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ABSTRACT.

There is undoubtedly an increase in the number of consumer appliances enjoying
networking capabilities. With data throughput increasing among devices that are renowned to
be less capable than personal computers, we see an increase in the consumption of
multimedia. In parallel, gaming and social networking are at the forefront of next generation
entertainment systems where new and novel usage scenarios are pushing technological
boundaries. These advances have certainly provided a platform for innovation, where a
natural progression would be to bridge the gap between the aforementioned technologies. For
example, content sharing over networked devices, beyond simple file sharing is becoming a
reality.

Furthermore, many devices such as mobile phone are forming closer relationships with
different virtual worlds, such as World of Warcraft and Second Life. In one sense, the
boundaries between the two are becoming increasingly less distinct. Consequently, this opens
up many new avenues for content sharing, not only between devices but also between
sophisticated virtual worlds. Given such interoperable platforms, a natural progression would
see content that seamlessly resides within either. This will open up new opportunities where
third party content providers and users alike are able to create and share content over these
new platforms.

Achieving this will require several challenges to be addressed. These include service-
oriented networking; behaviour discovery; behaviour capability matching and on the fly
behaviour generation in required target environments. Overcoming these challenges will
allow mechanisms to be developed that enable us to move content seamlessly between
heterogeneous environments (virtual and real).

In this thesis, we describe a novel approach that we have successfully developed to address
these challenges - a Framework for the Visualisation and Control of Ubiquitous Devices and
Services. Our framework allows us to move easily between real and virtual environments
where the content and services we use are always at our disposal. Utilising the benefits of
being connected will allow us to manage our content and services independently of where
they reside. Our framework provides a basis on which this vision can be realised, that
facilitates the sharing of objects across different environments, both virtual and real. This is
performed in a flexible way where containers within different real and virtual environments
can consume such objects. Using the semantic descriptions of the behaviours objects support,
target environments will create scripted behaviours based on interpretations of the
functionality they provide. This enables applications, underpinned by digital content, such as
dynamic game development, immersive and interactive 3D multimedia, and on-the-fly scene
analysis, to emerge.

We have successfully developed a real world prototype that implements our vision of a
Smart Home Framework, which we have then used to evaluate our framework. Using our
framework, we can discover ubiquitous computing devices, such as mobile phones, represent
these devices graphically and generate the behaviour of these devices on the fly. In this
scenario, for example, the framework enabled the making of a call, answering an incoming
call, and sharing multimedia content with a correspondent avatar in the virtual world mapped
to a physical device.
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Chapter 1
1 Introduction

1.1 Preamble

Many devices have developed rapidly to become multifunctional wonders. They

now include functionality beyond their initial design. The best example is a mobile

phone. They not only provide communication functions such as making a phone call

and sending text messages, but can also work as a camera, MP3 (Moving Picture

Experts Group Version 3) player and support web access. More and more devices are

providing computing capabilities, including increased networking functions enabling

them to interact with each other more easily. The multifunctional capabilities of

devices have allowed for new and exciting application areas for networked

appliances. For example, using the network, devices can be controlled from anywhere

in the world at anytime.

Equipped with multiple networking capabilities, increased computational power,

and higher data throughput, many devices have become ideal platforms on which

multimedia content can be distributed and accessed ubiquitously. Consequently, this

has allowed the source of multimedia to change beyond traditional distribution

models. For example, sensors over the last several years have been the focus of much

research and are now starting to form part of larger networks designed to monitor

environmental conditions such as temperature, vibration and pollutants, often used as

input for 3D visualisations.

Solutions may manifest themselves from the bespoke deployment of ubiquitous

devices and services or by exploiting existing networked consumer appliances.

However, regardless of how such devices and services embed themselves or how

invisible technology, becomes the challenge will be to invent and develop a new

platform capable of making devices and services accessible. Drawing from advances

made in game technology techniques could be utilised to form a bridge between real
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and virtual worlds as illustrated in Figure 1.1. This would allow the constraints to be

mitigated, because virtually, physical devices can be manipulated in new and novel

ways, i.e. increasing their size to make them more visible; or by combining them with

other devices to provide a better means of interaction. For example, a digital

magnifying glass would allow us to see what invisible technology looks like and how

we may use it. We could even locate its position within the home. Given that there is

widespread adoption of networked appliances, all providing an increased number of

functions, the home will contain many invisible services. New platforms are required

to exploit these services to allow users to include them in any number of different

applications. Successful platforms will also provide greater visibility to those services,

from outside the home to other interested parties, for example, to monitor a patient's

health .

..

dAppliances

Figure 1.1 Visualising Ubiquitous Devices and Services

In the remainder of this chapter we provide an overview of the challenges that need

to be addressed and discuss their importance. A brief introduction is provided about

the research fields considered within this thesis where all concepts relating to its

construction are clearly defined. This includes networked appliances, home

networking, 3D virtual environments, Object Behaviour Matching, dynamic
2



behaviour composition and ubiquitous computing. Current techniques and research

practices are described and their associated strengths and weaknesses are highlighted.

Finally, we conclude this chapter by defining the scope of this thesis, the key

requirements that this thesis addresses, the novel contributions we have made and an

overview of the remaining chapters.

The motivation for this research project is to bring together networked appliances

and mobile computing devices, including devices that are not necessarily easy to see

such as internal or external body sensors. Utilising wireless communications and an

intelligent service-oriented middleware platform it is easy to find and use

functionality provided by all our devices and this makes them easy to group, manage

and control in a much more easy and natural way through advances in entertainment

technologies such as 3D game and physics engines. This allows us to move a

conceptual magnifying glass over our environments and magnify what is available.

This is not possible without a level of technical knowledge about device connectivity,

such as WiFi and Bluetooth as well as application development and information

exchange. Simply opening a 3D gaming environment will allow abstract notions of

devices, how they connect together and the functions they provide, to be easily

understood in the same way we have become accustomed to interaction with physical

objects and our environment.

We have undoubtedly become increasingly immersed within our digital world and

this would suggest that there is a need to model this interaction in similar ways to

those enacted in our physical environment. There is great interest in bridging the gap

between the physical and virtual, with ever increasing populations occupying World

of Warcraft, Facebook and Youtube. We take that further using a fully working

prototype system capable of providing a platform to host wireless devices and

services and for these devices and services to be given a 3D existence within a gaming

world where they can be viewed and acted upon in ways that extend what is currently

available in the 3D Web. The remainder of this chapter introduces the key technology

components that when combined provide a new and novel platform to visualise and

control ubiquitous devices, services and digital content.

3



1.2 Ubiquitous Devices

As we move towards the Ubiquitous Computing vision, our homes will adapt to

embrace the benefits this will bring. Whether we will be completely aware of this

transition is unclear. For example, in the UK it is reported that we are caught on

CCTV (Closed-Circuit Television) cameras on average 300 times a day, which many

of us are unaware of [Welsh 2009]. Like CCTV, technologies will weave themselves

into our home networks to influence all aspects of our home life, without us

necessarily being aware that it is happening. This evolutionary path has been slowly

pushed over the past five years through the wide deployment of broadband and

wireless solutions and this has allowed us to use the home in new and emerging ways.

For example, through cellular networks and machine-to-machine technologies we

now have automated utility usage and billing services. We can seamlessly move

digital content around the home with wireless devices providing us with ubiquitous

access to our content. And we can interact with physical artefacts, i.e. using

technologies such as Surface Computing [Steve 2007].

Coupled with sensmg technologies, such as RFID (Radio-Frequency

Identification), infrared and new gaming controllers currently being released by Sony

and Microsoft, these devices will playa greater part in embedded home services. For

example, we may see the deployment of medical sensors in the home, in what is being

termed The Medical Home that could be directly linked to body sensors for the

purpose of collecting data, i.e. physiological and motion data. This could have many

benefits to the user. Firstly, biofeedback data could be used to control devices, such as

those that influence mood, entertainment, or game play. Secondly, they could help

support next generation primary care services from within the home to monitor,

diagnose and treat any number of ailments such as, physical and cognitive decline,

including debilitating conditions, such as depression or Alzheimer's.

Given that there is widespread adoption of networked appliances, all providing an

increased number of functions, the home will contain many invisible services. We

developed a framework that allows us to exploit these services to allow users to

include them in any number of different applications. Using a virtual environment will

provide greater visibility to those services, not only within the home but from outside

the home by other interested parties, For example, to monitor a patient's health.

4



1.3 Networked Appliances and Home Networking

Networked appliances [Nakazawa 2000] can be described as consumer equipment

with a dedicated function which has a network process that allows the device to be

connected to a network [Merabti 2008a]. Networked devices have revolutionised the

way we access and disseminate information and changed the way we communicate

with each other. Integration between different domains, such as the Internet, broadcast

and mobile, has now been made possible using standards such as DLNA (Digital

Living Network Alliance) [DLNA 2004a; DLNA 2004b]. Furthermore Set-top box

technologies have increased in popularity and standards such as the OSGI (Open

Services Gateway Initiative) [OSGi Alliance 2005] have helped enhance these

solutions to allow services, such as audio and video, to be deployed on network

appliances connected to home networks. Keeping with the view that many more

devices will form part of the Internet, the RUNES (Reconfigurable Ubiquitous

Networked Embedded Systems) [Koumpis 2005] project has provided a framework

that allows any device to form part of the Internet irrespective of its capabilities. This

is seen as an important step where advances in sensor networking technologies have

emerged to be new sources for multimedia data.

Despite the benefits such technologies bring many are still proprietary in nature.

Adapting and controlling how services are created, deployed and managed is

somewhat restrictive. This has resulted in more flexible approaches, for example those

based on peer-to-peer technologies, where devices can form part of larger networks in

a much more ad hoc manner. AMIDEN [Minoh 2001] represents a platform where

functions provided by devices can be dispersed within the network as independent

discoverable services. A standard that helps facilitate the exposure of device

functionality in a more service-oriented manner is JXTA (Juxtapose) [Gong 2001];

which is a set of protocols designed to create a balance by providing a hybrid system

that uses loosely consistent distributed hash tables. The SIP (Session Initiation

Protocol) is responsible for the setup and release of connections between two

provided end points [Tam 2002]. SIP is widely used in VoIP (Voice over Internet

Protocol), to setup, terminate and configure call and data transfer. SIP usually runs on

TCP/IP (Transmission Control Protocol/Internet Protocol) but can be run on UDP

(User Datagram Protocol), ATM (Asynchronous Transfer Mode Protocol) and a frame

5



relay running over TCl' is advantageous because it provides inexpensive widespread

connectivity, directory services, naming services and a widely known development

environment. MULEs (Mobile Ubiquitous LAN Extensions) are mobile entities [Shah

2003], that provide short-range wireless communications and can transfer and receive

data from nearby sensors or access points. When a sensor is in close range, MULEs

stores sensor data temporary in a buffer and transfers data to a wired access point

when in proximity [Akyildiz 2002].

There are many solutions available for network appliances and home networking

from self-adaptive middleware frameworks that enable heterogeneousnetworks, devices

and services to be seamlessly interconnected [Merabti 2008a] to bespoke solutions.

However, in home networking there are hidden services or small devices which

cannot be operated physically. The goal of our research is to visualize networked

appliances and these hidden services and small devices in 3D virtual environments to

support possibilities for device interactions and operation and to allow the physical

constraints associated with real objects to be removed [Shaheed 2009].

1.4 Virtual Environment

A 3D virtual environment is a computer simulated environment where a user

interacts via avatars in Games such as Halo, World of Warcraft or virtual social

networks like Second Life. The virtual environment is used to simulate reality where

users can control the virtual environment [Simin 2009]. Traditionally virtual

environments have been controlled using keyboards or joysticks but later advances in

sensor technology have made it possible to use other input devices such as motion

capture, hearing sensor, touch sensor etc. Flight simulator [George 2008] is an

example of a virtual reality environment where pilots are trained using computer

programs before they use a real airplane. Other virtual environments have been

developed for different application such as military exercise, 3D medicine imaging

and entertainment.

The aim of virtual reality technology is to bridge the gap between the virtual and

physical and to explore man-machine interfaces from visual perception and different

6



sensory channels such as vision, hearing, force, touch and smell. Advances in sensor

technologies will make the experience more immersive [Fergus 2007].

The ability to change the internal look and behaviour of virtual environments has

extended beyond those mentioned above where we now see devices embedded in the

real-world; these devices are beginning to affect virtual environments and the artefacts

they contain. For example, the study by Kwon et al., [Kwon 2007] shows how virtual

objects can be visualised using information collected in wireless sensor networks.

This provides virtual worlds with the ability to understand and estimate more easily

the state of the real world measured through these sensor networks.

Many 3D virtual environments exists where people can create their own content,

buy and sell virtual products, and connect physical devices with virtual worlds.

However little has been done on sharing contents across different environments, for

example moving an object between Second Life and World of Warcraft. The

challenge is to design a framework to facilitate sharing of objects across different

virtual environments and allow such environments to create behaviour for object.

More specifically, we have developed a framework that builds on the many advances

discussed above. The benefits of each are exploited to allow user generated content

and the seamless inclusion of devices and the functions they provide in the real world

to be seamlessly moved, shared, and used within and across different real and virtual

heterogeneous environments [Merabti 2008b].

1.5 Incorporating Rule Based System and Dynamic Scripting

A Rule-Based system processes and stores knowledge to interpret information in a

useful way. Using Rule-Based systems the visualisation and operational capabilities

of objects can be manipulated externally to the applications in which they are shared

and used. New and novel platforms will require intelligent modules capable of

understanding and making interpretations about visualisations and the behaviours

objects have to provide mechanisms to plug services into the network that can act as

helper functions [Merabti 2008a]. For example, object visualisations serialised in

COLLADA [Erwin 2007] [Remi 2006] (COLLAborative Design Activity) from the

source environment could be transcoded into multimedia authoring tool such as 3D

7



Studio Max if used by the destination environment using the framework [Merabti

2008a]. Behaviours are slightly different in that it is the target environment and its

specifics that are best suited to dynamically creating such behaviours. Initially objects

that are projected into target environments describe their functions semantically. One

possible way of doing this could be to utilise advances made within the Semantic Web

[Berners-Lee 2001] and the tools they use such as OWL-S [Martin 2005]. These

semantic descriptions can be used as input into services equipped with rule engine

capabilities. When semantically matched rules fire [Merabti 2008a] dynamic scripted

behaviours are generated and serialised using script languages such as Ruby, Python,

Lua or JavaScript. These scripted behaviours are then projected alongside the

visualisation data into the target environment.

There are many options for incorporating scripting into games and networked

virtual environment applications, by utilizing an existing solution, or developing a

custom bespoke tool. The bespoke tools can be very powerful, and provide the

developer with the ultimate control over the solution, but also involve an extremely

large amount of development to create them from scratch, putting this method in

conflict with the productivity gains made from utilizing scripting. When adopting a

generic scripting language approach, all four of the languages mentioned provide an

adequate range of language features, high-level bindings to other languages, built in

support functionality, and portability. The choice will be application dependent e.g.

using Lua if speed and memory footprints are crucial, Python if existing functionality

must be utilized, and Ruby for maintaining an Object-Oriented approach.

There are many 3D virtual environments, both in games and social networking,

which support scripting languages, Rule-Based systems and different virtual

environments support scripting with some having their own scripting language

support for example Second life. However, the challenge is to allow users to choose

their preferred scripting language and for environments to support that language. We

have developed a system where it will be easy to select a popular scripting language

and write code in that language using a rule based system and incorporating semantic

matching techniques to find the appropriate behaviours of an object [Shaheed 2008].
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1.6 Scope of the Research

The aim of this thesis is to develop a new framework that allows us to discover,

visualise and control devices and services in Ubiquitous Computing systems. By

equipping devices with visualisation and behavioural data they are able to project

themselves in virtual environment. When discovered, this data is stored and mapped

to objects (visualisation data and semantic descriptions of data) in a virtual container.

This information is pulled into the framework and used to create interpreted

visualisation information and dynamically scripted behaviour from the semantic

descriptions of functionality the object provides.

The framework can be easily expanded to accommodate any additional

requirements to be plugged in as and when they are needed. This thesis focuses on

discovering new services, visualisation, constructing behaviour on the fly and sharing

objects in heterogeneous environments (both virtually and physically).

Using this framework several key requirements are addressed within this thesis,

which encompass advances made in the areas of networked appliances, dynamic

generation of object behaviour, visualisation, semantic matching and ubiquitous

devices. The framework does not consider the aforementioned disciplines in isolation,

but rather proposes a service architecture demonstrating how they can be combined

and extended to create a new type of framework capable of discovering devices,

generating their behaviour on the fly and visualizing them in a virtual environment.

1.7 Project Requirements

This section presents five main requirements used to design and implement the

new framework and to realise the challenges described in this chapter.

• Bridging the gap between physical and virtual worlds will allow us to remove

the physical constraints associated with real-world objects that will be

beneficial in two ways. First, improving possibilities for device interactions

and improving the functionality that is available within virtual worlds. Second,

it will also allow the physical constraints associated with real objects to be

removed, enabling them to benefit from the freedom offered by virtual

environments. This will require new algorithms that link devices and virtual
9



artefacts as well as moving them between heterogeneous environments. There

is a need to create artefacts that are modular and descriptive in terms of their

appearance and their behaviours. Different environments have different rules

governing how they contain artefacts and behaviours, consequently services

will be required to tailor artefacts in conformance with environmental laws.

This means that services need to transcode 3D model data and dynamically

support behaviour development using a combination of on-the-fly scripting

and semantic reasoning using a logic system such as a rule engine [Maciol

2008]. This will improve interactivity and the way the platform allows

manipulation and control of content, to the extent that new user-generated

content can be constructed purely through the combining and manipulating of

3D multimedia streams using networked appliances.

• The platform should effectively generate dynamic behaviour and allow us to

map different object behaviours using Ontologies and semantic descriptions to

describe content visualisations and behavioural data (the interaction between

objects across different virtual environments). Behaviour ontologies allow

objects to semantically describe the functions they provide and for these to be

embedded within object advertisements. Using the same ontologies requests

for objects or a description of required behaviour can be described.

• Object Descriptions and Object requests must be based on environment-

processable semantics if we are to successfully determine what behaviours are

relevant and which are not. This brings with it additional challenges; the

vocabularies used by different environments will be different and the structure

of the concepts themselves will vary. Therefore, we need mechanisms that

allow environments to dynamically create a semantic interoperability bridge

between terms that are syntactically different but semantically equivalent. This

requirement allows environments to discover other objects and behaviours

within their environments and dynamically learn the different terminology

they use.

• With the advent of social networking and more importantly virtual

environments in which such social activities take place it has become

important to understand how interoperability between such environments can
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be realised. Users need to have the ability to move seamlessly between

heterogeneous environments where content from such environments can be

shared. Typically, this is not the case where proprietary platforms host virtual

environments with limited or no openness to include others. Given these

limitations, we aim to provide an open platform on which any virtual

environment can interoperate with another and share, use, and create content

in any of them. For example, content owned by users in Second Life can be

shared with a World of Warcraft user.

• Communication underpins virtual environments and this could possibly be the

beginning of the 3D Internet. This gives virtual environments a greater reach

and one that will more and more include devices from within the real-world.

For example, sensor networks will be used to obtain environmental data and

provide a direct effect on content in virtual environments. Users will be able to

utilise the devices they have from within virtual environments and vice versa.

Consequently, there is a need to develop protocols that blur the gap between

the two. Building virtual worlds on top of a networked appliances platform

that forms part of the Internet, is unique, both in terms of its design, and the

level of user control that the resulting platform will provide.

1.8 Novel Contributions to Knowledge

This thesis describes a new framework we have developed that uses advances in

gaming technology to address the above project requirements by discovering

ubiquitous computing devices, visually representing what they look like and mapping

the functionality, they provide. Our framework provides services and protocols that

discover and interconnect objects within the network; dynamically generate and

compose functionality provided by objects using semantic matching; select objects

based on the capabilities they support; and allow environments to generate behaviour

dynamically. Each of the novel contributions we have made are discussed in tum in

the following subsections.

1.8.1 3D Visualisation in Ubiquitous Computing, Device and Services

Currently applications are developed and deployed as one-off solutions - any

application changes thereafter appear ill subsequent releases. Although such
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applications provide considerable benefits, it is becoming increasingly apparent that

these solutions are inflexible. Alternative mechanisms are needed that allow

application functionality to be embedded within the environment as network services.

This will allow new frameworks to utilise these services to create complex business

processes more quickly. We have developed such a framework that allows the

operational functions provided by devices to be dispersed within the network as

services that can be combined to create high-level applications [Fergus 2003;

Mingkhwan 2004; Mingkhwan 2005; Fergus 2005] and these services can be provided

and exploited by any type of network devices. Each contribution we have made is

listed below:

• We have designed a framework that allows application functionality to be

embedded within the environment as network services. The operational

functions provided by devices to be dispersed within the network as

services that can be combined to create high-level applications and these

services can be provided and exploited by any type of network devices

[Shaheed 2010].

• Our Framework allows devices to be visualised in virtual environments in

order to enhance the device functionality and hidden services within the

network in a unique and novel way to give greater control over services and

devices within networks.

1.8.2 Content Sharing Across Virtual and Physical Environments

Content sharing over networked devices, beyond simple file sharing is becoming a

reality. Furthermore, many devices are forming closer relationships with different

virtual worlds, such as World of Warcraft and Second Life. In one sense the gap

between the two is becoming increasingly narrow. Consequently, this opens up many

new avenues for content sharing, not only between devices but also between

sophisticated virtual worlds. This will open up new opportunities where third-party

content providers and users alike will be able to create and share content over these

new platforms. This provides obvious benefits. First, the freedom this offers allows us

to very easily move between real and virtual environments where the content and

services we use are always at our disposal. Second, utilising the benefits of being
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connected will allow us to manage our content and services independently of where

they reside, whether this is on the device itself or remotely via its associated avatar.

Lastly, and perhaps less obviously the platform will significantly influence the

applications underpinned by digital content where solutions not yet envisioned will

emerge, such as dynamic game development, immersive and interactive 3D

multimedia, and on-the-fly scene analysis and manipulation of object behaviour. We

aim to provide a basis on which this vision can be realised where mechanisms have

been developed that facilitate the sharing of virtual world objects across different

virtual environments. The approach has been successfully developed and tested using

a working prototype that allows digital content, such as 3D assets to be shared;

physical devices, such as mobile phones, to be connected to avatars in a virtual

environment, and content to be shared. Each novel contribution is listed below:

• We have developed a component to plug into any environment (both physical

and virtual) which eases the sharing of objects and the generation of behaviour

dynamically in the target environment. It is a difficult task to generate

behaviour of objects dynamically in target environments, which are not known

a priori because this will possibly bring an infinite number of behaviours. The

environment (both real and virtual) generates behaviours on-demand and

determines how a particular behaviour is used. In heterogeneous

environments, generating dynamic behaviours using pre-determined interfaces

or implementing specific proxies are not possible because we have no control

over objects joining the environment. We dynamically generate behaviours

and 'intelligently' process the signatures they provide to allow the

environment to understand how the object operates and how they can be

integrated within different environments [Shaheed 2007].

• Current implementations describe object behaviours using attribute-value

pairs. This means that successful matches are only found if the behaviour

request exactly matches the object description. If the two differ syntactically,

but are equivalent semantically, current approaches fail to find a match. This is

inflexible and excludes a large number of behaviours because of syntactic

differences. In our framework we provide mechanisms that serialise behaviour

descriptions using high-level semantics that provide rich conceptual

information about the individual functions devices provide [Fergus 2003a;
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Fergus 2003b]. Even if behaviour requests and behaviour descriptions are

syntactically distinct, but semantically equivalent, our framework can find a

match.

• It is difficult to get different content makers to create and use a single standard

for the terminology used to describe object behaviour. Consequently our

framework uses high-level semantics to resolve the inherent ambiguities

between object behaviour requests and behaviour descriptions [Fergus 2003a].

1.8.3 Object Behaviour Matching

Content Sharing between devices and their usage scenarios in the real world does

not entirely map onto shared content and devices and their usage scenarios in the

virtual world. We have a level of intelligence that makes this process easy, which is

not shared with computers. This is a problem well documented within Artificial

Intelligence (AI), however, aspects from AI can be utilised. We borrow from many of

the successes seen in the Semantic Web [Merabti 2008a], more specifically the use of

semantic descriptions to describe content visualisations and behaviours (the

interaction between objects across different virtual environments).

Behaviour ontologies allow objects to be semantically annotated, which can be

embedded within object advertisements. The same ontologies can also be used to

describe object requests. We borrow from the Networked Appliance Utilization

framework [Merabti 2008a], and use object descriptions to describe behaviour

ontologies; the Behaviour Ontology; Behaviour Profile; and the Behaviour Process

Model [Shaheed 2008]. Behaviour ontologies allow objects to be described at an

abstract level in terms of lOPEs (Inputs, Outputs, Preconditions, and Effects). The

lOPEs form explicit relationships between the different ontologies, which are in tum

mapped into signatures (method names, parameters and return data including type

information). In this way the Behaviour ontologies and the behaviour interface

provide a mechanism to link semantic descriptions for example WSDL (Web Service

Definition Language) to possible implementation solutions to describe how

behaviours are generated. This process helps independent behaviours offered by

objects to be dynamically created or discovered, and executed with little or no human

intervention.
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• Our novel contribution resides in the fact that content is not something that

resides in a location in which it was created but something that is invisibly

connected to content owners. Our framework allows content to be

metaphorically dragged between content services and devices through highly

interconnected networks dependent on what device we use or which

environment we inhabit [Shaheed 2008].

• Our framework combines semantic annotations (behaviour ontologies) with

rules to create dynamic scripting on the fly and to project them into

heterogeneous virtual environments. We have moved a step further than

other approaches, such as modding or world construction as in Second Life,

to creating dynamic environments containing different artefacts with

corresponding appearances and behaviours. This gives the user greater

power to manage and use their content and functions independently of the

constraints currently found in different virtual environments.

1.8.4 Interaction and Control in Ubiquitous Computing System

Ubiquitous Computing, according to Weiser's original paper is the aspiration to

weave technology throughout the environments we inhabit and into every aspect of

our daily lives [Weiser 1991]. Using this definition, many research strands now

investigate the use of small devices within the environment that are capable of

transferring and receiving information. Applications are built around sensors that

dynamically configure themselves dependent on the user's context. Whilst we are still

some way from a complete implementation of this vision aspects have already been

developed. For example, solutions based on Bluetooth have been proposed for

proactive information delivery [Ballance 2008]. Based on its success other protocols

have been proposed, for example ZigBee [Geer 2005].

This evolutionary path has been slowly pushed over the past five years through the

wide deployment of broadband and wireless solutions and this has allowed us to use

the home in new and emerging ways. For example, through cellular networks and

machine-to-machine technologies we now have automated utility usage and billing
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services, We can seamlessly move digital content around the home wirelessly

providing us with greater ubiquitous access to our content. We can interact with

physical artefacts, Le. using technologies such as Surface Computing. We have made

the following contribution to this area:

• We have developed a novel framework that describes how we can discover,

visualise and control devices in Ubiquitous Computing systems. By

equipping devices with visualisation and behavioural data they are able to

describe themselves. When discovered this data is stored and mapped to

plug-in data (visualisation data and semantic descriptions of data) in the

virtual container. This information is pulled into our framework and used to

create interpreted visualisation information and dynamic scripted behaviour

from the semantic descriptions of functionality the object provides. We

exploit the concept of rules to understand these semantics and govern how

behaviours are constructed in conformance with the scripting language

supported by the destination environment and the behaviours it can support

[Shaheed 2010].

1.9 Thesis Structure

In this chapter, we provided a general idea of the problem domain, namely the

inefficiencies related with current environments (both physical and virtual). It

highlights that some work has been carried out within ad hoc home networking

environments, and mechanisms for enabling objects to move around and connect

physical devices to enhance functionality in virtual environments. This chapter argues

that content needs to be shared across different environments (both physical and

virtual) and functionality should be generated on the fly. In doing so, the challenges

are presented, which include - behaviour generation on the fly, behaviour discovery,

rules, program scripting and Ubiquitous computing. This chapter also introduced a

framework we have successfully developed that addresses these challenges. Finally,

the chapter is concluded by defining the scope of the research project, the novel

contributions made and an outline of the thesis structure.
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In chapter 2, we begin by presenting the background within the field of virtual

environments and social networking. This discussion defines the key concepts used

within this thesis. This also discusses different Rule-Based Systems and scripting

languages, Peer-to-Peer networking and discusses how scripting is essential to design

a mobile environment where new objects and their functionality can be created on the

fly. The Rule-Based system provides a mechanism to apply business logic and modify

the logic at run time.

In Chapter 3, we discuss work related to ubiquitous computing and networked

appliances. In this chapter, we discuss in detail different networked appliances

approaches related to home networking and explain current middleware solutions that

intend to interconnect devices within home environments.

In Chapter 4, the design methodology used to describe the system and its deliverables

is discussed. As part of a solution description, the formal design of the Visualisation

and Control of Ubiquitous Devices, Services and Digital Contents Framework is

presented (using UML), detailing the different components of the framework and the

overall communications between them.

In chapter 5, a Smart Home Environment case study is presented which describes how

the new framework implementation can be used to facilitate content sharing and to

discover devices and hidden services in virtual environments. This case study also

describes how devices can be connected with virtual environments, how its

behaviours are generated on the fly, and how we can control physical devices from

virtual environments.

Chapter 6 discusses the implementation details for the new framework - the different

toolset used and their impact on the overall system. This chapter also includes the

specification framework and explanations of which tools where used to address the

key requirements within the framework.
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Chapter 7 discusses the evaluation of our framework and its overall performance.

Each component is evaluated with its associated functions. This chapter also

compares our approach with other similar solutions.

Finally, Chapter 8 summarises the mam contributions made in this research and

discusses possible future work.
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Chapter 2

2 Virtual Environments, Rules, Dynamic Scripting and Peer-
to-Peer Networking

2.1 Introduction

This chapter provides a background on the state of the art work carried out in the

main areas relevant to this thesis, which includes Gaming, Entertainment, Social

networking, Rule-Based Systems, Dynamic Scripting, and P2P networking. In the

following sections we will discuss computer games, social networking, an, overview

of Rule-Based system and Scripting Engines, and P2P.

2.2 Computer Gaming, Entertainment and Social networking

Entertainment can be classified in different forms. A Computer game IS an

interactive entertainment which involves interaction with a user interface to generate

visual feedback on a video display [Barr 2007]. In a movie, a scriptwriter writes a

story and executes that story but audiences cannot interact or influence the characters

- they simply watch it unlike in games where users interact and change the outcome

of the story depending on the skill of that user.

2.2.1 Computer Games

The history of computer games dates back to the 1960s where it was typically

based on text instead of graphics like we see today. The first computer game was

developed by Martin Graetz and Alan Kotok with an MIT (Massachusetts Institute of

Technology) employee Steve Russell on a PDP-1 computer in 1961 called Spacewar

[Levy 1984].
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Using the Internet, people play video games in their homes, alone or with friends.

The industry has moved from designing computer games for LAN (Local Area

Network) to massive distributed games where people can play with each via the

Internet. For example, the PlayStation 3 and Microsoft Xbox 360 consoles now allow

people to play games over the Internet [Messinger 2009].

The improvement of console technologies has changed the way people are

entertained [Messinger 2009], the Internet and high speed broadband have rapidly

developed the massively multiplayer gaming market with companies collectively

pulling in $18.85 billion dollars in global sales in 2007 ($9.58 in game sales and

$9.358 in console sales) .

Single player games are referred to as games where one player is involved against

a machine without being connected to another machine. LAN games were first

introduced in the early 90s for multiple players over LAN or null modems.

Massively multiplayer online games already attract huge numbers of players and

are expected to become increasingly popular where they are already forming the basis

for next-generation gaming. Utilising Internet communications, games have blurred

virtual and physical worlds and converged with social networks [Seay 2004]. This has

changed how users view and play games. Many games such as Planetside [Planetside

2006], Star Wars Galaxies [StarWars 2006], The Sims Online [Sims Online 2006]

and EVE Online [EVE Online 2006], are dependent on network communications.

Although multiplayer gaming clearly provides significant benefits over single-

player games with networking, its architecture enforces a number of limitations. Most

notably, game play and enhancements must be carefully controlled through

centralised gaming servers. This results in bottlenecks, central points of failure, and

the inability to appropriately react to real-time changes in large virtual worlds.

Gamers are tied to games through proprietary software and hardware installations.

User interactions do not affect strategic developments and games do not support self-

management capabilities to extend functionality beyond those they have been pre-
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programmed with but there is some games which allow certain level of control over

contents such as but they don't allow you to exchange contents with other games

This has lead to shifts within the gaming industry, where increasing access to game

engines, software development kits and level editors has allowed games to be changed

more easily. This phenomenon - known as modding - marginally alleviates some of

the limitations discussed above [Sotamma 2005; Kucklich 2005; El-Nasr 2006].

Although modding provides a means of adapting and evolving games, it is restricted

to more technically savvy users, such as software developers, rather than people who

simply just play games. Furthermore, mods are tied to specific games. For example, a

mod developed for the unreal engine will be incompatible with the quake engine

[Quake 2010]. Some researchers suggest that distributed technologies in conjunction

with middleware may relieve many of these difficulties, however it is generally

accepted that more research is required to establish a suitable architecture [Hsiao

2005].

Modding is an activity that runs alongside mainstream games development, with

developers providing modding tools as a way to attract customers. In essence

modding is seen as a business strategy. Although not explicitly stated, incentives to

mod games are used as a means of generating free development for publishers. For

example through the use of modding competitions that act as a means of screening

game enhancements in order to include them in future releases. In most cases this is

an unpaid source of labour and gaming organisations carefully control how it is

executed [Sotamma 2005]. Through competitions and gaming subscriptions for

massively multiplayer online games, the industry has a healthy flow of mod software.

In support of this several game companies adopt the principle of modding as a key

strategy, where only a base solution is initially provided. Any enhancement to the

game thereafter is dependent on user modifications. One example of this is BioWare's

Neverwinter Nights, which is heavily reliant on gamer-created content [Sotamma

2003]. Successful mods have been incorporated into subsequent releases. Another

example is Counterstrike, which is a modification for team play of Valve Software's

Half-Life [Sotamma 2003]. In this case modding can be seen as an important and
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welcome source of innovation where commercial risks are not taken by the gaming

industry, but rely on the goodwill of the modders [Kucklich 2005].

The game World of Warcraft, became the fastest selling PC game in North

America in 2004-2005 and in 2008 was reported to have ten million subscribers

worldwide [Ducheneaut 2006]. World of Warcraft is one of the most popular

massively multiplayer games. With the emergence of MMORPGs (Massively

Multiplayer Online Role-Playing Games) such as World of Warcraft, players have

turned to online writing communities to discuss game activities, strategies, and

problems [Lee 2007].

The World of Warcraft (and MMORPGs in general) is not just popular for very

high quality graphical appearance of the world and the conventional demand of being

a monster killing game, but to be credited to the player to player teamwork and

interaction mechanisms implemented in the game. The players work hard for each

other to gain better items due to the architecture design of World of Warcraft where it

is too hard for one player to play the game than playing as a team. If a player plays as

a group then they can achieve better results[Kurniawan 2008].

2.2.2 Social Networking

"A social network is a configuration of people connected to one another through

interpersonal means, such as friendship, common interests, or ideas. Social

networking was not created in the age of the Internet; it existed long before. Social

networks exist because humans are societal and require relationships with other

humans in order to survive" [Coyle 2008]. Advances in computer technology has

made it easy for people to connect with each other over long distances where they can

share ideas.

Early examples of social networking saw people posting messages to each other

using services like BBS and CompuServe, this was restricted to communications

using text messages over short distances due to long distance charges. However, in the

early 90s the Internet revolution changed everything and by the mid 90s it became

cheaper to connect to each other over longer distances.
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Social Networking websites were developed to allow people to create profiles,

share photos, start blogging, and keep track of people they know through web

applications like Class Mates [ClassMate 2010] but it did not allow users to make new

friends. In 1997 Six Degrees of Separation allowed people to make new friends and

exchange photos. In 2000 new Social Networking websites were developed with

better functionality, such as Facebook.com and Myspace.com which allow people to

socialize ..

3D virtual worlds are three dimensional simulated environments where people

interact using an avatar. Gaming and virtual worlds are beginning to play a critical

role in Social Networking, business, education, technological sciences, and our

society as a whole [Messinger 2009].

Consequently, there are many business opportunities and challenges involved in

these environments, where millions of people all participate in the network to play

online games. Papagiannidis et al. [Papagiannidis 2007] particularly discuss the

principles and policies related to the social implications of Second Life [Life 2010]

which raises significant research questions. One of the important questions, for

example, is the payment issue either to the avatar or customer, while another issue is

taxing people who are earning money in the virtual business.

Communication between avatars is most often conducted in a written format, either

through chat or through instant messaging, although a voice-chat option was

introduced in August 2007. In Second Life user can move from one location to

another, using different mean such as walk, fly, teleport, or ride vehicles such as cars,

submarines, or hot-air balloons.

2.3 3D Virtual Environment Technologies

In this section, we will discuss the technologies and tools that are used in the

development of 3D virtual environments. 3D virtual environments have been used in

our research as our focal point to visualise devices and services in home networks and

to control them from within the virtual world as discussed in detail in chapter 1.
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2.3.1 3D Modelling

In computer graphics, 3D modelling is the process of describing a three-

dimensional object by its mathematical characteristics in a mesh representation using

specialized 3D software [Clinton 2008] Modelling 3D objects takes much time, needs

patience, is very complex and it needs some skills in art [Son 2009]. Below are listed

some popular 3D modelling software applications.

• 3D Studio MAX

• Cinema 4D

• Zbrush

• Quidam

• Maya

• 3D Canvas

• MilkShape 3D

• Anim8tor

• YASRT

• Blender

2.3.2 Positioning in Space

The basic structure of the modelled virtual environment is a huge cube. Its centre is

the point of origin of the Euclidean space [Franke 1995]. All the objects of the virtual

environment are positioned around this centre point. The dimension and scale of the

individual objects are very important. Like in the real world, it is not possible that a 15 inch

flat screen is bigger than the table it stands on or a chair is smaller than a cell phone. We have

to consider the optimal dimensions of the entire model. For example, tools such as Blender

make it possible to zoom in and out to see how big or small the individual object is in

relation to its environment.
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2.3.3 Textures and Colours

In order to give every object a realistic look in computer graphics it is common to

use textures. Using textures it is possible to let a table, consisting of multiple

cylinders, look like a wooden table with all its grain. For example, we only need to

put a picture with the grain onto the surface ofthe virtual object. This process is called

texture mapping [Eberly 2007]. The advantage of textures in comparison to models is

lower complexity, which means less computing time and less memory space usage. In

Figure 2.1 the window is occupied with a texture (image taken from a camera

connected to the network), so that the effect of an outside world is given. In the lower

left comer a preview is shown of the picture which can be seen after rendering on the

pink marked window in the middle of the Figure 2.1.

'II .-, ... -,,,--. ... ,

pC • r-l'1n
~ .j '~ ~ .... ~!r'

Figure 2.1 Texture

The most common colour model is the additive RGB model. The primary colours

red, green and blue are added together to white. They are combined in various ways to

reproduce other colours. A colour is described by three values, the red, green and blue

fractions. In pictures with 8 bit per channel, every colour fraction can vary between 0

and 255.
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The HSV model, also known as HSB (hue, saturation, brightness), defines a colour

space in terms of three single components:

• Hue, the colour type (red, blue, yellow, etc.)

• Saturation, the intensity of the colour

• Value, the brightness of the colour

The YUV model defines a colour space in terms of one luma and two chrominance

components. Y stands for the luma component (brightness), U and V are the

chrominance (colour) components. It is used in the Phase Alternating Line (PAL),

National Television Standards Committee (NTSC), and Sequential Colour with

Memory (SECAM) composite colour video standards.

2.3.4 3D Gaming Engine

The Task of a 3D engine is to manage all 3D objects and scenes in the virtual

environment [Ahearn 2007]. In addition, the engine interprets what is displayed on the

screen and how it is drawn. There is a higher and lower level for the respective

decision. The higher level is assumed by the application itself with the help of the

scene graph. This happens at software level. The lower level is assumed by the

renderer and occurs at the hardware level, especially on graphics processing units. To

render a two-dimensional picture on the monitor screen from the information of three-

dimensional objects in a 3D environment, a virtual camera, textures and lights are

processed by the rendering pipeline. The final process to create an actual 2D image or

animation from the scene is called rendering [Ma 2003] and 3D rendering is an art-

form to reduce the visual details in order to increase the performance without

compromising the quality [James 1990]. The 3D engine is usually a wrapper with a

given 3D API such as OpenGL or Direct3D and abstracts the so-called rendering

pipeline. The rendering pipeline itself is implemented on the 3D graphics accelerators.

These are graphics cards, which are included in nearly every computer.

The rendering pipeline is filled with 3D data, which can be changed while running

through the pipeline. The result of the pipeline is a complete picture on the screen.

The major part of the work will be done on the hardware. In earlier days graphics
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cards provided only rasterizing (drawing several pixels on the screen). The graphics

card calculates the transformations and illuminations of 3D objects.In order to get rid

of programming directly on the 3D hardware the 3D interfaces OpenGL and Direct3D

are used which execute the desired operations on the hardware, although these

operations can be emulated by software. The exact interface between the 3D API and

the hardware is the 3D driver, which is generally provided and updated by graphic

card developers.

2.3.5 Scene Graph

As aforementioned, the main task of a 3D engine is to maintain and display 3D

objects. An easy but at the same time very poor solution is to put the objects in an

interlinked list to displayall of themone by one on the screen.Due to the high amountof 3D

objects in the virtual environmentit is not possibleto get a quick screen layoutof the whole
scene -even objects which will not be seen would be processed. However, the graphics

accelerator does not know which objects can be seen and which cannot. That is the

reason why it is called low level [Cunningham 2001].

The virtual environment with all its 3D objects is called a scene and relating these

objects to each other in a hierarchical order is called the scene graph. In virtual

environments, this scene graph is equal to a tree with a root node. Every element can

have multiple child elements but only one parent element.

2.3.6 Collision Detection

A fundamental problem in computer animation is collision detection. Interactions

between moving objects are modelled by dynamic constraints and contact analysis.

Some applications using collision detection are physically based modelling, geometric

modelling and robotics. The principle is the same in all fields -especially computer

games, which rely heavily on good collision detection. All areas are filled with virtual

objects, so a character should stop when a door is locked and should not pass through

other characters or objects [Lai 2009].

Collision detection, as used in the games sector, usually means intersection of any

form. Intersection detection is the general problem. It means to find out if two
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geometric objects intersect. A subtle point of collision detection IS about the

algorithms for finding collisions in time as much as space.

In computer games, the aims of collision detection are different. A good collision

detection algorithm has to determine if the player or character has hit a wall or

obstacle to stop them walking through it. It has to determine if a projectile has hit a

target and detect points at which behaviour should change. For example, a car in the

air has to return to the ground. Another task is to clean up animation. For example, to

make sure a moving character's feet do not pass through the floor.

The geometry of the colliding objects is the primary factor in choosing a collision

detection algorithm. An object could be a point or a line segment. An object could

also be a specific shape such as a sphere, triangle or cube. These specific shapes can

also be concave or convex, solid or hollow, deformable or rigid, manifold or non-

manifold.

2.4 Rule-Based Systems

Rule Based System can be defined as any system that utilise production rules, in

any structure, which can be applied to data to produce results; for example in simple

systems that form validation and dynamic expression. Rule-Based Systems and

dynamic scripting allows us to adapt code dynamically in mobile environments where

users can create content and make changes to content in virtual environments. Simple

rules allow average users to create natural language interfaces to interact in those

environments. Different techniques have been developed, for example, to combine

static and dynamic analysis to find out phrase structure and access semantic

information. Combining rules systems with database systems to access information

smoothly, reduces rule-processing costs and saves limited bandwidth. Semantic

information is used to provide intelligent caching. This approach is much better than

the traditional approach supported by trace-driven simulation results which

successfully demonstrate its practicability and potential [Wu 2008].

Rule Engines use technologies like expert systems, decision tree, Genetic

Algorithms, and neural networks to perform intelligent tasks. Rule based systems
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implement knowledge and perform reasonmg. Expert Systems use knowledge

representation to arrange information in a knowledge base and knowledge base

systems are known as applied artificial intelligence. Knowledge Engineering is a

process of developing an expert system. The first developed expert system was called

"Shells". The problem with early expert systems was hard coding logic but the

"Shells" system was the first to separates logic from the system.

Drools [Drools 20011] can be best defined as a production system, which uses a

Rule Based approached to implement an Expert System. The Rete algorithm [Forgy

1982] is used to evaluate rules in a working memory. The Expert System, which

validates and evaluates expressions, is called a Production System as shown in Figure

2.2. A Production System focuses on knowledge representation using propositional

and first order logic in a concise, none ambiguous and declarative manner. An

Inference Engine is the computation part of the Production System that can scale to a

large amount of rules and facts. The inference Engine matches facts and data against

production rules and the process of matching the new or current fact against

production rules is called Pattern Matching. In Production Systems the Inference

Engine performs pattern matching using different algorithms such as linear, Rete,

Treat and Leaps.

Figure 2.2 A Basic Production System [Proctor 2008]

Drool has a simple GUI based interface, which lets you write rules in natural

language. The Rete Algorithm is used to evaluate rules [Bellifemine 2008]. The
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implementation of the Rete algorithm in Drools is called ReteOO. The Rete Match

technique was developed in 1974 to match patterns to a set of objects in order to

evaluate all the possible outcomes [Forgy 1982]. The Rete Match Algorithm uses a

tree structure-sorting network or index for the patterns matching to avoid iteration

over the patterns. This makes it efficient if large volumes of patterns and objects are

used. State information is used to avoid iteration over data and when it enters the data

memory it starts computing partial and full matching for each object and keeps the

object information until it has been removed from memory.

Drools uses an enhanced and optimized version ofthe Rete Algorithm for its object

oriented system. The way Drools stores Rules in the Production Memory is illustrated

in Figure 2.3. Facts are put in Working Memory and these are used by the Inference

Engine. Facts are forced to stay in Working Memory where they can be changed or

retracted. If a system has a large number of rules and facts, many rules could be true

and conflict. The Agenda Manager executes the order of conflicting rules using a

Conflict Resolution Strategy.

Figure 2.3 Fonvard Chaining [Proctor 2008]

Drools only supports Forward Chaining, which is "data-driven" reasoning. Facts

are asserted into working memory which results in one or more rules being

simultaneously true and scheduled for execution by the Agenda as shown in Figure

2.4. Forward Chaining starts from fact and propagates until the conclusion is reached.
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Backward Chaining is "goal- driven" reasoning and starts from the conclusion and

works backwards towards facts. If it cannot execute the conclusion, it will find a sub

goal which will help satisfy some unknown part of the current goal. This process will

continue until either it proves the initial conclusion or there are no more sub goals as

shown in Figure 2.4.

Figure 2.4 Backward Chaining [Proctor 2008)

31



2.5 Dynamic Scripting

The word Script came from the performing arts where a human speaks a dialog to

perform hislher arts. In computer science the term script means a piece of code that

can be inserted or attached to an application at run time either to enhance the

functionality of that application or plug in new components at run time [Loui 2008].

Scripts are directly interpreted from source code or byte code thus they are called an

interpreted language. Initially Scripting languages were called batched languages or

job control languages. The first script language "Shells" was developed in 1960 to

enable a time-sharing system to avoid re-inputting a sequence of commands from

computer terminal keyboards. The revolution of the WWW (World Wide Web) in the

mid 90s has lead to more complex scripting languages with more powerful

functionality. Languages like Perl often used to hold the web together. With the help

of Netscape and Sun Micro Systems, new advanced scripting languages have been

developed; JScript for Netscape and Microsoft VB Script (Visual Basic) for IE

(Internet Explorer). In Web computing two types of scripting language are used: one

that runs on the server and the other runs on the client side For example, on the client

side Java Script could be used and on the server side scripting languages like PHP

(Hypertext Preprocessor), ASP (Active Server Pages) and JSP (Java Server Pages)

could be used.

The most important features of scripting languages are that they can enhance or

create new functionality at run time. In virtual environments, it's important to extend

functionality and allow users to contribute content creation and modify existing

functionality or animations within the environment or a single object. There are

numerous reasons for incorporating scripting languages [Ousterhout 1998] into virtual

environments, the productivity benefits, the separation of data and logic, the

scalability of the architecture, and the ease with which it can be achieved means that

scripting languages have become part of a programmer's toolkit. Scripting is best

utilized for the control of data and behaviour, and as can be seen by the numerous

commercial titles that have chosen to script. There are many non-technical benefits

over hard-coding, such as the flourishing modding communities surrounding games of

varying genres.
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There are many options for incorporating scripting into games and networked

virtual environment applications, by utilizing an existing solution, or developing a

custom bespoke tool. Bespoke tools can be very powerful, and they can provide the

developer with the ultimate control over the solution, but involve an extremely large

amount of development to create them from scratch. This puts this method in conflict

with the productivity gains made from utilising scripting. When adopting a generic

scripting language approach, all four of the languages mentioned provide an adequate

range of language features, high-level bindings to other languages, built in support

functionality, and portability. The choice will be application dependent e.g. using Lua

if speed and memory footprints are crucial, Python if existing functionality must be

utilized, or Ruby for maintaining an Object-Oriented approach.

JavaScript is a scripting language, which means it can be interpreted instead of

compiled, and executed at run time. JavaScript was developed by Netscape for the

Netscape browser to compete with the Microsoft scripting language VB and to

include in the browser rich website interfaces [Kirda 2009]. One advantage in our

work is the use of JavaScript in the virtual environments to dynamically generate

behaviours. JavaScript is one of the most popular scripting languages for embedding

source code into an object without the need for compilation, making it easier for users

to write their own source code or modify existing code.

2.6 Peer to Peer Networking

P2P refers to a network that enables two or more peers to share or exchange

information without involvement of any central infrastructure. File-sharing systems

such as Kazaa [S.Networks 2008], Napster [DeVoss 2006], and Gnutella [Gnutella

2008] are considered some of the best examples of P2P networks. 1M (Instant

Messaging) is another example of a P2P. A P2P application offers advantages in

contrast to other architectures such as client/server, such as performance, persistence,

and cost. P2P operates independently of any central coordination, which enables users

to share or exchange information without worrying about the location of the peer. For

example, in the case of Kazaa, which is mainly used for music file sharing, users

search for a particular song and download it without having to be aware of the

location of the host peer.
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P2P is classified based on the connection and routing methodologies they use. The

most common models are; the Centralised P2P model, Pure P2P model and Hybrid

P2P model. In the Centralized P2P, model peers connect to one or more servers to

locate other peers. Once peers have been discovered they communicate between each

other without the use of a central server. 1M is an example of such a model. The pure

P2P model does not use any centralized server for peer discovery. It relies on the

cooperation between peers by exchanging location information between them. A peer

would usually use the location information gathered from previous connections to

connect to the network and to inform the rest of the network about its existence.

Devices look for bootstrap servers when they connect to the network. Gnutella is a

good example of such a model. The structured P2P model gains location information

by cooperation with peers and the use of previous knowledge of the resource location.

They do not rely on central indexing servers but on the knowledge gained from

previous participation in the network, System like PAST [Druschel 2001], and Scribe

[Castro 2002] use the hybrid P2P model.

Underpinning any solution will require a more flexible communication

infrastructure. Perhaps with the advent of IPv6 we will see a return of a true peer-to-

peer Internet because a large address space will remove need of NAT, much as it was

during its early infancy. This is an interesting way forward where the obvious benefits

P2P applications afford have become widely evident over the last five years. This is

especially true in the multimedia and entertainment environments where television

corporations now utilise P2P as an effective distribution medium and where massive

multi-player online games can only truly realise their full potential through P2P

adoption. Here we discuss a number of important research areas we hope to build on.

Nitin Desai et al. [Nitin Desai 2003] introduces Konark, a service discovery and

delivery protocol for ad hoc P2P networks in which the authors provide an

infrastructure to set up generic peer-to-peer systems. It acquires advantages of basic

networks for peer naming and message routing. It uses entirely distributed, peer-to-

peer techniques for resource discovery which provides every peer with the ability to

publicise and discover the resources in ad hoc networks [Nitin Desai 2003].
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We also see considerable efforts within traditional networks where multimedia

solutions on the Internet have seen widespread adoption, which include voice over IP

[Vilei 2006; McLaughlin 2007], IP TV [Luo 2007], and P2P content distribution

models from organisations such as the BBC with their iPlayer (previously iMP)

implementation. Research initiatives are also well underway to make television more

life-like. Fehn et al. [Fehn 2006] provide an interesting account of 3-DTV where 3D

representation formats, auto stereoscopic 3D displays, multimodal interfaces, personal

3-DTV, and group viewing are discussed. Different manufactures such as Panasonic,

Sony and others are offering 3D TV but one difficultly with the majority of these

devices is that they require viewers to wear glasses to watch TV. Our framework also

provides mechanism for streaming 3D content for use with interactive TV.

In Massively multiplayer online game (MMOGs) distributed P2P mode uses

"Coordinator" nodes for managing lesser groups of players, this has been particularly

effective for supporting MMOGs [Knutsson 2004]. The ability to self-organizing of

P2P networks allows them to dynamically balance the increase and decrease of

players. The game shares CPU cycles and memory to handle game state but this is

limited to the duration of game play.

2.6.1 P2P Models

In this section we discuss P2P Models in detail which can be classified into three

types on the basis of the connection and routing methodologies they use; the

Centralised P2P model, Pure P2P model and Hybrid P2P model.

In the Centralised P2P model illustrated in Figure 2.5 peers, connect to one or more

servers, in order to locate other peers. Once peers have been discovered, the

communication between peers is carried out without use of the central server. In

Centralised P2P networks the resources are indexed on a central service and peers

query this server to locate peers with the desired resource. The Napster [Nagaraja

2006] and 1M applications are examples of such a model, where connection

information is retrieved using a central server but connections are made directly with

peers. One of the advantages of such a model is that resources can be located quickly
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and efficiently; which is beneficial to monitor users, as they would be registered in the

system. On the other hand, this system is prone to failure mainly 'single point' of

failure. In addition, the system can be susceptible to 'denial of service' attacks as

servers have to cater for all the requests made, which affects the rest of the network.

Napster Centralised
Server

3. File transfer

Figure 2.5 Napster's centralised P2P model

The Pure P2P model showed in Figure 2.6 does not use any centralised server to

assist in peer discovery. Instead, it relies on the cooperation between peers by

exchanging location information between them. Peers connect to the network and use

location information gathered from previous connections for the discovery of other

peers and to inform the rest of the network about its existence. Applications using this

model initially look for a bootstrap server when they join the P2P network for the first

time [Gauthier 2008]. Gnutella [Gnutella 2008] and its successors are classified as

pure P2P networks. One of major advantage of being completely decentralised also is

to avoid a single point of access and failure, and thus is fault-tolerant. However, it can

be slow and traffic intensive, as they tend to be insufficient in the lookup process.

There is also an issue with the lookup horizon in unstructured P2P networks, where

the resource may be available on the network but the lookup process cannot locate it.

Scalability is not an issue in the pure P2P model but the lack of guarantee of finding

resources can be a shortcoming of these systems. This model works best for systems

where resource location is not of highest importance such as 1M. This model has a

low cost of entry and maintenance.
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Figure 2.6 : Gnutella pure P2P model [Science 2006]

The structured P2P model gains location information by cooperation between peers as

well as previous knowledge of the resource location. They do not rely on central

indexing servers but on the knowledge gained from previous participation in the

network, e.g. systems like PAST [Druschel 2001] and Scribe [Castro 2002]. The

location of the resource is related to the resource name by located by regularly

querying the network and updating routing tables. These systems overcome the issue

of limited lookup because of the nature of the underlying routing protocols, which

guarantee the discovery of resources. These routing protocols include Content

Addressable Network (CAN) [Ratnasamy 2001], Chord [Balakrishnan 2003],

Kademlia [Maymounkov 2002] and Viceroy [Malkhi 2002], which rely on the use of

the a Distributed Hash Table [Takeda 2008] abstraction as a method for lookup and

data location. This model works best for system where resource location is of highest

importance.

2.6.2 Name Based Classification

A P2P network [O'Mahony 2003] consists of all peers as network nodes; there

are links between any two nodes in the network i.e. a participating peer knows the

location of another peer in the P2P network. This leads to two types of network:

Structured P2P networks [Hsiao 2003; Lua 2005] and Unstructured P2P networks

[Lua 2005].
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Unstructured P2P networks are formed when the overlay links are established

randomly. Such networks can be established easily when a new peer joins the

network, copies links of another node and then forms its own links over time. In

unstructured P2P networks if a peer wants to find data over the network, the query is

flooded through the network - mainly used by file sharing systems where search

might take a long time to respond. Flooding causes high traffic in the network results

and poor search efficiency. It is difficult to find specific files if the content is low in

popularity i.e. as shared by few peers then there is more chance that the search will be

unsuccessful. Popular P2P networks such as Gnutella [Chawathe 2003] and KaZaa

[KaZaA 2008] are good examples of unstructured P2P networks.

Structured P2P networks overcome the problems of inefficient routing and the

inability to locate rare objects in unstructured networks by using the Distributed Hash

Table [Balakrishnan 2003; Takeda 2008] technique and allowing each peer in the

network to be responsible for a specific part of the content. These networks use a hash

function to assign values to every piece of content and then follow a global protocol

identifying which peer is responsible for which content. When a peer wants to search

for specific content it first determines, using a global protocol, which peers are

responsible for that data and then directs the search towards these peers. These

network guarantee to locate objects [Balakrishnan 2003], CAN [Chen] Pastry

[Druschel 2001] are well known examples of structured P2P networks.

2.6.3 P2P Applications

In this section, we discuss some application of P2P networks.

1. Academic search engine, the Sciencenet [Liebel-Lab 2008] provides a free

search engine for scientific knowledge. It is based on YaCy technology [

YaCy Distributed Web Search 2011], based on P2P principles, written in Java.

Using Sciencenet educational institutes can contribute their own peers to

encourage them to contribute to the scientific network.
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2. Many organisations are trying to apply P2P networks for educational purposes.

LionShare enables academic users to search and retrieve contents from other

LionShare users. LionShare only allows login with university access accounts

and does not allow any anonymous sharing of files.

3. US military Department of Defence has also started research projects based on

P2P networking technology for modem warfare strategy [Walker 2001].

However, details regarding these systems are kept classified due to security

reasons.

4. A number of P2P applications are used to deliver TV content over the internet

such as P2PTV.

5. P2P networks are widely used in business not only in file sharing but also in

distributed computing, eMarketPlace [D'Aubeterre 2009] and office

automation.

6. Due to an increase in demand for voice and video conferencing in real-time,

telecommunication is now also using P2P networks [Jennings 2006]. Skype is

one of the well-known used Internet application for voice communication also

based on P2P technology.

2.7 Summary

This chapter discussed the history of virtual environments and various games and

social networking technologies such as Second Life. We considered how the virtual

environment started in the form of text based games in the 60s but later on moved on

to using more advanced graphical formats due to advances in computer technologies.

The chapter also discussed Rule-Based systems and their role in mobile environments

where logic is separated from application. The chapter has also highlighted how

scripting provides a better way of writing plug-ins for an application at runtime.

In the final section of this chapter P2P networking has been discussed in detail and

we highlighted the advantages of P2P over server-client architectures. Different P2P

models have been discussed in this chapter such as the Centralised P2P model, Pure

P2P model and Hybrid P2P model. Various types of P2P application were also

discussed.
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Chapter 3

3 Ubiquitous Computing and Networked Appliances

3.1 Introduction

This Chapter provides an overview of the work carried out in the main research

areas relevant to this thesis, which includes Ubiquitous Computing and Networked

Appliances and Home Networking,Cutting edge research initiatives are highlighted

including their associated limitations, which are addressed within this thesis.

3.2 Ubiquitous Computing

Ubiquitous Computing was first defined by Mark Weiser [Weiser 1991]. A great

deal of research is now undertaken to investigate the use of small devices embedded

within the environment that are capable of transferring and receiving information

[Tsung Teng 2008]. Ubiquitous Computing offers technology anytime, anywhere and

to anyone [Hong 2009]. Context Awareness is important because it provides

information about the status of people, places, things and devices in the environment.

Context can be derived from information that can be used to distinguish the situation

an entity, such as person, place or an object that is considered relevant to

communications between an application and user, which includes location, time,

activities and the preferences of each entity. A context-aware system is capable of

extracting or interpreting and using context information to adapt its functionality to

the current situation use. The purpose of context awareness [Bricon-Souf 2007] is to

provide services to particular places and people.

In the consumer electronics market users are familiar with and have become

increasingly more dependent on wireless communications. However, it is only now

that we begin to see solutions beyond simply Internet connection sharing or

ubiquitous digital content accessibility. Sensor networking, networked appliances, and
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home networking have now matured to support real-world artefacts [Merabti 2008a]

further moving us towards Weiser's vision [Weiser 1991]. For example, rooms that

describe themselves and the artefacts they contain, to visually impaired people when

they enter the room in the virtual world feels like a real world room.

Whilst this is very beneficial, several difficult challenges remain, e.g heterogeneity

and interoperability. One technique used to help elevate these challenges is to use a

virtual container to simulate ubiquitous computing environments [Jinseok 2005]. Test

beds like this have been used to validate the degree of interaction, usability and

simplicity in software testing platforms and above all to determine a means of

mapping or creating a bridge between the virtual container and physical devices.

Using a more proprietary and focused solution learning environments have also

allowed the users to enjoy the benefits of Ubiquitous computing to enhance better

learning experiences. For example, the SULOMS (Semantic-Oriented Ubiquitous

Learning Object Model) [Lili 2008] is used to meet the needs of teachers and students

using mobile devices, irrespective of location, to accomplish the basis for multi-mode

courseware and its semi-automatic generation. The general idea being that the

delivery of teaching material and its consumption can be performed in a more mobile

and ubiquitous way without having to bind users to physical locations.

Perhaps the most compelling area where the physical meets the virtual is within the

field ofbio-mechanics and motion capture [Tong 2004] Many applications have been

proposed, from entertainment (special effects) to health (rehabilitation) [Zhang 2008].

Whilst traditionally such systems have been expensive and are typically confined to

dedicated facilities, relatively cheap wireless sensors have now made it possible to

embed such technology within the home [Zhou 2008]. This has been particularly

important in the area of rehabilitation allowing information about gait change, joint

angles and movement to be collected for analysis [Fergus 2009]. Sensors attached to

the body are mapped to virtual environment avatars where physical movement is used

to control motion. Xbox Kinect [Xbox Kinect 2011] is developed by Microsoft which

allows user to play games without physical controller by using motion sensor that
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track entire body of the person. Other console such as Wii [Nintendo 2011] and Play

station [Play station 3 2011] uses physical controller to play games.

In the following subsection, we discuss some of the existing research projects in

ubiquitous computing and their limitations.

3.2.1 Aware House project

With greater flexibility, engines now provide advanced tools to allow a bridge

between real and virtual environments. For example, the Aware House project [Cory

1999] has developed a completely augmented home in which ubiquitous devices

embedded within the environment can be controlled via a graphical virtual world -

switching a light on in the virtual world results in the light being switched on in the

real world [Brian 2009].

A limitation with the Aware House project is that it needs to be maintained and

developed over time and requires human effort to add or remove devices. It does not

allow objects to be shared across different virtual environments or for behaviors to be

generated dynamically.Users are increasingly becoming empowered to influence

digital entertainment, providing a platform for interactive multimedia content sharing

across different virtual environment is not possible in Aware House Project.

3.2.2 Sixth Sense

Sixth Sense is an MIT research project to augment the physical world with digital

information using wearable gesture interfaces [Pranav 2009]. Sixth Sense research

focuses on bridging the gap between the physical world and digital information to

help support decision making in our day-to-day living, which is not always possible

using our five natural senses. Advances in technologies have shrunk the size of

computers to handled devices that can be carried in our pocket such as mobile phone

which have processing capabilities equal to desktop computer five or ten years ago.

This has made it easy to connect people anytime and anywhere, however there is no

link that exists between the physical world and digital environments. Sixth Sense uses

natural hand gestures to interact with virtual worlds and frees information from its
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limitations by seamlessly integrating it with reality, and therefore making the physical

world a digital device.

The Sixth Sense prototype consists of a cameraand pocket projector connected to a

mobile device. The camera used in the prototype is used to identify and track the

user's hand gestures and physical objects using computer vision based techniques.

The projector projects visual information to enable surfaces, walls and physical

objects around us to be used as interfaces. The video stream data captured by the

camera is processed by software programs to track the location of the coloured

markers at the tip of the user fingers using computer vision techniques.

The Sixth Sense has many advantages and is used in a variety of applications such

as map applications that use nearby surfaces and hand gestures, similar to gestures

supported by Multi-Touch based systems, letting the user zoom in, zoom out or pan

using intuitive hand movements. The drawing application allows users to draw on any

surface by tracking the fingertip movements of the user's index finger. However,

Sixth Sense has several limitations, - devices have to be explicitly introduced and

programmed instead of being dynamically incorporated on the fly. Digital information

with other virtual worlds is not possible in Sixth Sense.

3.3 Networked Appliances

In the following sub-sections, we discuss some of the more common standards

used within industry and academia alike to interconnect networked appliances within

the home.

3.3.1 Digital Living Network Alliance project (DLNA)

The establishment of DNLA in 2003 was to enable cross-Industry convergence of

multimedia content in home networks [DLNA 2004a]. The main goal was to enable a

wired and wireless interoperable home network where digital content in the form of

video, music and images can be seamlessly shared across personal computers,

consumer electronics and mobile devices. DLNA allows seamless and effortless

sharing of multimedia content across different hardware platforms, for example,

streaming a video clip wirelessly from the phone to the TV. DNLA simplified file

sharing so consumers do not have to concern themselves with how content is stored.
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Although DNLA allows content to be shared this is restricted to the passive sharing

of content like video files, images or audio - it does not allow content to be actively

shared, such as game objects that require their behavours to be dynamically created as

posited in this thesis.

3.3.2 Open Services Gateway Initiative (OSGi)

OSGi was founded in March 1999, to develop an open specification for the

delivery of managed services in LANs. Service providers, developers, and gateway

operators use OSGI to develop, deploy and manage services in WANs and LANs

[OSGi 2009]. OSGI enables service providers such as cable operators to deliver

services over the network to devices that implement the OSGi specification. For

example, mobile phones, PCs (Personal Computer), and consumer appliances.

OSGi provides a general purpose Java framework that supports their deployment

of downloadable and extensible applications called bundles. Devices that support

OSGI specification can download and install these bundles and remove them when

they are no longer required. Bundles can be dynamically installed and updated on any

platform with varying capabilities. It is capable of hosting multiple applications from

different service providers or single services platform. It also allows service

deployments that provide functionality to other services. The OSGi architecture

comprises of number of entities, a services platform, and an application server

connected to both WAN and LAN. User service providers that deliver applications to

gateway operators verify users prior to delivering services. The Gateway operator is

responsible for the operation of the gateway. It offers service providers a secure

environment to execute services. The operator is responsible for installing and

removing applications in order to ensure that sufficient resources are available. It also

monitors the gateway to detect any security attacks.

In most cases OSGi is managed and controlled by a centralised controller owned

by service providers, howeverconfiguration by users requires some technical

knowledge. OSGi does not provide a way to dynamically generate behaviour for a
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device started or connected to the network. OSGi is a low level protocol thus does not

provide the functionality to visualise devices in virtual worlds or to control

functionality.

3.3.3 Reconfigurable, Ubiquitous, Networked Embedded Systems (RUNES)

The RUNES [Koumpis 2005] project has provided a framework that allows any

device to form part of the Internet irrespective of its capabilities. The RUNES

approach to development is to provide a standardised software framework that

employs a uniform "Software Component" abstraction which can be implementable

on various types of devices [Costa 2005]. This is seen as an important step where

advances in sensor networking technologies have emerged to be new sources for

multimedia data.

RUNES claims to provide a mechanism in which it would be easy to configure,

deploy and dynamically reconfigure network-embedded software. However, it does

not provide a way to control and visualise devices in virtual worlds.

3.3.4 UPnP

With the introduction of sophisticated devices and high speed Internet connections

consumers can do much more with their network, such as store and stream data, and

use mobile phones to access or transfer media files. However, due to cost and

complexity, installing a network to provide such activities makes this idea impossible

or beyond the reach of non-technical users. Such users are looking for an affordable

and easy to install solution. UPnP [UPnP 2006] has emerged as an industry

consortium to create a "plug and play" solution. The UPnP forum is comprised of

more than 810 member companies [UPnP 2006] across many industries. CE

(Consumer Electronics) manufacturers within this forum develop products that

incorporate the UPnP technology [Microsoft 2004]. UPnP is a set of protocols that

allows devices to advertise their services; these services can be discovered by other

devices in the network. The UPnP Implementers Committee (UIP) was formed in

2001, to promote the adaption of UPnP technology, which also administrates the

UPnP device certification. UPnP certified devices range from printers to mobile

control devices. UPnP technology can run on any medium that supports JP networking
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including phone lines, and power lines. Product vendors can use any programming

language and operating system to build UPnP products. UPnP technology is built on

lP, rcr, UDP, HTTPandXML.

UPnP supports zero-configuration i.e. any vendor device can dynamically join the

network, obtain an IP address and advertise its services without any restriction.

Devices can also leave the network at any time. However, UPnP cannot access

services outside the local network; all communication is performed over JP, and

devices must obtain an JP address before joining the UPnP network. By using an IP

address with service discovery performed using JP broadcast, a control point can only

Contactother devices within the same subnet [UPnP 2006]. Messages within UPnP are

sent using SOAP [Louridas 2006]. Each device must have a DHCP (Dynamic Host

Configuration Protocol) [Wu 2007] client and search for a DHCP server when it first

connects to the network.

3.4 Summary

This chapter discussed different home networked appliances and ubiquitous

computer to allow devices to be interconnected and visualise them in virtual worl.

Solution such as Aware House or sixth sense allows physical devices to be visualised

in virtual world in greater flexibly to bridge between physical and virtual worlds.

Different networked appliances solutions are discussed in this chapter such as

OSGi and UPnP in attempt to integrate devices, but they are managed and controlled

through centralised providers. However solution introduced are low level protocols

Whichdoes not provide a way of visualizing devices and controlling them from virtual

environment where they can be discovered and generate their functionality on the fly.

3.4.1 Challenges

This Chapter has described the key research within the areas of Networked

Appliances, and Home Networking. We have identified several key challenges

pertinent to this thesis that have not been addressed in the above-mentioned

approaches. Each of these challenges are listed below and addressed throughout the

remainder of this thesis.
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• The first Challenge is to develop a system to allow us to bridge the gap

between physical and virtual worlds. This will require new algorithms that link

devices and virtual artefacts as well as moving them between heterogeneous

environments. There is a need to create artefacts that are modular and

descriptive in terms of their appearance and their behaviours.

• The second challenge is to develop services that need to transcode 3D model

data and dynamically support behaviour development using a combination of

on-the-fly scripting and semantic reasoning using a logic system such as a rule

engine [Maciol 2008]. This will improve interactivity and the way the

platform allows manipulation and control of content, to the extent that new

user-generated multimedia can be constructed purely through the combining

and manipulation of 3D multimedia streams using networked appliances.

• The third challenge is to allow the platform to effectively generate

functionality dynamically and allow us to map different object behaviours

using ontologies.

• The fourth challenge is to allow the user to seamlessly move digital content

between heterogeneous environments, where content from such environments

can be shared. Typically, this is not the case where proprietary platforms host

virtual environments with limited or no openness to include others. Given

these limitations, we aim to provide an open platform on which any virtual

environment can interoperate with each another and share, use, and create

content in any of them - for example, content owned in Second Life, can be

moved and used by users in The World of War craft.

• A final challenge is to develop protocols that bridge the gap between the two

(virtual and real world). Building virtual worlds on top of a networked

appliances platform that forms part of the Internet, is unique both in terms of

its design, and the level of user control that the resulting platform will provide.
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Chapter4

4 A Framework for the Visualisation and Control of
Ubiquitous Devices, Services and Digital Contents

4.1 Introduction

In Chapter 3 we presented a discussion on current Ubiquitous Computing

platforms and highlighted their limitations, i.e. physical access to hardware, and

invisible services in home networks. These approaches are not flexible and they do

not provide any way of generating behaviours on the fly. They provide limited control

over devices within the network and the services they provide. They do not provide

any mechanisms to effectively distribute services across the network or discover those

services using high-level semantics.

In addressing these limitations this chapter presents the Visualisation and Control

of Ubiquitous Devices, Services and Digital Contents (VCUDSDC) Framework.

More specifically, the framework addresses the challenges discussed in Chapter 1,

which include behaviour discovery; behaviour matching; dynamic behaviour

generation, and ubiquitous computing. The framework allows devices to be visualised

and their behaviours to be projected into a virtual environment. Functions provided by

devices can then be controlled and visualised in virtual environments - this provides

more control for devices and hidden services that may not be possible physically. The

framework also allows objects from different virtual and physical environments to be

shared and visualised and to discover its behaviour using high-level semantic

behaviour. The following section provides an overview of the proposed framework.
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4.2 Framework Overview

The Visualisation and Control of Ubiquitous Devices, Services and Digital

Contents framework is based upon the service integration framework developed

within the Networked Appliances Laboratory at Liverpool John Moores University

[Merabti 2008a]. VCUDSDC extends this framework to support additional framework

services that address the requirements defined in Chapter 1.

Using the principles of service-oriented computing [Bichier 2006], components,

such as game consoles and mobile phones, implement a small footprint of code

allowing functions, such as audio, video, and gaming components to be disseminated

within the network. Using the Service Integration framework [Merabti 2008a]

services and components are linked to the network using any communication

protocol. This allows them to discover and/or publish and use framework and

application services locally (provided by the component itself) or remotely (provided

by other components). Furthermore, it allows devices to perform semantic

interoperability between different vocabularies used by component manufacturers;

automatically form communication links with other components in the network; self-

manage links with other components in the network; and self-manage their operations

based on composite and environmental changes. Application specific services, on the

other hand offer a means of dispersing and utilising component functionality, such as

audio and video, gaming engines, player (AI behaviours) and game objects (tree, car

Oravatar).

This is achieved using the service integration framework [Merabti 2008a],

implemented on every component - be it a networked appliance or a software module

from the virtual world. This peer-to-peer interface can be mapped onto any

middleware model. Devices connect to the network as either specialised components

Orsimple components. A specialised component has the ability to provide services as

Well as to propagate service requests within the network. A simple component by

comparison has more restricted abilities: it joins the network, propagates queries and

invokes discovered services, for example, sensors in a network could be used to

provide multimedia data for crowds or flocking. This enables any component

irrespective of its capabilities to choose how it will interact within the network.
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Using the basis of this architecture, we have designed a distributed service-oriented

platform for use with virtual environments and physical devices. The architecture

allows artefacts (real-device functionality such as audio, video and data from sensor

networks; AI behaviours, and other non-player objects such as trees, rocks, and

clouds) to be shared within and across different environments (both real and virtual).

It has been important to consider the overall structure that a virtual environment

might take. The goal is to deconstruct as far as possible the holistic notion of an

environment whether it is virtual or real, to a set of autonomous, generalised and

reusable components.. The result however is considered from the opposite

perspective. Ultimately, the aim is to allow artefacts to exist as an ad hoc interaction

between various networked components, the entirety of which forms the virtual and

real environment. None of these components in isolation can be considered one single

environment itself. Perhaps the closest to what might be considered the heart of the

environment might be the rendering or physics engines and behaviour enactment

engines. However, these will only provide one of any number of interpretations of the

interactions that occur between components. The overall architecture is illustrated in

Figure 4.1 and a more detail discussion follows.
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Figure 4.1 Visualisation and Control of Ubiquitous Devices, Services and

Digital Contents Framework

P2PNetwork

Figure 4.2 VCUDSDC Framework in Network

The architecture consists of the following

• The Visual Resource Manager registers objects with the Assets/Lookup.

Following this, it extracts the meta-data associated with objects and passes it

to the Visualization Engine, which in tum renders the 3D object into a
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graphical shape. At the same time, the Behaviour Matcher looks up the

behaviour of similar objects in that environment. If it finds the behaviour then

it assigns it to the object along with the effects it supports when it is executed.

• The Asset Lookup implements mechanisms to register and discover objects

within the system. The Asset Lookup module also registers new objects and

retrieves them if they are needed by another system.

• The Visualisation Engine manages all 3D objects and scenes and interprets

what to display on the screen and how it is drawn. The Visualisation Engine

converts the object metadata into a format usable in high level programming

languages.

• The Behaviour matcher dynamically generates behaviours usmg semantic

descriptions for all functions provided by the object.

• Behaviour Ontologies are used to help describe object behaviour.

• The Scripting Engine loads script language compilers.

• The Rules Engine executes rules against known facts about the behaviours that

objects support and dependent on matches, relevant rules are fired - these are

referred to as Production Rules. Within the actions of fired rules script

functionality is constructed that is known by the target environment and which

best accommodates the behaviour. As each rule is fired, the piece of script it

generates is passed to the Script Engine.

• Service integration framework (SUF) is a peer-to-peer interface that provides

services as well as mechanisms to propagate service requests within the

network The SUF provides all necessary peer-to-peer functionality used in our

framework. [Merabti 2008a].

The following subsections discuss the services that have been designed and

developed that extend the functionality provided by the SUF, more specifically these

are the Resource Monitor, Resource Lookup, Metadata Engine, Rule Engine,

Scripting Engine, Behaviour Matcher, and the Visualization Engine. The overall

framework is depicted in Figure 4.1.

The component sequence diagram illustrated in Figure 4.3 illustrates how

components interact with each other and pass information between the different layers
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to generate and find known behaviours. This provides a snapshot over time that

describes the relationship between objects and the information flows.
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Figure 4.3 Component Sequence Diagram

In the first step the system interact with the object and extract meta data and using

Ontologies in step 2 the system pass object description to behaviour matcher which

peform abstract match using SUF. This allows us to start finding behaviour using

Ontologies to find the behaviour. In step 5 when behaviour found the system fire rules

to generate that behaviour and pass it to the script engine to validate the script in step

8, if the script does not have any syntax error the system attach it to object in step 9.

In step 10 the system save the script to cached script. after script has been generated

the next step is to render the object where system load the 3D model and pass that 3D

model to Visual Engine in step 11 where it check the format of the 3D model in step

12 if format is supported then the system render the object in virtual world in step 14.
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In last step the system registered the object detail after successfully generated the

script and rendered the object.

In the following sections, we discuss the framework in more detail.

4.3 Visual Resource Manager Protocol

In this section, we will describe the Visual Resource Manager (VRM) protocol,

which implements mechanisms to share and distribute and semantically discover

objects and generate behaviours dynamically within heterogeneous environments

(both virtual and physical). The VRM protocol contributes additional knowledge to

this area by enabling environments to discover objects dynamically based on semantic

matches between object requests and object behaviour descriptions as illustrated in

Figure 4.4.

Visual Information

Object

Object Behaviour
("Scripf')

Figure 4.4 Dynamically generating object behaviours
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After discovering new devices in the network, the virtual environment starts

processing the meta data description and begins generating the behaviours usmg

simple rules, which are then passed to the scripting engine to parse that script.

The following subsections describe the design requirements for the VRM protocol.

4.3.1 Protocol Requirements

Before objects can be effectively distributed and discovered, it is vital that the

protocol addresses a number of key requirements. Implementing services within

heterogeneous environments (both real and virtual) means that we have to make it

generic, therefore the compatibility of objects with destination environments cannot

be guaranteed. The challenge is to enable objects to exist in diverse environments and

allow objects within these environments to effectively expose and discover these

objects. The requirements are described as follows:

• Interoperability: The protocol must support all types of objects such as

physical mobile phone or virtual object from another environment such as a

weapon can be moved seamlessly to racing game where their is no concept

of the weapon object in car racing game, and not be restricted to a specific

environment like Second Life.

• Decentralisation: Services have to be completely decentralised; every peer

that joins the P2P network must be capable of reaching any other peer

without the help of a centralised third party.

• Dynamic environments: Services have to be able to work in dynamically

changing environments [Wilson 2002].

• Environmental Independence: An object must be capable of communicating

across different environments.

• Ubiquity: The deployment of services must include a variety of objects

ranging from virtual to physical environments.

• Intelligent Discovery: Object Visualisations and behaviours need to be

described and discovered using semantic languages.[McIlraith 2001;

Maedche 2003; HP 2004].
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• On-demand Objects: Objects will not run continuously and will be

discovered and invoked as and when they are required [(TME) 2003].

4.3.2 Protocol Overview

The requirements described In Section 4.3.1 are addressed within the VRM

protocol using four core components, which are described below and illustrated in

Figure 4.1. The VRM protocol implements:

• A Visualization Engine to render objects.

• A Resource management component to track the use of resources and their

usage (i.e. sharable or not).

• A Knowledge Base and Inference Engine to describe and process service

descriptions and upper ontologies for semantic interoperability.

• A Behaviour container capable of dynamically generating and translating

object behaviours

Functions offered by objects are exposed using services, which are described using

behaviour ontologies that represent the capabilities supported by target environments.

Invocation of behaviours is achieved using the behaviour interface, which describes

the signatures it supports.
The knowledge base resides in each target environment and contains the behaviour

ontologies and the ontology structures that allow environments to resolve terminology

differences between different vocabularies. The behaviour ontologies and the

semantic interoperability ontology perform different functions and do not represent a

single ontology. Behaviour ontologies only describe the behaviours hosted by target

environments. The semantic interoperability ontology is a small ontology that

continually evolves over time based on peer collaborations, which ensures that the

knowledge within the peer network is decentralised [Merabti 2008a].

A detailed design on these aspects of the framework is presented in the following

sub section.

4.3.3 Protocol Design

The Activity Diagrams presented in this section describe the design of the VRM

protocol. These diagrams illustrate how virtual environments perform the start-up
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process; how behaviours are created; and how peer advertisements are created,

published and discovered within the network.

When a virtual environment is initially switched on, it executes a start-up

procedure to connect it to the network. The start-up process is shown in Figure 4.5. At

start up it loads all stored objects from the data-source one by one and performs the

object creation process using different attributes stored.
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Figure 4.5 Start Virtual Environment

During the Start up procedure, the virtual environment connects to the P2P

network and loads all objects from its data source. The whole environment is dynamic

and nothing is hardcoded, all object functionality is created at run time using scripting
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and a Rule-Base system. When an object is added to the virtual environment it's

attributes are saved in a data source (i.e. the type of object it is, what type of scripting

language it supports, the graphical format it supports, and the using the object

description, the system determine what the type of object it is such as phsycial or

virtual. Figure 4.6 illustrates how objects are loaded into a virtual environment.

Obj8d imAy

Figure 4.6 Load Objects

The loading process is simple, first the system establishes a connection with the

data source and then loads object information such as behavioural and visual

information. This process continues until the last object is retrieved. This process is

illustrated in Figure 4.7 where it divides datasets into sub-set datasets if the object

forms part of a wider composition.
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Figure 4.7 Load and Publish object Behaviour

Once an object has been created both its behavioural and visual models are

registered with the target environment and saved to a physical location. The system

then adds a unique advertisement description to that object and publishes the

advertisement in the network as illustrated in Figure 4.8. This allows other peer users

to search for objects.

•

Does not Exists
Pubtish Behavlor: Dataset·

Attributes Doesnot Exists
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Figure 4.8 Object Behaviour's Advertisement

Behaviour services are special services where a peer only advertises behaviour

translation services. For Example, the virtual environment can translate behaviours

not supported by the destination virtual environment using translation services as

illustrated in Figure 4.9. The system is designed to share objects between different

virtual environments and it is difficult to generate behaviour on the target

environment if the target environment uses different semantic descriptions. We have

developed special services to translate behaviour descriptions between two different

environments in order to generate a correct behaviour for the object.
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Figure 4.9 Behaviour Advertisement Services

Dynamically creating behaviours involves taking the semantic description of

behaviours and inserting them into the working memory of a rule engine. Depending

on the facts about the behaviours inserted and the behaviours supported by the target

environment, scripted behaviours are dynamically created and assigned to the object

before it is fully inserted into the target environment and used. Figure 4.10 illustrates

how rules are fired against facts to generate behaviour dynamically. Firing each rule

results in a script that has been generated and passed to the scripting parser module for

validation.
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Figure 4.10 Generate Script using Rule Engine

When a virtual environment starts for the first time, it loads all objects. For each

loaded object, information is used at run time to generate behaviours or load already

generated behaviours from the cache as illustrated in Figure 4.11. Due to the dynamic

nature of the system all objects are saved instead of being hard-coded into the

program thus each time the system starts up it loads each object one by one and

including its associated information and its status when it was last shutdown. The

system also generates behaviours if they have not been generated previously by firing

rules. If a behaviour cannot be generated it is discovered within the network. Once a

behaviour is found the behaviour is registered, including it's behaviour, with the

system.
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Figure 4.11 Load Behaviours from Datasource

Figure 4.12 shows the process for finding behaviours either locally or remotely. To

find a behaviour it first checks locally. If an exact or similar behaviour is found

locally then it evaluates the syntax of the script before assigning that script to the

object. If the script syntax compiles it is assigned to the object.
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Figure 4.12 Find Behaviour

Once behaviours have been found the next step is to validate that behaviour and

check if the target environment supports that type of behaviour or not. The

information is then loaded into the scripting parser where the scripting language

support is checked so the relevant scripting engine can be loaded. After loading the

scripting engine for that behaviour, the system starts to validate the script by checking

its syntax for errors in order to avoid system crashes. After validation and if the

behaviour does not have any syntax errors the system binds it to that object and

updates its status to start functioning. The object is saved to the registry to avoid

repeating this process as illustrated in Figure 4.13.
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Figure 4.13 Script Validation

When an asset is passed to the Visual Resource Manager, it is registered with the

resource Assets/Lookup. Following this it extracts the meta-data for that object and

passes it to the Visualization Engine which in tum renders the 3D object into a

graphical shape. At the same time, the Behaviour Matcher looks up the behaviour of

similar objects in that environment. If it finds the behaviour then it assigns it to the

object along with the effects it supports when it is executed. Let us assume that a user

sends a game object to another game. The game object's behaviours should also be

transferred from the source environment to the destination environment so that the

user can fully enjoy the new object features, such as its graphical special effects or

how it reacts to stimulus from the game, such as being shot at. A mapping is
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performed where meta data is extracted for the visualisation and passed to the visual

engine, which it used to render the object's appearance as illustrated in Figure 4.14.

Once all object behaviours have been generated, the system then passes the visual

information to the Visual Engine to render that object in the virtual environment.

Glrt Object \lIsual'Model

2D Model

Not Supported

Not Supported

Found

Convert 2D Model to 9D Moclel

Sup port Conversion

Converfedto-3D MOcleJ

Figure 4.14 Visual Engine

The system checks either its 3D model or 2D model to draw and look for services

to convert the 2D model to 3D and if it can successfully translate from 2D to 3D then

67



it will draw that object in the virtual environment. The class diagram shown in Figure

4.15 shows how the system displays and renders objects in the virtual environment.

«illtelface» system: .Displaysystem
~renderer: .Reuderer

+isFullScreenO: boolean -(

+setCamera(Camera camera): void +closet): void
+getCameraf): Camera +getContrasto: f10at
+getWidthO int +getScreenCoordmates 0: Vector3f
+getHeightO:int ...
... ,

I
I
I
I
I
I
I
I
I

renderer: : system.:
LWJGLRellderer ~ LWJGLDisplaySystem

-renderer
+createLightState(): LightState +createCanvas (int w. int h): Canvas
+createTextureStateO: TextureState +getRendererO: Renderer
+cleerBuffersf): void +createWmdow(int w, int h, int bpp, int frq,
+resett): void boolean fs): void

...

lisplay

Figure 4.15 UML-diagram of Visual Engine

4.4 Asset Lookup and Resource Monitor Protocol

This section begins with a discussion of how assets are shared and used. The Asset

Lookup module implements a mechanism to register and discover objects within the

system. The Asset Lookup module registers new objects and retrieves them if they are

needed by another system. For example, if another peer requests an object then the

Visual Resource Manager requests the Asset Lookup. The Asset Lookup checks the

status of the asset in the data source to determine whether the asset is sharable. If it is

sharable then it determines whether it can be used. For example if the asset is a gun

then it checks whether the gun has enough bullets, if it does not then the Asset

Lookup informs the Visual Resource Manager that the object is not available.

4.4.1 Protocol requirements

In heterogeneous environments, (both real and virtual) monitoring and sharing

resources with another environment can be challenging. Key requirements to achieve

this are as follows:
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• The Protocol must provide services to update information associated with

objects.

• The protocol must provide services to associate object management

capabilities on a per-object basis.

• Some managed objects represent shared resources that might be referenced

by multiple objects. The protocol must provide services that allow an object

to associate an existing shared resource object with other registered objects.

4.4.2 Protocol Operation

The Asset Lookup and Resource Monitor register objects in the main repository

with associated values and keep track of the object resources used. As discussed in

section 4.4.1, the protocol uses an object management system to monitor the level of

usage. For example, if you add a sunSpot as an object then it is likely the sunSpot

uses battery power .. The level of sunSpot battery usage can be determined by how

much battery powered has been consumed. The data structure is illustrated in Figure

4.16.
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i Objectld ObjectUsageld
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IsScriptGenerated
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ScriptFileLocation

~ err ObjectParentld
VlSualXMLFileLocation ObjectChildld

.
ObjectTypes *

Courm Narre Data Type Allow Nulls
)J ObjectTypeld Int LJ

Description varchar(SO) lt1
IsHardwareSupported bit lt1

Ll

Figure 4.16 Data Model
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When an object has been stored in the data source the system generates a unique

ID to identify it and its associated child objects as show as in Figure 4.16, including

the level of usage it has. The process is illustrated in Figure 4.17.

Figure 4.17 Assert LookuplResource Monitor

4.5 Rule Engine

The Rule-Based system provides a powerful way to dynamically script behaviours

from semantic descriptions [Merabti 2008b]. In this section, we build on these ideas to

dynamically create object behaviours using Rules.
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Rules are run against known facts about the behaviour objects support and

dependent on matches, relevant rules are fired - these are also referred to as

Production Rules. Within the actions of fired rules script functionality is constructed

that is known by the target environment and which best accommodates the behaviour.

4.5.1 Rule Engine Requirements

As we have discussed the Rule Engine in section 4.5, it is important to address a

number of key requirements. Firstly, it must allow dynamic behaviours to be

generated. This can potentially take many rules to create the complete set of

behaviours in heterogeneous environments (both real and virtual). To implement the

rule engine the following requirements need to be satisfied.

• Rules should be simple and easy to modify and understand.

• The System should support the addition; modification and removal of rules

at run time.

4.5.2 Rule Engine Design Overview

As each rule is fired, the piece of script it generates is passed to the Script

Generator - this is an implementation specific module, i.e. Ruby, Python or

JavaScript. After all rules have been fired, given the data inserted into the working

memory, the combined sections of script are parsed by the Script Parser where the

syntax and structure is validated before it is added to the object. Figure 4.18 illustrates

the class diagram for the Rule Engine, which describes the class variables used and

the methods supported.

Figure 4.18 Rule Engine Class Diagram
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This is not to be confused with the object being processed but the object being

created for the target environment. This object contains the visualisation information

and the scripts required to project the object into the target environment. Constructing

the scripted behaviour is an iterative process, which could result in many behaviours

being added to the object. For example, a lamp could have a TumOn, TurnOff, and

Flash behaviour. This would result in three scripts being generated.

Figure 4.19 illustrates how Data is inserted into the Rule system and how the

system determines which Rules should fire to generate the behaviours. Once the right

set of rules has been selected, the system fires each of them and this results in a script

being generated.

Script

No Rule Found

More Rulesto Fire

Figure 4.19 Rule Process
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4.6 Script Parser and generator

Each rule fired generates a piece of script, which is passed to the Script Generator

_ this module generates the script according to the scripting language being used.

Once all rules have been satisfied result many scripts have been generated, the

combined sections of script are parsed by the Script Parser where the syntax and

structure is validated before it is added to the object.

4.6.1 Script Parser and Generator Requirements

To generate scripts and assign that behaviour to an object several requirements

need to be satisfied.

• Multi Language support: the framework should support multiple scripting.

• Syntax Validation: the parser should validate the script before assigning it

to the object.

4.6.2 Script Parser and Generator Operation

To achieve multi language support, a scripting framework [Mikeg 2008] has been

used which supports many scripting languages - for example, JavaScript, jRuby and

many more. The script parser determines which scripting language is being used and

checks the appropriate syntax structure. If any errors are found, then no script is

generated for that object.

Figure 4.20 illustrates the class diagram for the scripting engine and its associated

variables and methods.
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Figure 4.20 Script Engine Class Diagram

It is more complicated to validate script syntax where the system has to determine

the right scripting engine to validate that script. The main problem occurs when the

script is correct, but system load the incorrect scripting engine to validate the script.

To avoid this problem the system transfers information to the source environment

about the script language type. In order to validate scripts the system first loads the

appropriate scripting engine. If the system does not find the right scripting engine for

the source script in the target environment it notifies the user that objects cannot be

loaded and saved - information contained in the system is used to discover it later as

illustrated in Figure 4.21.
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Figure 4.21 Scripting Engine

4.7 Behaviours Ontologies

As discussed above shared assets are described using two layers, the first is the

visualisation and the second is the scripted behaviours. A mapping is performed

between the object and the game engine by extracting the Meta data used to describe

the object and its 3D characteristics. The rewriting scripting engine is used to find

appropriate behaviours the game engine can accommodate; this is detailed in the
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scripted behaviour of the object. In the following sub-sections, we discuss in more

detail how this has been achieved.

4.7.1 Semantic Matching and Generation of Behaviours

Behaviour ontologies allow objects to be semantically annotated, which can be

embedded within object advertisements. The same ontologies can also be used to

describe object requests. We currently use three main behaviour ontologies; the

Behaviour Ontology; Behaviour Profile; and the Behaviour Process Model [48].

Behaviour ontologies allow objects to be described at an abstract level in terms of

Inputs, Outputs, Preconditions, and Effects (lOPEs). The lOPEs form explicit

relationships between the different ontologies, which are in tum mapped into

signatures (method names, parameters and return data including type information). In

this way, the Behaviour ontologies and the behaviour interface provides a mechanism

to link semantic descriptions to possible implementation solutions to describe how

behaviours are generated. This process helps independent behaviours offered by

objects to be dynamically created or discovered, and executed with little or no human

intervention.

The operational capabilities objects support, for example, a weapon in a game can

provide functions to reduce the life of objects, which can be either used locally to

create high-level scripts (object behaviours dynamically generated) or discovered and

used via the network. Looking at high-level functionality, Figure 4.22 shows how a

weapon can be created in an environment (an object behaviour that does not exist but

rather emerges through the simulation of object behaviours) where assumptions could

be made between being hit by a vehicle and being shot by a weapon.

Using the concept of lOPEs, object behaviours can be dynamically generated by

matching similarities between the object request and the behaviour ontologies.

Behaviour ontologies, in conjunction with domain ontologies used by the target

environment the object is being projected into, are matched through a one to one

mapping or semantically if vocabularies are syntactically different but semantically

equivalent.
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Figure 4.22 lOPE Matching and dynamic generation of behaviour

Looking at Figure 4.22, the user submits an object request to the target

environment (step 1). Upon receiving the request, the behaviour matcher in the target

environment begins by iterating through the Behaviour Profiles for each behaviour it

provides (step 2). Using the domain ontology, the lOPEs in the Behaviour Request are

matched with lOPEs in the Behaviour Profile. If exact matches are found then the

process simply moves onto the next lOPE. However, ifthere are syntactic differences,

the two terms are passed to the domain ontology [Merabti 2008a] (step 3 and 4). If a

relationship exists between the two terms, a match has been found that semantically

links the two terms together.

For example, if we were trying to project a weapon, such as a gun, into an

environment typically designed to have lots of cars then we would have to make an

interpretation about what fire means and the effect it has on objects in that

environment. For example, looking at Figure 4.22, we could use the domain ontology

to work out this effect through the semantic links, i.e. firing at something causes

damage much like a car does when it crashes into something. The object subjected to

being shot at or hit results in being damaged. Consequently, we can use the ontology
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to infer that whether you are shot or hit, this amounts to the same thing because either

one will damage you. Step 5 shows a simple linkage between fire and damage through

an equivalentTo relationship. Whilst they are syntactically distinct, the domain

ontology shows that the term fire is linked to the term damage and crash is linked to

the term damage via a cause relationship, which is linked to both shot and hit resulting

in an equivalentTo relationship between shot and hit. If a car were projected into a

shooting game then a car hitting something would be interpreted as being shot, whilst

a gun fired in a racing game would be interpreted as a hit, because they both cause

damage. The process is illustrated in Figure 4.23.

No Match Found

No Match Found

Figure 4.23 Process Behaviour Request

If Ho BehavloUt
Found ~e tetutn
N\11.1

During the matching process, a table is created containing the matched lOPEs from

the behaviour request. The matched lOPEs act as keys in the table and have

corresponding values, which represent the names of the lOPEs used in the behaviour
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ontologies. This process is important because the behaviour request and behaviour

ontologies may refer to semantically equivalent lOPEs differently - the table of key-

value pairs (stored in every environment capable of performing semantic

interoperability) creates a semantic mapping between the different terms used. If all

lOPEs in the behaviour request are matched this constitutes an abstract match and all

ontologies associated with the Behaviour Profile (step 6), being retrieved as illustrated

in Figure 4.24.

Exn.d'IOrE ,tom
Be'hlliorRI~

L----:~ CheCkIfiOPE IDdIy Milich
lOPE Exists

Perfarm Semertlc
Irterperebll,Y

No

If Semantic Reilltion Is Found

All lOPE s hay been Processed

Figure 4.24 Perform Abstract Match
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To determine whether the lOPEs defined in the behaviour request can be bound

directly onto a signature provided by the target environment (a method with

supporting input parameters and a return value), the Behaviour Profile is processed

and the values associated with each lOPE are retrieved. These values specify which

Atomic Process each lOPE belongs too in the Behaviour Process Model. The lOPEs

may have been matched at an abstract level however, they could belong to different

atomic processes. Therefore, the framework tries to determine if a single atomic

process supports all of the lOPEs in the behaviour request. If so, the atomic processes,

can be mapped onto the signatures defined in the list of behaviours supported by the

target environment [Merabti 2008a]. If a match is found then the behaviours

associated with the signatures are used to dynamically create the behaviours used by

the object being projected into the target environment.

Generating behaviours dynamically is a problematic process. This can be attributed

to the variation in how behaviour interfaces are defined and described, where one

single difference in the ordering of parameters in the signature can render the

behaviour inappropriate for generating dynamic behaviour. To accommodate this,

mechanisms could be adopted similar to constructors used in object-oriented

programming where a base constructor could be used and then extended to include the

different ways the object can be created. Whilst this is one possible solution, it would

be difficult to pre-define every possibility. A more effective way to address this

limitation is to extend the concept of dynamic object generation of behaviours to

enable signatures to be composed, resulting in new signatures emerging. We achieve

this using intermediary behaviours and extended interfaces.

Using this approach, behaviours can be dynamically generated between objects

either directly or indirectly through signature re-writing. It describes how signatures

are constructed and indicates whether the intermediary behaviour itself can be directly

invoked or whether it also requires intermediary services as illustrated in Figure 4.25.

This process allows environments to dynamically discover and generate behaviour

conflicts that may occur and proactively establish compositions with intermediary

services. This may result in several candidate objects that provide the same

functionality.
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Figure 4.25 Build Signature

Behaviours that best match the object capability requirements defined in the object

request are added to an extended interface metadata object (an XML file that

represents the re-written signature. It may comprise references to any number of
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different behaviours in order to produce a desired behaviour). The extended interface

(El) object is invoked when a behaviour provided by the object does not directly

support a method invocation. This object behaviour has a fixed operation name called

'El' which takes two parameters - the first is the extended interface metadata object

and the second is an array containing all the parameters required to generate the

behaviour at run time. This behaviour generation processes the extended interface

metadata object, which provides information about the operation name for the

intermediary behaviour, the parameters it takes, including the associated data type

information, and the order in which the parameters appear in the signature.

4.8 Summary

This chapter presented our framework. It provides an overview of all the services

that make up ofVCUDSDC and describes the minimum requirements to allow objects

to move around different Environments (both virtual and physical). It describes how

our framework is capable of allowing the sharing of digital contents and generates

behaviours dynamically (on the fly) using high level semantic, Rules and scripts. In

the next chapter, we shall present the case study that successfully demonstrates the

VCUDSDC framework discussed in this chapter.
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Chapter 5
5 Case Study: Smart Home Environment

5.1 Introduction

A case study is presented in this chapter to demonstrate the functionality provided

by our framework that has been implemented as a prototype. The case study explains

how a Smart Home Environment can be visualised, where objects (real and virtual)

can join the home network and how their visual effects and functionality can be

created on the fly in a virtual environment. A bridge between a virtual environment

and the physical world is created and used to control physical devices from the virtual

world. The case study demonstrates how our framework can be used to generate

object functionality on the fly and visualize its appearance in the virtual environment.

These objects (behaviour and visualisation) can be diseovered in the Home Network

and utilised in new and novel ways.

5.2 Case Study

In this section, a Smart Home Environment is presented which visualises,

discovered objects and generates object functionality on the fly and allows digital

content to be shared with other peers and to discover ubiquitous devices and services

hidden in Home Networks. The framework will first discover the best possible

behaviour, and its visual data. If it fails to discover or generate behaviours the user is

asked to reject that object from the system or keep it until a new behaviour is

discovered within the network. Whenever it finds the behaviour then it will notify the

user of the newly discovered functionality generated for that object.

The selected case study helps us to test the design decisions presented within the

thesis and demonstrates how a Smart Home Environment can be created that will

address the key requirement stated in Chapter 1.
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Imagine you leave your home to go on holiday and there is no one in. Suddenly

you remember that you have forgotten to switch off the lights and you do not have the

option to return to your home. It would be nice if we could log in to a virtual

representation of our home, using our mobile phone for example to switch the devices

off. The challenge is to create functionality in the virtual word for each device. A

bespoke application could be created, however this would be too costly and difficult

to integrate new devices automatically. A more flexible open framework is required

that is connected to the same physical object and its functionality. Devices need to

automatically appear in the virtual world without much effort where device

functionality is mapped seamlessly between the two. This allows objects to be

controlled either virtually or physically.

We have many network enabled devices in our home but currently it is difficult to

utilise these devices in full. Imagine a future Home Environment; you buy a Lamp

and plug it into the network and your virtual environment detects the device and

automatically creates the required functionality and its visual information without any

human intervention. When you click the switch off button in the virtual environment

the physical Lamp is switched off and vice versa as illustrated in Figure 5.1. This will

give you the ability to access physical devices from anywhere in the world.
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Figure 5.1 Lamp

Taking this vision one-step further, the virtual environment is highly flexible and

allows objects (real and virtual) to be added at run time and behaviours to be

generated on the fly. If the environment does not have the exact functionality, it will

attempt to find it in the network and allow the object to be integrated into the

environment without human interaction. Unlike traditional systems, we do not rely on

human interaction to configure the device. Imagine if you buy a new device and a user

does not have basic programming skills to create device functionality in the virtual

world. The virtual world will listen for new objects, when you connect the new device

to the network. The virtual environment will find the device automatically and start

communication with the device to extract as much information as it can to generate its

functionality on the fly along with its visual effects.

Mechanisms allow the virtual world to sense new improved behaviours and update

device functionally at run time without human interaction. Returning to our Lamp

example, if the flashing lamp functionality moved from another virtual environment

then the system will query its entire objects to find appropriate behaviours and notify
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users of the new functionality integrated to that object. An example Smart Home

Environment is illustrated in figure 5.2.

Figure 5.2 Smart Home Environment

The virtual environment has the provision to provide any number of behavioural

services. Once the object has connected to the virtual environment, it keeps track of

each object and its behaviour and visual effects through continuous updates. For

example, a basic mobile phone provides the functions to make a call, stop a cali,

answer a call but later the user may buy a new mobile which has more advanced

functionality i.e. audio, video and GPS. The virtual world will borrow this

functionality from its TV or DVD object and create this functionality for new mobile

phone as illustrated in Figure 5.3.
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Figure 5.3 TV

Imagine you are on holiday and you left your mobile phone at home. Somebody

wants to call you, but you are not able to answer. However, with the help of a

computer in your area and Skype software this problem can be solved as illustrated in

Figure 5.4. Your friend wants to call you. How can you attend the call? First, he needs

a network-compatible computer with the virtual lab installed. The second precondition

is a network-compatible mobile phone, which should be no problem today. The

functionality generated by the virtual environment for the mobile phone allows it be

answered and stopped via the Internet. Your mobile phone wraps these packets into

RTP packets, redirects and sends them via the Internet to the virtual world on the

computer in France. The mobile phone on the table in the virtual world recognises a

call coming in and you can answer the call by clicking the virtual phone button. The

RTP packets from the virtual world return mobile packets back to the physical device.

Your mobile phone acts like a kind of server as illustrated in Figure 5.4.
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Figure 5.4 Mobile Phone

In this way your friend does not feel that he is connected to a virtual world but

instead it feels like he is connected to your mobile phone which is not possible in the

real world unless you physically have your mobile phone with you.

The next step is to advance the project in a way that we can present it to a greater

audience. That means the real purpose of the project must be clear - not simply just a

prototype. Different functions have to be added in order to presentmore possibilitiesfor

the user to interact with the virtual environment and to let the virtual lab look more

realistic.
One of the most interesting things is to implement the Universal Plug and Play

protocol (UPnP) . With UPnP it is possible to playa video in the virtual lab and in the

real world at the same time. Therefore, a media server can be used, for example the D-

LINK DSM 520 [D-LINK 2010]. With the help of this media server, we can. load a

video file from the physical disk, which can then be transferred via an IP based

network. The media server can send these data to a TV which is capable of playing

the video. At the same time, the video is displayed on the TV screen in the virtual
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lab.As we have discussed in chapter 1, we can control devices and manipulate

contents in virtual world which give us flexibility that is not possible in real world.

For example a 3D video displayed on the TV can be manipulated to grab out every

single frame of the movie, for example a man who's walking, and export the single

frames to XML files as it is illustrated in Figure 5.5 [Fergus 2008].

<mesh nam."-male.skin.nocuU">
<vertex data"'"O.3768937 4.6322351 P
<materialstatfl diffuse="O.8 0.6600005 0.52 ,. ambient="O 0 0 1· ...1>

cncee>

<?xml verslon::"1.0· encoding="UTF-8" 1>

<node nam.="mal." translation="O 00" rotation:o:"O1 00· acal.:', 1 1">

<Imesh:>

<node name="Armature mal." translation="O 0 0" ...1>
</scene>

Figure 5.5 Frame to XML

The aim is to have 3D meta data and a 2D frame Engine. Both data are combined

in the augmented Engine and subsequently transferred to a network device. These data

arrive via a network at the network interface in the virtual environment. The

augmented frame engine splits the data into 3D meta data and 2D frame data. The

game engine resumes the two different data and renders a 3D scene model and a 2D

image on the virtual screen illustrated in figure 5.6.

89



Device

Television Scene Model JPEG Image

Figure 5.6 Augmenting Frames

In the end we want to have a kind of hologram of the pictures displayed on the

virtual illustrated in Figure 5.7. You can move around this hologram and see it from

all angles.

Figure 5.7 3D Scenery
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Crucially our prototype demonstrates that we can move beyond simple texturing of

the JPEG image to creating 3D scene models that the user can interact with. For

example, characters in a scene could be removed; their visual characteristics could be

changed; they could be collected and even produced physically in the real-world by

sending the model data to a 3D printer [Dimitrov 2007].

Our Framework ensures that objects are not hardcoded but rather are generated on

the fly including the functionality they support. Objects are formed using high-level

semantics and its 3D model attached to it and stored in the physical device.

Behaviours are generated for each object and a virtual environment uses rules and

high-level semantic descriptions to discover behaviour either locally or remotely.

Consequently, solutions are not bespoke and behaviour generation is not dependent on

pre-defined variables. Behaviour generation is based on how well the capabilities

provided by objects map onto environment requirements.

5.2.1 Characteristics of this study:

Several characteristics are demonstrated within the case study that validates how

the UHD prototype works. These characteristics are described as follows:

a) Objects join the virtual environment and their functionality is generated on the
fly.

b) Visual effects are generated from their 3D model.

c) Multiple behaviours can be combined to form a single script for each object

d) The virtual environment can simulate real world behaviour and bridge the gap
between virtual and physical world objects. For example, a physical lamp
could be managed from within the virtual world.

e) New objects and behaviours can be automatically discovered and created that
may not have been supported initially. For example, there is no concept of a
weapon in a racing game but using high-level semantics we can create a
weapon behaviour in a racing game using the common behaviour damage.

These characteristics demonstrate how a smart home can be used to utilise

available functionality provided by objects and to generate visual effects and

behaviours on the fly.

91



5.2.2 Using Our Framework for a Smart Home Environment

Several steps need to be taken to configure our Ubiquitous and Virtualisation

Home Devices and Service (VCUDSDC) to implement the Smart Home Environment.

These are described within this section.

Step 1: Creating The Dynamic virtual environment - In this case study the basic

virtual environment has been created and objects are loaded from data sources, in our

case, we have used a relational database to store object information like object

descriptions, its source code and its 3D model information. The virtual environment

implements a Rule Engine to generate object behaviours dynamically for each object

using descriptions of an object. The scripting engine provides the functionality to

compile code at run time thus allowing objects to be integrated into the environment

at run time without recompiling the whole source code.

Step 2: P2P Services - P2P is used in the virtual environment to discover objects and

its behaviours remotely within the network. When objects are discovered, the

associated behaviours are also imported into the environment and any source code IS

attached if it is supported by the destination environment.

Step 3: Set of Rules - Set of rules are implemented in our framework to find out

the behaviours of particular objects. For example, rules have determined object types

Le. lamp and then other rules are applied to create behaviours.

Step 4: 3D models of objects - We will discuss in more depth how 3D models can be

generated in chapter 6 section 6.5.2. In our case, we have used Blender to create 3D

models and saved the model as XML this is loaded into Java Monkey Engine to

render the object.

Step 5: Scripting Engine: - The script engine evaluates the script and checks its

syntax. If it finds any syntax error in the script, it will notify the user. In our

framework, several scripting languages are supported to make it more flexible for

seriptwriters.
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Once these steps have been completed, a combination of rules can be used to create

multiple behaviours for each object. For example, a mobile phone will have multiple

scripts combined to provide answer, stop, and reject call functionality. Script

generation is based on rules and object semantic descriptions the virtual environment

propagates semantic queries within the network, which are matched with possible

behaviours.

We may not have behaviours at all in the network. In this case, object behaviours

are generated and in some cases, multiple behaviours from different objects may exist.

For example, a mobile phone, a fan and a lamp all provide "switch On" and "Off'

functionality, this can lead to conflict. The semantically closest behaviour out of all

behaviours is selected.

5.2.3 Positive aspects of this Case Study

This case study provides a number of advantages over other solutions. Devices can

be controlled from virtual avatars and its functionality can be generated automatically

using Rules and scripts. This case study illustrates how behaviours can be generated

on the fly using Rules provided by VCUDSDC. Many virtual environments are

hardcoded and if new objects join, they have to be manually implemented. In the

VCUDSDC framework, this process has been automated and device behaviour

generated using rules and its semantic description.

5.3 Other Application Domains

VCUDSDC has been designed as a flexible architecture that can be used by a large

number of application domains. We have presented a Smart Home Environment

solution, however it can be used in other large networked environments whether they

are based on infrastructure networks such as LANs and WANs or ad hoc networks

whereby structural change is dynamic. Consequently, this section describes some of

the application domains in which our framework could be used.

5.3.1 Games

In online games such as World of Warcrafi [Ducheneaut 2006] and Second Life

[Herman 2006] players share a virtual environment in order to communicate, do

business, and develop digital objects, which not only involve personal computers but
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also games consoles and mobile devices. Although no real devices are used (apart

from conventional input mouse keyboard) and the user is the only physical entity,

these players communicate over large distance from different geographical locations

from all over the world. Users can generate and share content, and buy and sell it in

virtual environments but there is no middleware which makes it possible to share

content across different virtual environments such as Second Life but they allow

limited sharing amoung same environments For example you can share object within

second life but you can not export to world of warcraft. As such our framework

allows the following requirements to be realised.

• VCUDSDC provides an 'intelligent' middleware that allows digital content

to be shared across different virtual environments [Shaheed 2007].

• Objects can be used in different environments. VCUDSDC matches

common terms between objects in source environments and generates

behaviours. This allows us to share content across different environments

and generate functionality on the fly.

5.3.2 A 3D Internet Interactive Commerce

Currently human computer interaction is very limited in terms of accessing content

on the internet resulting in alternative interactive solutions, such as those used in

existing 3D e-commerce sites (www.3Dlnternet.com). Nonetheless, early adopters of

the 3D Internet provide limited interactivity with models (car, phone, or television)

beyond simply rotating objects in the 3D space. The challenge is to extend the concept

of a browser to include 3D capabilities and to allow for more complex interaction

within those containers. This would see solutions even extending the capabilities of

current gaming systems where the granularity of detail and interaction far exceeds

those of simple avatar control or whole object manipulation. Conventional 3D

applications allow the person to be moved and the car to be controlled. New platforms

need to be developed that provide all the interactive capabilities as its real-life

counterpart.
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The VCUDSDC framework allows users to buy or sell products in ways that they

have never done before [Amjad Shaheed 2009]. Simply by searching for a product

such as car you require. Cars matching your search requirements will be returned as

detailed interactive 3D models that are completely operational in the same way a real

car is. Each discovered car is dynamically loaded into the 3D desktop. Once a car is

loaded and then selected the desktop allows the user to interact with the features of the

car, i.e. open the car door, turn on the engine, activate the indicators, turn on the radio

and look at all the parts that make up the engine.

5.4 Summary

This chapter demonstrates how our framework can be used to implement a Smart

Home Environment, capable to visualising hidden services, operate physical devices

from virtual environments, and operate those devices which cannot be operated

physically because they are difficult to access. The core functions highlighted within

the case study can be adapted and applied to different home networking scenarios.

Numerous functionalities can be automatically created on the fly using semantic

descriptions. Extending the application domain further this chapter also highlights

several other application domains VCUDSDC could be used in.

The case study has demonstrated that our framework is flexible and portable across

many different problem domains. It highlights a completely new and novel way to

bridge the gap between physical and virtual worlds and surpasses existing middleware

solutions. Behaviours are generated on the fly using semantic descriptions and

visualising hidden services and dispersing them within the network results in a

ubiquitous environment. It will bring many benefits such as in e-commerce solutions

where 2D content is transferred to 3D to allow users to play with virtual products and

simulate their functionality to provide them with new and novel experiences.

Furthermore, it will bridge the gap between physical and virtual environments making

interaction with content, services and devices seamless.
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Chapter 6
6 System Implementation

6.1 Introduction

In this chapter, we present the implementation of our framework described in

Chapters 4. This chapter begins by describing the goals of our framework in relation

to networked appliances. The framework is an example of a service-oriented

architecture (SOA) and therefore addresses the same objectives. The individual

services our framework provides are described in detail, which also includes a

description of the prototype we have developed to evaluate our framework design.

6.2 Framework Architecture

VCUDSDC (Ubiquitous and Virtualisation Home Device and Services framework)

is a service-oriented architecture. It provides mechanisms to visualise devices and

behaviours in a virtual environment. This provides more control for devices that may

not be possible physically such as accessing temperature data from sunSpot. Chapter 2

and 3 introduced the common concepts used within home networking, networked

appliances, peer-to-peer computing, virtual environments, scripting languages, Rule

engines and the semantic web. The implementation uses these concepts throughout

this chapter to realise the novel contributions detailed in chapter 1.

6.3 Framework Services

The following subsections discuss the implementation details for each of the

services used to implement the VCUDSDC framework. A discussion is presented on

the technologies used to achieve this, which includes the benefits they provide, the

difficulties we encountered and how they have been extended to incorporate our novel

contributions. The framework illustrated in Figure 4.1 and 6.1 shows the services used

within the VCUDSDC framework and the relationships that exist between them.

96



Figure 6.1 VCUDSDC Framework

The remaining subsections discuss the key techniques used to implement

VCUDSDC that includes the Visual Resource Manager, Visualisation Engine, Rule-

Based System, Scripting Engine, Behaviour Matching, Behaviour Discovery, SUF

(Service Utilisation Framework) peer-to-peer network.

6.4 Visual Resource Manager

VCUDSDC provides a technique to share digital contents across heterogeneous

environments and allows virtual and physical components to control these objects

from within virtual worlds. Our framework set on top of SUF (Service Utilisation

Framework) [Majid 2008] which provide P2P services such as to to discover new

objects within the network (SUF uses JXTA protocols). These protocols allow any

object to be shared regardless of the environment, programming language, platform,

or the transport protocols objects implement.

VCUDSDC secondary services have been developed within the service layer of the

VRM (Visual Resource Manager). This allows objects to be discovered, behaviours to
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be matched and generated dynamically using scripting and rules including the

visualisation of objects in virtual environments. VCUDSDC secondary services

extend the SUF framework to include these additional capabilities.

SUF uses a service-oriented approach to enable inter-object communication,

discovery and invocation. SUF provides pre-determined pipe advertisements to

discovered objects and its secondary services.

6.5 Secondary and Application Specific Services

6.5.1 Asset Lookup and Resource Monitor

VCUDSDC provides mechanisms to keep track of each objects status in order to

allow them to be utilised better e.g. if a wireless sensor device connects within the

network then it is essential to keep track of its battery life. Because of the dynamic

nature ofVCUDSDC, objects with various attributes are stored in a database (we have

used Microsoft Access with JDBC). These attributes are retrieved whenever they are

needed. When objects have been found and their behaviour and visual effects have

been created, the Asset Lookup service registers the object's properties. Another

function of this service is to keep track of the object status in order to determine

whether the asset is sharable or not. If it is sharable then it determines whether it can

be used. For example, if the asset is a sunSpot then it checks whether the sunSpot has

enough battery power, if it does not then the Asset Lookup informs the Visual

Resource Manager that the object is not available. The Asset Lookup module stores

the location of the script path and its visual effects path in the database to make sure

the objects behaviour and its visual effects are loaded next time.

6.5.2 Visualisation Engine

VCUDSDC uses the JME games engine to render objects in virtual environments

as illustrated in Figure 6.2. Blender has been used to design the 3D models. As can be

seen in Figure 6.2 the grain of the wood on the floor, soft shadows (near the table),

smooth lights and exact physical movement and also the chrome-plated doorknob on

the right side reflects the light.
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Figure 6.2 Room view in Blender

6.5.2.1 Export to XML Files

After the complete model is created it can be rendered. Of course it is possible to

make modifications afterwards. If the result is extensively satisfying the model must

be converted into a format usable for high level programming languages. JME based

on Java uses the Extensible Markup Language (XML) format. Java and XML are

platform independent. Both Java and XML complement one another in a

distinguished way and together they are used more and more in developing large

systems. Simple configuration files are read in, certain system conditions are stored or

complex data between different systems are exchanged. The schema for javaMonkey

engine is shown in Figure 6.3.
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<scene>
<node>
<mesh>
<submeshes>

<submesh>
<faces>

<face>
<face!>

</faces>
<geometry>

<vertexbuffer>
<vertex>

</vertex>
</vertexbuffer>

<zgeometry>
</submesh>

</submeshes>
</mesh>
</node>
</scence>

Figure 6.3 XML schema of the mesh file

The name of the node and the position is shown in line 3 of Figure 6.4. The vertex

data in line 6 indicate the position of every single vertex of the window in the three-

dimensional space. Line 10 illustrates the material state of the window and line 12

indicates which picture is used as a texture which means that, Jandcape.jpg' will be

seen in the implementation.

<?x.l vets1on."l.O" encod1nq."UTF-8" 2'>
<scene>

(nod. n.,..··'1dindow" t<on.1ation··'O.2157859 9.4397106 -66.4921188" rotation."O 0.7011068 0.7071068 0" ,eale."2. 5246232 1 3.1631747"

<aesh name·"lJindowl. nocull">
(vortex dat ..·"-10.1648264 0 5.3645916 10.1648216 0 5.3645935 10.1648264 0 -5.3645935 -10.1648264 0 -5.3645935 "I>
<nox.al data-"O 1 0 0 1 0 0 1 0 0 1 0 ..I>
<texturl!cQot:ds date.· ..O 1 0 0 1 0 1 1 "I>
<index data'"O 1 2 2 3 0"1>
<uterial.tete dUtu.e·"0.8 0.8 O.B 1" _ient·"O 0 0 1" e.i .. ive'''O 0 0 1" speeulu."0.25 0.25 0.25 1" ohinY'''12.S24461B''
alph.· ..1../>
(textutestate >

<texture t11e·"lan~cape. jpq" texnUll-"O" vrap·"3" I>
(/textuIestate>

</.e:sh>
</node>

</scene>

Figure 6.4 Scence 3D model data for window
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6.5.2.2 3D Gaming Engine

The task of a 3D engine is to manage all 3D objects and scenes. In addition the

engine interprets what is displayed on the screen and how it is drawn. We have put a

two-dimensional picture on the screen from the information provided by 3D objects, a

virtual camera, textures and lights is the purpose of the rendering pipeline. The 3D

engine wraps objects with a given 3D interface using OpenGL and abstracts the so-

called rendering pipeline.

A 3D pipeline is filled with 3D data which can be changed while running through

the pipeline. The result at the end of the pipeline is a complete picture on the screen.

In order to render the laboratory in real time it is useful to use a 3D engine. Real time

rendering means that every picture is rendered in split seconds in order to move freely

in the three-dimensional world. It also means that instructions relocated in the virtual

world are executed nearly simultaneously in the real world and vice versa. As a 3D

engine we use JME, which is completely written in Java.

The virtual world with all its 3D objects is called a scene. To relate all these

objects a so called scene graph is used. In JME this scene graph equals a tree with a

root and miscellaneous elements. Every element can have multiple child elements but

only one father element. With 'rootNode' JME already provides the root for the scene

graph.

In JME three classes exist, which can be elements of a scene graph. These classes

are Spatial, Geometry and Node. The Spatial class is the upper class, which cannot be

instantiated. It is an abstract class. Location and rotation are stored in here. That

means that every object of the scene graph has its own position, relative to the parent

element. Setting RenderStales is also possible, in order to describe lights and textures.

Geometry class and its subclasses consist of triangles, 3D objects consist of triangles.

Every object visible on the screen is a geometry object. But these objects are just

ending elements of the scene graph tree. All nodes are managed by the class Node.

Any child nodes and child geometry nodes can be added to this class. The scene graph

is the backbone of JME.
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6.5.2.3 XML to Scene Graph

1ME doesn't support loading any file formats directly. Rather it has 1ME binary, its

own format. It is important to understand file loading with 1ME. Different classes

included in 1ME convert the according format to 1ME's binary. First of all the binary

converter and binary reader is loaded as it is illustrated in Figure 6.S from lines 4 to 7.

For converting 1ME works with streams only. As illustrated in line 10 and 12 the

OutputStream and the InputStream are used to send and read the appropriated

contents. The XML file is converted with the ByteArrayOutputStream and read with

the ByteArrayInputStream when the virtual environment starts the Try/Catch block is

used to handle potential errors.

p~ivate Node LoadXHL(St~ing filePath){
try{

II Lm.r i al i3':: trln·:Jr.l' conve r t er
XMLtoBina~y conve~te~ - new XMLtoBinary();

/ /In1 t ae Li s e toln:;,.ty t..::,_j(let.:

JmeBinaryReader jb~ - new JmeBina[yReade~();

/ / c onv e r '= thf':: l.rll'll.tt ttl,:; to d JIL.E:-t·l.IJ.~ry "L :!l,eul:,-=:"

ByteArrayOutputSt~eam LabNoExtr8 - new ByteAr~ayOutputStream();
URL LabHodel - HodelLoader.cla~~.qetCla~sLoadet().qetResource(tilePath);
conve[te~.~endXHLtoBina[y(new Buffe~edlnputStream(LabModel.openStream(», LabNoExtr8);

/."J~t t),I, "L;l,C.uh~"
telllpNode- new Node ("Temporary Node");
tempNode • jbr.loadBinsryFormat(new ByteArraylnputStream(LabNoExtrs.toByteArrsy(»);

catch(IOException el{
Systelll.Quc.println("Couldn'tload the input file:" + e);
e.printStsckTr8ce();}

catch (jav8.1ang.NullPointerException npe )
npe.printSteckTrsce();

return telllpNode;

Figure 6.5 XML to JME

Figure 6.6 shows the implementation of a Media Player to load data from an XML

file into 1ME. In line 2 the function LoadXJvIL is used with the appropriated XML file

"dvd.xml', Line 5 ("attachChild') illustrates the attachment of the media player to the

virtual environment. The virtual environment becomes the parent of the media player.

But there are some more interesting methods implemented in this piece of code. In

line 3 of Figure 6.6 we can see the methods ,setModelBound (new Boundinglloxtj]',

In the area of 3D graphics different coordinate systems are used and in particular

between the so-called world space and model space. Every object in a 3D world has
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its own local coordinate system with its own axes and point of origin. The point of

origin for example is in the centre of the object. All axes indicate which directions are

'top', 'bottom', 'right','left', 'front' and 'back' for the object. To put the object, in

this case the media player, into a coordinate system like this a 'BoundingBox' (line 3)

is required. The media player now has its own coordinate system, the so-called

,ModeIBound', UpdateModelBound' in line 4 recalculates the bounding box for the

media player. Of course the whole scene or world also has a coordinate system, the

absolute coordinate system. Every place in the 3D world can be described as a set of

the x-, y- and z-coordinates. So the media player has its place in the virtual lab. In line

6 in Figure 6.6 you can see, updateWorldBound'. It merges the bounds of all the

children maintained by the media player. This allows faster culling operations.

private void setupMediaPlayer(){
llledia= LoacIXML t" dvd. nl ") ;
llledia.setModelBound(new BoundinqBox());
llledia.updateModelBound();
lab.attachChild(media);
llledia.updateYoxldBound();

Figure 6.6 Media Player Object

Figure 6.7 describes the XML file of the media player. As you can see above the

media player is the child of the virtual environment. The virtual environment itself has

the rootNode as its father. Line 2 of figure 6.7 shows the play button as a child of the

media player scene. The stop button in line 5, the forward button in line 8 and so on

are also children of the media player. That is exactly what is described in the scene

graph.
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<node nam.e="Play" .tI:anslation=" ..... I:otation= .......scale· .......>

</node>
<node n8llle="Stop" .tI:anslation: .......I:otation=" ••• " scale=" .....>

</node>
<node n8llle="FoI:ward" ttanslation= .......I:otation= .......scale=" •••">

</node>
<node n8llle="Rewind" translation:" ••• " I:otation=" ••. " scale= .....">

</node>
<node nam.e="Pause" tI:anslation=" ••• " rotation=" ..... scale=" ••• ">

c/node>
</scene>

Figure 6.7 Media Player in XML

Figure 6.8 illustrates the hierarchy relationships of Media Player and its different

functions

Figure 6.8 Hierarchy of the Media Player

6.5.3 Scripting Engine

The scripting Engine is responsible for providing dynamic behaviours in virtual

environments where objects can be added at run time and behaviours generated on the

fly. As we have discussed the requirements for the script parser and generator in

Chapter 4 section 4, provide multi language support, [mikeg 2008]. For example,

JavaScript, jRuby and many more. The script parser determines which script language

we are using and checks the appropriate syntax structure as shown in Figure 6.9. If

errors are found an error exception is thrown and the script is not generated.
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The code shown in Figure 6.9 first loads the right scripting language in order to run

that script using that language. For example, Java Script in Figure 6.8 is used. We

have given flexibility to choice any scripting language instead of restricting it to one

single script language. Environments that do discover and support a particular

language can automatically load required scripting languages.

public Script(StringscriptFile) {

Compilable eng = null;
scriptFileName = scriptFile;
initEngine();
try {

1**
* If script iscompiliablewe compile it.
*1
if (engine instanceofCompiiable) {

II Compile script
eng = (Compilable) engine;
BufferedReaderfr = new BufferedReade(new Filekeadenscriptf'ileblame);
String line;
whileuline=fr.readl.inej) != null) {

scriptContents.appenc(line+'m");
}
scr = eng.compile(new Filekeadeascriptf'ileblame):
engine =scr.getEngine();

}
Iiset engine scope namespace
engine.setBinding(n, ScriptContext.ENG INE_SCOP~

} catch (FileNotFoundExceptionfnf) {
Logger.getLogge("cigame").log(

LeveI.SEVERE,
"Script file not found: " -scriptf'ileblame
fnf );

} catch (ScriptExceptionse) {
Logger.getLogge("cigame").log(

Level. SEVERE,
"Script exception: " -scriptf'ileblame
se);

}
catch (IOExceptione) {

Logger.getLogge("cigame").log(
Level. SEVERE,
"Script read error: " ilcriptFileName,
e);

}
if( engine instanceofInvocable) {

inv = (Invocable) engine;
}

}

Figure 6.9 Scripting Engine
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Once the script has been created and assigned to each object in the virtual

environment and then evaluated by the scripting Engine if script contains any error

shown in Figure 6.10.

Object Name

Script Path

Language

[iunsP()t__ _~_~

~: \Scripts\sunSpots. js_ I
I javascript ]

Script Error Detail

syntax error line 10 ';' missing

Remove Script 1 [ Check Again I [ Search Over Network 1

Figure 6.10 Scripting Error Box

Figure 6.11 illustrates the code for evaluation process taken by the scripting

engine. This process will allow us to check for syntax errors in the script before

assigning the script to the object.

1**
* Evaluate the script.
** NOTE: Thiswill revaluate the script even if it has already been
* evaluated.
** @return
*1
public Object evahjthrows ScriptException {

try {
evaluatet);
evaluated = true;

} catch (ScriptException e) {
II TODO Auto-generated catch block

Logger.getLogger("cigame"). log(Level.SEVERE.
"Error evaluating the script II +this.scriptFileName, e);

throwe;
}
return evalRetumObject;

}

Figure 6.11 Script Evaluation
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Constructing the scripted behaviour is an iterative process, which could result in

additional behaviours being added to the object for example, the implementation of

SunSPOT sensors provides three main behaviours such as GetLight, GetTemperature,

and GetAccelerorneter as shown in Figure 6.12.

Figure 6.12 LJMU Network appliances Lab

SunSPOT sensing devices were used in the prototype. Two types exist. The first

type is the base station and the second is the free range. The base station is connected

to a laptop (this allows the laptop to form part of the ubiquitous computing network).

Services exist on free range spots that allow access to the light, temperature and

accelerometer functions, via the base station. Each free range sensor in the ubiquitous

computing environment can calculate light, temperature, and acceleration values. It is

this data that is streamed to the cube in the virtual environment and depending on the

values changes are made to the cube, i.e. change colour or move position. Using this

prototype and our previous work [Shaheed 2007] sensors and their associated

functionality can be projected into the virtual container to form a bridge between the

physical and virtual object. Irrespective of the size of the sensor used our proposed

platform allows us to still see what devices look like and what functions they provide.
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6.5.4 Rule Engine

Here the rules try to extract the behaviours the target environment supports. The

Behaviour Ontology acts as an interoperability mechanism between terminologies

which we have implemented and serialised using the Web Ontology Language (OWL)

[Bemers-Lee 2001]. Rule engine has been discussed briefly in chapter 2, the structure

of Rule is illustrated in Figure 6.13.

Rule "Rule Group"
When Condition
...........................
Then
Action .
End

Figure 6.13 Rule Syntax

The rules were developed using Drools [Drools 2011], as illustrated in Figure 6.4.

This example shows a simple SunSPOT script to create three types of functionality:

first to obtain environmental light information, second to obtain Temperature

information and third to get 3D accelerometer information. The description

information about SunSPOT is stored in the database, which allows us to fire rules

and create the script for the SunSPOT sensor. Once the right script has been created

for an object, it is saved to a physical location as shown in Figure 6.11 and the object

ID is set to the file name and finally the UpdateSourceCode property is set to false in

order to avoid rules firing continuously.
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rule 'Object Name SunSpot"
salience 0

when
objectgameObject(scriptEnable=true.

name="SunSPOT Sensor',
Functionz"Temperature,Light,Accelerorneter"
updateSourceCode-true )

#conditions
then

String Code-getTemplateCode(url);
Code=getSunSPOTVariabiesO;
Code=Code + getInitializeSunSPOTV ariablef);
Code=Code +getl.ightl.ogicf);
Code=Code + getFemperaturel.ogicf);
Code=Code +getAcceloremterLogic();
String fileName=url.replaceAII('BehaviourTemplatejs', object.getldO + "js");
rewriteBehaviour(Code,fileName);
object. setScriptFileName( object.getJd() +' .js");
#actions

End
function StringgetLightLogicO
{
String rer-"dg2. writeUTF ("Send Me Light'); conn2.send(dg2); conn2.receive( dg2); System.out.println( dg2.readUTF()); dg2.reset();";
return ret;
} .
function String getTemperatureLoglcO
{
String ret="dg2.writeUTF ("Send Me Temp"); conn2.send(dg2); conn2.receive( dg2); System .OUlprintlr(dg2.readUTFO), dg2.resetO;";
return ret;
} .
function String getAcceloremterLoglcO
{
String rer-"dg2. writeUTF ("Send Me Acceloremeter");
dg2.resetO;";

conn2.send(dg2); conn2 receive(dg2); System.out.println(dg2.readUTF(»,

return ret;
}

Figure 6.14 Rule to generate SunSPOT behaviour

We have demonstrated in Figure 6.14 the generation of behaviours for a SunSPOT

sensor. For example, when we move the physical SunSPOT sensor up or down then

its associated virtual object also starts moving in an up or down direction as shown in

Figure 6.14. If we press the Light Button then it changes the light of the virtual

SunSPOT and the temperature button is pressed turns the cube to red in the virtual

environment shown in Figure 6.14.

6.5.5 The SUF Peer-to-Peer framework

The main purpose for using SUF (SUF is based on JXTA protocol) is to utilise the

Peer-ta-Peer services if offers. Objects can be searched and used or the behaviours of

objects can be discovered and generated dynamically. SUF gives us functionality to

advertise objects and their behaviours and to register objects and its resources. This

allows us to search objects using high-level semantics embedded into advertisement

messages. Each object in the virtual environment can be discovered using its

corresponding advertisement. Each object in the virtual environment is assigned a

unique Peer ID to be shared and discovered. Each virtual environment in our

implementation advertises its contents, such as objects and their behaviours, in order

to allow others to utilise its services. Different Services have been implemented using
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Java such as the Object Lookup, Behaviour Looking and Basic Peer's security

Services.

Each virtual environment publishes its function as SUF Peer services and allows

objects within P2P networks to be discovered and shared. SUF gives us advanced

functionality to discover physical devices and zero configuration to allow us to

visualize devices in virtual environments.

how the Virtual Lab can be started and stopped, listens for new objects (both

physical and virtual) in the network and where it sends messages. To search object

behaviours in remote locations the virtual environment propagates messages over

communication pipes and once it matches object behaviours, it adds it to a service

advertisement. Once all the required behaviours have been found then the Virtual Lab

renders the object and attaches behaviours to that object.

6.5.6 Behaviour Matching Services

In our implementation, we have developed Ontologies in Protege and converted

them into Java classes for use in knowledge sharing. Instances of the concepts and

relationships between concepts are stored in a knowledge repository through the

Protege JDBe database back-end. This allows fast and efficient updating and

querying of the ontology outside the Protege environment by different components of

the application.

Ontologies developed In Protege are used together with the Drools inference

engine (http://labs.jboss.com/droolsl) for rule-based reasoning and knowledge

acquisition. Using the rules representation, it is possible to match the behaviour of

new objects/characters in a new environment with local expected behaviour. This

matches object/characters with the closest behaviour or extends the ontology to

include new behaviours. The execution environment provides updates on changes in

the environment as well as the status of object/characters and human players. These

changes are updated into the knowledge-base and the inference engine and the

behaviours of individuals and modified accordingly based on the cognitive model.
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6.6 The Framework prototype

In order to evaluate our framework design presented in Chapter 4, a prototype has

been developed. This is in accordance with the case study presented in Chapter 5,

which is a Smart Home Environment. The prototype uses three computers (Computer

A, Computer B, Computer C) connected through a LAN network, a Fan connected to

Computer A, a Lamp connected to Computer B, and a SunSpot sensor and Skype

phone connected to Computer C.

In each computer we have installed and configured our Virtual Lab. In the Virtual

Lab we have implemented SUF services which propagates service requests between

computers using SUF. When the Virtual Lab is started and the services have been

published, they automatically try to discover objects within the environments they

have a relationship with. For example, when Virtual Lab A on Computer A is started

and the Lamp connected to Computer A tries to discover the behaviours that are

capable of switching the Lamp OFF and ON. Figure 6.16 illustrates the user interface

to discover and transfer the object connected to the network and the services it

provides. Once the object has been selected for transfer, the system sends Meta data

information as an XML file through to the destination system (Computer A).

Figure 6.15 Virtual Lab User Interface
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Two tests have been developed to evaluate VCUDSDC. The first test

demonstrates that VCUDSDC can allow objects to move from one virtual

environment to another and generate their behaviours without any human

intervention. The second demonstrates how to connect physical devices to virtual

environments and generate behaviours dynamically. In the first test, we publish the

Lamp object services, which are created using the OWL-S Service Profile. Once

the user starts to transfer the virtual lamp from Computer B, Computer B starts

transferring the Meta data about the Lamp to Computer A which includes visual

and behavioural information. Once Computer A receives the Meta data, the visual

resource manager starts to separate the visual information from the behavioural

information and transfers the visual information to the Visual Engine to render the

object. The behaviour matcher service processes the Meta data and discovers

behaviours locally using the behaviour matcher class (in our case the behaviour is

not found locally for the Lamp in Computer A). Computer A propagates the

behaviour request using the OWL-S Service profile within the network using SUF

and adds any response to a table of candidate behaviours, categorised according to

the type of object discovered.

In the second test, we have connected a SunSPOT sensor device to Computer C

where a virtual lab is already running as illustrated in Figure 6.17. We have

generated the SunSPOT's behaviours dynamically after sending a request via the

network to Computer D, which already has the required SunSPOT behaviours.

112



SunSpot Sensor

Figure 6.16 Controls SunSPOT from Virtual Lab

6.6.1 Technical Description

In the architecture described above we have designed a distributed service-oriented

platform to link between networked appliances and associated avatars in virtual

environments. We have been able to carry out experiments using our design and show

how multimedia and gaming content can be shared inside virtual environments. Using

JXTA [JXTA 2010] as its peer-to-peer middleware protocol, a virtual environment

developed usingjME [Engine 2010] queries the network for JXTA services advertised

by the peers (Physical mobile phone). We have connected two virtual environments

using JXTA.

In the above implementation, a peer makes a request for a service, such as a

SunSpot object in the virtual lab where another peer has previously advertised its

sharable assets using JXTA advertising services. In Figure 6.18 we show, how we

have implemented the scenario in which the user requests a SunSpot sensor resource.
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Physical SunSpot Device

<?xmlversion="I.O" encoding="UTF-8" ?>
<scene>

<node name="SunSpot Sensor" translation="-69.1353256 9.2631273 -0.0025484"
rotation="0.50.50.5 _0.5" scale="1 1 1.3021666">

<mesh name="Plane.nocull">
<vertex data="-16.132164 0 6.7143831 16.1321564 -I e-006 6.714386

16.1321640-6.7143841 -16.132164Ie-006-6.714386 "/>
<normaldata="O 10 0 1 0 0 1 0 0 1 0 "/>
<index data="O 1 2 2 3 0"/>
<materialstatediffuse="0.8 0.8 0.8 I" ambient="O 0 0 I" emissive="O 0 0 I"

specular="0.25 0.25 0.25 I" shiny="12.5244618" alpha=" 1"/>
<lmesh>

<lnode>
<lscene>

Virtual SunSpot Object

Figure 6.17 Rendering information for a sunSpot Sensor

We simply pass the meta-data to jME, which in turn is used to render a 3D

representation of the SunSpot object in the scene. The SunSpot object also contains

the scripting behaviours it supports. For example, Figure 6.19 illustrates, in part a

simple script for the get temperature behaviour. Javascript was used and were

developed using the Rhino API from Mozilla [Mozilla.org 2007], which is used with

the Java Scripting Framework [O'Connor 2006] and the open-content repository API

provided by Captive Imagination [Captive Imagination 2007].

The Meta data and scripts, including the aforementioned tools where applied in the

same way to allow music to be shared between our mobile phone and its associated
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avatar in the virtual lab. The goal here is to show how two very different types of

content can be shared. One associated with multimedia and the other associated with

conventional game playing objects. Perhaps these act as two extremes between which

many other possibilities are possible.

Both meta data for objects and the scripted behaviours are passed between different

environments using JXTA pipes and messaging services in which all required

information is presented to extract and construct the associated object. Whilst, we

simply use the meta data to construct the objects, we run all scripting behaviours

through a set of rules, as discussed in the above section on the Behaviour Matcher.

Whilst objects may support behaviours in their source environment, it is not

necessarily the case in the target environment. Here the rules try to extract the

behaviours the target environment supports. The Behaviour Ontology acts as an

interoperability mechanism between terminologies which we have implemented and

serialised using the Web Ontology Language (OWL) [Bemers-Lee 2001]. The rules

were developed using Drools, where 6.14 and Figure 6.19 shows a simple gel

temperature rule and part of the script for a behaviour being generated.

rule "ObiectName SunSpot'
salience 0

when
object:gameObject(scriptEnable=true.

name-'SunSPOT Sensor',
Function-"Temperat ..... Lighl,Aceelerometel"
updateSourceCode-ttue)

#conditioos
then

String Code=getTemplateCode(url);
Code=getSunSPOTV ariablest):
Code=Code + getlnitializeSunSPOTVariableO;
Code=Code +getLighlLogicO;
Code=Code +getTemperatureLogicO;
Code=Code +getAcceloremterLogic();
String fiJeName=url.rep!aceAllC'BehaviourTemplate.is', object.getJdQ+" .js");
rewriteBehaviour(Code,fileNarne);
object. setScriJXFileNarne(object.getld()+ '·is');
#actions

End
function String getLightLogic()

~tring ret'""dg2.writeUTF ("Send Me Light'); conn2.send(dg2); conn2.receive(dg2); Systcm.out.println(dg2 reodUTF()). dgl reseu),",
return ret;
1 . (function String getTemperatureLoglc )

~tringret-"dg2.writoUTF("SendMe Temp'); conn2.send(dgl); conn2.receive(dg2); System oulpriBln(dg2.readUTFO>; dg2 rosetO,";
return ret;

~unction StringgetAcceloremterLogicO
(
String ret-"dg2. writeUTF ("Send Me Acceloremeter');
dg2.reset();";

conn2.send(dg2); conn2receive(dg2); SYSlcm.out.prinUn(dg2readVTfO).

return ret;
}

Figure 6.18 Rules used to create scripted behaviour
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In the mobile phone scenario we demonstrated how two users were able to share

multimedia content between a physical mobile device and corresponding avatars in

the virtual world. We stream multimedia content from the physical mobile device to

the virtual mobile using the Java Media Framework (JMF) [JMF 2008]and the Real-

time Transmission Protocol (RTP) [RTP 2008].

RTP packets were wrapped in JXTA [JXTA 2010] messaging objects to abstract

the IP dependent format used for HTTP calls in RTP. This provides a unified

addressing scheme ensuring that all components are addressed in a uniform way.

Frames were sent from the physical mobile to the virtual environment using JXTA

Pipes. Upon receiving the JXTA packets, the RTP packets are extracted and processed

by a custom data source adapter developed for the purpose, which streams RTP data

much as it is done traditionally. After network connectivity, the avatar requests the list

of songs in which he/she can then chose from the list, after that the mobile starts

streaming the content using RTP protocol. When it receives the first stream JMF

processes the stream and checks for supported codecs. If it is supported then it will

continue receiving streams from mobile devices in our case while playing the stream

using JMF and a plugin called Fobs4JMF [Ott 2006] which supports most formats

such as mp4 or 3gp. These tools in conjunction with Skype allowed us to enable bi-

directional communications between the physical mobile phone and its virtual world

counterpart. Figure 6.19 shows the code, which has been generated for the mobile

phone to make a call using Skype.
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InputActionbuttonAction = new InputAction() {
public void performAction( InputActionEvent evt ) (

if (makeCall && evt.getTriggerPressed(»{
keyEvent.= evt.getTriggerCharacter();
keyNumber" evt.getTriggerlndex();
if((keyNumber == 28) I I (keyNumber == lS6»{

makeCall ..false;
try (

mC = Skype.call(Number);
Number .."t' :
if (.! endCall) endCall ..true;

) catch (SkypeException e)
e.printStackTlace():

}
}
else if (keyNumber == 14){

Number .."";
list.clear();
listCount ..0;
SkypeMsg.print("Deleted") ;
return;

}
list.add(keyEvent):
Number+=list.get(listCount).toStling():
System.out.println("Called Contact: " + Number);
SkypeMsg.print("Calling: "+Number);
listCount++;

}
}

Figure 6.19 Mobile pbone Script to call using Skype

The next appliance to be controlled is the media player. There are several functions

the media player can assume. The first idea is to have all of the functions that arc

offered by a real DVD (Digital Versatile Disc) player simply combined in the virtual

world. This means not only starting and stopping a video but also going forwards and

backwards through file folders or the video itself. Using rules we have created

functionality for the media player on the fly, such as play, stop and exit as illustrated

in Figure 6.20.
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Figure 6.20 Media Player

Ultimately, the success of a framework such as this relies on the development of

exciting content that can be used to build up gaming environments. Nonetheles w

believe that a flexible and distributed system such as this provides many opportunitie

for the advancement of gaming, virtual environments and networked device in th

physical world into new areas and in new ways.

6.6.2 Prototype Configuration

We have setup a prototype within the School of Computing and Mathematical

Sciences at Liverpool John Moores University to evaluate the implementation of

VCUDSDC. The following off the shelf components have been used in our

configuration.

• Cisco Systems Cisco 871 Integrated Services Router

• Broadcom NetXtreme Gigabit Ethernet network cards

• Four Intel Pentium 4 - 3 GHz machines running Windows XP Professional ,
Service Pack Three, with 1GB of RAM.
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To run a real-world test and in order to demonstrate the key functionality of our

VCUDSDC framework, we have setup several environmental parameters, which are

listed below in Table 6.1 Appendix B.

All the machines used within the prototype test-bed were connected using the

standard TCP/IP protocol. The 1.6 version of the Java Development Kit was used on

all machines within the network. Several decisions were made regarding this network

configuration. The first decision being that all devices must be connected using a

LAN communication. The second decision was that the 100MB standard should be

used to enable multimedia streams to be processed more efficiently. The third

decision was to enable devices to join and leave the network without having to inform

any third party - this was designed to allow any device at any time to join or leave the

network using ad hoc networking principles.

6.6.3 System Operation

To test the operational capabilities, all systems implement the virtual lab and

publish all the services that contain the VCUDSDC framework. Each object in the

Virtual Lab also publishes the application specific services it provides. For example,

the SunSpot object publishes Temperature, Accelerometer and Light behaviour

services. Objects that require behaviour begin by trying to discover behaviour based

on the behavioural Meta data they require. For example, the SunSpot object begins by

trying to find behaviour that can get temperature, accelerometer and light information

in Virtual and Physical worlds. Once objects have published and run all functions they

remain in an inactive state.

Using the user interface, we tested whether our prototype could dynamically

generate behaviour and its visual effect and facilitate sharing digital content. For

example, we tested the discovery of SunSpot objects by manipulating the details

described in the object capability model, i.e. specified that objects must have

temperature, accelerometer and light information capabilities. Our implementation

illustrated that this could be effectively achieved.
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When the virtual lab starts up it loads all object one by one, and load its behaviours

and visual effects from a data source. If behaviour is not found then using rules and

the scripting engine with Ontologies it starts finding behaviours for an object. For

example, a system that discovers SunSpot objects to get temperature, accelerometer

and light behaviours. Using the quality of service features supported within

VCUDSDC, our framework was capable of selecting the best possible behaviour for

each object within our network configuration. The prototype also demonstrated that

when a better behaviour is found it could successfully update the script to improve the

functionality. Overall, the operational functionality exhibited by our prototype

illustrates that secondary and application specific services could be seamlessly

integrated and removed from the network without disrupting service compositions.

6.7 Summary

This chapter has described the main implementation details used to evaluate our

VCUDSDC framework. We have used different tools to implement our framework,

which includes graphic to networking systems. In this chapter, we have implemented

various components of our proposed prototype; we have used Blender to design the

3D model for our virtual lab and imported it to Java for rendering purposes.

We have implemented a Drools rule-base system to generate behaviour

dynamically along with a Java scripting engine to compile and run scripts. P2P

communication is implemented using SUF, which is based on JXTA technology to

allow us to discover and communicate with other peers over the network. The purpose

of our implementation chapter was to demonstrate an idea and make sure that the

requirements and challenges presented in Chapter 1 could be addressed.
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Chapter 7
7 Evaluation

7.1 Introduction

The previous chapter described the implementation of our framework and in this

chapter, we present the evaluation of our work. The requirements we have presented

in chapter 1 need to address some of the limitations with existing networked

appliances and home networking approaches. These requirements detail what is

necessary to allow flexible appliances and middleware solutions that will enable

virtual environments to extend the functionality of physical devices in home

networked appliances and automatically generate functionality without human

intervention. Each of these requirements outlines the foundation for the qualitative

evaluation of our proposed framework.

7.2 VCUDSDC Framework

The key requirement was to provide an open middleware architecture to visualise

networked appliances in virtual worlds and facilitate sharing of digital content across

heterogeneous environments (both physical and virtual). Using high-level semantics

and rules to discover or generate behaviours automatically and to make it easy for end

users to control physical devices and emulate the functionality from virtual worlds

and to utilize the hidden services in Home networks to extend physical environments.

The idea is based on current file sharing principles whereby popular files are

distributed, shared and discovered within a P2P network. Our approach goes further

than simple file sharing. We can share objects and its behaviour across different

environments and even generate behaviour in the environments where that behaviour

does not exist [Shaheed 2007]. This makes our framework robust and highly flexible

and our framework ensures objects use behaviour that has been discovered within the

network provided by its original environment or other peer environments.
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One of our key framework requirements is flexibility and to allow digital content

to be shared across different heterogeneous environments. The framework allows

devices to join the network and leave it at any time. To generate behaviour

dynamically Meta descriptions attached to objects enable environments to discover or

generate behaviours on the fly. For example, if the object is a vehicle, the system will

break its functionality into different parts and find the behaviour for each part

individually. These are combined into one script and attached to that object.

Our framework adopted the same approach as SUF [Fergus 2005] to discover

behaviours which are abstracted from functions objects provide. Object capability-

matching algorithms that use high-level semantics and metadata allows our system to

reason over that behaviour it provides using rules which is demonstrated in our

framework implementation. Behaviours are generated using high-level semantic

descriptions and mapped to objects, which closely match that description. The

framework broadcasts object behaviour requests enclosing the semantics that define

the required behaviours.

Furthermore, we have extended the concepts surrounding P2P, whereby we not

only focus on simple file sharing but also allow users to share active entities such as a

weapon in a game. P2P is typically associated with file-sharing, however these

overlay networks can offer much more by sharing objects and their behaviours. Wc

have made a number of novel contributions within this area and demonstrated how

virtual environments can be used to enhance and extend networked appl ianccs and

home networking capabilities [Shaheed 2008; Fergus 2008; Shaheed 2008; Amjad

Shaheed 2009]. To our knowledge, our framework is the first to use dynamic

behaviour generation with shared objects across different heterogeneous environments

(both physical and real). It disperses devices and hidden services within networked

appliances and allows control and operation from virtual environments, which are not

possible using physical controls. We have demonstrated that this approach is

achievable using our prototype, which has revealed that key functions, illustrated in

this thesis and which are not presented by other approaches such as Second Life,

World of Warcraft, can be realised.
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7.3 Visual Engine

A further key requirement addressed in our framework is a visual container where

we can effectively display devices and virtual objects, such as gaming characters in

computer-simulated environments called virtual worlds. Our framework uses an open

source Java gaming engine called JME (JavaMonkey engine) to render objects in

virtual environments, which we have demonstrated in our implementation chapter.

JME allows us to import graphical models and load them into the Gaming Engine,

thus it makes it easy to design 3D models in other application such the Blender or 3D

Max and then save it to models in physical devices such as sensors, mobile phones,

TVs, Fans and lamps. When they are connected to the virtual world, they send visual

models to virtual environments for rendering. We go one-step further and allow

virtual environment to discover or draw basic models if a device cannot provide its

visual information using the semantic description of an object.

Our framework ensures the correct 3D model has been loaded if supplied by an

object and checks the structure of the 3D model, if the 3D model is not supported then

it will propagate a message in the network to find a suitable 3D model for that object.

If the result does not arrive in specific time then the system will allocate basic 3D

models unless it finds the right one in a later stage. This makes the framework more

flexible [Shaheed 2007].

7.4 Asset Lookup and Resource Monitor

There is a need to manage resources in the framework, i.e. what devices arc

connected to the virtual environment, its capabilities, and the probability of it staying

connected. Devices can come and go at any time and there is no restriction. For

example, a wireless sensor device transmitting temperature or light data as discussed

in the case study calculates the battery status and keeps the information in the asset

lookup table. This allows users to know how much time they have to utilize the device

functionality. And furthermore, if a SunSpot has shared its object with other peers
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then it should keep track of how much battery life has been consumed [Shaheed

2007].

7.5 Rule Engine

We discussed the Rule-Base system in detail in Chapter 2 section 3. Our

framework provides a dynamic environment where objects can join and its

functionality generated on fly. To achieve this we have used a Rule-Based System

called Drools to write simple rules and combined it with a database system to access

information, and to reduce rule-processing costs. Although performance is not our

main issue behaviours are not created for those objects, which have already been

discovered, each time the virtual environment is started.

We have implemented Drools, which is easy to use to write simple or complex

rules in a graphical interface. A script can be created firing one rule or a set of rules

and each rule can create multiple scripts. For example, a table Lamp can have

multiple rules to generate different behaviour like switch On, Off and flash light

behaviours [Shaheed 2008].

7.6 Scripting Engine

In dynamic environments where objects can be added at run time and functionality

needs to be created on the fly, scripting languages provide capabilities to insert a piece

of code into a running application to form part of that application. The requirement is

to support multiple scripting languages to support flexibility. This allows JavaScript

ecmascriptand Linden Script amongst other to be supported.

To enhance the functionality of our framework we have implemented the Java

scripting engine, which supports multiple scripting languages as was explained in the

Implementation Chapter. It was more important in our framework to have this

functionality in order to share objects across heterogeneous virtual environments and

to provide choice with different scripting languages.
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We have evaluated the scripting language component by introducing scripting

evaluation functions to check the syntax of scripting languages before executing and

load appropriate scripting engines. We go back to our Case Study SunSpot example

where JavaScript was used to create functionality for the SunSpot in our virtual lab

and to demonstrate how we can create functionary on the fly using rules, scripting and

semantics [Shaheed 2008].

7.7 Object Behaviour Matching

As more devices and virtual objects that join the virtual environment it is important

to select the best functionality. Our framework supports this requirement in order to

make sure the best behaviour is selected for a particular object. It is necessary to

describe behaviour parameters either by device manufactures if it is physical devices

or the developer of virtual objects to assess that functionality the object must have

including their associated functionality [Shaheed 2008].

7.8 Comparison with Existing Approaches

In this section, we compare our framework with three existing networked

appliance, virtual environment and Home Networking approaches. We use our novel

contributions as a basis for our comparison and compare them to the corresponding

features provide by these architecture such as RUNE, Second Life and World of

Warcraft.

7.8.1 RUNES

The RUNES project provides a framework that allows any device to form part of

the Internet, irrespective of its capabilities. RUNES is a services-oriented architecture

which allows services to be integrated within the network and discovered. RUNES

provides a solution but like USB it ties device manufactures into their protocol. In our

framework, we have avoided this limitation by using ontological structures with rules

to reason about what functionalities objects provide and how they can be combined.

In our framework if a behaviour is not found locally then it propagates behaviour

requests that describes the behaviour required. This is achieves using a novel

approach based on semantic web technologies.
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RUNES does not provide mechanisms to create functionality on the fly based on

how capable they are or how effectively they can execute the behaviours they provide.

In order to allow true ubiquity it is necessary to have mechanisms to allow virtual

environments to decide what behaviour they support in order to create behaviour

dynamically. We have addressed this limitation using reasoning services for

description and composition. In our framework the object functionality can be

formulated using rich ontological data propagated as semantic requests within the

network, which can be matched against the semantic description of an object. This

makes our behaviour generation far more flexible, scalable and less restrictive. Using

visualization of devices in virtual environments also provides more control over

physical devices and can increase device capabilities, which is not possible in the real

world.

7.S.2 Second Life

Second life is a 3D simulated environment where people interact using avatars.

Users can create digital content and trade objects for money. Second Life allows users

to create digital content and functionality and share them with other Second Life

users. The limitation of Second life is, it does not allow people to share content across

other environments such as Sim Online. Our framework allows users to share content

across heterogeneous virtual environments Le. Sim Online users can share content

with Second Life users and vice versa.

To create functionality for objects in Second Life users have to use its scripting

language. However, the content is fixed and no other is allowed. Our framework

supports multi scripting and allows users to choose the scripting language they prefer.

Second Life does not allow behaviours to be created on the fly using ontologies and

rules. Users have to write a script manually and attach it to that object. Our approach

searches for behaviours and dynamically attaches behaviours to an object without

human interaction.
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Second Life is a Client-Server architecture, which make it more unreliable if a

server fails then the whole service become unavailable. Our framework utilities P2P

technologies to support such failures.

7.8.3 World of Ware raft

World of Warcraft is a massively multiplayer game played online where users can

trade gaming object with other users. World of War craft does not allow users to create

avatars but they are allowed to customize the character and its skill from time to time.

It allows users to share its contents within World of Warcraft like our framework.

However, it does not allow content to be shared across different environments. For

example, a Second Life avatar cannot be imported into World of Warcraft, which is

the case in our framework.

World of Warcraft does not allow functionality for objects to be developed on the

fly without human interaction nor does it allow users to write scripts. This makes the

World of War craft inflexible.

And lastly, World of Warcraft does not have functionality to support multi scripts

or dynamic generation of behaviour on fly.

7.9 Framework Test and Evaluation

This section provides a test and evaluation for the VCUDSDC architecture in this

thesis. Small wireless sensors devices and bigger devices like a Media player, TV,

Lamp and Fan are shared between two virtual environments. The criteria set in this

section are to generate object behaviour on the fly for both physical and virtual

objects and share objects between two virtual environments .. Our initial results have

been published [Shaheed 2010] to demonstrate the working prototype's.

We have experimented with different devices to evaluate our framework in order to

ensure that we can successfully create behaviour at run time and visualise them in

virtual world we have setup few experiments discussed in following sections ..
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7.9.1 Evaluation of Framework to generate behaviour for objects.

We have setup two virtual environments on two different computers that are

connected using a Local Area Network with speeds up to 10MB/Sec. The computer

specification is a P4 with a 3Gz Intel process and 1GB RAM. We have add a new

lamp object to Computer A. The system detects the lamp object as shown in the Log

file (line 443 in Appendix C) and starts loading metadata from the lamp: both meta

description and its 3D model. It took 4 seconds to transfer both the metadata and the

3D model (the 3D model contains 2MB of data and 1KB of meta description for the

Lamp) from the lamp to computer A. The system searched the object functionality

locally but could not found it. Consequently it sent a request over the network (as

shown in Appendix Cline 451). The implementation is discussed in Chapter 6. The

Log File also shows that it took four seconds to receive a response over the network

from Computer B (Appendix Cline 450), which has the behaviour for the Lamp and

after accepting the behaviour from Computer B. it took 4 seconds to transfer the

behaviour from Computer B to Computer A (as shown in Appendix Cline 457). Once

Computer A received the script from Computer A for the Lamp it started validating

the script to make sure it does not contain any errors. The Log file shows there is no

syntax error in the script (Appendix Cline 461), so the system attached the script to

the Lamp object and started rendering the object in the virtual world. This took around

another four seconds. The whole process took 16 seconds to render the 3D model and

search its behaviour over the network as shown in Table 7.1.

Description Time Taken (sec)
: Meta Data load to Virtual World
Behaviour Result locally_
Searching on NetworkGot first !esponse __
Transfer Behaviour _
Validating Behaviour .__.... _
Rendering Object

4 '

l'
4,

l'

1
5·

Table 7.1 Behaviour generation and rendering for Lamp object introduced for

the first time
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We have repeated this process three times for the Lamp object as shown in Table

7.2 where the average time to add the Lamp to Computer A was 15.8 seconds

including finding the behaviour over network and transferring this to Computer A.

r Attempts Time Taken (sec) I
First Time 16

I Second Time 16.5

r Third Time 15

I Average Time 15.83\

Table 7.2Numbers of times the Lamp was added to the Virtual World

The full log files for all three experiments are provided in Appendix C. The same

virtual environments were used to transfer a Fan object, which has a 4MB 3D model

and a lOKB script file. This took on average 2 seconds to transfer the Fan object from

one virtual environment to the other virtual environment and took a further 10 second

to render the Fan object. The result was an average time jof 17 seconds for the whole

process as shown in Figure 7.1.

Average Time Taken (sec) VS Object (MB)

200

180

160
I
/
/
/
I
/
/
/... ".

140
120
100

so
60
40

20

o
Mobile TV Lamp Fans SUnSpot Senlor Device

Figure 7.1 Time Taken (seconds) vs. Object Creation
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Object .... Average Time Taken (sec)

Lamp _~ . . _ 15.83
17
10
15
180

Fans

Mobile Phone
TV

Table 7.3 Average Time Taken for complete process for different objects

7.9.2 SunSpot to Virtual Environment

In our second experiment, we connected a SunSpot device to a virtual world to test

the framework on smaller devices. Using two criteria, we evaluated our framework.

First, to generate behaviour on the fly using a meta data description stored on the

SunSpot devices and second, to visualize the device functionality and control it from

the virtual word.

In our first experiment, we tested our SunSPOT multi-hop network using 4 nodes.

Data (lOOOkb) was requested from the virtual environment via the base station. 'J he

framework detected the SunSpot and started transferring the meta data and 3D model

from the device. Once the meta description had been retrieved the framework

searched the system in its entirety, but the behaviour in local caches could not found.

A request was therefore sent over the network to lind a suitable behaviour for the

SunSpot. Table e8.4 lines 3 to 5 in Appendix C show that it took 1NOseconds to

transfer 1000kb of data which includes the behaviour meta description and the

SunSpot 3D model data. The experiment shows that transmitting 1000kb of data is

relatively expensive. To transmit 500kb of data the power consumed equates to

approximately 2.22754 % of the total power available. When the full IOOOkh is

transmitted, we see that 4.47135 % of total available power is consumed.
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Figure 7.2 Data transfer versus time.

The overall results provide a guide for data and power consumption. Based on

application requirements, user acceptance tests and sensor configurations are needed.

This said we anticipate far quicker times through better data compression and

increases in throughput as advances are made. What the results do show is that

devices, despite their size, have the ability to describe and present themselves for

usage at any level of detail, i.e. to allow magnifying of its physical attributes.

7.10 Summary

Our framework has achieved the objectives as expected and it has demonstrated

that the challenges highlighted in Chapter 1 have been addressed.

Our evaluation shows that our framework exceeds current research innovation

within networked appliances; home networking and computer simulated environments

such as 3D gaming and addresses a number of problems. We have provided results

ranging from small sensor devices to more powerful computational devices such as a

computers to demonstrate the working prototypes and their overall performance. The

virtual environments are processor hungry and getting visual information from small

sensor devices can affect the performance of such devices but we have demonstrated

that even small devices can perform sufficiently.
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Chapter 8
8 Conclusion and Future Work

8.1 Introduction

In this thesis we have stated that the large number of home appliances and the

complex functions they provide make it ever harder for a specialist, let alone a regular

home user, to write functionality for these devices and use them. The focus of this

project was to provide solutions where objects can be included in a virtual

environment (both physical and virtual) and their functionality created on the fly

using rules and ontologies to automate the process of generating behaviours

dynamically. This was realised in the design of the Ubiquitous Home Devices and

Service architecture (VCUDSDC) and its functional components. It enabled

networked home appliances to be dynamically integrated and visualised in a virtual

environment to provide implicit solutions while integrating the entire network in a

heterogeneous manner.

This final chapter presents a summary of the thesis, its results and contributions.

From these, we identify future guidelines and other issues related with the enabled

environment. The chapter is sealed by concluding remarks.

8.2 Thesis Summary

Chapter 1 of this thesis provided an overview of the problem domain, namely the

inefficiencies associated with current networked appliances and home networking and

virtual environments such as games and social networks. It identified that little work

has been carried out within ad hoc home network environments, which take into

account flexible mechanisms that enable devices and the services they provide to be

automatically integrated and where new objects can be supported through

visualisation and dynamic behavours. This has moved us towards a true automated
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software development platform in terms of functionality generation. This chapter then

briefly detailed a framework we developed that addresses these limitations enabling

objects (both real and physical devices) to be automatically integrated using flexible

algorithms that perform the integration process. This chapter concluded that by

defining the scope of the research project, the novel contributions where made.

In Chapter 2 we presented the background work. The aim was to provide a better

understanding of the need to share digital content across different environments and

explain their purpose of operation starting from its history towards various types of

virtual environments such as social 3D virtual environments and games. Chapter 2

described dynamic scripting languages and its purpose. Then looked at rule-base

systems and highlighted their different methods for processing rules such as

Backward Chaining and Forward Chaining. This chapter also explained Peer-to-Peer

networking and its various models.

In Chapter 3 UbiquitouslPervasive computing and Networked Appliances where

discussed and the challenges presented. Furthermore, networked appliances and home

networking, including current middleware solutions where discussed that aim to

seamlessly interconnect devices within home networks.

In chapter 4 we described the UML design models for all the components that

comprise our framework. These components allow virtual environments to share

objects and form functionality on the fly. Using the framework the behaviour can be

discovered using high-level semantics.

In chapter 5 a Case Study has been presented to give a real world scenario to show

a possible implementation for our framework. The Case Study focuses on how objects

can be visualised and how behaviour can be developed on the fly and integrated in

virtual worlds. We use a Smart Home Network as an example how we can control

physical devices and automate the integration process with in virtual worlds.

In Chapter 6 we discussed the implementation of our framework. It described the

issues that arose during the implementation of the framework components as per the

133



requirements and design laid out in Chapter 4. We used advances in P2P technologies,

which is devoid of any centralisation and the Java object-oriented programming

language to implement our prototype. This chapter presented a set of test scenarios we

used to test the prototype within the virtual environment setup of our own laboratory.

These scenarios assisted in system integration testing and the evaluation. The

prototype successfully demonstrates the applicability of our framework and acts as a

strong proof-of-concept for our solution.

An evaluation of the system was presented in Chapter 7, which compares and

contrasts our approach with other relevant work in this field. In the chapter we have

evaluated the performance of our system in terms of processing and transferring

objects between heterogeneous environments such as how long it takes to transfer

objects from one virtual world to another and vice versa. Testing of our framework is

carried out in this chapter to show how flexible our framework is.

8.3 Contribution to knowledge

In this section, we present our contributions to knowledge with the development of

our framework for visualizing and controlling Networked appliances and to facilitate

sharing digital content across different virtual environments. The challenges we have

overcome in order to achieve this include: sharing objects (both real and virtual),

dynamic generation of behaviours, behaviour discovery using high level semantics,

visualization of networked appliances in virtual environments to enhance the

functionality of physical devices, and to control devices from within virtual

environments. We have addressed these challenges using our framework and made

several novel contributions [Shaheed 2007], [Fergus 2008], [Fergus 2008], [Merabti

2008b], [Shaheed 2008], [Shaheed 2009], [Shaheed 2009], [Haroon 2009], [Shahecd

2010], [Haroon 2010]. In the following sub section, we discuss our novel

contributions.

8.3.1 3D Visualization in Ubiquitous Computing, Device and Services

In the area of service-oriented networking we have made several novel

contributions, which we have published in [Shaheed 2010], [Shaheed 2009], [Haroon

2009] - each contribution is listed below:
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• Our framework allows application functionality to be embedded within the

environment as network services. The operational functions provided by

devices are dispersed within the network as services that can be combined

to create high-level applications and these services can be provided and

exploited by any type of network device.

• Our framework allows devices to be visualised in virtual environments in

order to extract and use device functionality and hidden services within the

network in a unique and novel way to provide greater control.

8.3.2 Content Sharing across different Environments (Virtual and Physical)

We have made several contributions in the area of digital content sharing, which

we have published in [Shaheed 2007], [Merabti 2008b]. These contributions are

listed below:

• Our framework facilitates the sharing of real time objects across different

Environments (Both real and virtual). This allows us to move objects from

one environment to another. For example, a weapon in a game can be

shared between World Of War craft and Halo and vice versa.

• It is difficult to transfer objects between very different environments and

even more difficult to generate behaviours on the fly. Our framework

provides mechanisms to generate behaviours on the fly 'intelligently;

process the signatures they provide that allows the environment to

understand how the object operates and how it can be integrated [Shaheed

2008].

8.3.3 Object Behaviour Matching

In the area of Behaviour Matching we have made several novel contributions ,

which we have published in [Shaheed 2008] which are listed below:
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• Our framework utilises semantic annotations with rules to create dynamic

environments and generate scripts on the fly, and then project them into

heterogeneous virtual environment in a novel way. Once behaviour is

matched, it is assigned to the object. Object along with their behaviours are

stored in the system for later use to reduce overheads on the system.

8.3.4 Interaction and Control in Ubiquitous Computing System

In Ubiquitous Computing, we have demonstrated that our framework can visualize

small devices and hidden services in virtual environments to enhance its limited

capabilities and allow interaction and control. We have made several novel

Contributions, which again we have published in [Shaheed 2010], [Haroon 2010].

• We have developed our framework to discover, visualize and control

devices in Ubiquitous Computing Environments. By equipping devices

with visualization and behaviour data they are able to describe themselves

by providing this data to other services. When a device is discovered its

behaviour is generated on the fly and interaction can be achieved via virtual

environments.

• Virtual environments provide full control over device operation and make it

easier to operate virtually than physically because of their associated

limitations.

• Our framework allows us to simulate the functionality of devices in virtual

environments to perform experimentation instead without having to

physically use the device or be in the same location [Shaheed 2009].

8.4 Future Work

So far, in this chapter we have run through the project aims, main findings and

results, and considered the novel contributions of our work. However, our work has

also come across difficulties and has raised a number of interesting questions. This

section deals with, in our view, the most significant of these questions.
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8.4.1 Visual Engine

In this research, we used predefined models to render 3D objects, however the

challenge is to generate 3D models on the fly from photographs. This would make the

approach more dynamic and flexible in terms of visualisation and operation.

In our future work we also need to consider the performance in more detail and

compare this with other approaches, such as Web-based gaming. Whilst performances

may be problematic, it is not envisaged to be a significant problem in the future given

that better communication mediums are available, i.e. 8MB and 16MB broadband

connections are now commonplace. The files containing the 3D metadata are

currently around 5MB, which can be problematic as the number of objects

downloaded to the container increases. This needs further work and evaluation.

Perhaps a look at compression techniques would help.

8.4.2 Rule-Engine and Ontologies

Whilst we have presented an initial prototype system, it is clear that much work

remains to be carried out before a fully effective system is produced. In particular,

working with rules in conformance with ontologies needs to be understood because

ontology processing is challenging and time consuming. We hope to extend the use of

ontologies in the system in order to increase the robustness of interactions between

components, allowing for greater flexibility in the way components represent

themselves.

Early results have shown that using rules provides a powerful way to dynamically

create scripted behaviour from semantic descriptions. We have implemented a few

rules to test our prototypes but the biggest problem is designing the correct set of rules

that leads to the behaviour we want. This will require enormous ingenuity to think of

the right set of rules and the laborious process of generating the rules will often have

to be repeated.
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8.4.3 Security

In our research, we have not implemented security or considered it as a main

research area except for basic authentication provided by the JXTA framework.

Because of the Ad hoc nature of our environment, it is possible that content received

from services is intercepted and altered during transmission and it is possible that

people will transfer dangerous behaviour to crash the whole system or take control of

it.

In the future, lightweight trust mechanisms need to be developed which guarantee

that the data transferred between services has not been altered or redirected during

transmission. This mechanism must accommodate different levels of integrity

dependent on what type of data is being transferred. Development will ensure that the

computational overhead incurred by the posited scheme is minimal, whilst ensuring

that the content received by virtual environments is free from modification.

Better scripting engines need to be developed in order to validate scripts and check

any harmful code, which could potentially be dangerous for the system and result in

crashing or the stealing of objects without the knowledge of the owner.

8.4.4 Script Parser and Generator

This implementation specific module structures the script according to the

scripting language being used. We have implemented and tested the Java Scripting

Engine, which covers most common scripting syntax. However, other powerful

scripting tools will be introduced thus we need to upgrade the scripting engine. The

framework needs to be abstracted to represent efficiently many of the complexities it

currently supports. For example, more flexible mechanisms that enable

interoperability between different scripting languages including rule engines, are

needed.

8.5 Concluding Remarks

The home is becoming more embedded with wireless technologies and digital

services. For example, machine-to-machine solutions for utility billing and
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management are now possible usmg cellular networks. With many homes now

supporting different communication capabilities it has become relatively easy to

deploy ubiquitous devices (sensors) and services for any number of different

applications.

This is already practical where probing the home network often uncovers services

not necessarily known beforehand, e.g. universal plug-n-play devices like cable

modems provide passive interactive services. Invisible services like these are set to

accelerate as more networked devices form part of the home itself. Consequently,

there will be a need to visualise available devices or services in order to allow users to

better exploit the functions they provide.

In this thesis, these requirements have been successfully addressed by designing

and developing a new framework called VCUDSDC. This framework allows us to

visualise devices and hidden services, providing better exploitation of the services

they provide. Our framework allows us to manipulate physical devices in new and

novel ways, i.e. increase their size to make them more visible; or combining them

with other devices to provide a better means of interaction. For example, a digital

magnifying glass would allow us to see what invisible technology looks like and how

we may use it. We could even locate its position within the home.

The benefits of interoperability between networked devices and virtual worlds are

obvious: for example, devices can be controlled remotely because of improved

interaction and; secondly, both real-world devices and virtual worlds can freely share

functionality and content between the two. Our framework facilitates the generation

of behaviour using ontological descriptions of an object. These descriptions describe

the high-level concepts that relate to the "what" part of the behaviour generation

rather than the "how". As a result, each object provides ontological descriptions,

which are dynamically developed over time. Once ontologies are processed, rules are

used to generate scripts and to attach them to an object. Object behaviours are

generated based on the low-level signatures devoid of any human intervention.
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Our framework successfully incorporates varied functionalities and capabilities

using mechanisms that perform behaviour matching. Before behaviours provided by

objects are generated, the framework determines if the object providing the behaviour

has the required hardware, software and networking competences to successfully

execute it.

In this thesis, we have presented a detailed overview of the background and related

work and discussed the most important factors. Developing our framework has been

multi-disciplinary which has utilised and extended existing research initiatives, open

standards to produce a flexible system that allows digital content to be shared,

discovering, and then using them in virtual environments. Thus, this thesis provides a

broad platform on which to integrate next generation networked appliances and

games.

Overall, this has been a successful research project and has generated a lot of

interest. It has allowed us to investigate how technological advances will progress and

we believe that we are ahead of current solutions. We have successfully implemented

our framework and produced a prototype that effectively demonstrates how our

framework services work. The prototype implements our case study, which is a Smart

home environment, and illustrates how individual functions presented by objects can

be distributed within the network and used to create high-level applications. Our

approach is novel, which is reflected in the number of papers we have published.
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APPENDIX A: VCHUDS USE CASE DIAGRAMS
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Figure A1.S.l Start Virtual Environment

Description:

This case study illustrates a scenario when a virtual environment initially started on

within this framework.
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Virtual Environment

Figure A1.8.2 Connect To Network

Description:

This Use Case illustrates a typical scenario when a virtual environment initially switched on
within this framework.
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Figure A1.8.3 Process Behaviour Metadata

Description:

This Use Case illustrates a typical scenario when a virtual environment Process behaviour

metadata within this framework.
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Figure A1.S.4 Process Visual Metadata

Description:

This Use Case illustrates a typical scenario when a virtual environment Process Visual

metadata within this framework
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Figure A1.8.5 Create Behaviour Semantic Model

Description:

This Use Case illustrates a typical scenario when a Virtual Environment Create Behaviour

Semantic Model within this framework.
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virtual Environment

Figure A1.8.6 Find Object Behaviour

Description:

This Use Case illustrates a typical scenario when a virtual environment Discover Behaviour

within this framework.
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Figure A1.S.7 Evaluate Object Behaviour

Description:

This Use Case illustrates a typical scenario when a virtual environment Discovered Behaviour

and it evaluate the behaviour before attaching to an object within this framework.
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Description:
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This Use Case illustrates a typical scenario when a virtual environment Process Behaviour

Matching process using Semantic description within this framework.
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Figure A1.8.8 Process Behaviour Request
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Description:

This Use Case illustrates a typical scenario when a virtual environment Initialize scripting

engine to load and evaluate Behaviour within this framework.

Figure A1.8.9 Scripting Engine
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Description:

This Use Case illustrates a typical scenario when a virtual environment render object and

check its format within this framework.
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Figure A1.S.10 Visual Engine
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APPENDIXB: TABLES

Table 8.1 Scenario Parameters

Scenario Parameters

Network
Transmitter Range
Bandwidth
Number of Nodes
Pack Size
Software
OS
Java
Fob4JMF
SUF
Drools
Scripting Engine
OWL-S
Jena
Protege-OWL, API
JME
JMF
SunSPOT Library

X-iO
Prototype
Running Time
Protocols
Media Transmitted

100 Meter
100Mbps
4

Windows XP Professional SP3
jdk1.6.0_07
0.4.1
1.0
5.0
1.6
1.0
2.0
2.1
2.0.1
2.1.1e
Blue-080827

1.3

1 Hour
TCP
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APPENDIXC: LOG FILE FOR COMPUTER A

Table 8.2 Log File to add Lamp to Virtual World at run time

1 07-Mar-2011 13:09:14 com.jme.app.BaseGame start
2 INFO: Application started.

3 07-Mar-2011 13:09:15 com.jme.system.PropertiesIO <init>
4 INFO: PropertiesIO created

5 07-Mar-2011 13:09:15 com.jme.system.PropertiesIO load
6 INFO: Read properties

07-Mar-2011 13:09:20 com.jme.input.joystick.DummyJoystickInput
7 <init>
8 INFO: Joystick support is disabled

9 07-Mar-2011 13:09:20 com.jme.system.lwjgl.LWJGLDisplaySystem <init>
10 INFO: LWJGL Display System created.

07-Mar-2011 13:09:20 com.jme.system.lwjgl.LWJGLDisplaySystem
11 getValidDisplayMode
12 INFO: Selected DisplayMode: 640 x 480 x 16 @60Hz
13 07-Mar-2011 13:09:20 com.jme.system.PropertiesIO save
14 INFO: Saved properties

15 07-Mar-20 11 13:09:20 com.jme.app.BaseSimpleGame initSystem
16 INFO: jME version 0.11 beta

17 07-Mar-2011 13:09:22 com.jme.renderer.lwjgl.LWJGLRenderer <init>
18 INFO: LWJGLRenderer created. W: 640H: 480

19 07-Mar-2011 13:09:23 com.jme.app.BaseSimpleGame initSystem
20 INFO: Running on: nv4_disp

21 Driver version: 6.14.10.9131

22 NVIDIA Corporation GeForce 6200 LE/PCI/SSE2 - 2.0.3
23 07-Mar-2011 13:09:23 com.jme.renderer.AbstractCamera <init>
24 INFO: Camera created.

25 07-Mar-2011 13:09:23 com.jme.util.lwjgl.LWJGLTimer <init>
26 INFO: Timer resolution: 1000 ticks per second
27 07-Mar-2011 13:09:23 com.jme.scene.Node <init>
28 INFO: Node created.

29 07-Mar-2011 13:09:23 com.jme.scene.Node <init>
30 INFO: Node created.

31 07-Mar-2011 13:09:23 com.jme.scene.Node attachChild
32 INFO: Child (FPS label) attached to this node (FPS node)
33 07-Mar 2011 13:09:28 com.jme.scene.Node attachChild
34 INFO: Child (Text Label) attached to this node (FPS node)
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35 07-Mar-2011 13:09:28 com.jme.scene.Node attachChild- INFO: Child (Mouse Pointer Indicator) attached to this node (FPS
36 node)
37 07-Mar-2011 13:09:28 com.jme.scene.Node <init>

38 INFO: Node created.

39 07-Mar-2011 13:09:30 com.jme.scene.Node <init>
40 INFO: Node created.
41 07-Mar-2011 13:09:30 com.jme.scene.Node <init>

42 INFO: Node created.
43 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild
44 INFO: Child (Leinwand.nocull) attached to this node (Leinwand)
45 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild
46 INFO: Child (Leinwand) attached to this node (XML loaded scene)
47 07-Mar-2011 13:09:30 com.jme.scene.Node <init>
48 INFO: Node created.

49 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild
50 INFO: Child (PC6.Material.008.nocull) attached to this node (PC6)
51 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild
52 INFO: Child (PC6.Material.009.nocull) attached to this node (PC6)
53 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild
54 INFO: Child (PC6.Material.010.nocull) attached to this node (£OC6)
55 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild
56 INFO: Child (PC6.Material.011.nocull) attached to this node (I.'C6)
57 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild

58 INFO: Child (PC6) attached to this node (XML loaded scene)
59 07-Mar-2011 13:09:30 com.jme.scene.Node <init>

60 INFO: Node created.

61 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild
62 INFO: Child (PC5.Material.008.nocull) attached to this node (PC5)

63 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild
64 INFO: Child (PC5.Material.009.nocull) attached to this node ( [,C5)

65 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild~
66 INFO: Child (PC5.Material.010.nocull) attached to this node (PC5)
67 07-Mar 2011 13:09:30 com.jme.scene.Node attachChild
68 INFO: Child (PC5.Material.011.nocull) attached to this node (PCS)
69 07 Mar-2011 13:09:30 com.jme.scene.Node attachChild
70 INFO: Child (PCS) attached to this node (XML loaded scene)
71 07 Mar-2011 13:09:30 com.jme.scene.Node <init>

72 INFO: Node created.
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73 07-Mar-2011 13:09:30 con.jme.scene.Node attachChild
INFO: Child (PC4.001.Material.008.nocull) attached to this node

74 (PC4.001)-75 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild- It>FO: Child (PC4.001.Material.009.nocull) attached to this node
76 (PC4.001)-77 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild

INFO: Child (PC4.00l.Material.010.nocull) attached to this node
78 (PC4.001)
79 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild

INFO: Child (PC4.001.Material.Oll.nocull) attached to this node
80 (PC4.001)
81 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild
82 INFO: Child (PC4.001) attached to this node (XML loaded scene)
83 07-Mar-2011 13:09:30 com.jme.scene.Node <init>
84 INFO: Node created.
85 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild
86 INFO: Child (PC4.Material.008.nocull) attached to this node (PC4)
87 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild
88 INFO: Child (PC4.Material.009.nocull) attached to this node (PC4)
89 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild
90 INFO: Child (PC4.Material.010.nocull) attached to this node (PC4)
91 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild
92 INFO: Child (PC4.Material.Oll.nocull) attached to this node (PC4)
93 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild
94 INFO: Child (PC4) attached to this node (XML loaded scene)
95 07-Mar-2011 13:09:30 com.jme.scene.Node <init>
96 INFO: Node created.

97 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild
98 INFO: Child (Cube.003.nocull) attached to this node (Cube. 001)
99 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild

100 INFO: Child (Cube. 001) attached to this node (XML loaded scene)
101 07 Mar 2011 13:09:30 com.jme.scene.Node <init>
102 INFO: Node created.

103 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild
104 INFO: Child (Tuer.Material.012.nocull) attached to this node (Tuer)

105 07 Mar-2011 13:09:30 com.jme.scene.Node attachChild
106 INFO: Child (Tuer.Material.013.nocull) attached to this node (Tuer)

107 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild
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108 INFO: Child (Tuer) attached to this node (XML loaded scene)-109 07-Mar-2011 13:09:30 com.jme.scene.Node <init>-110 INFO: Node created.-111 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild

112 INFO: Child (Cube.002.nocull) attached to this node (Cube)

113 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild

114 INFO: Child (Cube) attached to this node (XML loaded scene)

115 07-Mar-2011 13:09:30 com.jme.scene.Node <init>

116 INFO: Node created.
117 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild

118 INFO: Child (Cube. nocull) attached to this node (TV-Body)

119 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild

120 INFO: Child (TV-Body) attached to this node (XML loaded scene)

121 07-Mar-20 11 13:09:30 com.jme.scene.Node <init>

122 INFO: Node created.

123 07-Mar-2 011 13:09:30 com.jme.scene.Node attachChild

124 INFO: Child (PC3.Material.008.nocull) attached to this node (PC3)

125 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild

126 INFO: Child (PC3.Material.009.nocull) attached to this node (PC3 )

127 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild

128 INFO: Child (PC3.Material.010.nocull) attached to this node (PC3)
129 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild

130 INFO: Child (PC3.Material.Ol1.nocull) attached to this node (PC3)
131 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild

132 INFO: Child (PC3) attached to this node (XML loaded scene)
133 07-Mar-2011 13:09:30 com.jme.scene.Node <init>

134 INFO: Node created.

135 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild

136 INFO: Child (PC2.Material.008.nocull) attached to this node (PC2)
137 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild

138 INFO: Child (PC2.Material.009.nocull) attached to this node (PC2)
139 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild

140 INFO: Child (PC2.Material.010.nocull) attached to this node (PC2)
141 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild

142 INFO: Child (PC2.Material.011.nocull) attached to this node (l'C2)

143 07-Mar-2011 13:09:30 com.jme.scene.Node at tachChild

144 INFO: Child (PC2) attached to this node (XML loaded scene)
145 07-Mar-2011 13:09:30 com.jme.scene.Node <init>

146 INFO: Node created.
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147 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild-148 INFO: Child (PC1.Material.008.nocull) attached to this node (PC1)-149 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild-150 INFO: Child (PC1.Material.009.nocull) attached to this node (PC1)-151 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild-152 INFO: Child (PC1.Material.010.nocull) attached to this node (PC1)
153 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild

154 INFO: Child (PC1.Material.011.nocull) attached to this node (PCl)

155 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild

156 INFO: Child (PC1) attached to this node (XML loaded scene)

157 07-Mar-2011 13:09:30 com.jme.scene.Node <init>

158 INFO: Node created.

159 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild

INFO: Child (PC1.001.Material.008.nocull) attached to this node
160 (pe1.001)
161 07-t1ar-2011 13:09:30 com.jme.scene.Node attachehild

INFO: Child (PC1.001.Material.009.nocull) attached to this node
162 (PC1.001)
163 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild

INFO: Child (Pe1.001.Material.010.nocull) attached to this node
164 (pe1.001)
165 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild

INFO: Child (PC1.001.Material.011.nocull) attached to this node
166 (PC1.001)
167 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild

168 INFO: Child (PC1.001) attached to this node (XML loaded scenp)
169 07-Mar-2011 13:09:30 com.jme.scene.Node <init>

170 INFO: Node created.

171 07-Mar-2011 13:09:30 com.jme.scene.Node <init>

172 INFO: Node created.

173 07-Mar-2011 13:09:30 com.jme.scene.Node <init>
174 INFO: Node created.

175 07-Mar 2011 13:09:30 com.jme.scene.Node at tachChild

176 INFO: Child (Leinwand.nocull) attached to this node (Leinwanrl)
177 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild

178 INFO: Child (Leinwand) attached to this node (XML Lc adod sc(,n'-' )

179 07 Mar 2011 13:09:30 com.jme.scene.Node <init>

180 INFO: Node created.

181 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild
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182 INFO: Child (PC6.Material.008.nocull) attached to this node (PC6)-183 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild
184 INFO: Child (PC6.Material.009.nocull) attached to this node (PC6)-185 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild-186 INFO: Child (PC6.Material.010.nocull) attached to this node (PC6)
187 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild
188 INFO: Child (PC6.Material.011.nocull) attached to this node (PC6)
189 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild
190 INFO: Child (PC6) attached to this node (XML loaded scene)
191 07-Mar-2011 13:09:30 com.jme.scene.Node <init>
192 INFO: Node created.
193 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild
194 INFO: Child (PC5.Material.008.nocull) attached to this node (PC5)
195 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild
196 INFO: Child (PC5.Material.009.nocull) attached to this node (PCS)
197 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild
198 INFO: Child (PCS.Material.010.nocull) attached to this node (PCS)
199 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild
200 INFO: Child (PCS.Material.Ol1.nocull) attached to this node (PCS)
201 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild
202 INFO: Child (PCS) attached to this node (XML loaded scene)
203 07-Mar-2011 13:09:30 com.jme.scene.Node <init>
204 INFO: Node created.

205 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild
INFO: Child (PC4.001.Material.008.nocull) attached to this nodc~

206 (PC4.001)
207 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild

INFO: Child (PC4.001.Material.009.nocull) attached to this node
208 (PC4.001)
209 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild

INFO: Child (PC4.001.Material.010.nocull) attached to this node
210 (PC4 .001)
211 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild

INFO: Child (PC4.001.Material.011.nocull) attached to this node
212 (PCL 001)
213 07-Mar 2011 13:09:30 com.jme.scene.Node at tachChild
214 INFO: Child (PC4.00l) attached to this node (XML loaded scene)
215 07-Mar-2011 13:09:30 com.jme.scene.Node <init>
216 INFO: Node created.
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217 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild-218 It-;FO:Child (PC4.Material.008.nocull) attached to this node (PC4)-219 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild
220 INFO: Child (PC4.Material.009.nocull) attached to this node (PC4 )
221 07-r...:ar-201113:09:30 com.jme.scene.Node attachChild
222 INFO: Child (PC4.Material.010.nocull) attached to this node (PC4)
223 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild
224 INFO: Child (PC4.Material.011.nocull) attached to this node (PC4 )
225 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild
226 INFO: Child (PC4 ) attached to this node (XML loaded scene)
227 07-Mar-2011 13:09:30 com.jme.scene.Node <init>
228 INFO: Node created.
229 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild
230 INFO: Child (Cube.003.nocull) attached to this node (Cube. 001)
231 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild
232 INFO: Child (Cube. 001) attached to this node (XML loaded scene)
233 07-Mar-2011 13:09:30 com.jme.scene.Node <init>
234 INFO: Node created.

235 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild
236 INFO: Child (Tuer.Material.012.nocull) attached to this node (Tuer)
237 07-Mar-20 11 13:09:30 com.jme.scene.Node attachChild
238 INFO: Child (Tuer.Material.013.nocull) attached to this node (Tuer)
239 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild
240 INFO: Child (Tuer) attached to this node (XML loaded scene)
241 07-Mar-2011 13:09:30 com.jme.scene.Node <init>
242 INFO: Node created.

243 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild
244 INFO: Child (Cube.002.nocull) attached to this node (Cube)
245 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild
246 INFO: Child (Cube) attached to this node (XML loaded scene)
247 07-Mar-2011 13:09:30 com.jme.scene.Node <init>
248 INFO: Node created.

249 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild
250 INFO: Child (Cube.nocull) attached to this node (TV-Body)
251 07-Mar 2011 13:09:30 com.jme.scene.Node attachChild
252 INFO: Child (TV Body) attached to this node (XML loaded scene)
253 07 Mar 2011 13:09:30 com.jme.scene.Node <init>
254 INFO: Node created.

255 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild
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256 INFO: Child (PC3.Material.008.nocull) attached to this node (PC3)
257 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild
258 INFO: Child (PC3.Material.009.nocull) attached to this node (PC3)-259 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild-260 INFO: Child (PC3.Material.010.nocull) attached to this node (PC3)-261 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild
262 INFO: Child (PC3.Material.011.nocull) attached to this node (PC3)
263 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild
264 INFO: Child (PC3) attached to this node (XML loaded scene)
265 07-Mar-2011 13:09:30 com.jme.scene.Node <init>
266 INFO: Node created.
267 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild
268 INFO: Child (PC2.Material.008.nocull) attached to this node (PC2)
269 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild
270 INFO: Child (PC2.Material.009.nocull) attached to this node (PC2)
271 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild
272 INFO: Child (PC2.Material.010.nocull) attached to this node (PC2)
273 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild
274 INFO: Child (PC2.Material.011.nocull) attached to this node (PC2)
275 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild
276 INFO: Child (PC2) attached to this node (XML loaded scene)
277 07-Mar-2011 13:09:30 com.jme.scene.Node <init>
278 INFO: Node created.

279 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild
280 INFO: Child (PC1.Material.008.nocull) attached to this node (PC1)
281 07-Mar-2011 13:09:30 com.jme.scene.Node at tachChild
282 INFO: Child (PC1.Material.009.nocull) attached to this node (1'Cl)
283 07-Mar-2011 13:09:30 com.jme.scene.Node at tachChild
284 INFO: Child (PC1.Material.010.nocull) attached to this node ([>C1)
285 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild
286 INFO: Child (PC1.Material.011.nocull) attached to this node (PCl)
287 07-Mar-2011 13:09:30 com.jme.scene.Node at tachChild
288 INFO: Child (PC1) attached to this node (XML loaded scene)
289 07-Mar 2011 13:09:30 com.jme.scene.Node <init>
290 INFO: Node created.

291 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild
INFO: Child (PC1.OO1.Material.008.nocull) attached to this node

292 (PCl. 001)

293 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild
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INFO: Child (PC1.001.~ateria1.009.nocull) attached to this node

294 (PCl.OO1)-295 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild- INFO: Child (PC1.001.Material.010.nocull) attached to this node

296 (PCl.001)
297 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild

INFO: Child (PC1.001.Material.011.nocull) attached to this node
298 (PCl.001)
299 07-Mar-2011 13:09:30 com.jme.scene.Node attachChi1d

300 INFO: Child (pel.001) attached to this node (XML loaded scene)

301 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild

INFO: Child (XML loaded scene) attached to this node (XML loaded
302 scene)
303 07-Mar-2011 13:09:30 com.jme.scene.Node attachChild

304 INFO: Child (XML loaded scene) attached to this node (rootNode)
305 Connected with data source to load objects2011-03-07 13:09:30

07-Mar-2011 13:09:30
306 ~k.ac.ljmu.nal.DataLayer.DataAccess.gameObjectData FillList
307 INFO: Object loaded from database

07-Mar-2011 13:09:30
308 uk.ac.ljmu.nal.DataLayer.DataAccess.gameObjectData FillList
309 INFO: Loading object SunSpot

07-Mar-2011 13:09:30
310 uk.ac.ljmu.nal.DataLayer.DataAccess.gameObjectData FillList

311 INFO: Loading object dvd

07-Mar-2011 13:09:34
uk.ac.ljmu.nal.DataLayer.BusinessLogic.gameObjectManager

312 getGameObjects
313 INFO: Firing rules for SunSpot

07-Mar-2011 13:09:34
uk.ac.ljmu.nal.DataLayer.BusinessLogic.gameObjectManager

314 getGameObjects
315 INFO: Firing rules for dvd

316 07-Mar-2011 13:09:34 com.jme.scene.Node <init>

317 INFO: Node created.

318 07-Mar-2011 13:09:34 com.jme.scene.Node attachChild

319 INFO: Child (Box) attached to this node (SunSpot)

320 07-Mar-2011 13:09:34 com.jme.scene.Node attachChild

321 INFO: Child (SunSpot) attached to this node (rootNode)
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322 07-Mar-2011 13:09:34 com.jme.scene.Node <init>-323 INFO: Node created.-324 07-Mar-2011 13:09:34 com.jme.scene.Node <init>-325 INFO: Node created.-326 07-Mar-2011 13:09:34 com.jme.scene.Node <init>

327 INFO: Node created.
328 07-Mar-2011 13:09:34 com.jme.scene.Node attachChild

INFO: Child (Playbutton.Material.03l.nocull) attached to this node
329 (Play)
330 07-Mar-2011 13:09:34 com.jme.scene.Node attachChild

INFO: Child (Playbutton.Material.022.nocull) attached to this node
331 (Play)
332 07-Mar-20l1 13:09:34 com.jme.scene.Node attachChild

333 INFO: Child (Play) attached to this node (XML loaded scene)
334 07-Mar-2011 13:09:34 com.jme.scene.Node <init>

335 INFO: Node created.
336 07-Mar-2011 13:09:34 com.jme.scene.Node attachChild

INFO: Child (Stopsign.Material.028.nocull) attached to this node
337 (Stop)
338 07-Mar-2011 13:09:34 com.jme.scene.Node attachChild

INFO: Child (Stopsign.Material.027.nocull) attached to this node
339 (Stop)
340 07-Mar-2011 13:09:34 com.jme.scene.Node attachChild

341 INFO: Child (Stop) attached to this node (XML loaded scene)
342 07-Mar-2011 13:09:34 com.jme.scene.Node <init>

343 INFO: Node created.

344 07-Mar-2011 13:09:34 com.jme.scene.Node attachChild
345 INFO: Child (Cone) attached to this node (XML loaded scene)
346 07-Mar-2011 13:09:34 com.jme.scene.Node <init>

347 INFO: Node created.

348 07-Mar-2011 13:09:34 com.jme.scene.Node attachChild
INFO: Child (Forward.Material.006.nocull) attached to this nodp

349 (Forward)
350 07-Mar-2011 13:09:34 com.jme.scene.Node attachChild

INFO: Child (Forward.Material.026.nocull) attached to this fl'lde

351 (Forward)
352 07-Mar-2011 13:09:34 com.jme.scene.Node attachChild
353 INFO: Child (Forward) attached to this node (XML loaded scene)
354 07-Mar 2011 13:09:34 com.jme.scene.Node <init>
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355 INFO: Node created.-356 07-Mar-2011 13:09:34 com.jme.scene.Node attachChild

INFO: Child (Rewind.Material.021.nocull) attached to this node
357 (Rewind)-358 07-Mar-2011 13:09:34 com.jme.scene.Node attachChild- INFO: Child (Rewind.Material.025.nocull) attached to this node
359 (Rewind)
360 07-Mar-2011 13:09:34 com.jme.scene.Node attachChild
361 INFO: Child (Rewind) attached to this node (XML loaded scene)-362 07-Mar-2011 13:09:34 com.jme.scene.Node <init>

363 INFO: Node created.
364 07-Mar-2011 13:09:34 com.jme.scene.Node attachChild

INFO: Child (Pause.Material.029.nocull) attached to this node
365 (Pause)
366 07-Mar-2011 13:09:34 com.jme.scene.Node attachChild

INFO: Child (Pause.Material.030.nocull) attached to this node
367 (Pause)
368 07-Mar-2011 13:09:34 com.jme.scene.Node attachChild
369 INFO: Child (Pause) attached to this node (XML loaded scene)
370 07-Mar-2011 13:09:34 com.jme.scene.Node <init>
371 INFO: Node created.
372 07-Mar-2011 13:09:34 com.jme.scene.Node attachChild
373 INFO: Child (Cube. 004) attached to this node (XML loaded scene)
374 07-Mar-2011 13:09:34 com.jme.scene.Node <init>

375 INFO: Node created.
376 07-Mar-2011 13:09:34 com.jme.scene.Node attachChild

INFO: Child (Mediaplayer.nocull) attached to this node
377 (Mediaplayer)
378 07-Mar-2011 13:09:34 com.jme.scene.Node attachChild
379 INFO: Child (Mediaplayer) attached to this node (XML loaded SCE'n0)
380 07-Mar-2011 13:09:34 com.jme.scene.Node <init>
381 INFO: Node created.

382 07-Mar 2011 13:09:34 com.jme.scene.Node <init>
383 INFO: Node created.

384 07-Mar-2011 13:09:34 com.jme.scene.Node <init>
385 INFO: Node created.

386 07-Mar-2011 13:09:34 com.jme.scene.Node at tachChild
INFO: Child (Playbutton.Material.031.nocull) attached to this node

387 (Play)
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388 07-Mar-2011 13:09:34 com.jme.scene.Node attachChild- INFO: Child (Playbutton.Material.022.nocull) attached to this node

389 (Play)
390 07-Mar-2011 13:09:34 com.jme.scene.Node attachChild

-::-391 INFO: Child (Play) attached to this node (XML loaded scene)
......"392 07-Mar-2 011 13:09:34 com.jme.scene.Node <init>

393 INFO: Node created.

394 07-Mar-2011 13:09:34 com.jme.scene.Node attachChild

INFO: Child (Stopsign.Material.028.nocull) attached to this node

395 (Stop)
396 07-Mar-2011 13:09:34 com.jme.scene.Node attachChild

INFO: Child (Stopsign.Material.027.nocull) attached to this node

397 (Stop)
398 07-Mar-2011 13:09:34 com.jme.scene.Node attachChild

399 INFO: Child (Stop) attached to this node (XML loaded scene)

400 07-Mar-2011 13:09:34 com.jme.scene.Node <init>

401 INFO: Node created.

402 07-Mar-20 11 13:09:34 com.jme.scene.Node attachChild

403 INFO: Child (Cone) attached to this node (XML loaded scene)

404 07-Mar-2011 13:09:34 com.jme.scene.Node <init>

405 INFO: Node created.

406 07-Mar-2011 13:09:34 com.jme.scene.Node attachChild

INFO: Child (Forward.Material.006.nocull) attached to this nodr:

407 (Forward)
408 07-Mar-2011 13:09:34 com.jme.scene.Node attachChild

INFO: Child (Forward.Material.026.nocull) attached to this node
409 (Forward)
410 07-Mar-2011 13:09:34 com.jme.scene.Node attachChild

411 INFO: Child (Forward) attached to this node (XML loaded scene)

412 07-Mar-2011 13:09:34 com.jme.scene.Node <init>

413 INFO: Node created.

414 07-Mar-2011 13:09:34 com.jme.scene.Node attachChild

INFO: Child (Rewind.Material.021.nocull) attached to this node
415 (Rewind)
416 07-Mar-2011 13:09:34 com.jme.scene.Node attachChild

INFO: Child (Rewind.Material.025.nocull) attached to this node
417 (Rewind)
418 07-Mar-2011 13:09:34 com.jme.scene.Node at tachChild

419 INFO: Child (Rewind) attached to this node (XML loaded scene)
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420 07-Mar-2 011 13:09:34 com.jme.scene.Node <init>-421 INFO: Node created.
422 07-Mar-2011 13:09:34 com.jme.scene.Node attachChild

INFO: Child (Pause.Material.029.nocull) attached to this node
423 (Pause)
424 07-Mar-20ll 13:09:34 com.jme.scene.Node attachChild

INFO: Child (Pause.Material.030.nocull) attached to this node
425 (Pause)
426 07-Mar-20ll 13:09:34 com.jme.scene.Node attachChild
427 INFO: Child (Pause) attached to this node (XML loaded scene)
428 07-Mar-20ll 13:09:34 com.jme.scene.Node <init>
429 INFO: Node created.
430 07-Mar-2011 13:09:34 com.jme.scene.Node attachChild
431 INFO: Child (Cube. 004) attached to this node (XML loaded scene)
432 07-Mar-20ll 13:09:34 com.jme.scene.Node <init>
433 INFO: Node created.
434 07-Mar-2011 13:09:34 com.jme.scene.Node attachChild

INFO: Child (Mediaplayer.nocull) attached to this node
435 (!~ediaplayer)
436 07-Mar-20ll 13:09:34 com.jme.scene.Node attachChild
437 INFO: Child (Mediaplayer) attached to this node (XML loaded sCene)
438 07-Mar-2011 13:09:34 com.jme.scene.Node attachChild

INFO: Child (XML loaded scene) attached to this node (XHL Loa de d
439 scene)
440 07-Mar-20ll 13:09:34 com.jme.scene.Node attachChild
441 INFO: Child (XML loaded scene) attached to this node (rootNocie)

07-Mar-2011 13:09:34
442 uk.ac.ljmu.nal.visualEngine.visualizationEngine ListeningToNewObjects
443 INFO: new object lamp has been detected

07-Mar-20ll 13:09:3')
444 uk.ac.ljmu.nal.visualEngine.visualizationEngine ListeningToNewObjects
445 INFO: loading description information from lamp

07-Mar-2011 13:0'J:3')
446 uk.ac.ljmu.nal.visualEngine.visualizationEngine ListeningToNcwObjects
447 INFO: loading completed

07-Mar-2011 13:0:):39
448 uk.ac.ljmu.na1.visualEngine.visualizationEngine SearchObjects
449 INFO: Object behaviour not found for lamp
450 07-Mar-2011 13:09:39
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uk.ac.ljmu.nal.visualEngine.visualizationEngine SearchObjects
451 INFO: searching on the network

07-Mar-2011 13:09:44
452 uk.ac.ljmu.nal.visualEngine.visualizationEngine SearchObjects
453 INFO: found behaviour for lamp read to transfer

07-Mar-2011 13:09:44
454 uk.ac.ljmu.nal.visualEngine.visualizationEngine transferBehaviour
455 INFO: Behaviour Transfer started

07-Mar-2011 13:09:49
456 uk.ac.ljmu.nal.visualEngine.visualizationEngine transferBehaviour
457 INFO: Behaviour Transfer Completed

07-Mar-2011 13:09:49
458 uk.ac.ljmu.nal.visualEngine.visua1izationEngine va1idateBehaviour

----459 INFO: validating behaviour._
07-Mar-2011 13:09:~O

460 uk.ac.1jmu.nal.visualEngine.visualizationEngine va1idateBehaviour
r--461 INFO: Behaviour has no error
r--

07-Mar-2 011 13:0':!:SO
uk.ac.1jmu.nal.visualEngine.visualizationEngine

462 attacheBehaviourToObject
r-- 463 INFO: Behaviour has succesfully attached to object 1ar:<p
r--

07-Mar-2011 Ij:(J'J:':,(J

464 uk.ac.ljmu.na1.visualEngine.visualizationEngine renderOilj(,ct
f--- 465 INFO: Rendering started for lamp
i--

07-tv:ar-2011 1j:u'J:'J')
466 uk.ac.1jmu.na1.visualEngine.visualizationEngine r eride rObj cc t

i--._

467 INFO: Rendering is completed for lamp
i--._

l...._

Table 8.3 Log file To add lamp to virtual world at run time

07-Mar 2011 J (, : --
j~i: j h

uk.ac.ljmu.na1.visualEngine.visualizationEngine
1 ListeningToNewObjects

2 INFO: new object lamp has been detected
07-Mar-2011 lC:3H:3/

uk.ac.ljmu.nal.visualEngine.visualizationEngine
3 ListeningToNewObjects
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4 INFO: loading description information from 1arr.p

07-Mar-2011 16:38:41
uk.ac.ljmu.nal.visualEngine.visualizationEngine

5 ListeningToNewObjects
6 INFO: loading completed

07-Mar-2011 16:38:41
uk.ac.ljmu.nal.visualEngine.visualizationEngine

7 SearchObjects
8 INFO: Object behaviour not found for 1arr.p

07-Mar-2011 16:38:41
uk.ac.ljmu.nal.visualEngine.visualizationEngine

9 SearchObjects
10 INFO: searching on the network

07-Mar-2011 16:38:45
uk.ac.ljmu.nal.visualEngine.visualizationEngine

11 SearchObjects
12 INFO: found behaviour for 1arr.pread to transfer

07-Mar-2011 16: jd : ,,':>

uk.ac.ljmu.nal.visualEngine.visualizationEngine
13 transferBehaviour
14 INFO: Behaviour Transfer started

07-Mar-2011 16:)0:'.,0

uk.ac.ljmu.nal.visualEngine.visualizationEngine
15 transferBehaviour
16 INFO: Behaviour Transfer Corr.p Le t o d

07-Mar-2011 1 t, : j f~ : 'iU

u k,ac.l jmu. na1 .vi sualEng ine. visua 1izatior,Enr]inc,
17 validateBehaviour
18 INFO: validating behaviour

07-Mar-2011 1 t, : J b : ') 1

uk.ac.ljmu.nal.visualEngine.visualizatiorlE:nyin0
19 validateBehaviour
20 INFO: Behaviour has no error

07-Mar-20 11 Ih:JH:',l
uk. ac .1j mu. nal. vis ualE ngin e . vis iJ ali Z d t .i Clrd-: n :J i n f'

21 attacheBehaviourToObject
22 INFO: Behaviour has succesfully at.tached to (Ib_j "et l,un!,

07-Mar-2011 16:JH::,l
23 uk.ac.ljmu.nal.visualEngine.visualizationEngine rcn,jprObjc'ct

24 INFO: Rendering started for lamp
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07-Mar-2011 16:38:56
25 uk.ac.ljmu.nal.visualEngine.visualizationEngine renderObject
26 INFO: Rendering is completed for lamp

Table 8.4 Log file To add lamp to virtual world at run time

07-Mar-2011 16:45:44
uk.ac.ljmu.nal.visualEngine.visualizationEngine

1 ListeningToNewObjects

2 INFO: new object lamp has been detected
07-Mar-2011 16:45:45

uk.ac.ljmu.nal.visualEngine.visualizationEngine

3 ListeningToNewObjects

4 INFO: loading description information from lamp
07-Mar-2011 16:45:49

uk.ac.ljmu.nal.visualEngine.visualizationEngine

5 ListeningToNewObjects

6 INFO: loading completed
07-Mar-2011 16: 4:': 4 ':I

7 uk.ac.ljmu.nal.visualEngine.visualizationEngine Sea rchClbj o c t S

8 INFO: Object behaviour not found for lamp
07-Mar-2011 16:4'):4':1

9 uk.ac.ljmu.nal.visualEngine.visualizationEngine ~;(:i,rch()hj cc t.s

10 INFO: searching on the network
07-Mar-2011 16:4'):')(,

11 uk.ac.ljmu.nal.visualEngine.visualizationEngine ~~e;:jrchC)bj ('ct-"

12 INFO: found behaviour for lamp read to t r an s f e r

07-Mar-2011 l(,:t1'J:'JC

uk.ac.ljmu.nal.visualEngine.visualizationEngine
13 transferBehaviour

14 INFO: Behaviour Transfer started
07 Mar-2011 1 () : 4 () : (J 1

uk.ac.ljmu.nal.visualEngine.visualizationEnginp
15 transferBehaviour

16 INFO: Behaviour Transfer Comp Le t e.d

07 Mar 2011 Ib:t1C:Ol
17 uk.ac.ljmu.nal.visualEngine.visualizationEngine
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validateBehaviour

18 INfO: validating behaviour
07-Mar-2011 16:46:01

uk.ac.ljmu.nal.visualEngine.visualizationEngine
19 validateBehaviour
20 INFO: Behaviour has no error

07-Mar-2011 16:46:02
uk.ac.ljmu.nal.visualEngine.visua1izationEngine

21 attacheBehaviourToObject
22 INFO: Behaviour has succesfu1ly attached to object lamp

07-Mar-2011 16:46:02
23 uk.ac.ljmu.nal.visualEngine.visua1izationEngine renderObject
24 INFO: Rendering started for lamp

07-Mar-2011 16:46:07
25 uk.ac.1jmu.nal.visualEngine.visualizationEngine renderObject
26 INFO: Rendering is completed for lamp

Table 8.5 sunSpot Object Log file

09-Mar-2011 14:53:06
uk.ac.ljmu.nal.visualEngine.visualizationEngine

1 ListeningToNewObjects
2 INFO: new object sunSpot has been detected

09-Mar-2011 14:53:07
uk.ac.ljmu.nal.visualEngine.visualizationEngine

3 ListeningToNewObjects
4 INFO: loading description information from sunSpc)t

09-Har-2011 14:56:07
uk.ac.ljmu.nal.visua1Engine.visualizationEngine

5 ListeningToNewObjects
6 INFO: loading completed

09 Mar-2011 14:56:07
7 uk.ac.1jmu.na1.visua1Engine.visualization~nglnp S,-o"rchOhj,."t ~;
8 INFO: Object behaviour not found for sunSpot

09-Mar-2011 14:56:07
9 uk.ac.ljmu.nal.visualEngine.visualizationEnqine S('arC'hot)j",~·t s

10 INFO: searching on the network
09 Mar 2011 14:56:14

11 uk.ac.ljmu.nal.visualEngine.visualizationEnqine ~;Pd r ('hOi I 'j (.,.. t s
12 INFO: found behaviour for sunSpot read to transfer09-Mar 2011 14:56:14

uk.ac.ljmu.nal.visualEngine.visualizationEnginc
13 transferBehaviour
14 INFO: Behaviour Transfer started

09-Mar-2011 14:56:21
uk.ac.ljmu.nal.visualEngine.visualizationEngine

15 transferBehaviour
16 INFO: Behaviour Transfer Completed
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09-Mar-2011 14:56:21
uk.ac.ljmu.nal.visualEngine.visualizationEngine

17 validateBehaviour
18 INFO: validating behaviour

09-Mar-2011 14:56:22
uk.ac.ljmu.nal.visualEngine.visualizationEngine

19 validateBehaviour
20 INFO: Behaviour has no error

09-Mar-2011 14:56:22
uk.ac.ljmu.nal.visualEngine.visualizationEngine

21 attacheBehaviourToObject
22 INFO: Behaviour has succesfully attached to object sunSpot

09-Mar-2011 14:56:22
23 uk.ac.ljmu.nal.visualEngine.visualizationEngine renderObject
24 INFO: Rendering started for sunSpot

09-Mar-2011 14:56:24
25 uk.ac.ljmu.nal.visualEngine.visualizationEngine renderObject
26 INFO: Rendering is completed for sunSpot

179


