
AutoTaSC: Model Driven
Development for Autonomic

Software Engineering

yousef M. Abuseta

A thesis submitted in partial fulfilment of the requirements
of Liverpool John Moores University for the degree of

Doctor of Philosophy

School of Computing and
Mathematical Sciences

Liverpool John Moores University
Liverpool, UK,

July 09

BY REQUESTOF THE UNIVERSITY

THE FOLLOWING ITEMS HAVE NOT BEEN DIGITISED.

FIGURE 3.1 P23

FIGURE 8.23 P101

FIGURE 0.1 P134

FIGURE 0.2 P134

FIGURE 0.3 P13S

ABSTRACT

Whilst much research progress has been achieved towards the development of autonomic

software engineering tools and techniques including: policy-based management, model-

based development, service-oriented architecture and model driven architecture. They

have often focused on and started from chosen object-oriented models of required

software behaviour, rather than domain model including user intentions and/or software

goals. Such an approach is often reported to lead to "misalignment" between business

process layer and their associated computational enabling systems. This is specifically

noticeable in adaptive and evolving business systems and/or processes settings. To

address this long-standing problem research has over the years investigated many

avenues to close the gap between business process modelling and the generation of

enactment (computation) layer, which is responsive to business changes. Within this

problem domain, this research sets out to study the extension of the Model Driven

Development (MOD) paradigm to business/domain model, that is, how to raise the

abstraction level of model-driven software development to the domain level and provide

model synchronisation to trace and analyse the impact of a given model change.

The main contribution of this research is the development of a MOD-based design

method for autonomic systems referred to as AutoTaSC. The latter consists of a series of

related models, where each of which represents the system under development at a given

stage. The first and highest level model represents the abstract model referred to as the

Platform Independent Model (PIM). The next model encapsulates the PIM model for the

autonomic system where the autonomic capabilities and required components (such as

monitor, sensor, actuator, analyser, policy, etc.) are added via some appropriate

transformation rules. Targeting a specific technology involves adding, also via

transformation rules, specific information related to that platform from which the

Platform Specific Model (PSM) for the autonomic system is extracted. In the last stage,

code can be generated for the specific platform or technology targeted in the previous

stage, web services for instance. In addition, the AutoTaSC method provides a situated

model synchronisation mechanism, which is designed following the autonomic systems

principles. For instance, to guarantee model synchronisation each model from each

AutoTaSC stage has an associated policy-based feedback control loop, which regulates its

ii

reaction to detected model change. Thus, AutaTase method model transformation

approach to drive model query, view and synchronisation. The Auto'Iast? method was

evaluated using a number of benchmark case-studies to test this research hypothesis

including the effectiveness and generality of AutaTaSe design method.

iii

ACKNOWLEDGMENTS

I would like to take this opportunity to express my deep thanks and appreciation to my

supervisor, Professor A. Taleb-Bendiab, for his invaluable and unlimited support

throughout the course of this research. He was always encouraging me to keep and

remain focused on achieving my goals. His useful critical comments and great ideas

indeed helped me shape and establish the overall direction of my research and build on

these comments and observations to take it further and deeper.

I would like to thank all of my family for their support during my study specially my

father and mother. Also thanks go to all of my friends, who used to ask, support and care

about me.

Special thanks and appreciation goes to my wife for her vital support, understanding and

patience, without which this work would not be possible.

yousef M. Abuseta

iv

TABLE OF CONTENTS

Abstract ii
Acknowledgments iv

Table of Contents v

Table of Figures ix
1. Introduction 1

1.1 Motivations 1
1.2 Challenges 2
1.3 Approach 3
1.4 Contributions 4

1.5 Research objectives 6

1.6 Thesis Organisation 7

2. BACKGROUND 9

2.1 Model Driven Development Paradigm 9

2.2 Model Driven Architecture 9
2.2.1 Model abstraction 10

2.2.2 Model Transformation 11

2.2.2.1 Model Transformation techniques 11
2.2.2.1.1 Model to text approaches 11

2.2.2.1.2 Model to Model Approaches 12

2.2.3 Model Synchronization 12
2.3 Service Oriented Development Approach 13
2.3.1 Characteristics of Service Oriented Development Approach l3
2.3.2 Web Services 15
2.3.2.1 Web Services Programming Stack 15
2.4 Summary 16

3. AUTONOMIC SYSTEMS DESIGN 17

3.1 Autonomic Computing 17
3.2 IBM Autonomic Reference Model 20
3.3 Existing Implementations of the IBM Control Loop 20

3.4 Model Driven Development 21
3.5 Model-Based Design Approaches 22

v

3.6 Aspect Oriented Programming based Techniques 25

3.7 Model Transformation Techniques 26
3.8 Summary and Discussion 27

4. CONCEPTUAL DESCRIPTION OF PROPOSED DESIGN METHOD 29
4.1 An Overview of Proposed Design Method 29
4.1.1 An Extended MDD arrangement for Autonomic Systems design 30

4.1.2 Model Transformation 32

4.2 Fundamental Concepts 32
4.3 Model Synchronisation issue 33
4.3.1 The Intention Model Change Controller 34
4.3.2 The PIM Autonomic Change Controller 35
4.3.3 The PSM Autonomic Change Controller 35
4.3.4 The Autonomic Code Change Controller 35
4.4 Summary 36

5. PROPOSED AUTONOMIC DESIGN METHOD 37
5.1. Autonomic Design Method and Model Lifecyc1e 37

5.1.1 The Intention Model Capturing 38

5.1.2 The Platform Independent Autonomic Model Capturing .41
5.1.3 The Platform Specific Autonomic Model Capturing .42
5.1.4 The Autonomic Code Generation .43

5.2 Design Patterns and Architectural Style Support .44
5.3 Design Styles for Autonomic Capabilities Provisioning .45

5.3.1 The Design by Contract style .45
5.3.2 The Service-Monitor-Controller Style .47

5.4 Summary 48

6. MODEL TRANSFORMATION FRAMEWORK ..•..........................•..................... 50
6.1 Model Transformation Framework Components 50
6.2 The Autonomic Transformer 50
6.2.1 The Service-Monitor-Controller Based Transformer 51
6.2.2 The Design by Contract Based Transformer 53
6.3 The Platform Metadata Injector Transformer 54
6.4 The Code Generation Transformer 59
6.4.1 Code generator for core services 59
6.4.2 Code generator for Autonomic services 72
6.5 Summary 74

7. MODEL SYNCHRONISATION FRAMEWORK 75

7.1 The Model Modification Concerns 75

VI

7.2 Proposed Model Synchronisation Framework 77

7.2.1 A High Level View of Proposed Framework 77
7.2.2 Detailed Synchronisation Framework 78
7.3 The observer design pattern for the controllers' network 79
7.4 Summary 82

8. EVALUATION , 83
8.1 Introduction 83
8.2 Methodology 83
8.2.1 Objectives 83
8.2.2 Approach 84
8.3 Qualitative evaluation 84
8.3.1The Online Travel Agency case study- Functionality Evaluation 85
8.3.1.1 Task and service definitions 85
8.3.1.2 The Intention Model definition 87
8.3.1.3 The Platform Independent Autonomic Model (PIAM) 88
8.3.1.4 The Platform Specific Autonomic Model (PSAM) 90

8.1.3.5 The Autonomic Code Generation 91

8.3.2 The Intelligent Office case study- Generality Evaluation 94
8.3.2.1 Task and service definitions 95
8.3.2.2 The Intention Model definition 96

8.3.2.3 The Platform Independent Autonomic Model (PIAM) 98
8.3.2.4 The Platform Specific Autonomic Model (PSAM) 99

8.3.2.5The Autonomic Code Generation 99
8.3.3 The Pet Store case study-Adaptability Evaluation 100

8.3.3.1 Task and service definitions 101

8.3.4 The Salt World case study- self organising systems 105

8.3.4.1 Task and service definitions 106
8.3.4.2 The Intention Model definition 108
8.3.4.3 The Platform Independent Autonomic Model (PIAM) 111
8.3.4.4 The Platform Specific Autonomic Model (PSAM) 113
8.3.4.5 The Autonomic Code Generation 114
8.4 Summary and Discussion 114

9. CONCLUSIONS 116
9.1 Motivations and Approach Summary 116
9.2 Achievements and contributions 117

9.3 Thesis summary 119

9.4 Conclusion and Discussion 120

vii

9.5 Comparative evaluation of proposed design method 121

9.6 Future work 122
APPENDIX A: 124

Design by contract. 124
Benefits of Design by Contract 126

APPENDIX B: 127

Business Process Oriented Modelling 127

Business process classification 127
Business process modelling languages 128
BPEL4WS and WS-BPEL 128

Business Process Modelling Notation 129

APPENDIX C: 130

Development Environment Description 130
APPENDIX D: 133

Software Design Patterns 133

APPENDIX E: 136

Generated Artifacts for Evaluation Case Studies: 136

Online Travel Agency (OTA) case study 136
The Pet store case study 139
The Intelligent Door case study 141

The Salt World case study 142

REFERENCES 145

viii

TABLE OF FIGURES

Figure 3.1: High level guidelines for Autonomic System Design [57] 23

Figure 4. I: A high level architecture of proposed autonomic development process 30

Figure 4.2: A revised development process lifecycle for autonomic systems 31

Figure 4.3: A network of cooperative change controllers for core components change 34

Figure 4.4: A network of controllers for autonomic components change 36

Figure 5.1: A simplified diagram for proposed design method lifecycle 38

Figure 5.2: A set of tasks for the Online Travel Agency domain 39

Figure 5.3: The required services for a particular task 39

Figure 5. 4: Metamodel for XML based Intention Model. .40

Figure 5.5: The class diagram for XML schema of the composite file .41

Figure 5.6: Simplified UML profile for self healing systems .42

Figure 5. 7: Transformation rules for Java metadata .43

Figure 5.8: An interaction model for autonomic Java web services (proxy with embedded

sensor and actuator} 45

Figure 5.9: The Contract Element defined in an XML file .46

Figure 6.1: Application of autonomic transformer to core system 51

Figure 6. 2: Autonomic Profile Definition User Interface 52

Listing 6.1 : Monitor definition for critical parameters 52

Listing 6.2: Policy Definition for critical parameters 53

Listing 6.3: Model Transformation process 53

Figure 6.3: Extraction of Platform Specific Autonomic Model... 54

Listing 6.4: Abstract to Java Platform Map 55

Listing 6.5: Abstract to C# Platform Map 56

Listing 6.6 : Java Interface for abstract to platform map 57

Listing 6.7: The Abstract to Platform Transformer 57

Figure 6. 4: The Template based code generation process 59

Listing 6.8: A set of packages for Java application 60

Listing 6.9: The package descriptor Java class 60

Listing 6.10: The class descriptor Java class 61

Listing 6.11 : The Method descriptor Java class 61

ix

Listing 6.12: The Java Data Importer for retrieving data from data model. 62

Listing 6. 13: Data Importer Interface 63

Listing 6.14: The JavaClassTemplate used by the generator 63

Listing 6.15: The Java code generator class 65

Listing 6.16: A generated skeleton for FlightSelectionProcess Web Service 66

Listing 6.17: A generated skeleton for PaymentCardValidator Web Service 67

Listing 6. 18: The C# Data Importer class 68

Listing 6. 19: Java class for C# Web Services template 69

Listing 6.20: A Generated C# Web Service 72

Listing 6.21: Autonomic Java Data Importer 73

Listing 6.22: Monitor Descriptor Java Class 73

Listing 6.23: Critical Parameters Descriptor Java Class 74

Figure 7.1: Model Synchronisation Framework Layers 78

Figure 7.2: More detailed synchronisation framework 79

Listing 7.1: The change notifier and observer interfaces 80

Listing 7.2: Java class for the PIM controller 80

Listing 7.3: Java code for APIM change plan engine 81

Figure 8. 1: A set of tasks for the Online Travel Agency domain 86

Figure 8. 2: The required services for the 'Book flight' task 86

Figure 8. 4: The required services for the 'Hire car' task 87

Figure 8. 5: The Online Travel Agency Intention Model. 87

Figure 8. 6: Composite file for Online Travel Agency domain 88

Figure 8.8: A Simplified Version of the Core System and the Assurance Element. 90

Figure 8.9: Java Autonomic Online Travel Agency system 91

Figure 8. 10: Autonomic Java Web Services Lifecyc1e 92

Figure 8.11: Flight details entry form 93

Figure 8. 14:Notification of card verification and seat reservation 94

Figure 8. IS: A set of tasks for the Intelligent Office domain 95

Figure 8. 17: The thermometer service for 'MeasureOfficeTemparature' task 96

Figure 8. 19: The Intention Model for the Intelligent Office domain 97

Figure 8. 20: Composite Model for the Intelligent Office domain 98

Figure 8. 21: The autonomic model for Intelligent Office model.. 99

Figure 8.22: The C# Autonomic Intelligent Office domain 99

x

Listing 8. 1: Generated C# code for Access Interface web service 100

Listing 8. 2: Generated C# code for Thermometer web service 100

Figure 8.23: A high-level view of the major modules of pet store application [80] 101

Figure 8. 24: Tasks for Pet Store domain 102

Figure 8.25: A set of services for 'the sell products to customer' task 102

Figure 8.26: Services for order pets from supplier 102

Figure 8. 27: New service injection user interface 103

Figure 8.30: Task work flow after service injection 105

Figure 8. 31: A set of tasks for the Salt World domain 106

Figure 8. 33: A set of services for SaltGrainDropping task 107

Figure 8.34: A set of services for SaltConcentrationCa1culation task 108

Figure 8. 35: The Intention Model for SaltWorld domain 109

Figure 8. 36: Service Compositions for SaltWorld tasks 110

Figure 8. 37: Business process interactions for Salt World domain 110

Figure 8. 38: The Service-Monitor-Controller design style for the salt world domain .. 111

Figure 8. 39: Autonomic profile definition for Salt World domain 112

Figure 8. 40: A simplified version of the salt world autonomic model (PIM) 113

Figure 8.41: A simplified version of the salt world autonomic model (PSM) 114

Listing A. 1: DBC in Eiffel 124

Listing A. 2: DBC in Jass (Java assertions) 125

Listing A. 3: DBC in jContractor 125

Listing A. 4: DBC in iContract 126

Figure C. 2: The Abstract model stage (The Intention Model) (PIM) 131

Figure C. 3: The process of creating new domain 131

Figure C. 4: the Autonomic model (PIM) 132

Figure C. 5: the autonomic model (PSM) 132
Figure D. 1: Class Diagram for Observer Design Pattern [99] 134

Figure D. 2: Proxy Design Pattern Class Diagram [99] 134

Figure D. 3: The Model-View-Controller Architecture [80). 135

Listing E. I: A proxy class for PaymentCardValidator Java web service 136

Listing E.2: A JSP file for PaymentCardValidator proxy invocation 136

Listing E.3: A generated skeleton of code for PaymentCardValidator web service 137

Listing E.4: A generated skeleton for the FlightSelectionProcess monitor 137

xi

Figure E. 1: Intention Model for Online Travel Agency domain 138

Figure E. 2: Service Composites for Online Travel Agency domain 139

Figure E. 3: The Intention Model for Pet Store domain 140

Figure E. 4: Service composites for Pet Store domain 141

Figure E. 5: The Intention Model for IntelligentOffice domain 141

Figure E. 6: Service composites for Intelligent Office domain 142

Figure E.7: Generated Java web service for SaltGrainContainer service 142

Figure E. 8: Generated Java web service for SaltConcentrationCalculator service 143

Figure E. 9: Generated Java web service for CarrierStateManager service 143

Figure E. 10: Generated Java web service for SaltGrainCarrier service 144

Figure E. 11: The monitor service for the SaltConcentrationCa1culator service 144

xii

CHAPTERl

INTRODUCTION

1.1 Motivations

The advances in networking and computing technology have led to the explosive growth

seen today in distributed applications and information services that impact all aspects of

our life. The nature of these applications and services is extremely complex,

heterogeneous and dynamic. As these systems and applications continue to grow in terms

of the complexity, dynamics and scale, current tools and techniques are reaching the

limits of their effectiveness. Researchers, therefore, had to consider alternative

approaches to address this problem. They have adopted a set of strategies employed by

the biological systems and their effort has resulted in the emergence of the autonomic

computing paradigm. This paradigm was first introduced by IBM to the National

Academy of Engineers at Harvard University in March 2001. Such a paradigm is inspired

by the functioning of the human nervous system and its fundamental objective is to

design software systems that exhibit autonomic and self managing capabilities. In such

systems, the management and configuration tasks which are used to be performed by the

system administrators are delegated to the software itself, supplied only with high-level

policies, and thus shielding the administrators from carrying out these notoriously

difficult tasks.

Although the autonomic systems are very promising and their benefits and values for the

software design industry are evident, the support and design process for such systems is

still unclear. This is probably due to the nature and unique features, stated above, that

distinguish these systems from the ordinary ones which make the already existing

software development processes, such as the waterfall process, not suitable or

appropriate for designing these systems. Therefore, there is required work and research to

be conducted and undertaken to find a good candidate for an autonomic system design

process.

Despite the well defined approaches proposed so far, including the IBM, to address and

guide the autonomic systems design, this important aspect has not been fully addressed

yet by any of these approaches. Therefore, the primary aim of this research is to design

and develop a modelling framework for autonomic systems, which will guide and help

designers develop such systems. This design method distinguishes itself from the existing

ones by providing a complete lifecycle for the autonomic systems development where the

designer is guided and supported from the very early stage of the design process (the

requirement stage) and up to the last stage when a set of useful skeletons of code is

generated. More importantly, unlike other approaches which also have adopted the

Model Driven Development (MOD) paradigm, this design method has raised the

abstraction level one level higher by not committing itself from the beginning to any

specific technology. The other approaches tend to adopt a particular technology from the

early stage of the development process, the object oriented technique for instance (UML

class diagrams).

In addition to the MDD paradigm, this design method is based on well-accepted and

widely recognised paradigms such as the Service Oriented Architecture (SOA), Business

Process Oriented Architecture (BPOA) and the Extensible Modelling Language (XML).

1.2 Challenges

To design and develop such systems, a number of theoretical and practical aspects need

to be addressed which form the basis and requirements of a comprehensive and well

engineered an autonomic systems reference design method. These challenges can be

addressed as follows:

• Reference models: these include the reference design method that defines

and establishes the high level stages of the autonomic systems development

process, internal reference models such as the service-monitor-controller

model, model synchronisation framework and model transformation engines.

• Mechanisms: these include approaches and tools related to the issue of

providing a well-defined and resilient design method for autonomic or self-

managing systems. To this end, a variety of services, tools and a framework

need to be designed, developed and implemented providing a set of utilities

including:

2

o The definition of the necessary and appropriate stages that comprise the

proposed autonomic development lifecycle process. This development

process supports and guides the system designer all the way from the

requirement stage to the code generation stage.

o A model transformation engine for writing the transformation rules that

are responsible for transforming one model in one stage to another model

in another stage.

o The definition of the required and necessary elements that have to be

injected into a core system in order to introduce and bring in the

autonomic capabilities.

o Using software design patterns to establish and define some relationship

between involved elements in a particular situation, the monitoring of a

specific parameter for instance.

o The definition and establishment of an appropriate way that brings

adaptability and modifiability characteristics to the system to be made

autonomic and evolvable.

o The handling of the model synchronisation issue, which is crucial in a

design method claiming to be an MDD compliant.

o The development of an environment in a high level language such as Java

or C# to enable the autonomic system designer to demonstrate and

experience the feasibility of the proposed development process or design

lifecycle.

1.3 Approach

The work described in this thesis aims to develop a design method for the autonomic

systems. Here, we provide a support for an autonomic system designer throughout the

whole lifecycle of the system development, from the system requirement phase to the

implementation phase where useful skeletons of code injected with autonomic

capabilities are created. To bridge the gap between the high level models aimed at

domain experts and low level ones especially suitable for designers and programmers, we

employ the MOD technique. Therefore, we divide the design method lifecycle process

into a number of stages according to the MDD approach. Three fundamental stages can

be identified, namely the Platform Independent Model (PIM), Platform Specific Model

(PSM) and Code generation.

3

For theoretical support, this research draws on a number of research results emerging

from related fields, including:

• Autonomic systems: using some proposed models and concepts that enable a

system to manage itself by monitoring, analysing, planning for corrective

actions and applying and issuing such actions.

• Model Driven Development: using the MOD approach to raise the abstraction

level of the software systems. This is particularly important here to abstract

away from any specific platform details in the early stages of the software

development, which helps and enables the elimination of the effect of the

technology change.

• Service Oriented Architecture (SOA): using some proposed models and

features of the SOA paradigm to enable the autonomic and self-managing

systems. SOA paradigm is well suited for addressing such systems due to the

features and concepts offered by this paradigm. The loose coupling between

interacting parties (services) and dynamic binding are crucial and beneficial

features to the autonomic systems.

• Design patterns: using some well understood and appropriate design patterns

to model and design some important relationships between involved parties in

some scenarios or situations. The observer design pattern, for example, is

used to establish the relationship between the monitor and the monitored or

managed element.

This research also involves an experimental approach, in which a number of models and

transformations are proposed. These models and transformations are then designed,

implemented and evaluated via some case studies.

1.4 Contributions

The main novel contributions to knowledge resulting from conducting this research are

outlined as follows:

• A complete lifecycle for autonomic systems design: this lifecycle describes the

required stages that a system designer should go through should he or she

intends to design and produce systems that exhibit autonomicity. This

lifecyc1e guides and supports the system designer from the very early stage of

4

the design method where the designer sets up and defines the requirements of

the system in question until the last stage where a useful piece of code is

automatically generated. A set of design principles is adopted and employed

throughout the lifecycle. The separation of concern principle, for example, is

applied here to keep the abstract model of the system under development

separate from the Meta system that consists of the required elements for

exhibiting the autonomic capabilities. That makes the system easy to evolve

and extend to accommodate new capabilities and add useful future desirable

aspects.

• The task model for system requirement definition: this is the starting point of

the lifecycle of the proposed design method. Here, the system requirements

are captured and presented in terms of tasks. A task is a high level goal that

should be addressed by the system in question. Here, unlike other approaches

that adopt the MOD, our approach raises the abstraction level even higher by

not binding to any specific technology, the object oriented paradigm for

instance. A UML use case diagram is used to specify the tasks. These tasks

are defined at very high level in a way that they can be broken down and

expressed in terms of services. These services responsible for fulfilling and

addressing a specific task are generated by using the UML sequence diagram,

which shows the relationship between those interacting services. This process

is repeated for each task in the system under study. The set of tasks involved

in a particular system, and thus the whole system, is encapsulated in an entity

called a domain.

• A Model Driven Development (MDD) compliant design method: the design

method proposed in this research is supported and based on the Model Driven

Development (MOD) paradigm. This results in raising the abstraction level of

software development and thus eliminating, or at least minimising, the

technology change effect.

• Transformation rules engine: this includes a set of required files used to

encapsulate the transformation rules necessary to generate one model from

another. These files have been coded in Java classes and Java DOM APls are

used to parse the various involving models since they are all expressed and

5

represented in XML documents. Here, transformation files can be, generally,

classified into:

o An abstract to Platform Independent Model (PIM) autonomic model

transformation.

o A Platform Independent Model (PIM) autonomic to Platform Specific

Model (PSM) autonomic model transformation.

o A Platform Specific Model (PSM) autonomic to code transformation.

• Aspects profiles: these profiles are defined to specify and encapsulate the

required elements and components for the various aspects that the system

under development might accommodate. Aspects include, the security and

Quality of Service (QoS), the four autonomic capabilities (self-healing, self-

protecting, self-configuring and self-optimising).

• Autonomic design styles: In our approach to designing the autonomic systems,

we have proposed and employed two different design styles to introduce and

inject the autonomic capabilities, namely the Service-Monitor-Controller

(SMe) and the design by contract styles.

• Adaptable automatically generated code: the autonomic code skeletons and

artifacts generated by the transformation rules have been made adaptable in

that a new artifact or component can be easily added or removed from the

system in question. Such autonomic code skeletons follow a particular design

style and pattern that helps and supports the issue of system adaptability.

• Model synchronization mechanism: A mechanism for realising the

synchronisation between the involved models throughout the MOD based

development process Iifecycle is proposed and implemented. This Java based

framework synchronises the involved models and keep the whole system in a

consistent status should any changes or modifications have been performed on

any part of the system.

1.5 Research objectives

In this study of ways to extend the Model Driven Development (MOD) paradigm to

support business process oriented architecture, the project's objectives include:

6

• The development of a model-driven design method for autonomic systems,

which starts from business domain models and facilitates both intentions and

aspect injection.

• The development of model transformation rules and associated engine to

support autonomic software engineering.

• The design and definition of an autonomic systems profile including

associated metamodels and frameworks.

• The development of model synchronisation framework to support software

evolution and/or process and aspect injection.

• The evaluation of the developed method.

1.6 Thesis Organisation

This thesis comprises of nine chapters, which are outlined below:

• Chapter I: will introduce the main motivations of the work presented in this

thesis, challenges, contributions and thesis structure.

• Chapter 2: will introduce the relevant background theories, principles and

technologies relevant to the work presented in this thesis. Such technologies

and approaches include Model Driven Development (MOD), Autonomic

systems, Service oriented Architecture (SOA) and Web Services

• Chapter 3: will present a review of previous works on autonomic systems

design that have been conducted so far by which the proposed design method

presented in this thesis was inspired. In particular, this chapter reviews some

of the research that has been reported in the literature relevant to model-based

and model-driven development methods for autonomic software, some of

which have adopted a range of paradigms, theories and/or architectural

models.

• Chapter 4: will introduce our approach and design method for modelling and

engineering autonomic systems from a conceptual perspective. Only the

architecture, concepts and high level design decisions and ideas will be

introduced and described here.

7

• Chapter 5: will present a detailed description of our design method. Here, a

number of aspects are covered including the whole lifecycle of our design

method and justification for design decisions and technology choices. The

whole design method lifecycle process is described here in a number of stages

according to the MOD approach.

• Chapter 6: will introduce and elaborate on the model transformation

framework that have been proposed and developed. The three fundamental

components of this framework are presented and described in detail. These

components include the abstract to autonomic transformer, the PIM

autonomic to PSM autonomic transformer and the autonomic code generation

transformer.

• Chapter 7: will introduce and describe the model synchronisation framework

that is proposed and developed to synchronise the different models of the

proposed lifecycle once a change has been performed on any of these models.

• Chapter 8: will present an evaluation of the autonomic design method

introduced in this thesis. The evaluation contains qualitative analysis of the

design method proposed here. This included an evaluation of the design

method lifecycle process in general in addition to some critical analysis to

some models that have been adopted and developed in some particular stages

throughout the MOD different stages.

• Chapter 9: will conclude the thesis where a summary, what has been achieved

and contributions are presented as well as some proposed future work.

8

CHAPTER2
BACKGROUND

This chapter provides a background description of the underpinning concepts and

methods used in this study, and should provide a gentle introduction of the motivations

for the work and the positioning of the proposed design model.

2.1 Model Driven Development Paradigm

The history of software development is a history of raising the abstraction level [1, 2].

Each level allows the system developer to focus more directly on solving the problem at

hand rather than implementation details. This drive for higher abstraction has led to the

development of high-level programming languages including Java, C++, C # and

Smalltalk, and software development techniques such as Model Driven Development

(MOD) paradigm.

The idea promoted by the MOD is to use models at different levels of abstraction for

developing systems. Thus, the model plays a central role in this paradigm. In contrast to

the non-MOA approaches, the model here is not used only for documentation purpose, as

in the waterfall approach, but is regarded as a central artifact from which other

intermediate models and source code are derived in an automated or semi automated

manner. The transformations between different models are automated by using formal

models of the software system and well-established mappings between different models.

2.2 Model Driven Architecture

The Model Driven Architecture (MDA) was proposed by the Object Management Group

(OMG) -- in early 2001 -- as a support for model driven software development approach.

The method is based on the separation of domain and platform modelling and

information from the core software behaviour specification, then code is automatically

generated for a given domain and platform using automated model-based transformation

techniques. Hence, the models are considered as the backbone of the development

process and used not only for documentation purposes but also as a building tool. Each

activity of the system development life-cycle involves taking some models as input and

9

producing target models as output. Therefore, the process of building a software system

can be viewed as a series of model transformations which lead, in the end, to delivering

the final and target system [3].

2.2.1 Model abstraction
The MDA approach is based on ideas of raising the abstraction level, automated software

generation and platform independence [2]. In [4], the MDA is described to be " ...

motivated by integration and interoperability at the enterprise scale. It utilizes models

and a generalized idea of architecture standards to address integration of enterprise

systems in the face of heterogeneous and evolving technology and business domains ... ".

In other words, there are three fundamental goals of the MDA approach, namely

interoperability, portability and reusability. These are reflected in the model layering

outlined below [5]:

• Computational Independent Model (CIM): This is the model of highest level

of abstraction with which the MDA process starts. It presents only high-level

concepts of the system under development and, thus, facilitates

communication between the domain experts and the system architects. This

model may be depicted in use cases diagrams to show the user interaction

with the system and activity diagrams to present the high level activities

required for achieving such a system.

• Platform Independent Model (PIM): A platform Independent Model views a

system from platform independence point of view. No specific platform

design decisions are made in this model, so it can be applied to a number of

different platforms of similar type. This is very similar to Java slogan: "write

once and run everywhere". The significant value of this approach is that

reusability and extensibility can indeed be achieved here since many models

aiming for many different platforms, such as .NET, EJB, CORBA, etc., can be

produced from just one model.. Since this model is intended to be a platform

independent, Unified Modelling Language (UML) is seen to be the best

choice for this modelling task. However, an extension to the standard

notations of this language is needed to introduce some domain specific

concepts. This extension normally takes the form of UML profiles, which

consist of predefined stereotypes and tagged values.

10

• Platform Specific Model (PSM): A platform Specific Model (PSM) represents

a model of a system for a specific platform, which can be obtained by

applying, manually or automatically, appropriate transformation and mapping

rules on a Platform independent Model. Target platforms may include .NET,

CORBA, J2EE, EJB, etc.

2.2.2 Model Transformation
The model transformation plays a key role in Model Driven Development [6]. A model

transformation takes as input a model conforming to a given metamodel and produces as

output another model conforming to a given metamodel. The following subsections

introduce the proposed model transformation techniques.

2.2.2.1 Model Transformation techniques
Since the model transformation process is the key to a successful application of MDD

[7], a number of techniques and approaches have been proposed and adopted so far to

address this aspect. In [8], such techniques are categorised into "Model to code

transformation" and "Model to model transformation". We agree with the authors in that

it would be better to call it Model to text instead of model to code since non code

artifacts, XML for instance, can be generated. These two kinds of approaches are

presented in the two following subsections.

2.2.2.1.1 Model to text approaches
Such a category can be further classified into visitor based and template based

approaches outlined below:

• Visitor based approaches: This kind of text (code) generators provides a

visitor mechanism to traverse the internal representation of a model and write

code into a text stream. Jamda [9] is an example of this kind of approaches,

which is defined as an object oriented framework consisting of a set of classes

to represent UML models, an API to manipulate models and a visitor

mechanism to generate code. Inheritance is used here to introduce new model

elements where existing Java classes representing the predefined model

elements types are subclassed.

• Template based approaches: Most of the existing MDD tools adopt the

template approach to accomplish the model to code generation. A set of

popular tools include JET [10], FUUT-je [11], Codagen Architect [12],

11

AndroMDA [13], ArcStyler [14], OptimalJ [15], StringTemplate [16] and Apache

velocity [17]. In [8] a template usually consists of the target text containing splices of

metacode to access iriformation from the source and to perform code selection and

iterative expansion.

Compared to a visitor-based transformation, the structure of a template resembles more

closely the code to be generated. Templates lend themselves to iterative development as

they can be easily derived from examples. Since the template approaches discussed in

this section operate on text, the patterns they contain are untyped and can represent

syntactically or semantically incorrect code fragments. On the other hand, textual

templates are independent of the target language and simplify the generation of any

textual artifacts, including documentation.

2.2.2.1.2 Model to Model Approaches
Model-to-model transformations translate between source and target models, which can

be instances of the same or different metamodels. All of these approaches support

syntactic typing of variables and patterns. Most existing MOA tools, such as

AndroMOA[13], provide only model-to-code transformations, which they use for

generating PSMs (in this case being just the implementation code) from PIMs. When

bridging large abstraction gaps between PIMs and PSMs, it is easier to generate

intermediate models rather than go straight to the target PSM. For example, when going

from a class diagram to an EJB implementation, tools such as OptimaiJ [15] would

generate an intermediate EJB component model, which contains all the necessary

information to produce the actual Java code from it. This makes the transformations more

modular and maintainable. Also, intermediate models may be needed for optimization

and tuning, or at least for debugging purposes. In addition to PIM-to-PSM

transformation, model-to-model transformations are useful for computing different views

of a system model and synchronizing them.

2.2.3 Model Synchronization
The usage of different levels of abstraction and the separation of concerns, promised and

addressed by the MOD approach, on the one hand reduce the complexity of the overall

specification, but on the other hand the increasing number of used models very often

leads to a wide range of inconsistencies. Model transformation technique can be used to

overcome this problem as stated earlier where a source model is transformed to a target

model according to a set of transformation rules. However, the software development

12

process is a quite iterative with frequent modifications to the involved models. Thus,

some mechanisms and solutions should be introduced to address the issue of model

synchronisation [18].

2.3 Service Oriented Development Approach
The concept of Service Oriented Architecture (SOA) has received significant attention

within the software design and development community [19]. It is based on the idea of

modelling software systems in terms of services which can be used by other systems. In

other words, it is an architectural style of building software systems or applications

which offers loose coupling between components, services in this case. A service is a

self-contained software module that is intended to provide a specific functionality and

does not depend on the context or state of other services [20]. Another definition by [21]

defines SOA as a distinct approach for separation of concerns. Here, the logic required to

solve a large problem can be better constructed, conducted and managed if it is

decomposed into a collection of smaller, related pieces (services). This makes these

components, services, reusable by other systems. However, reusability is not the real

reason behind the emergence of the SOA approach since reusability has already been

addressed by a great deal of existing component-based technologies such as COM+,

CORBA and RMI. Instead, the SOA approach is aiming to address the interoperability

issue which emerged because each component-based vendor wanted their solutions to be

the market dominant.

2.3.1 Characteristics of Service Oriented Development Approach
The following characteristics can be identified in the SOA approach:

• Services are the basic building blocks of SOA. These services publish their

interfaces, to be used by other applications, in: a platform, language and

operating system independent way.

• Clients or service consumers can dynamically discover services. In other

words, the location of the server is transparent to the client and is only known

at runtime.

• Software (services) should be able to interoperate with other services running

on other platforms.

13

Here, service providers register their services in a public registry or broker which later

could be used by the service consumers to look up a particular service that match specific

criteria. Provided that the service is available, the registry provides the consumer with a

contract and an endpoint address for that service [20].

The key to SOA is Web standards, including XML, WSDL, SOAP, and UDDI. Each

service has a standard-based interface. These common standards enable the services to

discover, communicate, and interoperate with one another, independent of their

underlying operating system, platform, or programming language. That is, for example,

services written in C# running on .NET platforms and services written in Java, running

on Java EE platforms, can both be used in a common composite application.

Consequently, services can be deployed on various distributed platforms and be accessed

across the network. Due to this flexibility and reusability of services, they can be easily

created and rearranged to meet new business needs, providing business agility. With

SOA, building and deploying IT systems becomes easier and faster. It provides the best

of both worlds; it reuses IT assets and enables IT to flexibly change to better support

business change [22].

Most of today's mission critical business applications and systems are being built using

multiple distributed software components. However, as pointed out in [23], these

software components systems fall short when it comes to the issue of developing self-

managing systems, as:

• It is very difficult to upgrade software components to accommodate new

functionalities without shutting down the running system.

• Extending the functionalities of the current software system does not occur in

an automatic way and requires plenty of additional programming works and

reconfiguration of systems by experienced IT professionals.

• In contrast, as stated earlier, the software service is self described and can be

discovered and invoked at runtime through the Internet which offers a new

and beneficial approach for composing software systems. Thus, the service

concept and SOA can play a crucial role in designing and addressing the

autonomic systems design issue [23,24].

14

2.3.2 Web Services
Web services are a technology that can be used to implement SOA and are increasingly

becoming the SOA implementation of choice [25]. In a definition by the World Wide

Web Consortium (W3C) presented in [26], the web service is:

"... a software system identified by a URI, whose public interfaces and bindings are

defined and described using XML. Its definition can be discovered by other software

systems. These systems may then interact with the Web service in a manner prescribed by

its definition, using XML-based messages conveyed by Internet protocols ..."

A definition by webservice.org presented in [27] states that: "... web services are

encapsulated, loosely coupled contractedfunctions offered via standard protocols ... "

2.3.2.1 Web Services Programming Stack
The web services programming stack is a collection of protocols and Application

Programming Interfaces (APIs) that enables individuals and applications locate and use

web services. In [28], six layers for the stack can be identified and described as follows:

• The network layer: This is regarded as the foundation of the web services

programming stack since all web services must be available over some

network. Here, the most used network protocol is the HTTP. Other protocols,

however, such as IIOP can also be used.

• XML-based messaging layer: This layer IS responsible for facilitating

communications between web services and their clients. The protocol used

here is called SOAP, short for Simple Object Access Protocol.

• Service description layer: At this layer, the web service description takes

place. The WSDL (Web Services Description Language) is used here to

describe web services to clients in the form of XML documents.

• Service publication layer: Any form of action that makes the WSDL

document available to a potential client can be regarded as a publication of

service. However, the more popular way to carry out this task here is to

publish the WSDL of a particular web service in a UDDI registry to be

located and discovered by interested clients and developers.

• Service discovery layer: Any action that enables clients to access the WSDL

for a particular web service is considered as a service discovery. This action

15

can be simple, such as accessing a file or URL containing the WSOL, or

complex, such as querying a UODI registry and using the retrieved WSOL

files to select the most suitable web service.

• Service workflow layer: This layer is concerned with the process of

composing web services into workflow. Put another way, this layer is

responsible for modelling the interactions between a set of web services

which often form a useful entity referred to as a business process. Modelling

languages proposed for this task include WSFL from IBM, XLANG from

Microsoft and, the most popular one, WS-BPEL.

2.4 Summary

This chapter introduced and overviewed the related and relevant technologies and

paradigms to the research issue and methodologies presented in this thesis. Relevant

technologies and paradigms presented here include:

• Autonomic computing

• Model driven development (MOD)

• Service Oriented Architecture (SOA)

• Web services

16

CHAPTER3

AUTONOMIC SYSTEMS DESIGN

This chapter starts with a detailed description of autonomic systems design. This will be

followed by a literature review of the state-of-the-art relevant to model driven tools and

techniques for autonomic software development.

3.1 Autonomic Computing

The continually growing complexity and cost oftoday's software systems has made their

management and maintenance task extremely difficult to achieve [29]. This is due to the

distributed, dynamic, open and heterogeneous nature of these systems in which

applications are made up of different components written by different vendors and

implemented in different platforms [30]. In such systems, the task of troubleshooting

technical problems can tie up systems and Information Technology (IT) professionals for

significant periods of time while affecting the business performance in a negative way.

Estimates show that from 30-70% of resources are used by IT professionals, in medium

to large companies, for troubleshooting problems and the outrage costs per hour on

business critical systems can range from thousands to millions of dollars [31]. To make

the situation even worse, there is a shortage in the number of highly skilled people who

can manage and handle the complexity of such computing environments. Since the

existing tools and methodologies are incapable of managing the complexity of these

systems and could not meet their requirements, an appropriate solution had to be

adopted; otherwise the IT sector is heading for what it has been termed as a software
crisis [32].

To overcome such a crisis and address the software management complexity, researchers

had to consider alternative approaches based on strategies employed by the biological

systems. As a consequence, the autonomic computing - as coined by IBM -- has emerged

as a new paradigm and approach to the design of complex distributed systems. It is

inspired by the mechanisms of the human nervous system and its main objective is to

reduce the cost and expertise required for managing the complexity of the IT systems

17

[29, 33]. This was first introduced by IBM to the National Academy of Engineers at

Harvard University in March 2001 [32]. In such a paradigm, software systems will have

the responsibility for managing themselves, given only high-level policies, and therefore

shielding the human user or the system administrator from handling and performing this

rather difficult task. Here, software systems should have the ability and the quality

required to exhibit the self-healing, self-configuring, self-optimising and self-protecting

capabilities.

The fundamental characteristics of an autonomic system are presented in [32], as follows:

• An autonomic computing system needs to "know itself'. In other words, in

order to govern itself, an autonomic system needs to gain detailed knowledge

of its components, current status, ultimate capacity and all connections with

other systems.

• An autonomic computing system must be able to configure and reconfigure

itself under varying, including unpredictable, conditions.

• An autonomic computing system never settles for the status quo; it always

looks for ways to optimise its workings. It monitors its constituent parts and

fine-tunes workflow to achieve predetermined system goals.

• An autonomic computing system must be able to recover from routine and

unusual events that might cause some of its parts to malfunction, and discover

problems and then find an alternate way of using resources or reconfiguring

the system to keep functioning smoothly.

• An autonomic computing system must be an expert in self-protection. Itmust

detect, identify and protect itself against various types of attacks to maintain

overall system security and integrity.

• An autonomic computing system must know its surrounding environment and

act accordingly. It will find and generate rules for how best to interact with

neighbouring systems. It should negotiate the use by other systems of its

utilized elements, changing both itself and its environment in the process of

adapting.

• While an autonomic computing system independent in its ability to manage

itself, it must function in a heterogeneous world as well.

18

• An autonomic computing system should be able to anticipate the optimised

resources required while keeping its complexity hidden without the

involvement of the user in that implementation.

The fundamental capabilities of the autonomic or self-managing systems as described by

IBM are:

• Self-healing: an autonomic system should be able to detect and diagnose

occurring problems. Typical problems can be of a low level type (hardware

failure) such as memory chip bit errors, or of a high level type (software

aspect) such as an error in a directory service. The minimum requirement of

the self healing process is to fix the detected problem and not to introduce any

further harm to the system.

• Self-optimisation: an autonomic system should be able to optimise and tune its

resources in order to improve performance and provide improved QoS. Such

optimization actions may include reallocating resources in response to

dynamically changing workloads or ensuring that a particular business

transaction can be accomplished in a timely fashion. Changes may be initiated

proactively as opposed to the reactive behaviour.

• Self-configuration: an autonomic computing system should be able to

configure itself driven by high level goals. This enables the system to adapt

dynamically to changing enticements and user requirements. The self

configuration process can take the form of installing new components or the

removal of existing ones.

• Self-protecting: an autonomic system should be able to protect itself from

malicious attacks and also from costly mistakes committed by the system end

users which may take the form of deleting important files. The autonomic

system should be augmented with the necessary tools and resources to achieve

security, privacy and data integrity. The ideal self protecting system should be

able to anticipate security attacks and try to prevent them from occurring

rather than to take a reactive action [29,32,34].

19

3.2 IBM Autonomic Reference Model

To realise autonomicity, IBM has proposed a reference model for autonomic control

loops which is sometimes referred to as MAPE-K (Monitor, Analyse, Plan, Execute, and

Knowledge) loop.. It is been pointed out in [29] that the MAPE-K control loop

resembles and is probably inspired by the generic agent model proposed by Russel et al

[35] . In such a model an intelligent agent observes its environment via sensors, and uses

these observations to plan actions to be executed on the environment.

Below is a brief description of the components that are involved in the above control

loop. Abstractly speaking, the autonomic element is composed of two primary

components, namely the autonomic manager and managed element.

• The managed element: it is the entity that is monitored by the autonomic manager

to observe some desirable or undesirable behaviour. Such an element may take

the form of software resource such as a database or a directory service, or

hardware resource such as a CPU or a printer [36].

• Sensors and Effectors: the sensors are used by the monitor component of the

autonomic manager to monitor and collect the required information about the

managed element. Similarly, the effectors are used by the execute component to

carry out the possible changes to the managed element.

• Monitor: it is responsible for collecting, aggregating, filtering and reporting

collected data from a managed element.

• Plan: the plan component uses monitoring data obtained from the sensors to

create a series of changes which are performed on the managed element. A

typical form of such a component may take the form of Event-Condition-Action

(ECA) rules. Existing policy languages and applications in autonomic computing

can be found in [37] [38,39] [40,41] [42,43].

• Execute: this contains the business logic that drives the execution of a specific

plan.

3.3 Existing Implementations of the IBM Control Loop
A number of tools and applications have been developed to implement the above

described reference model. Below is a brief description of some of these

implementations:

20

• The Autonomic Toolkit: this prototype implementation, referred to as the

Autonomic Management Engine, of the MAPE-K control loop was developed by

IBM as part of its developerWorks Autonomic Computing Toolkit. This tool is

not meant to be a "ready to use" application for developing autonomic managers

but rather it serves as a practical framework and reference implementation for

injecting autonomic capabilities into software systems [44]. Such a framework is

implemented in Java but can be communicated with by other applications through

XML messages.

• Kinesthetics eXtreme: this Java based implementation of the MAPE-K control

loop was developed by to introduce autonomic capabilities to legacy systems that

were not designed in the first place with the autonomic capability in mind. Refer

to [45] [46] for more information.

• ABLE: this IBM's toolkit offers the autonomic management in the form of multi

agent architecture where each autonomic manager is implemented as an agent.

Such a toolkit is developed in Java. See [47] for more information on ABLE.

3.4 Model Driven Development

In this section, we review the approaches and attempts that have been made to address

the autonomic systems design problem using the Model Driven Development (MOD)

paradigm.

Gracanin et al [48] believe that agent based systems and architectures offer a strong

foundation for the design and development of an autonomic system. The researchers

pointed out that the key challenge here is the selection and efficient use of effective agent

architecture. They also believe that the Model Driven Approach accommodates the

underlying architecture that could automate the development process. In other words, the

MDA can be used here as a basis for system composition and automatic code generation

of autonomic systems. The outcome of this approach is a framework for the agent-based,

model-driven architecture for autonomic applications development. The whole work

presented by the researchers is based entirely on a distributed agent architecture called

COUGAAR, short for the Cognitive Agent Architecture. The COUGAAR is an open

source, distributed agent architecture based on Java.

Also a similar approach, based partially on MDA, by Bulter et al [49] tackles the issue of

the accommodation of unforeseen changes. The researchers in this work address the

21

complexity and the high cost of such an issue via employing autonomic techniques in a

model driven approach to system change. The researchers identified two aspects of

system change. The first one is a design based change over the development cycle which

is best characterized by incrementing software version numbers. The second aspect deals

with dynamic change over software systems in order to react intelligently to a

dynamically evolving environment. The researchers address the first aspect of system

change through the adoption of the Model Driven Architecture techniques where the

focus is on the importance of modelling in managing change from a design led focus.

Here, the development of systems is organized around a set of models by forcing a series

of transformations between models, organized into an architectural framework of layers

and transformations. Pena et at [50] also employed the MDA to model and design

autonomic systems. More precisely, the researchers have dealt with the autonomic

systems as policy based self management software systems where they use the MDA to

model the policy to avoid any unnecessary platform specific details at the abstraction

level of a policy. They, then, apply the transformations to the different models to bring

the policy through all the level that has to go through until reaching the final level which

represents the implementation.

3.5 Model-Based Design Approaches

In this section, we review a set of approaches to designing the autonomic systems which

have adopted the model based technique to tackle and address this issue. In addition to

some approaches proposed and adopted by the research team at the Computing and

Mathematical Sciences School of Liverpool John Moores University, a pool of other

approaches is presented as well.

In addition to the IBM approach to designing autonomic systems, many other approaches

and models have been proposed to handle such an issue. These approaches have adopted

and applied different paradigms, technologies and system theories in their proposed

autonomic models. Such paradigms include some techniques and models adopted from

the artificial intelligent field, agent based systems, system theories such as the Soft

System Methodology (SSM) and Viable System Model (VSM), and the MDA.

Law et al [51], adopted the VSM approach to designing autonomic systems. Based on

this approach, the researchers developed a reference architecture, known as J-reference,

22

which was underpinned by deliberative and normative models adopted from the artificial

intelligent field.

Also, Bustard et al [52] have applied the Viable System Model (VSM) [53, 54] in

combination with the Checkland's Soft System Methodology (SSM) [55, 56]. The latter

was employed to extract and define the system requirements, which offers a systematic

and systemic structure with which to unravel complex situations using basic principles of

system thinking. This design model, adopts a top-down approach in a set of stages,

including:

• Environment Design: This is achieved using the SSM method, which is refined

using the VSM model.

• System design: which is achieved using a combination of methods including

SSM and other computing-oriented modelling techniques such as; UML or Other

Design Technique (ODT).

Based on the above design model, Taleb-Bendiab et al [57] have taken a further step and

proposed a development process lifecycle. In fact, this research was partially and to some

extent inspired and built on the model presented here. A high level model of this

proposed approach is depicted in Figure 3.1.

Figure 3.1: High level guidelines for Autonomic System Design [57].

Badr et al [58] extended current models of self-adaptive software and reflective

middleware with deliberative control mechanisms, which resulted in proposing a novel

23

autonomic control middleware. This is to support the design and lifetime management of

deliberative middleware and application services. The developed approach was used as a

reference model to facilitate a normative self-governance model that supports the safe

self-adaptation of distributed applications for lifetime application management.

Pereira [59] used the VSM model to describe the fundamental requirements for a

software framework and associated middleware services in order to develop on demand

application services based on employing self-healing capability. Moreover, the researcher

provided better understanding of software self-healing requirements for autonomic

distributed software engineering, where she presented a reference model for self-healing

capability.

Omar [60] proposed and developed a self-management reference model to specify and

design autonomic distributed applications. In such a model, the management and control

functionalities are encapsulated in middleware services that support and help deploy,

discover, invoke and manage the planetary scale resources.

Reilly [61] has studied the instrumentation need for distributed systems management and

the manner in which this instrumentation may be applied. The notion of on demand

distributed software instrumentation was investigated here. As in[60], the management

aspect (instrumentation here) is promoted as a new middleware service. The outcome of

this research was the development of a dynamic software instrumentation framework.

Herring [62] ,in his PhD thesis entitled "The intelligent control paradigm for adaptable

and adaptive architecture", proposed a viable software architecture which is totally based

on the viable system model (VSM). The result of his work is a model-based architecture

for developing adaptive, at runtime, software systems. These systems are referred to as

viable systems. In his work, Herring adopted the Product Line Approach (PLA) to

develop the viable system approach. The PLA contains a meta-level on which some

domain-specific PLAs are based. This meta- level comprises a reference-meta model,

meta-architecture, meta-framework, and a meta-component transfer protocol. Here, these

elements are modelled using the Viable System Model (VSM).

In[63], the approach of designing self managing systems IS based on the use of

requirements goal models. In such an approach, unlike in [62] and [51], a large space of

possible behaviour of the system under consideration is defined at design time. Here, the

functional stakeholder goals are modelled in terms of hard goals where the goals either

24

satisfied or denied. In contrast, Non functional stakeholders' goals are modelled as soft

goals where goals tend to be qualitative and hard to define formally. In general, the

proposed architecture for autonomic software systems here is based upon the association

of each goal in the goal model with an autonomic element whose objective is to address

and achieve that goal. Although this approach is based on a well established and tested

design principle, it is not particularly suitable for designing autonomic systems. This is

due to the open and dynamic nature of such systems in which new and better alternative

behaviours are likely to present and emerge during the runtime. Moreover, some of the

already (at design time) identified and implemented behaviour may turn out to be

impractical in some situations. Therefore, new alternatives and opportunities will have to

be discovered and implemented by the system at runtime. So, this approach will not

always succeed in addressing the requirements and behaviour of autonomic systems and

thus an autonomic system based on it will not survive in many situations.

3.6 Aspect Oriented Programming based Techniques

This section introduces the techniques that were proposed and implemented using the

Aspect Oriented Programming approach [64] for designing and modelling autonomic

systems.

Dantas et at [65] proposed a framework to provide adaptation in software systems using

Aspect]. Such a framework is composed of a number of components, namely the base

application, adaptability aspects, auxiliary classes, adaptation data provider, context

manager. While the base application contains the core system code, the other components

coordinate and work together to provide the adaptability capability at runtime.

Another work by Yang et al [66] was carried out to provide dynamic adaptation using

AOP. Two concepts are used here, namely the join points and rules. The former decides

where the adaptation should be applied in the code whereas the latter specifies the

conditions when an adaptation should take place.

Greenwood et al [67] proposed and developed a framework which introduces adaptive

behaviour to applications using a combination of AOP and policies. Adaptability is

achieved here by defining the appropriate policies using the Event-Condition-Action

rules.

Duzan et at [68] proposed an aspect-based approach to programming QoS adaptive

applications that separates the QoS and adaptation concerns from the core application

code and middleware services.

25

Also, Falacarin [69] developed a framework for dynamically enabling applications to

adapt and evolve using runtime aspect oriented programming. In such a framework, a

system designer or administrator can control the architecture of an application by

dynamically inserting and removing code extensions.

3.7 Model Transformation Techniques

This section reviews the state of the art and current approaches to the model

transformation field. Here, we distinguish between two kinds of approaches, namely the

model to model approach and the model to code approach.

"... A transformation of two or more models may be described by specifying how a model

conforming to its metamodel is translated into a corresponding model conforming to the

other metamodel ..." [70]. Refer to Section 2.2.2 for more information on model

transformation paradigm.

A great deal of techniques and approaches have been proposed and developed in the field

of model transformations. Below we introduce and review some of these approaches:

UMT (UML Model Transformation Tool), proposed and developed by SINTEF [71], is a

general purpose UML transformation tool that is designed and intended to perform

different kind of transformations. It is a tool to support model transformation and code

generation based on UML models in the form of XMI I[72] documents. The XMI models

are imported by the tool and then converted into a simpler intermediate format which

forms the basis for further validation and generation towards different target and specific

platforms, Web services for instance. The intermediate format, referred to in UMT as

light XMI, is represented in XML format. The transformation rules here are done and

encapsulated in XSLT files where such transformers are run on intermediated models

(light XMI) to target and generate the code for one specific platform. In addition, the

transformation engine here does also support writing transformers in other technologies

such as Java.

AndroMDA [13] is an open source code generation framework that adheres to the Model

Driven Architecture (MDA) approach. It takes a UML model from a CASE-tool and

generates classes and deployable components (J2EE or other) specific for your

application architecture. AndroMDA comes with an array of ready-made cartridges for

I XMI, short for XML Metadata Interchange, is an Object Management Group (OMG) standard for
exchanging metadata information via XML documents.

26

common architectures like Java, Web services, Spring, EJB, .NET, Hibernate, JSF, Struts

and XSO. Similar to the UMT, the design model is imported to this tool in the form of an

XMI file where specific transformer is applied to it which generates code for specific

platform. However, the model to model transformation rules are here written in Java

language and also, recently, in the QVT-like Atlas Transformation Language (ATL). The

code generation process which is the ultimate goal of the AndroMOA tool is done via the

use of templates. Such templates are written and coded using well known template

engines such as velocity and FreeMarker. A worth mentioning point here is that the

Platform Specific Model (PSM) is the same as the code generation stage since the

transformation process goes from the Platform Independent Model (PIM) straightaway to

the code.

SiTra [73, 74] is a simple model transformer written in Java language. This model

transformation framework was designed to help advances programmers to start using the

concepts of model transformation and also for the academic researchers to experiment

with the creation of prototypes of implementation of their transformations. The

underlying idea of SiTra is to focus primarily on the implementation of model

transformations rather than on the specification language, maintenance and

documentation aspects of such transformations.

3.8 Summary and Discussion

The autonomic system design approaches presented in this chapter have adopted different

paradigms and taken several directions. For the simplicity sake, these approaches are

classified in this discussion into MOD and non-MOD based approaches. In general, non-

MOD based approaches tend to focus on the implementation aspect of the autonomic

system development process where usually the platform, technology or architecture is

already decided on in the early stages. This in fact makes it very difficult for the system

designer or developer to modify or change the system in question in order to target and

migrate to a different or new emerging platform or technology. Rather than concentrating

on the problem at hand, the system designer here is distracted by the solution or

implementation details. Also, there is no a supporting tool to transform the system

requirements which normally take the form of UML diagrams to executable code. As for

the MOD based approaches, their primary goal is to start at a higher level when

designing and developing autonomic systems. This enables a thorough specification and

27

more controllable engineering of the system requirements since the system designer is

not rushed too early into the implementation and technology details and thus is more

focused on the problem at hand. Then, via supporting tools and transformers, the system

at the abstract level is transformed into a set of software components for one specific

platform. However, these approaches have shown some drawbacks which need to be

addressed. Firstly, although these approaches claim to be adhering to the MOD principles

and starting the development process at the PIM stage, they in fact make an early

commitment to specific architectures and platforms. A typical example of this trend is the

adoption of the object orientation paradigm via normally the use of the UML class

diagrams. Consequently, the domain expert, whose involvement is very important

regarding the aspect of expressing the system under study in a platform independent

manner, is neglected here and not included in the development process loop. Also,

current approaches that adopt the SOA paradigm and the web services in particular as the

target platform, use the WS-BPEL 2.0 to define and specify the service interactions for

one specific business process (the task in this thesis terminology). This tight and explicit

coupling between business processes and their associated services often renders and

works against the agile adaptation of information systems to very likely changing

business processes and users requirements. Secondly, some of these approaches bypass

the PSM stage and go straightaway from the PIM stage to the code dealing with the latter

as the PSM. This leads to the issue of the semantic gap2[75] which has direct impact on

the code generators since the latter will be of high complexity to bridge the detail gap

from the PIM to the code. Thirdly, the handling of the model modification impact seems

to be unaddressed. There is no mechanism in place to synchronise the models that make

up the development process lifecycle once a change or modification has been undertaken.

These drawbacks and unaddressed issues are handled and dealt with in the work

presented in this thesis. The next chapter provides a conceptual description of the

proposed and developed design method that accommodate the necessary stages,

components and frameworks for designing the autonomic systems in general and

overcoming and addressing the deficiencies and weaknesses that are exhibited by the so

far proposed approaches.

2 The semantic gap issue refers to the situation where there is a large semantic gap or distance between the
input and target language.

28

CHAPTER4

CONCEPTUAL DESCRIPTION OF PROPOSED

DESIGN METHOD

The primary goal of this chapter is to introduce the conceptual and architectural

description of the proposed design method for engineering autonomic systems. The

detailed description of the proof-of-concept implementation of the method and associated

supporting techniques will be covered in the following chapters.

4.1 An Overview of Proposed Design Method

Following the MDD principles, the proposed novel method is intended to facilitate the

seamless autonomic software development starting from domain modelling and business

process requirement models (intention) all the way to the generation of required software.

The general requirements of the proposed design method include:

• Design a system with the domain experts in mind.

• Provide a mechanism to automate the transition from a domain specific model to

a platform specific model, assuming the code is a model too.

• Adding the autonomic capabilities to the system in question In a way that

maintains the separation of concern design principle.

• Creating and producing skeletons of code that exhibit autonomicity which can

then be used by programmers or system developers to fill out some of the

required business logic.

• Through the model abstraction principle - the method makes no commitment to

platform specific design decisions at early stages in order to target a broad range

of platforms and technologies.

Following the conventional MOD principles, the initial arrangement for the proposed

development process can be constructed as illustrated in Figure 4.1. Since it is evident

that such an arrangement is not capable of accommodating and addressing some of the

above listed requirements, an extended and modified version of this arrangement is

required. This is shown and introduced in the next section.

29

Autonomic systems at
Platform Independent
Model (PIM) stage

Autonomic systems at
Platform Specific Modtl
(pSM)stage

Autonomic code
,

Figure 4. 1: A high level architecture of proposed autonomic development process.

4.1.1 An Extended MDD arrangement for Autonomic Systems design
As illustrated in Figure 4.1, the arrangement of the proposed development process IS

mapped to the standard MDD stages .. However, in order to engineer the autonomic

capabilities in a way that maintains the separation of concerns design principle, the first

stage of the arrangement depicted in Figure 4.1 should be split up into two distinct stages,

one for specifying the core system requirements and the other for injecting the autonomic

capabilities into the core system components. In relation to the separation of concerns

principle, the autonomic aspect is seen here as the concern that should be engineered in a

way that has no effect on the core system under study. The latter should be able to target

and accommodate new desirable non functional requirements and not just limited and

bound to the autonomic capabilities (or just one autonomic capability such as the self

healing). The extended and revised arrangement of the conventional MDD stages

presented in Figure 4.1 is shown in Figure 4.2. As it can be seen, the new arrangement is

composed of four primary stages or models, namely: the Platform Independent Model,

Autonomic Platform Independent Model, Autonomic Platform Specific Model, and

Autonomic code.

30

FlIststa.ge of
con\'entionalMDD is
spit into two stages to
maintain separancn 0 f
concern principle

Platform IndependentModt!
(PIM) (Intention MOOt!)

Autonomic Platform
Independent Modt! (PIM)

Autonomic Platform Specific
Model(PSM)

Autonomic code

Figure 4.2: A revised development process lifecycle for autonomic systems.

The models shown in Figure 4.2 are described as follows:

• The Intention Model: Tn this stage of the development process lifecycle, the

system requirements are described and defined using some concepts and

terminology close to and understood by the domain experts. This helps in

introducing practically those stakeholders into the automated development

process loop. The system requirements being modelled here are of a

functional nature, which represent the core system or the Intention model. The

outcome of this stage is a platform independent or jargon free model.

• The Autonomic Model: To achieve the separation of concern principle, the

autonomic capabilities were added at later stage and kept separate from the

core system obtained in the first stage. This frees the core system from been

bound to one specific non functional capability, the autonomic in this case,

and thus not being able to evolve or target a new capability. The autonomic

model contains the core system (Intention model) in addition to the autonomic

components which are encapsulated in an entity called the Assurance. As the

name suggests, the Assurance takes the responsibility for assuring that the

core system is working and working well according to some predefined

policies and reports coming from components like sensors and monitors.

31

• The PSM Autonomic Model: This model contains the same components as

the ones in the previous model with the terminology and data types for

specific platform added into these components.

• The Autonomic code: This model contains the business logic and workable

autonomic code which takes the form of components or services (SOA), and

their interactions as well, that work together and exhibit the autonomic

capabilities injected in earlier stages. However, some business logic or code

needs to be filled in by programmers to make the code fully working.

Examples of such code include Web Services, EJB, CORBA, etc.

4.1.2 Model Transformation
The transformation from one model to another at anyone stage is performed via a

generative model transformer equipped with level specific templates. Thus, in this case,

three different model transformers are required, namely: the Autonomic profile, Platform

metadata injector, and code generator. The responsibilities and tasks of theses

transformers can be described as follows:

• The autonomic transformer is responsible for adding and injecting the

autonomic capabilities into the abstract model residing at the highest stage

(PIM).

• The Platform metadata injector transformer contains the artifacts and

necessary processes to add the required terminology and data types to target a

specific platform, such as Web Services, EJB, C#, etc.

• The Code generator transformer produces the final and workable autonomic

code which takes the form of service or components -- following Services

Component Architecture (SCA) paradigm -- that work together and exhibit

the autonomic capabilities injected in earlier stages. Examples include Web

Services, EJB, CORBA, etc.

More detailed descriptions of these transformers are presented in Chapter 6.

4.2 Fundamental Concepts

The proposed autonomic development process is based on some fundamental concepts,

namely:

32

• Domain: The domain here is the system under consideration which comprises

a number of tasks.

• Task: Each task, in tum, contains a set of services responsible for addressing

and achieving that task.

• Service: These services, later at the code generation stage, are mapped into

software components such as Web Services, CORBA, Java, .NET, etc.

• Composite: the services of a particular task coordinate with each other to

address the purpose of that task. Such coordination, which involves a set of

interactions, is encapsulated in an entity called composite.

The proposed design method presented here extends the emerging Service Component

Architecture (SCA/ [76] standard in that, it provides support starting from the business

process (task) level all the way to the code generation stages. Hence, we refer to it as

Autonomic, Task, Service and Component architecture (AutoTaSC) method.

4.3 Model Synchronisation issue

Model synchronisation in MDD can be characterised as a mechanism to facilitate model

consistency management, which can be triggered by model change due to either upstream

or downstream model transformations and/or other typical software changes made further

downstream in the MDD processes. Hence, the absence of a robust mechanism for MDD

model synchronization can lead to situations where any source and target models can

change in an uncontrolled and inconsistent way. Thus, as depicted in Figure 4.3, the

proposed method puts a major emphasis on this aspect and applies the autonomic design

principles sensors-effectors (or event condition action) as the underlying mechanism to

controlled model synchronisation. In other words, any modification made on one model

would trigger appropriate actions on the other models to reflect and propagate the

changes being carried out and leave the system in a consistent state. Therefore, a robust

network of four collaborative change or modification controllers, one for each model,

should be constructed and formed to keep the whole Iifecycle in a consistent state.

In particular, this synchronisation framework distinguishes between changes taking the

form of adding (or removing) new services or other elements where their definitions are

3 The Service Component Architecture is a set of specifications which describes a model for building
applications and systems using a Service-Oriented Architecture.

33

already included in the metamodel and changes requiring the introduction of new concept

to the metamodel of a considered system under development. We also distinguish

between changes or modifications conducted on core services or components and those

performed on autonomic services or components responsible for injecting autonomic

capabilities into core systems. These kinds of change have a direct impact on the way and

manner the above mentioned change controllers communicate and interact. For instance,

if a change has occurred at the autonomic code model, two scenarios can be identified:

• Autonomic component related changes: changes of this kind trigger the PSM and

PIM autonomic model controllers but not the abstract (intention) model

controller.

• Core component related changes: changes performed on this kind of components

require change notification messages to be sent to the remaining models'

controllers including the abstract or intention change controller.

Below is a description of the necessary controllers and their communication channels

when the change is connected with adding or removing some components whose

definitions are already included in the metamodel of the system in question.

1~ T ~ r
Intention PIM PSM Autonomic

change autonomic autonomic code

controller controller controller controller

Figure 4.3: A network of cooperative change controllers for core components

change.

4.3.1 The Intention Model Change Controller
Any changes or modifications made on the model at this stage of the system development

lifecycle should be reported so other models at the other stages can modify themselves

accordingly. This notification task is performed by the Intention model change controller.

In this case, this controller should only notify the autonomic change manager and in turn

the latter notifies the two remaining change controllers, the PSM autonomic and

autonomic code controllers. The change notification for the controllers beyond the

autonomic controller cannot be sent directly by this controller since at that point of time

34

the critical parameters (parameters of particular interest to monitor) of the new added

services would not have been defined and added by the system designer. Critical

parameters and policy definitions are accomplished in the PIM autonomic stage, so it is

better off delegate the notification task to the change controller of this stage.

4.3.2 The PIM Autonomic Change Controller
Changes and modifications conducted at the PIM autonomic model result in notification

messages sent by the change manager to the three remaining controllers, the Intention

change controller, the PSM autonomic change controller and the autonomic code change

controller.

4.3.3 The PSM Autonomic Change Controller
Changes and modification performed on the model at the PSM autonomic stage cause the

controller to send change notification messages to each of the change controllers located

at the other stages of the development process lifecycle.

4.3.4 The Autonomic Code Change Controller
Any change or modification of the working code will result in notification messages sent

by this controller to the remaining change controllers in the development process

lifecycle. Changes may take the form of adding or removing service components such as

Web Services. Also changing the workflow of interacting services or components can be

considered as another form of model change.

Figure 4.3, shows the above change controllers as well as the communication channels

that connect them when the change is carried out on the core components of the system

in a certain model of the lifecycle process.

As for those changes performed on the autonomic components, the communication

channels will be slightly different from those depicted in Figure 4.3. The appropriate and

correct communication channels of such a scenario can be shown in Figure 4.4. As it can

be seen from the diagram, there is no direct connection or messaging channel between

the Intention model change controller and the other change controllers of the network

35

Intention
change
controller

•
PIM PSM Autonomic
autonomic autonomic code
controller controller controller

Figure 4.4: A network of controllers for autonomic components change.

A detailed description of this synchronisation framework and how the autonomic

computing principles can be used to handle and address the MDD change issue is

presented in Chapter 7.

4.4 Summary

This chapter introduced our approach and design method for modelling and engineering

autonomic systems from a conceptual perspective. Put another way, only the

architectures, concepts and high level design decisions ideas were introduced and

described here. These aspects include the fundamental stages that comprise the Iifecycle

of the proposed development process, the model transformers required to transition from

one model to another and the model synchronisation mechanism adopted to keep the

system in a consistent state should any modifications or changes occur.

36

CHAPTER5

PROPOSED AUTONOMIC DESIGN METHOD

In this chapter, we introduce in detail our design method and approach to designing

autonomic systems. Here, we present the design process lifecycJe as well as some

justifiable design decisions and technology choices.

5.1. Autonomic Design Method and Model Lifecycle

The proposed autonomic design method adopts the MOD paradigm to gain some

valuable benefits which are very crucial in designing distributed systems in general and

autonomic systems in particular. Raising the abstraction level and separation of concerns

are among those benefits. Achieving those design principles will result in a system

design that can be a future proof and would survive in a world of rapidly changing

system requirements and technologies. Comparing with the three fundamental models of

MOD, these three models are present in our method. At the very high level, we present

our system requirements in a computation independent model where a set of UML use

cases is used to identify and define the required tasks in a particular domain. From the

first stage of expressing our system in an XML file to the stage where autonomic

capabilities are added and encapsulated in a separate XML file, we are still at the

Platform Independent Model (PIM) stage. However, the Platform Specific Model (PSM)

starts at the point of adding the specific elements and terms for a specific platform, Java

for instance. Also the code generation stage is supported in our design method which is

also done via encapsulating the transformation rules in Java classes.

The fundamental stages of the proposed design method lifecycle are depicted in Figure

5.1. Also, the three transformation engines or model transformers necessary for transition

from one stage to another are shown. These involving stages and required model

transformers are described in more detail in the subsequent sections. For more

information on the proposed autonomic design method, please refer to [77, 78].

37

The Intention Mo del (IM) The PlatfonnIndependent
AutonomicMoclel

P!OOuce(l)
i--~ (PIAM)

• AHtofun>iu.s:foreach
iDsl.

• Aco1ffJJOsiteforthe
servicesinteradioDS.

• The Intention Model.
• TheAsmranc:eModel

Pfoduoe(2)

Apply(2)
Apply(l)

PlatfOIJD Specific
TrmsfoDntn(lava)

B
~~::::;

Code GmerationEnpDe

Apply(3)

Figure 5.1: A simplified diagram for proposed design method Iifecycle.

5.1.1 The Intention Model Capturing
Capturing the intention model which contains the system requirements takes the

following steps:

• The functional system requirements are captured and presented in terms of

tasks. A task is a very high level goal that has to be addressed in order to

address the overall system requirements. A use case diagram is used in this

stage. These tasks belong to a specific domain such as the universities,

healthcare, manufacturing, etc. Figure 5.2 shows this relationship. These tasks

are defined at very high level in a way that can be broken down and expressed

in terms of services. A service is an abstraction of a software or hardware

entity that has a role to play in addressing the task goal. In our terminology,

tasks always start with verbs while nouns are used to represent services. For

example, book flight is a task while flight selection process is considered as

one of the services to enable this task.

38

«Task»
Charge customer

Figure 5.2: A set of tasks for the Online Travel Agency domain.

• Each task obtained in the previous step is realised by a set of services. A

sequence diagram can be used to achieve such services. This process is

repeated for each single task. Figure S.3 presents this step.

~
TaskTrigger

1'9>1
1
1

.... 1

1<9>1
1
1
1
I
1
I
I

.... 1

~
1

1: message1 ,...: 2: message2
v v

~ __ 3~~~~~~~ _

4: message4

1
5: return rflsult<------------r-----------

1
1
1
1
1

Figure 5. 3: The required services for a particular task.

• Then, each task and its services will be presented in terms of an XML file.

The latter represents the intention model which contains the core services. In

this stage, there is no kind of decision or terminology about the target

platform. The XML file obtained here should be complied with a particular

metamodel which contains some rules and specific structure that control and

specify the allowed XML elements to be included in such an XML file. This

is achieved here using an XML schema which is depicted in Figure 5.4 using

a UML class diagram.

39

0,,·

Parameters Tasks
1..•

1..•

Operations

Services

1..•

Interface

Figure 5.4: Metamodel for XML based Intention Model.

• Also, out of the sequence diagrams presented above, the service interactions

for each task can be extracted. Such a task interaction is referred to as a

composite, thus, a set of composites can be obtained. Each composite defines

the interactions between participating services as well as the sequence in

which these interactions must be executed. These composites are saved in a

separate XML file which takes the following form:

domainName_composite.xml. Each composite element contains a set of

Interaction elements and in turn each Interaction element defines the two

participating services. In our terminology we call these services the calling

party and called party. Figure 5.5 shows the XML schema structure for the

composite file using the UML class diagram. The set of services and the

composite defining their interactions and the order, in which these interactions

must be fired, form the concept of the Business Process (BP).

40

Interactions 1... InterllCtlon

erlltlon
: string

....eturnType : string
emeter.

Figure 5.5: The class diagram for XML schema of the composite file.

5.1.2 The Platform Independent Autonomic Model Capturing
The process of transforming the Intention model obtained in the previous stage to an

autonomic model may take the following stages:

• Each service belongs to a specific task will have the option of having the

required elements and components for realising autonomicity. These elements

are encapsulated in a profile in the form of XML file. See Figure 5.6 for the

proposed UML self-healing profile.

• The autonomic elements introduced in this profile, the monitor for instance,

are injected into the core system using a Java file (AutonomicProfile.java)

containing the required transformation rules (templates). These elements or

components are encapsulated inside an element called Assurance. The

assurance element here is responsible for ensuring the functionality and

integrity of the Intention model obtained in the previous stage. Here, the

autonomic functionality is achieved using the Service-Monitor-Controller

style (see Section 5.3.2). However, in order to achieve it using the other

proposed style (design by contract) (see Section 5.3.1), the

41

ContractProfilejava file is applied to the intention model. Refer to Section

6.2 for more detailed description of the autonomic transformer.

The output of this step is a Platform Independent Autonomic Model (PIAM).

5.1.3 The Platform Specific Autonomic Model Capturing
The process of obtaining the platform specific autonomic model can be explained as
follows:

«profile»

S.IfH.alln

ControlRules Actuator

-rutas -use -otrers
+setCritParamQ

IreportConftlct I
Monitor -lisedBy ManagedElement

-rne :ManagedElem -notify -notlfiedBy -crltParam
-crm=aram 1.... 1.....

-usedBy

!
MonltorlngProcess -lise Sensor -otrers

+staltMonitoringO +getCritParamO

Lf'
I I

[perlOdBased I IEventBased I

Figure 5. 6: Simplified UML profile for self healing systems.

• To target a specific platform such as Java or C#, a model transformer is

applied to the model obtained in the previous stage. This Java based

transformer is responsible for injecting the right and necessary concepts and

terminology of a particular platform. The output of this step is a Platform

Specific Autonomic Model (XML format). Figure 5.7 shows a simplified

form of the Java file that encapsulates the transformation rules (templates)

required for targeting Java platform, JavaPlatformjava. Notice that this Java

class implements an interface called Platform. The latter contains the

necessary methods that each new platform, such as C#, should implement.

Please refer to Section 6.3 for more details on the platform metadata

transformer.

public class JavaPlatform implements Platform{
private HashMap<String, String> abst2Java = new HashMap<String,
String>();

42

private ObjectOutputStream outStreami
private String javaMapFile "c:/Users/LA_Abuseta/javamap.txt"i

public JavaPlatform () {
II add new entry to the map
public void addEntry (String absType, String javaType) {

Abst2Java.put (absType, javaType)i

Ilretrieve corresponding Java term to abstract term
public String getJavaTerm (String absTerm)

String javaTerm = (String) abst2Java.get (absTerm);
return javaTermi

Ilretrieve the whole abstract to Java map
public HashMap getDictionary () (

return abst2Java;

II serialize the map for later retrieval
public void saveMap() {

try
outStream = new ObjectOutputStream (

new FileOutputStream (javaMapFile))i
outStream.writeObject (abst2Java)i

catch (Exception excp) {
System.out.println (excp)i

Ilread the map back from external file
public void readMap () {

try {
ObjectlnputStream inStream = new ObjectlnputStream

new FilelnputStream (javaMapFile));
abst2Java = (HashMap) inStream.readObject ();

catch (Exception excp) {
System.out.println (excp)i

Figure 5. 7: Transformation rules for Java metadata.

5.1.4 The Autonomic Code Generation
Generating autonomic code is performed at the last stage of the AutoTaSC process;

where the appropriate transformer is run for the autonomic code generation for a

particular platform. Two Java based transformers are used here, one for generating the

code for the core services and another to generate the autonomic components. To target

Java Web services platform, for instance, the JavaCodeGenerator.java file is applied to

the JavaWebServiceTemplatejava to generate the core Java web services. Likewise, the

AutonomicJavaGenerator java file is applied to the AutonomicJavaWSTemplatejava in

43

order to generate the autonomic web services. Please refer to Section 6.4 for more

information about the autonomic code generator.

5.2 Design Patterns and Architectural Style Support

To design and generate clean and easy to use, extend and maintain software systems

(code), the application of design patterns seems to be a must. In the case study of the On

Line Travel Agency presented in this Chapter 8, a number of design patterns have been

applied in order to achieve some specific design principles such as the separation of

concerns and loosely coupling associations. In such a case study, the smart proxy pattern

(Appendix D), for example, has been used to encapsulate the business logic responsible

for calling and invoking a particular web service. Thus, a web service client is able to call

a remote web service operation as it is on the same computer which frees the client from

being bound to any specific communication protocol. Had it not been for the proxy

pattern, a client would have to change the code whenever the web service undergoes

changes regarding the communication protocol. Also, the web service functionality can

be extended via adding some operations to the proxy service interface. For example, to

control and manage a web service, a sensor and actuator components which comprise the

control interface should be provided by the web service. Since these components do not

belong to the web service responsibilities, making them part of the proxy web service can

be a wise and beneficial design decision. The sensor and actuator may take the form of

getter and setter methods respectively. The observer pattern (Appendix D) is also applied

here in which the monitor plays the role of the observer and the web service, in fact the

proxy, takes the subject role. The monitor registers its interest of observing the state (a

parameter) of the web service with the proxy and on the other hand the web service (the

proxy) notifies the monitor whenever its state undergoes a change or being assigned a

new value. Figure 5.8 shows the interaction model for autonomic Java web services.

Also, to achieve the separation of concern design principle, the Model-View-Controller

(MVC) design pattern (Appendix D) is applied in our generated Java web services code.

Here, the web service invocations business logic is encapsulated in JSP files. The call or

invocation is dispatched to the web service (via the proxy service), which represents the

Model entity in this case. The proxy service business logic is encapsulated in a Java Bean

file and called from within the JSP file instead of cluttering its code and tangle it with the

JSP presentation code which is in fact regarded as a bad practice. JSP technology was

developed in the first place to separate the presentation logic and business logic concerns.

44

The view entity of this design pattern is represented by one or more JSP files where the

appropriate user interface or model information are shown and displayed to the system

user. The controller role is also played by a JSP file where this file takes the

responsibility of directing requests to the appropriate JSP file (view) and interacting with

the Model, also via a JSP file. All of these artefacts (proxies, JSP files and web services)

are automatically generated using a set of transformation templates encapsulated in Java

files.

Web service Invokes Web service Invokes Web service
client proxy ;:0-

~

Takes action Notifies

Reports eventController Monitor (JWS)
IooC

Figure 5.8: An interaction model for autonomic Java web services (proxy with

embedded sensor and actuator).

5.3 Design Styles for Autonomic Capabilities Provisioning

In our approach to designing the autonomic systems we have employed two different

styles to introduce and inject the autonomic capabilities, namely the Service-Monitor-

Controller (SMe) and the design by contract styles.

5.3.1 The Design by Contract style

The design by contract (DBC) technique employs some concepts such as preconditions,

postconditions and variants to build quality and reliable software systems. These

concepts explicitly specify what a function or operation in a system requires to

accomplish its task and what it guarantees or ensures to provide in return to its client.

Reliability is defined as a system's ability to perform its job according to some

specification (correctness) and to handle abnormal situations (robustness). This major

component of quality is very important and beneficial for addressing autonomic or self-

managing systems.

45

In our design method, we define the relationship between a particular servrce or

component and its clients (within a particular business process or task) in an XML

element called contract. Such a contract contains three children (in XML terminology)

called client, require and ensure. Descriptions of these elements are presented as follows:

• Client: this element represents a service client in a particular task or business

process and may take the form of another service or human user interacting with

or triggering the business process.

• Require: this element encapsulates the conditions and the thresholds that must not

be violated for a service to perform and accomplish its job as expected and

desired.

• Ensure: As long as the service client complies with the rule set in the require

element, the service will always guarantees providing what is set in this XML

element.

Both XML elements require and ensure, include three similar children namely

parameter, operator and expression. Figure 5.9 shows the contract element in the Online

Travel Agency domain encapsulated in XML file.

<Oom,,,nname="On neTraveIAgency">
- <Task nam ="OookFllght" Id="1">

- <ServIce nam<.l""-FlightSelectlonProce.ss· .d"'"1·>
- <lnterface>
- <operation "am ="getAvollable.FlIghts· returnedvar.".. ..volobleFlights· returnType='Ust">
- <params>

<param name""sourceAlrport" type"'·St.ring· />
<:p"ram na~""destinotlonAlrport' type","String' I>
<param name="doteOfTravel' type",'Oatc' I>

<lparams>
- <conlfact>

-cchent' >Gny</c:;I,ent >
- <req-Utf'~>

<:parame ter>doteOfTrovel</ parame ter ">
<opera tor >GrcaterThan </operatQr,.
<express,on> TodayOate </expres $.on>

<:/requ.re>
- <ensu.re>

<parameter ..fllghtNo<./parameter>
<operator>not</operator>
<expreS$.on"'null <le;<press.on>

oe;/ensure:>
</contrllct>

</operabon'>
- <operac.on nam~::::r-·reserveSeotO"Flight· f'"etumedvar-"done" relurnType.'"booleonlll >

- <params:>
<pa..,arnnatne-'""fNan\e- tYPE"_"S'tring" />
<param name="INorne' type,,·SI.ring· I'>
<param name"'·fllghtNo· typeSt.ring· />

</params>
</operatoon>

</Ioterface>
- <Requ"e'>
- <Service oam<!",·Pa.yrnentCardvalidatorr" >

<operation name.a"verifyPaynlentCard· I>
<lService">

</ReQu.re>
</Service>

Figure S. 9: The Contract Element defined in an XML file.

46

5.3.2 The Service-Monitor-Controller Style
In this design style, three fundamental components can be identified, namely the service,

monitor and controller. Figure 5.10 depicts these components as well as the

communication channels that show the control flow between them. What follows is a

description of these components and the messages exchanged between them:

• Service: This component contains the code that is responsible for addressing

one specific functional requirement of the system under study. Within the

context of autonomic or self-managing systems, this component is referred to

as the managed element and such management can be achieved via

monitoring its state and behaviour against some predefined thresholds or

conditions. The service notifies interested parties in its state by sending a

signals or message that indicates some event has happened, a variable state

change for example.

• Monitor: the process of monitoring a particular service is accomplished by

this component. Upon receiving an event notification from the service, the

monitor starts reading the value ofthe monitored variable. The obtained value

which is often obtained via a sensor is compared to a predefined value or

threshold. In case of violating the threshold or the condition set, a conflict

signal is raised and an event notification is sent to the controller.

• Controller: this is responsible for selecting and issuing the corrective actions

that are necessary when a conflict event is received from the monitor. The

controller usually makes such action selection based on a set of situations or

events and attached corrective actions. Whenever the event sent by the

monitor matches a situation in the controller, the corresponding action is

taken. Such action is performed via an interface offered by an actuator which

is able to access and adapt the target service variable.

47

--------- Report conflict
--------- Take action
--- ---- -- Send event
----- -- -- Read from sensor

Figure 5.10: The Service-Monitor-Controller (SMC) style for autonomic systems.

5.4 Summary
In this chapter, we have introduced in detail our design method and approach to

designing autonomic systems. In particular, we have presented the design process

lifecycle as well as some justifiable design decisions and technology choices. Since our

method is complied with the MDD paradigm, the design process lifecycle is presented in

terms of the stages and models that exist and form such a paradigm. These stages or

models include the Platform Independent Model (PJM), Platform Specific Model (PSM)

and the code. However, we have proposed four stages due to the non-functional

requirements, the autonomic capabilities in this case, that are injected to the core system.

Such stages or models include the Intention Model (IM), Platform Independent

Autonomic Model (PlAM), Platform Specific Autonomic Model (PSAM), and the

Autonomic Code (AC) generation. The transformation rules needed for obtaining one

model from another throughout the design process lifecycle are also presented and shown

in each stage. These transformers are encapsulated in Java files and applied to the

different XML based models.

Also, some design patterns have been adopted and implemented to introduce and inject

the autonomic or self-managing capabilities. The proxy design pattern, for instance, were

adopted and applied to introduce some kind of loosely coupling relationship between the

monitor service and the monitored or managed service. In addition, the observer design

pattern is used here to again draw or establish a relationship between the monitor and

48

monitored service. The monitor service here takes on the role of the observer while the

monitored service plays the role of the subject.

49

CHAPTER6

MODEL TRANSFORMATION FRAMEWORK

This chapter presents the model transformation framework developed to support the

proposed AutoTaSC design method.

6.1 Model Transformation Framework Components
The proposed model transformation framework comprises of a set of transformers

described as follows:

• The autonomic transformer: This transformer is responsible for adding and

injecting the autonomic capabilities into the abstract model residing at the

highest stage (PIM). Such autonomic capabilities are provided by autonomic

components such as the monitor, sensor, actuator and policy.

• The Platform metadata injector transformer: This transformer contains the

artifacts and necessary processes to add the required terminology and data

types to target a specific platform, such as Web Services, EJB, C#, etc.

• The Code generator transformer: This transformer produces the final and

workable autonomic code which takes the form of components or services

(SOA) that work together and exhibit the autonomic capabilities injected in

earlier stages. Examples include Web Services, EJB, CORBA, etc. To

demonstrate and show the feasibility of our design method, we introduce here

a set of case studies, namely the Online Travel Agency and Pet Store

applications. Here, we show via these concrete examples the required XML

and Java files that involve in the lifecycle of the autonomic systems design

according to our method. Also, the generated autonomic skeletons of code are

shown here.

The subsequent sections describe in detail these framework components.

6.2 The Autonomic Transformer
As stated earlier in Chapter 5, there are two deign styles adopted in the proposed design

method (AutoTaSC) for introducing the autonomic capabilities to the intention model,

50

namely the Service-Monitor-Controller and Design by Contract. An autonomic system

designer here can adopt one of these two styles at the first stage of the transformation

framework. The two following subsections are dedicated to describe the autonomic

capabilities injection process using these two design styles.

6.2.1 The Service-Monitor-Controller Based Transformer
This model transformer contains the transformation rules necessary to introduce the

autonomic capabilities (encapsulated in the assurance element as described in Section

5.1.2) into the intention (core) model. Thus, this Java based model transformer is the first

to apply in our proposed development process lifecyc1e. Prior to applying the

transformation rules containing in this transformer, the critical parameters to be

monitored should be defined as well as the policies, residing at the controller component

described in Section 5.3.2, that control and drive the behaviour of these parameters. This

process is described in Figure 6.1.

Pan.Xl\IL cSOCUIn.nt
ol"co... ay.an

II
Sp.city c:dtical
parawnet.... of'.y.tezn
aen-ic••

II
D.fIne polld •• for
critical p ...awnet.... of"
syst._ aen-ic••

II
Appt,..autonornie
ttanaf"onn... to CS(co... ay__ c:dtical
para_et_policy)
cSoeUlnent

Jl
AutononUc ay •• rn
(Co... ayaan+
........ nc. eIan.m)

Figure 6.1: Application of autonomic transformer to core system.

The user interface for performing the two crucial steps, specifying the critical parameters

and policies that control them are shown in Figure 6.2. Listings 6.1 and 6.2 below show

the autonomic transformer components that contain the Java code responsible for

defining the critical parameters for the monitor as well as the policy that controls the

behaviour of these parameters. The process of applying the transformation rules

(transformer) to the abstract model is carried out via the Java DOM transformer where

51

the result document IS saved into an XML file takes the form of

domainName_autonomic_controllerStyle.xml. The latter process is shown below In

Listing 6.3.

l&J Aut,onon1.ic Pl"Ofj~leDefinition 'for OnlineT"av~IAgency Domain

IINVALID DATE EVENT!"_-----_._--_._-_-_ ..__ ..._. ____J

I
I

Service Name: I,FliUhtSeI8ctionp.-ocesa

OI>eratl'ol1 Nanle: foetAvaliableFIiOhtS
--------8

Paranleter: IdateOfTl'"ave, I._.IL- ~

ParanneterType: I_D_a_te --__--~=~~_-_-_-__-_-_-__-_-_-_--_-__- -==~~~l
I Condition: E~~~~_=r~ l~c:::.D__a_te . J

Event raised:

[Define polic:y_. I I s_ rule I ~-J

Figure 6.2: Autonomic Profile Definition User Interface.

Listing 6.1: Monitor definition for critical parameters
private void saveMonitor()
task =

(Element)xmlDoc.getElementsByTagName ("Task") .item(taskList.getSelected
Index());

service =

(Element)task.getElements8yTagName("Service") .item(serviceList.getSele
ctedIndex()) ;

Element monitor = xmlDoc.createElement("Monitor");
monitor.setAttribute("name",

"Monitor_"+service.getAttribute("name")) ;
Element operation = xmlDoc.createElement("MonitorOperation");
operation.setAttribute("name", "startMonitoring");
operation.setAttribute("ReturnType", "void");
monitor.appendChild(operation) ;
Element moniVar = xmlDoc.createElement("MonitoredVar");
moniVar.setAttribute("name",

paramList.getSelectedltem() .toString());
moniVar.setAttribute("type", typeText.getText());
moniVar.setAttribute("Event", eventText.getText());
Element thrushold = xmlDoc.createElement("Thrushold");
thrushold.setAttribute("operator",

operator.getSelectedltem() .toString());
thrushold.setAttribute ("value",conditionText.getText ());

52

monitor.appendChild(moniVar);
monitor.appendChild(thrushold);
service.appendChild(monitor);
xmIDoc.normalize();

Listing 6.2: Policy Definition for critical parameters

private void savePolicy() {
Element policy = xmlDoc.createElement ("Policy");
Element event = xmIDoc.createElement("Event");
event.setAttribute ("name", "event");
Element pre = xmIDoc.createElement("PreCondition");
pre.setAttribute ("value", preText.getText());
Element post = xmIDoc.createElement("PostCondition");
post.setAttribute ("value", postText.getText());
Element action = xmlDoc.createElement(ICorrectiveAction");
action.setAttribute ("value", actionText.getText());
policy.appendChild (event);
policy.appendChild(pre) ;
policy.appendChild(post);
policy.appendChild(action) ;
}

Listing 6.3: Model Transformation process
private void writeToXmIFile() {

try {
TransformerFactory tFactory

TransformerFactory.newInstance();
Transformer transformer = tFactory.newTransformer();
Source source = new DOMSource(xmIDoc);
Result dest = new StreamResult(new File(xmIOut));
transformer.transform(source, dest);

catch (Exception ex)
ex.getMessage() ;

6.2.2 The Design by Contract Based Transformer
In such a design style, the autonomic or self management capabilities are part of the

service interface. In particular, the 'require 'and 'ensure' elements of the contract are

considered as part of the service operation. The system designer is provided with the

necessary user interface to define the contract element for each operation of the available

services in each task of the intention model. Figure 6.2 shows the 'Design by Contract'

pane for this option. The business logic responsible for attaching these contracts to the

intention model is encapsulated in the Java file ContractProfile.java. The model obtained

53

from this operation IS saved into a file of the format

domainName _autonomic _ContractStyle.xml

6.3 The Platform Metadata Injector Transformer

Such a transformer contains the transformation rules responsible for adding the

terminology and data types of a specific platform to the autonomic model obtained from

applying the autonomic transformer introduced above. The outcome of applying this

transformer takes the form of a platform specific autonomic model. This process is

depicted in Figure 6.3.

Autonomic (self.*)
tranlfomler

Autonomic system
mode1(p1M)

-

Autonomic system
mode1(pSM)

-
Figure 6.3: Extraction of Platform Specific Autonomic Model

This transformer includes a set of transformation templates, one for each concept or data

type. A specific template is, for instance, defined for the service concept which maps it

into a class or web service. There is a dedicated transformer for each platform (Java, C#,

etc.) which contains the required code for adding these platforms' data types and

terminologies. Such Java based transformers hold a map or dictionary with a set of

entries in which one specific abstract term maps to one particular platform term. This

map, which resides at a specific Java code, can be accessed and managed by the

transformer. Adding, deleting and modifying entries are among those operations that can

be performed on the map. Listing 6.4 shows the Java class (JavaPlaiform) that is

responsible for storing and managing the abstract to Java map, named as abst2Java in

the class. Likewise, a Java class (C_SharpPlatform) for storing and managing the

abstract to C# map, named as abst2CSharp in the class, is depicted in Listing 6.5. The

last two classes, or any class for a specific platform, implement an interface called

platform which defines the necessary interface for each abstract to specific platform map.

Listing 6.6 shows the definition of this Java interface.

54

Listing 6.4: Abstract to Java Platform Map
public class JavaPlatform implements Platform{

private HashMap<String, String> abst2Java = new HashMap<String,
String>();

private ObjectOutputStream outStream;
private String javaMapFile Ic:/Users/LA_Abuseta/javamap.txt";
public JavaPlatform () {
}

public void addEntry (String absType, String javaType)
abst2Java.put (absType, javaType);

public String getJavaTerm (String absTerm)
String javaTerm = (String) abst2Java.get (absTerm);
return javaTerm;

public int getDictionaryLength () {
return abst2Java.size ();

public HashMap getDictionary () {
return abst2Java;

public void saveMap()
try {

outStream = new ObjectOutputStream (
new FileOutputStream (javaMapFile));

outStream.writeObject (abst2Java);
catch (Exception excp) {

System.out.println (excp);

//C10se the ObjectOutputStream
try {

if (outStream! = null) {
outStream.flush ();
outStream.close ();

catch (IOException ex)
ex.printStackTrace ();

public void readMap () {
try {

ObjectInputStream inStream = new ObjectInputStream
new Fi1eInputStream (javaMapFi1e));

abst2Java = (HashMap) inStream.readObject ();
catch (Exception excp) {

System.out.println (excp);

55

Listing 6.5: Abstract to C# Platform Map

public class C SharpPlatform implements Platform{
private static HashMap abst2CSharp new HashMap();
Private String cSharpMapFile

EnvironmentConstants.PLATFORM FILE PATH+ "CSharpMap.txt";
private ObjectOutputStream outStream;

public C SharpPlatform()
}

public void addEntry(String absType, String csharpType)
abst2CSharp.put(absType, csharpType);
saveMap() ;

public String getCSharpTerm (String absTerm) {

String cSharpTerm = (String) abst2CSharp.get(absTerm);
return cSharpTerm;

public int getDictionaryLength()
return abst2CSharp.size();

public HashMap getDictionary()
return abst2CSharp;

public void saveMap() {
try{

QutStream = new ObjectOutputStream(
new FileOutputStream(cSharpMapFile));

outStream.writeObject(abst2CSharp);
}catch(Exception excp) {

System.out.println(excp);

try
if (outStream != null)

outStream.flush();
outStream.close();

catch (IOException ex) {
ex.printStackTrace() ;

} }

public void readMap() {
try {

ObjectInputStream inStream = new ObjectInputStream(
new FileInputStream(cSharpMapFile));

abst2CSharp = (HashMap) inStream.readObject();
catch (Exception excp) {

System.out.println(excp) ;
} }

56

Listing 6.6 : Java Interface for abstract to platform map.
package platforms;
import java.util.HashMap;

public interface Platform
public void addEntry(String absType, String platformType);

public String getPlatformTerm (String absTerm);
public int getDictionaryLength();
public HashMap getDictionary();
public void saveMap();
public void readMap();

The actual transformer that transforms the PIM autonomic model to the PSM autonomic

model is shown below in Listing 6.7. Each transformation rules for a specific aspect of

the system (tasks, services, operations, etc.) are encapsulated in a Java method.

Listing 6.7: The Abstract to Platform Transformer.
public class Abst2PlatformTransformer

Platform platform;
Document doc;

public Abst2PlatformTransformer(Platform p) {
platform = p;
platform.readMap();

public void setPlMAutonomicModel(Document model) {
doc = model;

public void startTransformer()

if (doc != null)

Element root doc.getDocumentElement();
NodeList tasks = doc.getElementsByTagName("Task");
for (int i = 0; i < tasks.getLength(); i++) {

root.appendChild(transformTask((Element)
tasks.item(i))) ;

}

for (int i = tasks.getLength() - 1; i >= 0; i--) {
root.removeChild(tasks.item(i));

public Element transformTask (Element task)

//Creating a corresponding task element
Element corres2Task =

doc.createElement(platform.getPlatformTerm("Task"));

57

//Retrieving the set of attributes of the task element
NamedNodeMap attrs = task.getAttributes(};

//Appending task attributes element to the corresponding platform
//element after transforming attributes to paltform specific terms

for (int i = 0; i < attrs.getLength(); i++} {

Attr attr = (Attr) doc.importNode(attrs.item(i}, true};
corres2Task.getAttributes(} .setNamedltem(attr};

//Retrieving the set of services in this task
NodeList services = task.getElementsByTagName("Service"};

/*calling Service transformation template to include platform
specific service in the platform specific task element*/

for (int i = 0; i < services.getLength(); i++)
corres2Task.appendChild(transformService((Element}

services.item(i}}} ;

return corres2Task;

public Element transformService(Element service} {
Element corres2Service =

doc.createElement(platform.getPlatformTerm("Service"}};
NamedNodeMap attrs = service.getAttributes(};

//copying of attributes
for (int i = 0; i < attrs.getLength(); i++}

Attr attr = (Attr) doc.importNode(attrs.item(i}, true};
corres2Service.getAttributes(} .setNamedltem(attr};

NodeList operations =
service.getElementsByTagName("operation"};

//calling operation transformation template
for (int i = 0; i < operations.getLength(); i++} {

corres2Service.appendChild(transformOperation((Element}
operations.item(i} }};

return corres2Service;

Since the transformer code is quite long, only the Java methods for transforming the task

and service elements are shown above.

58

6.4 The Code Generation Transformer
Since the code generation process here adopts the template approach, three fundamental

components, namely the data model, template and code generator, should be available.

The data model here takes the form of the PSM autonomic model, be it in Java, C# or

another Language, which is the output of the transformer presented in the previous

section. The template component contains a set of templates, one for each targeted

platform. A template is responsible for formatting the data model into the output code

and such a template contains references to necessary entities, which belong to the data

model. The code generator performs the transformation process and produces the

desirable output code. Such a component takes as input the data model and one template

for a specific platform. Figure 6.4 shows this template based code generation process.

The code generator should, prior to replacing the references contained in the template

with the corresponding data, have some mechanism to import the data from the data

model.

Co de generator __ ---"- __

l Jl===~-_----
Generated code.

Templates

Figure 6.4: The Template based code generation process.

The description of code generator is divided into two primary aspects, one aspect for

generating code for core services, such as Java web services, and another for generating

the autonomic services, such as the monitor service and policy.

6.4.1 Code generator for core services
Here, the data model elements are encapsulated in Java classes. Data model elements in

Java, for example, include JavaSystem, package, class, method, parameter, etc. The

59

model data importer is then used to populate the Java classes with the parsed XML based

data model. Listing 6.8 to 6.11 show the Java classes for the data model elements that

serve as containers for the retrieved data. As it can be seen, these classes are specified for

Java platform. Other platforms, however, can be targeted in the same manner. Also, the

model data importer, the JavaDatalmporter class in this case, is depicted in Listing 6.12.

Listing 6.8: A set of packages for Java application
public class JavaSystem

private String name;
private ArrayList <PackageDescriptor> packages

<PackageDescriptor>() ;
new ArrayList

public JavaSystem()
}

public String getName (){
return this.name;

public void setName (String name) {
this.name = name;

public void addPackage (PackageDescriptor packageDesc) {
packages. add (packageDesc);

public ArrayList getPackages() {
return packages;

Listing 6.9: The package descriptor Java class
public class PackageDescriptor

private String name;
private ArrayList <ClassDescriptor> classes

<ClassDescriptor>();
new ArrayList

public PackageDescriptor()
}

II Retrieval of package name
public String getName(){

return name;
}

II set the package name using the retrieved name attribute
public void setName(String name) {

this.name = name;
}

II Adding retrieved class to package
public void addClass(ClassDescriptor classDesc) {

classes.add(classDesc);

II Retrieval of classes of specific package

60

public ArrayList getClasses() {
return classes;

Listing 6.10: The class descriptor Java class.
public class ClassDescriptor (

private String name;
private ArrayList <MethodDescriptor> methods

<MethodDescriptor> ();
new ArrayList

public ClassDescriptor()
}

II Retrieval of the class Descriptor name
public String getName() {

return this.name;
}
II set the classDescriptor name using the retrieved name attribute

value
public void setName (String name) {

this.name = name;
}
II Add retrieved method to specific classDescriptor
public void addMethod(MethodDescriptor method) (

methods.add(method) ;
}

II Retrieval of methods belonging to specific classDescriptor
public ArrayList getMethods() {

return methods;

Listing 6.11: The Method descriptor Java class
public class MethodDescriptor {

private String name;
private String returnType;
private String returnVariable;
private ArrayList<ParameterDescriptor> parameters new

ArrayList<ParameterDescriptor>();

public MethodDescriptor()
}

public String getName()

return this.name;

public void setName(String name) (

this.name = name;

public String getReturnType()

return returnType;

61

public void setReturnType (String reType)
returnType = reType;

public String getReturnVariable()
return returnVariable;

public void setReturnVariable(String reVariable) {
returnVariable = reVariable;

public void addParameter (ParameterDescriptor parameter) {
parameters.add(parameter) ;

public ArrayList getParameters()
return parameters;

Listing 6.12: The Java Data Importer for retrieving data from data model.
public class JavaDatalmporter implements Datalmporter {

private JavaSystem js;
private PackageDescriptor pd;
private ClassDescriptor cd;
private MethodDescriptor md;
private ParameterDescriptor pad;
private Document dataSource;

public JavaDatalmporter()
)

public void setDataSource (Document doc) {
dataSource = doc;

public void startlmporting() {

String systemName =
dataSource.getDocumentElement() .getAttribute(nnamen);

js = new JavaSystem();
js.setName (systemName);

NodeList packages = dataSource.getElementsByTagName("package");
for (int i = 0; i < packages.getLength()i i++) {

Element paekageName = (Element) packages.item(i);
js.addPaekage (getPackage (paekageName));

for (int i = 0; i < js.getPackages() .size(); i++)
pd = (PackageDescriptor)js.getPackages() .get(i);

public PackageDeseriptor getPackage(Element pal {
pd = new PackageDescriptor();
pd.setName (pa.getAttribute("name"));
return pdi

62

public ClassDescriptor getClass(Element cl) {
cd = new ClassDescriptor();
cd.setName(cl.getAttribute("name"));
NodeList methods = cl.getElementsByTagName("Method");

for (int i = 0; i < methods.getLength(); i++) {

Element currentMethod = (Element) methods.item(i);
cd.addMethod(getMethod (currentMethod));

return cd;

Only the Java methods responsible for importing the package and class elements data are

shown here. The above shown importer implements an interface called Datalmporter

which contains two methods, setDataSource and startlmporting, to be implemented by

every platform data importer. Such an interface is shown in Listing 6.13.

Listing 6. 13: Data Importer Interface.
public interface Datalmporter {

public void startlmporting();
public void setDataSource(Document doc);

As for the template component for the Java platform, a Java class, referred to as

JavaClassTemplate.java is used to represent it. Such a template takes the form of a string

output it into a string container like the StringBuffer or Builder Suffer. The template here

spreads over a number of Java methods, where each method is responsible for producing

the part belonging to one specific element, such as the package, class, method and

parameter. References to these elements are included in the template, which are replaced

at runtime with real values. Setters methods in this class are used to set these write only

variables. Listing 6.14 introduces the Java class of the template, called

JavaClassTemplate here, which is served as input to the Java code generator.

Listing 6.14: The JavaClassTemplate used by the generator.
public class JavaClassTemplate {

private String packageName;
private String className;
private String methodName;
private String returnVariable;

63

private String returnType;
private HashMap<String, String> parameters = new HashMap<String,

String> ();
private StringBuffer javaClassTemplate = new StringBuffer();
private JavalnitialValues jiv
public JavaClassTemplate()

private void insertEmptyLines(int lines)

for (int i = 0; i < lines; i++)
javaClassTemplate.append("\n");

private void insertSpace(int spaces){
for (int i = 0; i < spaces; i++) {

javaClassTemplate.append(" ");

public void createTemplate(){
insertEmptyLines(2);
javaClassTemplate.append("package "+packageName+";");
insertEmptyLines(2);
javaClassTemplate.append("public class" +className +" {");
insertEmptyLines(2);
insertSpace(4) ;
javaClassTemplate.append("private "+returnType+"

"+returnVariable+";") ;
insertEmptyLines(2);
createMethod() ;
javaClassTemplate.append("}"};

public void createMethod()
insertSpace(4) ;
javaClassTemplate.append("public " + returnType + " " +

methodName + getParameters()+"{");
insertEmptyLines(3);
insertSpace(6) ;
javaClassTemplate.append("return" + returnVariable + ";");
insertEmptyLines(2);
insertSpace(4);
javaClassTemplate.append("}");
insertEmptyLines(2);

public StringBuffer getParameters() {
StringBuffer constructedString = new StringBuffer();
int no of_parameters = parameters.size();
Set set = parameters.entrySet();
Iterator i = set.iterator();
//Start of parameters construction
constructedString.append("(");
while (i.hasNext())

Map.Entry po = (Map.Entry) i.next();
constructedString.append((String)po.getValue());

64

constructedString.append(" ");
constructedString.append((String)po.getKey());
no_of_parameters--;

constructedString. append (insertPossibleComma (no_of_parameters));
)

constructedString.append(")");
II End of parameters construction
return constructedString;

private String insertPossibleComma(int currentParamNo)
String comma = "";

if (currentParamNo > 0) {
corruna = ",";

return comma;

The Java code generator, which contains the business logic that applies to the Java

template shown above and controls the way the generated Java files (web services in this

case) look like, is illustrated in Listing 6.15.

Listing 6.15: The Java code generator class.
public class JavaCodeGenerator extends CodeGenerator{

private Document xmlDoc;
private JavaClassTemplate jct;
private JavaDatalmporter jdi;

public JavaCodeGenerator(String autoPSM output) {
xmlDoc = XmlParser.getXmlDocument(autoPSM_output);

public void importModelData() {
jdi = new JavaDatalmporter();
jdi.setDataSource(xmlDoc);
jdi.startlmporting();

public void startGenerator() {
jct = new JavaClassTemplate();

JavaSystem js = jdi.retrievePackages();
ArrayList packages = js.getPackages();

for (int i = 0; i < packages.size(); i++)
PackageDescriptor pd = (PackageDescriptor) packages.get(i):
jct.setPackageName(pd.getName());
jct.createPackageBody() :
generatePackageData(pd);
jct.clearTemplateStream();

private void generatePackageData(PackageDescriptor packageDesc) {

ArrayList classes packageDesc.getClasses():

for (int i = 0: i < classes.size(); i++)
ClassDescriptor cd = (ClassDescriptor) classes.get(i);
jct.setClassName(cd.getName()):

65

jct.createClassBody();
generateClassData(cd) ;
jct.markClassEnd();
jct.save();
jct.clearTemplateStream();
jct.createPackageBody();

private void generateClassData(ClassDescriptor classDesc){
ArrayList methods = classDesc.getMethods();
for (int i = 0; i < methods.size(); i++) {

MethodDescriptor md = (MethodDescriptor) methods.get(i);
jct.setMethodName(md.getName());
jct.setReturnType(md.getReturnType()) ;
jct.setReturnVariable(md.getReturnVariable()) ;
generateMethodData(md) ;
jct.createMethodBody();

private void generateMethodData(MethodDescriptor md) {
jct.clearParameters();
ArrayList params = md.getParameters();
for (int j = 0; j < md.getParameters().size(); j++)

ParameterDescriptor pad = (ParameterDescriptor)
params.get(j) ;

jct.addParameter(pad.getName(), pad.getType());
}

Listing 6.16 and 6.17 show two skeletons for Java Web Services generated by the code

generator introduced above.

Listing 6.16: A generated skeleton for FlightSelectionProcess Web Service.
package BookFlight;

import java.util.*;
import javax.jws.WebService;
import javax.jws.WebMethod;

@WebService()
public class FlightSelectionProcess

@WebMethod ()
public List getAvailableFlights(Date dateOfTravel, String

destinationAirport, String sourceAirport){

List availableFlights= null;

//Implementation code goes here ...

return availableFlights;

66

@WebMethod ()
public boolean reserveSeatOnFlight(String flightNo, String lName,

String fName){

boolean done= false;

//Implementation code goes here ...

return done;

Listing 6.17: A generated skeleton for PaymentCardValidator Web Service.
package BookFlight;

import java.util.*;
import javax.jws.WebService;
import javax.jws.WebMethod;

@WebService()
public class PaymentCardValidator

@WebMethod ()
public boolean verifyPaymentCard(String cardNo, String securityNo

){

boolean successful= false;

//Implementation code goes here ...

return successful;

As stated earlier, targeting a new platform can be achieved in the same way as it is been

shown with Java platform. To target and generate Web services in C#, for instance, the

concepts and components (Task, Service, operation, etc.) of the autonomic abstract

model have to be converted into C# terms first. This is conducted, as illustrated in

Listing, by passing the 'Platform instance' (in this case the C#) into the

Abst2PlatformTransformerjava class. The obtained file here takes the following format:

domainName _Autonomic _CSharp.xml. Then, prior to generating the code, the model

data should be imported to the code generator, so the latter can use it to substitute the

references In the template with these values. This IS done by the

67

CSharpDatalmporterjava class which is shown in Listing 6.18. The C# Web Services

template and code generator are depicted in Listings 6.19 and 6.20 respectively.

Listing 6. 18: The C# Data Importer class.
public class CSharpDatalmporter implements Datalmporter

private Document dataSource;
private CSharpSystem css:
private NamespaceDescriptor nsd;
private ClassDescriptor cd:
private MethodDescriptor md;
private ParameterDescriptor pad:

public CSharpDatalmporter(}
}
public void setDataSource(Document doc}

dataSource = doc;

public void startlmporting(}
String systemName =

dataSource.getDocumentElement(} .getAttribute("name"};
css = new CSharpSystem(}:
css.setName(systemName} ;
NodeList namespaces =

dataSource.getElementsByTagName("namespace");

for (int i = 0; i < namespaces.getLength(); i++}
Element currentNamespace = (Element) namespaces.item(i);
css.addNameSpace (getNamespace (currentNamespace) };

private NamespaceDescriptor getNamespace(Element pa} {

nsd = new NamespaceDescriptor(};
nsd.setName(pa.getAttribute("name"});
NodeList classes = pa.getElementsByTagName("class"};

for (int i = 0; i < classes.getLength(); i++}
Element currentClass = (Element}classes.item(i);
nsd.addClass(getClass(currentClass});

return nsd;

private ClassDescriptor getClass(Element cl} {
cd = new ClassDescriptor(};
cd.setName(cl.getAttribute("name"}}:
NodeList methods = cl.getElementsByTagName("Method");

for (int i = 0; i < methods.getLength(); i++}

Element currentMethod = (Element}methods.item(i);
cd.addMethod (getMethod (currentMethod) };

return cd;

private MethodDescriptor getMethod(Element method)
md = new MethodDescriptor ();
md.setName (method.getAttribute ("name"));
md.setReturnType(method.getAttribute("returnType"}};
md.setReturnVariable(method.getAttribute("returnedVar"}} ;

68

NodeList params = method.getElementsByTagName("param");
for (int i = 0; i < params.getLength(); i++) (

Element currentParam = (Element)params.item(i);
md.addParameter (getParameter (currentParam));

return md;

private ParameterDescriptor getParameter(Element param)
pad = new ParameterDescriptor();
pad.setName(param.getAttribute("name"));
pad.setType(param.getAttribute("type"));
return pad;

public CSharpSystem retrieveNamespaces() (
return css;

Listing 6. 19: Java class for C# Web Services template.

public class CSharpWebServiceTemplate

private String nameSpace;
private String className;
private String methodName;
private String returnVariable;
private String returnType;
private HashMap<String, String> parameters = new HashMap<String,

String>();
private StringBuffer cSharpWSTemplate = new StringBuffer();
private CSharplnitialValues cSharpiv

public CSharpWebServiceTemplate() (
cSharpiv = new CSharplnitialValues ();
cSharpiv.readMap() ;

public void setNameSpace(String namespace) {
nameSpace = namespace;

public void setClassName(String clasName)
className = clasName;

public void setMethodName(String mthdName)
methodName = mthdName;

public void setReturnType(String reType)
returnType = reType;

public void setReturnVariable(String reVariable) {
returnVariable = reVariable;

public void addParameter(String paramName, String paramType) (
parameters.put(paramName, paramType);

private void getPossibleReturn()
if (! returnType. equals ("void"))

cSharpWSTemplate.append("return" + returnVariable + ";");

private void insertEmptyLines(int lines) {

69

for (int i = 0; i < lines; i++)
cSharpWSTemplate.append("\n");

private void insertSpace(int spaces)
for (int i = 0; i < spaces; i++)

cSharpWSTemplate.append(" ");

public void markClassEnd()
cSharpWSTemplate.append(")");

public void createNamespaceBody()
addDeveloperInfo() ;

cSharpWSTemplate.append("namespace ..+ namespace+ ";");

public void createClassBody()
insertEmptyLines(2);
importStandardPackages();
insertEmptyLines(2);
cSharpWSTemplate.append("[WebService]") ;
insertEmptyLines(l);
cSharpWSTemplate.append("public class" + className +

":WebService {");
insertEmptyLines(2);

public void createMethodBody()
insertSpace(4);
cSharpWSTemplate.append("[WebMethod]") ;
insertEmptyLines(l);
insertSpace(4);
cSharpWSTemplate.append("public " + returnType + " " +

methodName + getParameters() + "{");
insertEmptyLines(2);
insertEmptyLines(3);
insertSpace(4);
cSharpWSTemplate.append ("//Implementation code goes here);
insertEmptyLines(3);
insertSpace(4) ;

getPossibleReturn();
insertEmptyLines(2);
insertSpace(2);
cSharpWSTemplate.append(")");
insertEmptyLines(2);

public StringBuffer getParameters()
StringBuffer constructedString = new StringBuffer();
int no_of_parameters = parameters.size();
Set set = parameters.entrySet();
Iterator i = set.iterator();
//Start of parameters construction
constructedString.append("(");
while (i.hasNext()) {

Map.Entry po = (Map.Entry) i.next();
constructedString.append((String) po.getValue());
constructedString.append(" ");
constructedString.append((String) po.getKey());
no_of_parameters--;

constructedString.append(insertPossibleCornrna(no_of parameters)+" ");
)

70

constructedString.append(If) If);
II End of parameters construction
return constructedString;

public void clearParameters()
parameters.clear();

public void clearTemplateStream()
cSharpWSTemplate.delete(O, cSharpWSTemplate.length());

private String insertPossibleComma(int currentParamNo)
String comma = Iflf;

if (currentParamNo > 0)
conuna = ",";

return comma;

private void addDeveloperInfo()
insertEmptyLines(2) ;
cSharpWSTemplate.append(lf/****************************If);
insertEmptyLines(l);
cSharpWSTemplate.append(If*Developer: Yousef Abuseta***If);
insertEmptyLines(l);
cSharpWSTemplate.append(If*University: LJMU (2009) *If);
insertEmptyLines(l);
cSharpWSTemplate.append(lfC# WEB SERVICESIf);
insertEmptyLines(l) ;

cSharpWSTemplate.append(If*****************************IIf);
insertEmptyLines(2);

private void importStandardPackages()
cSharpWSTemplate.append (If<%@WebService language=\lfC#\If

class=\lflf+className+If\If%>If);
insertEmptyLines(2);
cSharpWSTemplate.append(lfusing System;If);
insertEmptyLines(l) ;

cSharpWSTemplate.append("using System.Web.Services;");

public void save()
Writer output = null;
try {

output = new BufferedWriter(new
FileWriter(EnvironmentConstants.CSHARP_FILES + className + ".asmx"));

output.write(cSharpWSTemplate.toString());
catch (IOException ex) {

ex.printStackTrace();

try
if (output != null)

output.close();

catch (IOException ex)
ex.printStackTrace();

}

Listing 6.20 shows a generated C# web service (the customer charger) using the code

generator shown above.

71

Listing 6.20: A Generated C# Web Service.
/****************************
*Developer: Yousef Abuseta***
*University: LJMU (2009) *
C# WEB SERVICES
*****************************/

<%@ WebService language="C#" class="CustomerCharger"%>

using System;
using System. Web. Services;

[WebService]
public class CustomerCharger:WebService

[WebMethod]
public long calculateTicketCost(string flightNo){

//Implementation code goes here ...

return ticketCost;

[WebMethod]
public boolean chargeCustomer(string refNumber){

//Implementation code goes here ...

return done;

6.4.2 Code generator for Autonomic services
This code generator contains counterpart components of the core services generator

described above, namely the data importer, template and code generator. The data

importer functionality here is encapsulated in a Java file which takes the following

format: AutonomicPlatjormDatalmporterjava. Listing 6.21 shows the autonomic data

importer class for Java platform. It also implements the Datalmporter interface. As seen

in the Listing, the autonomic data model elements are described using two Java classes

72

called MonitorDescriptor and Criticall'aramliescriptor, Listings 6.22 and 6.23 show

these two Java classes.

Listing 6.21: Autonomic Java Data Importer.
public class AutonomicJavaDatalmporter implements Datalmporter{

private MonitorDescriptor md;
private CriticalParamDescriptor cpd;
private Document dataSource;

public void startlmporting()

//implementation goes here

public void setDataSource(Document doc)

dataSource = doc;

Listing 6.22: Monitor Descriptor Java Class.
public class MonitorDescriptor {

private String monitorName;
private ArrayList <CriticalParamDescriptor> criticalParameters

new ArrayList <CriticalParamDescriptor> ();

public MonitorDescriptor() {
}

public void setName (String name) {

monitorName = name;

public String getName ()

return monitorName;

public void addCriticalParameter (CriticalParamDescriptor cpd)

criticalParameters.add (cpd);

public ArrayList getCriticalParameters () {
return criticalParameters;

73

Listing 6.23: Critical Parameters Descriptor Java Class.

public class CriticalParamDescriptor

private String name;
private String type;
private String event;
private String condition;

public CriticalParamDescriptor()
}

public String getName()
return name;

public void setName(String name) {
this.name = name;

public String getType()
return type;

public void setType(String type) {
this.type = type;

public String getCondition()
return condition;

public void setCondition(String condition) {
this.condition = condition;

public String getEvent()
return event;

public void setEvent(String event) {
this.event = event;

6.5 Summary

This chapter introduced the transformation framework that was proposed and developed

to handle the transformation activities that occur throughout the lifecycle of the

autonomic design method presented in this thesis. The developed framework is

composed of three fundamental components namely, the Autonomic Transformer,

Platform Metadata Injector Transformer and the Code Generation Transformer. These

three transformers were introduced and shown in detail.

74

CHAPTER 7

MODEL SYNCHRONISATION FRAMEWORK

This chapter describes the model synchronisation framework proposed and developed in

this project to solve and overcome the possible inconsistency issue raised by performing

some changes or modifications on a particular model of the proposed development

lifecycle process. Prior to the introduction of the proposed synchronisation framework, a

classification of the modifications and changes that are required and supported in our

approach is provided.

7.1 The Model Modification Concerns

Systems and applications cannot be fully and completely designed and implemented at

once and stay untouched forever. Rather, systems need to be modified and changed by

one of the stakeholders involved in the lifecycle of AutoTaSC process. Stakeholders

include domain experts, designers, developers and programmers. The need to these

changes and modifications surfaces as a response to possible and desirable user

requirements changes. This section is concerned with mechanisms to enable software

evolution and/or design refinement. For instance, where services or tasks can be added

and injected into an existing domain - of the system under consideration. In such

situation, at set scenarios of system/models modification and/or extension can be defined

including:

• Introducing (or removing) a new service or task to an existing domain: At

some time, the system might need be modified and extended by adding and

injecting either a new service into a particular task or a new task into a

particular domain. This process, unlike the process of introducing a new

concept presented later, requires and triggers the system models

synchronisation operation which is applied to only the models involved

throughout the software development lifecycle. In our proposed lifecycle

process, these models represent the XML files but not the schema files that

define the metamodels for those models. This is because no new concept or

75

item has been introduced which should be defined in the metamodel of a

particular model. To accomplish this task, the QVT (Query/View/Transform)

approach [79] is mimicked and applied here. The system designer or

developer can query the system under development and retrieve (view) the

available services and tasks of a particular domain. He or she can then add

and inject a new service or even a complete task (a set of services) in the right

place and apply the transformation rules required to reflect and propagate the

changes in the subsequent models.

• Introducing (or removing) a new concept to the metamodel of the domain: In

this scenario, a new concept or metamodel element may need be added and

introduced later to the system metamodel.

• Introducing (or removing) a new operation: In order to extend the capability

of a particular service, a new functionality in the form of an operation can be

introduced. Likewise, a particular operation of a service might be seen as a

redundant or misplaced and thus needs to be removed by one of the

stakeholders. Therefore, two main modifications can be identified here,

namely adding to and removing operation from services.

• Introducing (or removing) a new parameter: At any time, one of the

stakeholders involving in the lifecycle of the proposed development process

may see that a particular parameter should be added or removed from one

operation's signature or its type should have a different value.

• Introducing (or removing) a new policy to the policy engine: Since the

systems that are designed and modelled using the approach proposed and

developed in this thesis are of autonomic nature, policies and controller rules

that manage and control these systems can never be static. Therefore, an

appropriate interface should be put in place and offered to the stakeholders so

they can modify policies (add to or remove from policy engine).

The next subsections introduce the model synchronisation framework that is proposed

and developed to respond and handle the effect of the above mentioned changes.

76

7.2 Proposed Model Synchronisation Framework

In this section, we present the proposed framework for synchronising a set of models at

different level of abstraction in an MOD based software system. This framework is based

on the idea of autonomic systems where a particular component (the model in this case)

is monitored and managed by an autonomic manager or controller. Since the activities

taking place here are basically connected with modifying and changing the involving

models by adding or removing a new service or task, the autonomic manager is better

named as a change manager. What follows is a high level view of the architecture and

layers that comprise the proposed and developed framework as well as the interactions

between these layers.

7.2.1 A High Level View of Proposed Framework
Figure 7.1 shows a high level view of our proposed framework for the model

synchronisation realisation. As it can be seen from the Figure, the framework architecture

contains three fundamental layers namely: the Managed Model layer, Sensing and

Actuation layer and Manager or Controller layer. These three layers are described as

follows:

• The Managed Model Layer: This layer represents the core component of the

framework proposed here which contains a set of models that involves in

designing and developing a software system complying with the MDD

principles. Here, such models take the form of XML documents. The decision

for representing our models in an XML format was driven by the flexibility of

XML documents and ease of modification. Adding, removing and editing

elements can be performed very smoothly and easily. Furthermore, XML

format is a standard one for representing data and thus encapsulating systems

in it will offer the opportunity to express systems in a platform independent

manner which is again a crucial requirement for MOD complaint systems.

• The Sensing and Actuation Layer: The manipulation layer contains the

required APls for querying and modifying the models residing at the model

layer. This layer serves as a sensor or monitor of model change which notifies

the model change manager of such events.

• The Model Change Manager Layer: This layer contains the software

components responsible for checking for specific events (model changes)

77

reported by the manipulation APls layer and dispatching corresponding

responsive actions.

In our proposed framework, we adhere to the Query, View and Transformation (QVT)

technique proposed by the Object Model Group (OMG) to realise and address the model

synchronisation issue. The functionality and required components spread over the above

three layers. Querying the model is carried out via the APls provided by Sensing and

Actuation layer as well as viewing the models to the system designer in an appropriate

way. The transformation process, which is performed to propagate the changes to all

related models, is conducted by the software components offered by the model change

manager layer.

The Managed Model
Layer

The Sensing and
Actuat,ion Lay,er

fi
The Model Change
Manager Layer

Figure 7.1: Model Synchronisation Framework Layers.

7.2.2 Detailed Synchronisation Framework
The proposed model synchronisation framework presented in this thesis is detailed and

depicted in Figure 7.2. As shown in the Figure, the three layers for each stage of our

MDD based design method are presented. The first layer, the change manager or

controllers contains four components, one for each stage: the PIM Controller, Autonomic

PIM Controller, Autonomic PSM Controller and Autonomic Code Controller. This

network of controllers is responsible for synchronising the managed models residing at

the lower level of the framework stack. Each controller accesses and manipulates its own

managed element via the manipulation APIs in the second layer. Such a layer consists of

a sensor which senses and reports any interesting events (adding or removing services or

tasks) to the controller and an actuator that is used by the controller to dispatch and issue

any responsive and corrective actions on the managed element.

78

.··················r···········.················:·····.· . . .· . . .· . . .· . . .: .: .
PIM Controller

~. ---
Autonomic
PIM Controner

-

Sensing
&AduationAPIs

................. -f

....-.:_--~.

I_
Sensing
&AetuationAPIs

Sensing
&AduationAPIs

I
~~-,____'

____ ,T.'_-.

I
Managed
dement~n.)

Managed
element(eode)

7.3 The observer design pattern for the controllers' network
To design and generate clean and easy to use, extend and maintain software systems

(code), the application of design patterns seems to be a must. To define and establish the

relationship between the controllers involving in the framework, it is believed that such a

relationship is best modelled and designed using the observer design pattern. In such a

design pattern, two entities can be identified: the observer which can be triggered by a

change in a particular component or entity and the subject whose states are monitored

and of particular importance to the observer. In our proposed framework, each controller

plays both the roles of the observer and subject at the same time. A PIM Controller, for

instance, is seen as an observer when it registers an interest of notification of changes

occurring at the other controllers. However, it is regarded as a subject when taking the

role of notifying the other controllers of any changes or modifications taking place at its

own managed model. The same applies to the rest of the controllers' network. Each

controller must implement two Java interfaces, namely the ModelChangeNotifier and

ModelChangeObserver in order to play the roles of a subject and observer as well.

Listing 7.1 shows these two interfaces with the required methods to be implemented.

Managed
dement~n.)

Managed
eJement(XML)

Controller network channels

Figure 7. 2: More detailed synchronisation framework.

79

Listing 7.1: The change notifier and observer interfaces.
public interface ModelChangeNotifier {
public void addChangeListener (ModelChangeObserver mco);
public void removeChangeListener (ModelChangeObserver mco);

public interface ModelChangeObserver {
public void synchronise (ModelChangeNotifier mcn);

Listing 7.2 shows a snippet of Java code required to establishing the relationship between

the PIM controller as a subject (and as an observer too) and the other controllers with the

observer role. Notice that the PIM controller implements both the ModelChangeNotifier

and ModelChangeObserver interfaces. The controller here uses the synchronise method

when playing the observer role to be notified by other controllers

(ModelChangeListener _APIM and ModelChangeListener _APSM). An appropriate

action is then taken accordingly. However, it executes the notifYObservers 0 method to

notify registered observers of model changes when it takes the subject role.

Listing 7.2: Java class for the PIM controller.
public class ModelChangeListener_PIM implements ModelChangeNotifier,
ModelChangeObserver{

private ModelChangeListener_APIM mcl_APIM;
private ModelChangeListener_APSM mcl APSM;
private ModelChangeListener_CODE mel CODE;
private Vector <ModelChangeObserver> observers new

Vector<ModelChangeObserver> ();
public ModelChangeListener_PIM (ModelChangeListener APIM mcl_APIM)

this.mcl_APIM = mcl_APIM;
this.mcl_APIM.addChangeListener (this);

public ModelChangeListener_PIM (ModelChangeListener_ APSM mel_APSM)

this.mcl APSM = mel APSM;
this.mel_APSM.addChangeListener (this);

public void addChangeListener (ModelChangeObserver meo) {
observers.add (mco);

80

public void removeChangeListener (ModelChangeObserver meo)

observers.remove (meo);
Ilexeeuted when controller plays the observer role
public void synchronise (ModelChangeNotifier men) {

if (mcn
if (men

mcl_APIM) II take appropriate action
mcl_APSM) II take appropriate action

Ilexeeuted when controller plays the subject role
public void notifyObservers () {

for (int i=O; i< observers.size (); i++)
observers.get (i).synchronise (this)

For each change controller, there should be a change plan engine which is composed of a

set of actions that should be executed upon receiving a notification of change from

another controller in the network. Listing 7.3 shows a simplified Java class for the

change plan engine for the APIM controller. Only the change plan part of injecting new

service is shown.

Listing 7.3: Java code for APIM change plan engine.
public class ChangePlanEngine APIM {
public void triggerPlanEngine(String domain, int taskNo, Element
service) {

domainName = domain;
this.taskNo = taskNo;
injeetedService = service;
System.out.println("change happened at: "+ domainName+"

Domain");
System.out.println("at task no: "+this.taskNo);
System.out.println("Service added:

"+injeetedServiee.getAttribute("name"));
updateModel_APIM() ;
writeToXmlFile();

public void triggerPlanEngine(String domain, Element task) {
}

private void updateModel_APIM() {
xmlFile =

EnvironmentConstants.TRANSFORMER PATH+domainName+" autonomic.xml";
doc = XmlParser.getXmlDoeument(xmlFile);
if(doe!= null){

currentTask =
(Element)doe.getElementsByTagName("Task") .item(this.taskNo)

Node temp = doc.importNode (injeetedServiee, true);
currentTask.appendChild(temp);
System.out.println("Model APIM: "+

doc.getDocumentElement() .getAttribute("Domain"));
}

81

7.4 Summary

This chapter was dedicated to describe the model synchronisation framework proposed

and developed in this thesis. Such a framework was developed to solve and overcome the

possible inconsistency issue raised by performing some changes or modifications on a

particular model of the proposed development Iifecycle process. A classification of the

modifications and changes that are required and supported in our approach was

presented. The framework architecture is composed of three fundamental layers namely:

the Managed Model layer, Sensing and Actuation layer and Manager or Controller

layer. A network of cooperating controllers is formed from the last layer of each stage or

model. To define and establish the relationship between the controllers involving in the

framework, we have found that such a relationship is best modelled and designed using

the observer design pattern. In such a design pattern, two entities can be identified: the

observer which can be triggered by a change in a particular component or entity and the

subject whose states are monitored and of particular importance to the observer. In our

proposed framework, each controller plays both the roles of the observer and subject at

the same time. Also, a snippet of Java code of the classes and implemented interfaces has

been presented to show how such a framework and controllers' relationship can be

implemented.

82

CHAPTER8

EVALUATION

8.1 Introduction

This chapter is dedicated to present an evaluation of the autonomic design method

introduced in this thesis. The evaluation task is by no means easy to perform and

conduct. This can be put down to the lack of known or clear metrics or benchmarks to

evaluate the MOD technique and let alone the autonomic systems.

However, this evaluation contains both quantitative and qualitative analysis of the design

method proposed here. This includes an evaluation of the design method lifecycle

process in general in addition to some critical analysis to some models that have been

adopted and developed in some particular stage throughout the MOD different stages. In

general, the evaluation presented here evaluates the proposed method in terms of the

productivity and time to market issues which conducts a comparison between MOD

based systems and other software systems developed via different techniques.

The remainder of the chapter outlines the evaluation methodology, followed by

qualitative evaluations of the work. Finally, the chapter concludes with a critical analysis

and general discussion of the results.

8.2 Methodology

The evaluation has been designed to demonstrate the use and effect of the developed and

implemented design method for the self-management systems from the qualitative

perspective.

8.2.1 Objectives
The main objective of the evaluation process is to show the feasibility of using the

proposed and developed design method and models and technologies used and adopted in

such a method. To achieve this goal, four test example applications have been developed

utilising autonomic computing services, developed frameworks and reference models.

These test applications are: the Online Travel Agency, Pet Store, Intelligent Office, and

Salt World which represent the evaluation from a qualitative perspective. However,

83

quantitative evaluation is very difficult to apply here due to the lack of any appropriate

metrics that can be used to draw any comparison between MOD and non-MOD based

systems.

8.2.2 Approach
The approach taken to conduct the evaluation process involves measuring and testing the

proposed design method against a number of metrics. For each metric or aspect, one

specific case study is used. The following Section introduces these qualitative metrics.

8.3 Qualitative evaluation
A general evaluation of the MOD based design method proposed and introduced in this

thesis is described in this section. Three case studies are employed here to evaluate

qualitatively the proposed design method. These applications or case studies make use of

the proposed method to inject the autonomic capabilities and required models and

architecture and thus be autonomic or self managed. A set of qualitative metrics is

chosen here to carry out such an evaluation:

• Functionality: it concerns with the applicability and feasibility of the

proposed design method. In other words, the proposed method is measured

against the complete support for the tested applications throughout the

lifecycle of the development process (from the requirement engineering stage

all the way to producing an autonomic code).

• Generality: this metric is used to test whether the proposed design method is

generic enough to accommodate any desirable platform or technology and not

limited to any specific case study, programming language or platforms

(software or hardware) and architectures. This is achieved here via adopting

the MOD approach as the basis for designing and engineering autonomic

systems. Furthermore, using the XML format to express and represent system

models helps and supports the proposed method to be generic enough.

• Adaptability: this metric is used to test and evaluate the proposed design

method against its ability of being adaptable and easy to modify. Such a

metric may take the form of adding or removing new service or task to or

from a particular domain (the system under consideration). Also adding or

removing parameters to or from a specific service can be considered as a form

of adaptability. The adaptability metric is provided and supported here via a

84

synchronisation framework based on the underlying concepts proposed in the

autonomic computing model.

• Ease of aspect accommodation: this metric is used to evaluate the proposed

design method against the accommodation, modelling and designing of a new

aspect or non functional requirements. Here, the self organisation systems

were chosen as the new aspect to be targeted.

The subsequent sections provide evaluation of the proposed design method against the

qualitative metrics introduced above.

8.3.1 The Online Travel Agency case study- Functionality Evaluation
To evaluate the proposed design method in terms of functionality and feasibility, a

practical case study referred to as Online Travel Agency (OTA) is used here. Using this

case study, we show below how the proposed method can be used to direct and guide the

system designer from the early stage of the development process (Requirement

engineering) and all the way to the last stage where the necessary code artifacts for

autonomic systems are produced. In this particular case study, the target platform for the

produced code artifacts is Java Web Services (JAX-WS).

The travel agency here is providing its services through some interfaces provided as a

web site. These interfaces can be used by customers to apply and submit their requests

and enquiries to make use of the offered services. The agency here is committed to

providing some services to its customers related to booking flights, reserving hotels and

hiring cars.

8.3.1.1 Task and service definitions
For the owner of this agency to provide such services, a set of tasks (according to our

design method terminology) has to be accomplished. These tasks include Book flight,

Make hotel reservation and Hire car. Figure 8.1 shows these fundamental tasks. Each

task shown in Figure 8.1 should be addressed by a set of services. The process of

generating the required services is performed using UML sequence diagrams, one for

each task. Here, for example, the task Bookflight is addressed by the following services:

flight selection process and payment card validator. Figures 8.2, 8.3 and 8.4 show the

UML sequence diagrams for the tasks "Book flight ", "MakeHoteIReservation" and

"Hire Car" respectively.

85

Figure 8. 1: A set of tasks for the Online Travel Agency domain.

*customer
1~:Ceul

I
I
I

1: !letA vailableFlghls(sa, da, dot) I
2: return fights

*customer

3: reserveSeat(fName, Name, f1ighlNo)
4: verifyCard (cardNo, securltyNo)

6: return report 5: return successful

Figure 8. 2: The required services for the 'Book flight' task.

I~~I
1: getAvailabieHotels(airportCode)

I
I
I
I

... 1

....
2: return hotels~----------------------

3: bookRoom(hoIenO,dateOfArrival,noOfNighlsll
.... 4: verifyCard (carcf.lo, securityNo) ...

...
6: return report 5: return successful~---------------------- ~----------------

Figure 8. 3: the required services for the 'Book hotel' task.

86

* I J

<<Service» J <<Servtce» ICarFhder • PaymencardValdatlon
customer I

I
I

1: viewAvailabieCars I... I

k-----~~~~~~~~~~-----~J
3: hireCar(date,noOfdays) I1> 4: verifyCard (cardNo, securityNo)_,..,

6: return report ~--!~~~~~:~~~--:~Jk----------------------
I I

Figure 8. 4: The required services for the 'Hire car' task.

8.3.1.2 The Intention Model definition
The services involved in the online travel agency domain, which are generated in the

Figures above, are saved into an XML file. This file, Onl.ine TravelAgency.xml,

represents the real start point which contains the intention (abstract) model of this domain

from which the other models are derived. A chunk of this file is depicted in Figure 8.5.

Please refer to Section 5.1 for more information. As stated in Section 5.1.1, in addition to

the above XML file, there exists a separate XML file for encapsulating the system

services composites. The latter, saved as Onl.ine'Iravel Agency _composite.xml, is

depicted in Figure 8.6. This, in fact, represents the task realisation which takes the form

of service interactions. The full versions of these two files can be found in Appendix E.

<?xml version="l.O" encoding="UTF-8" standalone="no"?>
<Domain name="OnlineTravelAgency">

<Service id="l" name="FlightSelectionProcess">
<Interface>

<operation name="getAvailableFlights" returnType="list"
returnedVar="availableFlights">

<params>
<param name="sourceAirport" type="Text"/>
<param name="destinationAirport" type="Text"/>
<param name="dateOfTravel" type="Date"/>

</params>
</operation>

</Interface>
</Service>

<Service id="l" name="HotelSelectionProcess"> .
</Service>

</Domain>
Figure 8. 5: The Online Travel Agency Intention Model.

87

<?xml version="l.O" encoding="UTF-8" ?>

<composites domain="OnLineTravelAgency">

<composite name="BookFlight">
<Interaction>

<callingParty name="user"/>
<calledParty name="FlightSelectionProcess">

<operation name="getAvailableFlights"/>
</calledParty>

</Interaction>

<Interaction>
<callingParty name="FlightSelectionProcess"/>
<calledParty name="PaymentCardValidator">

<operation name="verifyPaymentCard"/>
</calledParty>

</Interaction>
</composite>

<composite name="MakeHotelReservation">
<Interaction>

<callingParty name="user"/>
<calledParty name="HotelSelectionProcess">

<operation name="getAvailableHotels"/>
</calledParty>

</Interaction>
<Interaction>

<callingParty name="user"/>
<calledParty name="HotelSelectionProcess">

<operation name="reserveRoom"/>
</calledParty>

</Interaction>
<Interaction>

</Interaction>
</composite>

</composites>
Figure 8. 6: Composite file for Online Travel Agency domain.

8.3.1.3 The Platform Independent Autonomic Model (PIAM)
The next step is to operate on this file by applying the transformation rules contained in

the Java file (AutonomicProfile.Java). The purpose of this step is to inject the autonomic

capabilities into the core system model obtained in the first stage. This process is

accomplished through applying the Autonomicl'rofile.Java file to the

OnLineTravelAgency.xml file. The result autonomic model IS saved 111 the

Online TravelAgency _autonomic.xml file. This file contains the core services of our

88

system as well as the Assurance service. The latter has the necessary servrces for

ensuring the behaviour of the core system (the set of services). Such services include the

monitor and policy. Figure 8.7, shows the user interface for specifying some critical

parameters of the Online Travel Agency domain to be monitored by the monitor. Also,

the policy which controls and specifies the corrective actions can be defined here.

lkl Autonomic Profile Definition for Onl..ineTravelAgencyDomain

Condition: LIL_e_s_s_T_h_a_n _._I--__,1 ITOd ayDate I
I

Task Nalne: 1BookFliOht 1--1

t, Monito~Definition

Cont~olle~Style Desion By C_ont~act I --

Service NaRle:

I
Operation Nanle: 1getAvaiiableFlights I~I

Pa~a~ete~: IdateOfT~avel

Pa~anlete~Type: I_D_a__t8 __j

Event ~ais .. d: IINVALlD_DATE_EVENTI _j

Define poucy:::::=:J Save ~..Ie I I Exit

--

Figure 8.7: User Interface for Autonomic Profile Definition for OTA domain.

Figure 8.8 depicts just a small portion of the resulted autonomic model which shows two

services with their autonomic components, the monitor and policy.

<? xml version="l.O" encoding="UTF-B" standalone="no"?>
<Domain name="OnlineTravelAgency">

<Task id="l" name="BookFlight">
<Service id="l" name="FlightSelectionProcess">

<Interface>
<operation name="getAvailableFlights" returnType="list"

returnedVar="availableFlights">
<params>

<param name="sourceAirport" type="Text"/>
<param name="destinationAirport" type="Text"/>
<param name="dateOfTravel" type="Date"/>

</params>
</operation>

</Interface>
<Monitor name="Monitor FlightSelectionProcess">

<MonitorOperation ReturnType="void"
name="startMonitoring"/>

<MonitoredVar Event="BAD DATE EVENT"
name="dateOfTravel" threshhold="<Today" type="Date"/></Monitor>

89

<Policy name="BAD DATE EVENT">
<Event name="event7."/>
<PreCondition value="NA"/>
<PostCondition value="NA"/>
<CorrectiveAction value="BAD_DATE_ACTION"/>

</Policy>
</Service>

<Service id="3" name="PaymentCardValidator">
<Interface>

<operation name="verifyPaymentCard"
returnType="boolean" returnedVar="successful">

<params>
<param name="cardNo" type="Text"/>
<param name="securityNo" type="Text"/>

</params>
</operation>

</Interface>
</Service>

</Task>
<Task id="2" name="MakeHotelReservation">

<Service id="l" name="HotelSelectionProcess">
<Interface>

<operation name="getAvailableHotels" returnType="list"
returnedVar="hotels">

<params>
<param name="airportCode" type="Text"/>

</params>
</operation>
<operation name="reserveRoom" returnType="void"

returnedVar="void">
<params>

<param name="hotelID" type="Text"/>
<param name="dateOfArrival" type="Date"/>
<param name="noOfNights" type="int"/>

</params>
</operation>

</Interface>
<Monitor name="Monitor HotelSelectionProcess">

<MonitorOperation ReturnType="void"
nClme="startMonitoring"/>

<MonitoredVar Event="BAD VALUE EVENT" name="noOfNights"
threshhold="<l" type="int"/></Monitor> _

<Policy name="BAD VALUE EVENT">
<Event name="event"/>
<PreCondition value="NA"/>
<PostCondition value="NA"/>
<CorrectiveAction value="BAD_VALUE_ACTION"/>

</Policy>
</Service>

</Task>
</Domain>
Figure 8.8: A Simplified Version of the Core System and the Assurance Element.

8.3.1.4 The Platform Specific Autonomic Model (PSAM)
The last stage before the code generation is to add the terms and data types for the

specific pI atfonn, Java for instance. To target Java for example, we apply the Java file

90

that encapsulates the transformation rules responsible for adding Java terminology and

data types. This file is referred to as JavaPlatform.java and was introduced in more detail

in Section 6.1.2. The resulted XML file, OnLineTraveIAgency_autonomic_java.xml,

which contains the Java autonomic system, can be seen in Figure 8.9.

<?xml version="l.O" encoding="UTF-8" standalone="no"?>
<Domain name="OnlineTravelAgency">

<package id="l" name="BookFlight">
<class id="l" name="FlightSelectionProcess">

<Method name="getAvailableFlights" returnType="List"
returnedVar="availableFlights">

<param name="dateOfTravel" type="Date"/>
<param name="destinationAirport" type="String"/>
<param name="sourceAirport" type="String"/>

</Method>
<Method name="reserveSeatOnFlight" returnType="boolean"

returnedVar="done">
<par am name="flightNo" type="String"/>
<param name="lName" type="String"/>
<param name="fName" type="String"/>

</Method>
</class>
<class id="2" name="CustomerCharger">

<Method name="calculateTicketCost" returnType="long"
returnedVar="ticketCost">

<param name="flightNo" type="String"/>
</Method>

</class>
<class id="3" name="PaymentCardValidator">

<Method name="verifyPaymentCard" returnType="boolean"
returnedVar="successful">

<param name="securityNo" type="String"/>
<param name="cardNo" type="String"/>

</Method>
</class>

</package>
<package id="2" name="MakeHotelReservation">

<class id="l" name="HotelSelectionProcess">
<Method name="getAvailableHotels" returnType="List"

returnedVar="hotels">
<param name="airportCode" type="String"/>

</Method>
<Method name="reserveRoom" returnType="void"

returnedVar="void">
<param name="noOfNights" type="int"/>
<param name="dateOfArrival" type="Date"/>
<param name="hotelID" type="String"/>

</Method>
</class>

</package> </Domain>
Figure 8. 9: Java Autonomic Online Travel Agency system.

8.1.3.5 The Autonomic Code Generation
To generate code for Java web services, we apply two transformation files, namely the

Java WSGenerator.java and A utoJavaWSGenerator.java to the

91

OnLineTraveIAgency_Autonomic_java.xml file. The former is responsible for generating

the core web services whereas the latter produces the code for the autonomic

components, the monitor for example. A high level representation of these stages is

depicted in Figure 8.10.

,.---
AutonomicPro file.j ava OnLineTravelAgency.xml PIM

Java.P1atfonnjava !
~ OnLineTrav~ency_autono PIM:

mic.xml-- 1Java WSGeneratorj ava

AutoJava v.'SGeneratodava OnLineTra.velAgency_auton PSM
-l omicjava.xml

I

l
Autonomic Java web CODE
seMces (1AX-WS)

Figure 8. 10: Autonomic Java Web Services Lifecycle.

The generated Java files (proxy web service, actual web service and a JSP file) for this

domain can be found in Appendix E. As shown in Appendix E (Listing E.l), the proxy

web service contains the necessary business logic for calling the actual web service, the

PaymentCardValidator in this case. Also, invoking the proxy web service which meant

to be performed and dispatched to the actual web service is encapsulated in a JSP file as

depicted in Listing E.2. The skeleton code for the actual Java web service is shown in

Listing E.3. Here, the web services are coded according to the JAX-WS technology. To

show part of the autonomic aspect of the case study, the automatically generated code for

the monitor service is introduced in Listing E.4. The monitor service here is monitoring

the dateOjTravel parameter of the FlightSelectionProcess service. The state change

notification comes from the proxy as shown in the code and then the monitor responds by

reading the new entered value from the sensor, the getter method in this case. The

retrieved value is compared to a threshold, today date in this case, to decide whether or

not to raise a conflict event. In case of sensing a value which reflects an old date, an

INVALID_DATE_EVENT is raised and sent to the control rules (policy) component.

92

Here, the received event is used to search for a matching situation. In the case of finding

a matching situation, the associated action is performed.

The following screenshots (Figures 8.11-8.]4) show the user interactions with the Online

Travel Agency application. In particular, it shows the required interactions involved in

addressing the Book Flight task (Business process). The user interface is coded here in

JSP files and the business logic and actual code is encapsulated in Java Web services.

Fil~ Edit Vievv Favorites Tools.. _ ..- -- '_' .. ,_ _. ~- .,,-

~ I'~ Online Trav~1Ag~ncy

OnLine Travel Agency

Figure 8.11: Flight details entry form.

.~ On Line TrllVelAgency - Jntemet Explorer provided by Dello0,.. I~ http://localhost:8084/Client/index.jsp
-- -

File Edit View Favorites Tools Help.__
<f:3 ~ 1·8B-r·1~ Online Travel Agency I~ On line Travel Agency xl-

.'=--

Available flights
Available flights on 22/07/08 «London >Tripoh)

Flight No: ILN3011 I
(Reserve flight I

Figure 8. 12: Rendering of available flights.

93

File Eelit View F~vorites Tools

~ Payment card verificlltion

ie Payment Ca.relVal;~tion - Internet Explorer provideel by Den

~ ~ http://localhost:8084/Client/ cardVa'idationCaller .jspI~ __ --" ~~_~_'C'_'_'_cc_ •••~._. _·~-.cc-.---.--··~_·~__·_··_· ··= _

Verifying payment card

Card No: 542399862

Security No: 213

(Verify I

Figure 8.13: The Payment Card Input Form.

Payment GlIrdverification - Internet Explorer provided by Deno~_~.http://localhost~~84/~=Trav ..IA~ind,=,.j$p

File Edit View!:a~~_i_t.~ __!_o~15.__'::'~lp _.

1::1 ~ I~ Payment carel verification

Card verification status...
Pa)'Dlent card has been successfully verified and a seat on flight
LN301has been reserved..

Back to home page

Figure 8.14: Notification of card verification and seat reservation.

8.3.2 The Intelligent Office case study- Generality Evaluation
As stated earlier, the generality aspect indicates that the proposed design method should

not be limited or tailored for one specific platform or case study. Therefore, a case study

called the intelligent office is introduced here to show how the proposed design method

can be used to accommodate a new system (domain) without carrying out any changes.

Also the target platform here is the C# Web services.

The purpose of this hypothetical system is to design and develop an intelligent office.

This intelligent office should address and meet the requirements set below:

• Security measures should be provided in terms of who is authorised to get in.

• Room temperature should be kept at a reasonable level.

• The power should be consumed reasonably and efficiently inside the office.

For example, the lights should be automatically turned off when it is sunny

and the office curtain is open.

94

These requirements or high level goals are mapped into tasks according to our design

method. Thus, here we have four fundamental tasks, listed above, to be addressed in

order to deliver and achieve the overall system functionality. The system under

consideration here is called a domain following the terminology of our approach which is

the Intelligent Office.

8.3.2.1 Task and service definitions
The intelligent office domain has four primary tasks as follows:

• Enforce authorised access to office task: this task is responsible for providing

mechanisms and security measures to control who is entitled and authorised to

get into the office.

• Measure office temperature task: this task is responsible for measuring the

office temperature so it can be kept at a reasonable and specific value.

• Ensure efficient power consumption task: this task ensures and guarantees that

power consumed efficiently and sensibly.

The Intelligent office domain and its fundamental tasks are depicted in Figure 8.15.

«Task»
Enforce authorised access to office

«Task»
Measure office temperature

«Task»
Ensure efficient power consumption

Figure 8.15: A set of tasks for the Intelligent Office domain.

Each of the tasks above is then represented in terms of services. The following sequence

diagrams show this process.

95

*AccessRequestor

<<ServIce""
PaawordVtfffier I~II

I I
I I
I I

1: acceptUserPassword I I
1---------{ ..:>r,1 2: verifyPassword I

... 3: return verlflCalionResuit ~ J i
4: display message 1<----------------1 I1<--------------- I :

II 5:openO/closeO II I
-----~U ! - i

I I I
I I I
I I I
I I I

*Temparl'llureWl'llcher I
I
I

1: getTemperl'llure i

Figure 8.16: A set of services for the 'enforce authorised access to office' task.

Figure 8. 17: The thermometer service for 'MeasureOfficeTemparature' task.

..

*PowerConsumPtionWalcher

'"1;]
I
I

I
I
I

1: getCurrentTime ... :

~---!~~~~~-----~
I

3: turnOnllurnOff I

Figure 8.18: Services for 'Ensure efficient power consumption' task.

96

8.3.2.2 The Intention Model definition
Out of these sequence diagrams, the complete system (domain) can be obtained which is

represented, at high level, in terms of tasks and their corresponding services. The

obtained model (Intention model) of the intelligent office is saved in an XML file called

IntelligentOffice.xml. This file is shown in Figure 8.19. Also, the interactions between

each task services can be extracted and modelled here. Such interactions are encapsulated

and saved in a separate XML file called IntelligentOffice _composite.xml. Such a file IS

depicted in Figure 8.20.

<?xml version="l.O" encoding="UTF-8" ?>
<Domain name="IntelligentDoor">

<Task name="EnforceAutorisedAccess" id="l">
<Service name="AccessInterface" id="l">

<Interface>
<operation name="acceptUserPassword" returnedVar="message"

returnType="Text">
<params>

<param name="password" type="Text"/>
</params>

</operation>
</Interface>

</Service>
<Service name="OfficeDoor" id="2">

<Interface>
<operation name="open" returnedVar="void"

returnType="void"/>
<operation name="close" returnedVar="void"

returnType="void"/>
</Interface>

</Service>
</Task>

<Task name="" id="ControlOfficeTemperature">
<Service name="thermometer" id="l">

<Interface>
<operation name="getTemperature" returnedVar="temperature"

returnType="float">

</operation>
</Interface>

</Service>

</Task>
</Domain>

Figure 8. 19: The Intention Model for the Intelligent Office domain.
<?xml version="l.O" encoding="UTF-8" ?>

<composites domain="IntelligentOffice">

<composite name=" EnforceAutorisedAccess ">
<Interaction>

<callingParty name="user"/>
<calledParty name="AccessInterface">

<operation name="acceptUserPassword"/>
</calledParty>

</Interaction>

97

<Interaction>
<callingParty name="AccessInterface"/>
<calledParty name="PasswordVerifier">

<operation name="verifyPassword"/>
</calledParty>

</Interaction>
<Interaction>

<callingParty name="AccessInterface"/>
<calledParty name="OfficeDoor">

<operation name="setDoorStatus"/>
</calledParty>

</Interaction>
</composite>

<composite name=" ControlOfficeTemperature ">
<Interaction>

</composite>
</composites>

Figure 8. 20: Composite Model for the Intelligent Office domain.

8.3.2.3 The Platform Independent Autonomic Model (PIAM)
The next step of the transformation process is to add and generate the autonomic model

for the Intelligent Office domain. This can be achieved by applying the

Autonomicl'rofile.java file to the intention model. The outcome of this operation is saved

in an XML file called IntelligentOffice_Autonomic.xml which is illustrated (small part of

it) in Figure 8.21.

<?xml version=" 1.0" encoding="UTF-8" standalone="no"?>
<Domain name="lntelligentDoor">

<Task id="J" name="EnforceAutorisedAccess">
<Service id="l" name="Accesslnterface">

<Interface>
<operation name="acceptUserPassword" returnType="Text" returnedVar="message">

<params>
<param name="password" type="Text"l>

</params>
<Ioperation>

<II nterface>
<Monitor name="Monitor _Accesslnterface">

<MonitorOperation ReturnType="void" name="startMonitoring"l>
<MonitoredVar Event="INV ALID PASSWORD" name="password" threshhold="!= admin"

type="Text"l> -
<!Monitor>

</Service>
<Service id="2" name="OfficeDoor">

<Interface>
<operation name="open" returnType="void" returnedVar="void"l>
<operation name="close" retumType="void" returnedVar="void"l>

98

</1nterface>
</Service>

</Task>
<Task id="ControIOfficeTemperature" name="">

<Service id="J" name="thermometer">
<Interface>

<operation name="getTemperature" retumType="float" returnedVar="temperature"/>
<!Interface>

</Service>
</Task>

</Domain>
Figure 8.21: The autonomic model for Intelligent Office model.

8.3.2.4 The Platform Specific Autonomic Model (PSAM)
Since the target platform here is the C# web services, the AbstiPlcuform'Iransformer.java

class is instantiated with the CSharpPlatform class instance passed to its constructor. This

results in producing the platform specific autonomic intelligent office model. Such a

model is stored in an XML file referred to as Intelligenttlffice _Autonomic _CSharp.xml

and depicted in Figure 8.22.
<?xml version="l.O" encoding="UTF-B" standalone="no"?>
<Domain name="IntelligentDoor">

<namespace id="l" name="EnforceAutorisedAccess">
<class id="l" name="AccessInterface">

<Method name="acceptUserPassword" returnType="string"
returnedVar="message">

<param name="password" type="string"/>
</Method>

</class>
<class id="2" name="OfficeDoor">

<Method name="open" returnType="void" returnedVar="void"/>
<Method name="close" returnType="void" returnedVar="void"/>

</class>
</namespace>

<namespace id="ControlOfficeTemperature" name="">
<class id="l" name="thermometer">

<Method name="getTemperature" returnType="float"
returnedVar="temperature"/>

</class>

</namespace>
</Domain>

Figure 8.22: The C# Autonomic Intelligent Office domain.

8.3.2.5The Autonomic Code Generation
The final stage of the development process is to generate the autonomic code. Here, two

kinds of code generator are used. The first generator which is encapsulated in the file

CSharpCodeGenerator.java is used to generate the core C# web services whereas the

second generator is used to generate the autonomic C# web service and saved in the file

99

AutonomicCSharpCodeGenerator.java. Listings 8.1 and 8.2 depict two core C# web

services, namely the Access Interface and Thermometer.

Listing 8.1: Generated C# code for Access Interface web service.
/****************************
*Developer: Yousef Abuseta***
*University: LJMU (2009) *
C# WEB SERVICES
*****************************/

<%@ WebService language="C#" class="AccessInterface"%>

using System;
using System.Web.Services;

[WebService]
public class AccessInterface:WebService

[WebMethod]
public string acceptUserPassword(string password) {

//Implementation code goes here ...

return message;

Listing 8.2: Generated C# code for Thermometer web service
/****************************
*Developer: Yousef Abuseta***
*University: LJMU (2009) *
C# WEB SERVICES
*****************************/

<%@ WebService language="C#" class="thermometer"%>

using System;
using System. Web. Services;

[WebService]
public class thermometer:WebService

[WebMethod]
public float getTemperature(){

//Implementation code goes here ...

return temperature;

8.3.3 The Pet Store case study-Adaptability Evaluation
To evaluate the proposed design method from the adaptability perspective, the case study

Pet Store [80] is used here. This case study is a typical e-commerce application. It is an

online pet store enterprise that offers services and sells animals to customers. This

100

application has a web site via which the customers can interact with and access services

offered by this application. Application interfaces are also available to other users such

administrators and suppliers to maintain inventory and perform managerial tasks. Each

class of users has access to specific categories of functionality, and each interacts with

the application through a specific user interface mechanism. A high level view of the real

world problem intended to be solved by this application is depicted in Figure 8.23. As it

can be seen from the Figure, a number of involving parties can be identified, including:

the customers, order fulfilment centre, suppliers and credit card validation. According to

our approach, we have to represent this application (domain in our terminology) in terms

of tasks. A task, as stated in Section 4.2, is a very high level goal that has to be addressed

in order to address the overall system requirements.

Figure 8.23: A high-level view of the major modules of pet store application [80)

8.3.3.1 Task and service definitions
The two following tasks (shown in Figure 8.24) can be identified in the Pet store

domain:

• Order product from supplier: the pet store has established contracts with a number

of suppliers to offer a varied collection of pets to target a broad range of

customers. The trigger of this task is the selling point service.

• Sell products (pets, food): the trigger of this task is the customer whose primary

intention here is to buy pets from the online pet store.

Each of the above listed tasks should be addressed and realised through a set of services

following the process adopted in our design method.

101

«Task»
sell pets to customers

«Task»
Order product from supplier

Figure 8. 24: Tasks for Pet Store domain.

To express and represent each task in terms of services, the two following UML

sequence diagrams are used.

*Customer

I c~~.» I
P1Iy~dVlllldlltor

«s.rvIc.»
s...,.oInt

1: browsePetlnventory

2: return available pets

3: buyPet(petName. noOfPets)
4: verlfyPaymentCard (cardNo, secur~yNo

6: return date of delivery 5: return result

Figure 8.25: A set of services for 'the sell products to customer' task.

*Inventor Checking Trigger

1: checklnventory

2: return list of· shortage

3: getAvallablePets

4: return aV~ilable pets--------------,----------------
5: buy pet (petN ..me, qu ..nttty)

I
6: return date of delivery ,--------------~----------------,,

Figure 8.26: Services for order pets from supplier.

In this section, we demonstrate and show the feasibility of our proposed method by

injecting a new service to the above task shown in Figure 8.25. The service to be

injected into the task is called OfferChecker. Such a service is called by the SalesPoint

service to check whether the customer is qualified and eligible for a special offer and

102

charge him or her accordingly. The special offer eligibility is evaluated based on the pet

name, number of pets and the payment method.

Only the synchronisation between the PIM and APIM will be discussed and shown here.

As stated earlier, the sensing and actuation layer is responsible for providing the facilities

and means for the system designer to modify and accomplish the desirable changes

(adding new service in this case) to the target model. Here, a development environment

was developed in Java to serve as a supporting tool. A screenshot of this environment is

shown in Figure 8.27 .

.W Mod~' modifICationfor P~tStor~domain .• .'{iII' It~" f;

I New SeNlc:e lI1ection rLN::_:e::_:w:_:T.=aS::_:k.=ll1::.::ie.=ct::.:io.::_n..LI --I

Task repository: Ise.pets 1 1 SeMce name: IOrrerChecker

TASK WORK FLOW

Customer I. ~ SolesPolnt I
--_j

!
Customer I . SOleSPolntJ

1
solesPolnt r po~m~~tC:dV :"dottonr J

J

i SolesPolnt 1
c:~m:1

I
I

4j
Workflow modification

From Icustomer ~

From Icustomer 1 1

From ISaieSPoint 1 1

From ISaiesPolnt 1 1

From ~._o_m_er '_I__'I

To lialeSPo'nt 1 1

To ISaiesPoint 1 1

To IpaymentCardViillidationr 1 1

To ICustomer

To ICustomer

Figure 8. 27: New service injection user interface.

.
-

-...

In the proposed synchronisation mechanism, the human is introduced to the loop and is

offered the facilities and required user interface to accomplish the model modification

task. However, as explained earlier, the model synchronisation process is carried out in

an automated way with the coordination of the controllers that spread over the four MDD

stages of our design method. As shown in Figure 8.27, the human user is provided by the

required GUI to add the OjJerChecker service (at PIM level) to the 'sell pets' task of the

103

Pet store domain. Also the workflow of this task is shown, so that the user knows where

to plug in this new service and performs the required changes. In the service name field,

the user has to enter the name of the service (OfferChecker in this case) to be injected

and the workflow modification section can be used to change and rearrange the service

interactions, which is a necessary step once a new service is introduced. Then, the user

should define the service interface (its operations) which can be done via pressing the

'Define service interface' button. Such an action brings up the interaction dialog depicted

in Figure 8.28. As soon as the user or system designer finishes defining the service

interface, and confirms adding the service by pressing save and them exit, a notification

of change message is sent to the APIM Change controller stating that a change has

occurred at the PIM stage and the appropriate actions are being taken. This is depicted in

Figure 8.29. Such changes will be reflected in the workflow of the' sell pets' task which

is shown in Figure 8.30. Also, the sensor notifies the change manager of the event just

taken place. The controller or change manager, in turn, notifies the other controllers of

this event and passes the necessary information, so they can adapt their models

accordingly. In this case, the information passed to the controller (APIM in this case)

include the event name (add new service), task name and the service being added. The

APIM change manager will have to take the corresponding action or actions found in its

change plan engine which include: 1) adding the new service to the right task; 2) trigger

the critical parameters definition process to enable designers specify the parameters to be

monitored; 3) trigger the policy definition process which enables the human user to

amend and add the control policies and 4) notify the APSM change manager of the

change that has just taken place.

~ Inte;rf"cedefinition for OfferCt-cl<..r ~rvic .. = [§]

Service Intertace
Openrtion: ,'C-he-C-k-o-rre-r-Av-a-II-ab-i-lity---------- , Retum; lintege .. I1

Type: §i:EJ~Parameter1 l:_pe_t_N_a_m_e ---'

,Parameter2 l:_pe_t_N_o __' Type: linteger I P
Type: Ist..-Ing 1 1 \Paramete..-3 IpaymentMethod

Save openltlon Save&Exi! Cancel

Figure 8.28: New service interface definition.

104

Change Notification report--ChangePlanEngine_APIM

Figure 8.29: Notification of model change from PIM change controller.

l:&I Model modification for PetStore domain Jr.,jff' ~t' "'I!' l c::> I@) !.ItJ.J
'~wSMke~ct~ rL_Ne_W_T_aS_k~~~ect_i_on_L_I ~

CD Notification of change received from:
<modeISynchronisation.ModeIChangeUstener _PIM> Controller
,appropriate actions being taken

I pKl I

Task repository.lsellPets 1 1 SeMce name: 1, --'1

TASK WORK FLOW

Customer II-- ~ SalesPolnt i
_.J " J

Customer I ~SalesPolnt I
_ I _:

SalesPolnt ~I --';>' _~~rC_h~ck~j____..J
sales~~ ., pavmentCardValidatlonj

Sales Point I ~ custom_e~1____J

Workflow llIo(iificiJIion
From [customer B
From [Customer 1 1

From ISalesPoint 1 1

From ISalesPoint 1 1

From [Siije·-:sP=-o7Cint:--------rI-1
From [Customer 1 1

To I SalesPoint 1 1

To IsalesPoint 1 1

To IOOerChecker 1 1

To IPavmentCsrllValidaiionr 1 1

To [CiiSiOiner
To ICustomer

~I H
H

Define Service hllerface Exit

-...

8.3.4 The Salt World case study- self organising systems
In this section, the proposed design method is evaluated against the self organisation

systems [8]] . The Salt World case study [81] is used here for this purpose. The latter

Figure 8.30: Task work flow after service injection.

105

contains two primary entities, namely the salt grains and salt carriers. In the initial

situation, grains of salt are randomly distributed over a 2-D world which also contains

randomly distributed salt carriers their job is to pick the grains and drop them to form a

salt pile. The carriers move randomly within the world, pick up salt grains and drop them

at the nearest empty space once another salt grain is encountered. This behaviour leads to

the formation of highly concentrated connected salt pile. Therefore, the salt concentration

event is the emergent behaviour that should be observed here. Subsequent subsections

introduce the definitions and specifications of the different stages and models for the Salt

World domain based on the proposed MDD based design method.

8.3.4.1 Task and service definitions
For the salt world application, the following tasks can be identified:

• Salt grain holding

• Salt grain dropping

• Salt concentration calculation

Figure 8.31 shows these tasks using a UML use case diagram.

Figure 8. 31: A set of tasks for the Salt World domain.

For each task of the above tasks, a set of services is defined. A UML sequence diagram

is used to define these services and their interactions. Below are the set of sequence

diagrams (Figures 8.32-8.34) for each of these tasks.

106

*GrainPickingTrigger

I~=;;.:,_I
I
I
I
I
I
I
I

I~~I
I
I
I
I
I
I

5: set carrier state I

~

2: getCellColor

I Indicateempty
LJ.__ 4:_s_et_C_e_II_C_o_lo_r---f:>.'-.I- - - - - - - - L....__ --...- ___..J

*GrainDr ngTrigger

IS::' I
I
I
I

1: startGraingDropping I

<<ServIce,.,.
c.m.rst.t-ger

I
I
I

obtaln.d oeto, II
and th.n .. U. white to
IItdlo.... n .. o",l.d 0.11

5; .return carrier State l',
-~~---------7'r----------
" 6: setColor , ' I,

o..,d.r stat. Is
Holdln, and th.n set
to not holdln.

7: setCarrierState

1: star1GrainPicking

In this cas., th. carrier
state Is set to Holding

Figure 8.32: A set of services for SaltGrainHolding task.

As it can be seen, the above task is addressed by a set of services, namely the

SaltGrainPicker, SaltGrainContainer and the CarrierStateManager.

Is.:or~;_1
I
I
I
I

2: getCOlor i
II 3: return color ~------~----------11 /J-------...I
I 4: getCarrierState I

Figure 8.33: A set of services for SaltGrainDropping task.

107

I <~~e»
SaltConceroltionCalcul8tor

I '
I
I
I
I
I
I
I
I

*SaltConcentrationTrigger
I~~I

I
I
I
I1: getCarrierState

2: return state

- ~~c~:~~s:It~:jration

1 4: return:saltconcentration I---~------1----------------O
canier state should :
be "Salt dropped"

Figure 8.34: A set of services for SaltConcentrationCalculation task.

8.3.4.2 The Intention Model definition
The Intention Model for the SaltWorld domain is composed of the core services

generated above using the UML sequence diagrams in addition to the interaction model

that defines the service interactions for each task. The core services are encapsulated in

an xml file in the form of domainName.xml. For the salt world, this file is saved as

SaltWorld.xml as shown in Figure 8.35. As for the service interactions for each task, an

xml file of the form domainName _serviceComposites.xml. The salt world tasks

interactions are saved in a file called SaltWorld serviceComposites.xml as illustrated in

Figure 8.36. A more visualised representation of these interactions is depicted in Figure

8.37.

<?xml version="1.0" encoding="UTF-8"?>

<!--
Document : SaltWorld.xml

Author : LA Abuseta
Description:

The Intention Model of the Salt world domain
-->
<Domain name="saltworld">

<Service name=" SaltGrainCarrier">
<Operation name="startGrainPicking" returnType="none"/>
<Operation name="startGrainDropping" returnType="none"/>

</Service>
<Service name="SaltGrainContainer">

<Operation name="getColor" returnType="string" returnVar="color"/>
<Operation name="setColor" returnType="none" returnVar="none">

<param name="color" type="string"/>
</Operation>

</Service>

108

<Service name="CarrierStateManager">
<Operation name="setCarrierState" retumType="none">

<param name="state" type="string"l>
<IOperation>
<Operation name="getCarrierState" returnType="string">
<IOperation>

</Service>
<lDomain>

Figure 8.35: The Intention Model for SaltWorld domain.
<?xml version=" 1.0" encoding="UTF-8"?>
<!--

Document : SaltWorld_serviceComposite.xml
Created on : II May 2009, 12:23
Author : LA Abuseta
Description:

The Task composites for the Salt World domain
-->
<Composites domain="SaltWorld">

<Composite name="SaltGrainHolding">
<Interaction>

<CallingParty name="Trigger"l>
<Cal ledParty name="SaItGrainCarrier">

<CalledOperation name="startGrainPicking"l>
<ICalledParty>

</Interaction>
<Interaction>

<CallingParty name="SaltGrainCarrier"l>
<CalledParty name="SaltGrainContainer">

<CalledOperation name="getCeIIColor"l>
<ICalledParty>

<IInteraction>
<Interaction>

<Call ingParty name="SaItGrainCarrier"l>
<CalledParty name="SaltGrainContainer">

<CalledOperation name="setCeIlColor"l>
<ICalledParty>

<IInteraction>
<Interaction>

<CallingParty name="SaltGrainCarrier"l>
<Called Party name="CarrierStateManager">

<CalledOperation name="setCarrierState"l>
<lCalledParty>

</Interaction>
<IComposite>
<Composite name="SaltGrainDropping">

<1nteraction>
<CallingParty name="Trigger"l>
<Cal ledParty name="SaltGrainCarrier">

<CalledOperation name="startGrainDropping"l>
<ICalledParty>

<IInteraction>
<Interaction>

<CallingParty name="SaltGrainCarrier"l>
<CalledParty name="CarrierStateManager">

<CalledOperation name="getCarrierState"l>
<ICalledParty>

<IInteraction>
<Interaction>

<CallingParty name="SaltGrainCarrier"l>

109

<CalledParty name="SaltGrainContainer">
<CalledOperation name="getCeIIColor"/>

</CalledParty>
</lnteraction>
<interaction>

<CallingParty name="SaltGrainCarrier"/>
<Called Party name="CarrierStateManager">

<CalledOperation name="getCarrierState"/>
</CalledParty>

</lnteraction>
</Composite>
<Composite name="SaltConcentrationCalculation">

<Interaction>
<CallingParty name="trigger"!>
<Called Party name="CarrierStateManager">

<Cal ledOperation name="getCarrierState" />
</CalledParty>

<!Interaction>
<Interaction>

<CallingParty name="trigger"/>
<CalledParty name=" SaltConcentrationCalculator">

<CalledOperation name="calculateSaltConcentration"/>
</CalledParty>

<Ilnteraction>
</Composite>

</Composites>
Figure 8. 36: Service Compositions for SaltWorld tasks.

t:) BU<;Ir\e~s Pror-e-sv Interactiorrs for S.altWorld domain Mozilia Fire-fox

file Idit)liew H,~tory aookmark5 Yithoo! 10015 I::!elp
" ~ ,--,--------------------------------~~~--~-----~------IC ~ U file:///C:/User5/LA_Abuseta/AutonomicDesignlsrc!TransformEngine!SaltWorld_co

&:; Most Visited. Getting Started '" latest Headline.

~! . a . --~- + Search Web • qJ ·1 fQ:) Mail • Cl Shopping • «;> Personals • e My Yahoo! ~

Business Process Interactions for SaltWorld domain

SaltGrainHolding Business process

IstartGrainDropping
ISaltGrainCanier Ii-S-alt-Gr-mn-·-eon--tmn-·-er-lgetCeDColor

i--------ISaltGrainCanier ICanierSt2lteManager IgetCarrierState

ISaltGrainCanier ISaltGrainContainer IgetCeDColor
i-::-----I SaltGrainCarrier ICanierStateManager IgetCarrierState

Figure 8.37: Business process interactions for Salt World domain.

110

8.3.4.3 The Platform Independent Autonomic Model (PIAM)
The process of monitoring some interesting behaviour requires the definition and

designing of an observer or controller component. This component will read the value of

the monitored parameter and compare it with a threshold. If the read value violates the

threshold, a conflict signal is raised to reflect or show an emergent behaviour. In the Salt

world domain, the salt concentration is the parameter or behaviour to watch and monitor.

In line with the autonomic systems terminology, the observer or the controller plays the

autonomic manager role, while the managed element role is played here by the salt

concentration calculator service. The design style depicted in Figure 8.38 shows the

arrangement that is used to establish the relationship between the controller and the

managed element, the salt concentration calculator service in this case.

Actions may take mmy
fonns. The simplest is to
show a message descnbing
the emergent behaviour.

Take action

Figure 8. 38: The Service-Monitor-Controller design style for the salt world domain.

As illustrated in the figure, the service component notifies the monitor that a change on

the monitored parameter has occured and the monitor responds by reading this new

value. Based on the outcome of the comparison of the obtained value against the

predefined threshold, a conflict signal might be raised and sent by the monitor to the

controller which indicates the occurrence of an emergent behaviour. The controller then

uses the received conflict signal to look up and dispatch the corresponding corrective

action.

111

In the SaltWorld domain, the salt concentration value is calculated by the salt

concentration calculator service. Once this process is completed, this service sends a

signal to the monitor that reads the new value and then compares it with a threshold value

of 0.97. If it is greater than 0.97, a signal is raised indicating high concentration

behaviour. The monitor then notifies the controller of this event or behaviour and the

controller takes the corresponding corrective action.

To inject the necessary autonomic components to the Intention Model, the autonomic

transformer is applied. Such a transformer is encapsulated in a Java file called

AutonomicProfile.java. The user interface used to specify the parameter to observe (salt

concentration), the threshold (0.97) and the controller (policy engine) is shown in Figure

8.39.

~ Autonomic Profile Definition for SaltWorld Domain

Operation Name: IcalclllateSaltConcentartion I-OJ

, ControUer: Style r Design By Contract I
MonttorDefinttion---

Service Name: ISaltCOflcentrationcalclIlator

Parameter: Lls_a_ItC_o_fl_c_e_nt_r_at_i_o_fl --1I_.........J1

Parameter Type: Ifloat II--_---------------------~

Condition: ~IG_r_eat_e_rT_h_a_n~I_....~1I_O._9_7 _J

Event raised: IHighCOncentrationE\len~

Define policy_. I I Save (tile r (Exit

~==========------_-_-_--_--_-_------=======================================-~
Figure 8. 39: Autonomic profile definition for Salt World domain.

The policy rule shown above follows the Event Condition Action (ECA) approach which

takes the form of: on event if condition, do action. In the case of the monitor and service,

for example, the monitor receives a change of value (salt concentration) event from the

service and then evaluates the condition (concentration >0.97). If the condition holds, the

monitor takes action in the form of sending a conflict signal to the controller. Figure 8.40

112

shows a simplified XML representation of the autonomic model for the salt world

domain.

<?xml version=" 1.0" encoding="UTF-8" standalone="no"?>
<!--

Document : SaltWorld autonomic.xml
Created on : 16May 2009, 12:21
Author : LA Abuseta
Description: The Autonomic Model of the Salt world domain

-->
<Domain name="saltworld">

<Service name="SaltGrainCarrier">
<operation name="startGrainPicking" retumType="none"/>
<operation name="startGrainDropping" retumType="none"/>

</Service>
<Service name="SaltGrainContainer">

<operation name="getColor" retumType="string" retumedVar="color">
</operation>
<operation name="setColor" returnType="none" returnedVar="none">

<param name="color" type="string"/>
</operation>

<fService>
<Service name="CarrierStateManager">

<operation name="setCarrierState" returnedType="none">
<param name="state" type="string"/>

</operation>
<operation name="getCarrierState" returnedType="string">
</operation>

</Service>
<Service name="SaltConcentrationCalculator">

<operation name="calculateSaltConcentartion" returnType="float" returnedVar="concentration">
<param name="saltConcentration" type="float"/>

</operation>
<Monitor name="Monitor SaItConcentrationCalculator">

<MonitorOperation Type=vvoid" name="startMonitoring"/>
<MonitoredVar name="saltConcentration" type="float"/>
<Thrushold operator="Equal" value="0.97"/>
<Event>High _Concentration</Event>

</Monitor>
<Policy name="HighConcentration">

<Action name="HighConcentraioll_ Action">
<Operation name="takeAction" type="void"!>

<fAction>
</policy>

<fService>
<!Domain>

Figure 8. 40: A simplified version of the salt world autonomic model (PIM).

8.3.4.4 The Platform Specific Autonomic Model (PSAM)
In this phase, the model obtained in the previous stage is transformed into a platform

specific one by adding and injecting the terms and concepts for that platform, Java for

instance. The transformer used to accomplish this task is coded in Java and referred to as

Abst2PlatjormTransjormer.java. Figure 8.41 shows a simplified version of the platform

specific autonomic model for the salt world domain.

113

<?xml version=" 1.0" encoding="UTF-8" standalone="no"?>
<!--

Document : SaltWorld_autonomicjava.xml
Created on : 16May 2009, 12:21
Author : LA Abuseta
Description:

The Autonomic Model (PSM) of the Salt world domain
-->
<Domain name="saltworld">

<class name="SaltGrainCarrier">
<Method name="startGrainPicking" returnType="void"/>
<Method name="startGrainDropping" returnType="void"l>

</class>
<class name="SaltGrainContainer">

<Method name="getColor" returnType="string" returnedVar="color"/>
<Method name="setColor" returnType="void" returnedVar="void">

<param name="color" type="String"/>
<lMethod>

</c1ass>
<class name="CarrierStateManager">

<Method name="setCarrierState" retumedType="void">
<param name="state" type="String"/>

</Method>
<Method name="getCarrierState" returnedType="String"/>

</c1ass>
<class name="SaltConcentrationCalculator">

<Method name="calculateSaltConcentartion" retumType="f1oat" returnedVar=" concentration ">
<param name="saltConcentration" type="f1oat"/>

</Method>
</class>

<!Domain>
Figure 8.41: A simplified version of the salt world autonomic model (PSM).

8.3.4.5 The Autonomic Code Generation
As described earlier, generating autonomic code requires the application of two code

generators. Since the target platform here is the Java web services, two Java code

generators are applied here. The first generator which is encapsulated in the file

JavaWSCodeGenerator.java is used to generate the core Java web services whereas the

second generator is used to generate the autonomic Java web services and saved in the

file AutonomicJavaWSCodeGenerator.java. The generated artifacts for the salt world

domain can be found in appendix E.

8.4 Summary and Discussion

This chapter was dedicated to evaluate the proposed design method introduced in this

thesis. Since a quantitative evaluation is very hard to perform only qualitative evaluation

was carried out. Four case studies were introduced here to show and demonstrate the

feasibility of our proposed design approach, namely, the Online Travel Agency, Pet

114

Store, Intelligent office and Salt World applications. Evaluation metrics were used hare

include functionality, generality, adaptability and Ease of aspect accommodation.

As stated earlier, it is rather difficult to carry out a quantitative evaluation and make

comparison between MOD based systems and systems developed using different

methods or approaches. However, the qualitative evaluation has provided positive

indications that the proposed design method along with the developed frameworks and

reference models seem to fulfil the requirements specified and are generic and flexible

enough to support the autonomic system designer with this very hard task. The

flexibility and generality has been mainly achieved by adopting and applying the MOD

approach. Using the Online Travel Agency case study, it was shown and proven the

feasibility and applicability of the proposed design method. UML diagrams, XML files

and Java web services files were presented here. The Intelligent Office case study,

however, was developed to show that generality of the proposed designed method where

the target platform was the C# web services. As for the adaptability and ease of change

issue, the Pet Store case study was employed to show how to modify (add/remove

components) the system in question. A new service was injected into the Intention

Model and corresponding corrective actions were shown. These actions included adding

the new service into a specific task, modifying the service interaction (composite) and

notifying the other change controllers of such an event. The Salt World case study was

employed here to evaluate the proposed design method against the engineering of the self

organisation systems. It was shown that such systems can be accommodated and

designed easily using the proposed design method.

115

CHAPTER9

CONCLUSIONS

9.1 Motivations and Approach Summary

The explosive growth seen today in distributed applications and information services that

affects our life in many aspects has been put down to the advances and remarkable

progress made in networking. computing technology and software tools. The nature of

these applications and services is extremely complex. heterogeneous and dynamic. As

these systems and applications continue to show a growth in terms of the complexity and

scalability, existing tools and methodologies have failed to show the capability and

support needed to manage such systems. Researchers. therefore. had to consider

alternative approaches to address this problem. They have adopted a set of strategies

employed by the biological systems and their effort has resulted in the emergence of the

autonomic computing paradigm. This paradigm was first introduced by IBM to the

National Academy of Engineers at Harvard University in March 200 I. Such a paradigm

is inspired by the functioning of the human nervous system and its fundamental objective

is to design software systems that exhibit autonomic and self managing capabilities. In

such systems, the management and configuration tasks which are used to be performed

by the system administrators are delegated to the software itself. supplied only with high-

level policies, and thus shielding the administrators from carrying out these notoriously

difficult tasks.

However, despite the rapid advancements in autonomic systems research and

development, their design and engineering support is still under active research. Based Oil

an ongoing research work focusing on open-standard design support for runtime software

adaptation. the work included in this thesis presented our findings towards the

development of a novel Model Driven Development (MDD) method for autonomic

systems.

To cater for the increasing rate of software evolution and change. the proposed MDD-

based method was proposed to provide a complete design lifecycle support starting from

116

the system requirements in terms of tasks (intentions or goals) and ends with an

autonomic code generated by way of model transformation mechanisms. In such a

paradigm, the software development process was entirely based on using models to

represent all relevant information at some specific phases. Hence, the models were

considered as the backbone of the development process and used not only for

documentation purposes but also as a building tool. Each activity of the system

development life-cycle involved taking some models as input and producing target

models as output. There were four models in the development lifecyc1e process, namely

the Intention Model (1M), Platform Independent Autonomic Model (PIAM), Platform

Specific Autonomic Model (PSAM) and Autonomic Code (AC). The proposed design

method presented here extended the emerging Service Component Architecture (SCA)

standard, in that it provided support starting from the business process level all the way

to the code generation stages. Hence, we referred to it as Autonomic, Task, Service and

Component architecture (AutoTaSC) method.

9.2 Achievements and contributions

The work presented in this thesis made a number of contributions towards a better and

deeper understanding of the requirements of the autonomic or self managing software

systems design. However, the primary contribution of the research presented in this

thesis is the reference autonomic development process. This development process or

design method is augmented with the MDD paradigm to overcome and face the effect of

the technology change and avoid any unnecessary early commitment to a specific

technology. In the proposed development process, the conceptual stages and artifacts that

should exist to help and guide system designers to design autonomic systems are defined

and detailed. More precisely, four stages have been proposed and defined which are

described as follows:

• The Intention Model (1M): in such a PIM stage, each task defined in the

previous stage is represented in terms of a set of services. Also, the interaction

flow between the involved services of each task is modelled here as composite

and saved in a separate file. The set of services and the workflow defining

their interaction and the order, in which these interactions must be fired, form

the concept of the Business Process (BP). The system model in this stage

takes the format of an XML file.

117

• The Platform Independent Autonomic Model (PIAM): in this PIM stage, the

autonomic capabilities and required elements are attached to the system

model obtained in the previous stage. Such elements include, in addition to

others, the monitor, policy, sensor and actuator. Also the critical variables to

be monitored and the control rules or policies are specified and saved in this

model.

• The Platform Specific Autonomic Model (PSAM): in this PSM stage, the

appropriate terms and data types for a specific platform, Java for instance, are

added to the model obtained in the previous stage.

• The Autonomic code generation stage: in such a stage, a set of autonomic

code skeletons is produced here for the platform specified and targeted in the

previous stage.

In addition to the reference design method presented above, a number of other

contributions were made which can be described below:

• Transformation rules engine: this includes a set of required files used to

encapsulate the transformation rules necessary to generate one model from

another. These files have been coded in Java. Here, transformation files can

be, generally, classified into:

» An abstract to Platform Independent Model (PIM) autonomic model

transformation.

» A Platform Independent Model (PIM) autonomic to Platform Specific

Model (PSM) autonomic model transformation.

» A Platform Specific Model (PSM) autonomic to code transformation.

• Aspects profiles: these profiles are defined to specify and encapsulate the

required elements and components for the various aspects that the system

under development might accommodate. Aspects include, in addition to

others such as the security and Quality of Service (QoS), the four autonomic

capabilities (self-healing, self-protecting, self-configuring and self-

optimising).

• Autonomic design styles: In our approach to designing the autonomic systems we

have proposed and employed two different design styles to introduce and inject

118

the autonomic capabilities, namely the Service-Monitor-Controller (SMC) and the

design by contract styles.

• Model synchronization mechanism: A mechanism for realising the

synchronisation between the involved models throughout the MOD based

development process lifecycle is proposed and implemented. Our mechanism was

inspired by the autonomic principles and particularly the manager and managed

element relationship proposed by IBM blueprint. In such a mechanism, the

managed element role is played by the XML models and the code while the

management task is dedicated to the change manager or controller.

9.3 Thesis summary
This thesis comprises eight chapters and is organised as follows:

• Chapter I: this chapter introduces the main motivations of the work presented

in this thesis, challenges, contributions and thesis structure.

• Chapter 2: it introduces the relevant background theories, principles and

technologies relevant to the work presented in this thesis. Such technologies

and approaches include Model Driven Development (MOD), Autonomic

systems, Service oriented Architecture (SOA) and Web Services, Business

Process Oriented Development and its languages such as BPEL and BPMN,

and Design by Contract (DBC).

• Chapter 3: This chapter was dedicated to reviewing the previous works on

autonomic systems design that have been conducted so far by which the

proposed design method presented in this thesis was inspired. In particular,

this chapter reviewed some of the research that has been reported in the

literature relevant to model-based and model-driven development methods for

autonomic software, some of which have adopted a range of paradigms,

theories and/or architectural models.

• Chapter 4: this chapter introduced the proposed approach and design method

for modelling and engineering autonomic systems from a conceptual

perspective. Only the architecture, concepts and high level design decisions

and ideas were introduced and described here.

119

• Chapter 5: this chapter presented a detailed description of our design method.

Here, a number of aspects were covered including the whole lifecycle of our

design method and justification for design decisions and technology choices.

The whole design method lifecycle process was described here in a number of

stages according to the MOD approach.

• Chapter 6: this chapter introduced and elaborated on the model transformation

framework that have been proposed and developed. The three fundamental

components of this framework were presented and described in detail. These

components included the abstract to autonomic transformer, the PIM

autonomic to PSM autonomic transformer and the autonomic code generation

transformer.

• Chapter 7: this chapter introduced and described the model synchronisation

framework that was proposed and developed to synchronise the different

models of the proposed lifecycle once a change has been performed on any of

these models.

• Chapter 8: This chapter was dedicated to present an evaluation of the

autonomic design method introduced in this thesis. The evaluation contains

qualitative analysis of the design method proposed here. This included an

evaluation of the design method lifecycle process in general in addition to

some critical analysis to some models that have been adopted and developed

in some particular stage throughout the MOD different stages.

• Chapter 9: the thesis concluded at this chapter where a summary, what has

been achieved and contributions were presented as well as some proposed

future work.

9.4 Conclusion and Discussion
Autonomic systems model has emerged to address the increasing systems' design and

administration complexity. Since their emergent in 2001, numerous design and

implementation approaches have been proposed. These approaches fall into a number of

categories including:

• Reference models for autonomic systems (IBM blueprint, J-Reference).

• Aspect oriented programming based approaches.

120

• Design by contract based approaches.

• Model based approaches.

• Model driven development approaches.

To tackle some of the outstanding research issues, this research work proposed a design

method for autonomic systems based on the Model Driven Development (MOD)

approach. The latter provides support to the system designer throughout the lifecycle of

the development process starting from the system requirements stage and all the way to

the last stage where a set of useful skeletons of code is produced. Support is also

provided with regard to the system modification where a set of changes and

modifications can be performed by the system stakeholder, be it a designer, programmer

or domain expert. Carrying out changes on one model of the lifecycle leaves the system

in an inconsistent state unless a mechanism has been put in place to address this issue.

This, too, is provided here via proposing a model synchronisation framework where a

network of controllers is created in which each controller of a specific model has the

responsibility of informing, and also taking actions, other controllers should any changes

have been sensed.

9.5 Comparative evaluation of proposed design method
Below is a comparison between what has been achieved by conducting this research and

some related works. The comparison is based on the two following aspects:

• The MDD based development process lifecycle.

• The model synchronisation mechanisms.

For the first aspect of the comparison, a few approaches have taken this trend and

adopted the MOD for designing autonomic systems. However, these approaches tend to

neglect the domain expert role and make an early commitment to one specific platform or

programming language. This aspect was addressed in this thesis via introducing a higher

level stage where the system requirements can be specified and defined in an abstract and

platform neutral manner.

Also, existing MOD based approaches adopt the UML paradigm as the tool to express

their systems in a platform independent manner. Then, such UML diagrams, typically

class diagrams, are converted into XMI files, which are in turn processed by a specific

program (code generator) to produce the artifacts for the target platform. Two drawbacks

121

can be identified here. The first is connected with the use of the XMI as the format of the

system under study. Such a format is intended primarily for exchange UML diagrams

between different CASE tools and this format is not guaranteed to be standard which

obviously affects the code generator that is applied to it. The second drawback is related

to the use of the UML diagrams for the Platform Independent Model (PIM).

Consequently, runtime system modification is very difficult to accomplish since such a

task enforces the domain expert or system designer to switch to different environment

(UML CASE tool), make the required modifications and then convert it to produce the

updated XMI format. These issues were addressed in this thesis by expressing the system

at the PIM using the XML format instead of the UML. An appropriate user interface is

provided to facilitate and simplify the system modification which eliminates the need for

working in and switching between different environments to make only a small change.

Since the XML is an open standard and can be interpreted in a similar way by different

tools, an expected behaviour by these tools can be guaranteed. Also, necessary concepts

and elements can be introduced easily using the XML and this is particularly important

when it comes to defining autonomic profiles or other non functional system

requirements.

For the second aspect, it is believed that there is not much work on the issue of model

synchronisation. Even when it is addressed, approaches tend only to focus on and support

one way synchronisation. Furthermore, the adoption of the autonomic computing

principle for supporting the modification and change aspect in MOD has not been used

elsewhere by any of the existing approaches. Using the autonomic systems ideas here is

beneficial since the model modification occurs iteratively and is triggered by many

actions. The obvious action of change comes from the software components (code) where

one service is added or removed at runtime in response to one specific event. In the

absence of such an autonomic synchronisation framework, it is very hard to sense these

modifications and take the appropriate corrective and responsive action.

9.6 Future work
This section presents a suggested further works to extend the developed method and its

associated tools, including:

122

• The proposed and developed design method along with proposed models and

design patterns have been tested and evaluated using three case studies. These can

be extended to include more applications and case studies.

• Extending the proposed design method and associated tools to include other non-

functional aspects.

• Further testing the model for runtime injection of new services and aspects with a

specific focus on the requirements of critical systems. In addition, the method

could be studied to support the emerging Cloud computing model.

• Further study can be undertaken to investigate the practical software engineering

aspect of the method in terms of flexibility, efficiency and effectiveness of the

method when dealing with complex and critical systems development.

• Further study can focus on the user interface aspect to enhance the ease of use of

the method and its associated tools when dealing with autonomic systems.

123

APPENDICES

APPENDIX A:

Design by contract
Design by Contract (OBC) is a software engineering technique of building quality and

reliable software systems by explicitly specifying what each function or operation in a

system requires in order to accomplish its task, and what it guarantees to provide in

return to its client [82]. The term was coined by Bertrand Meyer in connection with his

design of the Eiffel programming language and first described in various articles starting

in 1986 and the two successive editions of his book Object-Oriented Software

Construction [83]. In OBC, a class and its clients are bound by a contract. Such a

contract states that the client must meet some conditions to call a method defined by the

class and in return the class guarantees some properties that will hold upon completion of

method execution [84, 85]. The contract here is often specified by pre conditions and

post conditions to define the client's obligations and benefits respectively. These two

conditions can be described as follows:

• A precondition states the constraints under which a routine will function properly.

It is an obligation for the client and a benefit for the supplier.

• A post condition expresses properties of the state resulting from a routine's

execution. It is an obligation for the supplier and a benefit for the client [86].

The third form of condition which can be used is the class invariant. It is a property that

must be applied to every instance of the class [87]. More precisely, it is a condition that

must hold before and after any public methods [88]. Unlike the pre and post conditions,

the invariants can only be applied within the object-oriented approach [87]. In Eiffel, pre

conditions and post conditions are represented by keywords require and ensure

respectively. Listing A.I shows a DBC representation in this language.

Listing A. 1: DBC in Eiffel
put_child (new: NODE) is

Add new to the children of current node

require

124

new 1= void
do

Insertion algorithm
Ensure

new.parent = Current;
child-count = old child-count + I

end-- put_ child

However, in other programming languages, different concepts and terms are used to

represent such contract elements. In Java, for example, where the OBe capability was

not supported from the beginning, a number of approaches have been proposed and

developed each with its own terminology. Listings A.2, A.3 and AA show some of these

approaches.

Listing A. 2: DBC in Jass (Java assertions)
public class A implements Cloneable {
protected int a;
public void addValue (int x) {
/** require x > 0; **/
a = a + Xi

/** ensure Old.a > ai a > Oi **/

protected Object clone () {...}
/** invariant a > 0; **/

Listing A. 3: DBC in jContractor
class ClassName ... {
Object methodName (Object X, String key) {
/* method body */

protected boolean methodName PreCondition (Object x, String key) {
/* Precondition of above method */

protected boolean methodName PostCondition (Object x, String key) {
/* Postcondition of above method */

protected boolean className ClassInvariant () {
/* Class invariant */
} }

125

Listing A. 4: DBC in iCon tract
/**
* @pre 0 != null;
* @post list.size () == list.size () @pre + 1;
*/
void append (Vector list, Object 0) { ... }

Benefits of Design by Contract

The benefits of Design by Contract include the following:

• A better understanding of the software systems and, more generally, of software

construction.

• A systematic approach to building bug-free software systems.

• An effective framework for debugging, testing and, more generally, quality

assurance.

• A method for documenting software components.

• A technique for dealing with abnormal cases, leading to a safe and effective

language construct for exception handling.

Most of the benefits listed above are of great relevance to the research issue presented

in this thesis, the autonomic or self-managing systems enabling.

126

APPENDIXB:

Business Process Oriented Modelling
As stated earlier in Section 2.3, in the Service-oriented Architecture (SOA) paradigm,

software components are modelled and exposed as services. These services offer

standard interfaces and can be invoked via message exchanging mechanisms. A number

of relevant services can be coordinated to achieve and address specific business

functionality. The coordination and integration role is played by a business process that

takes the responsibility for orchestrating the involved services. A typical business process

consists of a control flow, a number of service invocations and other activities for data

processing, fault and transaction handling, and so on [89]. A definition of a business

process presented in [90], states that:

"A business process is a collection of coordinated service invocations and

related activities that produce a business result, either within a single

organization or across several. ..

In another definition in [91]:

"A process is a type of complex activity that defines its own context for

execution. Like other complex activity types, it is a composition of activities

and it directs the execution of these activities. A process can also serve as an

activity within a larger composition, either by defining it as part of a parent

process or by invoking itfrom another process. "

Both definitions are concerned with the coordination between a number of parties

participating in a set of activities in order to address one specific system functionality.

However, the second definition is more generic since the first one defines the business

process from the SOA perspective.

Business process classification
Business processes can be classified into two kinds, namely the abstract and executable.

The abstract processes are similar to the APls in that they only describe what the process

does and its required input and expected output; they do not go into details and describe

how things done. In contrast, the executable processes, consists of all of the execution

steps required for representing a cohesive unit of work [92] .

127

Business process modelling languages
A number of modelling languages already exist for the purpose of defining and

developing business processes. Such languages include Event-Driven Process Chains

(EPC) [93], Business Process Modelling Notation (BPMN, WS-BPEL and XPDL[94].

BPEL4WS and WS-BPEL
The Business Process Execution Language for Web Services (BPEL4WS) is an

orchestration language whose primary goal is to define an execution format for business

processes operating on web services [21]. This language was inspired by previous

variations such as IBM's Web Services Flow Language (WSFL) and Microsoft's

XLANG specification. The first release of BPEL4WS specification appeared in July

2002, which was a result of a joint effort by IBM, Microsoft and BEA. In May 2003,

less than a year later, BPEL4WS 1.1 specification was released with other contributors

joining from SAP and Siebel Systems. More attention and vendor support was given to

this version which led to a number of commercially available BPEL4WS-complaint

orchestration engines. An official and open standard version of the BPEL4WS was

accomplished by the OASIS technical committee which led to the release of version 2.0

where this language was renamed to the Web Services Business Process Execution

Language, or WS-BPEL [21]. This XML programming language has three fundamental

components, including:

• Programming logic- BPEL

• Data types- XSD (XML Schema Definition)

• Input/output (I/O) - WSDL (Web Services Description Language)

A BPEL business process is made of the following three main entities:

• The partners that abstractly represent the services involved In the

composition.

• The variables used to manipulate the data (SOAP messages) exchanged

between partners and to hold states of the business logic. XPath expressions

can be used to access a part of a variable or to test conditions.

• The activities that describe the business logic. They can be basic such as

invoking a Web Service or assigning a value to a variable, or structured such

as executing a set of activities in sequence or in parallel.

128

Business Process Modelling Notation
BPMN, first developed by the Business Process Management Initiative (BPMI), is a

standardised graphical notation for drawing business processes in a workflow. It is being

maintained by the Object Management Group (OMG) since its merger with the Business

Process Management Initiative in 2005. The core objective of BPMN is to provide a

standard notation that can be understood by all business stakeholders. These business

stakeholders include the business analysts who create and refine the processes, the

technical developers responsible for the processes implementation, and the business

managers who monitor and manage the processes. In other words, BPMN was developed

to serve as a common language to bridge the communication gap that frequently occurs

between business process design and implementation [95,96].

129

APPENDIXC:

Development Environment Description

Here, we introduce the development environment that was developed in Java to show and

demonstrate the feasibility of our design method, the subject of this thesis. A set of

screenshots and interactive dialogs is shown here which shows how the system user

(autonomic designer) can interact with the development environment to generate the

necessary models for the MDD based autonomic systems.

Add Domain II display Parameters

TransfOl'mationstages: 11.Abstract Model(PIM)I 12. Autonomic ~lodel(PII-1)I 13. Autonomicmodel(P5~ § gene,abon~

Figure C. 1: the start-up window of our development environment.

130

!
:
;

!
I,'.
i._-.
~=.:.J lnt:eractlon
1····-.
ffi .:.J Interaction

I :..•

[tJ. .:::J Task

l!I9 Autonomic System ~esign Environment

,"!.~! ~~i~ __~~ __T~_~I~__~~~~.~~!Tr~~s!_o~~~~~~~ ~_!~p__. _. .._ ..
~ ~ract model
B:::J DomaIn

EJ.·1l' IiPNme
i l......•OnIineTravelAgencv

~'E:J Task
: ltJ -~fPid
: ~. =..J CPnome': I.~

$_._:.J S«vk:.
r.b- ..~ Service

ffi··~ Servlc.
E! ..:::J Wo<i<I'Iowf:nQIne

;.......
~ ..-::J Interaction
, f

G ..2.J caangp..-ty
j rn,·· CInarne

r'-,:
r;::J"'~ ul.dP_ty
f ~}··CJSname
1 I L..... flC,tlt5electlOnPrOCess

1 i"'.
I $CJ operotJon

i 8·::.J-
j L ...• oetAv.a.bleF1ohts
L..•

Add oom.In II cI5pIey P...omet.... I

Figure C. 2: The Abstract model stage (The Intention Model) (PIM).

[jAdd new domlin 'L
lCJI@)~

SiNe file as: I I Domain ComposHe Editor I SiNe composite I
<?xml version:"1.0" encoding="UTF·S" ? ... <?xml version="1.0" encoding="UTF·8" 7. ...

<!- fill out this template with the proper composite data
<Domain names">
<Task narnee" id=-' <composjtes domain=-'
<Service name=" id="">
<Interface' <composite narne-'>

<operation name="" returnedVar="" returnType='·. <Interaction·
<pararns> <caliingParty name='·I' ..

<param name=" type=-I' <caliedParty narnae'">
</params> <operation name=-I'

=
<lcaliedParty>

</operation> <nnteraction>
<nnterface> <Interaction'

<lService> <caliingParty name=-'/>
<fTask> <calledParty name=-'

<operation name=""I'
<Task narnse" id='"'> </caliedParty·

<Service name=-' id=''''> </Interaction·
<Interface> <Interaction'

<operation name:- returnedVar:=""returnType=-> <caliingParty name=-I'
<params> <caliedParty name=-'

<param name=- type:-I' <operation name=-I>
</params> </caliedParty>

<llnteraction>
<loperation> <lcomposite'

</lnterface> 1-..
I IB

<composrte name=-> ..SlM!domain • Int, "Ii,
4 I III W~ - -

Figure C. 3: The process of creating new domain.

131

* Autonomic System Design Environment
Fil~ Edit View Tools Project Tnnsform.tion Help

~.-~ Service

~:::~Servtc.
k;w~
l....•~.y..:a...-c.
i $~Servtc.

!
! ! ~. ~cw

}..
$... Monit",edElement

I, i $.'T! C>nameill ...; ...•"_SelectIorPmc ... s
! i G ~ MonItoredV ..
I : I t;3~ C>name

I
I 1 I I l - • dateOfTr~

1 j $ CJ ClthreshhokfI : I : ' • >-Todey()
L L • L ~ -' _ ...

~·Abstract modef

8·· Domain

~"'LE:J "name
: l On.... Trav .. AQencv

~}·EJT.sk.
: $.:21 CI>id

$EJCln.me
l 1.... BookFIQht
$-"2.1 Servk:e
00· ~ 5erv6ce
$:::J Service
B·~workF~

!...
$"~Inter_
t :
i 8'~ callngPartV
, 1 ffi ..,._
! t· ..·•I $J ~c_arty
i ! f~C>name; I $.:=J operatkrl

! i '.; .
~.f-)..C,J Interection

~ ..:~ Interaction
l

El :::...J Tack
$·CcJCI>id
$·CJ-I ~ M~eReser"atlon
~':__j Servlc.
8'~ WOI'_"""'"

~~Jnt.r_

Figure C. 4: the Autonomic model (PIM) .

.. Aut_mic Systtm Daitn Environment

File Edjt View Tooh Project Tnnsformltion H,'p

I Add_ II

~ Jov, At.t""",* onodoI (PSM)
S··CJlIv_iOoIo

(..
&, :;:J pocI<ago
i 8.:.1_! i L.• OrbTrlVtJlAoency.BookA
l ;---.
: $ ~doss

j f~"'~ fPNmei I L..... Fl<ttSoloctlonProc ...
: f-··

8- 2J method !'

i ~.~-I I • gotAv~
! $3-;:'jCltretllf1Odll.'Il l .._ • ..,~S

. ~~
l.~-.1st
&,e.Jpor ..:! s:..J_I i ~.it!:'ceArpat

! ! _.. ,..• 5trinO

! S·~
i i ~::r~__ o<

I ,.,1 ~::J"""I L. St.....
I .•

j $-Dpor ..
i s:J_

Ii i . ~-. cIotoOfT,1\'OI
is·!"'"] !type

,{ fII

.::J Ai.tonomc syotom onodoI
e~_
\'l-~-
; • ..• OrbT,ovoIAQoncy
} -.
~:.:tTook
, 8-QItOI
i i ,.._.• I

i ~EJ-

,.,!

If%,~,
$-::';J-
: ,_.• FI<tt_oss
f--.
$I.":..! Jnterfoco
t I"".
8'~_ot"'"
i$-:;,J-
! i ,_.-. ootAv~
; $3 ::2JCltroblnT~

j ~.".• M:

J

h:J-octonodoi
S·::.JOomaIn
$J.:J-
I t, ._ .• OrbT,.veIAgoncy
$-C,jTook
: $3·:JCIid

i ~-~~
! i '. BooIActtI $c:;J-'
i I t;J-::.J~
:; ,...• I

i 'I S·:J-
! ~ ~"". f~ocess! e"·~~K.! i $1-:.J oporIlion
i , [¥}.::J oporllion
, S·c:JR.....

i lE·..:JSerYk:.
$-::JSeNIce
$·f.J-·
I ~:JCIid
I iE-':J_
I t!J..:J Jnt.foc.

I i 1tJ··::JR
IOO-::J~
S '::;JTook

iC-lCllld
1.··.2

a··U_t ~......~es.vation

'T'-CJ-'
i~:;,JCIid
, , ,-,.• I

I S·::.J-
! , ,--. Hot_ISS
I ~l -_J Int.f",.

T,,,,,,form.tion ,t..,." L1. Ab<t,,,,t ~1o<IeI(PIM)] ["2, Auto""",,, Model(PIM)I 13. Autonotric model(PSMll [4. COdo goMrotlon{P$l') _._

Figure C. 5: the autonomic model (PSM).

]32

APPENDIXD:

Software Design Patterns

In [97], a design pattern is defined as "a documented best practice or a core of a solution

that has been applied successfully in multiple environments to solve a problem that

recurs in a specific set of situations H. Below, a set of design patterns is introduced which

was used throughout the project presented in this thesis in a number of models and

architecture. These design patterns include the observer, smart proxy and Model-View-

Controller (MVC).

• The Observer Design Pattern: it is a software design pattern in which an

object maintains a list of its dependents and notifies them automatically of

any state changes, usually by calling one of their methods. It is mainly used to

implement distributed event handling systems. Here, the set of dependents are

referred to as observers and the object that they are dependent on is called the

subject. The observer pattern belongs to the behavioural patterns group. To

enable this mechanism and relationship, the following list of requirements

should be met:

o The subject should provide an interface for registering and

unregistering change notifications.

o One of the following two states must be true:

~ The pull model: here, the subject provides an interface for

observers to query for the required state information so they

can update their state.

~ The push model: the subject is responsible for sending the

state information that the observers may be interested in.

o Observers should provide an interface for receiving notifications from

the subject [98]

The structure of the different classes along with their association, catering to the above

listed requirements, is depicted in Figure 0.1.

133

Figure D. 1: Class Diagram for Observer Design Pattern [99].

• The Proxy Design Pattern: The proxy design pattern is a structural design

pattern that creates a surrogate, or placeholder class. Proxy instances accept

requests from client objects, pass them to the underlying object and return the

results. Proxies can improve efficiency and enhance functionality. This can

improve the efficiency of access to objects that are too expensive to access

directly either because they are slow to execute or are resource-intensive, or

because extra functionality needs to be added [99, 100]. Proxy design pattern

takes a number of forms depending on the issue that each form intends to address.

Common used forms include cache proxy, protection proxy, virtual proxy, remote

proxy and smart proxy [97, 99, 100].

Figure D. 2: Proxy Design Pattern Class Diagram [99].

• Model- View-Controller (MVC): The Model-View-Controller architecture is a

widely used architectural approach for interactive applications. It divides

134

functionality among objects involved in maintaining and presenting data to

minimize the degree of coupling between the objects [80]. Figure 0.3 shows the

three fundamental components of this architecture, the model, view and

controller.

Figure D. 3: The Model- View-Controller Architecture [80J.

135

APPENDIX E,!

Generated Artifacts for Evaluation Case Studies:
Online Travel Agency (OTA) case study

Listing E.1: A proxy class for PaymentCardValidator Java web service.
public class PaymentCardValidator_Proxy {

/*creates a new instance of PaymentCardValidator_Proxy */
public PaymentCardValidatorr Proxy() {

}

public boolean verifyPaymentCard(String cardNo,
String securityNo)

{

boolean successful;
try{//Call Web Service Operation

PaymentCardValidatorrService service new
PaymentCardValidatorrService();

PaymentCardValidatorr port =
service.getPaymentCardValidatorrPort() ;

successful = port.verifyPaymentCard(String cardNo,
String securityNo);

}

catch(Exception ex) {
}

Listing E.2: A JSP file for PaymentCardValidator proxy invocation.

<%@page contentType="text/html"%>
<%@page pageEncoding="UTF-B"%>
<%@taglib uri=''http://java.sun.com/jsp/jstl/core'' prefix="c"%>

<html>
<head> <title>Payment card verification</title> </head>
<body>

<%-- start web service invocation -- %>
<c:if test="

<%=olta.PaymentCardValidator_Proxy.verifyPaymentCard
("2356 77", "231") %>">

<%out.println ("Payment card has been successfully
verified") ;%>

</c:if>
<%-- end web service invocation -- %>

</body>
</html>

136

http://uri=''http://java.sun.com/jsp/jstl/core''

Listing E.3: A generated skeleton of code for PaymentCardValidator web service.
/****************************
*Developer: Yousef Abuseta***
*University: LJMU *
*****************************/
package BookFlight;

import java.util.*;
import javax.jws.WebService;
import javax.jws.WebMethod;

@WebService()
public class PaymentCardValidator

@WebMethod ()
public boolean verifyPaymentCard(String cardNo, String securityNo

) {

boolean successful= false;

//Implementation code goes here ...

return successful;

Listing E.4: A generated skeleton for the FlightSelectionProcess monitor.
public class Monitor implements Observer {
private FlightSelectionProcess_proxy proxy;
public Monitor (FlightSelectionProcess_proxy proxy)
this.proxy = proxy;
proxy.register(this);
}

public void receiveStateChange (Observable subject)
if (subject == this.proxy)

Date dateOfTravel = this.proxy.getdateOfTravel();
if (dateOfTravel< Date())

//send INVALID DATE EVENT to controller

<? xml version="l.O" encoding="UTF-8" standalone="no"?>
<Domain name="OnlineTravelAgency">

<Service id="l" name="FlightSelectionProcess">
<Interface>

<operation name="getAvailableFlights" returnType="list"
returnedVar="availableFlights">

<params>
<param name="sourceAirport" type="Text"/>
<param name="destinationAirport" type="Text"/>
<param name="dateOfTravel" type="Date"/>

</params>
</operation>

137

<operation name="reserveSeatOnFlight" returnType="boolean"
returnedVar="done">

<params>
<param name="fName" type="Text"/>
<param name="lName" type="Text"/>
<param name="flightNo" type="Text"/>

</params>
</operation>

</Interface>
</Service>
<Service id="2" name="CustomerCharger">

<Interface>
<operation name="calculateTicketCost" returnType="long"

returnedVar="ticketCost">
<params>

<par am name="flightNo" type="Text"/>
</params>

</operation>
</Interface>

</Service>
<Service id="3" name="PaymentCardValidator">

<Interface>
<operation name="verifyPaymentCard" returnType="boolean"

returnedVar="successful">
<params>

<param name="cardNo" type="Text"/>
<param name="securityNo" type="Text"/>

</params>
</operation>

</Interface>
</Service>
<Service id="l" name="HotelFinder">

<Interface>
<operation name="getAvailableHotels" returnType="list"

returnedVar="hotels">
<params>

<param name="airportCode" type="Text"/>
</params>

</operation>
<operation name="reserveRoom" returnType="void"

returnedVar="void">
<params>

<param name="hotelID" type="Text"/>
<param name="dateOfArrival" type="Date"/>
<param name="noOfNights" type="int"/>

</params>
</operation>

</Interface>
</Service>

</Domain>
Figure E. 1: Intention Model for Online Travel Agency domain.

138

<?xml version="l.O" encoding="UTF-8" ?>
<composites domain="OnLineTravelAgency">

<composite name="BookFlight">
<Interaction>

<callingParty name="user"/>
<calledParty name="FlightSelectionProcess">

<operation name="getAvailableFlights"/>
</calledParty>

</Interaction>
<Interaction>

<callingParty name="user"/>
<calledParty name="FlightSelectionProcess">

<operation name="reserveSeatOnFlight"/>
</calledParty>

</Interaction>
<Interaction>

<callingParty name="FlightSelectionProcess"/>
<calledParty name="PaymentCardValidator">

<operation name="verifyPaymentCard"/>
</calledParty>

</Interaction>
</composite>
<composite name="MakeHotelReservation">

<Interaction>
<callingParty name="user"/>
<calledParty name="HotelSelectionProcess">

<operation name="getAvailableHotels"/>
</calledParty>

</Interaction>
<Interaction>

<callingParty name="user"/>
<calledParty name="HotelSelectionProcess">

<operation name="reserveRoom"/>
</calledParty>

</Interaction>
<Interaction>

<callingParty name="HotelSelectionProcess"/>
<calledParty name="PaymentCardValidator">

<operation name="verifyPaymentCard"/>
</calledParty>

</Interaction>
</composite>

</composites>
Figure E. 2: Service Composites for Online Travel Agency domain.

The Pet store case study
<? xml version="l.O" encoding="UTF-8"?>
<Domain name="PetStore">

<Service name="SalesPoint" id="l">
<Interface>

<operation name="browsePetInventory" returnedVar="void"
returnType="void">

<params>

]39

<param name="na" type="na"/>
</params>

</operation>
<operation name="buyPet" returnedVar="ok"

returnType="boolean">
<params>

<param name="petName" type="String"/>
<param name="noOfPets" type="integer"/>

</params>
</operation>

</Interface>
</Service>
<Service name="PaymentCardValidation" id="2">

<Interface>
<operation name="verifyCard" returnedVar="verified"

returnType="boolean">
<params>

<param name="cardNo" type="String"/>
<param name="securityNo" type="String"/>

</params>
</operation>

</Interface>
</Service>

</Domain>
Figure E.3: The Intention Model for Pet Store domain.

<?xml version="l.O" encoding="UTF-8" ?>
<composites domain="PetStore">

<composite name="SellPetsToCustomer">
<Interaction>

<callingParty name="user"/>
<calledParty name="SalePoint">

<operation name="browsePetInventory"/>
</calledParty>

</Interaction>
<Interaction>

<callingParty name="user"/>
<calledParty name="SalePoint">

<operation name="buyPet"/>
</calledParty>

</Interaction>
<Interaction>

<callingParty name="SalePoint"/>
<calledParty name="PaymentCardValidator">

<operation name="verifyPaymentCard"/>
</calledParty>

</Interaction>
</composite>
<composite name="OrderPetFromSupplier">

<Interaction>
<callingParty name="InventoryChecking"/>
<calledParty name="PetInventoryManager">

<operation name="checkInventory"/>
</calledParty>

</Interaction>
<Interaction>

140

<callingParty name="InventoryChecking"/>
<calledParty name="PetSupplier">

<operation name="getAvailablePets"/>
</calledParty>

</Interaction>
<Interaction>

<callingParty name="InventoryChecking"/>
<calledParty name="PetSupplier">

<operation name="buyPet"/>
</calledParty>

</Interaction>
</composite>

</composites>
Figure E.4: Service composites for Pet Store domain.

The Intelligent Door case study
<?xml version="l.O" encoding="UTF-8" ?>
<Domain name="IntelligentDoor">

<Service name="AccessInterface" id="l">
<Interface>

<operation name="acceptUserPassword" returnedVar="message"
returnType="Text">

<params>
<param name="password" type="Text"/>

</params>
</operation>

</Interface>
</Service>
<Service name="OfficeDoor" id="2">

<Interface>
<operation name="open" returnedVar="void"

returnType="void"/>
<operation name="close" returnedVar="void"

returnType="void"/>
</Interface>

</Service>
<Service name="thermometer" id="l">

<Interface>
<operation name="getTemperature" returnedVar="temperature"

returnType="float"/>
</Interface>

</Service>
</Domain>

Figure E.5: The Intention Model for IntelligentOffice domain.
<?xml version="l.O" encoding="UTF-8" ?>

<composites domain="IntelligentOffice">

<composite name=" EnforceAutorisedAccess ">
<Interaction>

<callingParty name="user"/>
<calledParty name="AccessInterface">

<operation name="acceptUserPassword"/>
</calledParty>

</Interaction>

141

<Interaction>
<callingParty name="AccessInterface"/>
<calledParty name="PasswordVerifier">

<operation name="verifyPassword"/>
</calledParty>

</Interaction>
<Interaction>

<callingParty name="AccessInterface"/>
<calledParty name="OfficeDoor">

<operation name="setDoorStatus"/>
</calledParty>

</Interaction>
</composite>
<composite name=" ControlOfficeTemperature ">

<Interaction>

</composite>
</composites>

Figure E.6: Service composites for Intelligent Office domain.

The Salt World case study
/****************************
*Developer: Yousef Abuseta** *
*University: LJMU *
*****************************/

import java.util.*;
import javax.jws.WebService;
import javax.jws.WebMethod;

@WebService ()
public class SaltGrainContainer

private String color;

@WebMethod ()
public void setColor(String color) {
This.color = color;

//Implementation code goes here ...

@WebMethod ()
public String getColor() {

//Implementation code goes here ...

return this. color;

Figure E.7: Generated Java web service for SaltGrainContainer service.

142

/****************************
*Oeveloper: Yousef Abuseta** *
*University: LJMU *
*****************************/

import java.util.*;
import javax.jws.WebService;
import javax.jws.WebMethod;

@WebService ()
public class SaltConcentrationCalculator

@WebMethod ()
public float calculateSaltConcentartion ()(

//Implementation code goes here ...

return Concentration;

Figure E.8: Generated Java web service for SaltConcentrationCalculator service.
/****************************
*Oeveloper: Yousef Abuseta** *
*University: LJMU *
*****************************/
import java.util.*;
import javax.jws.WebService;
import javax.jws.WebMethod;

@WebService()
public class CarrierStateManager

private String state;

@WebMethod ()
public void setCarrierState (String state) {
this.state = state;

//Implementation code goes here ...

@WebMethod ()
public String getCarrierState (){

//Implementation code goes here ...

return state;

Figure E.9: Generated Java web service for CarrierStateManager service.

143

/****************************
*Oeveloper: Yousef Abuseta** *
*University: LJMU *
*****************************/

import java.util.*;
import javax.jws.WebService;
import javax.jws.WebMethod;

@WebService ()
public class SaltGrainCarrier

@WebMethod ()
public void startGrainPicking (){

//Implementation code goes here ...

@WebMethod ()
public void startGrainOropping (){

//Implementation code goes here ...

Figure E.I0: Generated Java web service for SaltGrainCarrier service.

public class Monitor implements Observer {
private SaltConcentrationCalculator_proxy proxy;
public Monitor (SaltConcentrationCalculator_proxy proxy) {

this.proxy = proxy;
proxy.register(this);

public void receiveStateChange (Observable subject)
if (subject == this.proxy)

float concentration = this.proxy. calculateSaltConcentartion ();
if (concentration < 0.97)

//send HIGH CONCENTRATION EVENT to controller

Figure E.ll: The monitor service for the SaltConcentrationCalculator service.

144

REFERENCES

1. Mellor, S., Balcer, M., Executable UML: A Foundation for Model-Driven

Architecture. 2002: Addison-Wesley Professional.

2. Mellor, S., Scott, K., Uhl, A., Weise, D., MDA Distilled: Principles of Model

Driven Architecture. 2004: Addison-Wesley.

3. Guelfi, N., Ries, 8., Sterges, P. MEDAL: A CASE Tool Extension for Model-

Driven Software Engineering. in The IEEE International Conference on

Software-Science, Technology & Engineering. 2003. Washington, DC, USA:

IEEE Computer Society.

4. Mille, J., Mukerji, J., MDA Guide Version 1.0.1.2003, OMG.

5. Gardner, T., Yusuf, L. A closer look at model-driven development and other

industry initiatives. 2006 [cited 2007; Available from:

http://www.ibm.com/developerworks/library/ar-mdd3/.

6. Czarnecki, K., Helsen, S. , Feature-based survey of model transformation

approaches. IBM Systems Journa12006. 45(3): p. 621 - 645

7. Reiter, T., Retschitzegger, W., Kapsammer, E., A Generator Framework for

Domain Specific Model Transformation Languages, in The English International

Conference on Enterprise Information Systems. 2006, INSTICC Paphos, Cyprus

p.27-35.

8. Czarnecki, K., Helsen, S. Classification of Model Transformation Approaches. in

The OOPSLA '03 Workshop on Generative Techniques in the Context of Model-

Driven Architecture. 2003. California, USA: OOPSLA.

9. Boocock, P. Jamda Model Compiler Framework. 2003 [cited 2007; Available

from: http://jamda.sourceforge.net/docs/index.html.

10. JMatrix. JET Code Generator. 2003 [cited 2008; Available from:

http://jmatrix.neticontentijetgen home.jsp.

11. Van Erode Boas, G., The Fantastic, Unique, UML Toolfor the Java Environment

(FUUT-je).2008.

12. Manyta. Codagen Architect. 2004 [cited 2007; Available from:

http://www.manyeta.com/enlTechnology/codagen architect v3.2.

145

http://www.ibm.com/developerworks/library/ar-mdd3/.
http://jamda.sourceforge.net/docs/index.html.
http://jmatrix.neticontentijetgen
http://www.manyeta.com/enlTechnology/codagen

13. AndroMDA. AndroMDA. 2003 [cited 2008; Available from:

http://www .andromda.org.

14. ArcStyle. 2008 [cited 2008; Available from: http://www.interactive-

objects.com/products/.

15. Hendry, B. Compuware Corporation's Optimal1, 2001 [cited 2007; Available

from: http://java.sys-con.com/node/36300.

16. Parr, T. Enforcing Strict Model View Separation in Template Engines. in The 13th

international conference on World Wide Web 2004. NewYork, USA: ACM.

17. Naccarato, G. Template-Based Code Generation with Apache Velocity. 2004

[cited 2008; Available from:

http://www.onjava.com/pub/a/onjaval2004/05/05/cg-vell.html.

18. Giese, H., Waqner, R., Incremental Model Synchronization with Triple Graph

Grammars, inModel Driven Engineering Languages and Systems. 2006, Springer

Berlin / Heidelberg. p. 543-557.

19. OASIS, Reference Modelfor Service Oriented Architecture 1.0. 2006, OASIS.

20. Mahmoud, Q. Service-Oriented Architecture (SOA) and Web Services: The Road

to Enterprise Application Integration (EAI). 2005 [cited 2006; Available from:

http://java.sun.com/developer/technicaIArticles/WebServices/soal.

21. Erl, T., Service-Oriented Architecture: Concepts, Technology, and Designl. 2005:

Prentice Hall.

22. Actional. Service-oriented Architecture (SOA) 2007 [cited 2008; Available from:

http://www.actional.comlsoal.

23. Cao, J., Wang, J., Zhang, S., Li, M., A dynamically reconjigurable system based

on workflow and service agents. Engineering Applications of Artificial

Intelligence, 2004. 17(7): p. 771-782.

24. Arthur, J. Autonomic SOA Web Services - Achieving Fully Business-Conscious IT

Systems. 2005 [cited 2006; Available from: http://soa.sys-con.com/nodeII36205.

25. Singhal, A., Winograd, T., Scarfone, K., Guide to Secure Web Services. 2007,

National Institute of Standards and Technology, U.S. Department ofCommemce:

Gaithersburg, MD, USA.

26. Monday, P., Web Service Patterns: Java Edition. 2003: Apress.

27. Gunzer, H., Introduction to Web services. 2002, Borland Software Corporation:

CA, USA.

146

http://java.sys-con.com/node/36300.
http://www.onjava.com/pub/a/onjaval2004/05/05/cg-vell.html.
http://java.sun.com/developer/technicaIArticles/WebServices/soal.
http://www.actional.comlsoal.
http://soa.sys-con.com/nodeII36205.

28. Gottschalk, K., Graham, S., Kreger, H., Snell, J., Introduction to Web services

architecture. IBM Systems Journal, 2002. 41(2): p. 170-177.

29. Huebscher, M., McCann, J., A survey of autonomic computing-degrees, models,

and applications. ACM Comput.Surv, 2008. 3(40): p. 1-28.

30. Tesauro, G., Chess, D., Walsh, W., A Multi-Agent Systems Approach to

Autonomic Computing, in the Third International Joint Conference on

Autonomous Agents and Multiagent Systems. 2004, IEEE Computer Society New

York p. 464-471.

31. IBM, Automatic problem determination: A first step toward self-healing

computer systems. 2003, IBM.

32. IBM, Autonomic Computing. 2005, IBM.

33. Parashar, M., Hariri, S., Autonomic Computing: Concepts, Infrastructure &

Applications. 2006: CRC Press.

34. Bantz, D., Bisdikian, C., Challener, D., Karidis, J., Mastrianni, S., Autonomic

personal computing. IBM Systems Journal, 2003. 1(42): p. 165-176.

35. Russel, S., Norvig, P., Artificial Intelligence: A Modern Approach. 2003: Prentice

Hall.

36. Kephart, J., Chess, D., The Vision of Autonomic Computing. Computer 2003.

36(1): p. 41- 50.

37. Damianou, N., Dulay, N., Lupu, E., Sloman, M., Ponder: A language for

specifying security and management policies for distributed systems. 2000,

Imperial College London: London.

38. Lymberopoulos, L., Lupu, E., Sloman, M., An adaptive policy-based framework

for network services management. Journal of Network and Systems Management,

2003. 11(3): p. 277-303.

39. Lobo, J., Bhatia, R., Naqvi, S. A policy description language. in The sixteenth

national conference on Artificial intelligence. 1999. CA, USA.

40. Agarwala, S., Chen, Y., Milojicic, D., Schwan, K. QMON: QoS- and

Utilityaware monitoring in enterprise systems. in The 3rd IEEE International

Conference on Autonomic computing (ICAC). 2006. Dublin, Ireland.

41. Batra, V., Bhattacharya, J., Chauhan, H., Gupta, A., Mohania, M., Sharma, U.

Policy driven data administration. in the Third International Workshop on

Policiesfor Distributed Systems and Networks. 2002: IEEE.

147

42. Lutfiyya, H., Molenkamp, G., Katchabaw, M., Bauer, M. Issues in managing soft

qos requirements in distributed systems using a policy-based framework. in In

POLICY '01: Proceedings of the International Workshop on Policies for

Distributed Systems and Networks. 2001. London, UK: Springer-Verlag.

43. Ponnappan, A., Yang, L., Pillai, R., Braun, P. A policy based qos management

system for the intservldiffserv based internet. in The Third International

Workshop on Policies for Distributed Systems and Networks. 2002.

44. Melcher, B., Mitchell, Towards an autonomic framework: Self-configuring

network services and developing autonomic applications. Intel Technology

Journal, 2004. 8(4): p. 279-290.

45. Kaiser, G., Parekh, J., Gross, P., Valetto, G. Kinesthetics eXtreme: an external

infrastructure for monitoring distributed legacy systems. in The Autonomic

Computing Workshop at the Fifth Annual International Workshop on Active

Middleware Services (AMS). 2003.

46. Parekh, J., Kaiser, G., Gross, P., Valetto, G., Retrofitting autonomic capabilities

onto legacy systems. 2003, Columbia University: New York, USA.

47. Bigus, J., Schlosnagle, D., Pilgrim, J., Diao, Y., ABLE: A toolkit for building

multiagent autonomic systems. IBM Systems Journal, 2002. 3(41): p. 350-371.

48. Gracanin, D., Bohner, S., Hinchey, M. Toward a Model-Driven Architecture for

Autonomic Systems. in The 11th IEEE International Conference and Workshop on

the Engineering of Computer Based System. 2004. Washington, DC, USA IEEE

Computer Society

49. Bulter, J., Barrett, S. Providing for change through adaptive object models and

autonomous computing technique. in The 2006 International Conference on

Autonomic and Autonomous Systems. 2006. Dublin: IEEE Computer Society.

50. Pena, 1., Hinchey, M., Sterritt, R., Cortes, A., Resinas, M. A Model-Driven

Architecture Approach for Modelling, Specifying and Deploying Policies in

Autonomous and Autonomic Systems. in The 2nd IEEE International Symposium

on Dependable, Autonomic and Secure Computing (DASC'06). 2006: IEEE

Computer Society.

51. Laws, A., Taleb-Bendiab, A., Wade, S., Reilly, D., From Wetware to Software: a

Cybernetic Perspective of Self-adaptive Software, in Self-Adaptive Software:

Applications. 2003, Springer verlog, p. 341-357.

148

52. Bustard, D., Sterritt, R., Taleb-Bendiab, A., Laws, A., Randles, M., Keenan, F.

Towards a systemic approach to autonomic systems engineering. in The J2th

IEEE International Conference and Workshops on the Engineering of Compuler-

Based Systems (ECBS). 2005. Newtownabbey, UK.

53. Beer, S., Diagnosing the Systemfor Organizations. 1985: John Weiley & Sons.

54. Beer, S., Brain of the Firm. 1981: John Wiley & Sons.

55. Checkland, P., Soft Systems Methodology in Action. 1999, Chichester: John Wiley

& Sons, Ltd.

56. Checkland, P., Soft Systems Methodology: A Thirty Year Retrospective. Systems

Research and Behavioral Science, 2000. 17(S I): p. S II-SS8.

57. Taleb-Bendiab, A., Bustard, D., Sterritt, R., Laws, A., Keenan, F., Model-based

self-managing systems engineering, in The Sixteenth International Workshop on

Database and Expert Systems Applications, 2005.

58. Badr, N., An Investigation into Autonomic Middleware Control Services to

Support Distributed Self-Adaptive Software. PhD thesis, School of Computing and

Mathematical Sciences. 2003, Liverpool John Moores University: Liverpool.

59. Pereira, E., Impromptu: Software Framework for Self-Healing Middleware

Services. PhD thesis, School of Computing and Mathematical Sciences. 2005,

Liverpool John Moores University: Liverpool.

60. Omar, W., Self-Management Middleware Services For Autonomic Grid

Computing. PhD thesis, School of Computing and Mathematical Sciences. 2003,

Liverpool John Moores University: Liverpool.

61. Reilly, D., A Dynamic Middleware-based Instrumentation Framework to Assist

the Understanding of Distributed Applications. PhD thesis, School of Computing

and Mathematical Sciences. 2006, Liverpool John Moores University: Liverpool.

62. Herring, C., The intelligent control paradigm for adaptable and adaptive

architecture, in Information Technology and Electrical Engineering. PhD thesis,

2002, University of Queensland, Brisbane, Australia.

63. Lapouchnian, A., Liaskos, S., Mylopoulos, J., Vu, Y. Towards Requirements-

Driven Autonomic Systems Design. in The 2005 workshop on Design and

evolution of autonomic application software. 2005: ACM Press.

149

64. Walker, R., Baniassad, E., Murphy, G., An Initial Assessment of Aspect-oriented

Programming, in the 21st International Coriference on Software Engineering.

1999, IEEE: Los Angeles, CA, USA.

65. Dantas, A., Borba, P. Adaptability Aspects: An Architectural Pattern for

Structuring Adaptive Applications with Aspects. in Third Latin American

Conference on Pattern Languages of Programming. 2003: The SugarloafPLoP

2003 Conference.

66. Yang, Z., Cheng, B., Stirewalt, R., Sowell, J., Sadjadi, S., Mckinley, P. An

Aspect-Oriented Approach to Dynamic Adaptation. in Thefirst workshop on Self-

healing systems 2002. New York, NY, USA: ACM Press.

67. Greenwood, P., Blair, L., A Frameworkfor Policy Driven Auto-Adaptive Systems

using Dynamic Framed Aspects, in Transactions on Aspect-Oriented Software

Development 11.2006, Springer Berlin, p. 30-65.

68. Duzan, G., Loyall, L, Schantz, R., Shapiro, R., Zinky, J. Building Adaptive

Distributed Applications with Middleware and Aspects. in The 3rd international

conference on Aspect-oriented software development. 2004. Lancaster, UK:

ACM.

69. Falcarin, P., Alonso, G. Software Architecture Evolution Through Dynamic ADP.

in The First European Workshop on Software Architecture. 2004. St Andrews,

Scotland.

70. Kuster, L, Sendall, S., Comparing Two Model Transformation. 2005, IBM Zurich

Research Laboratory: Zurich.

71. Oldevik, J., UML Model Transformation Tool: Overview and user guide

documentation. 2004.

72. OMG, MOF 2.0/ XMI Mapping Specification, v2.1.1. 2007, Object Management

Group, Inc.

73. Akehurst, D., Boardbar, B. ,Evans, M., Howells, W., McDonald-Maier, K.,

SiTra: Simple Transformations in Java in The 9TH International Conference on

Model Driven Engineering Languages and Systems. 2006, ACM.

74. Bordbar, B., Howells, G., Evans, M., Staikopoulos, T. Model Transformation

from OWL-S to BPEL via SiTra. in The European Conference on Model Driven

Architecture Foundations and Applications. 2007.

150

75. Oldevik, J., Neple, T., Aagedal, J., Model Abstraction versus Model to Text

Transformation. Technical Report- University of Kent at Canterbury Computing

Laboratory, 2004: p. 188-193.

76. Barber, G. Service Component Architecture 2005 [cited 2008; Available from:

http://www.osoa.orgldisplay/Main/Service+Component+Architecture+Home.

77. Abuseta, Y., Taleb-Bendiab, A., AutoTaSC: a Model Driven development Support

for Autonomic Software. Technical Report, DASEL Technical Report

2008/05/YAOI, 2008, Liverpool John Moores University: Liverpool.

78. Abuseta, Y., Taleb-Bendiab, A., Model Driven Development for Autonomic

Systems. The Systemics and Informatics World Network (SIWN), 2008. 4: p.

178-182.

79. wikipedia. QVT. 2008

http://en.wikipedia.org!wiki/OVT.

80. Singh, I., Stearns, B., Johnson, M. , Designing Enterprise Applications with the

J2EE(TM) Platform. 2nd ed. 2002: Prentice Hall

[cited 2008; Available from:

81. Randles, M., Zhu, H., Taleb-Bendiab, A. A Formal Approach to the Engineering

of Emergence and its Recurrence. in 2nd International Workshop on Engineering

Emergence in Decentralised Autonomic Systems (EEDAS). 2007. Florida, USA:

IEEE.

82. Karaorman, M., Holzle, U., Bruno, J., jContractor: A Reflective Java Library to

Support Design by Contract in The Second International Conference on Meta-

Level Architectures and Reflection. 1999: Santa Barbara, CA, USA.

83. Meyer, 8., Object-Oriented Software Construction 2nd edition ed. 2000: Prentice

Hall.

84. Leavens, G., Cheon, Y., Design by Contract with JML. 2003.

85. Beugnard, A., Jezequel, J., Plouzeau, N., Watkins, D., Making Components

Contract Aware. Computer IEEE, 1999.32(7): p. 38-45.

86. Amout, K., Simon, R., The .NET Contract Wizard: Adding Design by Contract to

languages other than Eiffel. 2001, USA.

87. Meyer, 8., Applying Design by contract. IEEE Computer Society Press, 1992.

25(10): p. 40-5l.

151

http://www.osoa.orgldisplay/Main/Service+Component+Architecture+Home.
http://en.wikipedia.org!wiki/OVT.

88. Wamber, D., Contract4J for Design by Contract in Java: Design Pattern-Like

Protocols and Aspect Interfaces, in Industry Track at AOSD 2006. 2006: Bonn,

Germany.

89. Tran, H., Zdun, U., Dustdar, S., View-Based Integration of Process-Driven SOA

Models at Various Abstraction Levels, in First International Workshop, MBSDI

2008.2008, Springer-Verlag: Berlin, Germany.

90. Weske, M., Business Process Management: Concepts, Languages, Architectures.

2007: Springer.

91. Arkin, A., Business Process Modeling Language. 2002.

92. OASIS, Web Services Business Process Execution Language Version 2.0, 2007,

OASIS.

93. Kruczynski, K., Business Process Modelling in the context of SOA: An empiric

study of the acceptance between EPC and BPMN. 2008, Leipzig University of

Applied Sciences, Germany.

94. Aalst, W., Patterns and XPDL: A Critical Evaluation of the XML Process

Definition Language 2003, BPMcenter.org.

95. White, S., Business Process Modeling Notation (BPMN). 2004, IBM Corporation.

96. wikipedia. Business Process Modeling Notation. 2008 [cited 2008; Available

from: http://en.wikipedia.org/wiki/BPMN.

97. Kuchana, P., Software Architecture Design Patterns in Java. 2004: eRe Press

LLe.
98. wikipedia. Observer pattern. 2008 [cited 2008; Available from:

http://en.wikipedia.org/wiki/Observer pattern.

99. Gamma, E., Helm, R., Johnson, R., Vlissides, J. , Design patterns: elements of

reusable object-oriented software. 1995: Addison Wesley

100. BlackWasp. Proxy Design Pattern. 2006 [cited 2008; Available from:

http://www.blackwasp.co.uklProxy.aspx.

152

http://en.wikipedia.org/wiki/BPMN.
http://en.wikipedia.org/wiki/Observer
http://www.blackwasp.co.uklProxy.aspx.

