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Abstract 

This thesis investigates the application of artificial neural networks (NN) in 

air/fuel ratio (AFR) control of spark ignition(SI) engines. Three advanced neural 

network based control schemes are proposed: radial basis function(RBF) neural 

network based feedforward-feedback control scheme, RBF based model predictive 

control scheme, and diagonal recurrent neural network (DRNN) - based model 

predictive control scheme. The major objective of these control schemes is to 

maintain the air/fuel ratio at the stoichiometric value of 14.7 , under varying 

disturbance and system uncertainty. All the developed methods have been as­

sessed using an engine simulation model built based on a widely used engine model 

benchmark, mean value engine model (MVEM). Satisfactory control performance 

in terms of effective regulation and robustness to disturbance and system com­

ponent change have been achieved. 

In the feedforward-feedback control scheme, a neural network model is used to 

predict air mass flow from system measurements. Then, the injected fuel is es­

timated by an inverse NN controller. The simulation results have shown that 

much improved control performance has been achieved compared with conven­

tional PID control in both transient and steady-state response. 

A nonlinear model predictive control is developed for AFR control in this re- . 

search using RBF model. A one-dimensional optimization method, the secant 

method is employed to obtain optimal control variable in the MPC scheme, so 
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that the computation load and consequently the computation time is greatly 

reduced. This feature significantly enhances the applicability of the MPC to in­

dustrial systems with fast dynamics. Moreover, the RBF model is on-line adapted 

to model engine time-varying dynamics and parameter uncertainty. As such, the 

developed control scheme is more robust and this is approved in the evaluation. 

The MPC strategy is further developed with the RBF model replaced by a DRNN 

model. The DRNN has structure including a information-storing neurons and 

is therefore more appropriate for dynamics system modelling than the RBF, a 

static network. In this research, the dynamic back-propagation algorithm (DBP) 

is adopted to train the DRNN and is realized by automatic differentiation (AD) 

technique. This greatly reduces the computation load and time in the model 

training. The MPC using the DRNN model is found in the simulation evaluation 

having better control performance than the RBF -based model predictive control. 

The main contribution of this research lies in the following aspects. A neural 

network based feedforward-feedback control scheme is developed for AFR of SI 

engines, which is performed better than traditional look-up table with PI control 

method. This new method needs moderate computation and therefore has strong 

potential to be applied in production engines in automotive industry. Further­

more, two adaptive neural network models, a RBF model and a DRNN model, 

are developed for engine and incorporated into the MPC scheme. Such developed 

two MPC schemes are proved by simulations having advanced features of low 

computation load, better regulation performance in both transient and steady 

state, and stronger robustness to engine time-varying dynamics and parameter 

uncertainty. Finally, the developed schemes are considered to suit the limited 

hardware capacity of engine control and have feasibility and strong potential to 

be practically implemented in the production engines. 
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Chapter 1 

Introduction 

1.1 Importance of Air Fuel Ratio Control 

Internal combustion engines used in vehicles are a major source of urban air pol­

lution. The spark-ignition (SI) engine exhaust gases contain oxides of nitrogen 

(nitric oxide, NO, and small amounts of nitrogen dioxide, N02 - collectively 

known as NOx ), carbon monoxide and organic compounds which are unburned 

or partially burned hydrocarbons (HC) [2]. Governments set strict emission stan­

dards for engines to reduce the air pollution. Since 1980, the permitted levels 

for the concentrations of carbon monoxide CO, HC, NOx and particulate matter 

(PM) have been reduced significantly. Table 1.1 shows the development of the 

limits in Europe [3], from which, we can expect that this trend will continue in 

foreseeable future. 

The three-way catalytic converter (TWC) is the most common pollution abate­

ment system for SI engine. State-of-the-art systems are capable of removing more 

than 98% of the pollutants. However, this can only be achieved by operating the 

engine within very narrow air fuel ratio limits for both steady state and tran­

sient operation [4]. The variations of greater than 1% below value of AFR 14.7 

can result in significant increase of CO and HC emissions. An increase of more 
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Euro - I Euro- 11 Euro - III Euro-IV 
SI Engines 

CO 2.72 2.2 2.3 1 
HC - - 0.2 0.1 
NOx - - 0.15 0.08 

HC+NOx 0.97 0.5 - -
PM 0.14 - - -

Diesel Engines 
CO 3.16 1 0.64 0.5 
HC - - - -
NOx - - 0.5 0.25 

HC+NOx 1.13 0.7 0.56 0.3 
PM 0.18 0.08 0.05 0.025 

Table 1.1: European emission standards for passenger cars (g/km) 

than 1% will produce more NOx up to 50%. As shown in Figure 1.1 [1], effi-

cient simultaneous conversion of CO , HC and NOx occurs only in a narrow band 

about stoichiometric air fuel ratio, which is near 14.7:1 for typical formulations 

of gasoline. Therefore, air fuel ratio control remains critical to effective emissions 

control with a TWC. In addition, the best balance between power output and 

fuel consumption can be obtained only by maintaining an air fuel ratio of 14.7, 

Figure 1.2 shows SI engine's power output and its fuel consumption varying with 

air fuel ratio [5]. 

A substantial improvement of automotive engine performance is therefore re­

quired in order to comply with the required characteristics of very low emission 

levels and high fuel economy. These strong constraints have made the research 

on air fuel ratio control systems an active area in both research and automotive 

industry. 
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1.2 Aims and Objectives 

In automotive industry, the look-up tables based feed-forward control scheme is 

widely adopted in current production electronic control unit (ECU) to maintain 

air fuel ratio of the highly dynamic and nonlinear SI engines. The disadvantage 

of this method is that the steady state look-up table lacks the capability to com­

pensate transient engine dynamics, and can not guarantee the system robustness 

against external disturbances and time varying effects, such as engine aging prob­

lems. Moreover, it takes a huge effort and labors for engine calibration to obtain 

control data to fill the tables. 

Although the introduction of PID controller later on AFR control improves the 

steady state performance, the transient response of the AFR is still not satis­

factory, due to the variable time-delay in the AFR measurement and the poor 

compensation for sharp throttle position change. Additionally, due to the severe 

nonlinearity of engine dynamics, PID controller can not work effectively in the 

wide range of engine operating condition. 

The aim of this project is to develop advanced control schemes for AFR control of 

automotive SI engines to maintain the AFR within 14.7 ±1% under operational 

engine working conditions. The control schemes to be developed will be based on 

neural networks model, neural network controller and model predictive control 

strategy. Under the guideline of this aim, the following objectives are proposed 

and will be achieved in the project. 

1. Develop a feedforward-feedback control scheme for the AFR control, in 

which a neural network model and a neural network controller will be used 

to estimate air mass flow and to generate the control variable - the fuel flow 

rate. 

2. Develop a model predictive control scheme for the AFR control, in which 
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an RBF model will be used to predict future AFR. The performance of the 

AFR under the developed MPC should robust with respect to the throttle 

position change and robust to the plant component change. 

3. Develop a DRNN model based predictive control scheme for the AFR con­

trol. In addition to achieve all the improved performance, computation load 

in MPC is expected to be reduced to allow the scheme could be practically 

implemented for real-time control. 

4. The developed new control schemes will be evaluated using a well known 

engine simulation benchmark - the mean value engine model for regulation 

against disturbances and robustness against plant component change. Also, 

comparisons will be done between the schemes. 

With these objectives achieved, the accuracy of AFR control will be greatly im­

proved and system complexity is reduced. Additionally, moderate computation 

are needed to realize such control algorithms. 

1.3 Thesis Outline 

The thesis proposes three advanced air fuel ratio control schemes for SI engine. 

It consists of eight chapters and is organized as follows. After an introduction 

in Chapter 1, working principles of the four-stroke engine and the mean value 

engine model used in this research is described in details in Chapter 2. To give 

readers more comprehensive overview, Chapter 3 provides the latest technolog­

ical advances in the research and industry. The literature survey includes most 

commonly used modelling and control methods for automotive engine. Chapter 4 

presents some common function approximating neural networks and their train­

ing algorithms. Automatic differentiation technique is introduced in this chapter 

as a new method that combines the dynamic back propagation algorithm for 

training recurrent neural networks. In addition, the detailed steps that are used 
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to model dynamic systems are explained. In Chapter 5, a radial basis function 

based feed-forward and feedback control scheme is proposed. It also includes how 

to model intake manifold dynamics using radial basis function network and how 

to obtain an inverse controller of fuel injection dynamics. A neural network based 

model predictive control is developed in Chapter 6, to reduce the computation 

burden on optimization, the secant method and the reduced hessian method are 

investigated. Their control performances are compared in term of tracking error 

and time cost on optimization. Based on the same control principle, Chapter 

7 proposes a model predictive control on AFR using diagonal recurrent neural 

network. Automatic differentiation technique is applied to train such networks 

efficiently. Since three different methods above are all proposed to control AFR, 

it is useful to compare them in order to emphasize their relative advantages and 

disadvantages. The discussions on this issue are given at the end of corresponding 

chapter. Finally, Chapter 8 concludes the contributions in this project with the 

research results in previous chapters. Furthermore, an outlook for future research 

directions and areas is also given in this chapter. 
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Chapter 2 

SI Engine Simulation Models 

2.1 Engine Process Description 

2.1.1 Engine Operating Cycles 

The purpose of internal combustion(IC) engines is the production of mechanical 

power from the chemical energy contained in the fuel. Figure 2.1 shows the 

Exhaust valve 

Water cooling jacket 

Piston shown at top of 
stroke e .g. Top dead 
centre (TOC) 

Cam shafts 

Spark plug 

Inlet valve 

Piston 

Connecting rod 

Crank shaft 

Figure 2.1: Structure of Spark Ignition Engine 

structure of a typical spark ignition(SI) engine, a kind of le engines widely used 
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in modern automobile industry [6]. Each cylinder of a SI engine requires four 

strokes of its piston to complete the sequence of events which produces one power 

stroke. These operations continuously repeated in the following order: 

1. intake stroke The space in the cylinder above the piston is filled with the 

charge(the mixture of petrol vapor and air) . The mixture or air is able to 

enter the cylinder when the piston moves down. See Figure 2.2 [6]. 

Figure 2.2: Intake Stroke 

2. compression stroke The charge is compressed into the top end of the 

cylinder (called combustion chamber) thus raising its temperature. This is 

achieved by the upward movement of the piston. See Figure 2.3 [6]. 

Figure 2.3: Compression Stroke 
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3. power stroke The petrol vapour is ignited by an electric spark and burned. 

The resulting increase in pressure drives the piston down the cylinder. See 

Figure 2.4 [6J. 

Figure 2.4: Power Stroke 

4. exhaust stroke The exhaust valve is opened and th high pressure exhaust 

gas remaining in the cylinder after th power stroke is discharged. This is 

achieved by th upward movement of th piston. See Figure 2.5 [6J. 

Figure 2.5: Exhaust Stroke 

2.1.2 EMS and Its Tasks 

An engine control unit (ECU) is an electronic control unit which controls various 

aspects of an internal combustion engine's operation. The ECU consists of on 
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Figure 2.6: DI Motronic Developed by Bosch 

or several small powerful micro-computers, which evaluate and set the data for 

different control tasks. The simplest ECUs control only the quantity of fuel in­

jected into each cylinder each engine cycle, and therefore maintain a AFR of 14.7, 

so that the highest efficiency can be achieved in the engine operating conditions. 

More advanced ECUs found on most modern cars also control the ignition timing, 

variable valve timing (WT), the level of boost in turbo-charged cars. A modern 

engine management system (EMS) can integrate all these functions of ECUs and 

on-board diagnosis of car engine. Figure 2.7 shows typical sen or input signal 

information necessary for the EMS to calculate the correct output signals used 

to control the various actuators, the ignition, injectors and idle speed control [4]. 

2.1.3 Electronic Fuel Injection 

Before 1980s, the fuel delivery method for almost all gasoline fuelled engines is 

usually realized by carburetors. Nowadays, electronic fuel injection systems have 

replaced carburetors in the marketplace because this kind of systems can provide 

an accurate, reliable and cost-effective method of metering fuel and providing 

maximum engine efficiency with clean exhaust emissions. Modern fuel injection 

systems are controlled electronically because this form of control enables the fuel 

quantity to be accurately set to suit the engine operating conditions. In term of 

the practice cost, injection systems are much more expensive than carburettor 
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Figure 2.7: A Typical Engine Management System 

fuel systems, the strict emission control regulation is one of the most important 

reasons for their wide implementation in automotive industry. 

In operation, the ECU receives data from all of the sensors connected with the 

engines fuel needs. The ECU compares the input data from the sensors with the 

data stored in the computer memory. From this comparison of data the ECU 

provides some output data which appears on the injector cables as an electrical 

pulse that lasts for a set period. This injector electrical pulse time varies from 

approximately 2 milliseconds (ms), to around 10 ms. The duty cycle concept is 

based on the percentage of the available time for which the device is energised. 

For example, if the pulse time varies as Figure 2.8, a single cycle is indicated by 

'C', which consists of an ON time 'A', and an OFF time 'B', then, the duty cycle 

is 25% [7]. There are two main injection systems according to the position of the 

injectors, one is the manifold injection(MI) and the other is direct injection{DI). 
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Figure 2.9: Single-Point Fuel Injection 

Manifold Injection System 

This 'indirect' injection is preferred by automotive industry because the injectors 

used for such injection system operate at a relativ ly low fuel pressure. Manifold 

injection systems can be classified into two main groups, single-point and multi­

point . 

• single-point injection- one injector discharges fuel into the air stream before 

the throttle butterfly, hence it is also known as throttle-body injection. See 

Figure 2.9 [6]. 

• multi-point injection - individual injectors are used for each cylinder. An 

injector is positioned near to the inlet valve of each cylinder. See Figure 
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2.10 [6]. 

Direct Injection System 

Many diesel engines feature direct injection. The injection nozzle is plac d insid 

the combustion chamber and the piston incorporates a depression where initial 

combustion takes place. See Figure 2.11 [8]. With the development in engine 

and electronic technology together with stricter emission controls , a number of 

vehicle manufactur rs hav dev loped lean-burn SI ngines fitted with gasoline 

direct injection (DI) system. The displacement volume of uch kind of SI engines 

must be 60% higher than that of a stoichiometric SI engine to obtain the same 

maximum power output, th refore, a turbo-charger is often required to in rease 

th air supply at a given displacement volume. DI system costs more than indirect 

inj ction systems; the injectors are exposed to more heat and pressure, so more 

co tly materials and higher-precision electronic management systems are requir d. 

2.2 Nonlinear Engine Simulation Model 

It is economical to design ngine control system based on engine simulation model 

in both industrial practice and scientific research. As described in the section for 

engine operating cycles, the thermodynamic and kinetic processes are very fast, 
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Figure 2.11: Direct Fuel Injection 

usually just a few milliseconds for a full operating cycle, which are not acces­

sible for control purposes. Moreover, the models necessary to describe these 

phenomena are rather complex and not suitable to design real-time control sys-

tems. Therefore, in this section, the models that will be introduced are control 

oriented models (COM) , it means the input-output behaviour of the systems are 

modelled with reasonable precision but low computational complexity, and these 

models include all relevant dynamic effects explicitly. The experiments need to 

be carried out to identify key parameters. A typical structure of such a COM for 

an SI engine is shown in Figure 2.12. There are two types of engine models based 

on this structure of COM, one is cylinder by cylinder engine model (CCEM); the 

other is mean value engine model (MVEM). The proper choice of model class 

depends on the problem to be solved. 

2.2.1 Cylinder by Cylinder Engine Model 

In CCEM, the fundamental events are triggered by the crank angle degrees and 

the torque output during the power stroke is approximated by a mathematical 

function to capture the shape of the torque pulse, one calculation is done for each 
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Figure 2.12: Main Input/Output Signals in a COM of an SI Engine 

torque pulse. As CCEMs take into account the reciprocating behaviour of the 

engine, they are usually be used for the research on the misfire detection, the 

torque production, the gas exchange of the individual cylinders and the ignition 

processes, etc [4]. 

2.2.2 Mean Value Engine Model 

The time t is the independent variable in MVEM. There are no spatially varying 

variables for the system descriptions that are represented by ordinary differential 

equations (ODE). MVEM neglect the discrete cycles of the engine and assume 

all processes are effects are spread out over the engine cycles. The reciprocating 

behaviour of engines is captured by introducing delays between cylinder-in and 

cylinder-out effect. The research done by Jonas KarJsson and Jonas Fredriksson 

proves that an MVEM is well suited for use in control algorithms or for evaluation 

of control strategies [9]. 
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2.3 Mean Value Engine Model 

The engine model adopted in this research is the mean value engine model de­

veloped by Elbert Hendricks [10], which is a widely used benchmark for engine 

modelling and control. The platform which has been selected for this MVEM is 

the popular MATLAB/SIMULINK. The three distinct systems of this model are 

the fuel injection, manifold filling and the crankshaft speed dynamic subsystems 

and those systems are modelled independently. Since this MVEM can achieve a 

steady state accuracy of about ±2% over the entire operating range of the engine, 

it is extremely useful for validation of control strategies using simulation. A full 

description of the MVEM can be found in [10] [11]. 

2.3.1 Manifold Filling Dynamics 

The intake manifold filling dynamics are analysed from the viewpoint of the air 

mass conservation inside the intake manifold. It includes two non linear differ-

ential equations, one for the manifold pressure and the other for the manifold 

temperature. The manifold pressure is mainly a function of the throttle angle 0, 

the engine speed n, the air mass flow past throttle plate mat, the air mass flow 

into the intake port map, the exhaust gas re-circulation (EGR) mass flow mEGR, 

the EGR temperature TEGR and the manifold temperature Ti . It is described as 

. K,R ( . T. . T. . T ) Pi = Vi -map i + mat a + mEGR EGR 
(2.1) 

where Ta is ambient temperature, K, is the ratio of the specific heats, and Vi is 

manifold plus port passage volume. The manifold temperature dynamics are de­

scribed by the following differential equation 
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Figure 2.14: Block Diagram of Manifold Temperature Dynamics 

t = R~ [-map(K - 1)1i + mat (KTa -71) + mEGR(,..TEGR -71)] 
PiVi (2.2) 

= /T(a, Pi, Ta, 1i, n, mEGR, TEGR) 

where a is the throttle angle, R is gas constant(here 287 x 10-5). Equation 

(2.1) and (2.2) can be realised by MATLAB/SIMULINK as shown in Figure 2.13 

and 2.14, the air mass flow dynamics in the intake manifold can be described as 

follows. The air mass flow past throttle plate mat is related with the throttle 

position and the manifold pressure. The air mass flow into the intake port map 

is represented by a well-known speed-density equation: 
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where 

mat(a, Pi) = matl J;:,81(a),82(Pr) + matO 

map(n,Pi) = 12~~1i (TJi . Pi)n 

a2 

,81 (a) = 1 - cos (a) - -T 
2. 

Pi 
Pr=­

Pa 

Pr ~ Pc 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

matO, matl, ao are constants and Pc # 1. Vd is engine displacement. Additionally, 

instead of directly model the volumetric efficiency TJi, it is easier to generate the 

quantity TJi . Pi which is called normalised air charge. The normalised air charge 

can be obtained by the steady state engine test and is approximated with the 

first-order polynomial Equation (2.8) 

(2.8) 

where si(n) and Yi(n) are positive functions of the crankshaft speed and Yi « Si' 

2.3.2 Crankshaft Speed Dynamics 

The crankshaft speed is derived based on the conservation of the rotational energy 

on the crankshaft. Its state equation can be written as 

n = - I~ (P,(Pi, n) + Pp (Pi , n) + H(n)) + I~ Hv.TJi(Pi, n, >.)m,(t - ~Td) 

= fn(Pi, n, m" >.) 
(2.9) 

Both the friction power P, and the pumping power Pp are related with the man­

ifold pressure Pi and the crankshaft speed n. The load power Pb is a function 

of the crankshaft speed n only. The indicated efficiency TJi is a function of the 

18 



Figure 2.15: Block Diagram of Crankshaft Speed Dynamics 

manifold pressure Pi, the crankshaft speed n and the air fuel ratio A. Here, I is 

crank shaft load inertia; Hu is fuel lower heating value; in, is engine port fuel 

mass flow; t1Td is the injection torque delay time. The implementation of Equa­

tion (2.9) is shown in Figure 2.15 

2.3.3 Fuel Injection Dynamics 

It has been found that the fuel jet from the injector can be characterised into two 

portions. One portion mixes with the air stream and enters the cylinder directly; 

the other portion deposits as fuel film on the surfaces of the intake system com-

ponents, and mixes with the air stream through the reentrainment/evaporation 

process during subsequent engine cycles. This is known as wall-wetting. 

According to Hendrick's identification experiments with SI engine, the fuel flow 

dynamics could be described as following equations [10] 

(2.10) 
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(2.11) 

(2.12) 

where in" is fuel film mass flow; inli is injected fuel mass flow; inlv is fuel va­

por mass flow. The model is based on keeping track of the fuel mass flow. The 

parameters in the model are the time constant for fuel evaporation, 7/, and the 

proportion of the fuel which is deposited on the intake manifold or close to the 

intake valves, XI. These parameters are operating point dependent and thus the 

model is nonlinear in spite of its linear form. The MVEM provided by Elbert 

Hendrick has been validated using the real time data acquired from the engine 

test bed that equipped with Ford 1.6L engine. The parameters for this model 

could be approximately expressed in the terms of the states of the model as 

71 (Pi , n) = 1.35( -0.672n + 1.68)(Pi - 0.825)2 + (-0.06n + 0.15) + 0.56 (2.13) 

XI (Pi, n) = -0.277pi - 0.055n + 0.68 (2.14) 

2.3.4 MVEM under AFR l\leasurement Delay 

The AFR could be calculated using Equation (2.15) 

(2.15) 

Nowadays, in the practical application of automotive industry, oxygen sensors 

are used in the fuel injection system. They determine if the air fuel ratio exiting 

a gas-combustion engine is rich (with unburnt fuel vapour) or lean (with excess 

oxygen), then, a closed-loop feedback controller,usually a PI controller, adjusts 

fuel injection rate m li according to real-time sensor data rather than operating 

with a open-loop fuel map. Therefore, the time delay of injection systems should 

also be considered. Manzie's research [12] [13] has shown there are three causes 
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Figure 2.16: Expanded Mean Value Engine Model 

of time delay for injection systems: the two engine cycle delay between the in­

jection fuel and the expulsion from the exhaust valves, the propagation delay for 

the exhaust gases to reach the oxygen sensor and the sensor output delay. It has 

been found that the engine speed has more influence on these delays than the 

manifold pressure. Therefore, the following equation can be used to represent the 

delays of injection systems. 

107r 
td = 0.045+­

n 
(2.16) 

The time delay on air fuel ratio measurement has not been considered in origi­

nal MVEM. A module used for air fuel ratio measurement is added into original 

MVEM for the research purpose of AFR control, which is based on Equation 

(2.16). The expanded system is shown in Figure 2.16, it has two inputs - fuel 

injection rate mJi and throttle angle Ui one output - air fuel ratio AF R. 

The valid throttle angle for the model depends on what kind of throttle body 
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is used. If the throttle plate could be turned so that it is perpendicular to the 

axis of the throttle throat, then, this is a throttle angle of zero degrees. However, 

this angle cannot of course be attained physically as throttle plates are nearly 

always elliptical. Usually the throttle plate in the closed position is say 9 to 12 

degrees. Using this convention, the maximum opening angle of the throttle (if 

it is to be effective) is about 70 to 80 degrees. Opening it wider than this will 

have no influence on the throttle air mass flow. In this project, the throttle angle 

changes from 20 degrees to 70 degrees in 10 degree steps, with 0.5 random mea­

surement error chosen to simulate the driving dynamics of the simulation engine. 

It almost covers the whole engine operating conditions. 

As described before, an electric pulse triggered by the ECU energies the solenoid 

in fuel injector, therefore, the fuel injection rate can be controlled by adjusting the 

duty cycle in each sample time. For the expanded engine model in this project, 

the fuel injection rate ranges from 6.28 x 10-4 kg/second to 3.0 x 10-3 kg/second. 

The change of throttle angle is considered as external disturbance as it is usually 

given by the vehicle driver and can not be predicted. However, it is easy to be 

measured by throttle position sensor. The control methods developed are to con­

trol the fuel injection rate to make sure the AFR varying within the ±1 % bounds 

of the stoichiometric value. 

2.4 Summary 

In this chapter, the operating cycles of a typical four-stroke engine has been 

described briefly and the engine management system to control the combustion 

process is introduced. As this research focuses on the fuel injection system for 

SI engine, the main injection systems in automotive industry are shown and 

explained. A proper engine simulation model for air fuel ratio control purpose has 
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been developed based on Elbert Hendricks' well-known mean value engine model. 

It consists of the modules for the intake manifold dynamics, the crankshaft speed 

dynamics the fuel injection dynamics. For the control purpose in our research, 

the MVEM is expanded by adding a module for air fuel ratio measurement delay. 

With fixed engine load, the operating conditions of MVEM is discussed in term 

of the range of throttle angle. 
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Chapter 3 

Literature Survey 

3.1 Introduction 

Performance requirements and environmental concern drive the development of 

automobiles and engines towards more efficiency and less pollution. Since elec­

tronic engine controls was introduced in the 1980's, significant improvements in 

fuel economy and emissions reductions have been achieved by the development 

of this area. Look-up table is the dominant method used by ECU in automotive 

industry. The reasons for this are the simplicity, low computation load, and reli­

ability. However, the difficulty on the implementation of look-up tables is that it 

will take a huge effort and labors for engine calibration to obtain control data to 

fill the tables. Besides, the increased number of control and sensor signals, the 

nonlinear characteristics, time dependents of engine processes, and unavoidable 

time delays all make the calibration process more complicated. In modern ECUs, 

around 9000 parameters and more than 600 control and diagnostic functions are 

implemented [14] [15]. Engine control using look-up tables method can be found 

in [16] in details. 

The ECUs in next generation are expected to have the ability to overcome these 

difficulties brought by the increasing requirement on engine performance and 
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the limitation of look-up table method, and improve the control performance by 

adopting advanced control technologies. Moreover,online adaptation is another 

attractive characteristic for future engine control system, which means that the 

control system can alter settings to take account of changes in the condition of 

components, such as engine wear, components replacement, air leakage in mani­

fold, etc. With the increasing computational powers that are becoming available 

for engine control units, more advanced methods for modelling and control can be 

implemented to increase the engine efficiency and reduce the fuel consumption. 

The purpose of this chapter is to review the recent research that has been done 

on advanced modelling and control techniques for automotive engines. 

3.2 Engine Modelling Methods 

First-principles models are chosen in system modelling if a knowledge of under­

lying physical, chemical and thermodynamic processes is known. However, such 

first-principles dynamic models for complex industrial processes are very diffi­

cult to obtain. The development of such models is always very expensive and 

time consuming [17]. The engine models by first principles methods, which have 

been introduced in Chapter 2 are often called analytic engine model. They are 

important to investigate internal combustion engine dynamics and design the 

controllers for production engine. They are typically used for hardware in loop 

(HiL) testing of ECUs or during the design phase of controller algorithms for 

early validation by omine simulation. In addition to lookup tables, there are 

many other non-analytic engine models that can be found to describe automotive 

engine dynamics in both industry practice and university research. These engine 

modelling methods presented are based on the techniques of system identifica­

tion for control purpose. The models obtained in this way are called 'grey box' 

models that represent only the input-output behavior of the plant, and carry a 

little information about its internal structure. Therefore, high accuracy and good 
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flexibility can be achieved by these modelling methods. 

3.2.1 NARX Models 

Auto-regression with extra inputs (ARX) model describes the input-output rela­

tionship of dynamic system as a difference equation: 

y(t) + aly(t - 1) + ... + anay(t - na) 
(3.1) 

= b1u(t - 1) + ... + bnbu(t - nb) + e(t) 

e(t) is a direct error in the difference equation, usually white noise. The adjustable 

parameters are 

(3.2) 

The vector () of nonlinear ARX (N ARX) model should depend on the values of 

output y(j) : j = t-na, t-na+l,··· ,t and input u(k) : k = t-nb, t-nb+1,··· ,t 

at time t [18]. 
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Figure 3.1: In-cylinder pressure reconstruction using NARX models 

A recent paper [19] describes such a NARX model which is used for cylinder pres-
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sure trace reconstruction on a multi-cylinder engine as shown in Figure 3.1. Four 

input variables are chosen for the inverse crank dynamics model, to predict the 

in-cylinder pressure, which are crank replacement, crank acceleration, the delayed 

crank acceleration, and the delayed in-cylinder pressure. A very good structure 

of NARX model has been found for multi-cylinder pressure reconstruction in this 

research. Other practical applications of NARX models in automotive industry 

have been found in the ignition sweep, exhaust temperature model, engine fault 

diagnosis, and etc [20] [21] [22]. However, the optimal structure of NARX model 

is difficult to obtain. More recently, a Takagi-Sugeno fuzzy inference is introduced 

to NARX model to find the appropriate model network structure, simulation re­

sults of the air fuel ratio control based on such NARX model are very attractive 

[23]. Nevertheless, the main drawback of NARX model remains, which is model 

estimation and adaptation for multi-variable nonlinear systems require a high 

computational effort. 

3.2.2 Fuzzy Models 

Four different fuzzy classes can be identified - relational fuzzy systems, linguistic 

fuzzy systems, singleton fuzzy systems, and Takagi-Sugeno fuzzy system. The 

common fuzzy model used in automotive industry is linguistic fuzzy systems that 

can be divided into three parts as shown in Figure 3.2. Crisp, continuous inputs 

are transformed into linguistic variables with membership grades between 0 and 

1. This process is known as fuzzification. The linguistic inputs are then evaluated 

~ Nmi~n I ~ Fuzzy rules 
U .. ~ Defuzzification ~ 

Crisp Unguistic Crisp ngUlstlc 
input input output output 

Figure 3.2: Processing Steps of a Fuzzy System 

using fuzzy rules and formed into fuzzy outputs. Continuous crisp outputs are 
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then obtained via the process of defuzzification [5]. Fuzzy modelling enables the 

integration of different information of diverse sources. It is possible to operate 

with linguistically formulated rules, physical laws or quantitative information of 

measurement data. 
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Figure 3.3: Partitioned Fuzzy Estimator 

One of the widespread uses of fuzzy models is for fault diagnosis of automotive 

applications. Paul Frank proposed a fuzzy thresholding method for engine fault 

diagnosis [24], in his paper, the thresholds are made fuzzy and the fault decision is 

calculated using fuzzy rules. In this way the fault decision will contain information 

about the certainty that a fault has occurred. Ahmed Soliman proposed a fuzzy 

inference for diagnosis of an automotive emission control system [25]. A two-layer 
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fuzzy logic system is used in his experiment; the lower layer is used to detect the 

presence of a faulty system, and the higher layer is employed to isolate the faulty 

system. The enhanced performance of diagnosis system by fuzzy models has 

been documented. In addition, the fuzzy system can also be used to generates 

weighting factors in correlation to the accuracy of the wheel speed signals and the 

acceleration signal [5], see Figure 3.3. According to its input signals the rule base 

of the fuzzy estimator generates a signal reliability zero, small, middle or big. 

The defuzzified, crisp output values ki are weighting factors in the range of [0, 1]. 

A comprehensive review on the contribution of fuzzy system to the improvement 

of modern car performances can be found in [26]. 

3.2.3 Neural Network Models 

Neural networks are inspired by biological brain connectionism. From the past 

research in this area, neural networks have proved to provide very powerful so­

lutions to a large variety of engineering problems ranging from modelling over 

prediction up to classification. They can not only provide a simple model struc­

ture for nonlinear system, but also capture the nonlinearity and dynamics with 

satisfactory accuracy. However, one of the major obstacles to engineering ap­

plication of neural networks is the heavy computational burden for their online 

training. With the evolution of electronics, reconfigurable device such as field 

programmable gate arrays (FPGA) have make feasible online training for the pa­

rameters of.the neural network. Therefore, NN based modelling and control have 

been a very active research area in recent years. 

A lot of researches on engine modelling using neural network has been done 

over past years, most of them are based on feed-forward model including the 

multi-layer perception(MLP) network, the radial basis function (RBF) network, 

the pseudo-linear radial basis function (PLRBF) network [27] [28] [29]. In these 

researches, neural networks have been used as a modelling method for air path 
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dynamics, emission gas recirculation (EGR), AFR dynamics. The results shows 

that NN modelling is relatively easy and inexpensive. As some research have 

proved that since time series data may have autocorrelation or time dependence, 

the recurrent neural network models which take advantage of time dependence 

may be useful. In other words, feedback allows recurrent networks to achieve 

better predictions than can be made with a feed-forward network with a finite 

number of inputs. Therefore, recurrent neural network has come to be very pop­

ular as an engine modelling method recently, especially for the modelling of AFR 

dynamics [30] [31]. The recurrent neural network in those paper is trained on­

line and off-line by the classical back-propagation algorithm with history stack 

adaption. The advantage of RNN based engine models is that they can make a 

relative accurate prediction on air fuel ratio with limited training data set. 

The neural networks discussed above are often called discrete-time neural net­

works (DTNN) because the models based on them usually make predictions and 

self-updating in every sample time in practice. More recently, the training effi­

ciency of continuous time recurrent neural network (CTRNN) have been improved 

significantly by the introduction of automatic differentiation (AD) technique [32]. 

Compared those feedforward and recurrent models under discrete time domain, 

CTRNN theoretically provides a better modelling performance to approximate 

the highly nonlinear systems, which makes it a potential method that can be 

extended for car engine modelling. 

3.2.4 Hybrid Models 

A first-principle engine model is often based on conventional thermodynamic and 

gas dynamic relations. The performance of a engine model can be improved 

by integrating the conventional model with a distributed and synergistic neural 

network. The structure of such neuro-hybrid model is shown in Figure 3.4 where 

the demodulator block has the function of providing a set of signals that describe 
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Figure 3.4: Structure of a Neuro-Hybrid Model 

in a unique way the frequency content of the input signal of the dynamic system 

under identification [33]. The neuro-hybrid model provides a flexible structure 

for system identification because it implements a mechanism where the system 

dynamics dependent on its dominant behaviour and a priori knowledge can be 

weighed between the parametric and the neural network models. The experiment 

result in [34] [35] prove that the hybrid model can follow closely the expected 

results in predicting the performance of a SI engine. The hybrid model can learn 

the input output data relation very well and is capable to predict the output in 

the decided domain. 

3.3 Engine Control Methods 

3.3.1 LQR Control 

Linear quadratic regulator (LQR) design technique is a well established method­

ology for the design of multi-variable control system. The characteristics of such 

control loops are well known and understood, and they have robustness properties 

which appear immediately to make them suitable for engine control. However, as 

shown in Chapter 2, the engine dynamics are severely nonlinear. This means that 

linearization process on the engine equations must be carried out before making 

an LQR controller. 

A well-known attempt at making an LQR controller to deal with AFR regu-
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lation problem is reported by Christopher Onder et al in paper [36J. This work 

is based on an isothermal model that is linearized close to idle speed and spe­

cialized for combined AFR and engine speed control in a limited speed range. 

Engine mapping was employed in this model. Fairly good AFR and speed con­

trol has been achieved in the region 4° =:;; a =:;; 8° and from idle up to 2000rpm 

on an Federal Test Procedure (FTP) drive cycle using a 3.5L, 6 cylinder engine. 

Recently, a LQR control on homogeneous charge compression ignition (HCCI) 

engine has been implemented in Lund University by Maria Karlsson et al [37]. 

LQR control is realized to minimize emissions of NOz; and soot when the engine 

was operated using direct injection of diesel fuel only. The work focuses on the 

choice of feedback variables and the control structure to minimize emissions. A 

weighted sum of emissions is approximated by a quadratic cost function in the 

measured variables combustion phasing and ignition delay, which is used as a 

basis for LQR control. Unfortunately, the disadvantage of LQR control on au­

tomotive engine is that the linearized model is often of a high order that leads 

to heavy computational load, and the effective control is usually within a small 

range of engine operating conditions. 

3.3.2 Sliding Mode Control 

Variable structure control with a sliding mode is well known for its robustness 

properties. Such robustness properties make sliding mode control a good candi­

date for industrial applications. A sliding mode controller for engine speed control 

has been provided in good agreement with the engine dynamics in the paper [38]. 

A weighted sum of speed error and integral of speed error are regards as the slid­

ing variables. Another experimental study of a sliding mode controller has been 

reported by Kaidantzis et al on an overall lambda control loop for lambda control 

in the paper [39]. It has been found that the lambda variations could be held 

to within ±5% during very large changes of throttle angle and widely varying 

engine speed. The performance of a PI controller and a sliding mode controller 

32 



are compared for the same test conditions. More research on the sliding mode 

control on AFR can be found in [40], however, the study is based on a simulation 

model rather than real engine test bed. It is difficult to compare with that been 

shown in other papers. In practical application, the difficulty using sliding mode 

control to solve AFR regulation problem is that the inherent measurement time 

delays exist in internal combustion engines [41], which has been given in Equation 

(2.16). 

3.3.3 Neural Network Control 

Neural networks appear to be able to implement many functions essential to con­

trol systems with higher degree of autonomy because of their ability to learn, 

to approximate functions, to classify patterns and because of their potential for 

massively parallel hardware implementation. 

In Wensel's paper [21], A neural network is used to adapt the forgetting factor 

in an adaptive control algorithm for an SI engine. From the simulation results, 

the AFR control using the controller is very convincing. However, the stability 

analysis and robustness test on the developed system are not given in the paper. 

More recently, Shivaram Kamat et al propose a virtual air fuel ratio sensors for 

engine control in the paper [42]. A fully connected RNN model with inputs as 

manifold absolute pressure, throttle position, fuel pulse-width, spark advance and 

engine speed is used as a virtual oxygen sensor for the AFR prediction. As shown 

in Figure 3.5, the control structure consists the engine feedforward controller and 

a feedback controller with a NN based virtual sensor for AFR estimation. How­

ever, the virtual AFR sensor has not been able to accurately capture the sharp 

transients in the lambda signal. Experimental results show no significant im­

provement on AFR control in transient. Nevertheless, the virtual lambda sensor 

is still useful for its potential in real time engine diagnostics and for fault-tolerant 

control development in the event of a relevant system failure. 
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lambda control 

The application of neural networks as engine controllers have been found in many 

other areas as well, such as engine cold start [35], anti-lock braking systems [43], 

idle speed control [44]. 

3.3.4 Model Predictive Control 

Model predictive control (MPC) is, perhaps, the most general way of posing the 

process control problem into time domain. It is a collection of optimal control, 

stochastic control, and control of process with dead time and multi-variable con-

trol. It has a significant and widespread impact on industrial process control. It is 

the only generic control technology which can deal routinely with equipment and 

safety constraints. The basic structure of a model predictive control is shown in 

Figure 3.6. From this control structure, It can see that the future evolution of the 

reference is known a priori, the system can react before the change has effectively 

been made, thus avoiding the effects of the delay in process response. To obtain 
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Figure 3.6: Predictive Control Structure 

the control law, it is necessary to minimize the cost function J of Equation (3.3). 

N2 

J(NI , N2, Nu) = L a(j) [Ymodel(k + jlk) - sp(k + j)]2 

Nu 
(3.3) 

+ L ,8{i) [~u{k + i - 1)]2 
i=1 

NI, N2 are the minimum and maximum prediction horizon vectors, with ith el-

ement specifying the parameter for the corresponding output, Nu is the control 

horizon vector, with jth element specifying the parameter for the corresponding 

input. NI and N2 mark the limits of the instants in which it is desirable for 

the output to follow the reference. Therefore the predicted model outputs Ymodel 

are evaluated as past and future values of the presented inputs and outputs of 

the control signals. A numerical optimization can be obtained for linear models 

as an analytic solution for example active set method, and for nonlinear models 

iteratively by for example a Sequential Quadratic Programming method. The 

detailed description of MPC can be found in [17] [45]. 
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Traditionally, MPC is mainly used to control the process in petra-chemical indus­

try. This is because the slow process in the application, which makes the MPC 

controller have sufficient time for online optimization. The evolution of electronics 

has made ECU capable of advanced control algorithms, for example, neural com­

putation and online optimization. Therefore, many researches have been found 

in the field of engine control using MPC. Compared with the traditional feedback 

control, one of the good reasons for automotive industry to adopt MPC is that 

the difficulty brought by the time delay between sampling and control can be eas­

ily overcome. Therefore, the control performance of SI engines during transient 

can be improved without complicate feed-forward compensation. From the con­

sideration of limited computation ability of ECU, linear MPC (LMPC) is more 

attractive for automotive applications. The successful examples can be found in 

the paper [46], [47], [48]. The research in these papers includes AFR regualation, 

cruise control, waste-gate control of diesel engine, and all the experiments are 

based on Lab View or dSPACE prototyping system for real time control. Better 

control performance has been achieved if compared with PI controlled system. 

However, the experimental results also show that LMPC is not effective in a 

wide range of engine operating conditions due to the limitation of linear models 

used in these application. Replacing the linear internal model in MPC scheme 

by a nonlinear one can be a potential method to solve this problem. As neural 

networks as one class of nonlinear model have been used with success in a wide 

range of application, more recently, lots of research interests have shown on neu­

ral networks based nonlinear MPC for AFR [12] [13] [49] [29]. Using these NN 

based model predictive control, significant fuel consumption savings have been 

obtained and good control performances have been observed. Nevertheless, the 

need of fast online calculations to put NMPC into practical use is in imperious 

demands because these NMPC schemes are only tested on computer simulation 

models and few reports have been found for real engine control application due 
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to the expensive computational load on optimization. 

3.4 Summary 

This chapter reviews the previous research on several non-analytic modelling tech­

nologies for automotive engines. These modelling methods are important because 

the advanced controls are most often model based, for instance, sliding mode con­

trol and model predictive control. The models are usually obtained by system 

identification using the engine input-output data. However, a careful analysis of 

the a priori knowledge about the engine dynamics is still important to have an ef­

fective non-analytic engine model as it involves the selection of the model inputs, 

the type of excitation signals, the model order, etc. Production ECU employs 

look-up tables for engine modelling and control. This kind of static models cannot 

maintain its robustness and lack of the ability to deal with the performance degra­

dation under time-varying conditions. Therefore, more advanced engine control 

methods need to be developed to improve the performance of ECU. Among the 

control methods that have been reviewed in this literature, the neural network 

based control and model predictive control seem more promising for AFR regula­

tion. For example, NN-based feed-forward controller can obtain the input-output 

mapping by neural computation. The deep understanding on the intake manifold 

dynamics is essential to build such model. Adaptation algorithm can adjust the 

neural parameters online, and therefore improve the system robustness against 

changing conditions such as engine wear, or components replacement. Model 

predictive control generates the control signal according to the predicted system 

outputs, which can solve the difficulty caused by the large time delay of oxygen 

sensors. A good performance of AFR control in both transient and steady state 

is expected to be obtained by MPC. These two methods can be the potential 

control schemes to replace the look-up table and traditional feedback control for 

the production ECU of next generation. 
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Chapter 4 

Neural Modelling Techniques 

4.1 Introduction 

Neural networks are very powerful tools for modelling nonlinear processes. Most 

kind of networks are described as black box systems, but that is not completely 

true. In general neural networks can be stated as grey boxes, caused by the fact 

that at least some a priori knowledge have to be known. For example, the input 

variables and the best number of neurons used in a specific application have to 

be defined and therefore the black box becomes grey. A further advantage is the 

ability to react in time for time-varying processes by adaptation. This is a very 

important fact, especially for engines. There are two types of neural network 

used in this study. One is radial basis function neural network (RBFNN) , and 

the other is diagonal recurrent neural network (DRNN). Although there are some 

other types of NN, such as multi-layer perceptrons network (MLPN), that can be 

used to model dynamic systems, the above two types of NN have been chosen in 

this study due to their simple structures and that they are easy to train. 

4.2 Radial Basis Function Neural Networks 

RBFNN views the design of a neural network as a curve-fitting problem in a 

high-dimensional space. In contrast to the MLPN, RBFNN utilizes a radial con-
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struction mechanism. This gives the hidden layer parameters of RBFNN a better 

interpretation than for the MLPN. Therefore, the algorithm to adjust the output 

layer weights, due to minimising the squared error between actual and estimated 

output, is a linear learning rule [50]. The very well developed linear learning 

algorithms, exhibit much faster convergence than nonlinear algorithms, such as 

least square (LS). The disadvantage is that, if compared with other feed-forward 

neural networks, for example MLPN, a larger network is needed to achieve the 

same modelling performance. 

4.2.1 RBFNN Structure 

The RBFNN, as shown in Figure 4.1, consists of three layers: input layer, hidden 

layer and output layer, where x = [Xl, X2,'" ,xnf E Rn is the input vector, 

hi (Cl. 1", 0'1) 

1, 

Figure 4.1: RBFNN Structure 

h = [hI! h2 ,'" ,hqf E Rq is the hidden layer output vector, lV(k) E Rpxq is 

the weight matrix with entry Wij, which is the weight linking the jth node in the 

hidden layer to the ith node in the output layer, and y = [1/1, Y2,'" , Yp] E RP is 

the output vector of the RBFNN. 
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In mathematical terms, the following equations are used to describe the RBFNN. 

y(k) = lV . h(k) 

h(k) = J[z(k)] 

(4.1) 

(4.2) 

(4.3) 

where i = 1, 2, ... , q. Cj E Rn is the i th centre in the input space, and J[.] is the 

nonlinear activation function in hidden layer. The gaussian basis function given 

by 

J[z(k), a] = e -Z)k) (4.4) 

is chosen in this research, where a is a positive scalar called width, which is a 

distance scaling parameter to determine over what distance in the input space 

the unit will have a significant output. 

The RBF neural network models are used in this research to predict system 

outputs. The procedure of RBFNN modelling and prediction is to determine 

network inputs according to system dynamics; data collection and scaling; net­

work training and validation; using the network to do prediction. The network 

training includes determining the number of centres, q, appropriate centres and 

widths, Ci and ai, i = 1"" ,q from the training data set; obtaining the weights 

W by training data, and validating the network by the test data. Finally the net­

work model is used to do prediction. In the following three training algorithms 

are briefly introduced. 
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4.2.2 Training Algorithms 

K-means Algorithm 

The K-means clustering algorithm is used to choose the centres of RBFNN from a 

set of training data in this research. Its objective is to minimise the sum squared 

distances from each input data to its closest centre so that the data is adequately 

covered by the activation functions f[.]. 

Procedure: 

Step 1: Choose q initial cluster centres cl{l), c2(1), ... , cq{l). 

Step 2: At the kth iteration step, distribute the sample { x } into Sj{k) among 

the q cluster domains. Sj{k) denotes the set of samples whose cluster is cj{k) 

if 1/ x - cj{k) 1/<11 x - c;{k) 11 

where j = 1, 2, ... , q and i = 1, 2, ... , j-1, j+1, q. 

Step 3: Update the cluster centres. 

1 Nj 

cj(k + 1) = N. L Sj(k) 
J j 

where Nj is the number of elements in Sj(k). 

Step 4: Repeat Step 2 to Step 3 until cj(k + 1) = cj(k). 

p-Neighbourhood Method 

(4.5) 

(4.6) 

The RBFNN width a of each unit is computed by the p-Nearest neighbours 

method. The guideline is that the excitation of each node should overlap with 

some other nodes( us ally closest) so that a smooth interpolation surface between 

nodes is obtained. To achieve this each hidden node must activate at least one 

other hidden node to a significant degree. Therefore, the width is selected so that 

a is greater than the distance to the nearest unit centre. 
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1 
1 P 2" 

O"i = [- L 11 Ci - Cj W] 
P j=l 

(4.7) 

where i = 1, 2, ... , q, Cj is the p-nearest neighbours of c;. For nonlinear function 

approximation p depends on the problem and requires to be experimented. 

Batch Least Squares Algorithm 

The least squares method is one of the most commonly used for linear parameter 

adaptation. The batch adaptation can be described as following. Assume a 

system is mathematically described as Equation (4.1), at sample time k, };. E 

nkxp is defined as: 

Y(k) = = H(k)WT (4.8) 

where 

H(k) = (4.9) 

h(i) = , i = 1,2"" ,k (4.10) 

Least squares cost function is defined as below: 

J = LE2(k) = [Y(k) - Y(k)]T [Y(k) - Y(k)] (4.11) 
k 
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where Y(k) E nkxp are the desired output 

Y(k) = (4.12) 

By matrix vector differentiation rules, 

(4.13) 

The optimum condition of the minimum J is dJ / dW = 0, thus the LS algorithm 

are 

(4.14) 

Recursive Least Squares Algorithm 

Recursive least squares(RLS) algorithm is a recursive form of the Least Squares(LS) 

algorithm. It evaluates for each new sample the parameter matrix ~V newly. The 

basic idea of RLS algorithm is to compute the new parameter estimate W(k) 

at discrete time steps k by adding some correction information to the previous 

parameter estimate ~V(k - 1) at time instant k - 1. It is used to find the RBF 

network weights ~V, which can be summarised as follows [51]: 

yp(k) = Yc(k) - IV(k - l)h(k) (4.15) 

Pz(k - l)h(k) 
9z(k) = p, + hT(k)Pz(k _ l)h(k) (4.16) 

Pz(k) = p,-l[Pz(k -1) - 9z(k)hT(k)Pz(k -1)] (4.17) 

W(k) = IV(k - 1) + 9z(k)Yp(k) (4.18) 

where ~V(k) and h(k) represent the RBF network weights and activation function 

outputs at iteration k, yc(k) is the process output vector, Pz and 9z are middle 
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terms. J.l here is called forgetting factor ranging from 0 to 1 and is chosen to be 

1 for off-line training. The parameters 9z, wand Pz are updated orderly for each 

sample with the change of the activation function output h(k). 

4.3 Diagonal Recurrent Neural Networks 

Recurrent NNs (RNN) have important capabilities that are not found in feed­

forward networks, such as attractor dynamics and the ability to store information 

for later use. Of particular interest is their ability to deal with time varying 

input or output through their own natural temporal operation. Thus, the RNN 

is a dynamic mapping and is better suited for dynamic systems modelling than 

the feed-forward networks. Considering the computation burden of MPC for fast 

dynamic system, the DRNN, instead of fully connected recurrent neural networks 

(FRNN), is used in this study. The DRNN has one hidden layer that is comprised 

of self-recurrent neurons from their own output only. Since there is no inter-links 

among neurons in the hidden layer, DRNN has considerably fewer weights than 

FRNN and the network is simplified considerably 

4.3.1 DRNN Structure 

The DRNN consists of one input layer, one hidden layer and one output layer. 

The basic DRNN structure is shown in Figure 4.2. 

Here, the input vector at sample instant k is x(k) = [xl{k) ... xn{k)]T with n the 

number of input variables, the hidden layer vector h{k) = [h1{k)··· hq(k)]T with q 

the number of hidden layer nodes, and output vector y(k) = [Yl{k)··· Yp(k)]T with 

p the number of output variables. there are three weighting matrices, lVh(k) E 

nqx (n+l) connected between input layer and hidden layer, lV!I(k) E npx (q+1) con­

nected between hidden layer and output layers, and lVd(k) E nvxq connected 

between hidden layer output and hidden layer input as feedback. These matrices 
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(3) output 
layer 

Figure 4.2: DRNN Structure 

are defined as follows. 

Wh (k) = [w h .] i = 1 ... q J' = 1 ... n + 1 ',) , , " " 

WY(k) = [wY.] i = 1 ... P J. = 1 ... q + 1 
I,) , , " " 

Wd(k) = [wd.] i = 1 ... v J. = 1 ... q 
I,) , , " " 

Here v is the maximum number of delayed sample instants in the feedback as 

shown in Figure 4.3. 

The recurrent structure within each hidden layer node is the feedback from the 

node output to its input through different orders of time delay, as shown in Figure 

4.3. The DRNN output can be calculated from its input and weights as follows: 

(4.19) 
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Figure 4.3: The Rcurrent Structure within the ith Hidden Layer Node 

h(k) = J[z(k)] (4.20) 

[
X(k)] 

z(k) = Wh 1 + Idiag(wf)·· .diag(w~)] (4.21 ) 

d 
W i ,l 0 

diag(wt) = i = 1,··, ,v (4.22) 

0 d 
Wi,q 

hd(k) = h(k) E nq
, feedback after activation function (4.23) 

where f(·) in Equation (4.20) is the nonlinear activation function in hidden layer. 

The typical hidden layer activation functions used in DRNN are sigmoid and hy-

perbolic tangent function. In the investigation of process modelling with DRNN, 

only sigmoid activation function is chosen as the nonlinear transfer function in 

DRNN. 
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4.3.2 Training Algorithms 

Dynamic Back-Propagation Algorithm 

Because the weights in the feedback loop are nonlinearly related to the network 

output, optimisation algorithms for linear systems cannot be used. Here, training 

of these weights is achieved using a so-called dynamic back-propagation algorithm. 

Let y(k) and y(k) be the actual responses ofthe plant and the output of the DRNN 

model, then an error function for a training cycle for DRNN can be defined as: 

Em = ~ [y(k) - y(k)]2 (4.24) 

The gradient of error simply becomes 

oEm = _ (k)Oy(k) 
o~V em 8lV 

( 4.25) 

where em{k) = y(k) - y(k) is the output error between the plant and the DRNN. 

Given the DRNN shown in Figure 4.2 and described by Equations (4.19)-(4.23), 

the output gradients with respect to output, recurrent and input weights, respec­

tively, are given by 

8f;(k) = h(k) 
8Wy 

8y(k) = WY P(k) 
8Wd 

8y(k) = W~Q(k) 
8Wh 1 

where P(k) = oh(k)/mvd and Q(k) = oh(k)/8Wh and satisfy 

(4.26) 

(4.27) 

(4.28) 

P(k) = J'(z)[h{k -1) + H1dp(k -1)], P(O) = 0 (4.29) 

Q(k) = J'(z)[x{k) + ~VdQ(k -1)], Q(O) = 0 (4.30) 
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The weights can now be adjusted following a gradient method, Le., the update 

rule of the weights becomes 

W (k + 1) = TV (k) + '" ( - ~; ) (4.31) 

where", is the learning rate and", = ",h, ",d, ",y respectively for the corresponding 

weight matrix. Equation (4.24)-( 4.31} define the dynamic back-propagation al­

gorithm (DBP) for DRNN. 

The update rules call for a proper choice of the learning rate ",. If let "'\ ",d, 

and ",y be the learning rate for DRNN weights lVh, lVd, and IVY respectively, 

then, the DBP algorithm converges if 0 <I IV/I< 1, j = 1,2"" ,v and the 

learning rate are chosen as [52]: 

2 
0< 7Jh < -

q 

2 [ 1 ]T o < ",d < q lV~ax 

2 [ 1 ] 2 o < ",h < -- ---U--'lY~--
n + q VI max . Xmax 

(4.32) 

(4.33) 

(4.34) 

here, W~ax:= maxkllWY(k) 11, Xmax := maxkllx(k) 11 and 11·11 is the sup-norm. 

4.4 Automatic Differentiation Technique 

4.4.1 Introduction 

There are many ways to obtain the derivatives of a mathematical function. 

Straight forward hand calculations is the first to come in mind. This course 

is usually taken in problems of small size. If the function is not simple, the num­

ber of variables is large, or the input and output range of values is large, hand 

calculation becomes nearly impossible and prone to errors that are difficult to 
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debug. In the training stage of DRNN, the derivative of error between DRNN 

and plant against all the weights, is required for DBP algorithm. As shown in 

equations (4.24)-(4.31), the deduction of this derivative is very complex, due to 

the internal dynamics of DRNN. Therefore, on the practical application side, it 

is preferable to obtain this derivative by computational methods. In general, 

there are three important methods for finding the derivatives. These are, the nu­

merical differentiation method, the symbolic method, and the recently developed 

method of automatic differentiation. The three methods are introduced in the 

next sections with special emphasis in the AD tool. 

4.4.2 Numerical Differentiation 

The most common alternative to hand coding is the numerical approximation of 

derivatives by Finite Difference (FD) formula. A simple formula is constructed 

from the expansion of f(x) in Taylor series truncated after the first order term: 

(4.35) 

where L\x = x - Xk and it is some very small positive number. Evaluated at 

x = Xk - L\x, then a good approximation of the derivative is computed easily as: 

(4.36) 

The order of the approximation is controlled by the term at which the series is 

truncated that is the last term in Equation (4.36). Note that only function eval­

uations are needed to calculate the derivative. Thus, the coding of the algorithm 

is very simple and existing codes can be used. 

More accurate derivative can be computed using Centered Finite Differences(CFD) 
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method as: 

8f I = f(x + ~x) - f(x - ~x) + O(~X3) 
8x X=xk 2~x 

(4.37) 

which usually gives better approximation, but cost an additional function evalu-

ation. The main disadvantage of FD and CFD approaches lies with the tradeoff 

between truncation error and roundoff error. As the truncated Taylor series ex­

pansion is only valid in the neighbourhood of the expansion point Xk, small values 

of ~x tend to reduce the truncation error. Ideally, the exact derivative is the limit 

of these formula above, when ~x tends to zero. However, very small values of ~x 

increase the roundoff error. Finding the best ~x requires numerous executions 

of the program, and even then the computed derivatives are just approximations. 

Other disadvantages of this approach are the instability of higher order differ-

entiation formula and the computational cost of the techniques, approximately 

n + 1 times the computational effort associated with evaluation of the function 

itself [53]. 

4.4.3 Symbolic Differentiation 

Symbolic differentiation (SO) is a computer aided analog to analytical or hand 

differentiation employing a graph theoretical approach. The formula represent a-

tion of a function is transformed into a formula representation for its derivative, 

that is either interpreted or further transformed into a program in a common pro-

gramming language. In principle, evaluation of these formula gives exact values 

of the derivatives of the function. Symbolic differentiation only incurs roundoff 

error resulting from the individual fioatingCpoint operations. 

Symbolic differentiation, usually performed in computer algebra packages like 

Maple and Mathematica [54], is unable to deal with branches, loops and su1:r 

routines intrinsic in computer codes. For every binary operator (except + or 

-), the derivative expression is likely to double in size, leading to a combinatorial 
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explosion effect. Due to this effect, the resulting derivative code is difficult to ma­

nipulate and to be used for practical software applications. The computational 

cost of SD is almost impossible to predict. It generally grows enormously with 

function complexity. Instead, Automatic Differentiation is bounded in terms of 

the number of independent and dependent variables. 

4.4.4 Automatic Differentiation 

Automatic Differentiation (or AD), which is developed for the automatic com­

putation of derivatives, is a new approach to obtain analytical derivatives of 

programs (possible containing conditional statement, loops etc.). AD is the nu­

merical computation of exact values of the derivative of a function at a given 

argument value. It just like FD, requires only the original program J. But 

instead of executing f on different sets of inputs, it builds a new, augmented, 

program Jf, that computes the analytical derivatives along with the original pro­

gram. This new program is called the differentiated program. Precisely, each 

time the original program holds some value v, the differentiated program holds 

an additional value dv, the differential of v. Moreover, each time the original pro­

gram performs some operations, the differentiated program performs additional 

operations dealing with the differential values. So, it decomposes the model into 

a series of elementary functions (x, /, sin(.), etc.), applies the simple rules of dif­

ferentiation (product rule, quotient rule, etc.) to evaluate the partial derivatives 

of the elementary functions, and then accumulates them with the chain rule to 

obtain the derivatives of the program. The resulted derivative values are obtained 

without generating a formula for the derivatives, thus avoiding the unnecessary 

overhead of symbolic differentiation and the truncation error inherent in FD for­

mulas [55]. 
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Table 4.1: Evaluation of ! and its derivative 
Evaluation of f(x,y) Evaluation of f'(x, y) 
VI = Y dVI = dy 
V2 = Vl

3 dV2 = 3Vl2dvI 
V3 = XV2 dV3 = XdV2 + dXV2 
V4 = 0.5V3 dV4 = 0.5dv3 
V5 = X + y dV5 = dx+dy 
V6 = sin(V5) dV6 = cos( V5)dv5 
V7 = exp(V6) dV7 = exp(V6)dv6 
!(x,y) = V4 - V7 d! = dV4 - dV7 

To explain further, consider the function f (x, y) represented below: 

!(x, y) = 0.5xy3 - exp(sin(x + y)) (4.38) 

The partial derivatives of this function are easily obtained and equal to: 

~~ = 0.5 y3 - cos(x + y) . exp(sin(x + y)) (4.39) 

~~ = 1.5xy2 - cos(x + y) . exp(sin(x + y)) ( 4.40) 

Using only binary operations, this function would be represented as shown in Ta-

ble 4.1. Differentiation each line of the code, one would get the code to generate 

the derivative without the formula of the derivative, shown as equations (4.39) 

and (4.40). In order to calculate the partial derivative in respect to x the vector 

[dx, dyf is set to [1, O]T, meaning that oy/ox = 1. Analogously, to calculate the 

partial derivative in respect to y, the vector [dx, dyf is set to [O,I]T. In Table 

it is shown that the evaluation of the formulas on Table would lead to the same 

expressions of equations (4.39) and (4.40). 

Although great advances have been made in symbolic differentiation of formulas, 

AD generally requires less memory and CPU time, and also applies to functions 

defined by computer programs or subroutines for which no formula may be avail-

able. 
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a e 4.2: T bl E valuation of the partial derivative of f 
Evaluation of a f / ax Evaluation of a f / ay 
dx = 1,dy =0 dx =O,dy= 1 
dVl = dy = 0 dVl = dy = 1 
dV2 = 3(Vl)2dvl = 0 dV2 = 3(Vl)2dvl = 3y2 
dV3 = dXV2 = V2 = Y3 dV3 = XdV2 = 3xy2 
dV4 = 0.5dv2 = 0.5y3 dV4 = O.5dv3 = O.5(3xy2) = 1.5xy2 
dV5 = dx + dy = 1 dV5 = dx + dy = 1 
dV6 = cos(V5)dv5 = cos(x + y) dV6 = cos(V5)dv5 = cos(x + y) 
dV7 = exp(sin(x + y»cos(x + y) dV7 = exp(sin(x + y»cos(x + y) 
df = O.5y3 - cos(x + y)exp(sin(x + y» df = 1.5xy2 - cos(x + y)exp(sin(x + y» 

There are two basic modes of operation in automatic differentiation, one is the 

forward mode and the other is the reverse mode. In the forward mode, the deriva­

tives are propagated through the computation using the chain rule. This is the 

most classical approach, the differentiation machinery behaves as a human who 

would augment the code by additional instructions computing the derivatives 

and reCusing the shared expressions assigned to temporary variables. Consider 

a function, y = g(f(x» consisting of two operations: v = f(x) and y = g(v). In 

forward mode, by applying the chain rule, fj = dy / dx can be evaluated in the 

sequence: x = 1, v = f'(x)± and iJ = g'(v)iJ. In forward mode, a function and 

its derivatives can be evaluated in parallel. Note that the same method is used 

in Table 4.1. This mode is easy to understand and implement, and requires com­

putational effort proportional to n x rn, where n is the number of independent 

variables and rn the dimension of the function component. 

In the reverse mode, the intermediate derivatives are computed in the reverse 

order, from the final results down to the independent variables. The reverse 

mode evaluation is based on the definition of adjoint, v = dy/dv. After evaluat­

ing the sequence, v = f(x) and y = g(v) with all intermediate results recorded, 

the adjoints are evaluated in a reverse sequence: y = 1, v = yg'(v) and finally, 

dy/dx = x = vf'(x). The reverse mode requires saving the entire computa-

53 



tion trace, since the propagation is done backwards through the computation, 

and hence, the partial derivatives need to be stored for derivative computation. 

Hence the reverse mode can be prohibitive due to memory requirements [56]. 

However, the reverse mode is better for computing multiCdimensional gradients 

of a function, because the computational effort for it is proportional with rn, the 

length of the code list, and independent of n, the number of independent vari­

ables. In fact, when the number of m is much less than n such as the objective 

function of an optimisation problem, evaluation in reverse mode is vastly more 

efficient than in forward mode. This can result in significant saving in computa­

tional time [57]. 

There are aspects to be considered other than merely the computational cost 

when discussing AD modes. Reverse mode implementation is quite more sophis­

ticated and may employ complex structures of indirect addressing. That may 

prevent vectorisation of the final code [58]. Hence, available AD codes employ a 

combination of both strategies in order to balance complexity and computational 

cost. 

4.4.5 Implementation of AD Using ADOL-C library 

The C++ package ADOL-C (Automatic Differentiation by Overloading in C++) 

proposed by Griewank et al. [59], facilitates the evaluation of first and higher 

derivatives of vector functions that are defined by computer programs written 

in C or C++. The resulting derivative evaluation routines may be called from 

C/C++, Fortran, or any other language that can be linked with C. 

In the thesis (where the derivatives will be required) ADOL-C is linked with 

MATLAB via rnex warp for derivatives evaluation. ADOL-C facilitates the si­

multaneous evaluation of arbitrarily high directional derivatives and the gradients 

of these Taylor coefficients with respect to all independent variables. Relative to 

54 



the cost of evaluating the underlying function, the cost for evaluating any such 

scalar-vector pair grows as the square of the degree of the derivative but is still 

completely independent of n, the number of vector functions component, and rn, 

the number of independent variables. 

For the reverse propagation of derivatives, the whole execution trace of the orig­

inal evaluation program must be recorded, unless it is recalculated in piece as 

advocated in [60]. In ADOL-C, this potentially very large data set is written first 

into a buffer array and later into a file if the buffer is full or if the user wishes a 

permanent record of the execution trace. In either case, it refer to the recorded 

data as the tape. The user may generate several tapes in several named arrays or 

files. During subsequent derivative evaluations, tapes are always accessed strictly 

sequentially, so that they can be paged in and out to disk without significant 

runtime penalties. If written into a file, the tapes are self-contained and can be 

used by other Fortran, C or C++ programs [61][62]. 

4.5 SI Engine Modelling Using Neural Networks 

Neural network methods have proven to be powerful tools in modelling of non­

linear dynamic processes. In this research, neural network is used for engine 

dynamics modelling, because it is a universal tool for system identification, and 

can be used for a large number of different applications for engine control. More­

over, for production ECU in automotive industry, memory restrictions are still an 

important issue. By fully utilizing micro-controller for the neural computation, 

the system memory cost can be reduced to a certain extent. The flow chart in 

Figure 4.4 shows the procedure for system identification, in which the work is 

done in steps [50]. 

The first step in the engine modelling is the generation of a suitable training 
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Figure 4.5: Random Amplitude Signal 

data set. As the training data will influence the accuracy of the NN modelling 

performance, the objective of experiment design on training data is to make the 

measured data become maximally informative, subject to constraints that may 

be at hand. As such the input signals are required to excite the dynamic modes 

of the process at different frequencies while also ensuring that the training data 

adequately cover the specified operating region. A hybrid excitation signal for NN 

training was proposed by Lightbody and Irwin [63]. A persistently exciting input 

signal may be sufficient in linear system identification, but this is not the only 

consideration for the identification of non-linear systems. The process modelling 

of a NN model consisting of two parts, (1) the capturing of the dynamics of the 

process and (2) the approximation of the underlying non-linear vector function. 

Random amplitude signal (RAS) is chosen for this research, which is shown in 

Figure 4.5. Before training or validating the neural network using RAS, all input 

and output data obtained from MVEM by simulation will be scaled to the range 

of [0, 1]. The linear scale is used as follows: 
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us(k) = u(k) - Umin 

Umax - Umin 
(4.41) 

ys(k) = y{k} - Ymin 

Ymax - Ymin 
( 4.42) 

where Umin and Umax are the minimum and maximum inputs among the data set, 

while Us is the scaled input. The same is for the output. 

To testify validity of the NN model, the engine data is usually divided into two 

parts, the first data set is used for training neural network and the left is used for 

NN model validation. Generally, the modelling error of the training data set is 

often smaller than the test data set. In this research, the modelling and control 

performance are evaluated by mean absolute error (MAE), which is given as the 

following: 

N N 

~fAE = ~ L Ilf(k) - y(k)1I = ~L Ile(k}11 
k=l k=l 

(4.43) 

As the name suggests, the MAE is an average of the absolute errors e(k) = 

f(k) - y(k). For modelling performance, f(k) is the prediction by NN model and 

y(k) the output of SI engine. In term of the evaluation of control performance, 

f(k) is the engine output and y(k) the corresponding set-point value. 

4.6 Summary 

In this chapter, two types of neural networks used for SI engine modelling in this 

research are described, including RBFNN and DRNN. A brief overview of the 

structures of RBFNN and DRNN, and the corresponding general training algo­

rithms are introduced. 

In addition, to improve the performance of dynamic back-propagation algorithm 

for DRNN, automatic differentiation is implemented, and a short introduction on 
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this technique is provided. 

Finally, the NN modelling procedure and the generation of training and vali­

dation data sets is described. 
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Chapter 5 

RBFNN based 

Feedforward-Feedback Control 

5.1 Introduction 

Due to the high nonlinearity of automotive engine system dynamics and large 

disturbance, the traditional feedback control on AFR by itself, or in conjunction 

of look-up table, is not satisfactory. Significant improvements are expected to 

achieve by adding feed-forward control. The desired engine port fuel mass flow 

m I is described by the following equation: 

(5.1) 

Here, ,\ is the air/fuel ratio. When tight control of NOx , HC and CO emissions 

is required, operation of the automotive engine with a stoichiometric mixture is 

advantageous so that a three-way catalyst can be used to clean up the exhaust [2]. 

In practice, the fuel injection rate m /i can not be obtained in this way because 

of fuel deposition and transportation mechanisms as shown in Equations (2.10), 

(2.11), and (2.12). However, during the past decade, methods based on artificial 

neural network have established effective tools of system modelling, which give 

us a black-box approach to deal with process mechanisms [64] [65]. 
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In this chapter, a RBFNN model is used to predict the air mass flow into intake 

port map, then, the expected engine port fuel mass flow rh, in next sample time 

can be deduced from Equation (5.1). After that, this expected rh, is transferred 

to a RBF-based inverse model of fuel injection dynamics to generate control vari­

able m,i . Finally, a feedback trim - PI control is used in conjunction with this 

RBFNN feedforward control to compensate for modelling errors and unmeasured 

disturbance. 

5.2 Control System Configuration 

The strategy of RBF-based feed forward-feedback control of AFR is shown in Fig­

ure 5.1. 
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Eslimatoron 

"'"" 
I 

_t_ 

RBFNNFuel 
Controllef 

:t 
PI Controller 

Measured 
AirlFueI Ratio 

Fuel Supply Measu 
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SI Engine 

Figure 5.1: RBF-based Feedforward-Feedback Control Structure 
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External disturbance is usually given by the vehicle driver as the change of throt­

tle angle. It can not be predicted. However, it is easy to be measured by throttle 

position sensor. In this system structure, the air mass flow rate into the cylinders 

is estimated by a RBFNN from the throttle angle and some system states includ­

ing manifold pressure and crankshaft speed. Then, the neural network controller 

will determine the appropriate fuel flow rate by Equation (5.1) according to the 

estimated air flow rate. This feed-forward controller produces compensation for 

the external disturbance. At the same time, the PI controller is used to form the 

feedback control and to control the uncompensated effects as well as the steady 

state offset. In the experiment, PI controller is tuned by hand. A flowchart of the 

control actions in time sequence is given in Figure 5.2. The improved system's 

transient response is displayed and commented on the section of implementation. 

5.3 Neural Modelling of map and mfi 

5.3.1 Neural Model for map 

According to the analysis of map in Equation (2.4), at sample instant k, the 

relevant inputs affecting map can be determined as intake manifold temperature 

Ti, throttle position u, crankshaft speed n, and map itself in the last sample time, 

all inputs are measurable. Different orders and time delays of these variables are 

tried in the model training, and the following order are found most appropriate 

giving the minimum modelling error. We have the following equation: 

map(k) = g(Ti(k - 1), u(k - 1), n(k - 1), map(k - 1)) + e(k) (5.2) 

where g(.) is a nonlinear function and e(k) is a noise with zero mean. Equation 

(5.2) completely describes the relevant inputs and their time dependencies on 
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Figure 5.2: RBF-based Feedforward-Feedback Control Flowchart 

map' Therefore, the RBF neural network of map modelling is constructed as 

Figure 5.3. To train this network model, three sets of RAS were designed for 

11, u and n. The ranges of these excitation signals are listed in Table 5.1. The 

sample time of simulation system was set to 0.1 s. The simulation was run for 

500 seconds with a set of 5000 data samples of map collected. These data were 

divided into two groups: the first 4500 data samples were used for training while 
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Figure 5.3: The Structure of RBFNN for map 

RAS Min Max 
u 20° 70° 
It 269K 311K 
n 1.0 x 103 rpm 5.5 x 10.i rpm 

Table 5.1: Ranges of Excitation Signals for map Modelling 

the remaining 500 data samples for validation. Before training and test, the raw 

data were scaled using the following equation 

x(k) - min{x(i)} 
xscale(k) = {Cn . { cn max x z - mm x z 

i E [1,N] (5.3) 

where N is the number of samples in the data set. In the training, the number 

of hidden layer nodes were chosen by experiment. Different numbers of nodes 

from 5 to 15 were tried respectively and the generated MAE of modelling for the 

500 test samples were compared. It was found that the neural network with 13 

centers gave minimum prediction MAE of 0.0546. Therefore, 13 nodes were used 

in RBF model for map. The result is shown in Figure 5.4 

5.3.2 Inverse Model for mfi 

In this section a RBF network is trained to model the inverse dynamics of fuel 

injection to generate the control variable m/i. When map is predicted by the 

64 



0.9 

0.8 

0.7 

0.8 

0.4 

0.3 

~ { 

~ 
" 
" " " , 

" 

I, 
" 
, ' , 11' 

i' 

, , , 
\ 
!; 

i 
11 

" , , 

t, 

,"'-, , 
'Jt"': 

" " 
.' 

1 

{ '111 · 

1
-----· Engine Output 
-- RBFN Output 

le: 

, 
I, 

,t, , " 
~ , ,. 

" 
, 

" " ~ L, -, , 

~ 
°O~--~5~--~10----1~5--~2~O--~25~--~30~--3~5----4~O--~45~--J50 

Time (second) 

Figure 5.4: map Modelling with RBFNN 

neural model in Figure 5.3, it will be used to calculate the desired fuel flow rate 

into engine port, m" by keeping>. = map/m, = 14.7. However, such obtained 

desired m, can not be directly used in fuel injection control, as the injected 

fuel flow rate is not m" but m,i. There are dynamics between mJi and m, as 

described by Equation (2.10), (2.11), and (2.12). Considering these equations, 

the dynamics can be represented by 

(5.4) 

With different orders and time delays tried in model training, the most appropri­

ate order for the discrete equation is as follows 

Therefore, m,i(k - 1) can be predicted using the above dynamics by 
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where h is an inverse non linear function of (5.5). If m,i is predicted at current 

sample instant k, the equation is 

Since mJ(k) and m,(k + 1) are not available when m,i(k) needs to be pre­

dicted, the desired value of fuel flow rate into engine port, ih,(k), calculated 

from ih,(k) = inap(k)/ A, is used to replace mJ(k) and m,(k + 1). n(k) is approx­

imated by n(k - 1). Thus, the above equation becomes 

This equation can be approximated by a RBF network in Figure 5.5. The ranges 

mji(k-l) 

mji(k) 

mf{k -1) 

n(k -1) 

~ 

.. 
~ 

.. 
~ 

.. 

RBF 
Inverse .. 

po 

Controller 

Figure 5.5: The Structure of RBFNN for m 'i 

of these excitation signals m" m,i, and n, are listed in Table 5.2 according the 

simulation engine model. 

RAS Min Max 
m, 1.2 x 10 -3 kg/s 2.2 x 10 -3 kg/s 

m,i 4.5 x 10 -4 kg/s 3.0 x 10 -3 kg/s 
n 1.0 x 103 rpm 5.5 x 103 rpm 

Table 5.2: Ranges of Excitation Signals for m,i Modelling 
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Simulation setting is the same as before, a set of 5000 data samples of map was 

collected, with the first 4500 data samples for training and the remaining 500 

data samples for validation. The number of hidden nodes was selected to be 12 

in the experiments following the procedure as described for map' The result is 

shown in Figure 5.6. The prediction MAE for mfi in scaled data is only 0.0012, 
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Figure 5.6: mfi Modelling with RBFNN 

the output of the neural network almost matches the real engine output data 

perfectly. This is because of mf(k -1), which can be calculated online at sample 

time k, was used to predict the value offuel injection rate mfi(k). Another reason 

for constructing the inverse model in this way is that we have created a RBFNN 

model that can predict the map for one step ahead. Therefore, m,(k) can be 

calculated through rhap(k) according to Equation (5.1), then, is used as one of 

the inputs of inverse model, which is approximated to mf(k). 
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5.4 PID Control on AFR '. 

We have already seen in last section that the throttle angle u is the signal given 

by vehicle driver, which can not be predicted and manipulated by control system. 

Therefore, it is classified as disturbance. Tn/i is the manipulated variable used 

to control the process. Based on the analysis of Equation (2.10), (2.11), (2.12), 

and (5.1), we can see that the difficulty to design a PID controller is that the 

output AFR decreases with m/i increasing or the steady state gain is negative, 

which makes it impossible to tune PID controller by common methods. To solve 

the problem, two PID control methods are implemented and the con figures are 

shown in Figure 5.7 and 5.8 respectively. 

C 
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Engine & Actuator 

Figure 5.7: PID Control Scheme-1 

The idea in the first method is that the design of PID controller will be easier 

if the output AFR can change in the same direction as the control variable. In 

Figure 5.7, the actual control variable used by actuator is the reciprocal of PID 

controller's output uu. When this component is added to the engine dynamics, 

the AFR will increase when m/i increase. A positive static gain is achieved, and 

the PID controller can be easily realized by standard tuning method, for example, 

Ziegler-Nichols method. 
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Figure 5.8: PID Control Scheme-2 

Inspired by look-up tables method, the optimal fuel injection rate can be found 

by experiments if given a specific value of throttle angle. Then, the PID con-

troIler working at this operating point, as seen in Figure 5.8, is to eliminate the 

negative effect of throttle angle change. The simulation results show that the 

better performance can be obtained by this method if compared with the first 

scheme. 

5.5 Feedforward-Feedback Control System Sim-

ulation 

5.5.1 The Control Structure 

The RBF-based feedforward-feedback control system structure in our implemen­

tation is shown in Figure 5.9. At the sample time k, the neural model for map 

makes one-step prediction on the air flow rate into engine port map(k) using the 
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measured states including throttle angle position u(k - 1), intake manifold tem­

perature 1i(k - 1), and map(k - 1). The predicted air flow rate rhap(k) divided 

by 14.7 (stoichiometric value) is the fuel film rate m,(k) for an ideal combustion. 

However, m,(k) can not be used by fuel injection directly. In our control scheme, 

m,(k), measured engine speed n(k - 1), and fuel injection rate m,i(k - 1) form 

a input vector for the inverse model of fuel injection dynamics, which outputs 

the appropriate fuel injection rate for this sample time. On the other hand, to 

enhance the performance in steady state, the a PI controller is used to form the 

feedback control. Therefore, the injection rate for activating fuel injector is the 

sum of two control variables, one is from RBF based NN controller; the other 

from PI controller. 

~~ ~14"-- -y+ 
$pelU I 

Figure 5.9: RBF-based Feedforward-Feedback Control Structure on AFR 
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5.5.2 Throttle Angle Change During Control 

The change of throttle angle in driving condition is given by the vehicle driver. 

Usually the throttle plate in the closed position is say 90 to 120 degrees. Using this 

convention, the maximum opening angle of the throttle, if it is to be effective, 

is about 700 to 800
• Opening it wider than this will have no influence on the 

throttle air mass flow. In our simulations, as shown in Figure 5.10, a throttle 

angle changing gradually from 250 to 650 by 10° each 20 seconds with 0.50 random 

measurement error is chosen to simulate the driving dynamics of the simulation 

engine. This almost covers the whole engine operating condition. The AFR is 

to be controlled between the ±1 % bounds of the stoichiometric value{14.7), i.e. 

99% x 14.7:::; AFR :::; 101% x 14.7. 
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Figure 5.10: Throttle Angle Change During Control 
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5.5.3 PID Control Parameters Setting 

A digital PID controller shown as follows is realized [66]. 

Here, the sampling time T is also chosen to be O.ls. First, the derivative time 

TD is set to be 0 and the PI controller was tuned by open-loop method of the 

Ziegler-Nichols rules [67]. After fine tuning, the PI controller that is use here 

with RBF based neural network controller for air fuel ratio regulation is 

m/i(k) = m/i(k - 1) + 2 X 10-6
• e(k) - 1.4 x 10-4

• e(k - 1) (5.10) 

The derivative term TD can cause large amounts of change in the output given 

small amounts of measurement or process noise. Further experiments also il­

lustrated that TD can not make an contribution on the improvement of control 

performance. In the simulation, the sampling time is chosen to be 0.1 s same as 

that in the data acquisition. 

5.5.4 Simulation Results 

From the response of AFR in simulation, it can be seen that the engine process 

exhibits a higher degree of nonlinearity when the throttle angle operates between 

25° and 45°. It means the accurate AFR control in this range is more challeng­

ing. The control result and the injected fuel mass are shown in Figure 5.11 and 

5.12. It can be seen that the AFR is controlled within the ±1 % bounds of the 

stoichiometric value(14.7) in both transient and steady state. The good control 

performance is because of the good prediction of the RBR based feedforward con­

troller on the air mass flow rate into engine port according the states of manifold 

dynamics, the fuel injection rate it generates consequently can make appropriate 

compensation for the influence of the throttle angle. The tracking performance is 
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evaluated by mean absolute error that has been defined in Equation (4.43). The 

tracking MAE of AFR control is 0.0014 in this simulation. 

18r---~---T----~--~--~----~--~--~----~--~ 

17 

HI 

1111 -JH", -!--M-..... -""~.i .. -i.-i-"'--n--_---n--_1!.---n ___ -- ---,,---- nn __ m 
... .'!Irl" rt.1: 1 "l'T[f_1I~ _____ n _________ nn n_n ____ n ___ u __ n __ nn ______ nn_no 
~ ,. 

13 

12 

o 10 20 30 70 80 90 100 

Figure 5.11: Simulation Result of RBF-based Feedforward-Feedback Control on 
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Figure 5.12: mJi Produced by RBF-based Feedforward-Feedback Controller 
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5.6 Control Performance Comparison with PID 

In order to show the advantages of RBF-based feedforward-feedback controller, 

its control result is compared with that of a traditional PID controller, which is 

used in the production ECU of current automotive industry. In this simulation, 

the structure of PID control used here is the scheme 2 shown in section 5.4. 

Because of the severe nonlinearity in the engine dynamics when the throttle angle 

operates between between 25° and 45°, the PID controller is developed to work 

at 40° of throttle angle, and initial value for fuel injection is set to 2.895 x 10-3• 

By only PID control on AFR, this design is reasonable to guarantee the overall 

performance in the whole engine operating condition. According to Equation 

(5.9), the PID controller for air fuel ratio regulation is 

m/i(k) = m/i(k - 1) + 36.12· e(k) - 36· e(k - 1) (5.11) 

The tracking MAE is 0.2499. Figures 5.13 and 5.14 show the control result and 

the corresponding fuel injection rate, with the tuned PI controller and the same 

throttle angel changing. 
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Figure 5.13: Simulation Result of PI Control on AFR 
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Figure 5.14: mli Produced by PI Controller 

Compared with traditional feedback controller, it can be seen that RBF-based 

feed forward-feedback control significantly reduces the overshoot and settling time. 

In addition to better transient response, the tracking MAE ofRBF-based feed forward­

feedback controller is much less than that of PI controller. This means the steady 

state response is further improved as well. Therefore, a significant improvement 

in performance is achieved using RBF-based feedforward-feedback controller. 

5.7 Ro bustness Analysis 

Air Leakage in the intake manifold is one of the exasperating problems that are 

influenced by aging effect, which can result from any holes in the manifold or 

at any of the connection points. Air leakage in intake manifold can ruin engine 

performance, boost exhaust temperature and raise emissions. In the engine model 

we are using, the parameter map stands for the air flow rate into the engine port, 

which is shown in Equation (2.4). When air leakage happens, the reduced amount 

of air into the cylinders will result in the decrease of map, this will fool the ECU 

into over-fuelling, and incomplete combustion will result in high emissions of 

HC in the exhaust gases and a decreasing effective work. In this section, the 
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robustness of developed neural network-based control system will be tested to 

deal with air leakage problem. 

5.7.1 Control Performance with 10% Uncertainty 

In this simulation, all the parameters settings for engine model are the same as 

those in previous experiments. The sample time is 0.1 second and throttle angle 

changes from 25° to 65° in 100 seconds. A model mismatches is introduced on 
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Figure 5.15: Simulation Result of RBF-based Feedforward-Feedback Control on 
AFR When Engine Model Has 10% Mismatch 

map - the air flow rate into engine port, which is a 10% magnitude decrease of 

the original map value after running the simulation for 25 seconds. According 

to Equation (2.4), if there is an air leakage during engine running, the air fuel 

ratio suddenly decreased. The look-up table has little capacity to deal with this 

situation due to the static control map. However, the RBF-based feedforward 

and feedback controller developed in this project can adjusts the fuel injection 

rate according the real-time condition of intake manifold, and compensate for the 

influence of this system mismatch after several sample times and, which can be 

seen from the comparison on fuel injection rates between Figure 5.12 and Figure 

5.16, therefore keep the satisfactory air fuel control performance. The simulation 
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Figure 5.16: mJi Produced by RBF-based Feedforward-Feedback Controller 
When Engine Model Has 10% Mismatch 

results are shown in Figure 5.15 and 5.16 and the tracking MAE is 0.0021. 

5.7.2 Control Performance with 30% Uncertainty 

With the same simulation conditions, more serious air leakage in intake manifold 

is given to test the method developed. The model mismatch has been increased 

to 30% this time. From the simulation results shown in Figure 5.15 and 5.16, it 

can be seen that, the overshoot in this situation has reached 10% due to the in-

creased level of air leakage, the AFR has the oscillation around the stoichiometric 

value(14.7) for several sampling intervals. But still, a good control performance 

has been achieved overall. The controller output - mJi still stay in its working 

range. The tracking MAE is 0.0039. The simulation results show the developed 

control method is robust to 30% system mismatch. 

5.8 Summary 

This chapter presents a new development in automotive engine AFR control with 

a feedforward-feedback control system structure. Two neural networks are used 
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Figure 5.17: Simulation Result of RBF-based Feedforward-Feedback Control on 
AFR When Engine Model Has 30% Mismatch 
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Figure 5.18: m/i Produced by RBF-based Feedforward-Feedback Controller 
When Engine Model Has 30% Mismatch 

to estimate air low rate and required fuel injection rate under variations of the 

throttle angle. The inverse of fuel injection dynamics is employed to obtain 

a more accurate fuel injection rate. The developed system is evaluated with 

an engine benchmark of simulation throughout the whole operating space, and 

satisfactory performance is obtained. Comparing with a PI control the developed 

system shows a significant improvement in both overshoot reduction and quick 
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response. Moreover, the system is capable of dealing with the air leakage problem. 

Therefore, the RBF-based feedforward-feedback control is one of the potential 

control schemes for the production ECU of the next generation, which can replace 

the lookup table method and traditional feedback control. 
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Chapter 6 

RBFNN-based Model Predictive 

Control 

6.1 Introduction 

Currently the most controllers in ECU are formulated by using PI or PID con­

trollers with gain scheduling along with map based feeforward control functions. 

Around 9000 parameters are more than 600 control and diagnostic functions are 

implemented in modern electronic control units [8]. This makes the system highly 

complex. Adjustments of these controller are mostly done manually by experts 

after long research and experiments. 

Model predictive control is widely adopted in chemical industry, which has been 

proved an effective control principle to handle the complexities and improve the 

quality of the control system. For the MPC on automotive engines, previous 

researches have shown that linear models based MPC are not effective for whole 

engine working range and can not produce good control during fast throttle angle 

transients [68]. Recently neural network based models as one class of nonlinear 

model have attract the attention of researchers for the nonlinear model predictive 

control (NMPC) on engine application [12] [13]. In this project, the neural net-
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work based NMPC strategy to solve AFR regulation problem of SI engines will 

be investigated. 

Radial basis function neural network is chosen among the feed forward neural 

networks not only because it has the attractive approximating power but also 

because it can achieve online updating efficiently, which is crucially important to 

deal with the system time-varying effects. 

6.2 Control System Configuration 

The idea of model predictive control with neural network has been introduced 

in details by some researchers, such as Draeger [69]. The strategy is shown in 

Figure 6.1. The obtained adaptive RBF neural network is used to predict the 
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Figure 6.1: Control Structure of RBF-based MPC 
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engine output for N2 steps ahead. The non-linear optimizer minimizes the errors 

between the set-point and the engine output by using the cost function, 

k+N2 k+N .. 

J(k) = 2: [msp(i) - y(i)]2 + e 2: [m/i(i) - m/i(i - lW (6.1) 
i=k+Nl i=k 

Here, Nl and N2 define the prediction horizon. e is a control weighting factor 

which penalizes excessive movement of the control input,the fuel injection rhfi(k). 

Nu is the control horizon. Then the remaining main problem of MPC is to solve 

the non-linear optimization problem in each sample period, calculate a series of 

optimal m/i(k),m/i(k + 1),m/i(k + 2)"" ,m/i(k + Nu -1), from which the neural 

network model generates outputs to minimis J(k) in Equation (6.1). Finally the 

first control variable in the series m /i (k) is used to control the process and this 

procedure is repeated in the next sample period. 

6.3 Engine modelling using RBFNN 

6.3.1 Data Collection 

In engine data collection, the training data must be representative of typical plant 

behavior in order to analyze the performance of different adaptive engine models 

in practical driving conditions. This means that input and output signals should 

adequately cover the region in which the system is going to be controlled [69]. As 

shown in Figure 2.16, the engine model used for this research has two inputs -

fuel injection rate m/i and throttle angle u; one output - air fuel ratio AF R. To 

obtain the engine data for neural network training, a set of RAS was designed 

for throttle angle and fuel injection. As shown in Table 6.1, throttle angle was 

bounded between 20 degree and 70 degree and the fuel injection rate range used 

in simulation engine is from 0.0007 to 0.0079 kg/s, the sample time is set to 

be 0.1 s. The first 1000 samples of excitation signals for engine model inputs 

are shown in Figure 6.2 and 6.3. After introducing the excitation signals to the 
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Figure 6.2: Scaled Throttle Angle Data for RBFNN Training 
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Figure 6.3: Scaled Fuel Injection Rate Data for RBFNN Training 

83 



RAS Min Max 
() 20° 70° 

mJi 7 x 10-4 7.9 X 10-3 

Table 6.1: Range of Excitation Signals for AFR Modelling using RBFNN 

engine model in Figure 2.16, the data can be collected from the output of air fuel 

ratio, and Figure 6.4 shows the first 1000 samples of the AFR data for training 

RBFNN. All the data shown in the figures here are scaled using Equation (5.3). 

A set of 5000 data samples obtained was divided into two groups. The first 4500 

data samples were used for training RBFN model and the rest would remain for 

model validation. 
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Figure 6.4: Scaled Air Fuel Ratio Data for RBFNN Training 

6.3.2 Engine Modelling using RBFNN 

Given the expanded engine model as shown in Figure 2.16, the RBFNN engine 

model has three inputs: fuel injection rate mJi, throttle angle () and air-fuel ratio 

y, and one output: air-fuel ratio. Different orders of network inputs and differ­

ent number of hidden layer nodes have been used in training experiments and 

the second-order structure with 12 hidden nodes is chosen after experiments as 

shown in Figure 6.5, which gives the minimum prediction error. The centres 
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Figure 6.5: RBFNN Model Structure 
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~ y(k + 1) 

c and the width in hidden layer nodes of the RBF network (J were determined 

using K-means algorithm and p-nearest neighborhood heuristic respectively and 

p here is set to 3. The recursive least square algorithm is used for training the 

network weights with its parameters set as Jl = 1.0, w(O) = 1.0 X 10-16 X Unhx1 

and P(O) = 1.0 X 108 X Inhxnh' where I is an identity matrix and U stands for a 

matrix whose components are ones. 

All input and output data of the RBFNN have been scaled to the range of [0, 1] 

before they are used for training and validation. The training data set with 4500 

samples are used to train the RBFNN model. Then, the test data set with 500 

samples is applied to the trained model and the model predicts results for are 

displayed in Figure 6.6. From the simulation result in Figure 6.6, it can be seen 

that the good match between the engine model output and the RBFNN output 

during the model validation phase. The AFR in the figure is normalized value 

and the MAE is 0.0365. 
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Figure 6.6: Illustration of AFR Validation Data for RBFNN Model 

6.3.3 Adaptive Online Training of RBFNN Model 

Adaptability is an attractive quality that can be brought by neural controller to 

deal with the ever-changing engine operating condition. The neural parameters 

of RBFNN model are updated online using RLS algorithm. w(O) and P(O) have 

been found in the stage of engine modelling. These obtained parameters are used 

as initial values for online training. As to the forgetting factor j.l, it was set to 

1 in the model training, which means all the data are weighted equally. With 

a smaller value of j.l, the algorithm has a shorter memory length and is better 

adapted to changing dynamics. Therefore, it is necessary to tune j.l to make the 

control algorithm robust against system uncertainties. Simulation results show 

0.99 is a suitable value for J-L in this application. 

6.3.4 Multi-Step Prediction on AFR using RBFNN Model 

The feed forward network, such as RBFNN, is often used for one-step prediction. 

However, to implementing RBFNN based NMPC, the trained RBFNN is required 

to make multi-step prediction on AFR. The structure of AFR prediction for model 

predictive control is given in Figure 6.7. Within a sample interval k, O(k - 1), 
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O(k), y(k-1), y(k), m/i(k -1) are constants as they are measured values in last or 

current sample time. The work left now is to utilize an appropriate optimization 

algorithm to find the vector [m/i(k) m/i(k + 1) m/i(k + 2) ... m/i(k + Nu -1)Y 

that can minimize the objective function J(k) in (6.1). 

6.4 Single-dimensional optimization approach 

Practical applications often place emphasis on computation speed on the premise 

that all the performance requirements are met. Therefore, a simple control struc­

ture is chosen in this research and assumed that the input m/i will remain constant 

over the prediction horizon: m/i(k)=m/i(k + 1)= ... =m/i(k + Nu - 1). In this 

case there is only one parameter that are going to be found. The optimization 

problem to be solved is reduced to one-dimensional. Secant Method is chosen to 

find the solution of this nonlinear programming (NLP) problem and our experi­

ments show that it is more efficient and reliable in this application than the other 

interpolation methods. 

6.4.1 Problem Formulation 

The general nonlinear programming problem could be defined as, 

subject to 

min J(x) 
xERn 

Ceq(X) = 0 

Cin(X) ~ 0 

(6.2) 

(6.3) 

(6.4) 

where J: Rn ~ R is the objective function, ceq : Rn ~ Rm and Cin : Rn ~ RP 

are constraint functions. All of these functions are smooth. Only inequality con-

straint applied in our case, as fuel injection rate is bounded within a region. 

87 



::; 
I 
~. .... 

R .... 
+ + + 
oIC ~ .., 
'-

"i,r:.. ---'" ... 
.~ .:; 

Figure 6.7: Multi-Step Prediction on AFR using RBFNN Model 

88 



The Secant Method is to find the improved design vector Xi+l from the cur­

rent design vector Xi using the formula 

(6.5) 

where Si is the know search direction and ~: is the optimal step length found by 

solving the one-dimensional minimization problem as 

(6.6) 

Here the objective function J is to be evaluated at any trial step length to as 

(6.7) 

Similarly, the derivative of the function J with respect to ~ corresponding to the 

trial step length to is to be found as 

dJI T I 
,,/t: = Si !J.J {=to 
""'" {=to 

(6.8) 

6.4.2 Secant Method 

The necessary condition for J(~) to have a minimum of C is that J'(C) = O. The 

secant method seeks to find the root of this equation [70]. The equation is given 

of the form 

(6.9) 

where s is the slope of the line connecting the two points (A, J'(A)) and (B, J'(B)), 

where A and B denote two different approximations to the correct solution, ~* • 

The slope s can be expressed as 

J'{B) - J'{A) 
s= B-A (6.10) 
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Equation (6.9) approximates the function J'(e*) between A and B as a linear 

equation and the solution of Equation (6.9) gives the new approximation to the 

root of J'(e*) as 

~. _~. _ J'(ei) _ A _ J'(A)(B - A) 
.. t+1 - .. , S - J'(B) - J'(A) (6.11) 

The iteration process given in Equation (6.11) is known as the secant method, 

see Figure 6.8. 

J'(;) 

Figure 6.8: Iterative Process of Secant Method 

6.4.3 Simulation Results 

In the simulation, the set-point of the system is set to be the constant stoichio­

metric value 14.7. The throttle angle, as disturbance is set with a change from 

25° to 65° and with 0.5° uncertainty as shown in Figure 5.10 in last chapter. The 

AFR is to be controlled between the bounds of the stoichiometric value{14.7). 

Choosing the sampling time to be O.ls. The parameters of nonlinear optimiza­

tion were chosen as Nl = 1, N2 = 6, e = 0.1, Nu = 0, then the MPC of SI engines 

can be considered as a sub-problem of NLP problems. 

(6.12) 
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Figure 6.10: in/i Produced by RBFNN based MPC Method Using Secant Method 

subject to 

(6.13) 

where f : Rn -t R , in~i and inji represent the lower bound and the upper bound 

of the control variable in/i. 

The system output under the developed MPC is displayed in Figure 6.9, together 
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with the associated manipulated variable displayed in Figure 6.10. The MAE of 

the AFR tracking is 0.0483. One can see that the air-to-fuel ratio is regulated 

within a neighborhood of stoichiometric. This performance is much better than 

that of PI controller [49] that is widely used in automotive industry. 

The time cost in optimization in each sample period is shown in Figure 6.11. 

The mean time cost in one sample period is 0.0277 seconds. Since the whole 
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Figure 6.11: Time Cost on Optimization Using Secant Method 

simulation was running in MATLAB environment, the further reduction on time 

cost of optimization could be achieved if optimization algorithm is realized by C 

code in practical application. 

6.5 Multi-dimensional optimization approach 

The multi-dimensional approach for MPC was implemented using reduced Hes­

sian method and is compared with secant method, in terms of the control perfor­

mance and time consumptions on optimization. The Reduced Hessian Method is 

reviewed in the following. 
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6.5.1 Reduced Hessian Method 

By applying sequential quadratic programming(SQP), the general nonlinear pro­

gramming problem reduces to solving the following quadratic programming (QP) 

at each iteration. Find d that minimizes 

subject to 

Ceq(Xk) + Aeq(Xk)T d = 0 

Cin(Xk) + Ain(Xk)T d ~ 0 

(6.14) 

(6.15) 

(6.16) 

Here, 9 denotes the gradient of f, W denotes the Hessian Matrix (with respect to 

x) of the Lagrangian function L(x, >.) = f(x) + >.Tc(x), Aeq(x) and Ain(X) stand 

for the n x m and n x p matrices of constraint gradients. 

Among different SQP methods, the reduced Hessian method is a newly developed 

algorithm for solving NLP problems subject to equality constraints (ceq(x) = 0) 

[71] [72] . It has been shown that the method is robust and less expensive to 

implement. In order to illustrate how it can be implemented into MPC of SI 

engines, the basic idea of the reduced Hessian method is discussed in this section. 

In the following parts of this section, c(x) and A(x) are used to represent ceq and 

Aeq (x) respectively. 

The Search Direction 

Assuming 

(6.17) 

93 



then Zk is a basis for the tangent space of the constraints. Now the solution d in 

Equation (6.14) can be stated as 

(6.18) 

where Zk is a matrix spanning the null space of AT , Yk is a matrix spanning the 

range of Ak , py and pz are vectors in Rm and Rn-m, respectively. The problem 

of (6.18) becomes solving Yk,py,Zk,Pz,. By grouping the components of x into m 

basic or dependent variables and n - m non-basic or control variables, and A (x f 
can be written as follows. 

A(X)T = [C(x)N(x)] = [(!:) T (!:) T] 

C(x) is assumed to be non-singular. Then defining 

Zk= 
[ 

-C(X)I-I N(x) ] 

Zk = [ -N(x) ] 
C(x) 

lk=[~] 
According to Equation (6.17), the following equation is obtained 

(6.19) 

(6.20) 

(6.21) 

(6.22) 

(6.23) 

Substituting py into Equation (6.18) and then into Equation (6.15) to compute 

the minimum value under the assumption that Z[lVkZk is positive definite, the 

solution is 
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(6.24) 

Z[WkZk is the reduced Hessian. In order to eliminate the computational work 

required to evaluate Wk and Z[WkZk, the BFGS algorithm is used to approximate 

the reduced Hessian Z[WkZk. As for the cross term Z[a'kYkPY , there are two 

methods to deal with it. The first one is to omit it and the second one is to use 

a vector Wk as its approximation by means of finite-difference approximation or 

quasi-Newton approximation (Broyden's update). 

Line Search and Stopping Criterion 

Before updating x* by using Xk+1 = Xk + D:kdk, D:k needs to be tested according to 

(6.25) 

where <Pp.k(Xk) = fk + J.lk liCk III and D</>p.k(Xk; dk) = gf dk - J.lk liCk 11 1 ( J.lk is chosen 

by users). If the above formula is not satisfied, a new D:k should be chosen as 

(6.26) 

If a solution of this optimization problem is denoted by X*, define ek = Xk - x* 

and (Jk = max {IIekli, Ilek+1ll} . If (Jk ::; tol (tol is defined by users.), the algorithm 

can be stopped. 

6.5.2 Simulation Results 

During the implementation of Reduced Hessian Method, the parameters of the 

non linear optimization were the same as one-dimensional case. To solve the MPC 

optimization problem by reduced Hessian method, two slack variables Xl and X2 

are introduced to convert the inequality constraint to become two equality con­

straints. Correspondingly, a quadratic penalty function xi + x~ with a parameter 

J.ls is added into the objective function J in Equation (6.1). Then the MPC op-
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Figure 6.12: Simulation Result of RBFNN based MPC on AFR Using Reduced 
Hessian Method 
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Figure 6.13: Tn/i Produced by RBFNN based MPC Method Using Reduced Hes­
sian Method 

timization problem becomes: Find a suitable control variable Tn/i to minimize 

(6.27) 
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subject to 

( • ") 2 0 mfi - mfi - Xl = 

( . 'U) 2 0 m fi - m fi - X 2 = 

(6.28) 

(6.29) 

Here m~i and mji are respectively 0.0014 kg/sec and 0.0079 kg/sec. After be­

ing scaled, the two bounds become 0 and 1. In order to reduce the influence of 

the slack variables Xl and X2 on the new objective function, the parameter /-la is 

chosen to be 10-10 
• To stop the optimization program at a suitable time, the 

tolerance tol is set be 10-7• 

With the above modification and parameters setting, the simulation results are 

shown in Figure 6.12 and 6.13 , the tracking mean absolute error is 0.0335. The 

time cost in optimization is shown in Figure 6.14 for comparison with the per-

formance of Secant Method. It can be seen in Figure 6.14 that the optimization 

time used in one sample period is more than the sample period O.ls when the 

sample instant k > 470. This would not be implemented in practice even if the 

ECU has the same computational power as the PC used to do simulation. How-

ever, considering the optimization time is much less when C language is used 

coding control algorithms, instead of MATLAB, the method is still possible to 

implement in real-time control. 

6.5.3 Algorithms Comparison 

In term of control performance, the simulation results show that if compared 

with secant method, reduced Hessian method on AFR control can obtain smaller 

overshoot under step disturbance. Its tracking performance is similar as that 

obtained by secant method. However, the computation load is one of the impor­

tant issues in practical application of ECU. In our experiment, the mean time 

cost in one sample period using reduced Hessian method is 0.0473 seconds that 
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Figure 6.14: Time Cost on Optimization Using Reduced Hessian Method 

is nearly twice as many as that used by secant method. From this perspective, 

the single-dimensional optimization approach implemented by secant method in 

this application is much better than multi-dimensional optimization approach by 

reduced Hessian method. 

6.5.4 Control Performance with 10% Uncertainty 

Air leakage problem is introduced to test the robustness of DRNN-base MPC 

on AFR. With the same simulation condition as previous section, 10% system 

uncertainty has been introduced to engine model after running for 26 seconds, to 

test the robustness of developed neural network-based MPC system to deal with 

air leakage problem. Figure 6.15 and 6.16 show the control performance obtained 

by RBFNN-based MPC method. The tracking error by MAE is 0.0881. From 

the simulation results, it can be seen that the internal RBFNN model used for 

model predictive control was not trained using the data with system uncertainty, 

however, adaptive training method adjusts the neural parameters according to 

the change of engine dynamics. This guarantees the correct prediction on AFR. 

The control algorithm therefore can produce the fuel injection rate appropriately. 
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Figure 6.15: Simulation Result of RBFNN based MPC on AFR When Engine 
Model Has 10% Mismatch 
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Figure 6.16: m/i Produced by RBFNN based MPC Method When Engine Model 
Has 10% Mismatch 

6.5.5 Control Performance with 30% Uncertainty 

The system uncertainty has been increased to 30% here. The simulation results 

shown in Figure 6.17 and 6.18. It can be seen that, although there is a 20% 

overshoot of AFR when 30% system mismatch introduced, the AFR converges 

quickly into the ±1 % bounds of the stoichiometric value{14.7). The online adap­

tation on neural parameters by RLS algorithm makes a good contribution for this 
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Figure 6.17: Simulation Result of RBFNN based MPC on AFR When Engine 
Model Has 30% Mismatch 
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Figure 6.18: m/i Produced by RBFNN based MPC Method When Engine Model 
Has 30% Mismatch 

improvement on control performance. As the NMPC structure shown in Figure 

6.1, there is a feedback of the AFR error between the engine output and RBFNN 

model output, which is used to adjust the value of AFR set-point. Therefore, 

even there is no on-line adaptation on neural parameters, it is still possible for 

the AFR to converge toward stoichiometric value(14.7) by this adjustment mech­

anism of NMPC. However, the RBFNN engine model in this research is trained 
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and updated online with RLS algorithm. Therefore, a better prediction on AFR 

can be achieved under system uncertainty. This improved accuracy on predicted 

AFR is very important to deal with the changes on system dynamics. The simu­

lation result proves that the developed control method is robust enough to 30% 

uncertainty in the air intake system. The tracking error in this simulation by 

MAE is 0.1017. 

6.6 Control Performance Comparison with PID 

Under same simulation environment, the air fuel ratio control results of both PID 

control and RBFNN-based MPC are shown in Figure 6.19 and 6.20. Compared 

with traditional feedback control, the RBFNN-based MPC on AFR has better 

tracking performance. In addition, as discussed previously in Chapter 2, there is a 

time delay on the air fuel ratio measurement by the oxygen sensor, the overshoot 

in the PID control reaches 51.7%. The overshoot for the RBFNN-based MPC is 

just 12.9%, which is much smaller than PlO's. This is because the RBFNN model 

used here has the throttle angle signal as one of its inputs. Therefore, when such 

a model is used for predictive control, the optimization algorithm can take the 

change of throttle angle into account and produce an appropriate fuel injection 

rate to minimize the influence it brought. 

6.7 Comparison between RBF based MPC and 

Feedforward-Feedback Control 

The air fuel ratio control results under same simulation environment, are shown 

in Figure 6.21 and 6.22, for both RBFNN-based MPC and FFC method. Obvi­

ously, in term of control performance, feed forward and feedback control is better 

than MPC method, as the RBF-based feedforward controller monitors the sys­

tem states and can take correct action before the disturbances upset the process. 
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Figure 6.19: Comparison of AFR Control Result between RBFNN based MPC 
and PID 

However, RBF-based MPC still has some advantages over FFC method. By the 

comparison of the structure of these two control methods, it can be seen that, in 

the RBF-based MPC, the controller only needs the three values - throttle angle, 

fuel injection rate and air fuel ratio for online adaptation of neural networks and 

the computation of control action. For the FFC method, besides the three mea-

surements above, engine speed, the temperature in intake manifold and air flow 

rate into the engine port are needed to compute the control action. Therefore, 

taking hardware implementation into account, the RBFNN-based MPC method 

can achieve good control performance on AFR, at the same time, reduce the 

system complexity in a large degree. 
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Figure 6.20: Comparison of in/i Produced by RBFNN based MPC and PID 

6.8 Summary 

This chapter has discussed the RBFNN-base MPC scheme for air fuel ratio of 

SI engine. The adaptive RBF network is trained by the RLS method for mod-

elling AFR dynamics. Based on the engine model, the MPC scheme is realized 

for controlling AFR. According to different MPC structures, the advantage and 

disadvantage of both single dimension and multi-dimension optimization meth-

ods are discussed. The robustness of this model predictive control is tested. The 

control performance by RBFNN-based MPC for AFR is much better than that 

of a traditional PI controller in a wide engine operating condition. Based on the 

comparison of control performance between RBFNN-based MPC and RBFNN-
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Figure 6.21: Comparison of AFR Control Result between RBFNN based MPC 
and RBFNN based Feedforward and Feedback Control 

based feedfoward and feedback control, the advantage of MPC method that can 

be brought for engine management system is given. 
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Chapter 7 

DRNN-based Model Predictive 

Control 

7.1 Introd uction 

The radial basis function network used previously for MPC represents a class of 

neural networks known as non linear layered feedforward networks. In this chap­

ter another important class of neural networks that have a recurrent structure 

is considered, for model predictive control on air fuel rate of SI engine. Such 

recurrent neural networks have the ability to store information for later use, thus 

they are better suited for dynamical system modelling than the feedforward net­

work. There are different structures of recurrent neural networks available, such 

as continuous-time neural network (CTRNN) [73], fully connected recurrent neu­

ral network (FRNN) [74], and etc. However, the computation for network training 

and online adaptation of these RNNs is very heavy and not suitable for real-time 

implementation in AFR control application. In our research, the diagonal recur­

rent neural network (DRNN) is chosen for engine modelling for nonlinear model 

predictive control on AFR. The architecture of DRNN is a modified mode of the 

fully connected recurrent neural network with one hidden layer, and the hidden 

layer is comprised of self-recurrent neurons as shown in Figure 4.3. This sim-
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Figure 7.1: Control Structure of DRNN-based MPC 

plification has considerably fewer weights than FRNN. Therefore, the controller 

based on this kind of recurrent neural network can converge with a relatively 

small number of training cycles. The dynamic backpropagation (DBP) training 

algorithm is used for the training of DRNN. 

7.2 Control System Configuration 

The strategy of DRNN-based model predictive control on air fuel ratio is shown 

in Figure 7.1. The trained adaptive diagonal recurrent neural network model is 

used to predict the engine output for N2 steps ahead. The non linear optimizer 

finds out the optimal control variable online by minimizing the errors between 
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the set point and the predicted engine output by using the cost function. 

k+N2 k+N .. 

J(k) = L [msp(i) - y(i)]2 + ~ L [m/i(i) - m/i(i - 1)]2 (7.1) 
i=k+Nl i=k 

Here, NI and N2 define the prediction horizon. ~ is a control weighting factor 

which penalizes excessive movement of the control input, the fuel injection m/i. 

Nu is the control horizon. Then, calculate a series of optimal m/i(k), m/i(k + 1), 

... , m/i(k + Nu - 1) from which the neural network model generates outputs 

to minimize the objective function J in Equation (7.1). Due to the operating 

limitation of fuel injector, there are constraints on the control variable - fuel 

injection rate m/i. Therefore, the problem to be solved here is of nonlinear 

optimization with constraints. Considering the computational efficiency, secant 

method is used in our simulation, which has been introduced previously. Finally, 

the first control variable m/i(k) is used to control the process. This procedure is 

repeated in the next sample period. 

7.3 Engine Modelling using DRNN 

7.3.1 Data Collection 

To obtain the engine data for DRNN modelling, two sets of RAS were designed for 

throttle angle () and fuel injection rate m/i. The ranges of these excitation signals 

are listed in Table 7.1 The sample time in the simulation was set to 0.1 sec. The 

RAS Min Max 
() 20° 70° 

m/i 7 x 10-4 7.9 x lO-J 

Table 7.1: Range of Excitation Signals for AFR Modelling Using DRNN 

simulated engine model MVEM was run for 500 seconds with a set of 5000 data 

samples collected for all three input and one output variables. These data were 

divided into two groups: the first 4500 data samples were used for training while 
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Figure 7.2: Scaled Throttle Angle Data for DRNN Training 

the remaining 500 data samples for validation. All input and output data of the 

DRNN have been scaled to the range of [0,1] before they are used for training 

and validation. Figure 7.2, 7.3, and 7.4 show the first 1000 samples of the data 

for DRNN model training. 

7.3.2 DRNN Model Structure 

Given the expanded engine model as shown in Figure 2.16, the DRNN engine 

model for AFR control has three inputs: fuel injection rate mJi , throttle angle 

() and air-fuel ratio AF R , and one output: air-fuel ratio. The DRNN model 

structure is shown in Figure 7.5. Different orders of network inputs and different 

number of hidden layer nodes have been used in training experiments. In the 

simulation study, the neural parameters n = 3, q = 13, P = 1, v = 2 were 

determined to be the best DRNN modelling structure, which gives the minimum 

prediction error. The training and online updating of DRNN model are realized 

by dynamic backpropagation algorithm [52] and the initial learning rate ofDRNN, 

17\ 17d and 17Y are set to 1 x 10-7
• 
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Figure 7.5: DRNN Model Structure 

7.3.3 DRNN by ADOL-C 

In this simulation, the DRNN engine model is built by C/C++ language and 

ADOL-C library. Therefore, we can benefit from the computation efficiency of 

gradient of error in DRNN by using automatic differentiation. Besides, the con­

trol algorithm developed by C/C++ language is easy to be transferred to real 

application. The procedure is given as follows: 

Declaring Active Variables 

The key ingredient of automatic differentiation by overloading is the concept of an 

active variable. Typically, the independent variables, dependent variables, and all 

quantities that directly or indirectly depend on them are declared as active. For 

the training purpose in our application, we want to obtain the output gradients 

with respect to output, recurrent and input weights shown in Equation (4.25), 

therefore, the DRNN output y and three weight matrices lVh , IVY, W d are defined 

as active variable. 
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Marking Active Sections 

As defined by ADOL-C, all calculations involving active variables that occur 

between the void function calls trace_on and trace_off are recorded on a sequential 

data set called tape. The sequence of statements executed between a particular 

call to trace_on and the following call to trace_off is referred as an active section of 

the code. After the definition of active variables, the code to realize the diagonal 

recurrent neural network as described in Equation 4.19 through 4.23 must be 

written between trace_on and trace_off as active section. 

Selecting Independent and Dependent Variables 

ADOL-C marks independent and dependent variables using «= and »= 

statements. The derivative values calculated after the completion of an active 

section always represent derivatives of the final values of the dependent variables 

with respect to the initial values of the independent variables. Therefore, to 

make a proper function calling, all the variables in matrices W h , WY, W d must 

be initialized by «= at the beginning of active section, and the DRNN output 

y must be give an assignment by > >= at the end of active section. 

Calling Routines in Drivers for Optimization 

In ADOL-C, there are many drivers provided for solving optimization problems 

and nonlinear equations. The driver routine used to calculate the gradient of 

error 8Em /8W in Equation (4.25) is gradient, its prototype can be found in the 

header file <adolc/drivers/drivers.h>. 

Building a Interface between MATLAB and C++ 

MATLAB has the capability of running functions written in C/C++. The files 

which hold the source for these functions are called MEX-Files. As the engine 

model used in this research is developed in MATLAB/Simulink computation 

environment, to make the matrices of gradient of error for DRNN, which are 
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obtained by automatic differentiation technique, available for simulation in each 

sample time, an interface with MATLAB environment is built by MEX warp. 

1.3.4 Engine Modelling Results by DRNN 

After training DRNN for 60 epochs by DBP algorithm, the DRNN-based engine 

model is tested with validation data. The MAE of the trained DRNN model 

is 0.0252. Figure 7.6 shows the simulation result. It can be seen that the good 

match between the engine data and the DRNN output during the model validation 

phase. 
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Figure 7.6: DRNN Modelling Result 

7.4 DRNN-based MPC Simulation 

7.4.1 Simulation Environment Setting 

The developed DRNN is used as internal model in the MPC scheme for AFR 

control. The performance of the MPC scheme is evaluated by the simulating 

the system on the engine simulation model, the MVEM. In the simulation, the 

set-point of the system is set to be the constant stoichiometric value 14.7. The 
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throttle angle used as disturbance here is the same as that in previous simulations, 

it increases from 20° to 70° with 0.5° uncertainty, by changing 10° every 20 seconds 

as shown in Figure 5.10. The AFR is to be controlled between the bounds of the 

stoichiometric value(14.7}. The sampling time is O.ls, which is the same as that 

in engine modelling. 

7.4.2 Tuning of Control Parameters 

The control parameters in the objective function were chosen as NI = 1, N2 = 5, 

as further increasing on the prediction horizon leads to heavier computation load. 

In fact, there is no significant improvement of control performance brought by 

a larger prediction horizon. As the optimization algorithm used to solve the 

objective function (7.1) is secant method that is a single-dimensional approach, 

the control horizon Nu is set to zero in this case. The setting of control weighting 

factor is by trial-and-error. In our simulation, if ~ is too small, the control system 

becomes unstable when throttle angle of MVEM operates between 25° to 45°. 

If ~ is too large, it is very difficult to obtain a good tracking performance when 

a disturbance is introduced because too much penalties are given on excessive 

movement of the control input. Simulation result in this research shows that 

~ = 0.34 is an appropriate setting for ~. 

7.4.3 Simulation Results 

The system output - air fuel ratio obtained by DRNN-based MPC is shown in 

Figure 7.7. The control variable rhfi produced by the developed controller is dis­

played in Figure 7.8. The figure shows that the air-to-fuel ratio is regulated within 

a ±1 neighborhood of stoichiometric value. The system makes prompt control 

actions by making a multi-step prediction on AFR when there are step changes 

on throttle angle. Therefore, a good control performance has been achieved in 

both steady state and transient state. The MAE (see Equation (4.43)) of the 

AFR tracking is 0.0248, 
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Figure 7.7: Simulation Result of DRNN based MPC on AFR 
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Figure 7.8: m/i Produced by DRNN based MPC Method 

7.4.4 Control Performance with 10% Uncertainty 

As before, air leakage problem is used to test the robustness of DRNN-base MPC 

on AFR. With the same simulation condition in previous section, 10% system 

uncertainty has been introduced to engine simulation model after running for 

26 seconds, to test the robustness of the developed neural network-based MPC 

system to deal with air leakage problem. Figure 7.9 and 7.10 show the control 

performance obtained by RBFNN-based MPC method. The tracking error by 
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Figure 7.10: mfi Produced by DRNN based MPC Method When Engine Model 
Has 10% Mismatch 

MAE is 0.0277. It can be seen there is a 7.14% overshoot on AFR when there is 

a sudden reduction on the air mass flow into engine port due to the air leakage in 

manifold. Then, AFR comes back to the bounds of the stoichiometric value(14.7) 

within 2 seconds by the adjustment on the fuel injection rate. This is because that 

the DRNN model can adapt itself online by DBP algorithm to catch the change 

of engine dynamics. Consequently, the accurate prediction on AFR makes DRNN 
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based MPC produce the appropriate mJi for stoichiometric operation. 

7.4.5 Control Performance with 30% Uncertainty 

Further investigation on system robustness under uncertainty has been done by 

introducing 30% mismatch of map to the engine model. Simulation results are 
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Figure 7.11: Simulation Result of DRNN based MPC on AFR When Engine 
Model Has 30% Mismatch 
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Figure 7.12: mJi Produced by DRNN based MPC Method When Engine Model 
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shown in Figure 7.11 and 7.12. The tracking error by MAE is 0.0350. The 

overshoot of AFR has reached 21.7%. However, the AFR settles within the 

bounds of the stoichiometric value(14.7) after 2.3 seconds. In addition, a good 

control performance has been achieved in steady state. The result proves that 

the developed control method has the capability to deal with 30% uncertainty in 

the air intake system. 

7.5 Comparison with PID Control 

Under same simulation environment, the air fuel ratio control results of both PID 

control and DRNN-based MPC are shown in Figure 7.13 and 7.14. Compared 
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Figure 7.13: Comparison of AFR Control Result between DRNN based MPC and 
PID 
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Figure 7.14: Comparison of m/i Produced by DRNN based MPC and PID 

with traditional feedback control, the DRNN-based MPC on AFR has better 

tracking performance. In addition, as discussed previously in Chapter 2, there is 

a time delay on the air fuel ratio measurement by the oxygen sensor, the maximum 

overshoot PID controller, caused by the change of throttle angle, reaches 51. 7%. 

The maxim overshoot for the DRNN-based MPC is just 12.2%, which is much 

smaller than PID's. 
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7.6 Comparison with RBFNN based Feedfor-

ward and Feedback Control 

The air fuel ratio control results, which is under same simulation environment, 

are shown in Figure 7.15 and 7.16, for both DRNN-based MPC and FFC method. 
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Figure 7.15: Comparison of AFR Control Result between DRNN based MPC and 
RBFNN based Feedforward and Feedback Control 

In term of tracking performance, FFC method is better than the DRNN-based 

MPC. However, as discussed in Chapter 6, the advantage by implementing MPC 

is that, without losing too much tracking performance, the complexity of control 

system can be reduced significantly. 
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Figure 7.16: Comparison of in!; Produced by DRNN based MPC and RBFNN 
based Feedforward and Feedback Control 

7.7 Comparison with RBFNN based Model Pre-

dictive Control 

The following simulation results in Figure 7.17 and 7.18 show that, given the 

same simulation condition and optimization algorithm, the tracking performance 

obtained by using DRNN-based model predictive control on air fuel ratio is better 

than that of RBF-based MPC. However, Diagonal recurrent neural network has 

more complicate structure than RBF neural network, which results in heavier 

computation load for micro-controller. In term of training algorithm, recursive 

least square method used for RBF neural network is more computationally ef-
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Figure 7.17: Comparison of AFIl Control Result between DRNN based MPC and 
IlBFNN based MPC 

ficient than dynamic back-propagation algorithm for DRNN, which means that 

more powerful micro-controller is required if one wants to implement DRNN­

based MPC for engine control system. Trade-off between hardware cost and 

control performance needs to be made in practical application. 

7.8 Summary 

This chapter has discussed the DRNN-base MPC scheme for air fuel ratio of SI 

engine. The adaptive DRNN trained by the dynamic back-propagation method 

is used for modelling AFR dynamics of an SI engine. Automatic differentiation 

technique is implemented in our application, to improve the computational ef-

ficiency of DRNN training algorithm. Based on this DRNN models, the MPC 

schemes are realized for regulating AFR. The robustness of this model predictive 

control is tested. 
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Figure 7.18: Comparison of Tnfi Produced by DRNN based MPC and RBFNN 
based MPC 

The significant improvement on control performance has been achieved by DRNN 

based MPC scheme if compared with PID control. FFC method described in 

Chapter 5 can obtain better control performance. However, DRNN-based MPC 

method reduces the system complexity in a large degree without losing satisfac­

tory control on AFR. Finally, as expected at the beginning of this chapter, DRNN 

model is more suitable to be an internal model of MPC scheme if compared with 

RBFNN model. 
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Chapter 8 

Conclusions and Future Work 

8.1 Conclusions 

Three control methods have been proposed in this thesis for air fuel ratio control 

of SI engines. In terms of control performance, these developed advanced control 

methods can obtain satisfactory effectiveness and robustness to large system un­

certainty. All the aims and objectives listed in Chapter 1 of this thesis have been 

achieved and briefly concluded as below. 

A new development in automotive engine AFR control with a feedforward-feedback 

control system structure has been made in this research. Two neural networks are 

used to estimate air flow rate into the cylinders and required fuel injection rate 

under variations of the throttle angle. The inverse of fuel injection dynamics is 

employed to obtain an accurate estimation of fuel injection rate. The developed 

system is evaluated with an engine benchmark of simulation throughout the whole 

operating space, and satisfactory performance is obtained. This method, inspired 

by look-up table, has two significant advantages over look-up table method. First, 

by the realizing input-output mapping with neural computation rather than data 

storing, the cost on system memory is reduced. Moreover, compared with the 

linear interpolation on control data used in look-up table method, a smoother 
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hyper-plane for control is achieved by using neural network model. In addition, a 

large amount of time and labor cost on control system calibration has been saved. 

This research also proposed a RBFNN-base MPC scheme for air fuel ratio of SI 

engines. The adaptive RBF network is trained by the RLS method for modelling 

AFR dynamics of an SI engines. Based on the engine models, a MPC scheme is 

realized for controlling AFR. According to different MPC structures, both sin­

gle dimension and multi-dimension optimization methods are implemented in the 

MPC scheme, and their advantages and disadvantages are discussed. The ro­

bustness of this model predictive control against air leakage in manifold is tested. 

The developed MPC scheme reduces the undesired overshoot of AFR response 

by predicting the future outputs and a good static and dynamic performance of 

the control system has been obtained. RBFNN model is adapted online by RLS 

algorithm, so that the change on engine parameters is compensated. In terms of 

control performance, RBFNN-based MPC for AFR is much better than a tradi­

tional PI controller in a wide range of engine operating condition. 

Further research on MPC scheme on AFR regulation has been done by adopting 

recurrent neural network for modelling engine dynamics. An adaptive DRNN 

trained by the dynamic back-propagation method is used for modelling AFR 

dynamics of an SI engine. Due to the recurrent characteristic of DRNN, the im­

plementation of DBP algorithm is complex and prone to make mistakes. This 

makes the tuning of neural parameters very difficult. Automatic differentiation 

technique is implemented in our application during training and online updating 

stages. The complexity of DBP algorithm has been reduced by the introduction 

of AD. In the meantime, the computational efficiency is improved. Based on this 

DRNN model, the MPC scheme is realized for regulating AFR. According to the 

comparison with RBFNN-based MPC methods, a better control performance in 

both steady state and transient has been obtained by using this DRNN as an in-
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ternal model for MPC scheme on AFR. However, the advantage of a DR.\TN model 

is accompanied by an increase in complexity of the stru tur and computational 

load on training algorithm. This means that more powerful micro-con troll r is 

required if one wants to implement DRNN-based MPC for engine control system. 

The practice cost on the ECU with such control cheme is consequently higher. 

8.2 Future Work 

8.2.1 On-Board Application of Developed Control Algo-

rithms 

The effectiveness and robustness of control algorithms developed in this res arch 

have been investigated using the mean value engin model that is a widely used 

engine benchmark for engine modelling and control. However, before the pra ti­

al application in automotive industry, the developed methods are necessary to 

tested on a real-time comput r with real input-output device. This proce is 

usually called rapid control prototyping (RCP) , which is hown in Fig. 8.1 [75]. 

Model of Control Strategy 

Real·Tlme Hardware target 

Real System 
(Plant) 

Figur 8.1: Rapid Control Prototyping Definition: control algorithm is simulat d 
and plant is real 

As the control algorithms we developed are all based on MVEM that runs in MAT-
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LAB/SIMULINK -computational environment, the RCP solution from dSPACE 

is the best choice to carry out further research work. The hardware and soft-

ware required to complete the experimental setup are shown in Table 8.1 [76]. In 

addition, a high performance PC with MATLAB/SIMULINK installed and an 

engine test bed are required. 

HARDWARE 
Single-board hardware OS1103 PPC Controller Board 
Accessories PEX4 Expansion Box with PCMCIA Link 

CLP1103 Connector Panel 
SOFTWARE 
Implementation software Real-Time Interface (RTI) 

RTI CAN Blockset 
PowerPC Compiler 

Test and Experiment Software ControlOesk 
MLIB/MTRACE 

Table 8.1: Hardwaer and Software Components for RCP 

Given these research facilities, the developed control algorithms in MATLAB en­

vironment can be transferred from M files to C files. Then, the C files will be 

complied for a certain processor and exported to D81103 PPC board for real-time 

engine control. 081103 PPC board connects to PC with high-speed serial link by 

PX4 expansion box, therefore, all the real-time data of engine running condition 

can be display in the monitor of PC through the software ControlDesk. 

8.2.2 In-Cylinder Pressure Re-Construction for AFR Con­

trol 

An in-cylinder pressure sensor inside the combustion chamber can provide AFR 

information that replaces the oxygen sensor signal. By using such kind of sen­

sors, the time delay in the feedback system can be reduced significantly [77]. The 

effort made on a look-up table controller could consequently be reduced by the 

improvement on control performance of feedback controller during fast transients. 

When considering production engine, cost and durability issues pose major prob-
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lems. Several in-cylinder pressure re-construction methods have been proposed. 

Most of them are based on measured crank kinematics or measured structural 

vibrations. Linear models, frequency response functions and feedforward neural 

networks had been used in previous research [78] [79] [19]. Few research papers 

using recurrent neural networks have been found due to the difficulty on training 

and low computational efficiency for online updating. The diagonal recurrent 

neural network with AD tuning, which has been developed in this PhD project, 

can be the potential model for such application. In addition, the stability and ro­

bustness of AFR control system using NN based predictor need to be investigated 

for practical application. 

8.2.3 Extension of NN-based Control for Other Engine 

Control Problems 

The number of variables in an engine control system has risen from 40 to 600 

in the last two decades [80]. However, more and more new technologies, such 

as active safety systems, hybrid powertrain, turbo-charged gasoline engines, and 

variable valve timing etc, have been used in automotive industry along with the 

growth of requirements in engine efficiency, customer safety, and vehicle ride com­

fort. The introduction of these new technologies makes the scale of control system 

huger and more complex. 

For example, Figure 8.2 [81] shows a schematic diagram of a turbo-charged gaso­

line engine. A design challenge for such engines is to develop a system that 

provides adequate boost at low speed and load without creating an over-boost 

situation at high speed and loads. Typically, the solution is to control the waste­

gate very precisely according to the engine operating condition. This certainly 

causes an increase in complexity of the control design and calibration. The de­

veloped control schemes in this thesis can be easily extended to solve this kind 

control problem to meet strict standard. In addition, the development cost and 
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Figure 8.2: Schematic Diagram of a Turbo-Charged Gasoline Engine 

system complexity will be reduced significantly by implementing N -based meth­

ods and MPC on production ECU. 

8.2.4 Neural Network for Engine Fault Diagnosis 

On-board diagnosis of car engines has become increasingly important because 

of environmentally based legislative regulations such as on-board diagnostics-II 

(OBDII) [5]. A fault can be defined as an undesired deviation of one or more 

variables of the system from the normal behavior. For automotive engine, faults 

are often harmful to automobile and even lead to hazardous situation for vehicle 

driver if early detection is not made. On the other hand, early detection and iso­

lation of engine faults can affect the fuel efficiency and reduced the air pollution. 

However, the fault detection based on first principals is often not effective due 

to the severe nonlinearity of engine dynamics. Recently, engine fault diagnosis 

using neural networks has been an active research area. RBFNN and DR N have 

been proven good modelling tools in this PhD project, and further investigation 

of their effectiveness for engine fault diagnosis may produce satisfactory results. 
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Appendix A 

Symbols 

Hu, fuel lower heating value(kJ/kg) 

I crank shaft load inertia(kg· m 2
) 

Lth stoichiometric air/fuel ratio 14.7 

mEGR EGR mass flow (kg/sec) 

map air mass flow into intake port (kg/sec) 

mf engine port fuel mass flow (kg/sec) 

mfl fuel film mass flow (kg/sec) 

mfi injected fuel mass flow (kg/sec) 

m,v fuel vapor mass flow (kg/sec) 

NI minimum prediction horizon 

N2 maximum prediction horizon 

Nu, control horizon 

n crankshaft speed (rpm) 

Pa ambient pressure (bar) 

Pb load power (kW) 

P, friction power ( kW) 

l{ manifold pressure (bar) 

Pp pumping power ( kW) 

R gas constant (here 287 x 10-5 ) 
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Ta 

TEGR 

1£ 

td 

U 

Vd 

Vi 

>. 

!l.Td 

ambient temperature (Kelvin) 

EGR temperature (Kelvin) 

intake manifold temperature (Kelvin) 

time delay of fuel injection systems (sec) 

throttle position (degrees) 

engine displacement (l iter s) 

manifold + port passage volume (m3) 

air/fuel ratio 

injection torque delay time (sec) 

ratio of the specific heats = 1.4 for air 
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Appendix B 

Abbreviations 

AD 

ARX 

CCEM 

COM 

CTRNN 

DBP 

DI 

DRNN 

ECU 

EGO 

EGR 

EMS 

FD 

FPGA 

FRNN 

HC 

IC 

LS 

MAE 

Automatic differentiation 

Auto regressive with exogenous input 

Cylinder by cylinder engine model 

Control oriented model 

Continuous time recurrent neural network 

Dynamic back-propagation 

Direct injection 

Diagonal recurrent neural network 

Electronic control unit 

Exhaust gas oxygen sensor 

Exhaust gas re-circulation 

Electronic management system 

Finite difference 

Field programmable gate arrays 

Fully connected recurrent neural network 

Hydrocarbons 

Internal combustion 

Least square 

Mean absolute error 
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MI 

MIMO 

MLP 

MPC 

MVEM 

NLP 

NN 

NO 

N02 

,ODE 

PID 

PLRBF 

PM 

QP 

RAS 

RBF 

RBFNN 

RLS 

RNN 

SD 

SI 

SISO 

SQP 

TDC 

TWC 

VVT 

Manifold injection 

Multiple-input and multiple-output 

Multiple-layer perceptron 

Model predictive control 

Mean value engine model 

N onlinear programming 

Neural network 

Nitric oxide 

Nitrogen dioxide 

Ordinary differential equation 

Proportional-integral-derivative 

Pseudo-linear radial basis function 

Particulate matter 

Quadratic programming 

Random amplitude signal 

Radial basis function 

Radial basis function neural network 

Recursive least square 

Recurrent neural network 

Symbolic differentiation 

Spark ignition 

Single input single output 

Sequential quadratic programming 

Top dead centre 

Three way catalytic 

Variable valve timing 
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Appendix C 

Author Publication List 

Journal Paper: 

[1] Yu-Jia Zhai, Ding-Li Vu, (2009), Neural network model-based automotive 

engine air/fuel ratio control and robustness evaluation, Engineering Applications 

of Artificial Intelligence, Volume 22, Issue 2, Pages 171-180 

[2] Yu-Jia Zhai, Ding-Li, Vu, (2008), RBF-Based Feedforward-Feedback Control 

for Air-Fuel Ratio of SI Engines, IMechE Journal of Automobile Engineering, 

Volume 222, Issue D3, Pages 415C428. 

[3] Yu-Jia. Zhai, Ding-Li Yu and Ke-Li. Wang, (2007), Comparison of single­

dimensional and multi-dimensional optimization approaches in adaptive model 

predictive control for air-fuel ratio of SI engines, International Journal of Infor­

mation and Systems Sciences, Volume 3, Number 1, Pages 129-149. 

[4] Yu-Jia Zhai, Ding-Li, Vu, (2007), A Neural Network Model Based MPC of En­

gine AFR with Single-Dimensional Optimization, Advances in Neural Networks, 

Computer Science Springer, Volume 4491, Pages 339-348. 
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Conference Paper: 

[1] Yu-Jia Zhai, Ding-Li, Yu, (2008), Automotive engine modeling with continu­

ous time recurrent neural networks, 5th International Symposium on Automatic 

Control, 18-19 September, Wismar, Germany. 

[2] Yu-Jia, Ding-Li Yu, (2007), RBF-based Feedfoward-Feedback Control for Air­

fuel Ratio of SI Engines, Workshop on Advanced Fuzzy and Neural Control, 29-30 

October, Valenciennes, France. 

[3] Yu-Jia Zhai, Ding-Li Yu, (2007). Advanced Neural Network-based Feed­

forward Control on Air Fuel Ratio of SI Engines, 13th Chinese A utomation and 

Computing Society Conference, 15 September, Staffordshire, England. 

[4] Yu-Jia Zhai, Ding-Li Yu, (2007) A Fast Optimization Approach in Adaptive 

Model Predictive Control for Air-Fuel Ratio of SI Engines, 13th Chinese A utoma­

tion and Computing Society Conference 15 September, Staffordshire, England. 

Submitted Journal Paper: 

[1] Yu-Jia Zhai, Ding-Li Vu, Hong-Yu Guo, (2009), Robust Air/Fuel Ratio Con­

trol with Adaptive DRNN Model and AD Tuning, Engineering Applications of 

Artificial Intelligence 
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