
A MIDDLEWARE FRAMEWORK FOR
WIRELESS SENSOR NETWORK

By

Huma Javed

A thesis submitted in partial fulfilment of the requirements of the
Liverpool John Moores University

for the degree of Doctor of Philosophy

Supervised by

Prof. Madjid Merabti and Dr. Bob Askwith

School of Computing and Mathematical Sciences
Liverpool John Moores University

TKS tkesLs Ls oleolýcateol to VV U Wther

VIA, ý davSliter LeewaJ 1Veo(

ABSTRACT

Advances in wireless and Micro-Electro-Mechanical Systems (MEMS) technology

has given birth to a new technology field sensor networks. These new technologies

along with pervasive computing have made the dream of a smart environment come

true. Sensors being small and capable of sensing, processing and communicating data

has opened a whole new era of applications from medicine to military and from

indoors to outdoors. Sensor networks although exciting have very limited resources,
for example, memory, processing power and bandwidth, with energy being the most

precious resource as they are battery operated. However, these amazing devices can

collaborate in order to perform a task. Due to these limitations and specific

characteristics being application specific and heterogeneous there is a need to devise

techniques and software which would utilize the meager resources efficiently keeping

in view the unique characteristics of this network.

This thesis presents a lightweight, flexible and energy-efficient middleware
framework called MidWSeN which combines aspects of queries, events and context

of WSN in a single system. It provides a combination of core and optional services

which could be adjusted according to the resources available and specific

requirements of the application. The availability of multiple copies of services
distributed across the network helps in making the system robust. This middleware

framework introduces a new Persistent Storage Service which saves data within the

sensor network on the nodes for lifetime of the network to provide historical data. A

Priority algorithm is being also presented in this thesis to ensure that enough memory

is always available. A novel context enhanced aggregation has also been presented in

this thesis which aggregates data with respect to context. Application management

service (AMS) provides Service optimization within the network is another novel

aspect of the proposed framework. To evaluate the functionality of the work

presented, different parts of the framework have also been implemented. The tests and

results are detailed to prove the ideas presented in the framework. The work has also

been evaluated against a set of requirements and compared against existing works to

indicate the novel aspects of framework. Finally some ideas are presented for the

future works.

i

ACKNOWLEDGEMENTS

I am really thankful to Allah the most gracious and most merciful. I would like to

express my deep felt gratitude to both my supervisors Prof. Madjid Merabti and Dr.

Robert J. Askwith for their patience and guidance. I would also take this opportunity
to thank my mother without whose guidance and support I would not have reached
this stage of my life. I am also very thankful to my husband Javed Anwar and three

children Saad, Fahad and Leena for their continuous love and support through a
difficult and trying period of our lives. I want to appreciate the efforts of my brother

and sisters to help take care of my children during the last part of my studies. I also

want to acknowledge my office mates Gurleen Arora, and Jasim Saeed for their

encouragement and support. I want to thank Dr. Paul Fergus, Dr. David Llewellyn-

Jones, and Dr. Faycal Bouhafs for those long discussions which helped me a lot in my
difficult moments in studies. I would also take this opportunity to thank my fellow

student Muhammad Arshad for his support through out my stay in Liverpool. I also

want to acknowledge the cooperation of Amjad Shaheed, Sareer Badshah and Kashif

Kifayat. I am really grateful to all these people mentioned above in particular and all

others that I have not mentioned but have helped me a lot for their sincere and

continuous support through out the course of my Ph. D.

I want to dedicate this thesis to my mother who has been a source of inspiration,

selfless love and devotion all my life and my daughter Leena who was born at the

start of Ph. D studies, grew up with it and is joy of my life.

11

TABLE OF CONTENTS

Abstract
... i

Acknowledgements
.. ii

Table of Contents .. iii
List of Figures

... vi
List of Tables

... vii
Chapter 1 INTRODUCTION

... I
1.1 Preamble .. 1
1.2 Sensors and Wireless Networks ... 3
1.3 Middleware .. 5
1.4 Problem Definition ... 8
1.5 Design Goals .. 10
1.6 Novel Contributions ... 11
1.7 Thesis Structure ... 14
1.8 Summary .. 15

Chapter 2 WIRELESS SENSOR NETWORKS .. 17
2.1 Introduction .. 17
2.2 Pervasive/Ubiquitous Computing .. 17
2.3 Wireless Networks ... 18

2.3.1 Wireless Architecture ... 18
2.3.2 Types of Wireless Networks .. 19

2.4 Wireless Sensor Networks ... 21
2.4.1 Basic Operation .. 22
2.4.2 Hardware .. 22
2.4.3 Characteristics of Wireless Sensor Networks

.. 24
2.4.4 Technologies ..

24
2.4.5 Operating System ... 25
2.4.6 Design Principles ... 26
2.4.7 Applications of Wireless Sensor Networks

... 27
2.4.8 Research Areas in Wireless Sensor Networks

... 30
2.5 Summary .. 33

Chapter 3 BUILDING SENSOR NETWORKS MIDDLE WARE 34
3.1 Introduction .. 34

3.1.1 Traditional Middleware Approaches ... 35
3.1.2 Types of Middleware ... 37

3.2 Differences between Traditional Networks and WSN's 38
3.3 C urrent Middleware Approaches for WSN ... 39

3.3.1 Data-Centric Approach .. 39
3.3.2
3.3.3
3.3.4
3.3.5

Database Approach .. Event Based Approach ... Cluster Based Approach .. Mobile Agent Approach ..

41
41
42
43

3.3.6 Service-Oriented Approach ... 43
3.3.7
3.3.8
3.3.9
3.3.10

Other Approaches .. Context-Awareness .. Aggregation .. Discussion
..

44
45
47
48

111

3.4 Summary .. 49
Chapter 4 A NEW MIDDLEWARE FRAMEWORK FOR SENSOR NETWORKS

51
4.1 Introduction 51
4.2 Requirement Analysis 52
4.3 An Overview of Proposed Framework 56
4.4 Core Services 62

4.4.1 Application Interface Service 63
4.4.2 Application Management Service 65
4.4.3 Persistent Storage Service 67
4.4.4 Aggregation Service 68

4.5 Optional Services 68
4.5.1 Rule Service 69
4.5.2 Query Interface Service 70
4.5.3 Event Manager 72

4.6 Summary 73
Chapter 5 MIDLLEWARE PERSISTENT STORAGE SERVICE 76

5.1 Introduction 76
5.2 Persistent Storage as a Middleware Service

.. .. 78
5.3 Persistent Storage 79

5.3.1 Data-Centric Storage 80
5.3.2 Interaction of other services with PSS

... .. 84
5.3.3 Design 85

5.4 Case Study 91
5.5 Prioritization 93

5.5.1 Prioritization Algorithm
94

5.6 Summary 96
Chapter 6 MIDDLEWARE AGGREGATION SERVICE 98

6.1 Introduction 98
6.2 Aggregation as a middleware Service 99
6.3 Aggregation service ... 101

6.3.1 Design ..
103

6.3.2 Adding Context ..
105

6.3.3 Snooping Technique ..
106

6.3.4 Interaction of Other Services with AS ... 108
6.4 Case Study ...

110
6.5 Summary .. 113

Chapter 7 PERFORMANCE EVALUATION AND IMPLEMENTATION 115
7.1 Introduction .. 115
7.2 Implementation .. 116
7.3 Evaluation ..

123
7.4 Project Evaluation .. 133
7.5 Comparison with Related Works ... 136
7.6 Summary .. 13 8

Chapter 8 CONCLUSIONS AND FUTURE WORK
.. 140

8.1 Introduction .. 140
8.2 Thesis Outline .. 141

8.2.1 Introduction
.. 141

8.2.2 Background
.. 141

8.2.3 Design of a New Middleware Framework MidWSeN 142

iv

8.2.1
8.2.2
8.2.3
8.2.4

8.3
8.4

8.4.1
8.4.2
8.4.3

8.5

Introduction .. 142
Background .. 142
Design of a New Middleware Framework MidWSeN

............. 143
Evaluation and Results

...
Contributions ..
Future Work ...

Security ..
Self-Managing Sensor Networks
n+L. o.. D--4 Teciiae

.............. 144

....................... 144

....................... 147

....................... 147

....................... 149
V LI IG1 1\V JV ü1 V.....

Final Remarks .. References
................... Appendix A

.............. 150

.............. 150
1 ')

.. 163

V

LIST OF FIGURES

Figure 2-1 A medical Body Sensor Network ... 28
Figure 2-2 CodeBlue Medical application for Sensor Networks 28
Figure 3-1 OMG Reference Model Architecture ... 35
Figure 3-2 NET new framework .. 36
Figure 4-1 Middleware Architecture of MidWSeN ... 61
Figure 4-2 Sequence Diagram for MidWSeN framework .. 69
Figure 4-3 Event listening and pulling data from sensors 72
Figure 5-1 Interaction of other services with Persistent storage service 84
Figure 5-2 Acknowledgment message sent by the service in response to the service

discovery message 87
Figure 5-3 Message sent by the service to the acknowledging service 87
Figure 5-4 Sending historical query to Persistent Storage Service

............................ ..
89

Figure 5-5 Sending Real-time query to PSS 90
Figure 5-6 Event Listening and pulling data from sensors 91
Figure 6-1 Showing Sequence of events for Aggregation process 104
Figure 6-2 Interaction of other services with Aggregation service III
Figure 7-1 Code to illustrate data being written to the Logger 118
Figure 7-2 Code to illustrate data being saved to the mote .. jig
Figure 7-3 Code for Priority algorithm .. 119
Figure 7-4 Priority assigned to data by application ... 121
Figure 7-5 Aggregating data according to priority ... 122
Figure 7-6 Query without context ...

123

Figure 7-7 Query with date context ... 124

vi

LIST OF TABLES

Table I Acknowledgment message sent by the AMS .. 92
Table 2 Message sent by the AIS to the AMS

.. 93
Table 3 Showing confidence interval for 3 copies of data in a sensor network 126
Table 4 Showing confidence interval for 4 copies in a sensor network 127
Table 5 Showing confidence interval for 5 copies in a sensor network 127
Table 6 Uniform topology 250x250 grid .. 129
Table 7 Uniform topology 200x200 grid .. 129
Table 8 Effects of Distance on Snooping .. 130
Table 9 Random topology ... 132

VII

Chapter 1 Introduction

Chapter 1 INTRODUCTION

1.1 Preamble
Internet technology has connected people to the wealth of knowledge in almost every
field of life but there was still one important aspect missing the physical dimension
because of their ability to sense small changes in the physical quantities. Sensors have

been able to fulfill this criterion and have provided the physical dimension missing from

this existing wealth of knowledge. The existing technologies combined with sensors have

made it possible to make the dream of a smart space come true. Terms like ubiquitous

computing and wireless technology is becoming very common and is being used in

consumer products, for example, mobile phones, broad band, Internet.

There was a pre Internet phase and the world is going through the Internet phase in the

recent years. After further advancements in the field of networking and computing there

will be a post Internet phase which is leading us to the Sensor Net which means sensors

connected to the Internet providing real time physical quantities (Tavakoli et al. 2007).

One of the important events of the pre Internet phase, apart from the advent of computers,

which starts the era, is wireless technology because it leads the world to the post Internet

phase.

The history of wireless technology can be dated back as far as the 19`h century when

Marconi was able to conduct his first experiment(Carovillano 2003). It has led us to the

present day technologies and terms which are widely used, for example, wireless LAN

(Local Area Networks) (Cisco Systems 2004) in the 1990s which was a breakthrough for

wireless networks, Global System for Mobile Communication (GSM) (GSM 2007) which

made mobile phones possible. In addition to the previous works we have Wi-Fi, enables

connection to the Internet or other machines that have Wi-Fi functionality through a

wireless network. It conforms to the IEEE 802.11 standards. The most recent addition to

1

Chapter 1 Introduction

wireless telecommunications is WiMAX, defined as Worldwide Interoperability for

Microwave Access to promote conformance and interoperability of the IEEE 802.16

standards. WiMAX provides broadband access as an alternative to DSL or cable for the
final phase or mile delivering connectivity from a service provider to a customer. WiMax

can connect several Wi-Fi hotspots which cover one or more acess points. Through these

technologies the world becomes well connected and people can connect to each other

easily no matter which part of the world they are placed.

The history of networking can be connected to the creation of ARPA, or Advanced

Research Projects Agency (ARPA's now known as DARPA) (DARPA 2007) in 1957

which led to the advent of networks and later the Internet which was marked by the first

packet sent over the network in 1969 starting the exciting phase of the Internet era.

ARPANET (Hauben 2006) stands for ARPA-network is a network that was specially

designed to connect universities and other research centres on a network. The concept

conceived in the 1960s was implemented in 1969 on four nodes (Griffiths 2002; Griffiths

2002; Hauben 2006). One was at the University of California Santa Barbara, one at

UCLA, one at SRI International, and the last one at the University of Utah. The Internet

is a worldwide collection of publicly accessible interconnected computer networks. The

advent of internet led to email in 1972 and World Wide Web (WWW) the worlds first

browser in early 1990s. Since its advent, the Internet has grown at a phenomenal speed

both in volume and complexity. It has made it possible to connect anyone to almost

anything for example other computers, telephones, mobile phones and even common

house hold appliances. The Internet has been able to realize the dream of connectivity

and has turned the world into global village.

As mentioned earlier there was one important aspect still missing, the physical

dimension. Imagine while en route to your office in the morning, there is an accident

ahead and that information is automatically transferred to your car which can then take an

alternate route. In a different scenario while shopping in the super market you can

connect to your refrigerator to find out what items you need to pick. This is the dream of

a smart world or Smart space in which one can interact with the environment and help

people in finding what they require easily. This dream is possible by combining the

2

Chapter 1 Introduction

present day wireless communication technologies and sensors. The next section provides

a historical perspective of sensors.

1.2 Sensors and Wireless Networks
The sensor age starts in 1967 when Honeywell Research Centre in Minneapolis, USA

applied for patent for the edge-constrained silicon diaphragm by ART R. Zias and John

Egan (Copidate Technical Publicity 2006). In 1999 the industry realized that sensors can

go wireless which opened a new world of applications that was never imagined before. A

Wireless Sensor Network (WSN) is a collection of small, low-cost devices capable of

sensing, computation, storage and communication, called sensors. These sensors,

although limited in their resources, can be combined together to perform complex

operations.

Wireless sensors first use was for military applications (Chong et al. 2003). Sensors have

been used in the wired environment previously, with success in industrial applications

like automobile manufacturing, but the combination of wireless technology and sensors

has opened a whole new exciting avenue of applications. It has made possible to access

difficult terrains where human intervention was impossible or very difficult. These

sensors can be deployed anywhere and can work independently for months without any

maintenance. It is possible to throw these small compact devices called sensors into

difficult terrains in large quantities where they organize themselves and start functioning

by establishing contact with their immediate neighbours and start sending data for months

or as long as their batteries last.

Sensors have made the dream of a smart world come true through embedded technology

being small in size they can be embedded on any object or creature. This will make it

possible to connect anything with everything any where. For example, our body network

will be connected to our car network or home/office network and they can communicate

with each other. It means a fully integrated and connected environment.

The different prospects of wireless sensors are exciting and are possible with existing

wireless technologies but all this makes WSN very unique and difficult as well. Real

world applications mean that sensors have to operate in harsh conditions where they

could easily be made unavailable by physical forces of nature. Wireless sensors are

3

Chapter 1 Introduction

battery operated so the batteries may run out very easily. As there will be no maintenance

or network administrator, the network will have to manage itself. Presently the wireless

sensors are sensing and sending raw data which is difficult with limited resources.

Handling such a huge amount of data is a big issue and needs to be resolved. There are

security issues especially in military applications and more generally because of the data-

centric nature of this network. This network also communicates with wired or traditional

networks which means that the protocols developed for this network will also have to

consider issues related to communication with wired networks too.

In general, WSN is a very challenging and promising field for researchers because it has

so much potential but there are a lot of issues that still need to be addressed. The aim of

this research is to address some of the above mentioned issues in order to facilitate the

dream of Smart Space in which humans can interact with the surrounding environment

easily.

Looking at the previous history of these technologies shows how fast they have grown

individually, especially in the later half of the 20th century, and worked collectively to

give birth to new fields, for example, grid computing (Grandinetti 2005), peer-to-peer

(Subramanian et al. 2005), ubiquitous/pervasive computing (Burkhardt et al. 2002) or ad

hoc (Ferrari 2006) and sensor networks etc. The idea of pervasive or ubiquitous

computing is to connect anything with everything seamlessly without the user being even

aware of it. The goal of pervasive computing is to provide unobtrusive and continuous

connectivity using the current networks and wireless technology. It has not only

improved interconnectivity and transfer of knowledge but helped identify new avenues

like smart spaces and embedded technology. This technology takes computing beyond

the traditional desk top computer to consumer devices like the fridge, TV, our home

security systems or electric systems, cars or even our clothes or coffee mugs (Burkhardt

et al. 2002). First it was just data and information which was flowing now sensors have

added physical dimension to it directly from the real world. It's like creating a virtual

world using the real world parameters.

Taking a short tour of history in the previous sections also reveals that a lot of different

types of hardware and technologies are working together which means a heterogeneous

4

Chapter 1 Introduction

environment. Networking not only means connecting computers but also electronic
devices and through embedded technology everything or every device. As the size of a

chip is becoming smaller it is possible to embed them on any object or creature, which
makes it possible to connect everything. It is not only possible to connect devices but

bodies, clothes, etc. anything that can be thought of. As already mentioned above

connectivity means heterogeneity too because everything is connected to anything

meaning different types of hardware and software. It also means heterogeneous

technologies communicating and working with each other. For all these heterogeneous

technologies to work together seamlessly, smoothly hiding the complexities of

underlying platform details there is a need for another layer of software which can relieve

the user of the burden of resolving complex issues related to heterogeneous hardware and

software. The developer does not have to be aware of the underlying system because

everyone cannot be an expert or computer scientist. The end user is only interested in

getting his work done with out hindrance. However, the underlying system might be very

complex combining different technologies, software and hardware. Operating systems

could not handle this complexity because there may be more than one operating system

involved. Therefore to handle heterogeneity and its related issues researchers came up

with another layer of abstraction called middleware. The next section introduces this

aspect of research.

1.3 Middleware
The term middleware gained popularity in the 1990s although there are claims that it has

been around since 1968 (Naur et al. 1968). The popular definition of the term is that it is

an additional layer of software between the application and the operating system which

deals with issues not being handled by the operating system. Middleware is used to hide

the low level system programming from the developer so that he can concentrate on his

actual application. With the advent of the Internet and World Wide Web, so many

different types of new software are being introduced in a short period of time. On the

other hand technology is also advancing fast as we have already observed in the previous

section, therefore new and more sophisticated hardware is flooding the market. To bridge

5

Chapter 1 Introduction

the gap between heterogeneous software and hardware, middleware comes in which hides

the lower abstractions from the user.

The term middleware has also been referred to as a distributed platform of interfaces and

services that reside between the application and the operating system in order to facilitate

the development, deployment and management of distributed applications. It can work as

glue between two applications, an application program and a network, more than two

software systems (applications, operating system and network). Generally it is a

communication link between two or more software and for hardware systems (Coulson

2004) e. g. OMG'S CORBA (Vinoski 1997; Wang et al. 2001), Microsoft's DCOM (Karp

et al. 2000) or Java RMI (Satyanarayanan et al. 1999). These are the most popular

middleware software available in the market since the advent of the term middleware.

Common Object Request Broker Architecture commonly known as CORBA was

introduced by the Object Management Group (OMG). It is an open, vendor-independent

architecture and infrastructure to be used by computer applications to work together over

networks. It details the Object Request Broker (ORB) component of the object

management architecture (OMA) (Vinoski 1997). The ORB component facilitates

communication between clients and objects.

Distributed Component Object Model (DCOM) extended Microsoft's COM and has now

been replaced by. NET in 2002. The . NET framework (Microsoft 2007) included in both

Windows Server 2003 and Windows Vista is software that has been developed for

Microsoft Windows. It provides solutions to common program requirements, and

manages the execution of programs written specifically for the . NET framework

Java Remote Method Invocation (Java RMI) helps in creating distributed Java to Java

applications. It is based on Remote Procedure Call (RPC) mechanism which allows a

program to execute a subroutine in a different address space with out explicit instructions

(Grosso 2001).

All the above are examples of popular middleware systems used in traditional or wired

networks. The existing middleware techniques for wired or traditional networks cannot
be applied to WSN due to the following reasons.

6

Chapter 1 Introduction

" The existing wired and traditional networks have more resources therefore the

middleware developed for these are resource intensive whereas in sensor

networks the resources are very limited. Energy is probably the most precious

resource because wireless sensors are battery operated. Similarly, other resources

like memory, processing power, bandwidth etc., are all very limited and

constrained.

" Sensor networks usually works without any human intervention or network

administrator. Self-organization and self-management is one of the characteristics

of this type of networks. Sensor networks might have to operate in difficult

terrains with limited resources without the help of any kind of human intervention

or infrastructure. These sensors could just be thrown into harsh terrains randomly

and have to self-organize and start functioning as a network. Where as the

traditional networks are operated by humans and needs constant human

intervention.

Usually sensor networks are connected to the traditional wired networks also or

they might be part of a heterogeneous network having different capabilities,

functionalities and characteristics.

" Deployment in real time situations in difficult terrains and random deployment

means that these sensors are exposed to harsh conditions with limited resources.

Therefore they could be easily damaged or unavailable or run out of batteries

which mean dynamically changing topologies and reorganization of the network.

" Sensor networks are application specific which means application requirements

play a major role in the dynamics of the network organization and functioning.

" The operating systems for sensor networks are not well developed. Therefore they

do not provide the full functionality of operating systems as in traditional

networks. There may be different reasons for not having fully developed

operating systems which is beyond the scope of this text but due to these reasons

developers have extra burden of worrying about the underlying hardware.

7

Chapter 1 Introduction

Therefore, due to the above mentioned reasons the researchers and scientists face a

number of challenges in developing lightweight middleware which could cope with the

unique characteristics of a WSN.

In order to realize the dream of integrated Smart world in which humans can interact

with the environment any time any where the researchers are trying to use the limited

resources of WSN in an efficient way to make the most of this network. The work done

so far has mainly concentrated on how to transfer most of the data to a powerful base

station and then manipulate or process that data to gain useful information. However, the

problem is that transmission is the most expensive activity in terms of resources in WSN.

The techniques used so far focus on simple data gathering-style applications, and in most

cases support one application per network. Therefore, network protocols and applications

are usually closely coupled. These procedures are usually ad hoc and do not provide a

good solution to the vision of Smart World in which the sensors are able to talk to each

other and dynamically discover services whenever required.

The goal of this work is to systematically design services and portable abstractions of the

system for diverse applications and sensor reuse. In addition, the system should also be

able to support and coordinate mechanisms to efficiently adapt to changing environment.

In order to achieve this . goal there is a need for middleware which can interconnect

wireless sensors quickly requiring minimum software and hardware without any problem.

The middleware presented in this thesis will adapt and provide services under different

circumstances with minimum hardware or software requirements. This middleware will

sit between the operating system and application in order to support the development,

maintenance, deployment, and execution of sensing-based solutions (Shen et at. 2001). In

addition it will also provide abstractions and mechanisms for dealing with heterogeneity

of sensor nodes. Middleware for WSN should be energy efficient, easy to use, robust and

scalable.

1.4 Problem Definition
The challenge facing the researchers in WSN'S is how to seamlessly integrate and bind

the sensors together with limited resources. Sensors are light, low cost and can be

deployed easily. Stringent resources mean that they have limited power being battery

8

Chapter 1 Introduction

operated, small memory, low bandwidth and less processing capabilities. With limited

resources the problem of handling a huge amount of data is a big challenge because

WSN'S are data-centric. The whole network activity is focused on gathering data and
transmitting it to the base station.

The middleware systems developed so far are restricted because they are application

specific in order to make them efficient. They are either event-based (Dunkels et al. 2004;

Dunkels et al. 2004b; Janakiram et al. 2005; Nicopolitidis et al. 2003), query-based

(Bonnet et al. 2000; Gummadi et al. 2005; Madden et al. 2005; Woo et al. 2004; Yao et

al. 2003), or context-aware (Choi et al. 2005; Gu et al. 2004; Huebscher et al. 2004) etc..

The sensors are only used for specific applications and the same sensors cannot be reused

for different applications. Application dependant middleware is problematic because, for

each different application, new middleware has to be implemented. For more than one

application working together there will be more than one middleware. This makes it

difficult for different sensors to talk to each other. In order to bind and integrate the

sensors a strong need is felt for a generic and flexible middleware which would be able to

utilize the same sensors for different applications and also be able to provide context

aware information to the end user within the restricted resources of WSN.

Middleware for WSN should be event-based because they may be deployed in difficult

terrains to listen to different events which are likely or expected to happen. In addition it

saves energy because unless the event occurs they are in a sleep mode or low energy

mode which conserves energy the most precious resource being powered by battery.

Therefore it is also close to WSN characteristics (Römer et al. 2002). The main problem

is that if there is an emergency or real time situation where the user might want to

investigate further there is no provision in the existing event-based systems which would

enable the user to immediately query the sensors directly or indirectly for further

information. Therefore there should also be a provision for querying the system in a real

time situation or any time the user wants to investigate or collect additional information.

Another challenge that is confronting the sensor community is how to handle data within

the network. Previously two approaches have been deployed to handle data. The first

approach was to sense and just send all the data to the base station or sink. The second

9

Chapter 1 Introduction

approach which is mostly employed by the current systems is to store data temporarily

and perform certain calculations within the network and then this semi processed data is

sent to the base station for further processing. The reason for this shift is the fact that

research has proved that transmission is the most costly activity in terms of resources,

especially energy which is the most precious resource in this kind of network. Although

the second approach is an improvement but still all data is transferred, stored and mostly

processed outside the sensor networks which means a lot of transmissions.

Researchers found that in-network processing was more cost effective in terms of

resources. For example, in a real time deployment of wireless sensor networks on a

volcano the researcher had to face real difficulty in transferring data from the sensors to

the laptop which acted as a base station because one minute of collected data took several

minutes to be transmitted along the radio channel (Werner-Allen et al. 2006). The authors

proposed local buffering of event data to overcome the problems they faced. Now further

research has proved that storage utilizes even less energy (Mathur et al. 2006) therefore

researchers are exploring this very new and exciting prospect of saving the data within

the network permanently or for longer period of time.

This new development is possible with the advancement of technology, for example, the

advent of new NAND flash memory technologies which has increased the capacity and

energy efficiency of local flash storage dramatically (Mathur et al. 2006) and also other

advances, for example, Irrotes introduced by Intel which has 32 MB memory or SPOT

developed by Sun Micro Systems which has 4MB of flash memory or the tiny wireless

memory chip developed by Hewlett-Packard (Hewlett-Packard 2007) which can store up

to 512KB, only 2-4mm square of size and can transfer data at a speed of 10 megabits per

second. Therefore it now seems possible to save the data within the network using flash

memory process it and then send out processed information on request. This means less

transmissions and also availability of data whenever required which ensures better

utilization of the limited resources.

1.5 Design Goals
Sensors have so many indoor and outdoor applications which are beyond any one

person's imagination. Such a varied scenario requires a middleware which would be able

10

Chapter 1 Introduction

to adapt to changing circumstances and enable the heterogeneous sensors to communicate

with each other to provide services under different conditions with the minimum

requirement of hardware or software. It should interconnect wireless sensors quickly

without any problem.

The main objective of this research is to create a middleware that would work with

different applications. This middleware will sit between the network and application in

order to support the development, maintenance, deployment, and execution of sensing-

based applications (Römer et al. 2002). It should be generic and flexible enough to

facilitate different applications and acquire context-aware data. In addition it should also

provide abstractions and mechanisms for dealing with heterogeneity of sensor nodes.

Main characteristics of WSN's are heterogeneity, small-scale devices, low-energy-usage,

dynamic, restricted-resources. In view of its special characteristics middleware for

should, however, be designed to be energy efficient, robust and scalable.

In order to achieve the above mentioned goals we are introducing a novel generic and
flexible middleware framework for WSN'S which will not only provide context-aware

information but also be both event-based and query-based. This framework can be

implemented as a whole or in parts depending on applications requirements. It has a

distributed, service-oriented architecture which means services can be discovered

dynamically within the network. No other framework to the best of knowledge of the

author has combined both events and queries. The use of queries also provides an

opportunity to handle real-time situations. Giving the concept of sensor reuse for multiple

applications and application independence because so far sensor networks are only

restricted to a single application.

1.6 Novel Contributions
Motivated by the advances in sensor networks and based on the above mentioned

problems this thesis presents a novel middleware framework called MidWSeN. The

contributions provided in thesis are detailed as follows.

"A detailed literature survey was conducted to have a thorough understanding of

the area and provide a set of requirements. Based on the literature survey a fresh

11

Chapter 1 Introduction

set of requirements has been proposed in the thesis in order to address the issues

which are important to develop a better middleware for WSN.

" This thesis presents a lightweight and energy efficient middleware framework

(Javed et at. 2005) which combines most important aspects of WSN in a single

system. No other work to the best of author's knowledge so far has presented such

a holistic view of different aspects of WSN. This framework can be used by both

query based and event based applications. This makes it more generic because

applications can both query and register events as well. It also has the ability to

work efficiently under normal as well as emergency situation. Due to service-

oriented architecture it can be used in heterogeneous environment as well as pure

sensor based environment because the framework does not bind the user to any

specific protocols or data structure. Furthermore, the user does not have to worry

about heterogeneous underlying platforms. Simple and easy to use framework in

addition to loosely coupled architecture, provides a layer of abstraction between

the application and the operating system which relieves the user from worrying

about the under lying hardware. The framework does not concentrate on a single

aspect of middleware it is providing query, event and context. The framework is

flexible and can be customized to an application's needs, keeping in accordance

with the application specific character of WSN.

o The framework provides a combination of core and optional services

which could be adjusted according to the resources available and specific

requirements of the application. The availability of multiple copies of

services distributed across the network helps in making the system robust.

Due to the loosely coupled architecture new services could easily be added

to the system which makes it more scalable.

" Storage and processing of data within the network consumes fewer resources

(Javed et al. 2007b), as has been already mentioned above. Therefore our
framework provides services and techniques which ensure that data is not only

stored but also processed within the network in order to make it more energy

efficient. This middleware framework introduces a new persistent storage service

12

Chapter I Introduction

which saves data within the network. This service stores data within the network
for lifetime of the network which provides historical data. This not only helps in

creating spatial and temporal relationship between data but also provides implicit

relationships. It has been mentioned that previously data was either directly sent

to the base station or kept temporarily for initial processing and then transmitted

back to the base station which consumed a lot of precious resources. Storing and

processing data within the network saves precious resources, for example,

bandwidth and energy.

o Memory in WSN'S is very limited and storing data within the network

might result in utilization of all the memory available in the network

therefore to handle such a situation a Priority algorithm is being also

presented in this thesis. This algorithm will prioritize the data and

whenever the need for more storage space arises it will aggregate the

lowest priority data to create more space. This will ensure that enough

memory is always available when required and not all of the data is

erased.

" Aggregation is a very important technique which helps in combining redundant

but related data (Javed et at. 2007a). It also helps in reducing the amount of data

being transmitted back to the base station. A context enhanced aggregation has

been presented in this thesis. The data is being aggregated with respect to context

and is sent to the Persistent Storage to be stored along with the context. This

service also has an added advantage in our framework that it helps in saving

memory or storage space. This service also provides the opportunity to the

developer to tailor or customize it to applications specific needs thus making it

more flexible.

" Application management service (AMS) is an important service which not only

works as a link between the sink and WSN but also helps in managing the

framework. The novel aspect of this service is that it provides Service

optimization within the network. When a query or event is sent to the network it

will help in locating the correct service and deciding which are the most

13

Chapter 1 Introduction

appropriate location and efficient path through which to send it. This service will

also inform the user if an emergency situation occurs with the help of the Rule

service if a rule or set of rule fires.

1.7 Thesis Structure
The rest of the thesis is structured as follows:

 Chapter 2 gives an overview of sensors and sensor networks. It describes in detail

the characteristics, design principles, applications sensors. It also gives a brief

description of the hardware, technologies and software related to WSN.

Chapter 3 gives the background of the significant works already done in

middleware in WSN and also why traditional networks middleware cannot be

applied to sensor networks. Further, it discusses the existing works and their

drawbacks in terms of flexibility, ease of usage and efficiency.

 Chapter 4 gives a new set of requirements considered important for a better and

efficient middleware. It also presents the design of a novel middleware

framework. It further gives some detail of the novel core services and optional

services included in the framework and their individual contribution to the overall

structure.

 Chapter 5 explains the persistent storage service in greater detail. This novel

service is used to store data within the network on the sensors. This chapter

explains why and how the data is being stored within the network. It presents a

novel algorithm for prioritization. It also explains how other services within the

framework interact with this service in order to provide an efficient system.

 Chapter 6 explains the aggregation service in detail. The aggregation service is

also used to save memory and add context to data in addition to the traditional

way of compressing or filtering data and saving resources which is a new concept.

This chapter also explains why it is necessary to keep aggregation as a

middleware service and how it functions within the framework to provide

efficient use of resources.

14

Chapter 1 Introduction

" Chapter 7 provides the evaluation of the framework and the implementation

details. It gives an evaluation against the requirements given in chapter 4 and a

comparison against the existing works.

 Chapter 8 provides the conclusion and suggestions for future work.

1.8 Summary
This chapter has underlined the need for having a generic middleware for WSN's. In the

beginning of the chapter the evolution process of the existing technologies has been

given. Through the evolution process of these technologies now a stage is reached where
dreams like smart homes or smart spaces can be realized. It has also been iterated that

wireless technology and sensors combined together with other existing technologies is

able to realize this dream of Smart environment which means humans can interact with

the environment intelligently.

Taking a short tour of history also reveals that a lot of different types of hardware and

technologies are working together which means heterogeneous environment. Therefore,

to handle heterogeneity and its related issues the researchers came up with another layer

of abstraction called middleware. The existing middleware techniques for wired or

traditional networks, however, cannot be applied to WSN'S because they are resource

intensive. Wireless sensor networks have unique characteristics, for example, they have

very limited resources and operate without human intervention in harsh terrains. They

have to be self organized and self manage over long periods of time. Therefore there is a

need for new middleware strategies in order to cope with the unique characteristics of the

WSN

The challenge facing the researchers in WSN's is how to seamlessly integrate and bind

the sensors together with limited resources. Sensors are light, low cost and can be

deployed easily. The middleware systems developed so far are restricted because they

are application specific in order to make them efficient. They are event-based, query-
based or context-aware. The sensors are only used for specific applications and the same

sensors cannot be reutilized for different applications. With limited resources the problem

of handling a huge amount of data is a big challenge because WSN'S are data centric.
Researchers found that in-network processing is more cost effective in terms of

15

Chapter 1 Introduction

resources. Further research has proved that storage utilizes even less energy therefore

researchers are exploring this very new and exciting prospect of saving the data within
the network permanently.

16

Chapter 2 Wireless Sensor Networks

Chapter 2 WIRELESS SENSOR NETWORKS

2.1 Introduction
Data networking technologies have a come along way since the 1980s. It has changed by

leaps and bounds in the last few decades and the coming decade or two promise more

changes thanks to wireless sensor networks. A brief tour of the history of these

technologies was given in the last chapter. This chapter gives a comprehensive overview

of what the related technologies are and how WSN's progressing. This chapter talks

about wireless networks in general and Wireless Sensor Networks (WSN's) in particular.

The following section introduces wireless networks and its different types. Section 2.3

explains WSN's in some detail the basic operations, hardware, characteristics and

technologies. This section also explains the different operating systems, applications,

design principles and also different research areas.

2.2 Pervasive/Ubiquitous Computing
Pervasive computing, also called ubiquitous computing is taking the world beyond

computers to embedded technology (Estrin et al. 2002). Pervasive computing can be

defined as embedding computing into the environment in such a way that the user will

not have to think for utilizing this technology. Pervasive computing is making use of the

existing wireless and other technologies (Ou et al. 2007). Research is going on in the area

of embedded technology and it is leading towards an integrated Smart world where there

may be a chip everywhere on human body, clothes, and equipment that is being used in

daily lives at home, office, car etc. The goal is that each and every thing used in daily life

is always connected to a network of devices without any hindrance and can be used

casually. The integration of already existing technologies like wireless communications

and sensors has made it possible to make this fantasy real (Microsoft 2007).

17

Chapter 2 Wireless Sensor Networks

2.3 Wireless Networks
Wireless technology helps two or more computers to communicate using standard

network protocols, without cabling. Any technology that does this could be called

wireless networking but often, however, the term refers to wireless LANs. This

technology has produced a number of popular wireless solutions using the IEEE 802.11

standards. These solutions are being used in business and schools as well as sophisticated

applications where network wiring is impossible, such as in warehousing or point-of-sale

handheld equipment.

2.3.1 Wireless Architecture
Wireless Networks includes different components which could be broadly divided into

computer devices and a wireless infrastructure.

" Computer Devices:

There can be many different types of computer devices ranging from small to large

devices for example sensors, PDA, laptop, desktops etc. These computer devices are

equipped with wireless networking interface cards which provides an interface

between the computer device and the wireless network infrastructure. Individual

computers can communicate directly with all of the other wireless enabled computers.

The computer devices can work as clients or servers. The client requests for a service

and the servers which are also sometimes referred to as end systems satisfy the clients

request or provide the service. They can share files and printers dynamically with the

support of appropriate software. They can also access wired LAN resources, using

one of the computer devices as a bridge to the wired LAN having special software.

(This is called "bridging").

" Wireless Infrastructure:

In the second type of architecture the wireless network can use an access point, or
base station to access data and resources of the wired network. The access point acts
like a hub, providing connectivity for the wireless computers and connects the

wireless LAN to a wired LAN. This, with appropriate networking software support,

18

Chapter 2 Wireless Sensor Networks

allows users on the wireless network to access wired LAN resources, such as file

servers or existing Internet connectivity and vice versa (Akkaya et al. 2005; Frodigh

et al. 2001; Nicopolitidis et al. 2003; Varshney et al. 2000).

2.3.2 Types of Wireless Networks
This section briefly explains that wireless networks are networks without connecting

cables that rely on radio waves for transmission of data. The previous section explained

the two main components of wireless networks. One of the two main components are

computer devices which uses interface cards to communicate with other devices whereas

the second component is the wireless infrastructure which uses a common access point to

communicate.

While the term wireless network may technically be used to refer to any type of network

that is wireless, the term is most commonly used to refer to a communications network

whose interconnections between nodes is implemented without the use of wires, such as a

computer network (which is a type of communications network). Wireless

telecommunications networks are generally implemented with some type of remote

information transmission system that uses electromagnetic waves, such as radio waves,

for the carrier and this implementation usually takes place at the physical level or "layer"

of the network. (For example, see the Physical Layer of the OSI Model).

" Personal Area Network

A personal area network (PAN) is a network to communicate among computer

devices, for example, computers, phones or PDAs within a few meters space. With

the help of wireless network technologies, for example, Infrared, Bluetooth, and
ZigBee wireless personal area network (WPAN) is also possible.

o One type of wireless network uses Infrared to connect small devices over

very short range in WPAN (Wireless Personal Area Netork) having a

small range. Infrared is limited to line of sight and used for point to point

communication. One example of Infrared communication protocol is IrDA

(Infrared Data Association) which is physical specification standard for

short range data exchange over infrared light.

19

Chapter 2 Wireless Sensor Networks

o Another type of network used for WPAN is Bluetooth (Bluetooth 2007;

Ferro et al. 2005) for short range communiction of data. Bluetooth sends

and receives signals from all directions and has greater communication

range than infrared. It follows the IEEE 802.15 standards.

o Another type of network technology used for WPAN which is simpler and

cheaper than other similar technologies mentioned above is ZigBee.

ZigBee uses small, low-power digital radios conforming to IEEE 802.15.4

standard.

o Ultra-wideband (UWB, ultra-wide band, ultraband, etc.) is also used for

WPAN as a radio technology. It can also be used for short-range high-

bandwidth communications at very low energy levels. Ultraband is using

pulse coded information with sharp carrier pulses at a bunch of center

frequencies in logical connex.

" Wireless Local Area Network

o One type of wireless network is a WLAN or Wireless Local Area

Network. Similar to other wireless devices, it uses radio instead of wires to

transmit data back and forth between computers on the same network. It is

based on IEEE 802.11 standards for example IEEE 802.1la/llb. Wi-Fi

(Ferro et at. 2005) is a commonly used wireless network in computer

systems which enable connection to the Internet or other machines that

have Wi-Fi functionalities. Wi-Fi networks broadcast radio waves that can

be picked up by Wi-Fi receivers that are attached to different computers.

" Wireless Metropolitan Area Networks

o This type of network that could connect many wireless LANs. WiMAX,

the Worldwide Interoperability for Microwave Access (Agapioy et al.

2006), is a telecommunications technology aimed at providing wireless

data over long distances in a variety of ways, from point-to-point links to

full mobile cellular type access. It is based on the IEEE 802.16 standards,

which is also called WirelessMAN.

20

Chapter 2 Wireless Sensor Networks

" Wireless Wide Area Networks

o This type of network can cover a wider range than a LAN and can make
use of cellular technologies, for example, GSM. The proposed IEEE

standard for WWAN is 802.20. The WWAN could also be called mobile
device networks.

o Global System for Mobile Communications (GSM) network is divided

into three major systems which are the switching system, the base station
system, and the operation and support system. This is used for cellular

phones, is the most common standard used for a majority of cellular

providers.

This section briefly explained that networks without cables are known as wireless

networks and mainly has two types of architecture. The first architecture uses network
interface cards for communication whereas the second uses a common access point to

communicate. Sensor networks can make use of both types of architectures.

Different types of commonly used wireless networks have also been mentioned above.
There are many other types and varieties of wireless networks therefore it is difficult to
compare and categorize all of them. The main focus in this chapter is wireless sensor

networks which are a network of small devices connected over a short range as already

mentioned above. The next section gives detailed information about these types of

wireless networks.

2.4 Wireless Sensor Networks
This section provides information about wireless sensor networks in detail which is the

main focus of attention in this research. It explains the architecture, its unique

characteristics and applications which make this research more exciting and challenging.
This network basically consists of a base station and large number of small-scale

cooperative nodes capable of limited computation, wireless communication and sensing.
By correlating the sensor output of multiple nodes, the whole network can provide
functionality that an individual node cannot (Römer et al. 2002). As already mentioned in

the previous section WSN can make use of both architectures. It can connect with it

21

Chapter 2 Wireless Sensor Networks

neighbors using on-demand multi-hop communication as in peer to peer communication
to reach a base station to communicate with wired networks. On the other hand it can also
have a single hop communication with its base station which in turn may be connected to

a wired network.

2.4.1 Basic Operation
The basic operation of a sensor network is to deploy sensors in a target area to collect

information or monitor and track certain specific phenomena. This deployment could be

of a continuous process in order to replace nodes which have been unavailable or have

depleted batteries due to environmental effects. These sensors can equip any object,

creature or place with information-processing capabilities. They could either establish

associations by a one- to-one relationship or by just throwing these nodes into an area of

interest, where they have to function on their own.

After the successful deployment of nodes they can start functioning. They can either be

assigned a task by an external source (for example. a vehicle passing by) or they could be

self sufficient isolated networks which are capable of fulfilling a certain task themselves

(for example sensing temperature) sending the information to other nodes which are

controlling the results as part of the network. However, these controlling result sensing

nodes might also be reporting to some external source for a more detailed monitoring of

certain phenomena.

In order to obtain a high level result the sensor nodes have to coordinate and divide the

task among themselves because they have limited functionality taking into account the

individual characteristics of the nodes (for example attached sensors, location, and energy

level).

2.4.2 Hardware
The hardware structure of the most commonly used motes or sensors consists of the

following four parts.

" Sensing unit

The sensing unit is the main part and is made of two components sensors which are

used for actual sensing and analog to digital converters (ADCs). The sensor unit

22

Chapter 2 Wireless Sensor Networks

senses in the form of analog signals produced by the sensors based on the observed
phenomenon which are then converted to digital signals by the ADC, and sent to the
processing unit (Akyildiz et al. 2002).

" Processing unit

The processor runs or processes the procedures that make the sensor node function,

for example, collaboration with other nodes to carry out the assigned sensing tasks. It

also has a limited storage or memory to, facilitate in the task of processing by storing
intermediate results of a query or, store the programs associated to application

management.

" Transceiver unit

A transceiver unit or Radio is used for communication and connects the node to the

network. Communication which is mainly sending and receiving depends on at least

three different layers: physical, media access control (MAC), and network. The

physical layer handles the communication between transmitters and receivers which

includes signal modulation and coding of data. The MAC Layer is responsible for

efficient use of energy, changes in network size, node density, topology and

bandwidth. MAC (Demirkol et al. 2006). Finally, the network layer is responsible for

determining the routing path that a message has to take through the nodes of the

network in order to travel from its source to the destination (Feng et al. 2002).

" Power unit

Energy is most vital for sensors therefore one of the most important components of a

sensor node is the power unit. Two types of batteries might be used for the power unit

one can be rechargeable and the other may be normal Alkaline batteries. Power units

may also be supported by a power scavenging unit such as solar cells (Feng et al.

2002).

The above mentioned units are the basic parts which any sensor node will have however

there may be other parts depending on the application they are used for.

23

Chapter 2 Wireless Sensor Networks

2.4.3 Characteristics of Wireless Sensor Networks
A WSN has different unique characteristics which makes it more challenging and

different from other types of networks. They consume less energy because they are small

and therefore can be used in difficult terrains where human intervention is not possible.

The most important characteristic is that they are small-scale devices with restricted

resources like energy, CPU performance, memory, wireless communication bandwidth

and range (Römer et al. 2002). This scarcity of resources especially very limited energy

resource makes it more challenging. They are battery-operated and die if these batteries

run out which means the energy has to be used very efficiently in order for them to work

for longer periods of time.

When sensors are used for outdoor applications they are subjected to harsh conditions, for

example, they may be carried away by wind or trampled by animals. They are prone to

failure being battery-operated and used in difficult terrains. Due to dynamic conditions

and power failure being frequent as they are battery-operated the topology can change

frequently. So, constantly changing topology has become another important characteristic

to consider while designing a sensor network.

They are also application dependent which is another unique characteristic of this

network. For example, in indoor applications the sensors are accessible but in outdoor

applications the sensors may not be accessible or highly unlikely to access which will

have a deep impact on the design of the network in choice of protocols being used for

different activities.

They may also be heterogeneous in terms of computing power and memory. Sensors may

be used in collaboration with other equipment, for example, PDA, Laptops etc., within

the same network. Such a heterogeneous network means a combination of more capable

and less capable devices.

2.4.4 Technologies
In this section the different technologies associated with WSN's are introduced. Micro-

Electro-Mechanical Systems (MEMS) are the integration of mechanical elements,

sensors, actuators and electronics on a common silicon substrate through micro-

fabrication technology. The MEMS is an enabling technology which can enable a smart

24

Chapter 2 Wireless Sensor Networks

environment with micro-sensors and micro-actuators ubiquitously. It helps in the
realization of complete systems-on-a-chip dream.

The most common communication technologies being used for WSN's are Bluetooth and
ZigBee. Both of these are used for short range wireless communications. BlueTooth is an

industrial specification which uses low-power radio communications to wirelessly
connect and exchange data between phones, computers and other network devices over
short distances. It is being named "Bluetooth" after a Danish king more than 1,000 years
ago Harald Bluetooth. It can transmit signals over short distances wirelessly up to 10

meters and generally communicate at less than 1 Mbps. A master Bluetooth device can
communicate with up to 7 more devices which are called piconet in a PAN. It conforms
to IEEE 802.15.1 standards (Nachman et al. 2005).

ZigBee (Eady 2007) was created as a new standard (IEEE 802.15.4) to support relatively

simple, low power wireless communications, primarily home and industrial automation

applications. ZigBee is being used in wireless sensor and grid networks. Some early

examples of ZigBee networking include monitoring your washing machine for leaks or

controlling the heating of buildings which are both indoors applications.

2.4.5 Operating System
There have been several attempts to make a specialized operating system for sensor

networks. But these efforts are still at an early stage. The difficulty lies in the unique

characteristics of sensor networks, especially the resource constraints and their

application dependant nature. One of the first and probably the most important attempts is

TinyOS (Du et at. 2004; Levis 2006; Levis 2006). It has been developed in nesC (Gay et

at. 2003) also specifically designed for embedded systems and programming component

based applications. It is an extension of C which is well known for programming at the

physical level. TinyOS is based on an event-driven model which is very close to sensor

networks. It uses event handlers and tasks to handle an external event or, for example, a

sensor reading. These events or tasks will always be processed to completion. Tasks can
be posted to be processed later. Race condition can be detected at an early stage through

nesC programming techniques.

25

Chapter 2 Wireless Sensor Networks

Other operating systems developed for WSN also use C programming. They are Contiki
(Dunkels et al. 2004a), MANTIS (Bhatti et al. 2005), SOS (Han et al. 2005) and NanoRK
(Eswaran et al. 2005). Contiki and SOS are both also event driven operating systems
where as MANTIS and Nano-RK are based on preemptive multithreading.

2.4.6 Design Principles
A survey of literature reveals three main design principles for WSN; Localized

Algorithms (Estrin et al. 1999; Rosenstein et al. 1997; Tsuchiya 1988), Adaptive fidelity

(Estrin et al. 1999), and Data-centric communication (Akyildiz et al. 2002; Ratnasamy et

al. 2003). Localized algorithms are a distributed algorithm which utilizes only a subset of

nodes for a specific task (Meguerdichian et al. 2001; Qi et al. 2002). They are scalable,

robust, and can utilize resources more efficiently by distributing tasks among

coordinating sensors. They are difficult to design because their behavior depends on

global knowledge converting this global knowledge to local behavior means changing it

completely. Also, different types of localized algorithms may have different types of

parameter choices which may lead to conflicting global behavior. Thus energy insensitive

design may utilize more battery power or more resources. In comparison adaptive fidelity

the other design principle is more energy efficient because there is a trade-off between

the quality (fidelity) of the output and resources, for example, battery lifetime or
bandwidth etc.

The adaptive fidelity algorithms are resource efficient but again not without problems,
the implication to introduce multi-fidelity algorithm is that, different fidelities consume a
different level of resources; the most important ones are time, computing power and

network bandwidth, which are extremely scarce in mobile computing environments. Most

of the time, especially in the case of interactive applications, people would rather see a
less-than-ideal result within constraints of time and power. Multi-fidelity algorithm

allows the trade-off between output quality and resources consumed, which is an
essential theme in adaptive application design.

In a data-centric (Akyildiz et al. 2002; Ratnasamy et al. 2002) approach the applications
are not interested in the identity of a particular node rather it requires the attribute of the

phenomena. For example, if an application queries about the temperature reading it will

26

Chapter 2 Wireless Sensor Networks

require the location at which it exceeds a certain limit rather than the temperature of a
specific node. Therefore it has proven to be a more energy efficient data dissemination

method due to its application knowledge.

Another important technique related to design is the in-network (Fasolo et al. 2007)

processing which is popular among researchers. In in-network processing some of the

calculations are done within the network and only the final result is communicated to the

user. This means fewer transmissions to the sink which saves energy because

transmission is the most costly activity in terms of resources than processing data within
the network especially energy.

2.4.7 Applications of Wireless Sensor Networks
As mentioned before WSN's have a wide range of applications. Examples include

military and national security surveillance (Abdelzaher et al. 2004; Lim 2001),

geophysical monitoring which involves monitoring air, soil and water, condition based

maintenance, habitat monitoring like studying birds and plants (Cerpa et al. 2001;

Mainwaring et al. 2002), smart spaces, traffic surveillance, medical application
(Heinzelman et al. 2004), business processes etc. There is a long list of applications in

short sensors will be used everywhere. Below a list is given of a few real world examples

of WSN's already being deployed and working.

27

3RD PARTY
COPYRIGHT
MATERIAL

EXCLUDED FROM
DIGITISED

THESIS

PLEASE REFER TO
ORIGINAL TEXT

TO SEE THIS
MATERIAL

Chapter 2 Wireless Sensor Networks

For example in the medical field, researchers are exploring applications of wireless

sensor network technology to a range of pre-hospital and in-hospital emergency care,

disaster response, and stroke patient rehabilitation (Lorincz et al. 2004). Recent advances

in embedded computing systems have led to the emergence of wireless sensor networks,

which permits data gathering and computation to be deeply embedded in the physical

environment. This technology has the potential to impact the delivery and study of

resuscitative care by allowing vital signs to be automatically collected and fully

integrated into the patient care record and used for real-time triage, correlation with

hospital records and long-term observation (Malan et al. 2004).

These devices collect heart rate (HR), oxygen saturation (Sp02), and EKG data and relay

it over a short-range (100m) wireless network to any number of receiving devices,

including PDAs, laptops, or ambulance-based terminals (Thaddeus et al. 2004). The data

can be displayed in real time and integrated into the developing pre-hospital patient care

record. The sensor devices themselves can be programmed to process the vital sign data,

for example, to raise an alert condition when vital signs fall outside of normal parameters.

Any adverse change in patient status can then be signalled to a nearby EMT or

paramedic. Figure 2-1 (Malan et al. 2004) and Figure 2-2 (Malan et al. 2004) depicts

phenomenas explained above and these pictures have been adapted from codeblue project

website.

Another real time example, which has been conducted successfully since 2002 working

with biologists on studies of flocks of about 18,000 Petrels that live at sea but fly inland

every summer to lay eggs and rear their chicks on Great Duck Island, a small,

uninhabited isle off the coast of Maine(Mainwaring et al. 2002). The birds nest in

underground burrows, which cluster around particular places on the island. Sensors called

motes are being used to study the Petrels' nesting behavior. In this case, temperature,

atmospheric pressure and humidity sensors record micro-environmental conditions, while

passive infrared sensors detect the presence of warm birds and eggs.

An example of an industrial usage of sensors is at Jones Farm fabrication plant in

Hillsboro, Oregon. About 4,000 places in such a facility hold equipment that should be

29

Chapter 2 Wireless Sensor Networks

monitored for signs of wear and failure (Culler et al. 2004). So many locations are
impossible to be checked manually and therefore currently engineers can check only

selected pieces every one to three months which was not good enough. A device failure

between two vibration inspections at a plant may cause a costly interruption of

operations. An entire system of 4,000 Motes has been created that could provide hourly

updates on the health of the plant's infrastructure.

These are just a few examples of the many exciting applications both indoors and

outdoors of sensor networks that are achievable through the combination of existing

technologies.

2.4.8 Research Areas in Wireless Sensor Networks

Wireless Sensor networks is a new area therefore there is a lot of potential from a

research point of view. Currently research is going on in a lot of diverse directions in this

field. This section gives a few major areas which are important. Every field described in

this area has some common problems which relate to the common characteristics

mentioned above in section 2.3. The common problems are of course very limited

resources which dictate every effort done in this area.

" Security

Security is a very important issue in wireless sensor networks from different

perspectives. Some applications might be sensitive, for example, military applications

in which sensors are used for collecting and communicating sensitive data. It is also

important because sensors have to be deployed in harsh terrains and are subjected to

harsh conditions which may destroy them easily. This means they are very vulnerable

to physical attacks. One peculiar characteristic is that these networks may have no

human administrator and have to self manage or self administer therefore it is

important for this network to defend itself from enemy attacks. Another security

problem is that since it is a distributed network and has to collaborate with other

nodes to perform a task, each node is important and has to be protected.
Compromising a single node could mean compromising the whole network. The

problems mentioned above added to meager resources make it a very challenging

research field which requires fresh approach and new ideas.

30

Chapter 2 Wireless Sensor Networks

In addition to the above mentioned problems which make it an interesting

research area there are other problems like key management (Du et al. 2004), secrecy
(Perrig et al. 2004), authentication (Liu et al. 2005), privacy (Sang et al. 2005),

robustness to denial-of-service attacks (Perrig et al. 2004), secure routing (Karlof et

al. 2003), security in mobile networks, and node capture(De et al. 2006).

" Management

An important advantage of sensor networks is that they can be deployed in harsh

terrains and can operate without human intervention. The network typically has to

self-manage without human administrators. Therefore management is a very
important issue in this type of networks considering its meager resources (Marron et

al. 2005). Topology changes frequently as sensors can easily be unavailable being

subjected to harsh conditions or die due to depleting batteries. In addition the

environmental obstacles also lead to issues of connectivity interruptions and fault

management. The dynamic nature of this network in which the nodes have to

collaborate in order to achieve a common goal in a distributive manner poses a lot of

open research issues (Lee et al. 2006). Therefore self-organization and self-

management with such minimal resources is a monumental and challenging task

which demands extremely skilful solutions.

" Mobility

Mobility means that sensors also have the capability of locomotion. (Light et at.

2006). This mobility means that the sensors are attached to objects which move in a

specified area. The ability of locomotion introduces new problems and areas of

interests. For example, the localization problems (Hu et al. 2004), in which nodes

determine their exact position every time they move or change its position. The

problem of energy efficiency in mobile networks (Hwang et al. 2004). Deployment is

also a problem (Li et al. 2006). Group management is another issue in which nodes

will be joining or leaving cluster. Security will also be an issue because every time a

new node joins the group it has to be authenticated and there would be secrecy and

privacy issues. The network might be a combination of static and mobile nodes which

is another challenging area of research (Giordano et al. 2006).

31

Chapter 2 Wireless Sensor Networks

" Routing

Routing is another major field of research in WSN's and a considerable amount of

work has already been done in this field ((Heinzelman et al. 2000), Kulik et al. 2002,

Intanagonwiwat et al. 2003). The major issues are the same as already mentioned

above, limited resources, for example, energy and bandwidth which only requires

essential minimal routing (Tubaishat et al. 2003). Another major difference from

traditional networks is that sensor networks are data-centric networks therefore the

unique addressing techniques used in the typical IP based protocols are not useful in

these networks (Al-Karaki et al. 2004). Another unique characteristic of these

networks is application dependence. The type of application for which a sensor

network is used has a greater impact on the whole network as compared to wired or

traditional networks on the routing technique being used (Akkaya et al. 2005). These

are some of the main issues which should be considered at design time.

" Middleware

This is also an active research area for wireless sensor networks and as mentioned in

the introduction chapter the focal point of research presented in this thesis.

Middleware for sensor networks (Boulis et at. 2007; Fok et at. 2005; Light et at.

2006) is very important from a lot of aspects. The operating systems developed so far

have not been able to fully provide the functionality required to talk to sensors and

mostly the application developer has to communicate with hardware directly (Hadim

et al. 2006). Another important aspect is that this network very rarely works as a

stand alone system; it usually works in conjunction with wired networks. Therefore

due to its heterogeneous nature it is important to have middleware. In addition to the

above the unique characteristics of sensor networks also makes it eligible for special

consideration. All this makes this area of research very challenging and therefore the

focus of the research presented in this thesis has been directed to this particular area

of wireless sensor networks. The next chapter is dedicated to this very important area

of research in WSN's.

32

Chapter 2 Wireless Sensor Networks

2.5 Summary
The above sections have discussed wireless networks in general and WSN in detail. As

the name implies wireless networks are networks without cables. They have two different

architectures one uses network interface cards and the other uses a common access point
to connect to other computer devices or wired networks. Wireless sensor networks are

also an example of wireless networks. This type of network collects information in a

target area or monitors a specific phenomenon. These networks consist of small devices

deployed in short range and establish wireless communication with its neighbours.

Sensors have many exciting applications in the field of medicine, biology, traffic

surveillance etc. The most distinguishing characteristics of sensors are limited resources
like battery life, very limited memory and processing power. Other unique characteristics

of WSN include application dependency, frequently changing topologies and
heterogeneity. The unique characteristics of this exciting field make it very challenging.

The different design principles have also been discussed which are Localized

Algorithms, Adaptive fidelity, and Data-centric communication. The different

technologies associated with sensor networks like MEMS and communication

technologies Bluetooth and Zigbee have been discussed briefly in this chapter. Section

2.3 describes the parts of a basic sensor node which are sensing unit, processing unit,

transceiver unit and the power unit. This section also gives the different types of

operating systems developed so far for WSN out of which the most important is TinyOS

event-driven operating system developed in nesC. The NesC language is an extension of
C which incorporates special features suitable for embedded systems. Some of the

important and currently active research areas in wireless sensor networks have also been

mentioned to give an overview of research activities going on the field of WSN's. They

are security, management, mobility, routing, and middleware.

As mentioned above middleware is the main focus of attention in this research therefore

the next whole chapter has been dedicated to explain research activities in this active field

of research. In addition types of WSN's middleware and the difference between

traditional and WSN's middleware has also been explained in the next chapter.

33

Chapter 3 Building Sensor Networks Middleware

Chapter 3 BUILDING SENSOR NETWORKS
MIDDLEWARE.

3.1 Introduction
The previous chapter gave an overview of the general characteristics and applications of
WSNs. In this chapter the overview of the role of middleware in building WSNs is being

discussed. This chapter also highlights differences between traditional and sensor

networks which leads to the fact that a whole new approach is required to address the

challenges of developing middleware for WSNs. The current middleware approaches in

WSN have also been discussed in some detail to create an awareness of the existing

problems, which the proposed work in this thesis tries to address.

Middleware is used to hide the lower level abstraction from the developer so that he can
concentrate on his actual application. With the advent of the Internet and World Wide
Web so many different types of new software are being introduced in a short period of
time that it becomes difficult to keep the systems updated in order to utilize the new
softwares available in the market to their full capacity due to cost and interoperability

with other existing software. On the other hand technology is also advancing, therefore

new and more sophisticated hardware is flooding the market. To bridge the gap between
heterogeneous software and hardware, middleware comes in which creates a bridge not
only between heterogeneous software and hardware but also hides the lower abstractions
from the user.

Middleware can be referred to as a distributed platform of interfaces and services that

reside between the application and the operating system in order to facilitate the

development, deployment and management of distributed applications. It can work as

glue between two applications or an application program and a network or more than two

software components/systems (application, operating system and network). Generally it

is a communication link between two or more software and/or hardware

components/systems (Coulson 2004), for example OMG'S CORBA (Vinoski 1997),

34

Chapter 3 Building Sensor Networks Middleware

Microsoft's DCOM (Karp et al. 2000) or Java RMI (Satyanarayanan et al. 1999). The

next sub-section discusses these systems in some detail.

3.1.1 Traditional Middleware Approaches
This sub-section explains some of the commonly used or popular middleware approaches

used in traditional middleware.

Interfaces I Domain interfaces I Common Facilities

OBJECT REQUEST BROKER

V

Object Services

Figure 3-1 OMG Reference Model Architecture

" The Common Object Request Broker Architecture CORBA automates many

common network programming tasks such as object registration, location, and

activation; request demultiplexing; framing and error-handling; parameter

marshalling and demarshalling; and operation dispatching (Vinoski 1997). Figure

3-1 OMG Reference Model Architecture shows the OMG Object Request Broker

services.

Distributed Component Object Model (DCOM) was introduced by Microsoft as a

competitor of CORBA for software components distributed across several

networked computers to communicate with each other. However, now Microsoft

has introduced NET (Horovitz et al. 2007) instead of DCOM which provides pre-

coded solutions to common program requirements. The Common Language

Runtime (CLR) environment runs NET (Conard et at. 2001) applications that

have been compiled to a common language, namely Microsoft Intermediate

Language (MSIL) Figure 3-2 (Conard et at. 2001) shows the NET framework.

Windows Forms allows users to create standard desktop applications, based on
the Windows Foundation Classes (WFC). Web Services, allows programs to

communicate over the Internet. This framework allows the developer to write less

code by providing underlying functionality in a consistent and standardised

35

Chapter 3 Building Sensor Networks Middleware

manner. The Execution Support module shown in the figure Figure 3-2 NET new
framework, contains most of the language runtime CLR capabilities. The NET
framework also provides built-in memory management functions. It's also
important to note that Microsoft is not restricting use of the CLR to Microsoft

languages. ADO. NET, provides data type support, whereas, Windows Forms

provides graphic support for Window applications. System XML, enables

applications to work with XML-defined data in a standardised manner.

" Java Remote Method Invocation (Java RMI) enables the programmer to create

distributed Java technology-based to Java technology-based applications (Grosso

2001), in which the methods of remote Java objects can be invoked from other

Java virtual machines, possibly on different hosts. RMI uses object serialization to

marshal and unmarshal parameters and does not truncate types, supporting true

object-oriented polymorphism (Grosso 2001).

A SOWQ Windaars ro nns
-1 L. Wob Sylvie Web Forrrs Corrtols Drawing

IASIMET Applötios ! QIYP Qs WiasýwsAppicatöa Sowcas

AT Fianma'vrk 8aso Cbua s

Iet Be uriy °'''
tt.

Comm LarVa®n Runlifr

Ii . oryMarogun, ont ComnanTypsysum LibcyclaWnibmg

Figure 3-2 NET new framework

None of the above software is without its limitations. CORBA has become too

complicated and difficult to maintain and also do not support transfer of objects or code.

36

Chapter 3 Building Sensor Networks Middleware

DCOM was replaced by NET due to the same reasons as CORBA but the problem with

. NET is that it can fully be utilized only with windows although it is available on other

platforms but partially, which makes it limited. Microsoft's NET is also resource
intensive. Java RMI has the same problems it is complicated and restricted to only Java

platform. An ideal middleware should be kept lightweight and general. There are many
different types of middleware currently available and working in the market. The next

sub-section explains the different types of middleware currently available.

3.1.2 Types of Middleware
In literature different types of Middleware have been mentioned which may broadly be

divided into the following areas (Coulson 2004):

* Message-Oriented Middleware: As the name implies it is based on Asynchronous

message- passing and depends on message queue system. It works on the packet

paradigm of communications prevalent in the lower layers of the OSI network model

and works well in distributive environments (Pietzuch ei al. 2003).

" Event-Based Middleware: In event based systems the subscribers register interest and

the system informs all the subscribers when the event occurs. It supports many to

many communications. These types of systems are particularly suitable for distributed

systems and work well with monitoring applications because they report events being

specifically targeted (Pietzuch et al. 2002; Zeidler 2007) .

Object-Oriented Middleware: Object-oriented middleware uses the object oriented

programming paradigm in one to one communication. The typical client server or

request reply relationship in which the client requests a service and the server obliges
by providing the service. An object request broker helps in interaction between

applications by enabling location transparent method invocation. CORBA and
DCOM are examples of this type of middleware.

" Reflective Middleware: Middleware has already been defined above as the software

which acts as a glue between two applications or layers etc. whereas reflection is

defined as the ability of software to self analyze and adapt itself to changing

37

Chapter 3 Building Sensor Networks Middleware

requirements. Reflective middleware means applying reflection techniques to make

middleware flexible and adaptable (Kon et al. 2002; Kon et al. 2000).

3.2 Differences between Traditional Networks and WSN's
The traditional middleware approaches, for example, NET or CORBA are all used in

distributed systems. They, however, are not well suited for WSNs (Römer et al. 2002; Yu

el al. 2004). This is due to the unique characteristics of WSNs as described in section

2.3.3 of the previous chapter. The first and most defining characteristic of a WSN is that

it has limited resources when compared to classical networks. In wired networks energy

is rarely a problem while it is very challenging in WSN especially when battery operated.

Other resources like memory, processing power or bandwidth are also less than a major

concern in traditional networks. Whereas in WSN all these resources are very constrained

and therefore efficient use of these resources is the biggest challenge. Therefore, it is

difficult to use resource intensive functions or store large amounts of data. An external

source has to be utilized for resource intensive processing or storage. Thus middleware

for WSN has to take into account both WSNs and traditional networks because of a close

interaction of processes executing in the WSNs and traditional networks. One such

example of external functionality can be seen in (Romer et al. 2003).

Another important characteristic of WSNs is that nodes are application aware, which

means the design principles and application knowledge are embedded in the nodes.

Traditional middleware are designed to hide the application knowledge and give freedom

to application developer to concentrate on the application requirements. Usually so far

the whole network is designed around the application's requirements and the whole

system is very much application dependant.

The third important characteristic of WSNs is that each node does not have a unique
identification because they may be deployed in remote inaccessible locations in

thousands. Therefore, the traditional request-response schemes may not be efficient for

this kind of network. Rather, event-based communication may closely be associated with

the characteristics of the WSNs. Data-centric communication matches content-based

messaging more closely than the traditional RPC (Remote Procedure Call)

communication.

38

Chapter 3 Building Sensor Networks Middleware

The fourth differentiating characteristic is that WSNs nodes must operate unattended

without human intervention or the traditional network administrator. Therefore, they must
have parameters or algorithms, which can solve a certain problem to the best of their

ability under restricted resources (CPU performance, memory, wireless communication
bandwidth and range). These networks have to self-manage within its constrained

resources.

Finally, physical conditions play an important role in WSNs as they are deployed to

process real world data, in contrast to traditional computing systems. This means they are

subjected to harsh conditions and may be frequently unavailable. They are also battery

operated and may run out of energy which leads to changing network dynamics. WSNs

have to deal with changing topology by self-organising.

The above mentioned unique characteristics illustrate that existing middleware for

traditional networks can hardly cope with the unique characteristics of WSNs being

resource intensive and requiring human administration. The differences between WSNs

and traditional networks clearly require a new approach for WSN middleware

architectural design and implementation. The next section explains the current

middleware approaches to WSN in detail.

3.3 Current Middleware Approaches for WSN
There are currently various Middleware approaches being used within WSNs. The

difference not only lies in the programming paradigms being used but also in terms of

scalability, easy of use, significance and overhead incurred (Hadim et at. 2006; Römer et

al. 2002). These approaches are being categorised and discussed in the following

sections.

3.3.1 Data-Centric Approach

Data-Centric storage means saving relevant data by name at nodes within the network
(Ratnasamy ei al. 2003). In this approach all data having the same name will be stored at

one location and all the queries regarding that particular named data would be directed to

this location. The main advantage of this method is that network flooding is avoided. This

method may only be useful under certain conditions: a large network, where the number

39

Chapter 3 Building Sensor Networks Middleware

of detected events is many and the total number of events detected is much larger than the

types of events queried for. It is not useful in a highly mobile or unreliable sensor

network. It also raises the issue of how to store data in a sensor network where nodes are

highly mobile or unreliable.

Greedy Perimeter Stateless Routing (Karp et al. 2000) is being used for data-centric

storage. GPSR has been slightly modified to deliver the packets to the node, which is

closest to the destination location. A Distributed Hash Table is being used on top of the

GPSR by hashing the event name into a key within network boundaries.

According to (Heidemann et al. 2001) attribute-based naming and application-specific in-

network processing play a crucial role in conserving energy and bandwidth in WSNs.

Their low level communication is based on names that are external to the network

topology and relevant to the application in a distributed system. Attribute-based naming

and in-network processing has two advantages. First, attribute-based naming does not

require any overhead of communication for resolving name bindings. Second, reducing

data communications by processing data within the network, as data is self-identifying

making application-specific processing possible.

The low level naming communications architecture comprises of three main components:

directed diffusion, matching rules, and filters. They are using directed diffusion to spread

information in the system. Data is being managed as a list of attribute-value-operation

tuples and matching rules are used to identify the arrival of data at the destination. They

are using filters as a mechanism to help in diffusion, processing and running of

application-specific code in the network. Their results show that these techniques can

reduce network traffic and conserve energy to a great extent.

Directed diffusion (Intanagonwiwat et al. 2003) is a data-centric dissemination paradigm.

In this technique attribute-value pairs within the sensor network identify data and all

nodes are application aware. A node requests for named data by sending a query or

statement of interest to all its neighbors. The matching data is diffused towards the node

sending the statement of interest through a gradient or path. The network reinforces one

or a small subset of the useful paths depending upon the data rate and/or if new events

were recently received from that particular node or nodes. Data can be cached by

40

Chapter 3 Building Sensor Networks Middleware

intermediate nodes and statement of interest can be directed based on this previously

cached data. This improves robustness, scalability and also conserves energy.

3.3.2 Database Approach
In this approach the WSN is being viewed as a single distributed database virtual entity

which could be queried in SQL-style to assign sensing tasks by the user, examples are

(Bonnet et al. 2000; Madden et al. 2002; Shen et al. 2001). Although the database

approach is easy to use as it hides the distribution issues by addressing the network as a

single virtual entity, it is unable to handle complex sensing tasks, for example, if a user

wants to build a relationship between sequences of events in certain geographical areas.

Also, adding new operations require extensive modification to the query processor of

individual sensor nodes. Due to the tree topology used in the Database approach the

network might not give optimal performance in all types of queries, for example, creating

spanning tree of the network in TinyDB (Madden et at 2005) will send queries to all

nodes. In addition, TinyDB does not have any mechanism for customizing it to

application requirements which is an important characteristic of WSNs being application

specific. Hence, although the database approach is easy to use it suffers from some

scalability issues as well as from limited expressiveness.

3.3.3 Event Based Approach
An action or occurrence detected by a program is an Event. In Sensor Networks an

observation is the low-level output of a sensing device during a sensing interval. It is a

measurement of the environment (Nicopolitidis et al. 2003). Events can be categorized

into atomic and compound events (Li et al. 2004). An atomic event can be described as a

single observation of a sensor, for example, temperature. A compound event may be a

combination of several atomic events or an atomic event combined with another

compound event. An example of a compound event could be an explosion which is a

combination of high temperature, loud sound and light which are all atomic events (Li et

al. 2004).

DSWare (Li et al. 2004) is the most appropriate example of this approach. It has

attempted to include in-network processing of compound events but in a restricted

manner. DSWare uses data-centric storage modified to replicate the data at several

41

Chapter 3 Building Sensor Networks Middleware

physical locations to improve the robustness of the system. Different copies of the data

are synchronized when the system workload is low. They also have included some real

time scheduling mechanisms providing flexibility at the cost of complex application

development. They are using SQL-query thus restricting and sacrificing more memory

and processing capabilities for flexibility and expressiveness.

Another example of Event based systems is Mires (Souto et al. 2006) middleware which

uses a publish/subscribe solution. It is designed and implemented on TinyOS, which

provides built-in support for event handling and a message-oriented communication

paradigm (Active Message). The use of TinyOS (Levis 2006) makes it easier to

implement Mires but it also limits the scope of the middleware to a single platform. Mires

allow sensor nodes to advertise the types of sensor data they provide and the client

applications can select from these advertised services. Then the sensor nodes will publish

their data in accordance to the client's subscription. Mires emphasize on architectural and

networking issues rather than subscription semantics. Mires is also not clear about the

query language being used.

3.3.4 Cluster Based Approach

Another popular approach is the use of clusters (Lim 2001; Yu el al. 2004). Cluster heads

are selected, usually on the basis of capability in terms of battery life or processing

power, and other less capable nodes communicate their data to these cluster heads. These

cluster heads can also communicate among themselves and also with the sink. It can be

argued that the use of clusters or cluster heads promotes centralization, for example, if a

cluster head fails suddenly due to destruction, the data of a whole cluster is lost. In the

case of battery failure the cluster head has to transfer the data to another node so it must

ensure it retains enough energy to transfer data. Power is the most precious resource in

WSN and can be consumed in a more efficient way rather than using it on just data

transfer most of the time.

Lim's (Lim 2001) work can be classified under this approach as he is using clusters.

Alvin Lim is providing three main services, a lookup service, composition service and

dynamic adaptation service. In the application system layer Lim is using a server to store

the data within the sensor network which will be a super node having more memory. This

42

Chapter 3 Building Sensor Networks Middleware

may raise a lot of issues. For example being a battlefield surveillance project the network

will be in a highly volatile real time environment and there is a high risk of nodes being

unavailable. There should be a mechanism, which will automatically start functioning as

a backup database server and also a mechanism that could be switched over immediately

to decide which node will start functioning as a server. His work does not mention any

such mechanism.

3.3.5 Mobile Agent Approach
Mobile Agents are autonomous, intelligent programs that move through a network. They

have inherent navigational autonomy and can ask to be sent or copied to some other

nodes, communicate with each other and collect local sensor data using mobile code.

Significant examples of this kind of middleware are Mate (Levis et al. 2002) and

SensorWare (Boulis et al. 2007). Both are lightweight but Mate suffers from serious

memory restrictions, which force it to sacrifice certain important features, which make

programming of tasks inefficient or difficult. SensorWare uses identifiers to uniquely

identify a node, which raises robustness issues in highly dynamic environments. In

addition the programming language used in SensorWare makes use of scripting, which

makes even simple sensing events difficult.

3.3.6 Service-Oriented Approach

Service-oriented architecture means a collection of loosely coupled independent well-

defined services communicating with each other. A Service is a clearly defined, complete

and self-sufficient function. An application can call a service without prior knowledge of

its underlying platform using any protocol or technology. The service-oriented

architecture is independent of any specific protocol or technology and therefore could be

implemented in any software environment.

Impala (Liu ei al. 2003) is one of the examples of service oriented architecture

middleware in WSNs. They are using a layered structure and trying to program sensors

dynamically and provide a scheduling mechanism and an event-handling module. In

other words it also acts like an operating system. However, Impala is limited in terms of

hardware platform since it has only been developed for a single platform, Hewlett-

Packard/Compaq iPAQ Pocket PC handhelds running Linux (Hadim ei al. 2006).

43

Chapter 3 Building Sensor Networks Middleware

Another example of service oriented architecture is Milan (Heinzelman et al. 2004)

(Middleware Linking Applications and Networks) that receives a description of

application requirements, monitors network conditions, and optimizes sensor and

network configurations to maximize application lifetime.

To accomplish these goals, applications represent their requirements to Milan through

specialized graphs that incorporate state-based changes in application needs. Based on

this information, Milan makes decisions about how to control the network as well as the

sensors themselves to balance application QoS and energy efficiency, lengthening the

lifetime of the application. Unlike traditional middleware that sits between the application

and the operating system, Milan has an architecture that extends into the network

protocol stack. As Milan is intended to sit on top of multiple physical networks, an

abstraction layer is provided that allows network specific plug-ins to convert Milan

commands to protocol-special C language commands that are passed through the usual

network protocol stack. However, again it's limited because it is tightly coupled with the

application and lacks support for operating systems and hardware heterogeneity (Hadim

et al. 2006).

3.3.7 Other Approaches
EnviroTrack (Abdelzaher et at 2004) is another middleware specially designed for

monitoring mobile targets. It provides middleware architecture for coordinating services

to facilitate interaction between groups of sensors monitoring different environmental

phenomena. However, EnviroTrack's group management is not very sound and specific

because it is only based on small-scale deployment. Further, EnviroTrack needs to

incorporate self organization techniques because the target is moving from one place to

another in the sensor field and different groups of sensors will be participating in sensing

task as the target moves.

Cougar (Bonnet et al. 2000) addresses individual sensors. Sensor data is being viewed as

tables and the middleware developed optimizes and executes the query plan

(Nicopolitidis et al. 2003). Cougar has a centralized approach for a large-scale network

which could become a bottleneck considering the dynamic nature of WSN. Cougar

transfers raw sensor data to a central more powerful base station, which consumes more

44

Chapter 3 Building Sensor Networks Middleware

energy and other resources, such as, bandwidth. Therefore, Cougar not only proves costly
in terms of resources but there is always the risk of frequent link failure in case of

continuous data communication between sensors and base station.

Both TinyLIME (Curino et al. 2005) and TeenyLlME (Costa et al. 2006) uses tuple space

in which applications add and read data from a common tuple space. TinyLIME and

TeenyLIME are based on Linda (Gelenter 1985) which also used tuple space shared

memory model. TinyLIME is designed to query data from local sensors individually and

hence, do not provide multi-hop propagation of data through the sensor network. To

obtain data from a remote location the clients have to contact other clients in that

particular location. TinyLIME assumes a distributed field of static sensors in which client

can move and access local resources. By using the above mentioned techniques

TinyLIME avoids complex query routing issues which makes it limited to only few types

of applications. TinyLIME is also specifically designed for motes using TinyOS and

therefore have predefined formats for the standard motes. The main difference between

TinyLIME and TeenyLIME is that TinyLIME targets sensor networks in which sensors

only are used for sensing and sending data to other more powerful devices, such as,

PDA's whereas in TeenyLIME the applications are distributed and deployed directly on

the sensors.

3.3.8 Context-Awareness
Context awareness is vital in WSNs for meaningful interaction between the user and

devices. The system should be aware of the environment around these devices. Therefore,

more and more context-aware systems are being developed to extract more meaning from

data. There are a wide range of applications in various fields such as smart homes

(Huebscher et al. 2004), smart devices (Gellersen et al. 2002), tourism (Abowd et al.

1997) etc. which utilize context in order to understand the activities, needs and situations

of their users.

Imagine a smart home environment that would know all your requirements and will act

accordingly. For example, such a system would know when a user entered their home

tired from work and automatically switch on the lights, the coffee maker would start

making coffee, and the toaster switch on so that toasts could be put into it or the fridge

45

Chapter 3 Building Sensor Networks Middleware

the middleware as different applications might require different levels of user
involvement depending on both the application and the user. Other examples of
centralized layered are (Gu et al. 2004; Korpipää et al. 2003).

3.3.9 Aggregation
Aggregation, being considered vital for WSNs has of late had a lot of attention focused

on it by the research community because aggregation saves energy by reducing the

number of messages sent, thus saving resources. In sensor networks many sensors will be

sending same data of the same type, which means redundant data. Aggregation means

same data obtained from different nodes can be aggregated and transmitted to its

destination. To reduce a large amount of data aggregation can play a vital role in saving
limited resources like energy, memory, bandwidth, etc.

The works using in-network aggregation is only going to be discussed here because the

proposed middleware architecture in this thesis is processing and storing data within the

network. It is a well known fact in the research (Heidemann et al. 2001; Madden et at.
2002) that in-network processing in a distributed environment has proven to be more

advantageous than the server-based approach which is being more efficient and less

power consuming.

The most popular work in this area is Tiny Aggregation (TAG). In TAG (Madden et al.
2002) the authors suggest a service using database query language techniques of selection

and in-network aggregation. Distributing the query in the network and then collecting it

in a tree structure combining relevant data and sending it to the base station. Another

work is Directed Diffusion (Intanagonwiwat et al. 2003), a communication paradigm

which diffuses a statement of interest from the user by flooding the network and routing
the data on the most reliable path called gradients. Data is aggregated as it flows back
from child nodes to parent nodes. These works are limited to particular scenarios in many

respects. First there is no concept of saving data permanently on nodes within the sensor

network and only partially processed data is sent to the user on query which proves more

costly in terms of resources ,
for example, energy or bandwidth because communication

is more costly than processing data locally on the sensor node. Second both TAG and
Directed Diffusion is restricting the user to a particular query language. Finally they are

47

Chapter 3 Building Sensor Networks Middleware

recommending a particular topology or data structure, TAG uses tree topology, which

suffers from limited expressiveness whereas Directed Diffusion only applies to limited

scenarios.

3.3.10 Discussion
As mentioned in the previous section there has been work on different aspects of

middleware in sensor networks keeping in view its constraints. However, previous

research has focused on one or few aspects of sensor networks. There is still a need for

generic middleware, which could cater for all aspects of sensor networks. As can be seen
in the previous section some of the systems are only designed for monitoring a single

phenomena, for example, EnviroTrack (Abdelzaher et al. 2004) is only developed for

tracking mobile targets. Some research is specifically targeted at battle field surveillance

(Lim 2001). DSWare has tried to include some real time mechanisms but other systems,

such as, SensorWare (Boulis et al. 2003) are not providing any such support. Some

systems, such as, EnviroTrack (Abdelzaher et al. 2004) only provide group management

where as others like COUGAR (Bonnet et al. 2000) only provide individual sensor

mechanisms.

Another problem with most current middleware is that it restricts the user to SQL or

SQL-like data query languages, which makes it difficult for the application to query the

system in a different way, for example, querying data with context. Aggregation

techniques are also restricted to the standard methods like Max, Ave etc. and do not allow

the applications or users to apply other aggregation techniques apart from the standard

aggregation methods available.

Looking at the above discussion and the previous sections it follows that all middleware

available so far has concentrated on a few aspects. In our opinion instead a hybrid

approach is the best option. Therefore, the best solution to addressing the problems in

WSNs middleware is to take the best options of all the different types of categories.
Keeping in mind the hybrid approach the best available option so far in terms of design is

data-centric design as it is not only energy efficient but also scalable and robust. It also

improves latency and saves bandwidth by doing in-network processing. In-network

processing is more desirable than just sensing and sending to an external source. In-

network processing reduces the amount of data being communicated over the network

48

Chapter 3 Building Sensor Networks Middleware

thus saving energy and bandwidth. It also reduces system latency by processing data

quickly near the source. As far as the problem of being unable to cope with highly mobile

nodes or unreliable networks where nodes destruction rate is high, this could be solved by

redundancy. Redundancy means having multiple copies of data and services.

Event based middleware seems more suitable to sensor networks as it will only notify the

system when an event occurs; this saves energy which is a very important factor. Sensors

that are constantly sensing and delivering data will wear out their batteries very quickly

as compared to sensors which wait and only send data when an event occurs that is of

interest to the user. However, queries may also be necessary in case of an emergency,

therefore it is also important to add features which allow users to pose queries when ever

possible. As sensor networks may be deployed in an ad-hoc manner in a real time

environment, it is important to add real time features as well.

There has been a considerable amount of research done in the various fields mentioned in

the previous chapter; therefore it is not at all necessary to do everything from the scratch.

The next chapter presents a middleware framework, which tries to address the issues

raised in this chapter.

3.4 Summary
In the previous sections, the difference between traditional and WSN middleware has

been explained to elaborate the point that there is a need for a new approach in WSNs. In

addition, detailed literature surveys about the current approaches in WSNs have also been

given to illustrate the work already done and its limitations. The main limitation of the

existing middleware is to focus on a few aspects or a single feature. Furthermore, the

application knowledge of the design principles are tightly coupled to the protocols being

used.

The literature survey reveals challenges in terms of efficiency, scalability, limited

expressiveness and robustness in the different middleware approaches. Most of the

middleware for WSNs are very restricted and limited to a few applications only. Each

new application demands a new middleware system, which makes it difficult for sensors

in different networks to talk and share information. The above sections under-lines the

need for a general and more open approach so that sensor reutilization is possible for

49

Chapter 3 Building Sensor Networks Middleware

different applications. This is a challenging task keeping in view the meagre resources of

WSNs.

Keeping in view the discussion presented in this chapter the next chapter introduces a

novel middleware framework that tries to address the issues discussed in this and the last

two chapters. The next chapter first establishes a set of requirements and then introduces

different components of the new framework, MidWSeN, which tries to address these

requirements.

50

Chapter 4 Building Sensor Networks Middleware

Chapter 4A NEW MIDDLEWARE FRAMEWORK FOR
SENSOR NETWORKS

4.1 Introduction
The first two chapters give information about wireless technologies currently available,

some details about sensors and a background of different types of middleware in general.

The previous chapter provides some details about state of the art middieware in wireless

sensor networks. The previous chapters also illustrate that sensors combined with latest

wireless technologies can facilitate the dream of connecting everything in our daily lives

to a network of devices. Sensors can easily equip any object, creature or place with

information-processing capabilities, as they are small, lightweight, and low cost. They

can reach not only difficult terrains beyond human reach but can also become an integral

part of our daily lives.

The previous chapter also illustrates that such a varied scenario requires middleware that

would be able to adapt itself to changing circumstances and enable the heterogeneous

sensors to communicate with each other. A middleware should also be able to provide

services under different conditions with minimal hardware/software requirements. The

middleware should interconnect wireless sensors quickly without any problem. Hence,

the main objective of the research presented in this chapter is the creation of such a

middleware framework called MidWSeN that would work with as many applications as

possible.

Wireless sensor network middleware is usually defined to support development,

maintenance, deployment, and execution of the sensing-based applications (Römer et al.

2002). A novel middleware framework is being proposed in this thesis, which sits

between the network and application.

This chapter discusses the requirements of such a middleware; that it should be generic

and flexible enough to facilitate different applications acquiring context-sensitive data. In

addition it should also provide abstractions and mechanisms for dealing with

51

Chapter 4 Building Sensor Networks Middleware

heterogeneity of sensor nodes. Analysing the characteristics of WSNs in the previous

chapter revealed that these networks are mainly heterogeneous, small-scale devices,

having restricted-resources. In view of its special characteristics it is concluded that the

main characteristics of middleware for WSN should be energy efficiency, robustness and

scalability. The rest of this chapter discusses the requirements of the proposed

middleware and also proposes a new framework design.

4.2 Requirement Analysis
This section lists the requirements that are being included in the research presented in this

thesis. The literature survey given in the previous chapter reveals that research done so

far has only been focused on one or few aspects of the sensor networks. Wireless sensor

networks have been looked at from a narrow perspective, which raises robustness,

flexibility or scalability issues. Previous research has been trying to solve the issues from

a single application (or a few limited scenarios) perspective because sensor networks are

application specific. For example, some research only focuses on mobility (Abdelzaher et

at 2004) or is limited to scenarios like battlefield surveillance (Ni et at 2005).

Application specific means that a system is customised for a particular use rather than

general use. In sensor networks, application specific means that low-level

communication or in-network message processing is based on names that are external to

the network topology and relevant to the application (Heidemann et at 2001) for example

aggregation filters. It can be proposed that the middleware designed for WSN should be

flexibly adaptive so that it could accommodate the application requirements. In order to

achieve the vision of the smart world in which sensors interact with each other and

discover services dynamically, there is a need for middleware which should not only be

scalable, robust, expressive and easy to use but also adaptable and flexible. The aim of

the research presented in this thesis is to either accommodate or facilitate these

requirements. The necessary requirements to be considered are as follows:

. Adaptability and flexibility.

Wireless sensor networks are unique in the sense that their versatility is not only in terms

of system hardware and software but also in terms of applications, which also affect and

play a vital role in the overall network functions. As mentioned in the above discussion,

52

Chapter 4 Building Sensor Networks Middleware

middleware, which is limited to a single type of application, cannot be general. Therefore

the required middleware should be adaptable and flexible so that it could accommodate

as many situations as possible (indoors or outdoors) at any scale (small /large network).

Here it should be noted that there is a difference between limited application and having

knowledge of an application. The former means that the network can only be used for a

specific type of application whereas the latter means that it can be adapted to an

application.

" In-network processing.

In-network processing reduces the amount of messages being communicated over the

network by processing data near the source thus saving energy and bandwidth.

Communication consumes more energy by utilizing more resources. In-network

processing is therefore more desirable in sensor networks because they have scarce

resources especially in terms of energy. Just sensing and sending all the data to an

external source might seem more appropriate because this raw data can be further

processed on more powerful machines with more resources. However, it is considered

inefficient in WSN because of the transmission cost in terms of resources. Therefore

there is a trade-off between sending raw data and processing it on less powerful

processors.

" Robustness and self-management.

Wireless sensor networks can be deployed in difficult terrains where they are subject to

harsh conditions and human intervention is impossible or difficult. They can have

wireless communication with their neighbours and operate on batteries. The availability

of the nodes may be very low due to harsh conditions or devices running out of batteries.

Therefore systems designed for them should be robust so that they are able to work even

with low node availability. Also the network topology can change frequently because of

node mobility or nodes becoming unavailable, for example, in real-time environments

therefore the system should be able to self-manage.

53

Chapter 4 Building Sensor Networks Middleware

" Minimum hardware and software requirements.

Wireless sensor networks can be deployed in ad hoc environments, for example, in

battlefields or difficult terrains with no infrastructure. Therefore the network should be

able to start functioning with minimum hardware requirements. As sensor networks

operate in such constrained environments with stringent resource constraints, the

software requirements for network deployment and functioning should also be kept to a

minimum.

" Collaboration of resources.

It has already been mentioned in the previous requirement that WSN may have to work in

constrained environments with limited resources therefore the middleware should
perform different tasks in a distributed manner. The middleware should dynamically

distribute processing power between more capable nodes within the network. `Capable'

refers to nodes that have more battery power and other resources such as memory or

processing power. Collaboration of resources of all the nodes will not only prolong
lifetime of the network but also ensure that data provided by sensors is available for a
longer period of time.

" Latency.

The data provided by the sensor network should not be stale, which means the system

should be able to transfer the required information in time. Latency is an important issue

in real-time and monitoring applications. Turn around time of a query or the processing

of data or events should be within the time frame required by the application otherwise

the information may become stale. Therefore the middleware should be designed to be

able to process and send information in the required time frame.

" Aggregation.

In sensor networks many sensors may be sending readings of equivalent value, which
implies redundant data. Aggregation means data obtained from different sensors can be

aggregated before transmission. Aggregation is considered vital for WSN because it

saves energy by reducing the data sent to the user thus saving resources. Again there is a
trade-off because all sensor data could be sent to powerful machines to be processed but

54

Chapter 4 Building Sensor Networks Middleware

due to limited resources it is not possible. Therefore the middleware should provide this

service because it is essential for WSN.

" Data Storage.

Middleware for WSN should be able to store data permanently in the network. Storing
data within the network will not only help to process the data within the network but also
create implicit relations with different events happening at different geographic locations

or times and provide historical data. Storing data on the sensors will further help in

reducing communications by sending only relevant or required data outside the network

thus saving resources and providing meaningful and precise information.

" Context.

Context, as already defined in the previous chapter means any physical or surrounding

aspect, for example, location or date and time. Context provides more meaning to data.

Middleware should also allow applications to add context to data because it not only

gives meaning to data but also helps in establishing explicit relationships between data.

" Event Based and Query Based.

Applications typically either are event-based or query-based. Event-based models are

considered closer to the characteristics of sensor networks because sensors only sense

events when they occur and mostly remain in sleeping mode thus saving energy. Some

applications may require further queries in the case of an interesting event; therefore

middleware should be able to handle both queries and events.

The middleware framework in this thesis has been developed to incorporate all the

requirements mentioned above because they provide a basis for a more generic approach.

The focus of the framework is to make it adaptable so that the user is able to easily

register an event or pose a query whether historical or real time and store the data for

longer period of time along with some context. The framework is a step forward in terms

of adaptability but not the final step. There are other important issues such as security, the

intension is not to undermine the importance of security in this framework and therefore

discussed in the section future work of the last chapter. Security could, however, be

55

Chapter 4 Building Sensor Networks Middleware

provided at the application level, for example, authentication of user when using the

network. The next section is dedicated to the proposed framework and its details.

4.3 An Overview of Proposed Framework
This section introduces the proposed middleware framework called MidWSeN and also

describes the services it provides. MidWSeN is based on a service-oriented architecture

concept with minimum hardware and software requirements. Service-oriented

architectures loosely couple software services and these services can be accessed without

prior knowledge of the underlying platform implementation. In addition they are also not

tied to any particular technology and both the applications and services can communicate

without any knowledge of each other. Therefore this particular architecture is being used

as it fulfils some of the requirements of the proposed framework. For example, services

can be added or removed without affecting the overall integrity of the network or the

framework. Also the framework can adapt to any type of environment without restricting

the middleware to particular hardware or software requirements. In addition the

framework will also be able to operate in a heterogeneous environment having nodes of

different types and capacity.

It is assumed that the nodes will have some operating system and they can communicate

wirelessly. The middleware can be added on to the nodes on top of the operating system.

The term middleware means by definition that the middleware will exist between layers

of software. The middleware will work below a software layer and some software will

work below this middleware. Therefore, some design decisions lie outside the scope of

the middleware. Sensors could be working in different environments. Sensors could

either be working in a pure sensor environment, where only sensors collaborate and form

a whole network or they can work in a heterogeneous environment, where sensors are

collaborating with other, more capable devices such as desktop computers or PDA. In the

case of a pure sensor environment, one or at most two services can be kept on a single

node. In the case of a heterogeneous network, more services might be present on a single

node depending on the capability of the node. Although no specific type of hardware or

software is being recommended for the middleware, the decision depends entirely on the

environment being used including hardware and network requirements. Thus choices, for

56

Chapter 4 Building Sensor Networks Middleware

example, what type of network is being used may already be made. Therefore this section

only discusses the design decisions that might affect the working of the framework. All

other decisions which are not discussed do not affect the working of the framework.

A simple mechanism of message passing is being used for service discovery. The request
for a specific service in the network will be broadcast and on availability of the required

service on any node or nodes will send an acknowledgment back to the node initiating the

request. If there is more than one service available then the service sending the request

will decide by selecting the required service on the basis of hop count, location and

available resources, for example, energy level or memory. Hop count, location and

resources, such as, energy are the most important pieces of information required in the

selection of the best available service. Hop count indicates the shortest or longest path;

whereas location shows the geographic position and resources will indicate, for example,

the energy level of the corresponding node. The decision of which parameters (hop count

etc.) to be used for selection of a service depends on the application requirements. The

selection criteria can be made based on all three of parameters mentioned above, or any

one or a combination of them. For example, if energy level is low then the chances of

selecting such a node are highly unlikely, similarly a service situated too many hops

away may also be infeasible. There are, however, situations where an application might

want data from a specific area of the sensor network in which case location will be

considered more important.

There are other service-oriented software platforms also available, for example, Jini (Sun

Microsystems 1994) and Jxta (Wilson 2002) that works very well in the traditional

networks and can work equally well in a wireless environment. However, from a design

perspective they are not well suited to WSN because they require a level of resources,

which this kind of network cannot afford. They might work well in a heterogeneous

environment where there are more capable nodes available, especially Jxta because it

uses a peer-to-peer paradigm (Oram 2001) which can work very well in WSN having a

distributed approach in which a peer should only know its neighbours. An alternative is

Jxme (Sun Microsystems 2005) which is a micro edition of Jxta developed especially for

resource constrained devices, for example, smart phones or PDAs. Jxta works well with

ad hoc networks or heterogeneous environments but is still heavy in terms of resources

57

Chapter 4 Building Sensor Networks Middleware

for a network consisting only of sensor nodes. Since one of the design goal of the

proposed framework is that the middleware should work equally well in a resource

constrained environment consisting only of small sensors, the above mentioned approach

of a simple message exchange have been taken.

Data-centric design is being used because data gathering is the primary goal of sensor

networks. Data seems to be at the heart of all the applications used in these types of

networks. The applications in WSN are collecting, storing, and aggregating data.

Everything revolves around managing, integrating and transferring data. Therefore as

mentioned in the previous chapter the best option available so far for WSN is data-centric

design because of its application knowledge, it proves more energy efficient. Data-

centric design provides all or most of the answers required by the applications. This type

of design is not only energy efficient but improves latency by processing the data quickly

near the source. In the previous section it has been noted that latency is an important

issue in real-time environments and monitoring applications. There are also other features

of this design, which are important in sensor networks; for example, data-centric design

saves bandwidth by doing in-network processing. In-network processing is a desirable

feature and mentioned as an important requirement in the previous section within a

network having scarce resources. Furthermore, data-centric design has application

specific knowledge, which makes it closer to WSN characteristics. It should be noted

here, however, that there is a difference between having application knowledge and being

application specific. In data-centric design the features of interests are known in advance,

therefore, it can save data using the data names, for example, temperature or pressure and

store data accordingly. Whereas application-specific means that the whole network is

designed to consider only a single application or only one type of applications which

makes the network design limited. Therefore, having application knowledge does not

mean that the network design cannot be generic.

Data-centric design has a disadvantage, however, that it does not work well in

environments where the nodes are highly mobile or node failure rate is high (Ratnasamy

et at 2003). This problem can be tackled by having multiple copies of the services

available within the network. The proposed design recommends multiple copies of

services as greater the number of copies available, more reliable the system becomes.

58

Chapter 4 Building Sensor Networks Middleware

This is a trade off because redundancy is being recommended in order to make the

system robust and reliable. The number of copies depends on the network size as well as
the percentage of node availability. In a network where there is a risk of a high

percentage of nodes becoming unavailable, more copies of services will be required.

TinyDB (Madden et al. 2005) and DSware (Li et al. 2004) also use the data-centric

approach. However, TinyDB uses a tree type structure that is very simple to implement

and, as already explained in chapter 3, raises scalability issues and also TinyDB cannot

answer queries having spatial and temporal entities. TinyDB also does not consider the

robustness problem mentioned above, namely in case of highly mobile nodes or higher

node failure rate. DSware on the other hand does tackle this issue by having more copies

of data stored at one time but it updates or synchronizes the copies only when network

traffic is low which might result in loss of data. If the copy having the latest data is

unavailable before updating the other copies that data will be lost forever. In addition

both of these solutions store data temporarily or for short periods of time, whereas the

proposed framework is storing the data for a lifetime of the network which makes spatial

and temporal queries possible in addition to saving resources spent on sending all the data

to the sink. The proposed design also has multiple copies of data but all these copies are
being updated simultaneously instead of waiting for low network traffic. Again there is a

trade-off in order to ensure availability of updated data at all times. The service-oriented

architecture makes the proposed system more scalable and robust. Having multiple copies

of services available throughout the network ensures other services can takeover easily in

case of a service failure and also more copies of services could be added without

affecting the network

The proposed framework can be implemented both as a whole and in parts. The reason
for this is to keep the framework adaptable and flexible depending on the application

requirements and resources available as mentioned in the requirements section above.
There is a trade-off between efficiency and flexibility because middleware specially
developed for specific applications would be more efficient. Adaptability is important to
integrate and bind sensors into heterogeneous environments in which they have to talk to

each other across the network or where many applications are sharing the same network.

59

Chapter 4 Building Sensor Networks Middleware

In summary, middleware for sensor networks should be event based as this best matches

the characteristics of WSN (Römer et al. 2002) because their primary aim is to sense

events. In addition to being event-based, the middleware should also be able to handle

queries that applications might require and also enable reuse of the sensors for different

applications. As data will be stored on the network, other applications can access this data

by query. The systems exclusively developed for specific applications will be more

efficient in performance but are restricted to only a few applications whereas the

framework proposed in this thesis will be more adaptable and flexible enabling it to work

with many applications. The advantage of the proposed middleware is that application

developers will not have to worry about the type of middleware to use each time they

write a new application.

The background chapter explained that in event-based systems there are no provisions for

making queries in emergency situations or investigating interesting events directly or

more closely. One novelty in MidWSeN lies in the fact that it not only allows users to

register an interest in an event but also query the network whenever required.

Furthermore users can also add context to the data by defining their requirements all in

the same framework.

60

Chapter 4 Building Sensor Networks Middleware

Figure 4-1 Middleware Architecture of MidWSeN

Figure 4-1 gives an overview of all the services presented in the proposed framework and

the relationship between these services. At the top of the diagram is the application layer

which represents the actual application. The communication layer represents the routing

mechanism and other techniques used to facilitate communication among the nodes

within the network and with the base station. The framework is divided into two different

types of services; core and optional services. The core services are necessary for the

complete functionality of the framework and will always be available. The Application

Interface (AIS), Application Management (AMS), Persistent Storage (PSS) and

Aggregation Service (AS) are the core services. The rest of the services, for example,

Query Interface (QIS) and Event Manager (EM) are optional services. The optional

services may not be required at all times and therefore not be available under all

circumstances. Optional means that either one of the two services the Query Interface

Service (QIS) or the Event Manager (EM) can be used or at least one must be present

otherwise the system will not function. Rule Service is completely optional, however, and

its presence is dependent entirely on network requirements. The long rectangle boxes are

61

Chapter 4 Building Sensor Networks Middleware

the actors with which the proposed middleware interacts, for example, the sensor

networks and communication layer which consists of routing, etc. The arrows represent

the interaction and direction of data flow between two services. The reason for having

two types of services (core/optional) is to make the framework adaptable to changing

environments as has been mentioned in the requirements. This flexibility could be

twofold, either the applications do not require a certain service or the resources available

cannot support one or more of these services in a particular environment or given time.

Flexibility is important in WSN environments because it may be a pure sensor network

working outdoors in a remote area without any kind of human intervention which means

limited resources like battery power, small memory or bandwidth. Alternately the

environment might be heterogeneous with powerful nodes, for example, pocket

computers or laptops having more resources as part of the network. Human intervention

may also be possible which means that batteries can be changed whenever possible or

more nodes may be added to the network frequently. The scale and density of the

network also has an affect because in a large or dense network there is much better

utilisation of resources by distribution of sensing and processing tasks. Some of the

sensors are sent to sleep while the rest of the sensors continue sensing until their batteries

are depleted and then the sleeping nodes can take over when ever required. Depending on

the scale of the network multiple copies of services could be available.

4.4 Core Services
This section introduces the core services of the proposed framework MidWSeN. These

services are important because without them the framework will not be able to function.

The availability of these services is vital at all times. All these services except for the

application interface service will reside within the sensor network on the sensor nodes.

These services might be on different nodes but it is also possible that some of them might

be on the same node. It really depends on the capacity of the nodes. There might be more

than one copy of these services residing on the network. This would be decided based on

the rate of node availability and the size of the network. If the node availability rate is

low more copies of these services will be required. Similarly, for a large network more

copies will be required. This phenomenon will be explained in the next chapter, as well

62

Chapter 4 Building Sensor Networks Middleware

as in the Performance Evaluation and Implementation chapter in some detail. The rest of
the section explains the functionality of these services individually.

4.4.1 Application Interface Service
The application interface service (AIS) provides the communication link between the

application and the middleware by converting the format to/from the application and

middleware. This service may reside on a PC or it may be a web application connected to

the sensor network. This depends entirely on the application and is implementation

dependent.

The AIS will receive new requests from users or applications and forward them to the

appropriate service in the WSN. If applications want to register new event listeners the

AIS would forward such requests to the Application Management Service (AMS), which

in turn would be forwarded to the Event Manager (EM). If the event occurs the EM will

notify applications through AMS and AIS. The AIS will also direct queries to the AMS

in case of any historical information from Persistent Storage Service (PSS). The AMS

will direct queries to the PSS in order to get results from it and pass them back to the

registered application through the AIS. Alternatively if applications want any real time

information from the nodes directly, queries would be forwarded to the Query Interface

Service (QIS).

The proposed middleware framework does not limit the user to any specific language.

The user will be able to use different types of query format that can capture their

requirements and a parser can extract the required information to pass the extracted

parameters to the AIS in the message payload, which in turn will send it to AMS.

Whatever query or event format the application use can be described as a struct, for

example, in the header file and passed on to the method SendMessage() which passes it

on to the middleware. The middleware basically gets a list of parameters and some meta

data explaining that data. This would depend entirely on the application and may vary

from application to application.

Until now Middleware systems have limited the user to SQL or SQL-like languages or

some specific languages (Bonnet et al. 2000; Jiao et al. 2005; Madden et at. 2002). Such

binding restricts the user to a language which may not capture the users requirements,

63

Chapter 4 Building Sensor Networks Middleware

therefore, the AIS does not restrict the user to a specific type of query language. Tools

such as PS/SQL are available which have the ability to convert code developed in them to
directly to C language code, which can be compiled and downloaded easily to the motes

or sensors in its binary format. There is a potential danger, however, that code converted

directly from a higher language to C might create some sort of infinite loop or loops

which might go on undetected for a long time utilizing precious resources thus spending a

lot of energy. Therefore, the proposed system gives freedom to the application developer

to use any descriptive language that fulfils their requirements. However, middleware will

extract the parameters and pass it on instead of directly feeding the code because of the

catch mentioned above in directly feeding the code to the sensors. So it is safer to change

it into a standard format rather than doing something that might give unexpected results.

The AIS has the following methods

" int SendMessage(int destadd, int msglength, struct Message *msg); this method

sends the parameter list of the query or event to the AMS. This method gets the

parameters list after the parser extracts the parameters from the query or event and

forwards it to the Application Management Service. For example, in case of

MidWSen the struct would be as follows:

struct Message {

struct *msgj, ayload;

uint *msgpriority;

uint *msg_querytype;

}

" int DiscoverService(); this method discovers the appropriate service in this case it

will always be the AMS. This method return 1 if an acknowledgement is received

otherwise 0.

9 int RecieveData(int data): this method receives data from the AMS.

. int RecieveMessage(: this method receives message from the AMS

64

Chapter 4 Building Sensor Networks Middleware

4.4.2 Application Management Service

The application management service (AMS) sort different requests from different

applications. The novelty of AMS lies within the fact that it optimizes the selection of

services within the sensor networks. It has been mentioned before that in-network

processing reduces energy consumption considerably. The Application Management

Service (AMS) will reside on sensor nodes within the sensor network. This important

service works as a gateway or link between the application residing on the sink, which

might be a more capable device such as a PC, and other services within the sensor

network. All queries to sensors or applications registering new event listeners will be

directed through this service to the correct destination. Figure 4-1 shows that this service

communicates with the Query Interface Service (QIS), Event Manager (EM), Rule

Service (RS) and the Persistent Storage Service (PSS) in addition to the AIS.

Service optimization is done through exchange of messages between the AMS and

different services, such as the QIS or EM, which may be in XML or TinyML (Ota et al.

2003) or SensorML (VAST 2007) format. The operating system usually provides the

mechanism for passing messages to the sensor nodes so this is an implementation

dependant process. In order to successfully pass messages between a source and

destination the following elements are considered vital. The first element is explicitly

specifying the source and destination of the message in this case the address of the sender

node and the receiving node. The next important factor is how to provide buffers to the

incoming messages and also when the storage associated with the source message can be

reused, which, in WSN is very constrained. The last element is the processing of

incoming messages. For example the Active Message (AM) model in TinyOS, names a

handler that will be invoked and process the message on the recipient nodes. TinyOS

message buffers own the send buffer after accepting the send command until the send is

complete which is notified by a send done event thus following a strict ownership

protocol. The storage management on the recipient node is handled dynamically by

TinyOS. When a message arrives, it fills any available buffer and the Active Message

layer of TinyOS will decode the handler type and send it to the intended destination. The

SendMessageO of the AMS will get the parameters list from AIS and forward it to either

the Query Interface Service or Persistent Storage or Event Manager.

65

Chapter 4 Building Sensor Networks Middleware

The information required for service optimization will be provided by the sensors in the

acknowledgement message sent in response to the service discovery message broadcast

by the AMS. These messages will have the required information; for example, in the case

of service selection, they are distance of the service from the event area or the shortest

possible route, hop count, resources (such as, memory or energy) and location, which will
help the AMS to select the appropriate service. When the AIS sends a query it also
informs the AMS whether it is an event or a query and also in case of a query whether it

is a historical query or a real time query. The information is passed on in the message as

separate fields showing the required parameters. It will send a new event listener request
from the AIS to the event manager (EM). In case of a query the AMS will decide whether

to request data from PSS by looking at the message and decide by the querytype, which

will specify if it is a historical query and send the query to PSS. The AMS will also

retrieve the results back from the PSS and forward it to the AIS.

The AMS also has another important function. The application might have a set of rules,

which are important for the normal functioning of the system; these rules will reside in

the Rule Service (RS) which is explained in the next section. If a single rule or set of

rules fire then the RS will inform the AMS which will in turn decide if a vital violation of

the rules has occurred, for example, if it is an emergency. This information will be

provided by the developer when specifying the rules that indicate what action has to

taken if a certain rule or set of rules are violated. The AMS will inform the user through

the AIS and start querying for further information on the applications request. The user

will be able to query the sensors directly for further information through the QIS. The

whole process is shown in detail in Figure 4-2.

The AMS has the following methods.

" int SendMessage (int destadd, int msglength, struct Message *msg); this method

gets the parameters list from AIS and forwards it to either the Query Interface

Service or Persistent Storage or Event Manager and will return a value of 1 if the

whole message was successfully sent over the network otherwise it will return 0.

" int DiscoverService(); this method discovers the appropriate service by

broadcasting a message to the network depending on the return value of method

66

Chapter 4 Building Sensor Networks Middleware

Service or Persistent Storage or Event Manager and will return a value of 1 if the

whole message was successfully sent over the network otherwise it will return 0.

" int DiscoverService(); this method discovers the appropriate service by

broadcasting a message to the network depending on the return value of method

Decide() and would return 1 if an acknowledgement is received otherwise 0. It

does not accept any parameters.

" int GelData(int data); this method gets data from the QIS or PSS returns 1 upon

successful completion of the process otherwise will return 0.

" uint Notes struct Event theEvent); this method notifies the AIS in case an event
happens or a rule is violated will return a value of I in case of an

acknowledgement otherwise 0. Event could be defined in C as a struct as

mentioned above. For example:

struct Event {

long time; /* When this event occurs. */

char type; /* What type of event. */

}

" int SendData(uint data); this method sends the data which is of type unsigned
integer back to the AIS.

" int Decide(uint querytype); this method decides based on querytype where to send

parameter list either the QIS or PSS or EM. If the querytype is equal to 0, for

example, it means that it is of type event and it will return 0, if it is a query then it

will return the value of I and in case of historical value it will return 2.

" uint SendQuery(int destadd, Message *msg); this method forwards the query to

the QIS.

" uint RegisterEvent(int destadd, Message *msg); this method forwards the event to

the EM.

67

Chapter 4 Building Sensor Networks Middleware

4.4.3 Persistent Storage Service

The persistent storage service (PSS) first introduced in (Javed et al. 2005) stores data

provided by the nodes for the lifetime of the network. This service resides within the

network. The reason for this storage is twofold; first the data can be used for further

processing and second being the data could be utilized to make the system self-adaptive

through past information. This service would record all the data given by the sensing

nodes for the lifetime of the WSN with additional user defined context wrapped around
it. A detailed account of this service is given in chapter 5.

4.4.4 Aggregation Service
In sensor networks many sensors will be sending readings of equivalent data, which
implies redundant data. Due to the limited memory and energy constraints it is difficult to

store so much data; therefore this service will aggregate data coming either from the EM

or directly from the nodes. The novelty of this service is that it will aggregate the data

with context provided by the user and as well as save memory by reducing the volume of

the data being stored. This will help the user to query data with context. The aggregation

service (AS) (Javed et al. 2007a)can be used at both the node level and at the data storage

service level depending upon the specific application. As already mentioned in

requirement analysis section, in-network processing will be used for this service.
The Aggregation Service provides the standard Max, Min, Sum, Count and Ave functions.

The developer can choose the method or methods best suited to the application. Further,

these methods can be adapted if required. Acknowledging the fact that aggregation could

be application dependent another method called MyAgg is being added to the service. In

this method the application developer can write his own specific type of aggregation,

which might be specifically required by the application other than the ones provided. This

adds flexibility to the middleware and provides freedom to the application of choosing its

own aggregation service. This service is explained in greater detail in Chapter 6.

4.5 Optional Services
This section explains the optional services used in the proposed framework. The user can

reduce the size of the middleware by choosing between the Event Manager (EM) and the

Query Interface Service (QIS), depending on the requirements of the application or use

68

Chapter 4 Building Sensor Networks Middleware

both, subject to the availability of the resources within the network. At least one of the

QIS or EM will always be made available. Alternatively, if the environment cannot

support the complete framework than it is possible to reduce the size of the framework by

removing some of these services without affecting the function of the system, for

example, Rule Service (RS). Ideally the middleware will work with all of the services

mentioned in the proposed framework but to add flexibility and make the framework

adaptable to different environments some of the services have been kept optional. The

rest of the section explains the optional services individually.

DD D Q
Send Message

LJ

. .

AcknovNedge Massage

Send Query /Event J

D eade (1ý

IF EVENT ý

RegisterEvent

Senses ()

(Event) No0/y.
ý-

SendDeta () Notify (eve ntoccuretl I l

Aggerg

Send Data
ate

Store

EISE IF REALTIME
3ý

GetQuery ()

Sense ()
SentlData ()

.
'1

Aggergate ()
SendDete (eggdaM

Send Data (aggdata

I SentlD\a (aggtlata
-)_g

) -ý

Store

SndO. M
I E SE IF HISTORICAL

j Read ()
Send Dab () SendDate 11

__JE__ _-____-____r_________- -_____- ____

Key

AIS Application Interface Sernce
QIS Query Interface Service
EM Event Manager

AMS Application Management Service
PSS Persistent Storage Service
AS Aggregation Service

Figure 4-2 Sequence Diagram for MidWSeN framework

69

Chapter 4 Building Sensor Networks Middleware

4.5.1 Rule Service
The Rule Service (RS) is used to detect abnormal behaviour in the environment. If there

is unusual behaviour which the sensors can sense, for example, there is a sudden rise or
fall in the temperature like it goes beyond 100 degrees Celsius or falls below 0 degree

Celsius the RS will be able to detect such behaviour using the rules specified by the

developer. These rules will be checked at a period specified by the developer. If these

rules are violated the service will inform the user through the AMS. The user can
investigate the situation further through the QIS by directly querying the sensors. Rules

can be defined using any type of query language, for example, SQL or SQL-like

languages.

Context awareness is another important aspect of the proposed system in order to make

our system self-adaptive. We are using the RS and AS to add context to the data. The

difference between the existing approach (Baldauf et al. 2007; Choi et al. 2005; Fahy et

al. 2004) and proposed approach is that they are using a centralized approach in which

there is a centralized server, which stores context data and serves information to client

applications. The rest of the contents are distributed whereas the proposed solution is

using a completely distributed approach, which means it will use more than one context

server. The AMS and the PSS together act as a context server and the knowledgebase,

while the RS supplies the rules. Thus, knowledge base and rules will be separate and the

decision of user involvement is left to the developer as to who will make the changes in

the rules, the user or the developer because functionality may vary from application to

application. This is again different from the current approach, which makes the system

more flexible because usually the middleware makes decisions about user involvement.

The rule service is included for completeness of the proposed framework; however, our

main focus is on the other two core services, the Persistent Storage and Aggregation

Services being the foundation of the framework.

4.5.2 Query Interface Service
The design goals mention that the proposed middleware should be generic and flexible

and so an important requirement of the proposed framework is to allow the application to

query the nodes directly, therefore, the Query Interface Service (QIS) is provided. This is

70

Chapter 4 Building Sensor Networks Middleware

an optional service, which means it may be used only if the application requires, for

example, in an emergency situation and if the application needs to further investigate an

interesting phenomenon. The QIS may be used to receive real time queries sent towards

the nodes directly where the user wants additional information quickly from the sensors.

This will not only reduce latency in real time situations because the data will be sent back

directly to the application as soon as the sensors are able to provide the required
information but also provide additional information which could be very useful in a

critical situation. This service is provided within the network and the network must have

enough resources to support it, therefore it has been kept as an optional service. The

application can choose between the QIS or Event Manager (EM) depending on the

requirements but it is important that at least one of the two services is always provided. A

network with more resources or a large network that can pool more resources will be able

to support both services (QIS and EM).

This service is an interface therefore; the developer will provide the application-

dependent implementation. It has the following methods;

" int GetQuery(struct Message *msgpayload); this method gets the query or list of

parameters sent by the AMS and sends it to the sensors.

" int SendData(int arrdata[], int arrSize); this method is used to send data to the

aggregation service as the data comes in the form of streams from sensors

therefore arrays are being used and also the size of the array is not known in

advance therefore the size of array is passed as a parameter. This method will

return I upon successful completion of sending data otherwise 0.

int SendAggData(int data); this method sends the aggregated data back to the

AMS. The aggregation service will aggregate the data sent by the sensors and

return the aggregated data back to the QIS, which will send this aggregated data

to the AMS.

" int SenseStart(); this method tells the identified sensors to start sensing. No

parameters are passed to this method it will start sensing and return the sensed
data.

71

Chapter 4 Building Sensor Networks Middleware

0 int SenseStop(): this method tell the sensors to stop sensing.

on layer

;cr. glicst 2. Register events

1). Results

7. Cop)

M
CID

5. [)ata

Communication Layer

Figure 4-3 Event listening and pulling data from sensors

4.5.3 Event Manager
It has been mentioned in the requirements analysis that the system should be event based

because such a model is closer to the characteristics of WSN. The Event Manager Service

is used to register and control different event listeners from different applications. The

EM will register new event listeners in order to monitor certain events. It will receive

notification of events when they occur, sort them according to the registered event

listeners and send it to the aggregation service. It will also notify the applications that

registered the event-listeners through the AMS and the AIS. The EM is also an optional

service and resides within the network. As mentioned in the previous section either of the

two QIS or EM or both can be provided depending on resource availability and

application specifications but at least one of the two services (QIS and EM) will always

be available in the network. This service also works as an interface as such the

implementation will be provided by the developer and have the methods outlined below.

72

Chapter 4 Building Sensor Networks Middleware

This has already been mentioned in the AMS section that the most popular operating

system TinyOS, which is an event-based operating environment automatically, provides a

handler that will be invoked and process the message on the recipient nodes. In case of

such an operating system the method RegisterEvent() will just forward the message to

the AM layer of the operating system and the rest of the event handling will be done by

the operating system itself. Most of the operating systems for sensor networks provide

mechanism for event handling because it is very close to the nature of sensor networks.

Otherwise if the operating systems do not handle events then the RegisterEvent() method

will provide this mechanism.

" int RegisterEvent(struct Message *msg); this method will register any event
listeners sent by the AMS and forward it to the sensors. This method will assign

event handlers to individual events. Only one event handler can be active at a

time.

" int SendData(int arrdata[], int arrSize); this method performs similarly as the

method described in the QIS and sends the data coming from the sensors to the

AS.

uint Notify(struct Event theEvent); this method performs similarly as the method
described in the AMS above and notifies the AMS in case an event occurs.

. int SenseStart(); this method tells the identified sensors to start sensing and

returns the data.

9 int SenseStop(); this method tells the identified sensors to stop sensing.

4.6 Summary
This chapter presents a novel middleware framework, MidWSeN, for WSN.

Requirements for the framework and its overall architecture have also been discussed in

this chapter. The requirements explain that the system should be adaptable in order to

have a general middleware due to the unique characteristics of WSN being application

specific. Different tasks should be performed in a distributed environment using a

minimum of software and hardware in an energy efficient manner. The middleware

should also be able to improve latency in real time situations and save energy and

73

Chapter 4 Building Sensor Networks Middleware

bandwidth by doing in-network processing. The middleware should be able to provide

context aware historic data about previous events in aggregated form.

The research in this thesis has tried to address all these issues. It presents a novel
framework called MidWSeN described above which combines three important features

query, events and context-awareness in one. Existing frameworks have concentrated on

one feature out of the three mentioned above. The individual services defined within the

framework are also novel being designed differently and have added flexibility. The

framework is flexible having core and optional services which means that if some of the

services are not required then they can be omitted from the final configuration which will
further reduce the size of the middleware, so the size of the middleware is also adaptable

in case of constrained resources, such as, memory. Optional services mean that the user

can select one service out of the two optional services either EM or QIS or both if

required and enough resources are available but at least one of the two services will

always be provided within the network. The RS is also optional and can be excluded if

not required thus reducing the size of the middleware.

The Application Interface Service does not restrict users to any particular software

format whereas other existing works restrict them to SQL or SQL-like languages. The

AIS provides the communication link between the application and the middleware. The

AMS sorts application requests and sends these queries forward to the required service.

The PSS stores the data provided by the sensors for the lifetime of the network. The AS

will aggregate data according to context identified by the user coming from the sensors to

reduce the amount of data being stored. The originality of our aggregation service is that

it aggregates the data with the context identified by the user. The aggregation service also

provides aggregation at two different levels, the node level and the data-storage level,

again dependant on application requirement. The RS will check the system against a

given set of rules. Developers can also choose between the general rules provided by the

framework or specify their own for the rule service, fulfilling specific requirements of the

application. Context management is distributed as compared to the centralised approach

in previously published work. The QIS will enable the application to query the sensors
directly in a real time situation to improve latency. Applications can also query the PSS

74

Chapter 4 Building Sensor Networks Middleware

whenever required. The EM will register new event listeners to monitor any events
happening in the lifetime of the network.

This chapter has explained the overall design of the middleware framework in some

detail but as mentioned earlier two services in this framework the Persistent Storage

Service and Aggregation Service need further explanation. These services are an

important part of the foundation of the proposed framework therefore the next two

chapters are dedicated to a more detailed discussion of them. The following chapter

defines the PSS in greater detail and also shows how it interacts with other services. In

addition, to further economize the use of memory a prioritization algorithm is also

explained.

75

Chapter 5 Middleware Persistent Storage Service

Chapter 5 MIDLLEWARE PERSISTENT STORAGE
SERVICE

5.1 Introduction

It has been noted in the previous chapters that information gathering is a primary function

of WSN. The approaches described in published literature to date simply sense data and
send it to the base station for further processing (Ville et al. 2003) or only partially

process data within the network (Li et al. 2004; Madden et al. 2005). It has also been

noted previously that in-network processing utilizes less energy than transmitting all the

data to the base station as transmission typically consumes much more energy than

normal processing.

This chapter discusses the Persistent Storage Service (PSS) within the middleware
framework (Javed et al. 2007b). This service records all data given by sensing nodes with

a unique identification for the lifetime of the WSN with contextual information within the

network. The novelty of the PSS lies in the fact that data is being stored for the lifetime

of the network on sensors and by performing all or most of the processing within the

network utilizing fewer resources in comparison to sending all the data to a powerful base

station for processing. As mentioned in previous chapters and above this has not been

done before in WSN because the sensors did not have sufficient memory. Improvements

in technology have made it possible to increase and improve memory resources, while

still very small; the ability of sensors to collaborate (Janakiram et al. 2005) and share

resources with each other to perform a task also enables them to pool their memory
together to store data by using different techniques, for example, peer-to-peer network
techniques(Subramanian et al. 2005), data-centric storage (Ratnasamy et al. 2003) etc. In

a distributed environment hundreds or even thousands of sensors can collaborate with

each other to pool enough memory to store more data for longer periods of time. Looking

at the history of the development of sensors it is evident that sensors have become more

powerful with added ability of processing and memory rather than having just reception

76

Chapter 5 Middleware Persistent Storage Service

and transmission capabilities. With the advance of technology, for example, the new

NAND flash memory technologies (Mathur et al. 2006), it can be predicted that Moores

Law will prevail and processing power and other resources will continue to improve with

the passage of time. This has already been mentioned in the introduction chapter that in

the new imote2 sensors (Intel 2007) Intel has increased RAM to 32MB together with

improved flash memory of 32MB bringing down the cost as well as improving efficiency

due to the new NAND technology.

The storage capacity of sensors is limited and there might be a situation where new data

needs to be stored but the required storage space is not available on the network. To

handle such a situation a new prioritization algorithm for memory management that will

only store higher priority data to accommodate important data is also being proposed and

explained in this chapter.

The aim of the persistent storage service presented in this chapter is from the middleware

perspective and not the database view. Therefore the service does not provide any

database details such as the exact format of the data. Although suggestions have been

made wherever necessary and those aspects which are important from the framework's

point of view are also discussed in detail such as data centric storage but there are other

details which the developer or user will have to provide. The intension is to collect

different components already present, combine them and adapt them to the new

framework requirements in a way which makes it novel, rather than building a

completely new system from scratch.

The rest of this chapter explains the Persistent Storage Service in detail. Section 5.2

explains why it is necessary to save data on sensors for the proposed middleware. Section

5.3.1 explains the data-centric technique for storing data within the network. Subsection

5.3.2 explains other services used in conjunction with the PSS. Subsection 5.3.3explains

the detailed design of the service. Section 5.4 gives a detailed case study. Section 5.5

introduces an algorithm to improve memory utilization by using the prioritization

technique. The final section 5.6 gives a summary of the main details presented in this

chapter.

77

Chapter 5 Middleware Persistent Storage Service

5.2 Persistent Storage as a Middleware Service

This section explains the advantages of storing data within the network. Storing data

within the network for the lifetime of the network means historical data is available.

Storing data with additional contextual information means more meaningful data is

available and allows the user to make spatial and temporal queries. This could help in

many applications, for example, when tracking mobile targets (Abdelzaher et al. 2004;

Zhang et al. 2003) historical data will show not only that the target is moving but also in

which direction it is moving. In animal tracking (Sikka et al. 2006) data storage will help

in identifying the route and this helps to predict the direction animals are taking. In

addition, other services within the framework might also be required to be applied to this

data, for example, Aggregation Service (AS) will help to aggregate redundant data thus

saving memory by only storing aggregated data.

The interaction of the PSS with other services within the framework and processing the

data on the sensors within the sensor network means only meaningful and complete

information will be transmitted to the application. The provision of complete information

leads to a reduction in the number of transmissions, which saves energy and other

precious resources. Not only will information be complete but it will also improve delay

in getting information. Sending raw data or partial results to the base station is time

consuming because first all the data has to be stored in the base station and then analyzed

after completion of data transmission. In MidSWeN, the availability of historical data and

in-network processing means data will be analyzed quickly and a complete answer sent

back, accelerating the whole process. Therefore storing and processing the data within the

network will not only save resources but also improve latency. It has already been

mentioned in the requirements analysis given in the previous chapter that latency is an

issue in these kinds of networks especially in real-time applications.

Another advantage of storing data within the sensor network is that it can also develop

implicit relationships. It should be noted here that developing implicit relationships

outside the sensor network is also possible but all data needs to be transferred first to the

78

Chapter 5 Middleware Persistent Storage Service

base station, which will be time consuming and also resource intensive for the sensor

networks. Factors which might not be directly associated with a particular event or may

not have a direct affect on the event but are associated with some attribute of an event.

For example, assuming scientists are monitoring the number of explosions of different

intensity of a volcano during 24 hours. If they are also recording the time of day the

explosions happened and it turns out that these explosions are mostly happening during

daytime. The scientists might start thinking that the sun has something to do with it

although there is no direct connection between the two them. They might then start

querying past instances of such occurrences. Therefore storing the data will not only

improve resource utilization but it will also improve the quality of information being

transferred finally to the user by helping them to create implicit relationships.

The data stored on these nodes can also be utilized by different applications. For

example, if the same temperature data is required by two different applications then this

data can be shared by querying the PSS. Hence, this will not only help in sharing the data

by multiple applications because the required data is already stored in the network, but

also saving resources because the sensors need not sense or store the data again.

The above section discussed in detail the importance of having persistent storage within

the middleware framework and the benefits of having historical data in WSN. The next

section explains in detail how the data is being stored in the network along with the

advantages and disadvantages of the data-centric design used in the proposed

middleware. A solution to the difficulties faced in this type of design is also explained.

5.3 Persistent Storage

The above section explains the need for storing data within the network. This section

explains how this data is going to be organized by the PSS from the sensing nodes with a

unique identification for the lifetime of the WSN with user-defined context within the

network. The PSS can be utilized by the applications to collect data in a specific region

for a specified amount of time. This service is being used to improve the utilization of

limited resources in sensor nodes. It has been noted above that transmission utilizes more

resources than processing data near its source, therefore storing and processing data

79

Chapter 5 Middleware Persistent Storage Service

within the network will save resources by improving their utilization. Therefore data

storage is an important feature of the MidSWeN.

The next subsection explains how data is stored within the network. It illustrates that

data-centric storage which stores and processes data near its source is the best option

because of its application knowledge. Further, the disadvantage of data-centric storage

and its remedy is also discussed in the following section.

5.3.1 Data-Centric Storage
This section explains the answer to the next question that needs to be answered which is

how all this data is going to be stored in the network. The sensor nodes might have

different storage capacities and will likely all be limited. Nodes collaborating within a

distributed network can solve this problem. The MidSWeN uses a data-centric

(Ratnasamy et al. 2003) approach to storage. Data-centric technique processes and stores

data near its source utilizing the storage capabilities of the neighboring sensor node,

based on the assumption that the network will use data-centric design. This has been

made clear in the background chapter that data-centric design is the best available choice

because it has application knowledge which makes it more energy efficient

(Intanagonwiwat et al. 2003).

Data-centric storage uses two primitives Put (key, value) and Get (key). The

Put () method stores data using a specific key which in data-centric storage is an

attribute name, for example, temperature and Get () retrieves data from the key. These

two primitives Put () and Get () are supported by a routing mechanism which uses low

level naming and look up algorithms (Chord (Stoica et al. 2001), CAN (Ratnasamy et al.

2001), Tapestry (Zhao et al. 2004), etc.) which maps a hashing key to build a distributed

hash table. When a node detects an event, which has been queried for, it sends the data

from its sensor representing this event to the storage service. The storage service might

store data on the same node if it has sufficient storage capacity or another neighboring

node that has available memory capabilities. Data-centric storage allows data to be stored

by name and both observations and events are named (Heidemann et al. 2001). The given

event name is hashed into a key using lookup service algorithms (the peer to peer service

80

Chapter 5 Middleware Persistent Storage Service

algorithms are closer to sensor networks therefore are recommended such as Chord, Can,

Tapestry) which should be a location within the sensor network and the Put(key, value)

method stores the data at that particular location. Therefore, subsequent requests for data

are sent to that particular node and the Get(key) retrieves the data from that location.

Note that in data-centric storage the events are predefined by name, for example,

temperature or pressure. This approach gives a name to each data item then uses

communication abstractions or routing mechanisms that refer to those names rather than

accessing nodes by network addresses. All data referring to the same general name is

stored at the same sensor node or neighboring nodes near the source where the event was
detected. Different nodes of the same type collaborate as a single logical node although

physically they might be distributed along different nodes. For example, the temperature

sensing nodes will sense and store the data on the same or neighboring nodes. Whenever

there is a query about temperature it would be directed to the temperature sensors or

neighboring nodes. The decision of storing the data on local node or neighboring nodes is

taken on the requirements and the capability of the local node. Access to data is possible

by building a distributed hash table (DHT) based on attribute names as already explained

above. Moreover data which is queried very frequently can be kept in the cache memory

of the base station which is assumed to be more capable in terms of resources such as

memory, energy and processing power, to ensure quick processing which will further

reduce the amount of energy consumed. As mentioned above Data-centric storage does

require some sort of routing protocol that would support this kind of storage and take care

of the communications between sensors. There are a number of data-centric routing

protocols available which can handle named data (Intanagonwiwat et al. 2003).

Events may be of different types, such as, low level events which is usually referred to as

observations in the sensor network literature and a combination of these low level events

might lead to high level events, for example, individual animal sightings may be a low

level event but a combination of these events might lead to a high level event of animal

migration. There are a number of factors that might contribute to establishing a high level

event such as location, time and number of sensors recordings of these sightings that

might require interaction or collaboration among neighboring nodes or the whole

81

Chapter 5 Middleware Persistent Storage Service

network. There are different levels of interaction between nodes and data or information

is exchanged at different levels. For a low level event the nodes might collaborate locally

with neighboring nodes only but for a high level event the whole sensor network or large

part of the network might collaborate or exchange information. Event detection (Kumar

et al. 2005) for example may require processing of low level observations or results from

several different sensors to produce high level events. For instance, a volcanic eruption is

a high level event, which is a combination of other low level events, such as, increase in

temperature, sound, pressure, humidity etc. This requires local collaboration between

neighboring nodes only and uses local area dissemination techniques (Kang et al. 2006;

Wang et al. 2004). In this form of collaboration information is accessed from neighboring

nodes. In contrast there are techniques to access data both by nodes or users from

anywhere within the sensor network, for example, comparing its temperature reading

with average readings of the rest of the sensor network, so this requires wide area data

dissemination techniques, for example, directed diffusion (Intanagonwiwat et al. 2003).

There are several data dissemination methods available for both local collaboration and

wide area data collaborative information processing. Some of them use data-centric

techniques (Sylvia Ratnasamy et al. 2003) uses geographic routing technique GPSR and

build a distributed hash table on top of this low level routing technique using peer to peer

look up algorithms.

It is established that data-centric storage might not work in all situations (Ratnasamy et

al. 2003), like environments with higher node failure rate or where the nodes are mobile.

Therefore, the storage service replicates the data to many locations by multicasting

(Sheth et al. 2003). Multicasting means that data would be sent to the intended recipients

at the same time. Different copies are synchronized and updated at the same time using

multicast. Multicasting do present some problems, for example, a computational

overhead may be a burden on the resource constrained sensor networks or there may be

scalability issues in large networks. Recent research (Sanchez et al. 2006; Wu et al. 2006)

based on geographic locations (Sanchez et al. 2007), distributed routing tables and

heuristics (Koutsonikolas et al. 2007) has managed to produce protocols which are light

weight and energy efficient to overcome difficulties initially encountered by earlier

protocols. In case of higher node destruction rate the number of copies of data present in

82

Chapter 5 Middleware Persistent Storage Service

the network can be increased to ensure availability of data to the applications.

Multicasting of data to all copies ensures that multiple updated copies of the data are

available for the lifetime of the network, which makes MidWSeN framework robust.

However, a situation might arise where all the copies of data might not be updated, for

example, due to traffic congestion in the network. The solution to this could be by

resending the data if an acknowledgement is not received by the sending service which in

this particular case is the aggregation service. Although resending data might prove

expensive in terms of resources such as energy but it will ensure that all copies of data

are updated and synchronized.

The above section provided the details of the data-centric design and the benefits of using

this particular type of design, which is efficiency and consistency. This section also

explains that the shortcoming of this service being not effective in certain circumstances

can be tackled by having multiple copies of data. The next section gives details about

how the PSS interacts with different services such as AMS within the framework.

83

Chapter 5 Middleware Persistent Storage Service

Application layer

5.3.2 Interaction of other services with PSS
This section explains how the PSS will interact with the different services within the

network. Figure 5-1 shows which services interact with the PSS. Data or services cannot
be viewed in isolation. As already mentioned in section 2 there is a need to store the data

on the sensors so that it can be processed further to turn it to more useful information. In-

network processing coordinates sensors to interact with each other through exchange of

data. Different phenomena will be monitored by the sensors in the environment, along

with their required context. For meaningful interaction between the user and devices the

system has to know the surrounding environment, for example, the geographic location or

the time at which the events are occurring. The acquired data has to be viewed in its

context in order to achieve correct assumptions. Context as mentioned in the background

84

Chapter 5 Middleware Persistent Storage Service

chapter can be defined as any information that can be used to describe the situation of an

entity. An entity is a person, place, or object that is considered relevant to the interaction

between a user and an application, including the user and application themselves.

For example, consider a scenario where scientists are monitoring a number of explosions

of different intensity of a volcano. They are also storing the time and location of these

explosions in order to establish whether they are towards the centre of the volcano or the

sides. Now the sensors are sensing and storing the data with the required context. There

is a series of explosions of different magnitude. Suppose the scientists want to query the

system to know how many explosions were towards the centre of the volcano in a fixed

time frame and compare this behavior to a similar behavior in the past two days to

analyze whether the intensity of the explosions has increased or decreased towards the

centre of the volcano in the past couple of days. This is a complex query that involves

historical data. In order to answer the above query using existing event based techniques

the scientists will be getting a considerable amount of data whenever an explosion occurs
in an event-based network. In case of a query-based system they can also establish how

many explosions occurred during the last n hours. However, this query would be sent

repeatedly to get this data. This would utilize a considerable amount of resources, as the

query needs to be circulated repeatedly within the network. Moreover, partial results will
be communicated back to the base station repeatedly, which means more transmissions.

Another disadvantage of this whole process is the delay because only after the complete

results are communicated to the base station can the scientists look at the data and

analyze the situation.

In MidWSeN framework this type of query is dealt with more efficiently requiring fewer

resources. The data will be stored along with date, time and location, therefore the

middleware will be able to compare the current results with the previous data date-wise

and provide an answer. There would be no repetition of the query and no delay because

all the required information is already stored within the system. The scientists will only

get the results in the event of an increase or decrease in the intensity of the explosions. By

looking at the preceding scenario it can be seen clearly that the proposed middleware

performs more efficiently than the existing techniques.

85

Chapter 5 Middleware Persistent Storage Service

The middleware already provides the date, time and location context. In addition the user

can also add any context required by the application, for example, how much vibration it

causes in the earth. This not only gives freedom to the developer to fulfill the application

requirements but also helps in making the middleware adaptive.
Similarly, the RS also interacts with the PSS. Considering the above scenario scientists

may be interested is whether these explosions cross a certain range of intensity or the

number of explosions exceed a certain limit. It will be more efficient to keep this type of

query, which requires regular monitoring of the system in the RS as a rule. These rules

will constantly check the PSS as required by the user and inform the user whenever a rule

is satisfied. As soon as one of the rules is satisfied the RS will immediately alert the

application through the AMS, which will in turn send a message to the AIS. All

processing will be done within the network and final result will be conveyed meaning

fewer transmissions, which in turn mean a reduced amount of energy consumed. These

rules can be defined using any query language.

5.3.3 Design
It has already been mentioned in section 5.3.1 that the MidWSeN framework uses data-

centric storage. As already mentioned in the previous section there are several techniques

available, for example, DCS (Ratnasamy et al. 2003) which could be used for MidWSeN

as well. This type of data-centric storage is based on a distributed hash-table having two

basic primitives Put (Key, value) and Get (key) where key is the name of the

actual data, for example, temp. It also uses the GPSR (Karp et al. 2000) geographic

routing algorithm for low-level routing and on top of that builds a distributed hash-table.

MidWSeN is not restricting the user to any particular data-centric technique because a lot

of research is still going on in this area and there might be more lightweight and energy

efficient protocols introduced then the existing ones. Therefore, any data-centric

technique which is efficient and lightweight is acceptable. Selection of a particular

routing technique, however, depends upon a number of factors. First MidWSeN uses

data-centric storage so the routing technique selected should be able to support this kind

of storage. Second, Multicasting is being used in the framework proposed by research

presented in this thesis; therefore, the routing protocol must support multicasting. Third,

security might be an important issue for the applications using the network; therefore,

86

Chapter 5 Middleware Persistent Storage Service

security may also be a consideration in selecting a routing protocol. Finally, the size of

the network may also be a consideration because for a large network more number of

copies of data will be required hence for sending data to keep all the copies

simultaneously would require a very efficient routing protocol. Also large network means

more sensors can collaborate to pool more resources.

Similarly there is the aquisitional technique (Madden et at 2005) which uses a relational
database for storing data on the sensors. In a relational database the data generated in

response to a query or event is stored in tuples, which can be considered as rows in a

table. This data can be stored temporarily in a log for further processing while the tuples

can be produced in sample intervals by the user that is a parameter of the query. The

period of time between the start of each sample period is known as epoch in the literature

which is an addition made by the above mentioned query technique. Here a routing

technique will also have to be employed which is part of the communication layer shown

in the Figure 5-1. The middleware requirement is only that it should be data-centric

storage whichever technique used is not our concern because we do not want to limit the

choice and also it does not affect our middleware. It is the same case with routing, for

example in the case of DCS, which uses GPSR. Again the decision is based on the

technique to the TinySQL(ref). In the absence of any appropriate service oriented

software developed for sensor networks the services communicate through messages with

each other which could be an XML message or TinyML (Ota et al. 2003) or SensorML

(VAST 2007). The Application Interface Service sends a message to discover the

Application Management Service.

hopcount location Memory energy Sensorid I T:

Figure 5-2 Acknowledgment message sent by the service in response to the service discovery message

Payload Priority querytype

Figure 5-3 Message sent by the service to the acknowledging service

In response to the service discovery message the appropriate service sends an

acknowledgement message as shown in Figure 5-2, which has the information about its

87

Chapter 5 Middleware Persistent Storage Service

energy and memory status, how much energy the node has and how much free memory
is available. The hopcount shows the distance of the node from the sink. Location

shows the geographic position of the node. In case more services are present in the

network one which is closest to the event area having more resources would be selected

on the basis of the hopcount, memory and energy will show the amount of memory

and energy available of the responding node. This means the Service optimization will be

performed by the AMS based on these three parameters first shortest path which is

determined by the hopcount second is location of the service near the event area and

third are resources which consist of the memory and energy of the node. The Location

of the sensor could be determined by using any localization technique depending on the

application requirements (C`apkun et al. 2006; Lazos et al. 2005). This is also a novel

contribution as no other work to the best of our knowledge has done service optimization

within the network. This is usually done on the more powerful base station, which might

be a PC or Laptop. The advantage of doing in-network processing is that it saves

resources especially energy, which is very precious in WSN because communication

costs more in terms of resources.

The AMS would forward the query or event listener to the appropriate service after

deciding by looking at the message header if it is a query or an event listener. The

message header will have a payload, which will consist of the event or query along with

the context and the duration for which the query/event will remain in the network.

The priority field will show the priority assigned by the user to the data stored as result of

the query or event. The priority field is explained in detail in section 5. In case of a query

the AMS will further determine whether it is a real time query or historical query. The

querytype have been added to specify the type of query in order to help the AMS

distinguish between these different types of queries. We can categorize the queries into

three different categories.

1) The first could be called `historical query', which would only involve historical

data this query would be sent directly to the PSS by the AMS and the results

would also be transmitted back through AMS. Figure 5-4 shows the process of a

88

Chapter 5 Middleware Persistent Storage Service

historical query. The querytype for this, for example, can be `0' so that AMS

knows it's a historical query.

Application layer

Qurrv

?. I1istorical Query

Figure 5-4 Sending historical query to Persistent Storage Service

2) The second type of query would be a `real-time query' which only involves

current data. The AMS would send this query to the QIS and a copy of this data

would be stored within the PSS. Figure 5-5 describes the process for a real time

query being sent to the AMS, this service is distinguished by 4 1', for example.

89

Chapter 5 Middleware Persistent Storage Service

Application layer

r, R<<ult: I I. Quen

cII

Kral -time Qucr\

f
G1

.
C+

"Ci
7

J
C

° 5. copy

3.; %, gre-aged data

Wireless Sensor Network

Figure 5-5 Sending Real-time query to PSS

3) The third category would be an event that could be distinguished by the AMS `2'.

The AMS will send it to the EM and the process is described in Figure 5-6.

Figure 5-6 explains the process of an event and how it listens and pulls data from the

sensors. Data will be generated following an event or when a real time query is sent to the

network. In both cases data will be stored in the PSS.

The AMS will decide after testing the querytype if the query involves historical data or

real-time data and the query would then be forwarded to the appropriate service or to the

EM in case of an event. The results would again be transmitted through the AMS to the

user and the PSS. The Aggregation service also interacts with the PSS directly. It will be

explained in detail in the next chapter.

90

Chapter 5 Middleware Persistent Storage Service

Figure 5-6 Event Listening and pulling data from sensors

The PSS has the following methods;

int Read(int key); when the AMS sends a request for information this method

reads information from the PSS.

0 void Store(int key, int data); when data is sent to the PSS this method writes the

information coming from the AS to the PSS.

40 int SendData(int data); this method will send the aggregated data back to the

AMS.

. bool MemoryCheck (); this method would check the memory periodically and

return a Boolean value of either true or false. If it returns false it means that the

memory is lower than a certain threshold and therefore, the priority algorithm

needs to be run. No parameters are passed to this method.

91

Chapter 5 Middleware Persistent Storage Service

" void Priority(struct Message *msgpriority) : this method will run the priority

algorithm described in detail in section 5 of this chapter.

This section has presented the design of the persistent storage in detail and how it

interacts with other services. The next section presents a case study that illustrates how

the persistent storage works in a real time scenario.

5.4 Case Study
In this section we are presenting a case study to show how the Persistent Storage Service

works. For example, an event is registered which counts the number of vehicles on the

road so that in future the road is adapted to changing traffic conditions. After a while the

traffic conditions change and sensors indicate more traffic on the road. The authorities

now want to investigate the average frequency of different type of vehicles that uses the

road in question. For example, for a certain period of time the heavy traffic load was
below 10% trucks per 10 kilometres now due to the opening of a factory and some

warehouses the average increases from 10% to 25% trucks per 10 kilometres that is the

number is more than double; the authorities also find that light vehicles usage has

generally increased but the percentage is still less than the percentage of heavy vehicles.

This helps them conclude that the road is used more for heavy vehicles rather than light

vehicles and the road has to be adjusted to these conditions. Now the event will be sent

through the AIS, which will send a message to the network. For example, an XML

message has shown below which is looking for the Application Management Service.

The corresponding service will respond to the message by sending an acknowledgement

message as shown in Table 1 Acknowledgment message sent by the AMS, for example,

given below.

sensorid hopcount location memory energy

01 3 14,18 640 2

Table I Acknowledgment message sent by the AMS

The sensorid is of course the identification of the sensor. The hopcount determines how

near or farther is the responding sensor to the one initiating the request of service.

Location shows the relative geographical location of the responding sensor depending on

92

Chapter 5 Middleware Persistent Storage Service

the localization technique being used. Table 3 gives value of the X and Y coordinates,

which is just an example there might be localization techniques that use other types of

coordinates such as three-dimensional or latitude or longitude. Usually at the time of

deployment the sensors determine their relative geographic location with respect to their

neighbours as well as their respective geographic positions. The middleware framework

is not binding the developer to a single type of localization technique (Rudafshani et al.

2007) because some sensors might be equipped with special hardware, such as, GPS and

some sensors might not be equipped with any kind of special equipment. The only

requirement is the use of such a technique which ever is used does not affect the overall

system. The memory would give the amount of available memory on the sensor in KB.

The energy depicts level of energy of the sensor. This has been mentioned in the

previous section that the AMS decides which service to correspond in case of multiple

services of the same type using information from the acknowledgement message.

payload priority querytype

Parameter list + 0 1
context

Table 2 Message sent by the AIS to the AMS

Table 2 Message sent by the AIS to the AMS gives an example of the message sent by

the AIS to the AMS. The payload consists of the parameter list from the query/event and

the context provided by the user. Here querytype is equal to `1' that means it is an event.

Priority is equal to `1' that means high. The field priority is being explained in detail in

the next section.

In the example mentioned above the event will be as follows

Event

On EVENT vehicle(Ioc)

COUNT(Iightvehicle), AVE(Iightvehicle)

SAMPLE PERIOD IN FOR Ihr

93

Chapter 5 Middleware Persistent Storage Service

A similar event can be registered for heavy vehicles. In the event of either a heavy

vehicle or light vehicle passing by, the sensors will record the event and the data would
be forwarded to the aggregation service and user will be notified. After being aggregated

the data would be forwarded to the PSS. The user subsequently poses a historical query

the data is already stored in the persistent storage. For example

Query

SELECT light vehicle, heavy vehicle
FROM sensorstable
HAVING AVE(lightvehicle) < AVE(heavyvehicle)

As the persistent storage has saved the average it will compare the two averages and send

the result. The value will be communicated back to the AMS which will forward it to the

application, for example, the event given above means that each light vehicle and heavy

vehicle sensor sends its readings every 10 s for 1 hour. Results will start flowing to the

node having the QIS. Results may be logged at the sensing node and sent to the QIS after

being processed and aggregated which will forward it to the AIS through AMS. The same

data will also be sent and stored in the PSS.

The above section explains how different services such as AMS interact with the PSS. It

further gives a detailed example of how the data would be stored, queried, or events

registered and data retrieved. The next section explains how prioritization helps to save

memory within the network.

5.5 Prioritization
This section explains prioritization and how is it being used in the proposed middleware

to save memory. The middleware is storing data for the lifetime of the network and not

temporarily as other works do. This will help in creating implicit relations as well as

allowing data to be viewed in historical context. The biggest challenge that arises in this

situation is how to store data under the constraints of limited memory. Also, even if the

data is stored in the available memory what will happen if more memory is required or

more data needs to be stored? To solve this problem a new prioritization algorithm for

memory management is being proposed in this thesis. This has already been mentioned in

the background chapter that prioritization techniques are being used in network

94

Chapter 5 Middleware Persistent Storage Service

communication but it is being used for the first time in memory management in WSN. In

network communication packets are assigned priority and when the communication

channels are busy or in case of contention only high priority packets are sent to avoid

congestion. In memory management priority is assigned to data being stored in the

memory and when ever more space is required data with lowest priority are deleted to

create space for more or higher priority data. The next section explains in detail how this

prioritization technique works to help provide space in memory management in the

proposed middleware.

5.5.1 Prioritization Algorithm
This section explains the prioritization process in detail and how the algorithm works.

The prioritization algorithm not only creates space in memory for more data to be stored

but it also utilizes memory efficiently by only storing the most relevant data. Storing data

in aggregated form means that no data will be lost and it will still be available for future

use. The application will assign priorities to different data it is required to store when it

registers an event or send a query. All the data related to that particular query or event

would be assigned the same priority. For example, in fire detection application

temperature data is being stored. The application has already saved a rule in the RS that

when temperature is greater than a certain limit the application must be informed. This

would be done through the AMS. The temperature exceeds the limit and there is a

possibility of a fire. When this particular event occurs, the rule fires and the RS notify the

AMS, which in turn notifies the application through the AIS. The application starts

querying the network through the QIS so that an action can be taken. A lot of data might

be generated and stored in this scenario. After the event has passed all the data stored

might not be of importance only the fact that there was a fire alarm at such time and

location remains of interest. The application may assign a lower priority to those details

and whenever more memory is required all the data stored relating to the event and

queries send can be aggregated to make space for more important data. The point to be

noted here is that data is not been deleted altogether. So the data is there in some form

and can be utilized whenever required for future need. This is also a novel contribution

because other similar works suggest deleting the data as it gets older it is referred to as

graceful degradation (Mathur et al. 2006).

95

Chapter 5 Middleware Persistent Storage Service

The proposed priority algorithm will periodically check the memory, and if the free

memory space falls below certain limit the priority algorithm will call the aggregation
function, which will aggregate the data with the lowest priority. The algorithm is

checking the memory by counting the number of items stored because the data is usually
being stored in a linear form on the sensors and the pointer always points to the memory
location in which the last data item was stored. After determining the memory size and
deciding the limit of the memory, data would be assigned n priority levels, which could
have n possible cases. First the algorithm will check for data at the lowest priority level

and aggregate this data. A threshold is selected for the memory and whenever the

memory reaches that threshold the algorithm will be applied. After checking the memory

again if the memory space is above the required threshold then the process will stop but if

still more memory is required then the (lowest -1) priority data will be checked and

aggregated. The process will continue until the amount of free memory goes above the

required minimum. Figure 5-7 gives the algorithm explained above. In case only data of

the highest priority is stored in the network and even then the need arises for more

memory it will inform the application and ask which data is to be aggregated. The

aggregation service will also give a choice to the developer as to what kind of

aggregation the application requires Sum, Ave, Max, Min, Count or MyAgg.

m_size= mem_check();

p= lowest - priority; // highest value

while (p>=1)

/*This will check memory against its limit

{ if(m_size >= m_limit)

/* Aggregation service will aggregate all the data d for priority p */

{ call Aggregaton_Service(d, p);

P=P-l;
}

Figure 5-7 Prioritization Algorithm for PSS

96

Chapter 5 Middleware Persistent Storage Service

The choice of assigning priority is left to the user because it totally depends upon the

application, which can be done by using the priority field mentioned in figure 2 and table

2 in the previous two sections respectively. Some applications might want to prioritize

their data according to the events because some events are more interesting than others.
Others might want to prioritize their data according to the frequency of the queries. If the

frequency of queries is high for some data then the higher its priority goes. Some other

applications might be interested in a certain range of data, such as whether the

temperature is too low in a certain range or too high in another. These are only some of

the possibilities there could really be endless depending on the applications and their

specific requirements therefore it is best to let the application developer decide what best

suits a particular application. If we simply delete the data in using FIFO that might not be

the best solution because, as mentioned above, different applications might have different

requirements. Furthermore the data is not totally being removed from the memory in case

it might be required in the future as a reference but rather it is kept in an aggregated form.

5.6 Summary

In this chapter a novel middleware Persistent Storage Service was discussed in detail that

stores data within the sensor network for the lifetime of the ad hoc wireless sensor

networks (WSN). Previous works have used temporary storage but the proposed

middleware implements persistent storage that provides increased functionality, which is

one novel aspect of the work presented in this thesis. This would help in saving precious

resources e. g. battery life and bandwidth by only transmitting processed data which

means less data would be sent to the users. Storing the data within the network serves

two purposes. First, it would help in further processing of the data, for example, to create

implicit relationships between data and second it saves energy because transmission

consumes more energy. The PSS not only provides data consistency at all times by

having multiple synchronized copies but also the facility to add context. The copies will

be synchronized by sending data at the same time to all copies within the network after

adding application-context through the aggregation service.

This chapter also discusses the prioritization algorithm for storing data within Wireless

Sensor Networks (WSN), which is also a novel contribution. Due to limited memory in

97

Chapter 5 Middleware Persistent Storage Service

WSN it is not possible at all times to accommodate all important data to be stored within

the network therefore different data can be assigned priorities according to applications

requirements by the application. Data with the lowest priority will be aggregated to

create space if additional memory is required to store more data. This will help in storing

relevant data within the network for long periods of time without losing any important

data.

The next chapter explains the aggregation service in detail, which is also an important

part of the middleware framework MidWSeN. The aggregation service plays a vital role

in condensing the data and making it possible to filter redundant data thus saving energy

and storage space or memory. In addition it aggregates data with context thus producing

context-enhanced data which is stored in the PSS. This gives a context-enhanced data,

which is another novel contribution of the framework presented in this thesis.

98

Chapter 6 Middleware Aggregation Service

Chapter 6 MIDDLEWARE AGGREGATION SERVICE

6.1 Introduction
The last chapter introduced the middleware Persistent Storage Service in detail. The
focus of attention in this chapter is the aggregation service of the middleware framework

MidWSeN. It has already been mentioned in the background chapter and system

requirements in chapter 4 that aggregation is vital for WSN because it helps in saving

energy by reducing the amount of data being stored and transmitted.

The purpose of the research presented in this chapter is not to create an aggregation

service from scratch but to reuse the existing work with a different approach to draw

maximum benefit. There are two main novel aspects of the aggregation service used in

the MidWSeN. The first is in respect of the framework in general and the second relates
to its use as an individual service in particular. The fact that aggregation is being used to

save memory as well as other resources is novel by using it as a service in the

middleware framework. The aggregation service not only saves energy by reducing the

amount of data being transmitted across the network but also saves memory within the

network because data is being stored within the network.

Another vital aspect of the MidWSeN framework is that data should be stored with

contextual information therefore as an individual service aggregation is being done with

respect to context. In other words it is a context-enhanced service which is the other

novel aspect of the aggregation service. It aggregates the data according to the contextual
information provided by the application which is later stored in the Persistent Storage

along with the context. Due to its importance in the overall working of the framework the

aggregation service forms one of the core services.

The snooping technique(Madden et al. 2002) is also discussed using new scenarios in this

chapter. In snooping sensors listens to the communications of other sensors, this helps in

conserving energy by reducing communications which proves more costly in terms of

resources especially energy. Using Snooping technique in MidWSeN not only reduces

99

Chapter 6 Middleware Aggregation Service

communication cost in terms of resources but it has been tested in calculating averages
which in principle was not used before because of the expected error margin. The

research presented in this chapter identifies certain scenarios which could prove
beneficial in some scenarios.

The rest of the chapter explains the aggregation service and its novel aspects in detail.

Section 2 explains why there is a need for the aggregation service within MidWSeN and
how it will help in providing a better service than existing aggregation services. Section 3

gives more detail about the aggregation service. Subsection 3.1 explains why the

snooping technique is being used, its advantages and circumstances where this technique

should be avoided. Subsection 3.2 explains the aggregation services interaction with

other services within the framework. A case study is given in section 4. Finally section 5

gives a summary of the whole chapter.

6.2 Aggregation as a middleware Service
This section explains the reason for keeping the aggregation service within MidWSeN.

Broadly there are three different levels where aggregation could be handled. These are

levels are

i) Application Level

ii) Middleware

iii) Network Layer

The argument for application level aggregation is that because every application requires

an aggregation service tailored specifically to its needs or in other words aggregation is

application specific in WSN, it should be left to the application. On the other hand, a

counter argument for a lower level aggregation service is that since it is so vital for every

application it could also be left to the communication protocol. In this type of aggregation

the data is aggregated as it moves along the network.

The problem with the first approach is that it burdens the developer as they will have to

fully understand how the specific operating system (OS) and hardware interacts and other
lower level details. Further it reduces the portability of the application because the code
has to be changed every time there is a change in the hardware or environment as it might

100

Chapter 6 Middleware Aggregation Service

be written for a specific hardware configuration. This not only raises the maintenance

cost of the application but also makes application development very cumbersome.

On the other hand most communication protocols (Heinzelman et al. 2000; Lindsey et al.
2003; Manjeshwar et al. 2001) also provide aggregation. Communication is a lower level

operation, hidden from the application and hence does not have any knowledge of user
requirements making it hard for applications to make any changes to customize it to

application needs.

The design goal as mentioned in the Introduction chapter of this research is to make it

possible for different applications to use this middleware; therefore aggregation service is

kept as a core service in the middleware. It will not only relieve the application

developer from the burden of the underlying embedded OS and hardware (Heidemann et

al. 2001) but also make the program portable and easy to maintain in the face of any

changes in the physical layer. On the other hand the developer can still have the freedom

to tailor the service to their specific needs.

Only middleware can bridge lower level operations and high level applications in order to

facilitate better understanding of the application requirements. Although aggregation is

vital in most cases in WSN, a different scenario may be that some applications might not

want to use aggregation at all because the sensors are sending different type of data for

example video/audio type data (Dasgupta et al. 2003). Therefore it is important to keep

the aggregation service in the middleware so this service is aware of the user

requirements as well as take care of the lower level operations. The developer just

specifies his requirements and does not have to worry about the lower level details.

This section has explained in detail that the aggregation service has been kept as a

middleware service to bridge the gap between lower level operations and high level

application. This gives the developer freedom to customize it to application requirements

without needing to consider lower level details. It should be noted here that one of the

characteristics of sensor networks is being application specific therefore it is important to

allow the application to customize the service to its specific requirements. The next

section explains the Aggregation Service (AS) in detail how will it aggregate the data and

also interact with other services of the proposed framework.

101

Chapter 6 Middleware Aggregation Service

6.3 Aggregation service
This section discusses the middleware approach to the aggregation service. By reducing

the data or filtering redundant and unnecessary data it not only saves energy but also

memory in the proposed middleware which gives a different perspective to this service.

The work presented in this thesis is significantly different from the existing works in

many respects.

i. First the whole concept is to save the data within the network and send

only the processed data to the user on query or by registering an event

because communication is more costly than processing. Therefore

aggregation is not only being utilized to save energy but also memory.

ii. Second, data is being aggregated according to context specified by the

user. For example, if time is important for a specific application then the

data would be aggregated according to a specific time. The aggregated

data will then be stored in the Persistent Storage along with the context.
This helps to supply context enhanced data to the application.

iii. Third we are not binding the user to any particular topology or data

structure, for example, a tree type structure and it can therefore be used
in any environment.

iv. We are using a service-oriented architecture therefore it is possible to

have several copies of the same service which means the system can

work in more than one way. The same application can have different

types of aggregation in one network at different places, whereas multiple

applications can also use this service which makes the system more

robust.

v. This service also provides an opportunity to the developer to adapt it to

application specific requirements by providing a method called MyAgg.

This not only helps in customizing the service to a particular application

but due to the existence of multiple copies of this service also provides

the opportunity of writing different aggregation methods depending on

application requirements.

102

Chapter 6 Middleware Aggregation Service

vi. Another way of customizing the service is to add application required

context. This context can be added when the application is registering an

event or posing a query. The data will be aggregated and stored along

with the context in the persistent storage.

vii. Having multiple copies of this service makes it more robust and due to it

is loosely coupled architecture new services can be introduced easily into

the system making it more scalable.

The importance of the AS in the framework is demonstrated by the fact that it is being

used by three different services the QIS, PSS, and EM. Data coming both from the Event

Manager and directly from the nodes is aggregated and sent to the PSS. The PSS utilizes

the AS in its prioritization algorithm which has already been explained in chapter 5.5.

Figure 6-1 shows the interaction of different services with the AS.

103

Chapter 6 Middleware Aggregation Service

u

Sore()

yryDýb (ýpph b)

1 SMab 11

Figure 6-1 Showing Sequence of events for Aggregation process

Store

I Read

6.3.1 Design

This service uses in-network processing which can reduce the amount of data being

finally transmitted to the user in a power efficient manner. The novelty of this work lies

in the approach of the aggregation service which uses context to aggregate data to have

context enhanced data. Novelty also lies in the way the aggregation service is being used

within the framework and its structure, rather than inventing a new technique. This

service does not bind the user to any particular protocols or data structure thus making it

flexible. Snooping technique (Madden ei al. 2002) is being used to save energy, and

snooping has been further tested in new scenarios like calculating average, changing

topologies and different radio ranges.

rLIS- _1

104

Key
PSS Persistent Storage Service AIS Appication interface Service

EM Event Manager AMS Application Management Service
AS Aggregation Service QIS Query Interface Service

Chapter 6 Middleware Aggregation Service

The aggregation service will provide the standard Max, Min, Sum, Count and Ave

functions. In addition, there is another method provided called MyAgg. In MyAgg

method the application developer can write his own specific type of aggregation which

might be exclusively required by the application other than the ones provided. This will

add flexibility to the middleware and provide freedom to the application of customizing it

to application needs being an important characteristic of WSN. This service will reside

within the network on the nodes.

These methods have been defined as an interface which will be implemented by the

application developer giving an opportunity to the developer to customize the service to it

own specific needs further it will also give him the freedom to write his own specific

aggregation technique apart from the standard ones provided. This also helps in utilizing

the same service for different applications by simply calling the service when ever

required.

int max(int data)
int min(int data)

float ave(int data)

int count(int data)

int sum(int data)

float MyAgg(int data)

The aggregation service further provides Send Data () method which sends the data to

the PSS. It should also be noted here that as we assume to be having more than one copy

of data therefore this Send Data method will send data to all the copies present in the

system at the same time. The knowledge of the number of copies data and exactly where

these are located in the sensor network will be provided by the data centric storage

technique which uses a distributed hash table to keep track of the data stored within the

sensor network.

Another method called Snoop() is also provided in order to further economize on

resources, this method is explained in detail in the next section. The aggregation service

can be called at any level the application wants to aggregate data. This service can be

used at both the node level and at the data storage service level depending upon the

105

Chapter 6 Middleware Aggregation Service

specific application. There is no recommendation of any particular type of routing
protocol. Any routing protocol could be used as far as it can carry a query to all the

required nodes or sensors and can route them back to the point where it is intended to

reach in the system.

Whenever the aggregation service is called it will check the network for a node or group

of nodes that provides the service and then utilize it to provide the necessary functions.

This service is not binding the user to any particular protocol or data structure which is its

main advantage and makes it feasible in any environment and also gives the developer

freedom of choice.

6.3.2 Adding Context
One of the design goals mentioned in the introduction chapter was to provide context

along with the data because it makes data more meaningful. Adding context to data is

challenging in many ways. Various applications have different requirements one cannot

generalize or name one or few contexts to fulfill all application requirements. Therefore

to conclude; every application should provide its own requirements instead of binding or

limiting the application to a set criteria. However, there might be some context for

example time, date and location which would be useful to many applications. So this kind

of context can be provided to all applications. Therefore to combine both the options
discussed above the framework provides the time, date, and location option as well, gives

opportunity to the application to provide its own option. Data is being aggregated using

context as a criterion. For example, time is important for an application, enabling data

having the same time stamp to be aggregated. Another example is location, where data

coming from sensors having the same geographic location will be aggregated together

and sent to the storage service. The advantage of this context enhanced aggregation is

that data can be stored with context and later on queried using the context. Spatial and

temporal queries are possible and implicit relations can also be determined using context.

Therefore it is an important and interesting aspect of the Aggregation Service and of the

overall framework.

The second challenge which needs to be addressed is where to add this context or at

which stage context should be added to data. The obvious choice is before storing data;

106

Chapter 6 Middleware Aggregation Service

the context can be wrapped or added to the data and then data can be stored along with

this context. In sensor networks that may not be easy as the context data also needs to be

collected along with other data, but if they are collected at two different stages it means

more energy and resources are being utilized. So the best option is to collect context data

along with other data, for example, if time and location is important then sensors should

send their respective data along with a timestamp and its geographic location. This

ensures that data and context data will come in the same packet meaning fewer

transmissions. Other resources, for example, bandwidth can also be saved. Therefore the

data along with context is collected by the EM or QIS and sent to the Aggregation

Service. Here the data is aggregated according to the context and then this data along

with the context is sent to the PSS and stored there with context. The user can then query

the PSS using the contextual data.

The next section explains the snooping technique which has been proven to be very

economical in terms of resources such as energy. This technique works very efficiently

with singular aggregates, for example, max/min. This technique further makes the AS

discussed in this chapter more efficient in terms of saving resources. Snooping has been

further tested in new scenarios like average for which it was not considered before due to

expected error margin. The research presented in the next section reveals, however, that it

is possible to use snooping in calculating averages as well in circumstances where only

trends are being watched or accuracy is not an issue.

6.3.3 Snooping Technique
This section gives details about the eavesdropping or snooping technique (Madden et al.

2002) which is being used at the sensor level. As already mentioned by using this

technique will further economize resources. Snooping technique is tested in new

scenarios, for example, calculating averages and found it to be useful in some scenarios

where accuracy is not an issue. In snooping the sensors listen to the communications of

other sensors. This saves energy as listening consumes very little or negligible amounts

of energy. We are aware of the fact that eavesdropping can also be a security issue

because in applications like battlefield surveillance where the sensors might be used in

enemy lines or other such applications the developer might not want to use this technique

107

Chapter 6 Middleware Aggregation Service

at all. Also in some applications the data might be encrypted so nodes might not be able
to listen to other node's communications. As mentioned earlier, if a particular application
does not require this service or a method it can avoid or override it, the applications with
high security risk can choose not to call this service or override the method which adds
flexibility to the service.

This technique is being used in new scenarios like calculating average, which has not
been tried before. Previously TAG (Madden et al. 2002) proved that this technique is less

costly in terms of energy consumption in comparison to other techniques in calculating a

maximum or minimum value. In the snooping technique not all sensors send their data.

Considering the particular case of calculating a maximum, sensors will listen to the

communications of the other sensors and if the value of this other sensor is greater than

the snooping sensor than it will not send its value. Since most of the sensors are snooping
therefore sensors detecting the same type of data will not transmit their data. This means
fewer transmissions which means less energy consumed as well as less congestion.
However, this technique was only thought to be useful in single aggregates, for example,

max or min and the effects of different parameters such as topology have not previously
been tested were also not tested before.

The tests are conducted to see if changing parameters, for example, the topology or event

range has any effect on the performance. The motivation was to see the effects of

changing different parameters on the middleware framework. The results show that

different parameters do have an effect either in terms of participating nodes or in terms of

energy. These simulations results give a better insight to the developers and they would

be well aware of the implications of changing different parameters. The results of the

tests are discussed in detail in the next chapter.

The tests have explored how to calculate an average value with this technique. In case of

an average it was assumed by TAG that the results will not be accurate. The question that

needed an answer is that whether calculating average with this technique is a complete

waste of resources and therefore should not be attempted at all under any circumstances.

The simulation result given in the implementation chapter confirms their assumption but

the results show that the error margin is less than an acceptable limit indicated by the

108

Chapter 6 Middleware Aggregation Service

simulation test which is 1.5 %. Now this means that it is not a complete waste of

resources to try to calculate an average with this technique and it could be used in some

applications where accuracy is not a major issue. For example, in the case of global

warming in which scientists' only need to know the trend, whether the temperature is

rising or otherwise and in other similar scenarios where the need is only to know the

rising or falling of certain trends. Therefore it can be assumed safely that the snooping

technique may be used in calculating average in some scenarios but not under all

circumstances particularly where more accuracy is required because of the error margin
involved. The next section explains how other services within the framework interact

with AS.

6.3.4 Interaction of Other Services with AS
It was mentioned at the start of the section that the AS can be called at any level where

the application wants to aggregate the data. Aggregation is an important service and

therefore this section explains how it interacts with most of the other services within the

framework. It will aggregate the data coming either from the Event Manager (EM) or

directly from the nodes and send it to the Query Interface Service (QIS). The EM

registers event listeners posted by the users on the sensors through the RegisterEvent

method mentioned in chapter 4. Whenever an event occurs the sensors will sense and

send data to the EM where the event listener is stored. The EM will then call the AS

which will not only aggregate, but also add context to data and send it to the Persistent

Storage Service (PSS) which stores the data.

This is the overall process and the exact procedure is explained in the next section in

detail. As far as context is being added it depends both on the application as well as the

aggregation. For example, if geographic location is to be added as context then it is

important that aggregation is done in a way that location can be added as context. The

context and aggregation type would be specified in the event/query and done accordingly.

In the case of an emergency or real time situation when the data is required quickly the

user will send a query. This query will be sent through the Application Interface Service

(AIS) which will forward it to the Application Management service (AMS). The AMS

will forward this query to Query Interface Service (QIS) after testing that it does not

109

Chapter 6 Middleware Aggregation Service

involve historical data. The QIS will transmit this query to the network. In order to get

the results quickly back to the base station the data will be sent back directly to the QIS

instead of the PSS. Although a copy of the data would be saved at the PSS. The data has

to be aggregated first so this could be done at the sensor level or after the data has been

collected from the sensors at the QIS. At the sensor level the eavesdropping or snooping

technique (Madden et al. 2002) is being used to further economize the resources as

already been explained in detail in the previous sub-section.

After aggregation and compilation of the result the QIS will send this result back to the

base station through the AMS. Again, the AMS will forward it to the AIS from where the

user will get the answer for the submitted query. The above process not only reduces the

amount of data but also ensures there is no delay in the delivery of information to the user

to improve latency which is an important issue in emergencies or real-time situations.

This is done by getting the results directly from the sensors and sending them back to the

user whereas normally in this middleware data is being stored in the PSS and the user can

query the PSS.

The whole process explained above can be seen in the Figure 6-2. Aggregation is also

used in another way to save memory in the prioritization algorithm. We have already

mentioned in the previous chapter that in this technique the user assigns priority to data

and if the network runs out of memory the data stored in the PSS will be aggregated

according to the priorities already assigned by the user at the time of sending query or

registering an event. The data with the lowest priority will be aggregated. The above

mentioned process not only filters data in order to store only relevant data but also creates

more space in the memory for more data.

This section gave an over all idea of how aggregation interacts with other services being

an important service within the framework. In the next section a case study is presented

to show how the aggregation service will actually work with respect to other services

within the framework.

110

Chapter 6 Middleware Aggregation Service

Application layer

6. Result, I. Quer

-MillC Ill lily

U1

:S

s. copy
M

4. Aggregated data

Wireless

Figure 6-2 Interaction of other services with Aggregation service

6.4 Case Study
This case study represents how the aggregation works for different applications. It also
demonstrates the interaction of different services with the aggregation service. The

aggregation service handles three types of data:

0 Real-time data generated by a real-time query or a registered event.

. Data aggregated at different levels level.

0 Aggregating historical data stored in the PSS.

The same example which was demonstrated in the last chapter will be illustrated here. In

that example an event for counting number of light and heavy vehicles on a road is being

registered in order to adapt the road to changing traffic conditions. Here, as already

mentioned in the previous chapter an average of different types of vehicles is being

calculated that uses the road in question. An event is being registered as follows

Chapter 6 Middleware Aggregation Service

Register Event

On EVENT vehicle(Ioc)

COUNT(Iightvehicle), CUUNT(heavyvehicle)

SAMPLE PERIOD I min FOR Ihr

In the above event the number of light and heavy vehicles is being counted and is

example of the first type of aggregation mentioned above. This event will be registered in

the Event Manager. The process of finding a particular service as explained in the

previous chapter is through exchange of messages. The AMS sends a message to find the
EM and forwards the event after receiving an acknowledgement message from the

service. When the sensors sense data it will send the results to the EM. Here there are

three possibilities the first possibility is that no event occurs during the said time period

so nothing will be sent. The second possibility is that only one event occurs in which case

after a minute passes that data would be passed on to the EM. The third possibility is that

more than one event occurs during the allotted time period in which case the sensors

would store the data temporarily on the sensors and send all the events occurring during

that time. Here there could be another possibility, the sensor could aggregate the data and

send the aggregated result to the EM. This means aggregation is also possible at the

sensor level. Looking at the third case the data is only being aggregated once at the

service level because it is storing the data on the sensor and after the specified sample

period finishes it will aggregate the data send it forward but it will consume more energy

and bandwidth. In the second case less energy would be consumed although the

aggregation is being done twice because each sensor will aggregate the data at sensor
level and then the data from different sensors will be combined and aggregated at the

service level. Aggregation at the sensor level consumes negligible amounts of energy and

the sample period could also be increased which would mean fewer transmissions. It is

possible to have an aggregation service on every node in the sensor network but not

necessary. The count() function is given below to demonstrate how the data can be

counted. The size of the array data would be equal to the size of the buffer used to store

the data.

int count (int data()) {
112

Chapter 6 Middleware Aggregation Service

counter=counter-data[];

return counter
}

Another example of a query could be a real time-query to calculating an average.

SELECT sensid, light vehicle

SAMPLE PERIOD IN FOR Ihr

HAVING ave

Here the data will be collected for one hour every 10s and then the average would be

calculated. If the application wants to add context, for example, to collect the sample for

a particular time or location or day it can be done by adding the context. In the following

example time is being added as context.

SELECT sensid, light vehicle

WHERE Time ='02/00/00'

SAMPLE PERIOD IOs FOR Ihr

HAVING ave

It has been mentioned in the previous chapter that if the Persistent Storage Service does

not have enough space to store more data then the Prioritization algorithm will be applied
in order to create more space in the memory. The algorithm checks for a particular

memory threshold and if the available free memory becomes less than the threshold value

the Aggregation Service aggregates the data stored in the PSS having the lowest priority.

The AS and the PSS can be on the same node but if they are on different nodes then data

would be sent to the nearest AS which would aggregate the data and sent it back to the

PSS in an aggregated form. This again involves exchange of messages. The PSS will

send a service discovery message and the AS which will send an acknowledgement

message in return. The PSS will then send the data with lowest priority to the AS which

will aggregate it and send the aggregate value back to the PSS to be stored.

If the developer wants to write their own aggregation algorithm rather than using the

standard ones provided then the method MyAgg() can be used. It could be used for any

113

Chapter 6 Middleware Aggregation Service

of the three types of aggregation discussed above. The developer can customize the

aggregation service to application requirements by implementing the customize interface.

The process is explained in the implementation chapter in detail.

6.5 Summary
In this chapter the aggregation service has been presented in detail. It further discusses

how using in-network aggregation can reduce energy consumption and other resources

utilized. This particular service achieves the primary goal of this research's middleware

framework design by not restricting the user to any particular environment hence making

it flexible. As mentioned earlier, MidWSeN combines three important aspects of a WSN;

events, queries and context awareness. The most important aspect of this aggregation

service is that it uses context to aggregate data then sends this data to the PSS to be stored

along with the context which is a novel contribution. For example, if geographic location

is important for an application then data coming from sensors having the same location

will be aggregated. More than one context can also be combined to aggregate the data,

examples being time and location or time, date and location.

This service is also responsible for sending data to different copies of the PSS or

information can be provided by the particular data-centric storage technique being used

by the network. The middleware, however, does not recommend or limit the network to a

particular technique and assumes that there is more than one copy of data being stored in

the network and the location of these copies is provided to the middleware.

Use of the snooping technique further improves resource utilization especially energy

consumption which is very important in WSN environments. The effects of different

parameters like distance, topology and network size using this technique were found to be

significant. This technique was also found useful in calculating averages in scenarios

where accuracy is not an issue.

This aggregation service provides the standard aggregates, for example, max(), min(),

ave(), sum() and count() as well as MyAgg() which provides an opportunity for the

developer to customize it to applications requirements. In addition there is a SendData()

and Snoop() method available. This chapter provides a case study which explains how

114

Chapter 6 Middleware Aggregation Service

the aggregation service handles different types of data, for example, real time data and
data stored in PSS.

The next chapter presents the evaluation, testing and implementation results of the

framework. It evaluates the framework against its own requirements and compares it to

contemporary works. It also provides the results, graphs and calculations done to

highlight different novel aspects or proof of concepts.

115

Chapter 7 Performance Evaluation and Implementation

Chapter 7PERFORMANCE EVALUATION AND
IMPLEMENTATION

7.1 Introduction
The previous two chapters gave details of the design of individual services in the
framework MidWSeN. This chapter gives the implementation and evaluation details of
the framework. A detailed evaluation of the results obtained through simulations and
implementation are also given in this chapter.

The overall plan was to demonstrate that the research presented in this thesis is feasible.

In some cases, for example, the snooping technique the goal was to improve the

performance of the framework so its impact with respect to different parameters is being

tested. In others the objective is to demonstrate the idea and show how it works, for

example, the priority algorithm. In order to show that the main services of the framework

can work together in a pure sensor environment implementation details are given using
the Crossbow motes (Crossbow Technology Inc. 2007) and TinyOS (TinyOS 2007). The

reason for this is to illustrate the important and novel aspects of the framework.

Simulations are being used to evaluate performance of individual components using
different parameters for comparison. Other programming tools, for example, prototypes

or algorithms have been used to show exactly how the sequence of events develop or
demonstrate an idea. The objectives of our evaluation is

" To show the performance of individual components of the framework

" To demonstrate the working of services within the framework.

" To illustrate the feasibility of the ideas presented in the research.

" To compare our framework with other existing works.

116

Chapter 7 Performance Evaluation and Implementation

7.2 Implementation
The purpose of the implementation explained in this section is to test the framework. The

framework is designed to work coherently in a distributed environment. The
implementation is done in parts to show the operation of different services. To build a

pure sensor network environment TinyOS (Levis 2006) and nesC (Gay et al. 2003) are

used to implement the framework on xbow telosb (Crossbow Technology Inc. 2007)

motes. NesC is a new programming language specifically designed for embedded

systems which uses component-based programming paradigm and follows the C

structure. TinyOS is an operating system specially developed for sensors and is written in

the nesC language. Radio communication in TinyOS follows the Active Message (AM)

model in which each packet on the network specifies a Handler ID which is just like a

port number in a message header. For communication between a PC and the mote a serial

port is used. Java and javax. comm is used to send and receive data to and from the motes.

In the first part of the implementation an event is registered by using RegisterEvent() to

get data in the EM and stored it on a mote through Store() method of the PSS. A java

interface is used to connect the sink to the telosb mote using TinyOS (this interface

comes as part of TinyOS1.10). The sink in this case is a PC. The component
SensePhotoM of TinyOS was used in this case because the data sensed was light. The

event was registered in the Event Manager. After sensing the data it is stored on the same

mote in the Persistent Storage Service in this case the Logger is used for which Figure

7-1 and Figure 7-2 illustrates the code. The EEPROM or flash memory could both be

used because both act like a persistent memory and will retain the data even if the mote

crashes or is rebooted. The flash memory, however, is a better choice because it will have

more space, 1 MB in the case of mica2 motes and 32MB in the case of imotes. On the

other hand EEPROM has less memory and some memory is set aside to store operating

system and hardware interfaces as well, therefore it might not have a lot of memory to

store data. In this case the EEPROM is used.

Then some queries are sent from the PC to get data using the SendMsg and ReceiveMsg

components of the TinyOS. A simple multihop routing protocol to communicate between

the motes is used which also comes with the TinyOS setup. By conducting this simple

117

Chapter 7 Performance Evaluation and Implementation

test four of the framework services, the Persistent Storage, the Application Interface

Service, the Application Management Service and the Event Manager, can be

demonstrated. The first query requests some data which is already stored in the persistent

service. The AIS using SendMsg sends a historical query to AMS which looks at the

querytype flag used as an attribute in SendMsg and decides historical data is required.

The AMS sends the query directly to the PSS and retrieves data using GetData() and

sends it back through the same route to the PC. Two different motes and a PC were used

to show all three services are stored on different nodes. In these tests the queries were

transmitted and historical data retrieved successfully. This test also proves that the

services discover each other despite being on different nodes and, communicate and

perform a task collectively. All these are simple tests just to illustrate that different

services can talk to each and collaborate in a distributive environment to perform its task.

task void writeTask({
char* ptr;
atomic {

ptr =
(char*)buffePtr[currentBuffer];

currentBuffer ^=0x01;
}

call LogerWrite. append(ptr);

Figure 7-1 Code to illustrate data being written to the Logger

asyn event result t ADC. dataReady(uintl6_t this data) {
atomic {

int p= head;
bufferPtr[currentBuffer][p] = this data;
head = (p+1);
if (head == maxdata) head = 0;
if (head == 0) postwriteTask{);

}
display(this data);
return SUCCESS;

}

Figure 7-2 Code to illustrate data being saved to the mote

Data is being stored within the network on the nodes for the lifetime of the network so

that applications can query historical data as well. Saving data for the lifetime of the

118

Chapter 7 Performance Evaluation and Implementation

network is challenging because of its limited memory. Once the data is saved within the

network on the motes there might be a situation in which more data needs to be stored but

not enough memory is available to store important data. In order to deal with such a

situation a prioritization algorithm has been presented in chapter 5. The actual code for

this algorithm is given in Figure 7-3.

if (file_size>=file_limit) //check the limit condition
{

cout«'the memory limit is exceeded we perform aggregation at level "<<p«endl;
//query_data_file. seekg (fstream:: beg);
query_data file. open("query_data_file. tXt", fstream:: in I fstream:: out I stream:: binary);
while ((! query_data file. eofo)&&(file size>=file_limit)&&(counter<NO NODE))

{
query_data file. read((char *)(&a), sizeof(QUERY_DATA));
cout«"Priority "<<a. priority«endl;
if (a. priority==p)

{
cout«"Priority found "«a. priority«endl;
summ=summ+a. data;
counter++;
file

_size=file_size - sizeof(QUERY_DATA);
}

) summ;
double avrg= summ/counter;
cout«"we aggregated "<<counter«" data at level "«p«endl;
cout«"memory size is "«file_size«endl;
p-; // We decrement the priority
query_data_file. close();

Figure 7-3 Code for Priority algorithm

The application assigns priority to data required to be stored while registering an event or

sending a real time query. The system will keep on checking the system and when ever

the memory limit goes down it will run the prioritization process. The data with the

lowest priority will be aggregated thus creating more space without losing all data. This

algorithm was also tested by simulation using GTNets simulator on a network size of 100

nodes.

119

Chapter 7 Performance Evaluation and Implementation

The Georgia Tech Network simulator (GTNetS) (Riley 2003) used to simulate the

algorithm is an event based simulator based on Linux operating system. The different

wireless sensor network models such as radio propagation model, computation and

communication energy dissipation models were implemented in this simulator. This

simulator can be programmed using the C language. For simulations the radio energy

model proposed in (Heinzelman et al. 2002) is used because it is a popular model in

WSNs. The settings used are the radio electronics energy e1e, E is set to 50 nano Joule per
bit. The radio transmitter energy for distances less than dcrossover

,1f,; s, -,,, P is set to 10 pica

Joule per bit per m2, and the radio transmitter energy for distances greater of equal to d

crossover ,
1�ß_,,,. o-amp is set to 0.0013 pica Joule per bit per m4. The assumption is that sensor

nodes use the IEEE 802.15.4 (Howit et al. 2003) standard, therefore, the radio range is set

to 15 meters and the distance threshold, for which the free space model is used, d crossover
to 10 meters. The initial energy for each sensor node is set to 2 Joule.

Priority was assigned to data queried with the highest priority being `1' and lowest being

`3' as is evident in the Figure 7-4. Memory is being checked and as soon as it exceeds a

certain point data at the lowest level is being aggregated which in this case is 3. If still

there is not enough memory than data having priority 2 will be aggregated which is also

shown in Figure 7-5.

120

Chapter 7 Performance Evaluation and Implementation

121

Figure 7-4 Priority assigned to data by application

Chapter 7 Performance Evaluation and Implementation

Aggregation Service

This section gives the implementation details of aggregation service. This service has

already been tested in the simulations using the prioritization algorithm. The results of the

prioritization technique illustrated very clearly that it not only reduces the amount of

energy consumed but also saves memory in order to accommodate more data. Here the

objective is to demonstrate the basic idea of how to aggregate data using context and is

just an example. It was explained in chapter 6 that in order to add context to data the

application can specify a context. The data collected by the event manager (EM) or query
interface service (QIS) will be aggregated according to that context. Finally the data is

stored in the persistent storage (PSS) to be queried by the user along with the context. it

has been implemented in C# in order to demonstrate proof of concept. Figure 7-6 shows

simple aggregation without context where as Figure 7-7 shows aggregation with context

which is date.

122

Figure 7-5 Aggregating data according to priority

C haptcr 7 Performance Evaluation and Implementation

Query by

QQ Temperahxe

QQ Pressure

a Hwy

Equal

Equal

Equal v

15

Context
Q Date

Q Time
QX

QY

Aggregates

Q Sum
Q Count

Average

Q Maxi man
Q Minim&xn

E qual

Equal

Equal

Equal

10109! 2007
17: 46: 25

rn

QT aL Q Pressure W Humidity

100 10 120

222

50 5 60

Calculate

Figure 7-6 Query without context

123

Chapter 7 Performance Evaluation and Implementation

Query by

Qo T smpsr. tu. E qual v [50 -J

Q Pisssurs Equal v
ýO

0 Mundft E Wel

Date E Our 01/08/2007

TI Equal 14: 57: 03

0X Equal 0

Y Equal 0

. Aggregate-,

Tertperatur o Pressure o Humidity

EJ 5u^ 100
o COL" 2
a A�«age 50

r-I Ma xs
0M i*n sn

Figure 7-7 Query with date context

7.3 Evaluation
This section provides and evaluates the results against project requirements given in

chapter 4.2. Mathematical analysis is also being used to validate the results. One of these

requirements states that data is to be stored within the network for longer period of time.

Chapter 5 explains in detail the design and working of our Persistent Storage Service. In

order to see how much memory will be consumed to store a certain amount of data within

the network and also find how much energy is consumed by WSN having limited

memory and stringent resources. We used simulations to store events within the network

to see how much memory would be consumed to store ten thousand events in a network

of one thousand nodes. We only generated a single type of event and the radio range used

was 10 meters. The parameters used are for comparison with other existing works.

Generating 10.000 events with a length of 4 bytes each resulted in memory usage of 40

kb consuming 1147 milli joules of energy. The fact that 10,000 events with a length of 4

bytes each only consumed 40 kb is an indication that in reality it might be feasible to

124

Chapter 7 Performance Evaluation and Implementation

store data on the sensors and the figure 1147 milli joules indicates it consumes very low

energy as well.

Another important requirement of the project also mentioned in chapter 4 is that the

middleware should be robust in case of high node failure. This has also been noted in

chapter 4 and 5 that in order to overcome the issue of robustness in data-centric design in

case of high node failure rate or mobility more copies of data are required. So the next

question needed to be addressed is how many copies of data would be sufficient to ensure

there is at least one copy of data always available within the network. To seek an answer

to this question the probability for a possible event is calculated which could result in

unavailability of all copies of storage nodes. The probability of all storage nodes being

unavailable can be calculated given the percentage of nodes made unavailable is known.

We used Hyper-geometric distribution (Rohatgi et al. 2001) to calculate the probability

of all data storing nodes being unavailable or having run out of batteries. The formula

(DAN-D

being used for the distribution is
k n-k

(N)

The parameters used are NE0,1,2,3....... ;

De 0,1,2,3,......., N, "

ne0,1,2,3,....., N,

kcc 0,1,2,3,....., n;

Here N is our total number of nodes within the network; D is the total number of storage

nodes, n is the total number of nodes unavailable and k is the number of unavailable

storage nodes.

If we assume that D and k are always the same, then we take (D I =1

Dl (N -D) J
So we can have the formula

n`

125

Chapter 7 Performance Evaluation and Implementation

Now applying the above formula to an example we assume N= 100, D=5, n= 40 and
(95)

35
0.

k=5 we get 10 0l
40

95!
35! 60!

= 0.00873993...
100!

40! 60!

Total No.
Of Nodes

No. of
copies

No. of
Nodes

unavailable

Confidence
interval

100 3 10 99.9%

100 3 20 99.2%

100 3 30 97.4%

100 3 40 93.8%

100 3 50 87.8%

100 3 60 78.8%

Table 3 Showing confidence interval for 3 copies of data in a sensor network

This means there is only a probability of 0.00873 that all or any of the storage nodes

would be unavailable which even if magnified in reality could still be considered as

encouraging. In percentage terms it will come out as . 0873% with a confidence factor of

99.1% which is negligible. In other words if we have 5 copies of data it will give us a

confidence of 99.1 % that all 5 copies of the data could survive. Using the above formula

we tried to calculate the confidence factor for different number of copies as well as

different number of nodes unavailable. Table 3 gives complete details. In graph I the

yellow line represents data given in Table 3 which clearly shows that if percentage of the

nodes unavailable is high, more copies of data would be required. For example, with 60%

of node unavailability which is a very high rate and might not be always the case in

reality, the confidence factor for 3 and 4 copies (refer to Table 3 and 4) is less than 90%.

Less than 90% is not a desirable requirement where as for 5 copies it is above 90%

(Table 5) which is our aim. This means the number of copies required depends on the

percentage of nodes unavailable.

126

Chapter 7 Performance Evaluation and Implementation

110.0% 7ý- -- -

1050%

100.0%--

W 95.0%
-+-5 copies

cy 90.0% -ý 4 copies
v
`c 850% 3 copies
0

80.0%

750%-

700%
10 20 30 40 50 60

No. of nodes unavailable

Graph I No. of nodes unavailable per 100 nodes

Total No
of Nodes

No. of storage
copies

Total No. of
nodes
unavailable

Confidence
Interval

100 4 10 99.9%

100 4 20 99.8%

100 4 30 99.3%

100 4 40 97.6%

100 4 50 94.1%

100 4 60 87.5%

Table 4 Showing confidence interval for 4 copies in a sensor network

Total No
of Nodes

No. of storage
copies

Total No of
nodes
unavailable

Confidence

Interval

100 5 10 99.9%

100 5 20 99.9%

100 5 30 99.8%

100 5 40 99.1%

100 5 50 97.1 %

100 5 60 92.7%

Table 5 Showing confidence interval for 5 copies in a sensor network

127

Chapter 7 Performance Evaluation and Implementation

Graph 2 No. of nodes unavailable per 1000 nodes

The next step was to check if increasing the number of nodes would have any affect on

the number of copies required in a network but as graph 2 shows it had a minimal affect

as the number of nodes are increased from one hundred to one thousand. Graph 2 follows

the same pattern as graph I therefore it could be safely concluded that increasing the

number of nodes does not affect the number of copies required. The above set of

simulations is a positive indication to say it is feasible to save data within the network for

longer period of time. The other point worth noting is that multiple copies of data will

make the system robust and reliable because one copy of data will always be available,

however, the number of copies was found to be dependant on percentage of nodes made

unavailable. This will help the designer of the network not only to know in advance how

many copies of data would be required but also how many copies of all the services

described in our framework.

I) Simulation for Aggregation using Snooping Technique

In the second set of simulations the snooping technique is tested. This technique has

already been described in detail in section 5.3.1. Previously TAG (Madden et al. 2002)

proved that this technique is less costly in terms of energy consumption in comparison to

other techniques. However, they did not test the affect of different parameters on the

performance of the snooping technique. The objective of these tests is to see if changing

the network parameters, for example, topology or event range has any effect on the

performance, in other words, to see the effects of the snooping technique on the

middleware. Although theoretically it seems that changing the parameters should not

have an effect on energy consumption. Another assumption TAG made about snooping

128

Chapter 7 Performance Evaluation and Implementation

was that it is only effective in single aggregates, such as, max/min but is not effective in

averages because of the expected error margin. The snooping technique is also tested for

average to calculate the error margin to see if it is not feasible at all to use this technique

for average or is it possible is some cases. Again the Georgia Tech Network Simulator

(GTNetS) (Riley 2003) is being used to conduct these tests.

There were two objectives that were achieved from these tests. The first objective was to

find out how much this technique is effective in reducing the energy consumed in case of

calculating a maximum value and also to see the effects of changing network size, event

range and topology in terms of saving energy. It has been established before in this thesis

that network size, event range and topology may change frequently in WSN therefore it is

important to know the affect of these parameters on the performance of this technique.

The second objective was to check the snooping technique's effectiveness in case of

average and the accuracy of its result because it has not been tested previously for

average assuming that the results will always have an error margin.

No. of nodes
deployed

No of Snooping
Nodes

Percentage

900 53 5.88%

400 57 14.25%

196 62 31.63%

Table 6 Uniform topology 250x250 grid

No. of Nodes
deployed

Snooping
Nodes

900 20/2.22%

400 20

196 20

Table 7 Uniform topology 200x200 grid

A. Uniform Topology

Keeping the topology uniform several tests are conducted. The first test shows if the

percentage of snooping nodes increases or decreases by keeping the network size

129

Chapter 7 Performance Evaluation and Implementation

constant and reducing the number of nodes deployed. Using 10 meters distance between

the nodes and network size of 250 x 250 the results were obtained as shown in Table 6.

It can be seen from Table 6 that reducing the number of nodes has a positive affect
because fewer nodes are sending the data thus consuming less energy. In the second

round of tests the network size is reduced to 200 x 200. As can be seen from the results

shown in Table 7 the number of sending nodes reduces considerably and remains

constant. This means snooping technique works more efficiently for small sized
networks.

To study the effect of distance on energy consumption we increased the distance between

the nodes. As we can see from Table 8 there is no significant effect on the percentage of

sending nodes but has considerable affect on the total energy level. This is so because by

increasing the distance more nodes become involved and thus increases energy level. So

distance does not have a substantial affect in terms of the percentage of participant nodes

but has considerable affect on energy consumed.

Event
Range

Sender
Nodes

Percentage Energy
Consumed

1Om 15 40% 0.444mj

20m 21 52% 2.44mj

30m 37 56% 4.66mJ

40m 61 55% 7.55m1

50m 101 52% 11.55mJ

60m 137 51% 15.77mJ

70m 185 52% 21.55mj

Table 8 Effects of Distance on Snooping

Next step is to calculate average using the snooping technique having uniform topology.

The results are calculated by giving the nodes a criterion. If the values of the nodes were

within a certain range of the actual average, only then the nodes would send their values.

The worse case scenario is also calculated mathematically and the simulation results back

it up as shown by graph 3 and 4. For example, if one node is sending the value 10 and all

the other nodes sense a value of 11. Keeping the error margin <= 1 the value of 11 does

not fall into the error margin and hence other nodes do not send their values.

130

Chapter 7 Performance Evaluation and Implementation

Mathematically if e is the error, a is the actual average and the number of nodes is

represented by n. We can say ((a±e) + n*a)/n+I -* a the actual value returned is

a±e

so by applying the above formula to our example we can say

(10+ (n* 1 1))/(n+l) = (I 0/(n+l)) + ((n* II)/(n+ I))

--º0+ 11 n/n+ I=I 1(n/n+ 1) - 11

Using this above formula worse case positive and negative are calculated which gives the

following graph. It can be seen by looking at graph 3 that the simulation results are

between the worst case positive and negative. It can also be deduced from this graph that

as the interval is small the average is the same and almost all the nodes are participating

but as the interval increases the results gets worse and again improves as the interval gets

larger. The node participation graph 4 shows that the number of nodes keeps decreasing,

however, this means less energy consumed. Hence, it can be concluded that the error

margin falls within the range of±l. 5 %.

Avg calculated through snooping technique

29.00

27.00

25 00
m4 Calculated Avg

23.00
worst -ve

cd 21.00 Worst +ve
V

19.00

17.00

15.00
0.00 1.00 2.00 3.00 4.00 5.00 6.00

Interval

Graph 3 Worse case scenario in calculating average with snooping

131

Chapter 7 Performance Evaluation and Implementation

B. Random Topologi,

The previous tests were done with uniform topology so the next step was to change the

topology. The results shown in Table 9 reveals that although the percentage of sender

nodes decreases in the Random topology the energy consumed increases this may be

because being a dense network, more nodes are involved.

It is apparent from the simulation results shown above that changing the topology does

have considerable affect on the participant nodes and thus the energy consumed is

increased. Overall. the snooping technique does have a positive affect by reducing the

number of nodes and thus reducing the energy consumed.

Event
Range
(mtr.)

Senders
Nodes

Percentage Energy
Consumed

(MID

10 29 20 7.50

20 135 15 32.69

30 306 16 77.19

40 504 14 109.53

50 803 13 170.00

Table 9 Random topology

C. Discussion

Looking at the above simulations it can be concluded that the snooping technique works

under most circumstances for calculating a maximum or minimum value. However,

network size, distance, and topology do have a considerable effect on the energy

132

Graph 4. Nodes participation in calculating average using snooping

Chapter 7 Performance Evaluation and Implementation

consumed which as mentioned earlier is vital in WSN. Reducing event range and network
size improves energy consumed as is evident from Table 6 and Table 7. Changing the

topology from a uniform to a random topology also increases the energy consumed as

shown in table 7. This may be due to the fact that in a Random topology the network is

densely populated and therefore more nodes are involved in sending data hence

consuming more energy.

In the case of calculating an average the results show that if the interval is large the error
keeps decreasing. This is a positive sign in the sense that the error margin is under 1.5 %

as can be seen in Graph 4. Which means it could be used in some applications where

accuracy is not very important, for example, in the case of global warming in which the

scientists only need to know whether the temperature is rising or otherwise and in other

similar scenarios where the requirement is only to know whether the trends are going up

or down. Therefore, it can be safely assumed that the snooping technique can also be

used in calculating average in some scenarios but not under all circumstances.

Error% between actual and calculated avg
25.00-

20.00

15.00
ä+ Series 1
2

w 10.00 -a- worst (%)

5.00

0.00
000 1.00 200 3.00 4.00 5.00 6.00

Interval

Graph 4 Error Margin for calculating average using snooping worse case scenario

Looking at the above discussion it can also be safely said that this technique will have a

positive effect on the working of the middleware and the aggregation service by reducing

the energy consumed by the framework. Snooping can safely be used under most

circumstances and relied upon to save energy. This fulfils the requirement for the project

to be energy efficient as already mentioned in chapter 4.

133

Chapter 7 Performance Evaluation and Implementation

7.4 Project Evaluation
In this section the MidWSeN is being evaluated against the project requirements
discussed in chapter 4. The first requirement is to keep the framework adaptable and
flexible to accommodate as many situations as possible or as many applications as
possible. In order to achieve this service-oriented architecture is selected so the

middleware could be deployed in any environment without knowing the underlying

platforms or architecture. The framework is adaptable and flexible in more ways than

one. The use of optional and core services makes the framework to adapt to different

environments and application requirements. The optional services will not be deployed if

the applications do not require these services. For example, if an application is event-
based than it will not require the QIS, where as, if it is query-based than it may not

require the EM. It could also use both functionalities at the same time if enough network

resources are available and application requires it. Therefore, adaptability has been kept

as an individual requirement. The size of the framework could also be reduced by

selecting only one of the optional services if enough resources are not available to

support the framework.

Further, there could be any number of copies of the services depending on applications
and network requirements. For example, as already mentioned in the simulation section

above, in a large network having a high unavailability rate of nodes more copies of the

services working could be made available within the network.

Our services also have flexibility and adaptability individually. For example, as

mentioned in the description of the aggregation service, the use of MyAgg method in

which the application can specify its own particular aggregation method. In the data

adaptation service the application can specify any particular context which fulfils its

specific needs. Also the user is allowed to use any particular protocol or data structure

which makes it feasible in many environments.

The second requirement is to use in-network processing because it reduces the number of
messages being communicated over the network thus saving precious resources like

energy and bandwidth. The choice of data-centric design helps in providing in-network

processing because it processes the data near the source. For example, the temperature

134

Chapter 7 Performance Evaluation and Implementation

sensors will sense and store the data on the same sensor or neighbouring sensors does
reducing the amount of resources being used.

In-network processing is being used in the aggregation service and the persistent storage.
Aggregation is important as mentioned in detail in chapter 6 and it has therefore been
kept as a requirement. By aggregating data within the network, data communicated over
the network is reduced. Filtering redundant data by different techniques like snooping
also helps in reducing redundancy. The persistent storage communicates data only when
a query is sent so this also considerably reduce the amount of data communicated over
the network. Persistent storage is also another key requirement because it helps in

providing historical as well as helps in answering spatial and temporal queries by adding

context. Adding context is an important requirement and the Aggregation Service

provides this functionality by adding time, date or location as context which could help to

answer spatial and temporal queries. Furthermore, the framework allows the application
to add its own context to the data. This is an important contribution of our framework

because it not only helps in economizing the resources but also makes the data more
meaningful.

Another important requirement is robustness as node failure rate may be high. Our

middleware keeps many copies of the services and data in order to keep the system
robust. The next requirement is of minimum hardware and software required to deploy

the framework. The framework is lightweight and does not require any special hardware

apart from sensors or a PC. In total there are seven services out of which one lies on a
more resourceful network and on a powerful node such as a computer, the Application

Interface Service, where as the remaining services may reside on the sensor nodes. The
AMS, PSS and AS are the core services, and only one can be selected from the remaining
three optional services, so effectively only four services may be residing and are used on
the sensor network to get the full functionality of the framework. The reduction of the

size of the framework not only makes it flexible but also light weight. Individually also
the services are not heavy in terms of storage or programming overhead which is evident
from the design and implementation details. This framework is designed for distributed

operations and the services will be on different nodes which cooperate with each other to

perform a certain task

135

Chapter 7 Performance Evaluation and Implementation

So in conclusion it can be said that the framework is adaptable and flexible enough to be

useful in many environments and thus fulfils all the project requirements. Having said it

should not be assumed that the framework is complete in every respect. There are certain

aspects that are important for WSN which has not been included. For example, security,

this is very important, but not part of the framework. Generally, security is important for

a network because the network has to be protected from unauthorised access. If a node in

sensor networks is compromised then it can compromise the security of the whole

network. Therefore it is not only important to protect the network from malicious attacks

but it is equally important to identify malicious nodes and recover the network.

Specifically, with respect to the framework presented in this thesis, data is being stored

on the nodes and of course it is important to protect data so that only authorised personnel

can access the data.

The other important factor which is very vital for sensor networks is self-management.

Although the Application Management Service is present the framework which does

perform certain functions, for example, discovering other services but there are other

aspects that could further develop the framework. Other issues could be having

knowledge of the different copies of data and directing the query to that exact location of

the data or directing it to the nearest copy of the data. Then there is also the issue of

managing different copies of services that might be used by different applications. The

framework might be required to include another service or add some more functionality

to the existing services in order to collect more information about the network itself and

share it within the network or with the applications.

The reason for not including these important aspects was to first fulfil the basic

requirements and that is what exactly have been done in the framework. A basic platform
is given on which one can build a whole new structure by adding other important services

or functionality such as security. Therefore, these functionalities are important but

outside the scope of the study for the time being and forms a part of the future works.

Another issue that needs clarification is that although the data is being stored within the

network on the nodes, how or what data structures should be used are not being suggested
because it is being looked at from the middleware point of view and not from database

136

Chapter 7 Performance Evaluation and Implementation

point of view therefore this also remains as an open research issue. However, since data-

centric design is being used therefore it has to conform to this particular design.

In a heterogeneous environment other optional or temporary services may also be

included which can be made available temporarily if the network can support it and taken

off when ever the resources becomes scarce or they are not required. This could be done

particularly in indoor applications where a device doing specialized service is added

whenever required. The next section gives a comparison with the existing works in order

to highlight the distinguishing features of the work presented in this thesis. It illustrates

the fact that although there may be specialised works which are more efficient, the

framework presented in this thesis is novel because it provides a more general and

holistic approach.

7.5 Comparison with Related Works
The main objective of this research is to provide a comprehensive middleware framework

that could incorporate most major if not all the main features. The proposed framework

also utilizes the work done by other research teams. Therefore this framework shares

many similarities with existing projects. There are of course many distinguishing features

of this framework which have already been explained in detail in previous chapters. This

section is specifically dedicated to comparing other significant research projects with the

proposed framework.

Information gathering is a primary function of WSN. Therefore data storage is also an

important feature of the middleware. In this regard TinyDB (Madden et al. 2005) and

DSWare (Li et al. 2004) can be considered to be most relevant to the work presented in

this thesis. Both use in-network processing and data-centric storage which have already

been defined in chapter 4 and 5 respectively. Although the significant difference is that

their approach is a pure database approach where as the approach adopted in this thesis is

to concentrate on other aspects, for example, events and context as well in addition to

provide services such as aggregation.

TinyDB (Madden ei al. 2005) uses a database approach and tree topology. This approach

views WSN as a single distributed entity, which could be queried using SQL-like queries

to assign sensing tasks by the user (Bonnet et al. 2000; Levis et al. 2002; Madden et al.

137

Chapter 7 Performance Evaluation and Implementation

2005). For example, in TinyDB it is difficult to handle complex sensing tasks like
building a relationship between sequences of events in certain geographical areas. In the

MidWSeN framework it is possible to build such a relationship using the persistent

storage because the data can be stored with context. TinyDB is limited because it only

considers real-time queries whereas the middleware framework considers not only real-

time queries but also historical queries. Another important aspect of our work is context

which means that user can send context- enhanced queries. Hence the TinyDB approach

though easy to use, suffers from some scalability issues as well as from limited

expressiveness. MisWSeN is a middleware approach and therefore different from

TinyDB. The framework is not advocating any specific topology or data structure which

makes MidWSeN framework more flexible.

DSWare (Li et al. 2004) has attempted to include in-network processing of compound

events but in a restricted manner. Their approach uses data-centric storage with a slight

modification. They replicate the data to several physical locations to improve the

robustness of the system. Different copies of data are synchronised when the system

workload is low. This means data will not be synchronised at all times. If, for example,

before updating other copies the node holding the data becomes unavailable then that

data will be lost completely. They have also included some real-time scheduling

mechanisms providing flexibility at the cost of complex application development. They

are using SQL-queries sacrificing more memory and processing capabilities for flexibility

and expressiveness. In comparison the MidWSeN framework also advocates more than

one copy of data which is the persistent storage but it updates the copies all at the same

time which ensures all copies of data will have the latest or updated information and no

data will be lost in case of destruction of a node.

This section is only going to discuss the works using in-network aggregation because the

proposed service is also processing the data within the network. In Tiny Aggregation

(TAG) (Madden et al. 2002) suggest a service using database query language technique

of selection and in-network aggregation. The query is broadcast to the network and data

collected using a tree structure only combining relevant data and sending it to the base

station as the data is being passed up the tree from child nodes to parent. TAG does not

propose any particular routing protocol and only concentrates on the aggregation. It

138

Chapter 7 Performance Evaluation and Implementation

restricts the user to a particular data structure which is easy to use but does not cover all
types of queries, for example, temporal or spatial. Another important work is Directed

Diffusion (Intanagonwiwat et al. 2003), a communication paradigm which diffuses an
interest by flooding the network and routes the data back by setting gradients on the most

reliable paths. Travelling data is aggregated on its way back through different nodes.

Hence, they provide the routing mechanism too along with aggregation. Again

aggregation is being combined with routing which is a lower level operation. Both the

works limit the user to SQL or SQL- like languages. The proposed MidWSeN framework

does not limit the user to any particular topology or data structure. Again both TAG and
Directed Diffusion concentrate only on aggregation and routing whereas the MidWSeN

framework provides other functionalities as well. Therefore both of the above mentioned

works might be more efficient in what they propose but are very limited in terms of scope

and functionality.

The above mentioned works are also limited in their context. They only take into account

a pure sensor environment whereas in reality it might be a heterogeneous environment. If

we are to embed sensors in our daily life then they might be assisting the more traditional

computers with more resources and power. In other words sensors can be in different

types of environment which varies from very constrained ones to not so constrain. The

proposed work is significantly different from the above mentioned works in many

respects. First the whole concept is to save the data within the network and send only the

processed data to the user on query because communication is more costly than

processing. Second the framework is not restricting the user to any particular query

language. The user can query the network using any type of suitable software. Finally no

recommendations are being enforced for any particular topology or data structure hence,

making it flexible to use in different environments, that is, it could easily be adapted to a

very constrained environment and visa versa.

7.6 Summary
This chapter provided an evaluation of MidWSeN framework proposed in this thesis. For

evaluation purposes different mathematical calculations and experiments are conducted

to prove the design and concepts presented in this thesis. The results, graphs and tables

139

Chapter 7 Performance Evaluation and Implementation

are provided in order to confirm the functionality of the framework and give proof of

concept.

The framework is evaluated against the requirements outlined in chapter 4 to conclude

that the framework have been successful in reflecting those requirements in the design as

well as the implementation. The performance of the framework indicated by the results

provides a novel contribution to the area of WSN by providing a foundation to a holistic

approach of combining query, events and context. It also provides a critique of research

work presented in this thesis by taking an impartial view of the research done and further

research questions raised during the course of this research.

Finally the chapter provides a comparison with the existing work and concluding that

although the work may not be as efficient as compared to other related works being

dedicated to a single aspect but it certainly has a broader and flexible approach. It is not

limited in scope and provides a more comprehensive solution to the problems discussed

in the early chapters. The next chapter provides conclusions and future research areas are

indicated which came up during the course of the existing work.

140

Chapter 8 Conclusions and Future Work

Chapter 8 CONCLUSIONS AND FUTURE WORK

8.1 Introduction
Sensors have revolutionized the world of information by adding physical dimension to
the data. Scientists can foresee the future as a Smart and integrated world. In such an
environment every object on our bodies and environment would be able to connect and
communicate with us and each other. With the decrease in the cost of sensors and
improvements in sensor technology, soon every company will consider it important to
have their own sensor network as they have numerous applications. This can lead to a
Sensornet which can replace the Internet. The technological advances and the tremendous

potential these small devices offer will eventually lead us to this vision of a Smart world.

Wireless Sensor Networks are challenging because of their very limited resources.
Taking a short tour of history in the Introduction revealed that a lot of different types of
hardware and technologies are working together which means operating in a
heterogeneous environment. Therefore to handle heterogeneity and its related issues

another layer of abstraction called middleware is required. Existing middleware
techniques for wired or traditional networks, however, were found not competent enough
to be applied to WSN because they are resource intensive. Wireless sensor networks have

unique characteristics because of their very limited resources and requirement to operate

without human intervention in harsh terrains. Therefore a need for new middleware

strategies was found to be necessary in order to cope with the unique characteristics of
the WSN. The middleware systems developed so far have been restricted because they

are application specific in order to make them efficient and cannot be reutilized for
different applications. As research has proved, in-network processing and storage is more
cost effective in terms of resources, therefore processing and saving data on sensors for
longer periods within the network proves more beneficial in terms of resources. The main
objective of this research was to create MidWSeN, a flexible middleware framework that
would work with different applications to acquire context-aware data.

141

Chapter 8 Conclusions and Future Work

There has been a considerable amount of work done in this area and sensor networks

have come along way since its initial stages. Early sensors were very basic and could

only sense and transmit now they can not only do this but also receive process and store

data. Similarly each network was dedicated to a single application or single type of

application but now researchers are exploring the avenues of using the network for

multiple applications. The focus of this thesis was to build a flexible middleware

framework that can facilitate as many applications as possible within the limited

resources available. This would pave the way to sensor reusability and enable the sensors

used by different applications to talk to each other and create a well integrated

environment. The Middleware Wireless Sensor Network (MidWSeN) framework has

tried to achieve this goal by combining different services. This framework combines

queries, events and context to enable applications to extract the required data or

information in a flexible and not so limited manner.

The rest of the chapter gives a summary of the whole thesis and the contributions made in

this research. This work can be the foundation of other issues related to the area and some

of the future work is also identified within this context.

8.2 Thesis Outline
This section gives a brief summary of the whole work presented in this thesis. The

subsections are divided according to the topics discussed in the different chapters.

8.2.1 Introduction
The first chapter underlined the need for having a flexible middleware for WSN. It

briefly narrated the history of different technologies starting from the advent of networks.

It briefly defined area of wireless sensor networks and challenges related to this field. It

identifies the need for a middleware which can be utilized by multiple types of

applications. It also described the design goals and novel contributions of the work.

8.2.2 Background

Chapter 2 and 3 gave background information about sensors and an overview of the

existing significant works done in WSN in some detail. Chapter 2 discussed wireless

networks in general and WSN in detail. It described the characteristics, design principles

142

Chapter 8 Conclusions and Future Work

and applications of sensors. It also gave a brief description of the hardware, technologies

and software related to WSN. Some of the important and currently active research areas
in wireless sensor networks have also been mentioned to give an overview of research
activities going on in the field of WSN.

Chapter 3 gave a comparison between existing WSN middleware and also explained the

reasons for traditional network middleware not being applicable to sensor networks. It
discussed the existing works and their drawbacks in terms of flexibility, ease of use and
efficiency. Further it elaborated on the point of a new approach to the problem of limited

scope of existing middleware in WSN.

8.2.3 Design of a New Middleware Framework MidWSeN
Chapters 4,5 and 6 discussed the overall design of the framework as well as the design of

individual and in particular its important the Persistent Storage and Aggregation Services.

Chapter 4 outlined a new set of requirements which are considered beneficial towards

devising a better and flexible middleware. This chapter also presented a novel

middleware framework design for WSN which combines three important features query,

events and context. It also presents an overview of the novel core and optional services

included in the framework which makes it flexible and their individual contribution to the

overall structure.

The purpose of Chapter 5 was to highlight the novel Persistent Storage Service in greater
detail. This service is used to store data within the sensor network on the sensors for

longer period of time. This chapter explained the benefits of storing and processing data

on the nodes and also provides the mechanism of the process done within the framework.

It presented a novel algorithm for prioritization being used to provide memory for

important data in case of memory shortage. It also explained how other services within

the framework interact with this service in order to provide an efficient system.

Chapter 6 explained another novel service the Aggregation Service in detail. The

aggregation service is not only used to save memory but also add context to data in

addition to the traditional way of compressing or filtering data and saving resources

which is a novel in WSN. This service aggregates data using context. The chapter also

143

Chapter 8 Conclusions and Future Work

explained the necessity to keep aggregation as a middleware service and how it functions

within the framework to provide efficient use of resources.

8.2.4 Evaluation and Results
Chapter 7 provided the evaluation of the framework and the implementation details. The

main objective of that chapter was to show the performance of individual components of

the framework and to demonstrate the working of the services within the framework.

That chapter illustrated the feasibility of the work by presenting results. TinyOS and nesC

was used to implement the Persistent Storage to show that it is possible to store data on

the sensors. Simulations were used to store 10000 data elements and calculated the

memory and energy to show the feasibility of storing a large amount of data and found

the results encouraging. The Prioritization algorithm was also implemented using

GTNetS simulator to show that it reduces the amount of data considerably making space

for more data to be stored. The Aggregation Service was also implemented to

demonstrate how data can be aggregated using context provided by the user. The work

was evaluated against the requirements given in chapter 4 and found that the framework

have been able to fulfil these requirements. A comparison of the framework against other

related works is also presented in detail. These works may be more efficient in certain

ways but their approach was found to be very limited and inflexible. In conclusion one

can say that the framework has been able to achieve the design goals and MidWSeN

provides a much broader and flexible approach compared to the works previously done in

WSN.

8.3 Contributions
To broaden the base of the middleware called MidWSeN have not focused on a single

aspect of WSN. MidWSeN has been designed to be flexible and adaptable to

accommodate many applications. A number of contributions are made in this thesis

which is highlighted in this section. The contributions provided in this thesis are detailed

as follows.

"A deep insight to the field of middleware for sensor networks were achieved by

conducting an in depth study of the area which resulted in the production of a new

144

Chapter 8 Conclusions and Future Work

set of requirements. These requirements try to encompass the problems or

shortcomings felt in the existing works. The main problem with other works is

that they focus on a single aspect and are very limited in their approach. These

requirements became the basis of establishing the design of a new and better

middleware framework for WSN.

" The first contribution is the design of a new, light and energy efficient

middleware framework (Javed et al. 2005) called MidWSeN which combine

queries and events. In addition it also provides mechanisms to provide context

enhanced data to the user. This has already been mentioned that the problem with

other works is their limited approach where as the approach of the research

presented in this thesis is to broaden the base by encapsulating different aspects in

the same framework. This framework can be used for both queries as well event
based applications and is flexible to be customised to application specific

requirements. The framework has core and optional services which can be

adjusted according to the requirements of the network or applications using the

network. The framework not only combines most important aspects mentioned

above but it is also scalable and robust. It has the ability to work in normal as well

as emergency situations providing mechanisms to improve latency in case of real-

time situations. The framework does not bind the user to any particular

environment by not specifying any particular protocols or data structure. It can

work equally well in constrained as well as heterogeneous environment. Using

service-oriented architecture helps in deploying the middleware in almost every

environment without worrying about the underlying platform.

o The framework consists of some core and also optional services. The

optional services are used to adjust to applications requirements as well as

available resources making the framework flexible. The services can be

customised individually to application requirements keeping in view the

application specific nature of sensor networks. There are multiple copies

of each service available decided according to network size and node

availability rate to make the system robust. Scalability is achieved by

145

Chapter 8 Conclusions and Future Work

making it easy to introduce new services having service-oriented
architecture.

" Persistent Storage Service (Javed et al. 2007b) is one of the novel core services

which allow the data to be stored for longer period time on the nodes within a

sensor network. With the advancement of technology processing and memory

capabilities are increasing therefore making it possible to store and process the

data on the sensor nodes. In addition being a distributed environment the sensors

are capable of collaborating to perform a task. Storing data on the sensor nodes
helps in providing historical data as well as helps in developing explicit or
implicit relationships between data by providing processed and context enhanced

data to the user. Storing and processing data within the network also saves

precious resources such as bandwidth and energy by reducing the number of
transmissions to the base station because more transmissions mean more

resources consumed. The Persistent Storage Service, with the help of other

services within the framework, provides mechanisms to store data on the sensor

nodes for longer period of time and retrieve context enhanced data.

o WSNs have very limited resources and storing data within the network

might result in utilization of all the memory available in the network. A

novel Priority algorithm was presented to manage memory in case such a

situation arises where more memory is required to store new in coming

data. This algorithm aggregates the data of lowest priority provided by the

user to create space for more important data whenever the system crosses

a certain memory threshold. Data is prioritized by the user according to

the application requirements. This helps in ensuring the availability of

memory for more important data and also manages in keeping the data in

aggregated form rather than deleting it totally. The advantage of keeping

data in aggregated form is that the data will always be available for future

use if required which is the novel aspect of Prioritization algorithm.

" Aggregation Service (Javed et al. 2007a) is another novel core service in the
framework which not only aggregates data according to context but also adds this

146

Chapter 8 Conclusions and Future Work

context to the data to be stored in the PSS. Thus this service is being used to

provide context-enhanced data to the user. Aggregation also helps in saving

memory by compressing and filtering the data. This service has the flexibility of
allowing the application to customize the service to its specific requirements by

having their own aggregation methods other than the standard ones provided as

well as adding their own specific context to the data.

" Application Management Service (AMS) is also a novel core service provided to
help manage other services. This service residing on nodes within the sensor

network provides optimization by processing required information and deciding

the optimal path to other services. The AMS communicates and links other

services within the framework to the base station. This service also helps to

inform the user if an emergency situation occurs with the help of the Rule Service

if a rule or set of rule fires.

" The ideas presented in the thesis have also been evaluated by simulations and

calculations. The implementation of the framework is a contribution which

provides better utilisation of the resources in sensor network.

8.4 Future Work
Many new research questions have been raised during the course of this research which

can form the basis of further research.

8.4.1 Security
Security is an important issue and an active research area in WSN. It is not only
interesting because of the stringent resources of these types of networks but also due to

the fact of its distributed nature. The general issues have already been mentioned in

chapter 2. This chapter is looking at it specifically from the framework point view. In an

environment where several applications might share or reutilize sensor nodes security is

of prime importance. Another context to the framework is that data is being stored on the

nodes; therefore it is absolutely vital to protect this data from malicious nodes or

applications which can misuse this information.

147

Chapter 8 Conclusions and Future Work

It will be interesting to know how adding security features will affect the framework. It

might be in the form of another service which can provide a general policy to help protect

the network, for example, by using key management techniques (Kifayat et al. 2007) with

provision for individual applications to provide an extra layer of protection for their own

specific data. Encryption/decryption techniques can be used to communicate and store
data. If data is send in an encrypted form than it will affect one of the technique used in

the framework, snooping. It has already been mentioned in the section describing the

snooping technique that if there are security issues than the developer can override the

snooping method. It will require encryption/decryption algorithms to be applied to data

communicated over the network which will affect the entire framework because six out

of seven services exchange data.

If the data is stored in an encrypted form than significant changes are required in the

AMS, QIS and PSS while querying data especially historic data. Data cannot be queried

if stored in encrypted form so data will have to be decrypted before querying data.

Encryption/decryption algorithm will have to be employed to encrypt/decrypt data every

time stored data is queried which might prove costly in terms of resources, especially

energy. To store data in encrypted form will also prove costly in terms of storage because

encrypted data occupies more storage space than data stored in unencrypted form, in

which case storing data in encrypted form might not prove feasible. In a distributed

network each node is important because compromising a single node can affect the whole

network. So it is important to provide some sort of security. In such a case the best option

is to provide security at different layers, such as using encryption/decryption technique at

communication level, in order to make the framework more resilient to enemy attacks. A

combination of different security techniques together with the applications ability to

provide its own security will make the security of the network less vulnerable to security

threats.

There are other security issues such as to identify malicious nodes or nodes which are

compromised. Security is important and it will be a challenging to introduce security to

this framework. It might require significant changes to the framework to provide a light

weight security mechanism.

148

Chapter 8 Conclusions and Future Work

8.4.2 Self-Managing Sensor Networks
One of the characteristics of sensor networks is that they are self-managing without

human intervention because they may be deployed in difficult terrains inaccessible to

humans. Therefore Self-management (Yu et al. 2007) is another active research area

which needs to address a number of issues. Some of the major and general issues are

already mentioned in chapter 2. Other issues that came up during the course of this

research are how to efficiently gather more information about the network which could

help assess in managing the network efficiently. This is called self-awareness which

requires information about the environment so that further action can be taken to self-

optimize the system. For example, it can gather information about the network to decide

how many backup copies of data are required to ensure the availability of data to the user

or data should be retrieved from the nearest copy of data in order to improve latency and

save resources. In sensor networks energy is the most important resource to ensure longer

lifetime of the network. How to collect this information, which criteria is to be used to

enforce such policies and where will it be decided are all open research issues which

needs to be addressed.

Another interesting issue is self-organization for distributed coordination. To formulate a

policy or policies for locally managing different applications to use the same network,

share data and other resources by reutilizing nodes. This would require real time

scheduling policies to ensure smooth working of the network. For example, multiple

applications are using the same sensor network one application requires dense

deployment of nodes, so more nodes are being utilized but the next application utilizes

lesser amount of nodes to be active, therefore rest of the nodes are automatically sent to

sleep mode. The overall framework would be affected by introducing such policies

especially the AMS will be significantly changed.

To keep collecting information about the energy level of network and enforcing local

policies to extend the lifetime of the network is vital. The framework already has an

Application Management Service which can be used to collect information about the

network and ensure that local policies for management are enforced. Therefore self-

management policies can easily be incorporated into this framework.

149

Chapter 8 Conclusions and Future Work

8.4.3 Other Research Issues
Another important issue that needs to be addressed is how to evenly distribute the

different copies of data and services within the network. A mathematical formula has

been provided to try to find how many copies of data are required to ensure there always

be at least one copy of data available at all times within the sensor network. The same
formula could be used for determining copies of services but how to distribute these

copies of services evenly or in a specific pattern within the sensor network is also an

issue. This could depend on the usage of the network and type of applications that are

using this network.

The framework is using a service-oriented architecture it will be interesting to see how

other temporary services can join and leave the network at will. These temporary services

can join the network, offer some specialized service for a specified period of time and
leave the network. Policies have to be devised to give permission for these services to

enter the network without affecting the existing services; this is another challenging

research issue.

8.5 Final Remarks
Wireless sensor networks are challenging because of the very limited resources.

Middleware is important in WSN because of the heterogeneous environment and the

operating systems are still in the development stage as this field matures from the

experimental to the practical stage. Therefore there is a need for a middleware which can

bridge the gaps left unfulfilled. Now there are examples of several applications where

sensors are being used in the real life application. These experiences of real world

applications have a great impact on the research because it opens a whole new era of

modification and new requirements. As more real world applications employ sensors

more emphasis will be laid on the fact that data is to be stored and processed on the

sensors to reduce the burden on resources transmitting raw data or semi-processed data as

well as make it more adaptable to diverse applications and sensor reuse. Technology is

improving at rapid speed to catch up with the new requirements. The trend has already

started, as mentioned in several places in this thesis, as big companies like Intel and Sun

Microsystems are providing more powerful sensor technologies. Therefore it is really

150

Chapter 8 Conclusions and Future Work

important to start thinking about placing sensors in a heterogeneous environment and

develop ideas and software to be more adaptable than specific. Although there is always

the trade-off between efficiency and flexibility but it is a trade- off that will pay higher

dividends in future.

The research presented in this thesis is an attempt towards this goal. The vision is to

make sensor networks more adaptable and flexible to be able to work with diverse

applications in heterogeneous environments. Sensors or networks can communicate to

other sensors when they come in contact and exchange information and services with out

worrying about the underlying hardware and software. The middleware framework

MidWSeN is an attempt to realize this vision.

151

References

References
Abdelzaher, T., B. Blum, Q. Cao, D. Evans, J. George, S. George, T. He, L. Luo, S. Son,

R. Stoleru, J. Stankovic and A. Wood (2004). EnviroTrack: Towards an
Environmental Computing Paradigm for Distributed Sensor Networks. 24th
International Conference on Distributed Computing Systems, Tokyo, Japan, 582-
589.

Abowd, G. D., C. G. Atkeson, S. L. Jason Hong, R. Kooper and M. Pinkerton (1997).
"Cyberguide: A mobile context-aware tour guide. " ACM Wireless Networks 3(5):
421-433.

Abowd, G. D., A. K. Dey, N. Davies, M. Smith, Peter J. Brown and P. Steggles (1999).
Towards a Better Understanding of Context and Context-Awareness. Proceedings
of the Ist international symposium on Handheld and Ubiquitous Computing,
Karlsruhe, Germany, Springer-Verlag, 304-307.

Agapioy, G., D. Vali, Charalambakis, P. Georgiadis, E. Plakidis, P. Rprris, K. loannou
and A. Garmpis (2006). "Experimental performance evaluation of the emerging
WiMAX technnology. " WSEAS Transactions on information science and
applictions 3(2): 322-327.

Akkaya, K. and M. Younis (2005). "A Survey on Routing Protocols for wireless Sensor
Networks. " Elsevier Ad Hoc Network Journal 3(3): 325-349.

Akyildiz, I. F., W. Su, Y. Sankarasubramaniam and E. Cayirci (2002). "Wireless sensor
networks: a survey. " Computer Networks 38: 393-422.

Al-Karaki, J. N. and A. E. Kamal (2004). "Routing techniques in wireless sensor
networks: A survey. " IEEE Wireless Communications 11(6): 6-28.

Baldauf, M., S. Dustdar and F. Rosen-berg (2007). "A Survey on Context-Aware
Systems. " International Journal of Ad Hoc and Ubiquitous Computing 2(4): 263-
277.

Bhatti, S., J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B. Shucker, C. Gruenwald, A.
Torgerson and R. Han (2005). "MANTIS OS: An Embedded Multithreaded
Operating System for Wireless Micro Sensor Platforms. " ACM/Kluwer Mobile
Networks & Applications Special Issue on Wireless Sensor Networks 10(4):
563-579.

Bluetooth. (2007). "Bluetooth. " Retrieved 4 Oct, 2007, from
hgp: //www. bluetooth. com/bluetooth/.

Bonnet, P., J. E. Gehrke and P. Seshadri (2000). "Querying the Physical World. " IEEE
Personal Communications 7(5): 10-15.

Boulis, A., C. C. Han and M. B. Srivastava (2003). Design and Implementation of a
Framework for Programmable and Efficient Sensor Networks. MobiSys 2003,
San Franscisco, USA, 187-200.

Boulis, A., C. -C. Han, R. Shea and M. B. Srivastava (2007). "SensorWare: Programming
sensor networks beyond code update and querying. " Pervasive and Mobile
Computing 3(4): 386-412.

Burkhardt, J., T. Schaeck, H. Henn, S. Hepper and K. Rindtorff (2002). Pervasive
Computing: Technology and Architecture of Mobile Internet Applications,
Pearson Education. ISBN: 0201722151

152

References

C`apkun, S. and J. -P. Hubaux (2006). "Secure Positioning in Wireless Networks. " IEEE
Journal on SELECTED AREAS IN COMMUNICATIONS 24(2).

Carovillano, B. (2003). "Radio Enthusiasts Celebrate Marconi's 1903 Breakthrough. "
VARBusiness 2003 issue of VARBusiness. Retrieved Jan 18,2007, from
httý: //www. crn. com/it-channel/ 18822423.

Cerpa, A., J. Elson, D. Estrin, L. Girod, M. Hamilton and J. Zhao (2001). Habitat
Monitoring: Application Driver for Wireless Communications Technology. ACM
SIGCOMM Workshop on Data Communications, Costa Rica, Latin America, 20-
41.

Choi, J., D. Shin and D. Shin (2005). "Research and Implementation of the Context-
Aware Middleware for Controlling Home Appliances. " IEEE Transactions on
Consumer Electronics 51(1): 301-306.

Chong, C. -Y. and S. P. Kumar (2003). "Sensor Networks: Evolution, Opportunities, and
Challenges. " Proceedings of the IEEE 91(8): 1247- 1256.

Cisco Systems, 1. (2004). Introduction to LAN Protocols. Intemetworking Technologies
Handbook. Cisco. Indianapolis, Cisco Press. : 35-42

Conard, J., P. Dengler, B. Francis, J. Glynn, B. Harvey, B. Hollis, R. Ramachandran, J.
Schenken, S. Short and C. Ullman (2001). Introducing . NET, Wrox Press;. SBN-
10: 1861004893

ISBN-13: 978-1861004895
Copidate Technical Publicity. (2006). "Sensorland. Com. " Retrieved December, 2006,

from hllp: //www. sensorland. com/HowPage059. html.
Costa, P., L. Mottola, A. L. Murphy and G. P. Picco (2006). TeenyLime: transiently

shared tuple space middleware for wireless sensor networks. Proceedings of the
internatiional workshop on Middleware for sensor networks, Melbourne,
Australia, ACM, 43-48.

Coulson, G. (2004). What is Reflective Middleware. IEEE Distributed Systems Online.
Coulson. 5.

Crossbow Technology Inc. (2007). "Crossbow Wireless Sensor Networks ", 2007, from
btLt[p: //www. xbow. com/Home/HomePage. gapx-.

Culler, D. E. and H. Mulder (2004) "Smart Sensors to Network the World. " Scientific
American Volume, 8 DOI:

Curino, C., M. Giani, M. Giorgetta, A. Giusti, A. L. Murphy and G. P. Picco (2005).
TinyLIME: Bridging mobile and sensor networks through middlewares. 3rd IEEE
International Conference on Pervasive Computing and Communications
(PerCom) IEEE Computer Society, 61-72.

DARPA. (2007). "DARPA. " Retrieved 24 July, 2007, from http: //www. darpa. mil/.
Dasgupta, K., K. Kalpakis and P. Namjoshi (2003). An efficient clustering-based

heuristic for data gathering and aggregation in sensor networks. Wireless
Communications and Networking, 2003. WCNC 2003., New Orleans, Louisians,
USA, IEEE, ! 948-1953.

De, P., Y. Liu and S. Das (2006). Modeling node compromise spreading in wireless
sensor networks using epidemic theor. IEEE International Symposium on on
World of Wireless, Mobile and Multimedia Niagara-Falls, NY, IEEE Computer
Society, 237-243

153

References

Demirkol, I., C. Ersoy and F. Alag6z (2006). Protocols for Wireless SensorNetworks: A
Survey. IEEE Communications Magazine.

Du, W., J. Deng, Y. S. Han, S. Chen and P. K. Varshney (2004). A Key Management
Scheme for Wireless Sensor Networks Using Deployment Knowledge. The 23rd
Conference of the IEEE Communications Society, Hong Kong, IEEE
Comunication Society, 597-607.

Dunkels, A., Thiemo Voigt, N. Bergman and M. Jönsson (2004). The Design and
Implementation of an IP-based Sensor Network for Intrusion Monitoring. 2nd
Swedish National Computer Networking Workshop, Karlstad, Sweden,

Dunkels, A., Björn Grönvall and T. Voigt. (2004a). Contiki -a Lightweight and Flexible
Operating System for Tiny Networked Sensors. the First IEEE Workshop on
Embedded Networked Sensors 2004 Tampa, Florida, USA,

Dunkels, A., Thiemo Voigt, N. Bergman and M. Jönsson (2004b). The Design and
Implementation of an IP-based Sensor Network for Intrusion Monitoring. 2nd
Swedish National Computer Networking Workshop, Karlstad, Sweden,

Eady, F. (2007). Hands-On ZigBee Implementing 802.15.4 with Microcontrollers
NEWNES. 13: 9780123708878

Estrin, D., R. Govindan, J. Heidemann and S. Kumar (1999). Next Century Challenges:
Scalable Coordination in Sensor Networks. MOBICOM, Seattle, ACM press,
263-270.

Estrin, D., D. Culler, K. Pister and G. Sukhatme (2002). "Connecting the physical world
with pervasive networks. " Pervasive Computing, IEEE 1(1): 59- 69.

Eswaran, A., A. Rowe and R. Rajkumar (2005). Nano-RK: An Energy-Aware Resource-
Centric Operating System for Sensor Networks. 26th IEEE Real-Time Systems
Symposium, Miami, Florida, USA 256-265.

Fahy, P. and S. Clarke (2004). CASS - Middleware for Mobile Context-Aware
Applications. The Second International conference on Mobile
Systems, Applications and Services, Boston, Massachusetts, USA, ACM Press
New York, NY, USA,

Fasolo, E., M. Rossi, J. Widmer and M. Zorzi (2007). "In-network aggregation
techniques for wireless sensor networks: a survey. " Wireless Communications
IEEE. IEEE Personal Communications 14(2): 70--87.

Feng, J., F. Koushanfar and M. Potkonjak. (2002). System-Architecture for Sensor
Networks Issues. Alternatives. and Directions. IEEE International Conference on
Computer Design, Freiburg, Germany, 226-231.

Ferrari, G. (2006). Ad Hoc Wireless Networks A Communication-Theoreteic Perspective
John Wiley & Sons Inc. 0470091 IOx

Ferro, E. and F. Potorti (2005). "Bluetooth and Wi-Fi wireless protocols: a survey and a
comparison " Wireless Communications 12(1): 12-26.

Fok, C. -L., G. -C. Roman and C. Lu (2005). Mobile Agent Middleware for Sensor
Networks: An Application Case Study In Proceedings of the 4th International
Conference on Information Processing in Sensor Networks, Los Angeles,
California, 382-387.

Frodigh, M., S. Parkvall, C. Roobol, P. Johansson and P. Larsson (2001). "Future
Generation Wireless Networks. " IEEE Personal Communications 8(5): 10-17.

154

References

Gay, D., P. Levis, R. v. Behren, M. Welsh, E. Brewer and D. Culler. (2003). The
nesCLanguage: A Holistic approach to Networked Embedded Systems.
Proceedings of the ACM SIGPLAN 2003 conference on Programming language
design and implementation California, USA, ACM press, 1- 11

Gelenter, G. (1985). "Generative communication in Linda. " ACM Computing Surveys 7
(1): 80-112.

Gellersen, H. -W., A. Schmidt and M. Beigl (2002). "Multi-Sensor Context-Awareness in
Mobile Devices and Smart Artefacts. " ACM journal Mobile Networks and
Applications 7(5): 341-351.

Giordano, V., P. Ballal, F. Lewis, B. Turchiano and J. B. Zhang (2006). "Supervisory
Control of Mobile Sensor Networks: Math Formulation, Simulation, and
Implementation. " IEEE TRANSACTIONS ON SYSTEMS. MAN AND
CYBERNETICS-PART B: CYBERNETICS. 36(4): 806-819.

Grandinetti, L., Ed. (2005). Grid Computing: The New Frontier of High Performance
Computing. Avances in Parallel Computing Amsterdam, The Netherlands,
ELSEVIER.

Griffiths, R. T. (2002). History of the Internet. Griffiths, Leiden University.
Griffiths, R. T. (2002). "History of the Internet. " Retrieved 25 July, 2007, from

htt: //www let leidenuniv ni/history/ivh/frame theorie. html.
Grosso, W. (2001). Java RMI, O'Rielly. 1-56592-452-5
GSM. (2007). "GSM World. " Retrieved 25 July, 2007, from http: //www. gsmworld. com.
Gu, T., H. K. Pun and D. Q. Zhang (2004). A Middleware for building context-aware

mobile services. Vehicular Technology Conference, 2004., Milan, Italy, IEEE,
2656 - 2660.

Gummadi, R., X. Li, R. Govindan, C. Shahabi and W. Hong (2005). Energy-efficient
Data Organization and Query Processing in Sensor Networks. 21st International
Conference on Data Engineering, Tokyo, Japan, 157-158.

Hadim, S. and N. Mohamed (2006). "Middleware Challenges and Approaches for
Wireless Sensor Networks. " IEEE DS Online Middleware 7(3): 1-23.

Hadim, S. and N. Mohamed (2006). Middleware for Wireless Sensor Networks: A
Survey. First International Conference on Communication System Software and
Middleware, New Dehli, India, 1- 7.

Han, C. -C., R. K. Rengaswamy, R. Shea, E. Kohler and M. Srivastava (2005). SOS: A
4ypamic operating system for sensor networks. Proceedings of the Third
International Conference on Mobile Systems, Applications, And Services, Seattle,
Washington ACM Press New York, NY, USA 163-176.

Hauben, M. (2006). History of ARPANET Hauben. 2007.
Heidemann, J., F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin and D. Ganesan

(2001). Building Efficient Wireless Sensor Networks with Low-Level Naming.
Symposium on Operating Systems Principles, Alberta, Canada, ACM, 146--159.

Heinzelman, W., A. Chandrakasan and H. Balakrishnan (2002). "An Application-Specific
Protocol Architecture for Wireless Microsensor Networks. " IEEE Transactions on
Wireless Communications 1(4): 660-670.

Heinzelman, W. B., A. L. Murphy, Hervaldo S. Carvalho and M. A. Perillo (2004).
Middleware to Support Sensor Network Applications. IEEE Network Magazine
Heinzelman. 18: 6-14.

155

References

Heinzelman, W. R., A. Chandrakasan and H. Balakrishnan (2000). Energy-Efficient
Communication Protocol for Wireless Microsensor Networks. 33rd Hawaii
international Conference on System Sciences, Maui, Hawaii IEEE Computer
Society, Washington, DC, . 8020.

Hewlett-Packard. (2007). "Hewlett-Packard. " 2006, from
hqp: //www. hpi. hp. com/news/2006/iul-
sept/memorvsvot. html? *umRid=reg USEN.

Horovitz, A. and J. Liberty (2007). Programming . NET 3.0: Rough Cuts Version,
O'Reilly. 10: 0-596-51039-X

Howit, I. and J. Gutierrez (2003). "IEEE 802.15.4 Low Rate-Wireless Personal Area
Network Coexistence Issues " Wireless Communications and Networking 3:
1481-1486.

Hu, L. and D. Evans (2004). Localization for Mobile Sensor Networks. Tenth Annual
International Conference on Mobile Computing and Networking (, Philadelphia,
PA, USA, ACM Press, 45-57.

Huebscher, M. C. and J. A. McCann (2004). Adaptive middleware for Context Aware
Applications in Smarthomes. 2nd Workshop on Middleware for Pervasive and
AdHoc, Toronto, Canada, ACM, 111-116.

Hwang, J., D. H. C. Du and E. Kusmierek (2004). Energy Efficient Organization of
Mobile Sensor Networks. 2004 International Conference on Parallel Processing
Workshops. , Montreal, Canada, 84- 91.

Intanagonwiwat, C., R. Govindan, D. Estrin, J. Heidemann and F. Silva (2003). "Directed
diffusion for wireless sensor networking. " IEEE/ACM Transactions on
Networking (TON) 11(1): 2-16.

Intel. (2007). "Intel Mote 2. " Retrieved Sept., 2007, from
httv: //www. intel. com/research/downloads/imote overview. pdf.

Janakiram, D., A. V. U. Phanikumar and A. M. Reddy-V (2005). Distributed
Collaboration for Event Detection in Wireless Sensor Networks. the Proceedings
of 3rd International Workshop on Middleware for Pervasive and Ad-Hoc
Computing (MPAC05), Grenoble, France.,

Javed, H., M. Merabti and B. Askwith (2005). Persistent Storage service in Self
Organizing Wireless Sensor Networks. The 6th Annual PostGraduate Symposium
on the Convergence of Telecommunications, Networking & Broadcasting,
Liverpool, UK, 441-446.

Javed, H., M. Merabti and R. Askwith (2007a). Aggregation Service in Middiware for
Wireless Sensor Network. The convergence of Telecommunications, Networking
& Broadcasting, Liverpool, UK, 21-27.

Javed, H., M. Merabti and R. J. Askwith (2007b). A Persistent Storage Middleware
Service For Wireless Sensor Network. IEEE Wireless Communications and
Networking Conference, Hong Kong, 2490-2494.

Jiao, B., S. H. Son and J. A. Stankovic (2005). GEM: Generic Event Service Middleware
for Wireless Sensor Networks. Second International Workshop on Networked
Sensing Systems, San Diego, California, USA,

Kang, H., X. Li and P. J. Moran (2006). Autonomic Sensor Networks: A New Paradi
for Collaborative Information Processing. 2nd IEEE International Symposium on

156

References

Dependable, Autonomic and Secure Indiana, USA, IEEE Computer Society, 258 -
268

Karlof, C. and D. Wagner (2003). "Secure routing in wireless sensor networks: Attacks
and countermeasures. " Elsevier Ad Hoc Network Journal 1: 293-315.

Karp, B. and H. T. Kung (2000). Greedy Perimeter Stateless Routing for Wireless Sensor
Networks. Sixth Annual ACM/IEEE International conference on Mobile
Coputing and Networking, Boston, MA, USA, 243-254.

Kifayat, K., M. Merabti, Q. Shi and D. Llewellyn-Jones (2007). "Application
Independent Dynamic Group-Based Key Establishment for Large-scale Wireless
Sensor Networks. " China Communications 4(1): 14-17.

Kon, F., M. Rom'an, P. Liu, J. Mao, T. Yamane, L. C. Magalh"aes and R. H. Campbell
(2000). Monitoring

`Security. and Dynamic Configuration with the dynamicTAO
Reflective ORB. In Proceedings of the IFIP/ACM International Conference on
Distributed Systems Platforms and Open Distributed Processing New York, USA,
Springer-Verlag, 121-143.

Kon, F., Fäbio Costa, Roy Campbell and G. Blair. (2002). "The Case for Reflective
Middleware. " Communications of the ACM 45(6): 33-38.

Korpipää, P., J. Mäntyjärvi, J. Kela, H. Keränen and E. -J. Malm (2003). "Managing
Context Information in Mobile Devices. " IEEE PER VASlVEcomputing 2(3): 42-
51.

Koutsonikolas, D., S. Das, Y. C. Hu and I. Stojmenovic (2007). Hierarchical Geographic
Multicast Routing for Wireless Sensor Networks. International Conference on
Sensor Technologies and Applications Valencia, Spain, IEEE Computer Society
Press, 347-354.

Kumar, A. V. U. P., A. M. R. V and D. Janakiram (2005). Distributed collaboration for
event detection in wireless sensor networks. Proceedings of the 3rd international
workshop on Middleware for pervasive and ad-hoc computing, Grenoble, France,
ACM Press, New York, NY, 1-8.

Lazos, L., S. Capkun and R. Poovendran (2005). ROPE: Robust Position Estimation in
Wireless Sensor Networks. Fourth International Symposium on information
Processing in Sensor Networks California, USA, IEEE, 324 - 331.

Lee, W. L., A. Datta and R. Cardell-Oliver (2006). Network management in wireless
sensor networks. Handbook of Mobile Ad Hoc and Pervasive Communications.
Lee, American Scientific Publishers, USA.. 1

Levis, P. and D. Culler. (2002). Mate: A tiny Virtual Machine for Sensor Networks.
Proceedings of the 10th international Conference on Architectural Support for
Programming Languages and Operating Systems, San Jose, CA, USA, 85-95.

Levis, P. (2006). "TinyOS Programming" Retrieved August, 2007.
Li, S., S. H. Son and J. A. Stankovic. (2004). "Event Detection Services Using Data

Service Middleware in Distributed Sensor Networks. " Telecommunication
systems 26(2-4): 351-368.

Li, X. and N. Santoro (2006). An Integrated Self-deployment and Coverage Maintenance
Scheme for Mobile Sensor Networks. Mobile Ad-hoc and Sensor Networks, Hong
Kong, China, Springer, 847-860.

157

References

Light, J. and B. Arunachalan (2006). Mobile middleware service architecture for EMS
application. First International Conference on Communication System Software
and Middleware, I-5

Lim, A. (2001). "Distributed services for information dissemination in self-organizing
sensor networks. " Science Direct Journal of the Franklin Institute 338(6): 707-
727.

Lindsey, S. and C. Raghavendra (2003). "PEGASIS: Power Efficient Gathering in Sensor
Information Systems. " ACM SIGMOD Special section on sensor network
technology and sensor data management 32(4): 66-71.

Liu, D., P. Ning, S. Zhu and S. Jajodia (2005). Practical Broadcast Authentication in
Sensor Networks. 2nd Annual International Conference on Mobile and
Ubiquitous Systems: Networking and Services San Diego, CA, USA, 118--129.

Liu, T. and M. Martonosi (2003). Impala: a middleware system for managing autonomic,
parallel sensor systems ninth ACM SIGPLAN symposium on Principles and
practice of parallel programing, San Diego, California, USA ACM Press, 107-118

Lorincz, K., D. Malan, T. R. F. Fulford-Jones, Alan Nawoj, Antony Clavel, Victor
Shnayder, Geoff Mainland, S. Moulton and M. Welsh. (2004). "Sensor Networks
for Emergency Response: Challenges and Opportunities. " In IEEE Pervasive
Computing, Special Issue on Pervasive Computing for First Response 3(4): 16-23.

Madden, S., M. J. Franklin, J. M. Hellerstein and W. Hong. (2005). "TinyDB: an
Acquisitional Query Processing System for Sensor Networks. " ACM Transactions
on Database Systems Vol. 30(No. 1): 122-173.

Madden, S. R., M. J. Franklin, J. M. Hellerstein and W. Hong. (2002). TAG: a Tiny
Aggregation Service for Ad-Hoc Sensor Networks. 5th Annual Symposium on
Operating Systems Design and Implementation, Boston, USA, 131-146,.

Mainwaring, A., J. Polastre, R. Szewczyk, D. Culler and J. Anderson (2002). Wireless
Sensor Networks for Habitat Monitoring. First ACM International Workshop on
Wireless Sensor Networks and Applications, Atlanta, Georgia, USA, ACM, 88-
97.

Malan, D., T. Fulford-Jones, M. Welsh and S. Moulton (2004). CodeBlue: An Ad Hoc
Sensor Network Infrastructure for Emergency Medical Care. International
Workshop on Wearable and Implantable Body Sensor Networks, Imperial College
London, United Kingdom,

Manjeshwar, A. and D. P. Agrawal (2001). TEEN :A Protocol for Enhanced Efficiency
in Wireless Sensor Networks. Ist International Workshop on Parallel and
Distributed Computing Issues in Wireless Networks and Mobile Computing,

�
San Francisco, CA, IEEE Computer Society, 30189a.

Marron, P. J., A. Lachenmann, D. Minder, M. Gauger, O. Saukh and K. Rotherme (2005
). "Management and configuration issues for sensor networks. " International
Journal of Network Manaaement(15): 235-253.

Mathur, G., P. Desnoyers, D. Ganesan and P. Shenoy (2006). UltraLow Power Data
Storage for Sensor Networks. fifth international conference on Information
processing in sensor networks, Nashville, Tennessee, USA., ACM Press, New
York, NY, 374 - 381

Meguerdichian, S., S. Slijepcevic, V. Karayan and M. Potkonjak (2001). Localized
Algorithms In Wireless Ad-Hoc Networks: Location Discovery And Sensor

158

References

Exposure. The ACM Symposium on Mobile Ad Hoc Networking & Computing,
Long Beach, California, USA, ACM, 106-116.

Microsoft. (2007). ". NET Framework Developer Center ", 2007, from
http: //msdn2. microsoft. com/en-gb/netframework/aa663309. asl2x.

Nachman, L., R. Kling, R. Adler, J. Huang and V. Hummel (2005). The Intel Mote
platform: a bluetooth-based sensor network for industrial monitoring. .

Fourth
International Symposium on Information Processing in Sensor Networks UCLA,
Los Angeles, California, USA, 437-442.

Naguib, H., G. Coulouris and S. Mitchell (2001). Middleware support for context-aware
multimedia applications. Third International Working Conference on New
Developments in Distributed Applications and Interoperable System, Krakow,
Poland, Kluwer, B. V. Deventer, The Netherlands, The Netherlands, 9-22.

Naur, P., B. Randell and R. M. McClure (1968). Software Engineering. NATO
SOFTWARE ENGINEERING CONFERENCE 1968, Garmisch, Germany,, 14.

Ni, L. M., Y. Zhu, J. Ma, M. Li, Q. Luo, Y. Liu, S. C. Cheung and Q. Yang (2005).
Semantic Sensor Net: An Extensible Framework. 3rd International Conference
onNetworking and Mobile Computing, Zhangjiajie, China, Springer 1144-1153

Nicopolitidis, P., M. S. Obaidat, G. I. Papadimtriou and A. S. Pomportsis (2003).
Wireless Networks. West Sussex, John Wiely & Sons Ltd. 470-84529-5

Oram, A. (2001). Peer-to-Peer: Harnessing the Power of Disruptive Technologies.
Sebastopol, O'Reilly & Associates, Inc. ISBN 0-596-00110-X

Ota, N. and W. T. C. Kramer. (2003). "TinyML: Metadata for Wireless Networks. "
Retrieved 2006.

Ou, S., K. Yang and J. Zhang (2007). "An effective offloading middleware for pervasive
services on mobile devices. " Pervasive and Mobile Computing 3(4): 362-385.

Perrig, A., D. Wagner and J. Stankovic (2004). "Security in Wireless Sensor Networks. "
Communications of the ACM 47 (6): 53-57

Pietzuch, P. R. and J. Bacon (2002). Hermes: A Distributed Event-Based Middleware
Architecture. 22nd International Conference on Distributed Computing Systems,
Vienna, Austria, IEEE Computer Society 611 - 618

Pietzuch, P. R. and S. Bhola (2003). Congestion Control in a Reliable Scalable Message-
Oriented Middleware. 4th international Conference on Middleware, Rio de
Janeiro, Brazil, Springer, 202-221.

Qi, H., P. T. Kuruganti and Y. Xu (2002). "The Development of Localized Algorithms in
Wireless Sensor Networks "Sensors 2: 286-293.

Ratnasamy, S., P. Francis, M. Handley, R. Karp and S. Schenker (2001). A scalable
content-addressable network. ACM SIGCOMM, San Diego, USA, 161-172.

Ratnasamy, S., D. Estrin, R. Govindan, B. Karp, S. Shenker, L. Yin and F. Yu (2002).
GHT: a geographic hash table for data-centric storage. Wireless Sensor Networks
and Applications, Atlanta GA, ACM, 78-87.

Ratnasamy, S., Brad Karp, Scott Shenker, Deborah Estrin, Ramesh Govindan, Li Yin and
F. Yu (2003). "Data-Centric Storage in Sensornets with GHT, a Geographic Hash
Table. " Mobile Networks and Applications 8(Special Issue on Algorithmic
Solutions for Wireless, Mobile, Ad Hoc and Sensor Networks): 427-442.

159

References

Riley, G. F. (2003). The Georgia Tech Network Simulator. Proceedings of the ACM
SIGCOMM workshop on Models, methods and tools for reproducible network
research Karlsruhe, Germany, ACM Press New York, NY, USA 5- 12

Rohatgi, V. K. and A. k. M. E. Saleh (2001). An Introduction to Prbability And Statistics.
New York, John Wiley & Sons, Inc. 0-471-34846-5

Romer, K., F. Mattem, T. Dubendorfer and T. Schoch (2003). Smart Identification
Frameworks for Ubiquitous Computing Applications. IEEE International
Conference on Pervasive Computing and Communications, Forth Worth/Texas,
253-262.

Römer, K., O. Kasten and F. Mattem (2002). "Middleware Challenges for Wireless
Sensor Networks. " ACM Mobile Computing and Communication Review 6(4):
59-61.

Rosenstein, A., J. Li and S. Y. Tong. (1997). "MASH: The Multicasting MASH: The
Multicasting. " ACM Computer Communication Review 27(3): 5-13.

Rudafshani, M. and S. Datta (2007). Localization in Wireless Sensor Networks. 6th
International Conference on Information Processing Sensor Networks,
Massachusetts, USA, ACM, 51-60.

Sanchez, J. A., P. M. Ruiz and I. Stojmnenovic (2006). GMR: Geographic Multicast
Routing for Wireless Sensor Networks. 3rd Annual IEEE Communications
Society on Sensor and Ad Hoc Communications and Networks, Reston, VA,
USA, IEEE Communication Society, 20 - 29

Sanchez, J. A., P. M. Ruiz and I. Stojmenovic (2007). "Energy-efficient geographic
multicast routing for Sensor and Actuator Networks " Sensor Networks Computer
Communications 30(13): 2519-253 1.

Sang, Y. and H. Shen (2005). A scheme for testing privacy state in pervasive sensor
networks. 19th International Conference on Advanced Information Networking
and Applications, Tamkang University, Taiwan, IEEE. org, 644 - 648.

Satyanarayanan, M. and D. Narayanan (1999). Multi-fidelity algorithms for interactive
mobile applications. 3rd international workshop on Discrete algorithms and
methods for mobile computing and communications, Seattle, Washington, United
States, ACM Press, 1-6.

Shen, C. -C., C. Srisathapornphat and C. Jaikaeo (2001). "Sensor information networking
architecture and applications. " IEEE Personal Communications 8(4): 52-59.

Sheth, A., B. Shucker and R. Han (2003). VLM2: A Very Lightweight Mobile Multicast
System For Wireless Sensor Networks. IEEE Wireless Communications and
Networking Conference (WCNC), New Orleans, Louisiana, USA, 1936-1941.

Sikka, P., P. Corke, P. Valencia, C. Crossman, D. Swain and G. Bishop-Hurley (2006).
Wireless adhoc sensor and actuator networks on the farm Proceedings of the fifth
international conference on Information processing in sensor networks, Nashville,
Tennessee, USA ACM Press, 492-499

Souto, E., G. Guimaraes, C. Vasconcelos, M. Vieira, N. Rosa, C. Ferraz and J. Keiner
(2006). "Mires: a publish/subscribe middleware for sensor networks. " Personal
and Ubiquitous Computing 10(1): 37-44.

Stoica, I., R. Morris, D. Karger, M. F. Kaashoek and H. Balakrishnan (2001). Chord: A
Scalable Peertopeer Lookup Service for Internet Applications, California, USA,
ACM,

160

References

Subramanian, R. and B. D. Goodman, Eds. (2005). Peer to Peer Computing: The
Evolution of a Disruptive Technology Hershey, Pennsylvania, IGI Global.

Sun Microsystems. (1994). "Jini Network Technology. " Retrieved 6th March, 2006,
from http: //www. sun. com/software/jini/.

Sun Microsystems. (2005). "Jxme. " Retrieved 06 March, 2006, from
http: //jxme jxta. orgJ.

Sylvia Ratnasamy, Brad Karp, Scott Shenker, Deborah Estrin, Ramesh Govindan, Li Yin
and F. Yu (2003). "Data-Centric Storage in Sensomets with GHT, a Geographic
Hash Table. " Mobile Networks and Applications 8(Special Issue on Algorithmic
Solutions for Wireless, Mobile, Ad Hoc and Sensor Networks): 427-442.

Tavakoli, A., P. Dutta, J. Jeong, S. Kim, J. Ortiz, D. Culler, P. Levis and S. Shenker
(2007). "A modular sensornet architecture: past, present, and future directions. "
SIGBED 4(3): 49-54.

Thaddeus, R. F., Fulford-Jones, G. -Y. Wei and M. Welsh (2004). A Portable, Low-
Power. Wireless Two-Lead EKG System. In Proceedings of the 26th IEEE EMBS
Annual International Conference, San Francisco,

tl. TinyOS. (2007). "TinyOS. " Retrieved Aug, 2005, from httR: //www. tinyos. ne
Tsuchiya, P. F. (1988). "The Landmark hierarchy: A new hierarchy for routing in very

large networks. " ACM Computer Communications Review 18(4): 35-42.
Tubaishat and S. Madria (2003). "Sensor networks: an overview. " IEEE Potentials 22(2):

20-23.
Varshney, U. and R. Vetter (2000). "Emerging Mobile and Wireless networks. "

Communications of the ACM 43(6): 73-81.
VAST. (2007). "SensorML. " Retrieved 10 Aug, 2006, from

b=: //vast. nsstc. uah. edu/SensorML/.
Ville, L. S. and P. Dickman (2003). Garnet: A Middleware Architecture for Distributing

Data Streams Originating in Wireless Sensor Networks. 23rd IEEE International
Conference on Distributed Computer Systems Providence, Rode Island, USA,
IEEE, 235-240.

Vinoski, S. (1997). CORBA: Integrating Diverse Applications Within Distributed
Heterogeneous Environments. IEEE Communications Magazine. Vinoski. 35: 46-
55.

Wang, H., G. Pottie, K. Yao and D. Estrin (2004). Entropybased sensor selection
heuristic for target localization Information Processing and Sensor Networks
Third International Symposium on Information Processing in Sensor Networks
Berkeley, California, ACM, 36-45.

Wang, N., D. C. Schmidt and C. O'Ryan (2001). Overview of the CORBA component
model. Component-based software engineering: putting the pieces together.
Wang. Boston, MA, Addison-Wesley Longman Publishing Co., Inc.: 557-571

Werner-Allen, G., Konrad Lorincz, Matt Welsh, Omar Marcillo, Jeff Johnson, Mario
Ruiz and Jonathan Lees (2006). "Deploying a Wireless Sensor Network on an
Active Volcano. " IEEE Internet Computing 10(2): 18-25.

Wilson, B. J. (2002). JXTA. Indianapolis Indiana, New Riders. 0-73571-234-4
Woo, A., S. Madden and R. Govindan (2004). "Networking Support for Query

Processing in Sensor Networks. " Communications of the ACM 47(6): 47-52.

161

References

Wu, S. and K. S. Candan (2006). Multicasting GMP: Distributed Geographic Multicast
Routing in Wireless Sensor Networks. 26th IEEE International Conference on
Distributed Computing Systems, Lisboa, Potugal, IEEE Computer Society Press,
49 - 49

Yao, Y. and J. Gehrke (2003). Ouery Processing for Sensor Networks. First Biennial
Conference on Innovative Data Systems Research, Asilomar, California,

Yu, M., H. Mokhtar and M. Merabti (2007). "A Self-Organized Middleware Architecture
for Wireless Sensor Network Management. " International Journal of Ad Hoc and
Ubiquitous Computing(Wireless Sensor Networks,): in press.

Yu, Y., B. Krishnamachari and V. K. Prasanna (2004). "Issues in Designing Middleware
for Wireless Sensor Networks. " IEEE Network 18(1): 15-21.

Zeidler, A. (2007). Event-based Middleware for Pervasive Computing- Foundations.
Concepts, Design VDM Verlag Dr. Mueller e. K. 10: 3836413094

Zhang, W. and G. Cao (2003). "Optimizing Tree Reconfiguration for Mobile Target
Tracking in Sensor Networks. " SIGMOBILE Mob. COMM. Commun. Rev. 7(3):
39-40.

Zhao, B. Y., L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph and J. Kubiatowicz (2004).
"Tapestry: A Resilient Global-scale Overlay for Service Deployment " IEEE
Journal on Selected Areas in Communications 22(1): 41-53.

162

Appendix A

APPENDIX A

163

Appendix A UML Diagrams

Use Case Diagrams

Query

Sensors

Application Results

Diagram 1 Use case 1 application can query sensors

Registering
Event

Application Notify
Diagram 2 application can register an event

Sensors

164

Appendix A UML Diagrams

Class Diagrams

Computer

Application Interface Service Class

Diagram 3 shows relationship between services and devices

165

Appendix A UML Diagrams

Application Interface Service
ID: int
: char

+DiscoverSeMce(): int
sends +SendMessage(in destadd : int, in msglength : int, in Message : object) : int receives

+ReceiveMessage(: int
+ReceiveData(): int

«struct*Message

-msgpriority : uint
msg_querytype : uint

sends

AckMsg

int

: int
int

«struct»

string

Diagram 4 shows the Application Interface Service

Application Interface Service
ID: int
: char

+DiswverSenric e(: int
+SendMessage(in destadd : int, in msglength : int, in Message : object) : int
+ReceiveMessage0 : int
+ReceiveData(in data : int) : int

invokes

Application Management Service

-Node ID: uint
+DisooverService() : int
+GetData(in data : int) : int
+Nofi{y(in Event : Event Manager) : uint
+SendData(in data : int) : int
+Decide(in Message : Application Interface Service) : int
+RegisterEvent(in destadd : int, in Message : object) : int
+Querv(in destadd : int, in Message : object) : uint

Diagram 5 shows the relationship between Application Interface Service and Application
Management Service

166

Appendix A UML Diagrams

Application Management Service I receives

sends

DiscoverYMs9
sends AckMSg

Massage

Application Management Service I sends

Persistent Storage Service I

sends

receives

Message II AckMsg II DiscoveryMag

Event Manager

Application Management Service receives

I sends sends I
Msspg. I DbeoveryMsg AckMsg

Query Interface Service

Diagram 6 shows relationship between the Application Management Service with Persistent Storage,
Event Manager and Query Interface Services

167

Appendix A UML Diagrams

w

Application Management Service

-Narne : char
ID: lint

DisuverServiceO : int
tapn data : Mt) : int

Notl , (in Event : Event Manager) : lint
SendDaLpn data : Int) : krt
Dedde(In Message : Application Interlace Service) : nt
ReglsterEvent(in destadd : Int, in Message : Object) : nt

J+OuarAn destadd : Int, M Message : object) : tint

invokes Invokes

`Merkces Node ID int Query Inrrfaee Service
ame : char Application *i cement Se Ww) : *+r LoeN(on : ob lnt, in anise : Nat) : Aggregation Sendoe

: Aggregation Seide.) : Appbcalbn Management Senflee ýReadQn key

Invokes

Par. Istsnt stoma. s. Mo.

int) : int
int, In data : Aggregation SeMce)
data : int) : Application Management Sehne

() : bad
iacaae : object)

"RepktetE eflt(n Mesaepe : ApphCSnon Management Service) : ht
+SendWtm#n enWta : HM, in orskte : int) :A gnt eNon Service
+NOHy(m Event: o0/-) : Appkcetion Management Service
+Sen$estwrt0 : tnt
. Sen»StoßO rat

Diagram 7 shows the Application Management Service, Persistent Storage, Event Manager and
Query interface Services

Quay martac. service
+GetQusry(in Msss. g.: Application Abnaysnwnt Service) : int
+SsndDstepn arms!.: irr, in . mfrs : float) : Agp, pWion Ssnnce
+SsndAygDsts(in dets : Aggr. g. tion Service) : App cstlon Management Service
+S. nseStsrtp : int
+SenssStoof : ! nt

M- masaaye : Appncanon Manayemant Seroios) : Int
andata : int, in arrsi: a : int) : Aggregation Service
nt : object) : Application Manapemant Service

int
int

Aaonaatlon Service

-Node ID: mt
-Name: dw
+A gragata()
+$andData(in data : uint) : int
+Max(in data : int) : int

Min(in data : int) : int
+Ave(in data : int) : float
+Countpn data : int) : int

Sum(in data : tnt) : int
+MyApp(in data : int): float
+SnoopO: int

Diagram 8 shows relationship between Query Interface, Event Manager and Aggregation Services

168

Appendix A UML Diagrams

Aggregation Service

-Node ID : int
Name: char

ata(in data : uint) : int
data int) : int
data : int) int
data : int) : float
in data : int) : int
data : int) : int
(in data : int) : float
0: int

Persistent Storage Service I
): int
char

+Read(in key : int) : int
+Store(in key : int, in data : Aggregation Service)
+SendData(in data : int) : Application Management Service
+MemoryCheck(): bool
+Priority(in Message : object)

Diagram 9 shows relationship between Aggregation and Persistent Storage Service

NetworkMessage

DiscoveryMsg f AckMsg
Message

MessagePayload
'arameterList : char

ýocaUon

Tontext : char

Diagram 10 shows generalisation between different Message classes

169

