the structural assessment

framework were presented, and for convenience, these arc listed here again in table

5.13 on the following page. In structural performance evaluation, some of the

quantitative criteria can easily be described by numeric data, including NPV,

Warrantee, Longitudinal Strength, Fatigue Life, Buckling etc. The assessment of many

of the other attributes including Sloshing Resistance, Critical Areas, Builder's

Reputation, Owner's Experience, Structural Details and Welding Design etc is not

straightforward, because they are qualitative in nature and require subjective

judgements. Vagueness and incompleteness of the data is also characteristic of the

nature of this type of assessment problem.
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No Sub-Attribute OL. ON.
1 NPV X
2 Warrantee X
3 Classification X
4 Longitudinal Strength X
5 Transverse strength X
6 Hull Girder fatigue X
7 Side Structure fatigue X
8 Main Deck buckling X
9 Members 1-3 buckling X
10 Berthing resistance X
11 Sloshing resistance X
12 Critical area -1 X
13 Critical area - 2 X
14 Critical area - 3 X
15 Builder's reputation X
16 Owners experience X
17 Corrosion Margins X
18 Minimum. Scantling X
19 Coating Specifications X
20 Anodes in Tanks X
21 Materials in Hull X
22 Structural Details X
23 Welding Design X
24 YardQA/QC X
25 Owner Effort X
26 Ballast Distribution X

27 Ballast Filling % X
28 Cross Ties Location X

29 Subjective (Structural) X
30 Ballast Tanks Access X
31 Cargo Tanks Access X
32 Forepeak Tank Design X
33 Aftcrpcak Tank Design X
34 Hull stress monitoring system X
35 Operability X

Table 5.13. Lower Level (Level S) Sub-Criteria
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To limit the complexity of the model without losing relevance, a common grading

system consisting of the following seven grades has been chosen throughout for both

numeric and qualitative criteria:

N = 7,H( = {Unacceptable},H2 = {VeryPoor},H3 = {Poor},lf4 = {Fair},l1s = {Good},
If 6 = {VeryGood} , If 7 = {Excellent}

For consistency and to reduce subjectivity (Xie et al, 2008), a clear definition of the

standard of each assessment grade needs to be provided for all the numerical

assessments and subjective judgements involved in the data assessment process. These

definitions are intended to reflect the preferences of a single decision maker and are

given below as an example:

Unacceptable: Clearly not satisfactory

Very Poor: Not satisfactory

Poor: Marginally unsatisfactory

Fair: Just acceptable and satisfactory

Good: Fully satisfactory

Very Good: Fully compliant with the performance specifications

Excellent: Above the performance specifications and buyer's expectations

Subjective judgement inevitably has to be used and the contribution of structural

experts will be obvious to facilitate cross trade offs between different attributes,

weights have to be assigned and a utility function needs to be defined for the

assessment grades of each attribute. The assignment of weights represents a very

important part of the ER modelling, and should be estimated with care (Yang & Xu,

1998). For the purpose of demonstrating the general framework, the importance of the

individual attributes is reflected in the weights assigned in the generalised decision

matrix. The weights are indicated in column 2 of table 5.14. It was assumed that the

weights for Commercial and Technical were of equal importance (i.c. 0.5 in both

cases).

19H



Top Level Criteria
Technical 0.5
Commercial 0.5
Main Technical Criteria
Strength 0.4
Durability 0.4
Arrangements 0.1
Operational 0.1

Table 5.14. Assignment of Weights for Top Level Criteria

Weights of each criterion or sub criterion could have been calculated using the analytic

hierarchy process (AHP) method. However, for the purposes of this study, AHP was

not used.

5.4.3 Transforming Basic Quantitative Criteria

In the proposed framework, 7 grades have been adopted. To avoid excessive

complexity, and in view of the number of sub-criteria used in the model, the 7 grades

are the same throughout for both numeric and qualitative criteria. Numeric sub-criteria

can be transformed to an equivalent assessment using the method given by Xie et al

(2008) as follows:

If hN,jand h/jare the largest and smallest values that an assessed option can take on the

sub-criterion and a value h.,i is judged equivalent to a grade II n' n = I, .... ,N, then a

value h on ej can be mapped to the grade set with degree of belief.

The assessment S(ej(h)) = {(hn,j,p.,j),n = 1,...,N }

h-h
h P = .+1,' P = 1- P if h < h < hwere n j , .+1 j • " , 1 11+1 - - 1 ., h . -h ." u+ ,I

n+I.1 n,J

and n = 1,.... ,N-l

Pk.j =0 fork= 1,.... ,Nand k ;tn, n+1.
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The assessment S(eJh» transformed into the form of a belief structure shown above,

can be used directly in the ER algorithm. In table 5.15, the range of the numeric data in

the model is listed. To aggregate the information for use in the ER algorithm, the

assessments performed on quantitative criteria have to be transformed into a common

set of grades or belief structures. In the ER model, the worst and best values listed are

used to determine the range of the numeric criteria throughout.

Criteria Worst Rest Units
NPV 57.71 69.74 USD Million
Warrantee 1 5 Years
Longitudinal Strength 96.62 70.89 %
Hull girder fatigue 20 40 Years
Side structure fatigue 20 40 Years
Main deck buckling 224 174 MPa
Berthing resistance 19 25 mm
Corrosion margins 3.4 4.0 mm
Minimum scantlings 11.5 15.0 mm
Coating specifications 5 20 Years
Materials (HTS) 80 30 %
Peak tank filling 62.5 100 %

Table 5.15. Ranges of Numeric Criteria Assumed in the ER Model

The net present values (NPV) shown in table 5.15 range from USD 57.71 million to

USD 69.74 million. It is assumed that the extreme values are equivalent to

unacceptable grade for the lowest NPV and excellent grade for the highest NPV. For

each of the 5 grades (VP. P. F. G. VG) between unacceptable and excellent, decision

makers have to establish intermediate values. For simplicity, a linear distribution

ranging from 0 to 1.0 is assumed in the model, leading to the following results:

VP= U+ (E-U) = 57.71 + (69.74-57.71) = 59.715
6 6

P = U + 2 (E-U) = 57.71 + 2 (69.74-57.71) = 61.725
6 6

Similarly F= 63.725, G = 65.730 and VG = 67.735
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5.4.4 Assessing Qualitative Criteria

To aggregate all the information using the ER algorithm, the above assessments have to

be transformed using a common set of grades in the format of belief structures. For the

qualitative criteria, each option can be evaluated using expert judgement and assigning

belief degrees associated with the grades.

Figure 5.5. Lower Hopper Corner Arrangement

To evaluate critical areas 1for example, the lower hopper corner area indicated by the

arrow shown in figure 5.5 has been chosen. In section 4.4.4.5 (p.158), reference was

made to categorisation of critical areas by systematically ranking and prioritising

hazards according to the risk-based procedures described in section 3.5.4 (p. 124)

according to the method. At the simplest level, structural assessment could be

conducted on the basis of subjective judgement by a team of experts using scantlings

and welding details reviewed against class rule minima, illustrating the flexibility and

simplicity of the structural assessment process. In a more sophisticated approach,

coarse mesh finite element analysis and fatigue calculations carried out using one of the

proprietary software structural analysis tools offered by the major class societies such

as ABS's SafeHull, DNV's Nauticus Hull or GL's Poseiden ND may be used, as

described earlier in section 2.5.5 (p. 68). Detailed solid element mesh models can be

generated as described by Read et al (2000) in relation to the Millenium Class tankers.
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Figure 5.6. Detailed FEM Results for Lower Hopper Corner (Read et al, 2000)

Fatigue considerations may also be incorporated into the evaluation process by

calculating stress concentration factors from fine-mesh models and comparing stresses

against acceptance criteria including the industry standard "C" and "0" SN curves from

the UK Department of Energy shown in figure 2.6 of section 2.3.2. Figure 5.6 shows

the radius plate modification which was found necessary to overcome the design

objections to the cruciform welded connection detail originally offered in the Millenium

Class tankers described by Read et al above.

Recent Japanese built OH tanker feature radiused hopper corners of increased thickness

to overcome fatigue problems associated with the welded joints normally featured in

this area. The comer detail above is considered to have a high probability of failure due

to high stresses and low fatigue life indicated from the FEM results. Failure

consequences may involve cargo entry into the double bottom ballast spaces, with the

potential to cause an explosion, loss of life and pollution. At least very high costs and

most probably extended off-hire would be necessary to clean up the contaminated

ballast spaces. Structural evaluation of the subject area may be accomplished using a

standard risk-assessment approach developed in section 3.5.5. The risk matrix in figure

5.16 can be used to directly assess the risk by assuming that the frequency of a fatigue

fracture in the area in question is reasonably probable and the consequences of this type

202



of failure are judged to be very high. The corresponding risk category from the matrix

is 14, indicating very high risk.

Table 5.16. Risk Matrix

The outcomes from the preliminary risk-assessments described above are used to form

the input data for the structural assessment model. In this way a layered risk-assessment

process is evolved. The data forms part of the assessment of the major criterion

Strength through the sub-criterion Critical Areas. Such critical decisions may be made

by more than one decision maker. Typical subjective judgments for the lower hopper

critical area might be that the structural design offered by the ship builder was

considered to be very poor with a belief degree of 40% and poor with a belief degree of

60% as indicated in table 5.17. This outcome could be derived from three members of a

five person team rating the critical area as poor and two giving a very poor rating.

Degree of Belief (~) Evaluation Grade

U VP P F G VG E

Critical Area I 0.4 0.6
Critical Area 2 0.5 0.5
Critical Area 3 0.8 0.2

Table 5.17. Subjective Judgments for Evaluating Critical Areas

A further example of the use of linguistic terms to describe the qualitative criteria used

in the model will be given. In table 5.18, a detailed explanation of the assessment

grades for the commercial sub-criterion classification appears.
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Grades Definitions and Exolanation
Unacceptable The vessel's classification was chosen by the

ship builder and was the least preferred option
out of 11 societies from the owner's point of
view.

Very Poor The vessels classification was nominated by the
ship builder and the class society was not one of
the four options favoured by the owner.

Poor The vessels classification was nominated by the
ship builder and was the least favourable of four
options from the owner's point of view.

Fair The vessels classification was chosen by the
ship builder and was the third best from the four
options from the owner's viewpoint.

Good The vessels classification was chosen by the
ship builder and coincided with the second best
of the four options from the owner's viewpoint.

Very Good The vessels classification was chosen by the
ship builder and was the best of the four options
from the owner's viewpoint.

Excellent The owner selected the society of choice to
class the vessel because of historical
assoeiations with the nominated organisation.

Table 5.18. The Assessment Grade Classification

An assessor would document other similar evaluations in order to maintain the

transparency and validity of the structural assessment process.

5.4.5 General Pre-Assessment Process

As a preliminary step in the proposed structural assessment framework, each of the four

VLCC structural designs were generally assessed as shown in tables 5.19 and 5.20 on

the following pages. This step is recommended to broadly capture and document key

considerations as a prelude to more detailed assessment which follows. The

identification of general considerations involved in the decision-making process is the

prerequisite for constructing a generalised decision matrix containing the belief

probability distributions which is the main outcome of the structural assessment

framework. In table 5.19, the assessments forVLCC_1 and VLCC_2 are given.
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SUBATTRIBUTE VLCC 1 VLCC 2
NPV USD 68.64 million USD 69.74 million
Warrantee for hull 1 year 1 year
Classification society Chosen by yard, but least Class chosen by yard, and not

preferred option one of four favoured options
Longitudinal strength 96.62% of ultimate capacity 88.62% of ultimate capacity
Transverse strength To minimum rules standards To minimum rules standards
Hull Girder fatigue 20 years minimum standard 20 years minimum standard

worldwide wave data worldwide wave data
Side Structure fatigue 20 years minimum standard 20 years minimum standard

worldwide wave data worldwide wave data
Main Deck buckling Stresses in deck longitudinals Buckling stresses in deck

longitudinals
Members 1-3 buckling Stresses in 3 nominated areas Stresses in 3 nominated areas
Berthing resistance Side shell thickness 19.5mm Side shell thickness 21.0mm
Sloshing resistance Minimum rule requirements Minimum rule requirements
Critical area-/ Yard standard design Yard standard design
Critical area - 2 Yard standard design Yard standard design
Critical area - 3 Yard standard design Yard standard design
Builder reputation Poor reputation Mediocre reputation
Owners experience Very experienced Very experienced
Corrosion Margins 3.4mm 3.5mm
Minimum. Scantling 11.5mm upper ballast tanks 11.5mm upper ballast tank

plating plating
Coating Specifications 5 year nominal lifetime 5 year nominal lifetime
Anodes in Tanks Minimum requirements Minimum requirements
Materials in Hull 32% high tensile steel 80(Yo high tensile steel
Structural Details Yard standard design Yard standard design
Welding Design To minimum rule To minimum rule requirements

requirements
YardQAIQC Poor quality system Poor quality system
Owner Effort Substantial effort Substantial effort
Ballast Distribution Evenly distributed Evenly distributed
Ballast Filling % 62.5% in Normal Ballast 62.5% in Normal Ballast

condition condition
Cross Ties Location Centre tanks Wing tanks
Subjective (Structural) Optimised design Optimised design
Ballast Tanks Access Standard provisions + rafting Standard provisions + ratting
Cargo Tanks Access Standard provisions Standard provisions
Forepeak Tank Design Basic design Basic design
Afterpeak Tank Design Basic design Basic design
HSMS Not fitted Not fitted
Operability No special consideration No special consideration

Table 5.19. General Considerations for VLCC 1&2
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SUB ATTRIBUTE VLCC-3 VLCC-4
NPV USD 63.04 mi11ion USD 57.71 million
Warrantee for hull 1_year 5 years
Classification society Chosen by yard, and was the Owner chose class and it was the

2nd best ~tion most preferred option
Longitudinal strength 92.15% of ultimate c<l]_)acity 70.89% of ultimate capacity
Transverse strength Design lll'E!:_adedto CSR rules Enhanced scantlings
Hull Girderfatigue 25 years worldwide wave data 40 years worldwide wave data
Side Structurefatigue 25 years worldwide wave data 40 years worldwide wave data
Main Deck buckling Buckling stress in deck Buckling stress in deck

longitudinals longitudinals
Members 1-3 buckling Buckling stresses in 3 Buckling stresses in 3 nominated

nominated areas areas
Berthing resistance Side she11thickness 20.5mm Side she11thickness 25.0mm
Sloshing resistance Meets CSR requirements Specially considered
Critical area -1 Yard standard design FEM analysis, and design

upgraded
Critical area - 2 Yard standard design FEM analysis, and design

upgraded
Critical area - 3 Yard standard design FEM analysis and design

upgraded
Builder reputation Good r~utation Fair reputation
Owners experience V~ eX...2_erienced Very experienced
Corrosion Margins 3.4mm upper ballast tanks 4.0mm upper ballast tanks plating

plating
Minimum. Scantling 11.5mm 15.0mm
Coating Specifications 15 year nominal lifetime & 20 year nominal lifetime & lMO

IMO Res. A.798(19) and lACS Res. A.798(19) and lACS UI SC
UI SC 122 122

Anodes in Tanks CSR r~guirements Owners requirements
Materials in Hull 32% high tensile steel 30% high tensile steel
Structural Details Basic CSR design Specially considered and enhanced

details
Welding Design To CSR rules minimum SpeciaIly considered and increased
YardQAIQC Good_9uali_!y~stem Good/Fair quality system
Owner Effort Substantial effort Very substantial effort
Ballast Distribution Evenly distributed Evenly distributed
Ballast Filling % Ba11asttanks 100% full in Ballast tanks 10()'Yofull in normal

normal ballast condition ballast condition
Cross Ties Location Centre tanks Wing tanks
Subjective (Structural) Basic design with Much improved design

enhancements
Ballast Tanks Access Standard IMO_QTovisions Incorporating owners requirements
Cargo Tanks Access Standard IMO_E!"ovisions Incorporating owners requirements
FPT Design Basic design with carefully considered, and design

enhancements upgraded
APT Design Basic design with Improved design

enhancements
HSMS Not fitted HSMS fitted
Operability Some enhancements Owners requirements

Table 5.20. General Considerations for VLCC _3&4
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In table 5.20, VLCC_3 and VLCC_ 4 have been assessed. Having established a

procedure for compiling the general considerations outlined in tables 5.19 and 5.20, the

process for determining the lower level attributes for VLCC _l is described in detail in

table 5.21. All the assumptions made as part of the evaluation process should be

documented. A team approach is recommended with a mix of skills, including

specialists and ship operators. It should be emphasised that the intention here is to

present a broad framework for structural assessment and to demonstrate and validate

the processes and the IDS model rather than to attempt to develop a commercially

viable system. Therefore the decision process and data presented in the model is

notional and should not be interpreted to be real data, although the numerical and

qualitative criteria have been based on the published literature and the practical

experience of the author.

In row one of table 5.21, the net present value calculated in section 5.4.1.1 (p. 189) has

been entered. In row three, the hull girder ultimate strength ratio for VLCC 1

calculated in section 5.4.1.2 and summarised in table 5.11 on page 195 IS given.

Similarly, other numerical sub-attributes such as Berthing Resistance in row ten have

been assessed based on the considerations given in section 4.4.4.4 (p.157). In table

5.21, the subjective judgements associated with the various qualitative sub-criteria have

also been captured using belief degrees assigned to the seven evaluation grades. For

example, in row two, the assessment of the sub-criterion Classification was

transformed into a grading of Unacceptable with a belief degree U (1.0). In row

eleven, Sloshing Resistance was evaluated by the decision makerls in the following

way:

S (sloshing Resistance) = {(Unacceptable, 0.3), (Very Poor, 0.7)}

The real numbers 0.3 and 0.7 denote the degrees of belief of 30% and 70%

respectively. For Builder's Reputation in row fifteen, a grade of Good (0.8) was

decided and the degree of incompleteness was 0.2. Similarly, the other qualitative sub-

attributes have been evaluated and the corresponding belief degrees assigned.
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SUB EVALUATION RESULTS FOR VLCC 1-
ATTRIBUTE
NPV The NPV was calculated = USD 68.64 million (see calculations)
Hull Warrantee Standard ship yard warrantee offered by the ship builder was 12

months, when an extended warrantee was desired.
Classification The Class Society was chosen by yard and was the least preferable

option available to the owner, without incurring significant
additional costs, and was graded U( 1.0)

Long. Strength The hull girder ultimate capacity was calculated by the MAR Rule
S2000 software according to pre-CSR BV Rules and the ratio was
found to be 96.62%

Transv. Strength Offered design of main transverse structures including bulkheads
and web frames was evaluated by specialists and graded VP(0.5),
P(0.5) due to low thicknesses and poor details.

H.G fatigue Scantlings calculated for standard 20 years(world wide trading)
SIS{atif!ue Scantlings calculated for standard 20 vcars (world wide trading)
MID buckling Main deck buckling stress calculated = 224 Mpa
MID buckling 1-3 Members 1-3 assessed for buckling capacity and graded as

VP(0.5), P(0.5).
Berth. Resistance Side shell thickness = 19.5mm
Slosh. Resistance Due to the lack of a Swash Bulkhead in the cargo tanks, the risk of

sloshing was evaluated and found to be high and graded U(0.3),
VP(0.7) accordingly

CA-J The offered design of critical area no. I (lower hopper corner) was
evaluated by specialists using subjective judgement and graded as
VP(OA), P(0.6) due to anticipated elevated risk ofservieeability
problems including fractures.

CA-2 The offered design of critieal area no.2 (connection of transverse
bulkhead to double bottom) was evaluated by specialists using
subjective judgement and graded as VP(O.5), P(0.5) due
anticipated elevated risk of serviceability problems including
fractures.

CA-3 The offered design of critical area no.3 (typical side shell
longitudinal penetration through web frame in way of Wing
Ballast Tanks) was evaluated by specialists using subjective
judgement and graded as VP(O.8), P(0.2) due to anticipated
elevated risk of serviceability problems including fractures.

Builder reputation The builder was considered to be relatively inexperienced with a
fair reputation, and hence graded F(0.8)

Owners The owner was experienced with operation of double hull VLCC's
experience and had access to good technical resources and therefore this

attribute has been given a high grade ofGW.8), VG(O.2).
Corrosion The corrosion margins for the plating within 3.0m from the top of
Margins the Wing Ballast Tank were assessed and the additional corrosion

marzin was 1.75mm
Min. Scantling The minimum thickness found in the mid ship section scantling list

was 11.5mm for a longitudinal stiffener web thickness.
Coat. Spec's The Ballast Tank coating system corresponded to DNV

preparation system I with I x 200 microns Epoxy (5 +/- 3 years
nominal lifetime)

Anodes in Tanks The minimum number of anodes were fitted in way of Ballast
Tanks. This was considered to be F(O.6), G(OA).

Materials in Hull The hull design featured 32% High Tensile Steel (HI'S)
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SUB EVALUATION RESULTS FOR VLCC_l
ATTRIBUTE
Structural Details A range of standard generic structural details including deck,

bottom and side longitudinal frame penetrations through web
frames were evaluated by experts using subjective judgement and a
combined grading of U(O.5), VP(O.5) given, due to generally
unsatisfactory quality of the offered details and anticipated risk of
structural problems in service.

Welding Design The welding details in selected areas were assessed by experts
using subjective judgement and owing to the lack of full
penetration welding in selected areas and generally deficient leg
length in other areas designed according to classification society
minima, a grade of U(O.5), VP(O.5) was given.

YardQAIQC The yard quality department and quality system was judged to be
of a relatively poor standard from previous experience. A grade of
VP(O.5), P(OA) was given.

Owner Effort Due to perceived shortcomings on the part of the yard QAlQC,
The owner allocated significant team resources to focus the quality
effort. Hence a grade of G(I.Ql was assigned.

Ball. Distribution The offered design featured evenly distributed ballast in side
Segregated Ballast Tanks with no option for mid ships ballast to
offset exceptionally high bending moments in the ballast condition.
Hence this aspect of the design was graded U(O.3), VP(O.7).

Ballast Filling % The offered design featured a partially filled Fore Peak Tank in the
Normal Ballast departure condition. The filling was 62.5%.

Cross Ties Cross Ties were fitted in the centre tanks in the offered design.
This was graded P(O.6) since there was some doubt about the
technical aspects involved.

Subjective The main structural drawings for the design were examined and
the judgement of experts resulted in a combined grade of U(O.2),
VP(O.8) for the general subjective structural design aspects.

B.T. Access The Ballast Tank access arrangements offered by the builder were
just in compliance with the minimum statutory and class
requirements, and therefore were graded ~O.5), F(O.S).

CT. Access The Cargo Tank access arrangements offered by the builder were
just in compliance with the minimum statutory and class
requirements, and therefore were graded VP(O.5), P(O.5), because
the provisions for access to the main deck structures for survey
purposes were considered to be lacking.

FPT Design The structural design of the Fore Peak Tank was examined by
experts and graded as VP( 1.0) due to the risk of structural damage
caused by sloshing (sec Ballast Filling % above).

APT Design The structural design of the After Peak Tank was examined by
experts and graded as PiO.5), F(O.5).

HSMS A HSMS was not offered by the builder for standard designs and
this was considered unacceptable and was graded U( 1.0)
accordi ngly.

Operability No special provisions were made by the owners and graded
VP(OA), P(O.6)

Table 5.21. Evaluation ofVLCC_l in Relation to the Lowest Level Sub-Criteria
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Similar evaluations would be carried out and documented for the other three options,

The results of the data building exercise carried out in the previous sections have been

compiled in the generalised decision matrix appearing in table 5.22 on the following

page. For each of the 4 options, the individual degrees of belief are listed in the rows of

the matrix. The evaluation results for VLCC_1 from table 5.21 have been transferred

into the generalised decision matrix for subsequent input into the IDS software in order

to carry out the aggregated assessment process using the ER algorithm. The chosen

weightings are listed in column 2 of table 5.22. For the purposes of demonstrating the

model, the detailed evaluations of the other options are omitted for clarity. However,

the procedures for determining the degrees of belief data shown in table 5.22 were

similar. The qualitative data was judged to be reasonably representative based on the

scantlings for each option and the general considerations summarised in tables 5.19 and

5.20.

If all criteria are qualitative, the ER algorithm described in section 4.5 can be used

directly to aggregate sub-criteria assessments to the upper level parent criteria.

However, when the qualitative sub-criteria and parent criteria have different grades, the

assessments must be transformed. For example, the sub-criterion Builder's Reputation

could have been graded as follows:

N = S,HI = {Worst},H2 = {Poor},H3 = {Average},1l4 = {Good}, lis = {Excellent}

In such a case, fuzzy mapping techniques are available to unify linguistic terms

between the different criteria, where it is desirable to adopt these into the model (Yang

et al, 2007).

5.4.6 Aggregating Assessment Results

In table 5.22, the results of the data building carried out in the previous sections are

combined and presented in the form of a generalized decision matrix. The numeric and

qualitative data resulting from the individual assessment procedures appearing in the

generalised decision matrix in table 5.22 is listed in a form which can be projected to

the normalised utility space.
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Sub Attribute W VLCC 1 VLCC 2 VLCC 3 VLCC 4
NPV 0.8 $68.64 million $69.74 million $63.04 million $57.71 million
Warrantee 0.1 I year I year I year 5_years
Classification 0.1 U(l.O) VP(l.O) Gil.°1 I:-Jl.Ol
Longitudinal 0.8 96.62% 88.62% 92.15% 70.89%
Transverse 0.2 VP(O.S),P(O.S) F(0.5), G(0.5) F(0.5), G(O.S) G(O.S),

VG(O.S)
Hull Girder 0.5 20 years 20 years 25_years 40_years
Side Structure 0.5 20 years 20_years 25 years 40years
Main Deck 0.5 224MPa 22SMPa 213MPa 174MPa
Members 1-3 0.5 VP(O.S), P(O.S) VP(O.S), P(O.S) P(0.5), F(O.S) G(O.S),

VG(O.S)
Berthing 0.5 19.5mm 21.0mm 20.Smm 2S.0mm
Sloshing 0.5 U(O.3), VP(0.7) U(0.3), F(0.85) G(0.8),

VP(0.7) VG(0.2)
CA-l 0.5 VP(OA), P(0.6) VP(0.8S) U(0.2), G(0.6),

VP(0.8) VG(OA)
CA-2 0.25 VP(0.85) VP(O.S), P(O.S) VP(O.S), P(O.S) G(O.S),

VG(0.5)
CA-3 0.25 VP(0.8), P(0.2) VP(0.7), P(0.3) VP(0.7), P(O.I) G(0.8),

VG(0.2)
Builder's Rep. 0.3 F(0.8) P(0.2), F(0.81 P(0.2), FeO.8) FiO.S},G(O·51
Owner's Exp. 0.7 G(0.8), G(0.7), G(0.8), G(0.8),

VG(0.2) VG(O.I) VG(0.2) VG(O.~
C. Margins 0.3 3Amm 3.Smm 3Amm 4.0mm
Min. Scant. 0.1 l1.5mm 11.Smm 11.Smm IS.Omm
Coat. Spec's 0.3 5 years 5_years 15 years 20 years
Anodes 0.2 F(0.6), G(OA) F(0.5J, G(O.S) F(0.5), G(O.S) G( I.()l
Materials 0.1 32% HTS SO%HTS 30% HTS 30''10IITS
Details 0.5 U(O.S), VP(O.S) U(O.1), U(O.I), G(0.6),

VP(0.9) VP(0.9) VG(OA)
Welding 0.5 U(0.5), VP(O.5) U(0.3), U(0.2), F(0.8), G(0.2)

VP(O.6) VP(0.8)
Yard QAlQC 0.25 VP(O.S), P(OA) VP(0.2), P(0.8) VP(0.2), P(0.81 F(I.O}
Owner Effort 0.75 G(l.O) G( 1.0) G(I.O) VG(O.5),

E(0.5)
Ballast Distribution 0.2 U(0.3), VP(0.7) U(0.3), U(0.3), U(O.S),

VP(0.7) VP(0.7) V~0.5)
Filling % 0.8 62.5% full 62.S'Yofull 100% full 100'% full
Cross Ties 0.5 P(0.6) P(0.5),1":I0.5) ~O.6) F(O.S},G(O.5)
Subjective 0.5 U(0.2), VP(0.8) VP(0.21, 1'(0.8) P(O.SS) F(0.6), G(OA)
B/Tank Access 0.5 P(O.S), F(O.S) P(0.2), F(0.6) P(O.S), F(O.S) '":IO·51.G(0.5J
Cargo Tanks 0.5 VP(O.S), P(0.5) VP(OA), P{0.6) VP(OA), P{0.6) F(O.S), G(O.S)
Access
Forepeak 0.7 VP(I.O) VP(l.O) U{0.5), F(O.S), G(O.2)

VP_10.5)
Afterpeak 0.3 P(O.5), F(0.5) F(l.O) F( I.() 1::10.71.G(O.3)
HSMS 0.5 U(I.O) U(I.O) U( 1.0} E(0.81
Operability 0.5 VP(OA),P(0.6) VP(0.3), P(0.7) VP(0.3), PfO.6) F(0.51 G(0.5)

Table 5.22. Generalised Decision Matrix
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A Windows based software implementation of the ER algorithm known as the

Intelligent Decision System (IDS), developed by the University of Manchester UK, and

described by Xu & Yang (2005), has been used to process the data. The IDS package is

utilised for ease of performing the otherwise complex calculations involving the

multiple criteria chosen for the model. All the information contained in the matrix

including weights, grades and belief degrees has also been incorporated directly into

the IDS model shown in figure 5.7. The utility function adopted throughout the model

is defined as a linear function ranging from 0 to 1.0 as follows;

U(HI) = 0,u(H2) = 0.I666,u(H3) = 0.3333,u(H4) = O.SOOO,u(Hs) = 0.6666,

u(H 6) = 0.8333, u(H 7) = 1.0000

Other utility functions (distribution patterns) could be utilised in accordance with the

preference of individual decision makers.
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Figure 5.7 IDS Software Model
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Worst possible Average Best possible

.VLCC_1 0.5292 0.5305 0.5319

.VLCC_2 0.5969 0.6024 0.6079

.VLCC_3 0.3818 0.3840 0.3862

.VLCC_4 0.4387 0.4401 0.4415

Figure 5.8. Utility Scores
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• Mininum score 0.5292 0.5969 0.3818 0.4387

• Average mirus minimt.rn 0.0014 0.0055 0.0022 0.0014

• Maximum rnros average 0.0014 0.0055 0.0022 0.0014

Figure 5.9. Ranking of Alternatives
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5.4.7 Ranking and Decision Making

The output from the IDS software is shown in figures 5.8 and 5.9 above. On the basis

of the average utility scores, VLCC_2 (the cheapest option) is ranked best. Ranked

second is VLCC_l, however, VLCC_ 4, the best technical option has a relatively high

utility. The least favourable of the four options appears to be VLCC_3 which has been

upgraded to meet the new CSR requirements, but has the second lowest NPV.

Recalling that VLCC _2 was a pre-CSR fully HT355 Korean design with the least steel

weight and consequently the lowest cost and highest NPV. In spite of the relatively

harsh technical evaluations evident from the generalised decision matrix given in table

5.22, VLCC_2 has emerged as the favoured option for further evaluation.

5.5 Conclusions

An objective in this study was to develop a novel and unique techno-economic

framework for comparing alterative structural designs for large bulk ships. In this

framework, both technical and commercial criteria were to be incorporated. The

method had to be rapid and transparent, and allow comparisons using a utility ranking

for identification of the preferred alternative. Sub-objective no.4 given in section 1.2

was to articulate a set of product performance characteristics (criteria), part of a

MCDAlER methodology incorporating the Dempster-Shafer Theory of Evidence as the

basis for a structural evaluation framework used to compare alternative structural

design options for VLCC's. The work in chapters 4 and 5 appears to have allowed the

above objectives to have been realised. In chapter 6 sensitivity studies will be

conducted in order to further demonstrate and to build evidence of the validity of the

method proposed. This step is a prelude to exploring the concept of using the

MCDAlER structural assessment framework as a tool for evolving the arguments and

evidence needed for a hull structures safety case in chapter 7.
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Chapter 6 - Sensitivity Study, Discussion & Validation

SUMMARY

The MCDAIER structural assessment framework developed in the preceding chapters

was demonstrated in chapter 5 by an example involving the selection of a preferred

VLCC structural design. In this chapter the model is tested and validated before

describing in chapter 7 how the risk-based procedures embodied in the structural

assessment framework can be used to build the evidence necessary for a hull structures

safety case as a means of further improving technical management and safety of large

VLCCs and VLBCs.

6.1 Introduction

In chapter 5, the MCDNER structural assessment framework developed over the

previous chapters 3 and 4 was demonstrated by an example, comprising selection

between four similar competing VLCC structural designs. The structural assessment

framework was presented as a process with the purpose of eliciting preferences for

further evaluation. The IDS software allowed options to be simply ranked on the basis

of their utility scores. The method was seen to be rational, systematic, flexible and

transparent and to provide a simple means of dealing with real world problems

involving quantitative and qualitative and sometimes incomplete data.

To build further confidence in the method, representative sensitivity studies are

performed in this chapter, such that the outcomes can be evaluated in terms of their

usefulness. In this way, the results are intended to further demonstrate the usefulness of

the methodology. In view of the imprecise representations and heuristics inherent in

design method synthesis of this nature, validation in terms of socially justifiable beliefs

is considered appropriate and the validation square concept advanced by Pedersen et al

(2000) is adopted to verify the validity of the various phases of the work packages

performed.
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6.2 Summary of Main Results from the ER Model

6.2.1 Distributed Assessment

The combined distributed basic assessment results obtained from the IDS software

output for the four VLCC options have been presented in figure 6.1. This type of

presentation may be useful as the observer is able to gain an overview of the

assessment process by reference to the spread of the individual belief degrees. In the

case of the framework developed here, the patterns are quite complex due to the

combination of numeric and linguistic data being simultaneously synthesised in the

model and the definition of the worst and best values of the quantitative criteria.

VLCC_1

DIstributed Assessment on DESIGN SELECTION

100.00%

90.00%

VLCC_2

VLCC_3

VLCC_4

Q) 80.00%
Q)...en
Q)
"C

7000%

60.00%
.....
.~ 50.00%

Q) 40.00%co
30.00%

20.00%

10.00% 1_~L_.~lI~~J:='_-_'L_j••• ~0.00%
VeryPoor Fair Very Good Unknown

Unacceptable Poor Good Excellent

Evaluation grades

In figure 6.1, by making reference to table 5.22 (p. 211), the differences can be seen

and used to rank the alternatives but it is not a straightforward task. To precisely rank

the four options, their utilities need to be estimated. Firstly, the utilities of the seven

assessment grades have also to be calculated.

Figure 6.1. Belief Degrees from Main Results
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6.2.2 Utility Intervals

The difficulty of assessing the candidate VLCC structural designs on the basis of belief

degrees highlighted in the previous section may be overcome by ranking according to

utility intervals. The IDS model uses the concept of utility intervals to characterise the

unassigned degree of belief. The ER algorithm produces a utility interval bounded by

two limits (unacceptable or excellent) in this case. As explained in section 5.4.6, the

utility function adopted throughout the model is a linear function ranging from 0 to 1.0,

and this has been used for both qualitative and quantitative criteria.

UtIlity Intervals on DESIGN SELECTION

~ 1.0000

~ 0.8000
:::l

0.6000

0.4000

0.2000

OOOOO~==
Worst possible Average Best possible • VLCC_4

Utility interval
Worst possible Average Best possille

.VLCC_1 0.5292 0.5305 0.5319

.VLCC_2 0.5969 0.6024 0.6079

.VLCC_3 0.3818 0.3840 0.3862

.VLCC_4 0.4387 0.4401 0.4415

Figure 6.2. Utilities of Alternatives

• VLCC_1

• VLCC_2

• VLCC_3

In figure 6.2, the IDS output shows the four options ranked on the basis of their

respective worst, average and best possible utility values. The designs can be ranked on

the utility intervals; however, for one design to be absolutely preferable to another, the

minimum utility must be greater than the competing utilities. In this case the ranking is

the same whether the worst possible or average utilities are used.
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6.2.3 Ranking

Theoretically the ranking of the four options can be performed on the basis of the

performance distribution of the top criterion Design Selection, denoted by S (design

selection) = {( H n ,/J,J,n = 1,...,N} .The aggregated assessments for the upper level

attribute design selection generated for VLCC _1 are as follows;

S(design selection) ={(unacceptable, 27.95%), (very poor, 9.38%), (poor, 5.50%),

(fair, 1.74%), (good, 5.96%), (very good, 27.11), (excellent, 22.09%)}.

Option U VP P F G VG E Ave. Unknown Order

VLCC_I 27.95 9.38 5.50 1.74 5.96 27.11 22.09 53.05 0.27 2

VLCC_2 15.64 17.61 8.46 2.43 8.00 0.24 48.52 60.24 1.11 I

VLCC_3 7.44 18.52 25.00 36.01 11.26 0.51 0.82 38.40 0.44 4

VLCC_4 47.88 0.01 0.00 4.47 14.36 5.72 27.30 44.01 0.28 3

Table 6.1. Overall Performance of Alternatives

Ranldng 0'Alternatives on DESIGN SELECnoN
1.0000"'-"","",
0.9000I--~~

Q)....o
u
(f)

VLCC_2 VLCC_4VLeel VLCC_3

Alternative
VLCC_1 VLCC_2 VLCC_3 VLCC_4

• MIninun score 0.5292 0.5969 0.3818 0.4387

• Average minus rrinimum 0.0014 0.0055 0.0022 0.0014

• h4axinun minus lIVerage 0.001 4 0.0055 0.0022 0.0014

Figure 6.3. Minimum Utility Rankings of Alternatives
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A more convenient way of comparing the results is by ranking the options according to

their utilities from the IDS results shown in figure 6.3. In this case, the average utilities

confirm that VLCC _2 is the preferred option, and VLCC _1 is second as indicated in

the last column of table 6.1. Reference to the generalised decision matrix, table 5.22

(p.2l1), section 5.4.6, reveals that the higher NPV values for VLCC_1 and VLCC_2

strongly influences the outcome of the assessment process. However, the negative

influence of the ultimate strength ratio (Longitudinal) can also be seen for these two

options. Direct comparison of the data in table 5.22 indicates that the evaluations

appear to be more favourable in the case of the higher quality option 4, and the

qualitative assessments for the other 3 options are relatively pessimistic and similar.

However, it is very difficult to predict the outcome of the assessment process based

solely on visual examination of the data in the decision matrix, and this indicates the

necessity of the model. However, it needs to be stressed that the model is a tool

intended to be used primarily to elicit preferences for further evaluation.

6.3 Sensitivity Study

6.3.1 Variation in Weightings

In table 5.14 (p.199) the weightings chosen for the main criteria were displayed. The

assessment framework was initially formulated on the basis of equal weights assigned

to both Commercial and Technical criteria as a starting point. This established a

ranking believed to properly reflect the importance of commercial aspects in a practical

evaluation framework. The ER model easily permits changes in the input parameters

facilitating sensitivity studies of the kind conducted here. Because of the criticality of

the weightings used in the ER model, examples are presented showing the effects of

changes in the weightings for both Commercial and Technical assessment criteria.

6.3.1.1 Effect on Commercial

An increase in the weighting of the attribute Commercial from 0.5 to 0.75 and a

corresponding reduction in the weighting of the attribute Technical from 0.5 to 0.25
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had the expected result of distinctly increasing the preference of the lowest cost options

VLCC_1 and VLCC-2 due to the relatively more favourable NPV, reflected in the

increased average utility scores ofO.8026 and 0.8932 respectively. The minimum utility

scores indicated in figure 6.4 show the same outcome. The utilities of the other 2

options have decreased, and the best technical option (VLCC_ 4) has a very low utility.

Ranking 01Altern fives on DESIGN SELECTION
10000 --------------------------.,

0.9000

0.8000

Q)~o
u
Cl)

VLCG 2 VLCG_4
VLCGl VLCC 3

Alternative
VLCC_1 VLCC_2 VLCC_3 VLCC_4

• Minimum score 0.8024 0.8912 0.4270 0.1209

• Average minus minimum 0.0003 0.0011 0.0004 0.0003

• Maximum mirus average 0.0003 0.0011 0.0004 0.0003

Figure 6.4. Effect of Changing Weighting of Commercial to 75%

6.3.1.2 Effect on Technical

By reducing the weighting of the Commercial criterion to from 0.5 to 0.25 and

correspondingly increasing Technical from 0.5 to 0.75, the ranking shown in figure 6.5

was obtained. The clear superiority of the best technical option (VLCC 4) is seen. The

second best technical option is VLCC_3, while VLCC_1 and VLCC_2 (least cost

options) have similar but lower scores. The result is confirmed intuitively by reference

to the generalised decision matrix shown in table 5.22, clearly indicting the increasingly

positive trend in technical evaluations observed in the graph. Although the above

comparison has merit for the purpose of evaluating the impact of these changes to the
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overall ranking, it is unlikely that real world commercial projects would ever be ranked

on such a simplistic basis. However the model lends itself to more complex

development and eventual real-world usefulness.

Ranking of AlternatIVes on DESIGN SELECTION
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0.9000
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0.2576 0.3014 0.3351 0.7534• MinimUm score

• .a.veragemi1us minimum 0.0025 0.0100 0.0040 0.0025

• Maximum mirI.Is average 0.0025 0.01 00 0.0040 0.0025

Figure 6.5. Effect of Changing Weighting of Technical to 75%

6.3.2 Variation in Commercial and Technical Criteria

6.3.2.1 High Quality Option

In sections 3.2.5 and 4.2.3, product quality issues in relation to standard vessel

procurement practice were explored. Hayer (1994) questioned whether a USD 15

million premium relating to additional options in a VLCC contract, some of them

related to the hull structure, could be justified in terms of higher product quality. It was

assumed that the additional cost suggested by Hayer correlates to USD 30 million in

today's terms. Table 6.2 shows the effect of a 20% increase in price on the ranking of

the four options. The revised NPV of USD 40.18 million calculated for VLCC _4 was

used in the IDS model.
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YEAR CF PVIF PV
0 ·180 1.0000 ·180.00
1 24.01 0.9091 21.83
2 24.01 0.8264 19.84
3 24.01 0.7513 18.04

---
24.01 0.6830 16.404

5 24.01 0.6209 14.91- ._.._ .._ --_--- 24.01 -- 0.5645
-
13.556

--7 -_._- - - - 0.5132
--
12.3224.01

--.--.-.--.,~-.- --
24.01

--
0.4665 11.208

---9 -- - 24.01- 0.4241
-
10.18

10 24.01 0.3855 9.26
-

24.01 0.3505
-

8.4211
12 24.01 0.3186 7.65
13 24.01 0.2897 6.95
14 24.01 0.2633 6.32
15 24.01 0.2394 5.75

24.01 0.2176
-
5.2316

17 24.01 0.1978 4.75
18

--
24.01 0.1799 4.32

---19 -- -
24.01

-
0.1635

-- -

3.93
--_"_'- -- .-

24.01
- -- --

20 0.1486 3.57_._. ---._ -
24.01

_.-
0.1351- --- ._-

21 3.2422 .....
24.01 0.1228 2.95

23
- -

24.01
-

0.1117 2.68
24 24.01 0.1015 2.44
25 48.23 0.0923 4.45

NPV· 40.18

Table 6.2. NPV Calculation for High Quality Option VLCC_ 4

Here a capital cost of USD 180m for the high quality option has been used. The

technically superior solution is undoubtedly VLCC _4 as the assessment criteria in the

generalised decision matrix shown in table 5.22 clearly indicate, the negative effect on

the shareholder's wealth (i.e. the project NPV), and the relatively low average utility

score of 0.4401 compared to the other 3 options, (0.5564, 0.6024 and 0.5464 for

VLCC_l, VLCC_2 and VLCC_3 respectively) indicate that VLCC_ 4 is clearly not a

viable option due to the relatively high capital cost. Such a finding would appear to

support the commercial ship builder's prime objective to optimise the design and

minimise the cost whieh is in accordance with the definition of product quality

discussed in section 3.2.5.
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• Minimum score 0.5550 0.5969 0.5442 0.4387

• Average minus minimum 0.0014 0.0055 0.0022 0.0014

• Maximum mirus average 0.0014 0.0055 0.0022 0.0014

Figure 6.6. High Quality Option

Further, the lowest cost option (VLCC _2) emerges as the likely candidate for further

evaluation, while VLCC_1 and VLCC_3 are similar and merit consideration due to

relatively high utility. The minimum utility values from the lOS output are shown in

figure 6.6 above.

6.3.2.2 Unscheduled Repairs

The structural assessment framework demonstrated, may also be used to predict the

impact of future maintenance costs during the life cycle of the product. Such

evaluations are considered to be potentially very useful to ship owners. The use of the

NPV as the principal capital evaluation criterion permits the costs to be anticipated to

assess the overall impact on the project viability in a convenient way. To investigate

whether the outcome described in the previous section, could be altered if any of the

other options were faced with unscheduled maintenance costs, the following

hypothetical scenario will be used as an example of the effect of changes to the NPV

for a specific option. It was assumed that VLCC _2 would need 1000 tonnes of steel
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replaced at the 3rd Special Hull Survey (year 15), at an estimated steel cost of usn 2

million.

YEAR CF PVIF PV
0 ·150 1.0000 -150.00
1 24.01 0.9091 21.83
2 24.01 0.8264 19.84
3 24.01 0.7513 18.04
4 24.01 0.6830 16.40
5 24.01 0.6209 14.91
6 24.01 0.5645 13.55
7 24.01 0.5132 12.32
8 24.01 0.4665 11.20
9 24.01 0.4241 10.18
10 24.01 0.3855 9.26
11 24.01 0.3505 8.42
12 24.01 0.3186 7.65
13 24.01 0.2897 6.95
14 24.01 0.2633 6.32
15 19.01 0.2394 4.55
16 24.01 0.2176 5.23
17 24.01 0.1978 4.75
18 24.01 0.1799 4.32
19 24.01 0.1635 3.93
20 24.01 0.1486 3.57
21 24.01 0.1351 3.24
22 24.01 0.1228 2.95
23 24.01 0.1117 2.68
24 24.01 0.1015 2.44
25 43.51 0.0923 4.02

NPV· 68.54

Table 6.3. VLCC_2 - Unscheduled Repairs in the 15th Year

In this analysis the original Commercial and Technical weightings were maintained

(0.5, 0.5). Purely as an illustration of the method, and in the absence of actual data,

some broad but representative assumptions were made relative to the costs of repairs.

The associated delays and off hire, dry docking etc costs were estimated to be usn 3

million. Here it was assumed that approximately USD 1 million was required to cover

the break even costs for the vessel based on comparative data given previously in

section 5.4.1.1 (i.e. in this case, USD 33,300/day for a 30 day dry docking period).

usn 2 million was assumed to be the approximate lost freight revenue in this instance,

taking into account the variability in freight rates, and including dry dock fees and

survey fees etc. Given that the steel cost was estimated at USD 2million, the total cost

of the repairs was assumed to be usn 5 million, which is reflected as a drop in net cash
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flow in year 15 shown in table 6.3. The NPV for VLCC_2 was seen to decrease from

USD 69.74 to USD 68.54 million (i.e. a drop of around 1.72%). The scrap value was

maintained due to the assumption that corroded steel had to be renewed.

---- ------------
UtIlity Intervals on DESIGN SELECnoN
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0.8000
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04000
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Best possible
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• VLCC_2

Worst possible Average

• VLCC_3

• VLCC_4

Figure 6.7. Effect on Utility for Unscheduled Structural Repairs to VLCC_2

in the is" Year

Compared to the base case shown in figure 5.9 (p.213), the average utility value for

VLCC_2 decreased from 0.6024 to 0.5544 (7.9%), however the overall ranking shown

in the graph figure 6.7, remained unaffected, suggesting that the high quality option

continued to be uncompetitive, in spite of unscheduled and extensive steel repairs at the

3rd Special Hull Survey required by one of the lower capital cost options.

Figure 6.8 shows the ranking based on the minimum utility scores which is the same

result as above. These results demonstrate the usefulness of the model for investigating

hypothetical scenarios in the vessellifecycle even at the design stage.

Utility interval
Worst possible Average Best possible

.VLCC_1 0.5292 0.5305 0.5319

.VLCC_2 0.5488 0.5544 0.5599

.VLCC_3 0.3818 0.3840 0.3862

.VLCC_4 0.4387 0.4401 0.4415
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Ranking ofAlternatives on DESIGNSELECnoN
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Figure 6.8. Effect on Ranking of Unscheduled Structural Repairs to VLCC_2

in the 15th Year

6.3.2.3 Corrosion Margins

In this section, the effect of an increase in the corrosion margins for one of the options

will be investigated. In tables 5.2 and 5.3 on pages 186 and 187, the structural data for

the four VLCC designs was listed. For VLCC_I, the total steel mass in the 250m length

mid ships cargo zone was estimated to be 26,303 tonnes, corresponding to a distributed

mass of approximately 105.2 tonnes/m (refer to table 5.6 on page 189). In table 5.12

(p.196), the basis for estimation of the corrosion margins used in the ER model was

presented. The average nominal corrosion margin for VLCC_l was 3.4mrn. As a broad

assumption, the underlying basis for the corrosion margin assumed in the model was

20% of the longitudinal steel mass distribution, and this was the average allowable

corrosion wastage model used by the lACS Societies as discussed in section 2.3.3.

Assuming therefore, that the corrosion margin was increased from 3.4mrn to 5.0mrn,

the corresponding steel weight increase was estimated as approximately 0.1 x 26,303 =

2,630 tonnes.
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YEAR CF PVIF PV
0 -156.4 1.0000 -156.40
1 24.01 0.9091 21.83
2 24.01 0.8264 19.84
3 24.01 0.7513 18.04
4 24.01 0.6830

...

16.40
5 24.01 0.6209 14.91
6 24.01 0.5645 13.55
7

..

24.01 0.5132 12.32
--_----- ._.-- - --

11.208 24.01 0.4665
.....__ . -----

24.01 0.4241 10.189
10

..

24.01 0.3855 9.26
11 24.01 0.3505 8.42

-
12 24.01 _.. 0.3186 7.65
13 24.01 0.2897 6.95
14 24.01 0.2633 6.32
15 24.01 0.2394 5.75
16 24.01 0.2176 5.23
17 24.01 0.1978 4.75
18 24.01 0.1799 4.32-_. ---_.- .. - - -.- -
19 24.01 0.1635 3.93_ ..-- -

24.01
-
0.1486

_.
3.5720--_ ... . --- _. . ... - .--- ..--

21 24.01 0.1351 3.24-- --_.
24.01 0.1228

-
22 2.95

-

24.01 0.1117 2.6823
24.01 0.1015

..

2.4424
-

25 45.93 0.0923 4.24
NPV· 63.56

Table 6.4. NPV Calculation for Increased Corrosion Margins in VLCC_1

The capital cost increase was estimated to be 2,630 x 2,000 = USD 5.26 million. The

new scrap value was assumed to be 19.93 x 1.1 = USD 21.92 million and this was used

in the Excel spreadsheet calculation for the NPV shown in table 6.4. The NPV

correspondingly decreased to USD 63.56 million compared to the original NPV of

USD 68.64 million, a drop of 7.4%. In figure 6.9, the ranking indicated that VLCC_2

had emerged as the most likely candidate with a significantly higher utility. The

average utility value for VLCC_1 had dropped from 0.5305 (see the base case in figure

5.9 on page 213) to 0.3635 (31.5%), making it the least favourable option, indicating

that holistically, the increased corrosion margins had significantly reduced the

competitiveness of this option in relation to the other alternatives. However, compared

to the base case, the overall ranking order did not change.
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Ranking ofAltern fives on DESIGN SELECTION
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• MinImUm score 0.3621 0.5921 0.3818 0.4185

• Aver!lge minus minimum 0,0014 0,0056 0,0022 0,0014

• Maximum mirus average 0.0014 0,0056 0,0022 0,0014

Figure 6.9. Effect on Ranking for Increasing Corrosion Margins for VLCC_1

6.3.2.4 Technical Assessments

To explore the impact of positive changes to technical assessments, it was assumed that

the critical areas CA_I, CA_2 and CA_3 in VLCC-l had been appraised by experts.

The original assessments for the three criteria given in table 5,22 (p.211) for VLCC _1

were {0.4 VP, 0.6 P}, {O.SSVP} and {0.8 VP, 0.2 Pl. These were changed to {O.SG,

0.5 VG}, {0.7 F, 0.2 G} and {0.2 G, 0.3 VG} to reflect the higher ratings and the

results are shown in figure 6.10. Compared to the base case (figure 5.9 on page 213),

the average utility for VLCC_1 increased from 0.5305 to 0.5619 as expected (5,9%). If

the weighting of the Technical criterion had increased by 5% the ranking order on the

basis of maximum average utility values would have changed to VLCC_2 (0.5309),

VLCC_ 4 (0.5182), VLCC_1 (0.5014) and VLCC_3 (0.3732). In this way, the impact of

changes to the technical assessment criteria can be easily gauged.
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• Minimum score 0.5602 0.5969 0.3818 0.4387

• Average minus minimum 0.0016 0.0055 0.0022 0.0014

• Maximum minus average 0.0016 0.0055 0.0022 0.0014

Figure 6.10. Variation in Technical Assessments for VLCC_1

6.3.2.51ncomplete Assessments

In some cases, data may be missing or incomplete. This is especially true for the nature

of the assessment attempted in this research. The ER algorithm was developed to

handle numeric, linguistic and sometimes incomplete information. The challenge is to

find a rational, reliable, transparent and repeatable way to deal with qualitative

attributes and uncertain or missing information that causes complexity in multiple

attribute assessment problems (Yang et al, 2002). To investigate the effects of

incompleteness on the structural assessment framework, it was assumed that

information relative to VLCC_2 was missing or not available as indicated in column 4

in table 6.5 on the following page.
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Sub Attribute W VLCC 1 VLCC 2 VLCC 3 VLCC 4
NPV 0.8 $68.64 million $69.74 million $63.04 million $S7.71 million
Warrantee 0.1 I year I year I year S years
Classification 0.1 U(I.O) --- G(1.0) E( 1.0)
Longitudinal 0.8 96.62% 8S.62% 92.IS% 70.S9%
Transverse 0.2 VP(O.S),P(O.5) --- F(O.S), G(O.S) G(O.S),

VG(O.S)
Hull Girder O.S 20 years 20 years 2S years 40 years
Side Structure O.S 20 years 20 years 2S years 40 years
Main Deck O.S 224MPa 225MPa 213MPa 174MPa
Members 1-3 O.S VP(0.5), P(O.S) VP(O.S), P(O.S) P(O.S), F(O.S) G(O.5),

VG(O.S)
Berthing O.S 19.5mm 21.0mm 20.Smm 25.0mm
Sloshing O.S U(O.3), VP(0.7) --- F(0.S5) G(O.S),

VG(0.2)
CA-I O.S VP(0.4), P(0.6) VP(O.SS) U(0.2), G(0.6),

VP(O.S) VG(0.4)
CA-2 0.25 VP(O.SS) --- VP(O.S), P(O.S) G(O.S),

VG(O.5}_
CA-3 0.2S VP(O.S), P(0.2) --- VP(0.7), P(O.I) G(O.S),

VG(0.2)
Builder's Rep. 0.3 F(0.8) P(0.2), F(0.8) P(0.2), F(0.8) F(O.S), G(O.S)
Owner's Exp. 0.7 G(0.8), G(0.7), G(0.8), G(O.S),

VG(0.21 VG(O.I) VG(0.2) VG(0.2)
C. Margins 0.3 3.4mm 3.5mm 3.4mm 4.0mm
Min. Scant. 0.1 II.Smm II.Smm II.Smm 15.0mm
Coat. Spec's 0.3 S years 5 years IS years 20 years
Anodes 0.2 F(0.6), G(OA) --- F(O.S), G(0.5) G(1.0)
Materials 0.1 32% HTS SO% HTS 30% HTS 30%HTS
Details O.S U(0.5), VP(O.S) U(O.I), U(O.1), G(0.6),

VP(0.9) VP(0.9) VG(OA)
Welding O.S U(O.S), VP(0.5) --- U(0.2), F(O.S), G(0.2)

VP(0.8)
Yard QA/QC 0.2S VP(O.S), P(OA) --- VP(0.2), P(0.8) F(I.O)
Owner Effort 0.7S G(I.O) G( 1.0) G(I.O) VG(O.S).

E(O.S)
Ballast Dist. 0.2 U(0.3), VP(0.7) U(O.3), U(0.3). U(0.5),

VP(O.7) VP(0.7) VP(O.S)
Filling % 0.8 62.S% full 62.S% full 100% full 100% full
Cross Ties O.S P(0.6) P(O.S), F(O.S) P(0.6) F(O.S), G(O.S)
Subjective O.S U(0.2), VP(O.S) --- P(O.SS) F(0.6), G{OA)
Ballast Tank O.S P(O.5), F(O.S) --- P(O.S), F(O.S) F(O.S), G(0.5)
Access
Cargo Tanks O.S VP(O.S), P(O.S) -- VP(0.4), P(0.6) F(0.5), G(O.5)
Access
Forepeak 0.7 VP(1.0) --- U(O.S). F(0.8), G(0.2)

VP(O.S)
Afterpeak 0.3 P(0.5), F(0.5) --- F( 1.0) F(0.7), G(O.3)
HSMS O.S U(1.0) --- U(1.0) E(O.S)
Operability 0.5 VP(O.4),P(0.6) --- VP(0.3), P(0.6) F(O.S), G(O.S)

Table 6.5. Incomplete Information in the Generalised Decision Matrix
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Alternative
VLCC_1 VLCC_2 VLCC_3 VLCC_4

• MinimUm score 0.5292 0.6053 0.3818 0.4387

• Average minus minimum 0.0014 0.0533 0.0022 0.0014

.MaximUm minus average 0.001 4 0.0533 0.0022 0.001 4

Figure 6.11. The Effect of Incompleteness on the Ranking for VLCC _2

The IDS output appears in figure 6.11. The grey area in the graph represents the

possible utility variations in the ranges of the candidate VLCC's due to missing

information. It was noted that the average utility score for VLCC _2 had increased from

0.6024 for the base case shown in figure 5.9 (p.213), to 0.6586, an increase of 9.3%.

Figure 6.12 on the following page, shows the belief degrees and ranking for the four

options. The degree of incompleteness for VLCC_2 was 10.8%. Despite the

incompleteness in the assessment of VLCC_2, the ranking order did not change.

Therefore in this case, the consequences of missing information for the criteria in

question had no significant impact on the outcome. This outcome is further

demonstration of the practical usefulness and flexibility offered by the MCDAJER

framework in an environment where preliminary structural assessments often involve

incomplete or restricted data. The model provides the ability to perform the assessment

regardless, in order to facilitate decision-making under such uncertainty.
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VLCC_4
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0.00% 4.47% 14.36% 5.72% 27.30%

Figure 6.12. Belief Degrees for Incompleteness in Evaluation of VLCC _2

One particular phenomenon requiring explanation arises due to the ranges adopted in

the numeric data used in the ER model. In the high quality option discussed in section

6.3.2.1, the ranking order was established according to figure 6.6 (p.223). In this

example, the worst and the best values for the NPV were USD 40.18 million and USD

69.74 million respectively. This should be compared to the range of NPV assumed

elsewhere in the model, shown in table 5.15 on page 200 (USD 57.71 to USD 69.74). If

the range was increased to a minimum of zero and a maximum of USD 100 million, the

belief degrees in the distributed assessment appear as shown in figure 6.13. The e

results should be compared with those given previously in figure 6.6 in section 6.3.2.1.

It is obvious that the ranking of the alternatives has changed significantly. The reason

for this anomaly is that the worst and best values of a criterion are usually defined to

have utilities of 0 and 1 respectively. Therefore, changes in the range of the criterion

(worst and best limits) leads to changes in the linear utility function of the criterion

assumed in the model.

OVLCC_1 27.95% 9.38%

OVLCC_' 13.67% 11.24%

OVLCC_~ 7.44% 18.52%

0.01%47.88%OVlCC_4

6.3.2.6 Range of Numeric Criteria
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Unacceptable Very Poor Poor Fair Good Very Good Excellert
OVLCC_1 26.72% 8.97% 5.26% 1.66% 50.65% 6.08% 0.40%
OVLCC_:; 14.93% 16.81% 8.07% 2.32% 48.00% 8.81% 0.00%

OVLCC_2 7.09% 17.80% 6.67% 12.98% 53.76% 0.49% 0.79%
VLCC_4

OVLCC_4 0.01% 0.01% 27.71% 25.45% 14.11% 5.62% 26.83%
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Figure 6.13. Belief Degrees for High Quality Option

with NPV Range USD 0-100 Million
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Figure 6.14. Ranking for High Quality Option

with NPV Range USD 0-100 Million
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If the range was larger after the change, then the difference in the utilities of the two

values on the criterion would be smaller and vice versa. Such changes may significantly

alter the ranking of options as it has done in this case. This and other phenomena

involving the ER modelling approach are discussed in more detail by Xie et al (2008).

6.4 Main Findings and Validation

6.4.1 Main Findings

The structural assessment framework has been constructed, tested and validated. A

number of key findings have emerged. The results for the base case shown in figure 5.9

(p.213) indicate that VLCC_2 with the least steel mass (25,731 tonnes) is the most

favoured candidate with the best potential for further evaluation. Second is VLCC _1

(26,303 tonnes). The difference in steel weight between the two options is only 2.2%.

VLCC _3 and VLCC _4 have significantly lower utilities and therefore attention should

be directed first at the other alternatives. The fact that the utility values of the two

lowest cost options are higher was expected, and in fact is consistent with real world

decisions based solely on economic criteria.

From table 5.22 (p.2ll), it was not immediately apparent that either VLCC_1 or

VLCC-2 would emerge as the favoured candidates, although the higher NPV and equal

weighting (0.5, 0.5) for both Technical and Commercial criteria appear to strongly

influence the outcome. The utility for VLCC_ 4 with 24.2% more steel than VLCC 2

was surprisingly high, indicating that the superior technical evaluation for VLCC_4

evident in table 5.22 has influenced the outcome, with VLCC_ 4 as the 3") preferred

option, ahead of VLCC_3. This result highlights the effectiveness of the model in

rationally evaluating options on the combined basis of both technical and commercial

criteria.

The variation in weighting of the Technical and Commercial criteria performed in the

sensitivity studies in sections 6.3.1.1 and 6.3.1.2, had the effect of significantly

changing the utilities and ran kings in the expected direction, showing the model's
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sensitivity to the assigned weightings. Increasing the weighting of Commercial from

0.5 to 0.75 and reducing Technical from 0.5 to 0.25 had the effect of clearly identifying

VLCC _1 and VLCC _2 as the most preferred options. Increasing Technical from 0.5 to

0.75 and reducing Commercial from 0.5 to 0.25 strongly influenced the outcome for the

high quality option VLCC_ 4 (31,965 tonnes), due to the more favourable technical

scores recorded for both numerical and linguistic data shown in table 5.22.

In section 6.3, the effects of varying both the Commercial and Technical criteria in the

model were explored. Firstly, in section 6.3.2.1, it was shown how a 20% increase in

the capital cost for one of the alternatives (high quality option, VLCC _4) reduced the

NPV to USD 40.18 million, and the ranking of the high quality option changed from

third to worst, compared to the base case. Secondly in section 6.3.2.2, the effect of a

USD 5 million scheduled repair occurring in year 15 for VLCC_2 showed that the

utility of this option dropped slightly, but the overall ranking had not changed. Thirdly,

in section 6.3.2.3, it was demonstrated that by increasing the average corrosion margin

for VLCC_1 by 47% (from 3.4-5.0mm), its ranking changed from second to worst

compared to the original rankings in the base case. Fourthly, in section 6.3.2.4, an

increase in-belief degrees for three of the technical sub-criteria was performed on one

of the options (VLCC_I), and the impact on the overall ranking order assessed. Lastly,

in section 6.3.2.5, the effects of incomplete information were investigated. The IDS

results showed that the model allowed overall assessment to be performed even when

data was missing or incomplete and the ranking was unchanged compared to the base

case.

The traditional approach to procurement of new tonnage practised by many shipping

companies was by using discounted cash flow (DC F) techniques as the sole criterion to

determine the most commercially viable option. Historically, boards of directors

generally required project proposals to be evaluated, and undoubtedly in some cases,

the least cost option was selected. Increasing environmental awareness in organisations

and changing corporate structures may mean that shareholders views alone or a single

dollar criterion is no longer appropriate. The common challenge in design lies in the

issue of how to construct design utility under uncertainty to reflect the interests of the

producer, while considering the interests of the end users (Wassenaar and Chen, 200 I).
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The main challenge with ship procurement and design is to ensure that commercial and

technical project risk assessments are adequately performed.

Although approximately 2/3rd of the capital expenditure for a new crude tanker is

currently allocated to engines, pumps, piping, outfitting and equipment, the

consequences of hull failures can be catastrophic, ranging from minor inconvenience to

off-hire, explosion, and loss of life and/or environmental pollution. Commercial

constraints in the design and production of large bulk ships invariably mean that these

large mobile and sensitive structures have to be carefully monitored and maintained,

and the risk of structural failure is significant. To mitigate these risks, a suitable risk-

based techno-economic decision framework is required, to assess the impact of both

commercial and technical criteria. The NPV approach used in the proposed MCDA/ER

model demonstrates the importance of the assumed Commercial criterion in the

evaluation framework and the criticality of the weightings assigned. In spite of the

small range in the NPV values across the options, these differences in the NPV had a

marked effect on the outcome.

The MCDNER structural assessment framework provides a simple effective tool with

which to make better informed decisions in relation to performing trade offs between

commercial and technical considerations when performing an owner's assessment of

alternative structural designs. For example, increases in steel weight due to the

application of common structural rules in the case of VLCC _3 resulted in a change

from 17,514 tonnes to 18,353 tonnes (+ 5% in this case and typically 3(%), according to

ABS, DNV and LR (2005). Seen in relation to the 24.2% increase for VLCC 4

compared to VLCC_2 (refer table 5.6 on page 189), the CSR appears to represent a

very modest improvement in terms of additional steel, compared to the baseline

designs. The ER model clearly allows a balance to be struck in the trade-off between

commercial and technical considerations. The effects of increased corrosion margins

and other technical factors leading to an increase or reduction in steel weight can

immediately be assessed in terms of their overall impact on the principal commercial

criterion used for project evaluation.
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6.4.2 Technical Aspects

The subjective judgements performed and recorded in the generalised decision matrix

given in table 5.22 indicate a somewhat pessimistic approach to evaluation of the

various qualitative technical criteria for some of the options. For example, in the case of

VLCC_l the assessment of CA_i (critical area no.i) was VP(O.4), P(O.6) using a

process described in section 5.4.4. This indicates a high expectation relative to the

design of the critical area under review (e.g. lower hopper corner). Generally, it can be

seen that this pattern dominates the subjective judgements for the first three options.

The above arbitrary judgements intended purely to demonstrate the procedure, were

assumed to reflect the views of a single decision maker or those of a small team

representing the buyer. In a situation where judgements for each option are much more

closely related, the ER model is still easily able to distinguish preferences, and this is

one of the strengths of the method.

For project evaluation purposes, the mean corrosion margins in double hull VLCCs are

typically 20% of the gross plate thickness and thus the corrosion margins determined

by the new CSR rules are broadly comparable with those determined by classification

rules. The calculations performed in section 6.3.2.3 allow forward projections on the

effect of increasing corrosion margins at the design stage. This is one of the major

determinants of ship durability and robustness controlled directly by the buyer (refer

section 2.3.3). The corrosion margins may be assessed in terms of increased capital

cost, increased scrap value and lower NPV, and the IDS model will allow rapid

assessment of the changes in ranking of alternatives, as demonstrated in section 6.3.2.3

above. This is what Mistree et al (1990) refer to as life cycle considerations modelled in

upstream design decisions.

6.4.3 Validity ofthe Framework

The proposed MCDA/ER structural assessment framework presented and tested herein.

is in fact an extension of the ship design method which allows the buyer to elicit

preferences amongst competing design options. The difficulty in validating engineering

research related to design methods has been discussed by Pedersen et al (2000). For
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design methods, they refer to a modem trend away from formal ngorous and

quantitative validation anchored in the scientific tradition. More appropriately, they

suggest that validation of design methods should be a process of "demonstrating

usefulness with respect to a purpose". In figure 6.15 on the following page, the

"validation square", the heart of their comprehensive, systematic and prescriptive

approach to validation is depicted. The six step procedure is outlined in the following,

where the numbers indicate the phases in the validation square:

• Method consistency: Using the literature and flowcharts to build confidence in

the validity of individual constructs (1&2).

• Accepting example problems: Documenting the validity of example problems

for verifying the method performance (3).

• Accepting usefulness: Demonstrate the usefulness of the method by some

representative examples (4&5).

• Accepting usefulness beyond examples: Building confidence in generality of

the method (6).

According to Pedersen et al (2000), the process of working through the validation

square is to present circumstantial evidence to facilitate a "leap of faith", by increasing

the belief in the usefulness of the method relative to the articulated purpose. Research

validation is said to be a process of building confidence with respect to a purpose where

scientific knowledge is defined as socially justifiable belief. In chapter 2, a

comprehensive published literature review was conducted as a basis of and to build

confidence in the constructs drawn out of the preceding chapters. These references have

been used as benchmarks.

In figure 1.1, a conceptual flow chart representation focusing on information now was

presented. This device was used to anticipate outputs based on inputs. In chapter 3 and

4, documented viewpoints were articulated to build structural soundness in the method.

In chapter 5, a representative example problem was solved in order to boost confidence

in the method. In chapter 6, the method was further demonstrated to build confidence

in the individual constructs through limited applications. In chapter 7, generality

beyond tested example problems was sought. Hence it is believed that the
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circumstantial evidence needed to facilitate the "leap of faith", that is to produce belief

in the general usefulness of the method with respect to an articulated purpose has been

achieved.

Figure 6.15. Design Validation Process (Pedersen et ai, 2000)
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6.S Conclusions

A framework has been developed, presented and tested, which would allow the buyer

of new VLCCNLBC tonnage to make a rapid assessment of alternative designs, based

on preliminary structural information provided by the builder. The MCDA/ER

procedure is a well proven technique which lends itself to this type of problem

involving a large number of criteria and subjective, sometimes incomplete information.

The ER method overcomes some of the limitations displayed by MCDA methods in

general, involving incompleteness and uncertainty in the data, a characteristic of the

structural assessment problem described here. The IDS software is powerful, easy to

use, and the assessment framework easily permits sensitivity studies to be conducted,

examining the trade-offs between technical and economic criteria.

The framework is seen to provide rational and intuitive results. The model has been

systematically tested to ensure that the results are reasonably consistent. It represents

the first step towards formulating a design safety case for the hull structure, because it

embodies all the principles of formal safety assessment, including hazard identification,

risk assessment and risk reduction, cost benefit analysis and rational decision making.

In the next chapter, based on the results from the evidential reasoning assessment

process, an outline of the evolving hull structures safety case will be presented, leading

to a proposed safety case for the operational phase.
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Chapter 7 - Evolving Arguments for a Hull Structures Safety

Case from the MCDAlER Structural Assessment Framework

SUMMARY

In section 1.2, objective no.5 was to examine the applicability oj the offshore safety

case in the context oj large bulk ship structures using a structural selection Jramework

to evolve the arguments Jar a hull saJety case. In the preceding chapters, a techno-

economic Jramework was developed Jar selecting the best VLCC structural design

option, taking into account the buyer's preJerences. In this chapter, the structural

assessment Jramework is used Jar evolving the arguments and evidence required to

support a planned maintenance system (PMS) Jar the hull, following safety case

principles. The proposed safety philosophy allows design, construction and operational

phases to be integrated according to perJormance based structural goals established by

the buyer. The benefits oj this approach are outlined. Societal concerns with the

structural integrity of bulk ships, wise use oj scarce resources, and protection oj the

environment are addressed.

7.1 Introduction

In the preceding chapters, a novel framework for selecting the best VLCC structural

design from a number of options was developed, demonstrated by example, and

validated. The proposed method is both goal-based and risk-based. Performance targets

(goals) established by the buyer add value to the design process. Each of the 35

commercial and technical sub-criteria involved in the MCDA synthesis approach were

evaluated by identifying specific related hazards and performing risk assessments.

These procedures elicit the preferences needed for further evaluation and eventual

selection of the best available option, reflecting the highest quality in terms of the

buyer's performance objectives. The process is transparent and the assumptions made

(evidence) can be utilised in the evolution of a computerised structural maintenance

system for hull, based on safety case principles.
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In essence, the basic elements of a hull safety case pre-exist independently in the form

of the mandatory International Safety Management (ISM) Code, together with the

formal safety assessment (FSA) process. A management system should be used in

conjunction with the FSA methodology as suggested by Kuo (2002). The ISM Code is

a safety management system which can be combined with FSA elements to create what

is essentially a safety case.

7.2 Evolution of the Safety Case Approach

7.2.1 NOPSA Model

The perceived impediments to the application of the safety case concept to ships in

international trade have already been discussed in section 3.3.5. However, it is believed

that the goal-setting approach adopted by the IMO and already implemented through

FSA studies involving bulk carriers covered in section 3.3.2 and in the Joint Tanker and

Joint Bulker projects for the development of common structural rules in section 3.4.3,

has paved the way for the wider application of risk-based approaches including the

safety case for ships. The safety case model adopted by the Australian offshore

regulator NOPSA is regarded as a suitable paradigm. It can be used for developing a

safety case for hull structures, a subset of the overall ship safety case that so far has not

been trialled for oil tankers or bulk carriers due to the impediments referred to above.

The proposed safety case for hull structures would integrate the existing prescriptive

regime of hull surveys defined in lACS Unified Rules for oil tankers and bulk carriers

and has to be subservient to the ISM Code safety management system, as depicted in

figure 7.1 on page 245. The proposed safety case for hull structures based on the

NOPSA model comprises three parts, namely a description of the facility, a formal

safety assessment (FSA) and a safety management system (SMS).
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7.2.2 FSA and the Structural Assessment Framework

The proposed structural assessment framework utilising a unique set of assessment

criteria in combination with the new MCDAJER synthesis method and evidential

reasoning, is believed to offer a suitable decision framework for preliminary design

assessment decisions from the point of view of the buyer. The method is flexible,

practical and is based on a design for safety and formal safety assessment approach,

comprising:

• A set of performance objectives developed by the buyer.

• A comprehensive hazard identification process conducted by the user focussing

on the known principal generic hazards (corrosion and fatigue).

• Risk estimation associated with the critical structural area classification (safety

critical elements).

• Risk evaluation of the critical structural details using established formal safety

assessment risk assessment techniques.

• Cost-benefit analysis using the ER techno-economic structural assessment

framework developed under this research effort.

• Transparency of assumptions made in the design.

• Maintenance philosophy tailored to suit the robustness of the design.

• Integration of design, operation and disposal phases.

7.2.3 SMS and the ISM Code

In the period after 1990, safety regulation of offshore and marine structures moved

towards goal-setting and quality assurance rather than the prescriptive approach leading

to certification. The purpose of a safety management system (SMS) was to ensure that

the goals were achieved safely, efficiently and without damaging the environment. The

ISM Code indirectly addressed hazards and risks but lacked an explicit process for risk

assessment/reduction and weakly addressed safety critical elements (Kuo, 19(8). The
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weaknesses apparent in section 2.2.2 of the ISM Code in relation to establishing

safeguards against identified risks, suggested that this important requirement appeared

vague and imprecise (Wang and Trbojevic, 2007). The ISM Code's target of

compliance with mandatory rules and regulations provided little incentive to go beyond

minimum compliance. The ISM Code contained the elements of an integrated safety

management system but did not go far enough.

Only by incorporating additional elements required by the safety case approach (goal

setting, hazard identification and mitigation), could a fully integrated approach to safety

and quality be achieved. The safety case methodology adapted to suit the hull structures

safety question for bulk ships is recommended. The safety case has to be subservient to

the SMS and the pre-existing ISM Code appears to be the industry'S formative step

towards this solution, and may eventually lead to a ship specific safety case being

implemented for certain types of vessels, especially crude oil tankers and very large

bulk ships, as proposed here.

7.2.4 Proposed Safety Case Concept

In figure 7.1, the philosophical outline of the proposed safety case for hull structures is

presented, with the ISM Code Safety management system (SMS) at the top and linked

into the hull safety case. The proposed system addresses the vagueness and imprecision

previously observed in relation to systematic hazard identification and risk assessment

and the oblique reference to safety critical elements under the existing ISM Code, as

pointed out by Wang and Tjbojevic (2007). These weaknesses can be addressed by

integrating the MCDAlER structural assessment framework proposed in this study, into

the proactive measures adopted by the ship owner or manager. It is important to

emphasize that the procedures suggested here are related specifically to the technical

management of the hull structure which is only a part of the overall ISM Code safety

management system. The safety case therefore needs to be integrated into the overall

vessel safety management system under the ISM Code. The various layers of the safely

system can be seen with classification rules, optional class notations and the IMO
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convention requirements described in section 2.4 as the baseline minimum standards

and foundational elements.

PLAN
Policy + Objectives

Organizing & Planning

Corrective Action
Implementing the Risk

Safety Case Assessment Process
Measuring

FEEDBACK
Auditing

Reviewing
CHECK

Proactive Measures
include structural

assessment framework

Charterers Requirements

Compulsory IMO Statutory and Flag state
requirements

Additional Voluntary Class Notations

The Fleet

Figure 7.1.The Proposed Safety Case Concept

At the next level are the charterer's and insurance company requirements which have

been covered in section 2.4.4. Finally, the risk-based procedures embodied in the
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MCDAJER structural assessment framework compnse the drivers for design and

operational risk assessment for the structural design and operation phases of the vessel.

The MCDAJER framework relies on identification of critical structural details (CSDs),

and a set of performance standards which can relate the CSDs to the assessment

criteria. This is consistent with the requirements of the safety case. Under the UK

offshore safety case regime, verification of safety critical elements (SCE) is required to

be undertaken by the operator through an independent competent person (IPC).

Qualitative or quantitative performance standards are generated for all SCEs to ensure

that they remain suitable for their intended purpose. The SCEs have to be verified

according to a written scheme to provide assurance that the level of safety set out in the

safety case is maintained. The envisaged safety case should be a stand alone document

under the existing ISM Code provisions. The hull safety case document would

comprise the following six major sections:

1. Hull design and construction portfolio.

2. Operation manual.

3. Maintenance policy.

4. Formal safety assessment.

5. Risk-based inspection plan.

6. Emergency procedures.

The hull design and construction portfolio would address (but not be limited to) the

following:

• Particulars.

• Arrangements.

• Design basis.

• Routes.

• Global bending moments.

• Loading conditions & restrictions.

• Structural loading.

• Hull Materials & welding.
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• Corrosion margins.

• Coating specifications.

• Basis for fatigue design.

• Sloshing risk.

• Vibration risk.

The safety case document would be placed onboard the vessel and have the purpose of

defining the hull maintenance policy and procedures required by the ISM Code. Most

of the evidence for the hazard identification and risk assessment may be derived from

the MCDAlER framework described in chapters 4 & 5 as part of the preliminary ship

design process. The safety case could incorporate one of the computer based

maintenance systems provided by the major lACS Societies described in the following

section.

7.3 Planned Maintenance System (PMS)

7.3.1 PMS [OrHull and Machinery

In section 2.5, the background to some early efforts to develop ship structural integrity

management (SIM) systems was described. In particular, the comprehensive efforts of

Bea et al from 1990-1995 were recognised. Very recently, a number of major

classification societies through their consulting groups, have released new products and

services which are essentially computerised hull planned maintenance systems.

Examples are DNV's Nauticus Hull Integrity, ABS Consulting's Hull Integrity

Management Program, Lloyds Register's Hull Integrity System, Germanischer Lloyds

Hull Lifecycle Program (HLP) and Bureau Veritas's Asset Integrity Management

System (AIMS). Some of these products are extensions of the structural software

programmes described earlier in section 2.5.5. For bulk carriers and oil tankers, they

are intended to be used in conjunction with the lACS required ESP survey regime

under resolution A.744 (18), and are voluntary. Effectively, the classification societies

are offering comprehensive SIM management systems.
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Due to potential conflict of interest with classification services performed by the same

organisations, these products are being marketed by consulting groups allied to the

particular class societies. For example, ABS consulting offers their Hull Integrity

Management Program. HIMP as an optional class notation intended for ship owners

and managers. The product consists of an ABS Hull Maintenance Software Tool

supported by an ABS Guide for Hull Inspection Management. The ship specific

manuals are intended to be used to identify "areas of concern" for inspection purposes,

and provide criteria for ranking condition of these areas. The software database is said

to be a platform for storage of inspection data. ABS services provide additional support

in the form of anomaly review, analysis of critical areas and 3D inspection reports for

dry docking (http://www.absconsulting.com). ABS Consulting suggest that the hull

maintenance software tool allows for development of the inspection plan, provides a

platform for the storage of the inspection results, allows for vessel specific or fleet wide

monitoring, and allows access to the inspection data both onboard and ashore

(http://www.absconsulting.com. 4th August, 2008).

Other developments include the release of LR's Hull Integrity Service, said to he

guidance and tools to manage structural integrity of a fleet, using a I full Integrity

Software Package. DNV has developed Nauticus Hull Integrity, based on Hull Life

Cycle Manager from DNV Software. The kernel of the system is a 3D model of the

hull structure which utilizes colour coding, digital photos and inspection data

comprising the accumulated hull history. BV released VerisSTAR Hull Life Cycle

(HLC) comprising a similar 3D model comprising the inspection database. All of the

above organisations offer software and analytical support for these products. The goals

arc stated to be to optimise inspections, analyse hull condition, organise management

functions and to structure work orders and repair specifications. Bea et al's vision for

an industry wide computerised marine structural integrity programme (MSIP) based on

a common platform, now appears to have been achieved. albeit through the

development of a multiple of software platforms provided by the leading classification

societies. The driver for these developments has been largely commercial. responding

to the need to provide such a service to the industry. However, the current range and

complexity of these products and the short development time from concept to fruition

has been remarkable.
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7.3.2 ISM and Maintenance

In section 10 of the ISM Code, the requirements for maintenance of the ship in

accordance with the "relevant rules and regulations" are stated. In relation to the hull

structure for large bulk ships, this is usually interpreted to mean compliance with

classification rules, lACS procedures and IMO resolution A.744 (18).

I Safety Case I
1---,-----1

I

PMS- Hull

1. Use of MCDA/ER structural
assessment framework at design
stage.

2. Hull maintenance software system &
3D model.

3. Hull Inspection Manual.

• Critical areas.
• Coating evaluation criteria.
• Hull thickness measurements.
• Guidance for inspections.

4. Training of Crew.

5. Consulting support services.

6. Owners hull inspections in excess of
SOLAS/IACS minimum requirements.

Maintenance

PMS - Machinery

I. Optional Class Notation.

2. Type Approved
computerized planned
maintenance system (PMS).

3. Database of machinery
components.

4. Authorized Chieflngmccr».

S. Annual audits conducted by
Classification societies.

Figure 7.2. Hull & Machinery PMS under the Safety Case
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Classification was made compulsory in SOLAS Chapter II-I, by Resolution MSCl94

(80), in 2007. Paragraph 10.3 in the ISM Code refers to a requirement for "companies

to establish procedures in their safety management systems to identify equipment and

technical systems, the sudden operational failure of which may result in a hazardous

situation". Traditionally, hull maintenance planning has been carried out on the basis of

calendar based rules prescribed by the lACS classification societies.

The safety case model integrates the PMS systems for both hull and machinery as

shown in figure 7.2, satisfying the maintenance requirements set out in the ISM Code.

Planned maintenance systems are not new. Computerised planned maintenance systems

(PMS) for marine machinery systems have been available for many years and are in

common use onboard ship. Computerised planned maintenance systems for ship

structures are less common, and only recently are being introduced on a wider scale, as

discussed earlier.

7.3.3 Data Management

Traditionally, data management in most shipping companies was done on an ad hoc

basis. Detailed structural information was usually found in drawings and documents

stored in the chief engineer's office onboard the ship. Less than a decade ago, survey

planning for entire fleets may have been conducted in-house by superintendents using

spreadsheets and other simplified methods. With the advent and availability of

powerful on-line database systems now provided by the major competing classification

societies, real time survey planning and on-line data management for the entire fleet is

currently available and implemented in many shipping companies. This trend is

increasing, but may have some unanticipated consequences.

Effectively, the keepers of the hull maintenance database and the product model

described in section 3.2.1 arc, by default, the international classification societies.

Certain owners may expect classification societies to progressively offer "turn key

services" in relation to planning, execution and data entry in relation to maintenance

activities for the fleet. This is especially relevant as the complexity of the maritime

regulatory system increases exponentially as environmental requirements arc
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progressively integrated with existing procedures. The danger inherent in this

assumption is that it is contrary to the intent of the ISM Code which fundamentally

identifies the owner as having the responsibility for the maintenance and safety of the

vessel. However, for large, technically competent and responsible ship owners intent on

best practises, and who clearly view maintenance as their own responsibility, the

proposed hull safety case is a device which will best facilitate these goals.

7.3.4 Integrating Prescriptive Controls

In figure 7.3, the envisioned safety case model is presented. The safety case is central to

the hull maintenance activity. The shared hull database forms the main repository for

information.

Class Society

HuUSafety Case

Figure 7.3. Safety Case Model

External Specialists
(UTM)

Consultants

Yes
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In the envisioned approach, the hull maintenance activity is intended to be driven

primarily by the owner (duty holder) supported by specialists and consultants. The

owner's team is managed by a structural specialist at technical manager level in the

organisation. He/she is supported a team responsible for onboard inspections carried

out in accordance with the documented hull safety case inspection requirements. The

owner's team closely co-ordinates with external consultants and the classification

societies. All data is entered into the PMS by the hull specialist team. The class

societies audit the safety case as discussed in section 7.4.2. The existing regulatory

controls on the operational performance of ship structures are implemented through the

lACS enhanced survey programme (ESP), forming the basic requirements and

minimum extent of physical surveys and reporting, as administered by the international

classification societies, and overseen by the regulators (flag States).

7.4 Responsibilities/Regulation

7.4.1 Responsibilities

Under the goal-based safety concept, the "duty holder" is responsible for identifying

safety critical elements. In the UK offshore safety case approach, the Offshore

Installations and Wells (Design and Construction) Regulations or DCR 1996, are one of

the four peripheral elements in the safety case. Under DCR 1996, the duty holder is

obliged to apply risk-based safety methods from the earliest stages in the lifecycle, with

considerable flexibility in the choice of these methods (Wang and Trjbojevie, 2007). In

shipping, section 10.3 of the ISM Code is not applied as intended, as suggested in

section 7.2.3. This weakness in the safety management system currently in place in

shipping means that the flag State enforcement system discussed in section 2.4.2

presently does not require more than a minimum compliance effort based on

prescriptive rules. Therefore, the move to a goal-based safety model should be

encouraged through stricter emphasis on implementation of additional layers of

proactive risk-based safety measures of the kind proposed in this study and indicated in

figure 7.1.
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7.4.2 Regulatory Implications

The problems talked about in chapter 2 in relation to the effectiveness of the present

regulatory system bear repeating here. The twin threats of corrosion and fatigue and the

severity of the consequences of even minor structural failures in large tank ships,

demand more than a minimum compliance approach. Failure of some flag States to act

effectively as a regulator, compounds the problem. In the case of the Erika, the accident

occurred in spite of a number of port State control and vetting interventions carried out

prior to the loss. In shipping, the changing role of the international classification

societies as the defacto regulators to the industry and the incorporation of lACS ESP

into SOLAS in 2007 means that classification is now widely viewed as the principal

system for enforcement of the minimum operational requirements for hull structures for

large bulk ships. This situation is at odds with the principal role of the classification

societies as knowledge brokers and service providers. Classification societies make

relatively poor regulators (Boisson, 1999).

In the Australian offshore regime, only the regulator (NOPSA) can assess the safety

case as this activity is not delegated to other organisations. In the offshore industry

world-wide, there is a transition from prescriptive rules once delegated by governments

to class societies as recognised bodies, to one in which goals are established, and safety

cases may be validated by any competent entity. In Australia, NOPSA assess the

validator against criteria specified in MoSOF Regulation 44(5). The status of some of

the international classification societies depends on distinguishing between services

which are carried our purely for profit and services which have an altruistic benefit to

the community. Protection of life, property and the environment continues to be the

primary goal and mission statement of many classification societies for the common

good of the international community. The major international classification societies

have largely replaced owners' technical departments and are currently the main

repositories of technical and statutory procedural knowledge in the maritime industry.

In shipping therefore, the responsibility for validation of ship specific safety cases on

behalf of flag States is thought to fall naturally to the international classification

societies.
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7.4.3 VerificationlValidation

Validation means assurance by an expert that design, construction and installation has

been reviewed and assessed against appropriate standards. Verification is confirmation

(by inspection) that a component or system has been properly manufactured and

installed. In offshore terminology, verification is usually accompanied by a written

verification scheme or verification plan as embodied in the written safety scheme

described in section 7.2.4 CONV, 2004). To achieve this goal, various levels of

verification could be conducted (high or low). It should be noted that the methodology

is entirely consistent with alternative methods already offered by major classification

societies. ONV has proposed classification based on performance criteria determined

from risk-assessment methodology with various levels of risk assessment according to

figure 7.4. Clearly, the principles are readily transferable to the ship structures problem.

Large bulk ship structures represent a considerable hazard.

Figure 7.4. Levels of Risk-Based Verification (DNV, 2004)

Such structures may be zoned or categorized into areas of elevated risk, such as the

lower hopper corner example for a double hull tanker discussed in section 4.4.4.5.

Using the methodology recommended by Ma et al (1997) explained previously in

section 3.5.3, critical structural details (CSOs) can be identified and the qualitative or
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quantitative performance standards described in the MCDAlER framework linked to

the CSDs through the model.

7.4.4 Competence Issues

Recognising the change from a prescriptive regime to goal setting in the UK offshore

industry, a recent study by Billington and Caruana (2002) remarked on the tendency for

financial managers to outsource SIM competence, claiming that the emphasis was often

on minimum standards, and the question was raised as to whether competence was

assessed at all. The authors pointed out the lack of SIM standards at the professional

institution level, often putting professional qualifications of managers appointed to

oversee SIM activities in doubt. They referred to a lack of recognition of the effect of

changing business models on the ability to manage structural integrity under the goal

setting regime, with more emphasis on short term financial planning and man-hour

rates. The literature survey conducted in chapter 2 revealed similar patterns in the

shipping industry, particularly involving the failure to embrace risk-based technology

earlier, and a history of issues regarding unsatisfactory structural performance in a

number of oil tankers and bulk carriers.

In section 7.3.1, computerised hull planned maintenance systems and associated

services offered by consultancy groups affiliated with the class societies were

described. These are marketed together with training courses and aids for the crew,

such as ship specific hull maintenance manuals, containing elementary descriptors and

graphics of the hull structure. Training courses for owner/manager teams is provided,

and the systems rely on hull inspections performed by ship staff and superintendents.

Although such initiatives are regarded as a positive development, it is considered

highly unlikely that a comprehensive fleet-wide SIM system for a major bulk ship

operator could be managed on the basis of data obtained from onboard inspections by

ship staff alone.

In section 7.5.4 a compelling argument will be presented for reinforcing competence

even in those shipping companies which have strategically decided to adopt a minimum

standards approach. To properly maintain vessels which are at risk of corrosion and
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fatigue damage and to mitigate the potential consequences of structural failure requires

substantial organisational competence, commitment and resources. Although the

measures described above go some way towards generally improving the understanding

of the importance of large bulk ship hull structures, the complexity of the hull

structures problem and the scope of effort involved in maintaining a large fleet of

vessels warrant the use of much greater resources. In this regard, it is envisioned that

under the safety case paradigm, hull maintenance should be regarded as a core activity

by fleet managers, involving a dedicated manager and a team with the appropriate level

of responsibility, competence and skills, as suggested in section 7.3.4.

7.5 Improved Approach

7.5.1 Real-Time Hull Condition Monitoring

In section 2.5.5 and in section 7.3.1, a number of new software supported hull

maintenance products developed by the leading classification bodies were described. In

parallel, a three year € 3.2M, EU funded research project entitled Condition Assessment

System (CAS), was initiated in February 2005, in the backcloth of the IMO's Condition

Assessment Scheme (CAS) described earlier in section 2.4.4. Ten co-partners led by BV,

and including GL and the Russian Register, co-funded the project which has 6 work

packages. The overall remit of the CAS project was to transform the workflow of the

thickness measurement (TM) process into an electronic process. GL have described

their efforts to develop the Pegasus software in co-operation with their CAS

consortium partners. Pegasus is described as a software tool intended to support the

thickness measurement process. The Hull Condition Monitoring (HCM) file is based on

XML technology. Measurement data can be imported into GL's FEM software,

Poseidon from the HCM file, in order to perform longitudinal strength calculations. It

should be noted that GL envision that Pegasus will be used primarily by their staff and

the thickness measurement technicians (Jaramillo & Cabos, 2005).

In the very near future when the technology for direct integration of the UT data into

the 3D model by the gauging companies matures further, real-time monitoring of
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structural condition of large bulk ships including coating condition will be a reality.

Impenetrable and unwieldy UT gauging data and processes currently in use will be

rendered obsolete, and interested parties will be able to view an executive summary of

hull condition in graphical format onboard the ship. This technology will provide the

opportunity for port State and charterers inspectors to gain a rapid and accurate

overview of structural condition during routine audits onboard. The above tools are an

essential part of the envisioned hull safety case concept.

7.5.2 Improved Procedures

Following the Erika disaster in 1999 and 3 years prior to the loss of the Prestige, the

classification society DNV introduced a raft of measures in relation to surveys of hull

structures for bulk ships and other vessels including special surveillance schemes with a

focus on quality and special conditions for those vessels identified as possibly

substandard. Risk factors such as age of the vessel, repeated change of ownership,

multiple commencement of surveys, excessive number or overdue conditions of class,

lack of co-operation with class, port State detentions etc were regarded as triggers for

risk profiling and subsequent action. Owners were informed of substantial

corrosion/suspect areas in tanks or that annual surveys in ballast tanks would be

required on account of poor coating condition. More detailed categorisation of

conditions of class or conditions of authority were introduced, with special emphasis on

procedures for dealing with structural deficiencies.

All the above improved procedures implemented during the five years after 2000,

included the use of flying squads to carry out unscheduled surveys on high risk vessels.

At the same time, the IMO made classification requirements mandatory through the

SOLAS Convention in 2007, discussed in section 2.4.1.1. Progressive tightening of the

lACS Unified Rules, Resolution A.744(l8) for survey of tankers and bulk carriers, now

in SOLAS chapter 11-1/3-1, has meant that the classification societies post Erika and

Prestige, effectively function as the defacto regulator in controlling the quality of hull

structures of vessels in service, although the flag States ultimately bear the burden of

responsibility.
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7.5.3 Minimum Standards and the Turnkey Approach

Prior to the implementation ofIACS CSR Rules in 2006, and as a "rule of thumb", the

minimum allowable thicknesses in tanker structures were based on 75% of the gross

"as built" thickness. Generally therefore, the thickness reduction allowed was a

maximum of 20-25% of the original plating thickness, although under IMO

requirements, the hull girder section modulus was only allowed to deteriorate down to

90% of the rule value. After lACS UR Z10.1 came into effect in 1993, the concept of

"substantial corrosion" was introduced to monitor the progress of corrosion between

major hull surveys conducted at five yearly intervals. Substantial corrosion was defined

as 75% of the wastage allowance. Therefore, when UT gauging revealed wastage in

excess of 18.75% of the gross plating thickness, substantial corrosion was recorded.

After the Erika disaster in 1999, lACS procedures were changed to require "substantial

corrosion" to be dealt with as a condition of class (Cf').

In crude tankers and bulk carriers where ballast tank coatings had failed pre-maturely,

sometimes only after 5-10 years in service as revealed in section 2.3.1 and 2.3.3, the

required ultrasonic thickness (UT) readings obtained during rafting of tanks may not

have been reliable. Corroded tank surfaces require grit blasting to remove corrosion

products including scale. The time and costs involved for erecting staging and properly

cleaning and de-gassing tanks prior to UT measurement and detailing of the repair

specification are prohibitive. Lack of reliable UT data as a baseline for planning

structural repairs may have been a factor in subsequent failures. perhaps incorrectly

attributed to other causes. Cropping and renewing of corroded areas was difficult to

control and made quality repair outcomes questionable. It is reasonable to assume that

such structural repairs may have been carried out involving a wide spectrum of

solutions with sometimes doubtful quality.

Where unprotected renewed areas were exposed to seawater, rapid and uncontrolled

corrosion would ensue with disastrous results as testified by the structural failures of

Erika and Betelguese and possibly many bulk carriers lost in suspicious circumstances

(see sections 2.6.1 and 2.6.2).
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Concerned at failures in ship structures including total losses in spite of efforts to

prevent them, Paik et al (2003g) studied the effects of corrosion on hull girder strength

for a range of ship types including tankers and bulk carriers.

Figure 7.5. Time Dependent ULS (Paik et al, 2003g)

Joint research was undertaken by Pusan National University and the classification

society ABS. The focus of the study was to assess time-dependent ultimate hull girder

strength, reliability index and probability of failure against hull girder collapse. Paik 's

corrosion model outlined in section 2.3.3 was incorporated in the study. Corrosion

measurement data for 230 ageing single hull tankers and 109 bulk carriers were

collated and analyzed. The progressive collapse behaviour of a 170,OOOdwt Capesize

bulk carrier was calculated using the ALPSfH ULL software. Figure 7.5 illustrates the
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trend of the resulting time dependent strength of the vessel in hogging with the effect of

multiple repairs shown. The safety measure was the ratio of the ultimate hull girder

strength to the lACS requirement shown on the vertical axis.

Paik et al's research revealed two important findings relevant to the central objectives

in this study. Firstly, the margins on the structural design were seen to be surprisingly

small. With uncontrolled corrosion and no repairs, the lACS section modulus limits

were reached in less than 10 years of service. Secondly, it was evident that safety and

reliability of these structures can only be controlled by proper repair and maintenance

strategies as remarked by Paik et al in the above study. Alternatively, and as a strategic

plan, an owner may elect to build a "maintenance free" vessel with ample corrosion

margins, and high coating specifications. This has been explored by the high quality

option tested and discussed in section 6.3.2. The higher capital cost would be offset by

lower maintenance and off-hire costs. At the other end of the scale, an owner who

chooses a least cost design, barely complying with classification rules, may be faced

with significant survey and maintenance costs in the future. The trend is shown by the

dotted line in figure 7.5. Failure to properly anticipate future costs caused by serious

structural problems leading to cargo offloading, unscheduled dry docking, or

environmental pollution has potentially huge commercial consequences.

Element VLCC CSR Gratsos
Deck plating 0.20 0.12 0.22
Deck longitudinal web 0.25 0.12 0.2H
Bottom plating 0.25 0.07 0.19
Longitudinal bulkhead long. web 0.16 0.16 0.2X
upper 2.0m
Deck and side transverse web --- --- 0.30
plating upper 2.0m
Transverse bulkhead plating 0.22 0.22 0.25

Table 7.1. Comparison Between Corrosion Margins (Gratsos et al,200S)

Corrosion allowances were recently the subject of fierce debate in lACS. The concept

of designing ship structures based on steel renewals after ten years was challenged. It

was argued that corrosion margins in the new common structural rules were based on

theoretical corrosion rates of 0.1mm per year. Further, the new CSR rules assume a
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design lifetime of 25 years compared to 20 years in the previous rules. In table 7.1, a

comparison has been made between annual average corrosion margins defined by

current classification rules requirements for a VLCC in column 2, and the corrosion

margins proposed by Gratsos & Zachariadis (2005) in the last column. They put

forward the view that the new CSR corrosion margins in column 3 were totally

inadequate, a position which was strongly rebutted by lACS (lACS, 2006a). Such

debate is indicative of the emotionalism and deep divisions which are sometimes

encountered between the various stakeholders in the maritime community on the

subject of hull structures.

One of the findings of this study has been that buyer preferences are often not exercised

in ship procurement, and there is a wide variance between the discerning buyer with

high bespoke specifications and the off-spec buyer prepared to accept a baseline

structural design offered by the builder. Owners interested in preserving their

reputations by lowering risk, may seek extended lifetimes and high structural

reliability. Buyers tend to rely on classification standards which are not design codes as

noted in section 2.4.3, to underwrite ship quality and reliability. However, it has been

stated earlier that classification rules are inherently minimum standards.

Ship builders offer least cost solutions optimised for productivity. Devanney &

Kennedy (2003) and other strident critics of the present approach whose views were

presented in section 3.2.5, believe that hull warrantees of I year are totally inadequate.

They have stated that the failure of ship builders to properly underwrite their products

is unacceptable. The new CSR rules result in modest increases of between 3-10%) of the

total steel weight for VLCCs, and undoubtedly offer an improvement in relation to the

previous structural standards. However, they are still minimum standards. The

importance of the structural design in terms of the buyer's preferences and engineering

effort and commitment necessary to ensure safe and reliable operation of the hull

structure is believed to be a point worth emphasising.
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7.5.4 Societal Concerns and Environmental Aspects

We live in an era of unprecedented change. Near meltdown of the global financial

system in late 2008, wildly fluctuating oil prices, and the international community's

deep concerns for the environment are all part of the urgent problems of our era. In

these times of financial turmoil, ship owners may take heed of the increasing

intolerance of the international community to environmental damages caused to

innocent third parties. The recent verdict of the French courts in relation to the Erika

trial (see section 2.6.3) indicates a sea change in public and societal attitudes towards

incidents involving marine pollution by ships and the possible consequences for the

owners and operators of vessels crossing international boundaries.

The published literature review carried out in chapter 2 identified key challenges facing

those responsible for adequately maintaining hull integrity of large tank ships. Most

structural failures have involved corrosion and/or structural fatigue phenomena. There

is a great deal of evidence to suggest that the structural integrity of large tank ships

involves a wider obligation to the international community on the part of the ship

owner. The hazards involved in the transportation of bulk cargoes in large bulk vessels

represent a serious environmental threat. The public expect ship owners and

classification societies to carefully manage the risks inherent with this type of transport.

The widely held minimum compliance approach is no longer deemed to be sufficient

due diligence. Increasing societal concerns led by political interests and the media

suggest that a minimum compliance stance in relation to damages to the marine

environment will be harder to defend in the future. The trend towards performance

based safety standards suggests that bulk transport by sea should not continue to

depend solely on a framework of prescriptive rules and minimum standards set by the

international classification societies.
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7.5.5 Timeline o[Ship Structures Events

A brief list of some of the key developments affecting large bulk ship structures since

1989 is given below in table 7.2.

Year Event
1989 Condition Assessment Programme(CAP} introduced by DNV.
1989 lA CS S II Longitudinal Strength Standard published.
1990 US Flagged 81,283 dwt tanker Surf Citv explodes and sinks off Dubai UAE.
1990 Major international classification societies introduce explicit fatigue criteria into

their ship rules as a result of early failures in tankers.
1990 Structural Maintenancefor New and Existing Ships Project at the University of
1995 California at Berkeley, supervised by Professor R. Bea.
1992 Ship Structural Management/or Improved Saj_ety, by Brooking and Barltrop.
1992 Structural Performance Management of VLCC 's - An Owner's Approach, by Mclitz,

Robertson and Davison.
1993 ASS Introduces SAFEHULL Software System for the design and evaluation of ship

structures.
1993 IMO Resolution A.744(18) Enhanced Surveys of Oil Tankers & Bulk Carriers.
1993 UK Offshore installations adopted the safety case approach in May/November 1993.
1993 UK MCA responds to Lord Carver's Report into ship safety following the Herald of

Free Enterprise disaster, recommending to IMO that formal safety assessment
(safety case) should be applied to ships.

1995 Arco Marine conducts HSMS studies, discovering that the combined effects of
springing and whipping significantly affect the hull girder fatigue life (Lacey et aI,
1995).

1998 At 70th session of MSC, UK proposes to IMO to carry out FSA study on bulk carrier
safety.

1999 37,283 dwt oil tanker Erika sinks off Brittany spilling 30,884 tonnes of heavy oi I due
to structural failure.

2002 81,564 dwt oil tanker Prestige sinks off Spain with 76,972 tonnes of heavy oil
possibly due to structural failure.

2007 Classification made mandatory for ships in SOLAS chapter II-I, regulation 3-1.
2008 French court finds the charterer and the classification society involved in the oil

tanker Erika disaster guilty, and they are both fined.

Table 7.2. A Short Timeline of Some Recent Key Developments in Ship Structures
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7.6 Conclusions

A weakness in current ship design practise appeared to be the lack of a means of

incorporating an owner's preferences into the design process. A number of findings

were made:

• The transportation of bulk cargoes including crude oil and products in large

bulk vessels represents a serious environmental hazard. Industry stakeholders

including financial institutions, insurers, flag administrations, national maritime

administrations and cargo owners expect ship owners and classification

societies to carefully manage the risks inherent with this type of transport. In the

past, it was widely held that a minimum compliance approach was deemed

sufficient due diligence. However, increasing societal concerns led by political

interests and the media suggest that a minimum compliance stance in relation to

damages to the marine environment will be harder to defend in the future.

• The comprehensive literature review carried out in chapter 2 clearly identified

the principal threats and challenges facing those responsible for adequately

maintaining hull integrity of large tank ships. Most past accidents related to

structural failures not directly caused by navigational error, have involved

corrosion and/or structural fatigue phenomena. There is a great deal of evidence

to suggest that business interests alone should not be the prevailing

consideration, and that the structural integrity of large tank ships involves a

wider obligation to the international community on the part of the ship owner.

• The trend towards performance based safety standards away from the

certification model suggests that bulk transport by sea (a high risk industry),

should not continue to depend solely on a framework of prescriptive rules and

minimum standards set by the international classification societies. The hull

safety case for large oil tankers would seem to be a paradigm worthy of further

investigation and a logical step forward in the transition from a fully

prescriptive methodology to a combined system integrating the existing rules,
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placing the risk creators in the leading role. Structural failures account for only

12% of the total; however, it is believed that the hull structures question is

disproportionately important in the safety equation.

• In section 1.2, objective no.5 was to examine the applicability of the offshore

safety case approach in the context of large bulk ship structures using a

structural selection framework to evolve the arguments for a hull safety casco

The work conducted in this chapter completes this objective. The safety case

approach to hull maintenance subservient to the existing International Safety

Management (ISM) Code and evolving from the recommended performance

based ship structural design method is an improved paradigm, which addresses

many of the shortcomings identified in the present systems.

265



Chapter 8: Conclusions and Implications

SUMMARY

This chapter summarises the main findings and conclusions from the study and how the

objectives and sub-objectives are satisfied in the research. The limitations are

discussed and an outline of suggestions for future research is presented.

8.1 Introduction

The wide-ranging literature search conducted in chapter 2 was intended to holistically

examine the current safety systems governing the design, construction and operation of

large bulk vessels including VLCCs and VLBCs, with a focus on the hull structural

design. The history of recent bulk carrier and oil tanker casualties was the principal

motivation and driver for the research effort. Concerns expressed by industry insiders at

the perceived low quality of current structural designs was also considered to be worthy

of investigation.

In chapter 3, section 1.2, the third research sub-objective was dealt with i.c. to analyse

the current approach to ship procurement and structural design quality, and the existing

knowledge of the use of risk-based approaches to hull structures integrity. This formed

the second phase of the evidence building needed to support the principal research

objective, hypothesising that the buyer can effectively enhance the quality, safety and

performance of VLCCNLBC hull structures by managing risks at the design stage.

This led to research objective no.4 which was to formulate examples of numerical and

qualitative input data to test the novel structural selection framework proposed,

developed and validated in chapters 4, 5 & 6. Arising from the foregoing studies,

objective no.5 which was to examine the applicability of the offshore safety case model

to the hull structures question was subsequently fully developed in chapter 7.
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8.2 Main Findings

• Large bulk ships including VLCCs and VLBCs of around 300,OOOdwt capacity

are the largest mobile man-made structures in existence. Their structural

components have a multiplicity of function and they are sensitive, complex and

highly utilised in terms of their load carrying ability relative to their structural

mass. These structures rely heavily on the substantial plastic reserve

characteristics of plated grillages in order to create a significant strength

reserve.

• The residual stresses inherent in modern welded construction and the

geometrical complexity of the internal structural arrangements, complicate

attempts to accurately determine dynamic stresses at the localised level

experienced by individual structural elements.

• Compared to offshore structures, large bulk ships are designed with markedly

reduced safety factors and levels of reliability than their offshore counterparts.

The requirement for a design check for the accident limit state (ALS) or

threshold-type loading for ships is waived, based on the assumption that the

operator can take avoidance action in severe weather.

• It is often stated that ship structures are highly redundant with multiple failure

paths such that a high level of safety is ensured. However, in double hull

tankers in the sagging mode, the onset of buckling of the deck structure

occurring in some cases below the allowable total bending moment limit set by

the authorities, can significantly reduce the overall collapse response.

Allowable stress design (ASD) may be non-conservative for buckling failure of

the deck structure in double hull tankers, or the bottom structure in bulk

carriers as highlighted in recent research.

• The option of designing safe-life structures has proven to be inefficient and

uneconomical for contemporary ship designs due to the excessive steel weight
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required. For maximum structural efficiency and optimisation of economy in

the design, the higher strength to weight ratio of HTS steels are utilised,

although recent problems associated with fully HTS designs have limited the

HTS content to around 35% in DH tankers.

• The fail-safe/damage tolerant approach is the basis for contemporary large

bulk ship structural designs, wherein it is assumed that undetected flaws of

small size will not lead to significant structural consequences. The underlying

assumption in this approach is that cracks of detectable length (critical flaw

size) will be found during regular calendar based surveys in tanks (every 2.5

years). Because the crack initiation period in as-welded steel joints is

insignificant due to the existence of welding defects, crack growth is initiated

in the very early stages of the structural lifetime. The underlying weakness in

the fail-safe/damage tolerant approach lies in the practical difficulties involved

in the effective internal inspection of large vessel structures (tanks and cargo

holds), and this problem has been borne out by the number of incidents

involving undiscovered structural failures reported in the literature survey

conducted in chapter 2. Because the majority of ship structures are fabricated

from material without guaranteed fracture toughness values (A-grade normal

and higher strength steels), the critical defect size is much reduced, highlighting

the importance of and over reliance on structural inspections to find flaws

before they propagate in a brittle manner.

• Despite limitations on the effectiveness of inspections to detect Haws, and to

guarantee safe structures, the maritime industry has only explicitly addressed

the fatigue problem in the design of large bulk ships after 1990. There are

concerns that the standard minimum compliance approach to current fatigue

design may not be sufficient to ensure reliable and robust structures.

• Current structural standards including the recent CSR for tankers fail to account

for the combined effects of springing and whipping in fatigue design. These

phenomena contribute towards up to 50% of the total fatigue damage for large

bulk ships, and many warnings have been given in the past. The failure to

26R



address these effects in current structural design rules including the CSR has

been a long standing complaint from sectors of the industry, most recently by

the Greek bulk shipping community (lACS, 2006a).

• Large ships are exposed to random loads of probabilistic nature, making the

prediction of the response to the loads complex. The controlling load forms are

the result of operating in waves. Current design criteria for vessels with length

of 300m consider significant wave heights of less than II.Om, when significant

wave heights in excess of II.Om may be encountered thousands of times during

the vessel's lifetime. Critics have suggested that there is prima facie evidence

for an in-depth examination of the adequacy of the lACS unified probabilistic

wave bending moment standard UR S11 for large tankers and bulk carriers.

• The principal structural hazards affecting large bulk ships are corrosion and

fatigue. Water ballast tanks in oil tankers and bulk carriers represent the highest

risk areas, and the integrity of coating systems is of paramount importance in

ensuring structural integrity. Prior to the introduction of the PSPC convention,

ballast tank coating systems commonly failed between 5-10 years after the

vessels were delivered. Steel wastage in ballast tanks was, unti 1 recently,

permitted up to a maximum of 18% of the gross scantling thickness.

Accelerated wastage of steel surfaces in uncoated tanks due to early failure of

protective coatings, coupled with reduced scantlings, higher stresses, and

rapidly increasing corrosion-induced fatigue failure was the latent and

underlying root cause of many accidents, and undoubtedly many bulk carriers

were lost in mysterious circumstances, possibly due to a similar chain of

events.

• The use of high tensile steel as an alternative to normal strength steels in hull

structures has culminated in optimised designs with associated cost advantages.

However, reduced thicknesses, higher stresses, spalling of coatings and

accelerated corrosion and fatigue fractures have made IITS rich designs

controversial. These options are particularly sensitive and require more

intensive maintenance effort to avoid the domino effect.
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• During the 1980s, some ship owning interests took advantage of high freight

rates and low operating costs to maximise profits. Their reputation and safety

standards were regarded to be of secondary importance, giving huge benefits

for least costs. Speculators driving the market were not interested in ship

condition. These circumstances led to the sub-standard ship syndrome. Leading

shipping companies maintaining good technical condition and well qualified

crews were not able to compete on this basis.

• The loss of the oil tanker Erika in December 1999 raised the alarm on clean

ballast tank (CBT) oil tankers converted to hydrostatically balanced loading

(HBL) or segregated ballast tank (SBT) mode, and the dangers inherent in

uncoated sea water ballast tanks adjacent to heated crude oil cargo tanks. The

Erika disaster was the trigger for world-wide efforts within the maritime

community to improve the performance of tanker and bulk carrier hull

structures. The subsequent loss of the Prestige 3 years later in similar

circumstances re-doubled the efforts of the international maritime regulators to

further tighten regulatory controls on the operation of hull structures.

• In 1993, the IMO adopted Resolution A.744 (18) and in 1995, the IMO

requirements for maintenance of ship structures were shifted from MARPOL

13G into the SOLAS Convention Chapter II-1I3-1. Currently therefore, it is a

statutory obligation to maintain the ship structure to classification standards, as

discussed in section 2.4.3. Classification societies have become by default,

keepers of the hull maintenance database.

• Commercial ship design has unquestionably been an exercise III design

optimisation and profitability. Empirical methods based on accumulated

experience were traditionally relied upon, and structural failures drove the

development of prescriptive codes. Ship yards designing and building the

product were focussed on minimisation of capital cost.

• Quality is associated with the ability to design products that incorporate

characteristics and features which are optimised to meet the customer's
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specifications. Current commercial ships are highly optimised and this

represents wise use of scarce resources. Large bulk ships represent unique

made-to-order products. New tonnage is ordered across a spectrum of owners'

requirements ranging from standard designs to full bespoke designs of high

quality. Industry perceptions of quality are widely different, and the definition

has to be linked to the buyer's expectations. In the current economic

environment, productivity considerations and least cost constraints are the

primary drivers for ship builders to optimise designs and lower costs. Buyers

may either take a passive role in these developments and accept a baseline

product as designed or exercise their options in the design process to improve

the quality based on their own stated performance expectations.

• A prudent ship buyer should scrutinise the basic structural design data offered

by the builder. Adequate margins on the design are expected to have far more

benefit to the long-term structural robustness and quality than any other factor.

Buyers of large vessels who fail to exercise their preferences through

developing comprehensive performance standards and risk-based maintenance

measures risk early structural failures and their consequences.

• Numerous industry critics have expressed senous concerns over the current

quality of new oil tankers and bulk carriers. In an engineering sense, quality

also implies performanee optimisation and cost minimisation. This optimisation

is not necessarily at odds with the customer's objectives provided that the

specifications for design and construction are robust enough to ensure that the

target safety levels are met. A balance has to be struck between structural

designs optimised to the extent that the reliability, robustness and safety have

been seriously compromised and designs which are grossly wasteful in terms of

additional steel and cost required. In reality, the minimum standard can be used

as a reference and baseline from which to work from in the structural selection

problem.

• Emphasis should be directed at exercising the buyer's input into the design

using a layered risk-based approach, founded upon the minimum classification
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and statutory standards including the goal-based CSR. This is the essential

philosophy behind the proposed multi criteria decision analysis (MCDA) and

evidential reasoning (ER) structural assessment framework. Capital investment

decisions represent major commitment of corporate resources and can have a

significant impact on the financial welfare of shipping companies. Companies

can easily incorporate economic, environmental and social aspects estimated in

monetary terms, by adopting suitable techno-economic decision-making

techniques

• The problem with the rationally-based, computer-aided approach to ship

structural design has been the underestimation of the impact of the actual

stochastic loads acting on large bulk ship structures and the severity of the

degradation mechanisms in relation to highly optimised ship structures,

combined with improper maintenance procedures.

• Current bulk ship designs are sensitive structures which rely on increased levels

of maintenance effort over the lifetime of the asset in order to compensate for

the reduced safety levels incorporated in the design. This connection between

quality and maintenance effort appears to be poorly understood.

• The recent introduction of common structural rules (CSR) for tankers and bulk

carriers has been criticised because the allowable stresses have been increased

by almost 12%, leading to safety factors that are even less favourable compared

to offshore structures. Post CSR oil tanker and bulk carrier designs may not be

any more robust than the previous ones. As the net increase in steel weight is

marginal in most cases. However, it is reasonable to accept that incremental

improvements in hull structures will arise from the adoption of risk-based

principles, goal based standards and a holistic approach to safety management

adopted by the IMO, although the CSR should continue to be regarded as a

minimum standard. Tankers and bulk carriers designed to the new CSR rules

and in compliance with the PSPC convention and corrosion margins according

to CSR minimum requirements, still require careful maintenance to ensure that

the protective coating systems remain intact. Failure to ensure the integrity of

272



the coating systems will lead to pre-mature commencement of the corrosion

process which is very difficult to monitor and control.

• A balance of views is always necessary between the position of the strident

critic and the vested interests. However, the sensitive nature of large bulk ship

structures, combined with the threats of a poorly specified and executed

structural details, rapid hull degradation due to unmitigated corrosion and

fatigue, and a minimum compliance approach to hull maintenance represent an

irresistible conspiracy against good safety standards in an age when societal

concerns for the environment are heightened.

• Quality and environmentally conSCIOUSshipping companies interested in

extended vessel lifetimes and reliable structural performance are likely to have

heightened expectations relative to hull robustness and durability

• While increased involvement of the IMO in ship structural standards and the

wider use of risk-based techniques for the development of prescriptive class

and statutory rules will undoubtedly steadily improve the performance of hull

structures, there is a lack of evidence of any improved scope for the buyer's

influence in the design. This major weakness in current ship design and

procurement was addressed through the development of a risk-based structural

assessment framework which was one of the main objectives of the present

study.

• Major capital expenditure decisions like the purchase of new tonnage should be

carried out on the basis of a full techno-economic evaluation, according to a

comprehensive, rational and transparent procedure. Only then can the latent

financial risks associated with improper tradeoffs in the list of technical options

be properly anticipated.

• The transportation of crude oil and products in large hulk vessels represents a

serious environmental hazard. Industry stakeholders including financial

institutions, insurers, flag administrations, national maritime administrations
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and cargo owners expect ship owners and classification societies to carefully

manage the risks inherent with this type of transport. In the past, it was widely

held that a minimum compliance approach was deemed sufficient due

diligence. However, increasing societal concerns led by political interests and

the media suggest that a minimum compliance stance in relation to damages to

the marine environment will be harder to defend in the future.

• Most past accidents related to structural failures not directly caused by

navigational error, have involved corrosion and/or structural fatigue

phenomena. There is a great deal of evidence to suggest that business interests

alone should not be the prevailing consideration, and that the structural

integrity of large tank ships involves a wider obligation to the international

community on the part of the ship owner.

• The trend towards performance based safety standards away from the

certification model suggests that the transport of bulk cargoes by sea (a high

risk industry), should not continue to depend solely on a framework of

prescriptive rules and minimum standards set by the international classification

societies. The hull safety case for large oil tankers would seem to be a

paradigm worthy of urgent further investigation and a logical step forward in

the transition from a fully prescriptive methodology to a combined system

integrating the existing rules, placing the risk creators in the leading role. It is

believed that the hull structures question is disproportionately important in the

safety equation.

• The present ISM Code contains vague and imprecise references to establishing

safeguards against all identified hazards. Further weaknesses include lack of

specificity within the safety management system, in relation to requirements for

the identification of safety critical elements.

• The safety case approach to hull maintenance subservient to the existing

International Safety Management (ISM) Code, and evolving from the

recommended performance based ship structural design method, is believed to
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be an improved paradigm, which addresses the shortcomings identified in the

present systems.

8.3 Main Conclusions

The principal research objective stated in section 1.2, was to build evidence confirming

that the customer could effectively enhance the quality, safety and performance of large

bulk ship structures by managing risks at the design stage using a novel structural

selection framework, evolving the arguments for a hull structures safety case as an

outcome from the selection process, and to demonstrate how the safety case can be

successfully applied to the technical management of these types of ship structures.

The ISI research sub-objective was to review the safety management systems affecting

VLCCNLBC hull structures, and to identify the need for an improved management of

ship safety. The 2nd research sub-objective was to analyse selected casualties in order to

reveal possible root causes associated with inadequate quality in structural design or

maintenance procedures. In meeting sub-objective no's 1 & 2, it was hypothesised that

the current levels of safety and performance of hull structures in oil tankers and bulk

carriers can, and should be improved by identifying weaknesses in the contemporary

ship design process and the existing regulatory systems through a comprehensive

review and analysis of the hull structures question, including recent structural failures.

The findings from the published literature search performed in chapter 2, and listed in

section 8.2 validated the above hypothesis.

The yd research sub-objective was to analyse the current approach to ship procurement

and structural design quality and existing knowledge of the use of risk-based

approaches to hull structures integrity. In chapter 3, it was revealed that modern

commercial ship design is fundamentally an exercise in design optimisation and

profitability. Ship yards designing and building the product are focused on

minimisation of capital cost. Current commercial ships are highly optimised and this

represents wise use of scarce resources. New tonnage is ordered across a spectrum of

owners' requirements ranging from standard designs to full bespoke designs of high

quality. Industry perceptions of quality are widely different, and the definition has to be
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linked to the buyer's expectations. Buyers may either take a passive role and accept a

baseline product, or exercise their options in the design process to improve the quality

based on their own stated performance objectives. A prudent ship buyer should

scrutinise the basic structural design data offered by the builder. Adequate margins on

the design are expected to have far more benefit to the long-term structural robustness

and quality than any other factor. Buyers who fail to exercise their preferences through

implementing performance standards and risk-based maintenance measures risk, early

structural failures and their consequences.

The 4th research sub-objective was to articulate a set of structural performance criteria

based on the MCDA approach, which could be used to compare alternative

VLCCNLBC structural design options. To solve the MCDA problem, an established

methodology involving the evidential reasoning (ER) algorithm together with the

evidence combination rule of the Dempster-Shafer (D-S) theory, was selected as the

basis for the framework. The method was demonstrated and validated using an example

involving selection between 4 similar VLCC structural designs. In meeting research

sub-objective no 4, thereby, the MCDAlER framework provided the means to

incorporate the customer's preferences directly into the design process.

The 5th research sub-objective was to examine the applicability of the offshore safety

case in the context of hull structures using the above selection framework to evolve the

arguments and evidence needed for the safety case. The findings listed in section X.2

arising from the published literature search and critical review carried out in chapters 2

& 3, provided a body of evidence suggesting that the quality, safety and performance of

large bulk ship structures, can be influenced by the buyer at the design stage, by

systematically managing risks. The mechanism for achieving this goal is the

MCDAlER structural assessment framework developed in sections 4, 5 and 6 of the

study. The procedures incorporated into the framework, comprise the clements of a

formal safety assessment, including hazard identification, risk assessment and cost

benefit analysis.

The main conclusions from the research effort can be summarised and are listed as

follows:
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• The specific findings listed in section 8.2 arising from the wide-ranging

published literature survey performed in chapter 2 and conducted as the basis

for this research, address a number of systemic problems identified in the

adequacy of the current safety systems governing the design, construction and

operation of hull structures for large bulk ships. Numerous industry critics have

expressed concerns over the current structural quality of new oil tankers and

bulk carriers. Some of these concerns have been critically examined and

validated and these findings have contributed to the objectives in this research.

• Current commercial ships are highly optimised although this is believed to

represent wise use of scarce resources. New tonnage is ordered across a

spectrum of owners' requirements. Industry perceptions of quality are widely

different, and the definition has to be linked to the buyer's expectations.

Productivity considerations and least cost constraints are the primary drivers for

ship builders to optimise designs.

• In an engineering sense, quality also implies performance optimisation and cost

minimisation. This is not necessarily at odds with the customer's objectives

provided that the specifications for design and construction are robust enough to

ensure that the target safety levels are met. A balance has to be struck between

structural designs optimised to the extent that the reliability, robustness and

safety have been seriously compromised, and designs which are grossly

wasteful in terms of additional steel and cost required. In reality, the minimum

standard can be used as a reference and benchmark to work from in the

structural selection problem.

• The MCDAlER structural assessment framework described, developed and

validated in this research, is a process which provides a logical method for the

buyer to exercise preferences to ensure that a simple and effective risk-based

design for safety approach is adopted to ensure that sufficient safety margins arc

incorporated into the design.
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• The MCDAlER model is a means for the buyer of new tonnage to perform

layers of risk assessment founded upon the pre-existing c1assification and

regulatory prescriptive framework. Conducting proactive risk-assessment

described in this research as part of the evolving design review process will

empower an owner's team with the knowledge required to properly manage the

decisions required to effectively maintain the asset during its lifetime.

• The use of multiple criteria decision analysis (MCDA) for evaluation of ship

structures is rare in the literature, and this is associated with the difficulty in

applying such methods. MCDA relies on articulation of an appropriate set of

techno-economic evaluation criteria capable of dealing with both qualitative and

quantitative criteria, and incomplete information. A set of 35 such criteria were

identified and used to construct an appropriate assessment hierarchy. This

research therefore represents a novel approach to the structures problem.

• The MCDAlER framework is part of a holistic risk-based proactive approach to

safety management of large VLCCNLBC hull structures. The IDS model

provides a simple and effective means of ranking options in order of preference

on the basis of utility. The IDS model easily allows rapid assessments and trade

offs to be made based on the set of qualitative and quantitative criteria

articulated in this study, and is capable of dealing with sometimes incomplete or

partial data. Capital investment decisions represent major commitment of

corporate resources and can have a significant impact on the financial welfare of

shipping companies. Companies can easily incorporate economic,

environmental and social aspects estimated in monetary terms, by adopting

suitable techno-economic decision-making techniques. The IDS model

represents a flexible, transparent methodology for preference seeking amongst

alternatives which should be prioritised for further assessment, making it

suitable for presentation to shareholders, boards and other interested parties.

• Validity of the MCDA/ER framework was tested according to the principles of

the validation square in section 6.4.3, by building confidence with respect to a

purpose and socially justifiable belief in the usefulness of the method.
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• The natural evolution of the hull structures safety case as an outcome of the

MCDNER structural design assessment framework is the basis for an improved

systematic approach to technical management of VLCCNLBC structures in the

operational phase. The procedures described in the research fulfil the

requirements for a proactive risk-based approach to maintenance implicit in the

ISM Code. The safety case paradigm selected was the Australian offshore

(NOPSA) safety case described in chapter 7, due to its relevance and simplicity.

A computerised hull planned maintenance system was considered an essential

element in the proposed safety case, founded upon pre-existing class and

statutory rules.

In closing, this research effort identified a need to develop a simple and effective

attention directing tool which would allow a buyer of new VLCCNLBC tonnage to

make rapid preliminary assessments of structural design options prior to signing of the

new building contract. This is a problem characterised by multiple and often conflicting

criteria, incomplete data and subjective judgements. The problem involves

consideration of both technical and economic criteria. An established methodology

involving multiple criteria decision analysis (MCDA) and the evidential reasoning (ER)

algorithm was chosen because of its flexibility and capability of modelling numerical

data and subjective assessments under uncertainty, often involving incomplete

information. The MCDAIER structural assessment framework incorporates a set of

evaluation and belief degrees which are well suited to deal with the subjective

judgements involved.

8.4 Research Contribution

The published literature survey and the critical review conducted in chapter 2 with the

findings listed in section 8.2, represent a broad outcome of the attempt to critically

examine specific criticisms directed at the current safety management system pertaining

to the safety of large bulk ships structures. An independent objective approach was

undertaken to carefully examine these claims, and a number of findings emerged to

indicate that a weakness exists in the current system. There appeared to be an over
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reliance on a prescriptive minimalist approach. This was confirmation for the

hypothesis that the current safety systems could be improved by focusing on the

buyer's input into the design process.

The research work attempted herein, represents a new and novel application of the

evidential reasoning method to the hull structures problem. There has traditionally been

a lack of a suitable framework allowing the buyer of new VLCCIVLBC tonnage to

conduct rapid preliminary risk-based structural appraisals. The method proposed would

allow the buyer's team to systematically engage in the design review process as a basis

for forward planning of hull maintenance through the life of the asset. Thereby, the

owner is encouraged to take ownership of safety which is consistent with the proposed

safety case philosophy. The proposed MCDAlER framework is believed to address this

need by providing a significant and original contribution towards the solution of this

problem.

8.5 Limitations

The MCDA/ER structural assessment framework developed and validated in this study

is not intended as a commercial tool in its present form. Usefulness will depend upon

further review and development. It must be made clear that for the purpose of building

and testing the model, notional data was used, although based on numerical and

qualitative data and information obtained as part of the published literature survey.

Therefore the utility values obtained in chapters 5 & 6 should not be construed as real-

world data. The purpose of this research was to develop a framework for comparing

alternative structural designs, build the model and demonstrate it.

In developing the model, no suitable benchmark was found in other published work.

Therefore, the author informally sought the opinions of a number of experts and naval

architects involved in the field of ship structures. However, articulating the main

criteria and constructing the assessment hierarchy occurred over a lengthy period of

time, and was an evolutionary process, based on a limited expert input. However, the

selection of the 35 sub-criteria and the basic structure of the model were founded upon

information identified from various sources in the published literature including the

2S0



Ship Structure Committee (SSC), and the practical experience of the writer. Therefore

the model is considered to be valid, reasonable representative and technically sound.

8.6 Future Research

A number of areas have been identified where future research can be conducted based

on the results of this research effort. In relation to the IDS model, future research may

involve formally inviting expert opinion from a number of industry practitioners as a

basis for modifying and improving the evaluation criteria and the hierarchy in the IDS

model. The criteria developed in this research are considered to be a suitable

benchmark and starting point. One aspect of the MCDA/ER framework presented here

requiring further investigation, is the current complexity of the model. A total of 35

sub-criteria were chosen to adequately capture the key considerations articulated in

chapter 4. For commercial applications, the number of criteria may have to be reduced

for simplicity.

Arising from the findings conducted in part of this study, namely the criticisms raised

by the Greek shipping industry commentators highlighted in section 2.3.3 bear further

investigation. Their concerns were related to the adequacy of the corrosion margins

adopted in the new CSR rules. Opinions were expressed claiming that these margins

should be doubled in Panamax bulk carriers. The MCDNER framework provides a

suitable opportunity and a convenient platform to test these claims, based on the

relevant input data. It is recommended that an independent research project

investigating this aspect of structural design should be undertaken. This should involve

complete lifecycle aspects and environmental considerations.

In the present study, 7 common grades were used throughout, and the utility function

used in the IDS model was assumed to be linear, ranging from 0 to 1.0. In the IDS

model other non-linear utility functions may be used, and this is an area requiring

further investigation. More appropriate grading systems can also be adopted to deal

with individual assessment criteria described in a number of the referenced studies

related to the ER method.
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Ranking reversal phenomena common to MCDA applications, encountered and

discussed as part of the sensitivity studies conducted in chapter 6, should be further

investigated. This is considered to be a key aspect of future research as the rankings arc

greatly affected by a change in the range of attributes. Attribute independence should

also be investigated as some of the criteria chose for the model are not truly

independent. Four subject areas have been preliminarily identified arising directly from

this work as future research paper topics:

1. A literature review of conventional hull structural safety management systems

affecting large bulk ships.

2. Ship procurement, structural design quality, and a risk-based approach to hull

structural integrity.

3. A novel decision-making framework for selecting a VLCC structural design

based on multiple criteria.

4. Arguments for a hull structures safety case.
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