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Abstract 

The growth in multi-national corporations and today’s highly competitive market environment are fuelling an 

unprecedented demand for third-party logistics services, including the need for more realistic and efficient vehicle routing. 

Many recent works on the vehicle routing problem, however, only consider simple constraints and do not scale well to all 

types of real-world logistics problems. This paper introduces a new vehicle routing problem with time window and pallet 

loading constraints, taking into account the actual needs of businesses from the logistics industry in a specific scenario: 

delivery of consumer goods in pallets with time-windows. We propose a hybrid approach which is a combination of Tabu 

search and Artificial Bee Colony algorithm. Because the problem addressed in this paper is novel and has never been 

reported in the literature, we generate a new benchmark data set to verify the performance of the proposed algorithm. The 

computational experiments are reported for a data set of the Solomon’s 56 vehicle routing problem with time windows. 

Computational results show the effectiveness of the proposed algorithm. 

Keywords: Vehicle routing problem; Container loading; Tabu search; Artificial Bee Colony algorithm. 

1. Introduction 

The vehicle routing problem (VRP) is a classic problem occurring in the logistics and transportation field and is 

considered as one of the most important problems in operational research. The VRP is concerned with route planning for 

vehicles starting from a central depot to a set of customers. It was first proposed by Dantzig and Ramser [1], and further 



algorithm improvements and variants of this problem have been extensively studied in the recent years. Some problems 

consider different objectives, but most of the variants of the VRP are related to the addition of new constraints to the 

original problem. For instance, the pallet constraint (goods of different sizes must be transported in boxes of standard size 

and limited capacity) and time window constraint (goods must be delivered within a certain time window) are often used 

by different researchers. Leung et al. [2] proposed a meta-heuristic algorithm for heterogeneous fleet VRPs with 

two-dimensional loading constraints, Tarantilis et al. [3] presented a hybrid metaheuristic algorithm for the integrated 

vehicle routing and three-dimensional container-loading problem, Bortfeldt and Homberger [4] developed a “packing first, 

routing second” heuristic for the vehicle routing and loading problem and Junqueira et al. [5] proposed an optimization 

model for the VRP with practical three-dimensional loading constraints. Tavakkoli-Moghaddam et al. [6] created a new 

mathematical model for a competitive VRP with time windows and solved by simulated annealing, Hifi and Wu [7] 

proposed a hybrid metaheuristic for the VRP with time windows, Gong et al. [8] developed a discrete particle swarm 

optimization approach to solve the VRP with time windows, and Cherkesly et al. [9] proposed a population-based 

metaheuristic for the pickup and delivery problem with time windows and last-in, first-out (LIFO) loading. 

The two aforementioned constraints, however, are normally considered separately in the existing research. In reality, 

both constraints co-exist in transportation problems. Based on a managerial perspective of most logistic companies, 

dealing with daily dispatching problems effectively is always concerned. The simple VRP considered in many existing 

research neglects various constraints in certain practical situations and some variants of the simple VRP tackle constraints 

independently, which may not be realistic. On the one hand, the VRP with time windows constructs routes without taking 

into account properties of items to be shipped. Though there are approaches that consider the capacity of vehicles, they still 

ignore the actual physical dimensions of items. On the other hand, the VRPs with pallet constraint constructs routes with 

feasible loading condition, but they do not take into account the time factor, which may cause an inability of achieving 

items within the specific time period. Therefore, it is necessary to further investigate realistic situations for the VRP with 



both the time window and pallet constraints (the three-dimensional loading problem in particular) taken into account. 

Regarding these two constraints, recently, Wei et al. [10] proposed an adaptive variable neighbourhood search for a 

heterogeneous fleet VRP with three-dimensional loading constraints, and Silva et al. [11] reviewed solution methods and 

computational experiments for the pallet loading problem. 

To the best of our knowledge, the VRP with both time window and three-dimensional loading constraints has only been 

addressed in the work of Zachariadis et al. [12]. The problem in [12] is not a simple VRP with specific constraints; rather, 

it includes a mix of different request types. This problem, however, does not meet the dispatching requirements from some 

logistics providers since it considers the pick-up and delivery. Pickup and delivery may be not realistic in some logistics 

industry, like electronic commerce, which focuses significantly more on the dispatching duty.  

The problem introduced in this paper is also a VRP with both time window and three-dimensional loading constraints. 

However, in contrast to [12], the problem addressed here focuses on a realistic situation that involves both the actual needs 

of businesses (detailed below) and the unique type of depots and customers. Regarding the time window constraints of this 

problem, both the depot and customers are specified with a time window having an exact start time and end time. This 

means that vehicles must depart and return within the depot’s work time window. A vehicle must also visit a customer 

between the specified start time and end time. If a vehicle arrives before the start time of a customer, the unloading process 

will must be postponed until the customer is available. Amongst the three-dimensional loading constraints, in addition to 

the basic space constraint, we also consider fragility, supporting surface and order of unloading. All these constraints are 

beneficial for businesses like handling electrical appliances and distributing fresh agricultural products, where goods need 

to be packed and customers request items within specific time window. For the VRP with loading constrains, a container 

loading problem can be adopted to check the feasibility of loading. In the VRP with time window and pallet loading 

constraints (VRPTWP), the loading problem is the three-dimensional bin loading problem in which a fixed number of 

rectangular items are loaded into larger rectangular boxes [36]. 



Earlier works on the VRP were mainly concentrated on the exact approaches. Balinski and Quandt [13] reported an 

integer programming approach that can be viewed as a generalisation of the covering problem to solve the VRP. Eilon et al. 

[14] used dynamic planning to solve the VRP with a fixed number of vehicles. Christofides et al. [15] solved the primary 

VRP with K-means. Fisher and Jaikumar [16] and Laporte et al. [17] also researched exact approaches for the VRP. 

The rapid development of the logistics industry and the dynamic nature of today’s business environment have 

significant effects on the scale and complexity of the VRP. Obviously, traditional exact approaches may not be able to 

match the scale of real-world situations. This has led to the development of heuristic/meta-heuristic algorithms for the VRP. 

Tabu search is one of the most important methods in early research on meta-heuristic. One of the earliest reports is by 

Gendreau et al. [18] in which a Tabu search was used to solve the VRP. Later, many other researchers also used Tabu 

search to solve the VRP. Renaud et al. [19] solved a multi-depot VRP by Tabu search, Taillard et al. [20] presented a Tabu 

search heuristic for the VRP with soft time windows, Cordeau et al. [21] proposed a unified Tabu search heuristic for VRPs 

with time windows, Toth and Vogo [22] described a new variant granular Tabu search, Montané and Galvao [23] proposed 

a Tabu search algorithm for the VRP with simultaneous pick-up and delivery service, Zachariadis et al. [24] presented a 

guided Tabu search for the VRP with two-dimensional loading constraints and Leung et al. [25] applied an extended 

guided Tabu search and a new packing algorithm for the two-dimensional loading VRP.  

Different to Tabu search, the artificial bee colony has only come to the view of researchers in the last ten years. It was 

introduced by Karaboga [26]. Szeto et al. [27] firstly applied artificial bee colony to solving the Capacitated VRP. Later, 

Yao et al. [28] proposed an artificial bee colony algorithm with a scanning strategy for the periodic VRP. Meanwhile, some 

other meta-heuristics, like simulated annealing [29] and genetic algorithms [30], are also widely used to solve the VRPs. 

Breedam [31] solved the VRP by using a simulated annealing in 1995 and Baker and Ayechew [32] developed a genetic 

algorithm for the VRP in 2003. Beyond that, many researches presented some hybrid approaches. Osman [33] proposed a 

metastrategy of simulated annealing and Tabu search algorithms for the VRP, Vidal et al. [34] proposed a hybrid genetic 



algorithm for multi-depot and periodic VRPs, and Bortfeldt et al. [35] developed a hybrid algorithm for the VRP with 

clustered backhauls and three-dimensional loading constraints. 

The main contribution of our work is two-fold. First, we consider a new and practical variant of the VRP with loading 

constraints and time windows. Second, we propose a hybrid algorithm with Tabu search and artificial bee colony 

(Tabu-ABC), and compare it with other heuristics on a set of Solomon’s 56 VRPs with time windows (VRPTW). In 

addition, the set of benchmark data generated for VRPTWP can be adopted by other interested parties for further research 

in this area. 

The rest of this paper is organised as follows: In Section 2, we introduce the VRPTWP in detail. In Section 3, we 

describe the new hybrid algorithm Tabu-ABC in detail. In Section 4, we present the computational results of the algorithm, 

and finally, we conclude our work in Section 5. 

2. The Problem 

Let G (V, A) be an undirected graph where V = {0, 1, …, n} is the set of vertices and A is the set of edges. Let Cij be the 

transportation cost between vertices i and j. The vertex 0 in V is called the depot. The main objective of solving the VRP is 

to search for a solution offering the minimum consumption of distance for traversing every vertex starting from the depot 
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   Time window and work time ( [tsi, tei], ti ) of each vertex: 

   depot:[0,70],0   

   1:[15,23],2 2:[25,30],1 3:[10,14],1 

   4:[35,55],3 5:[2,8],2  6:[10,40],1 
Fig. 1. An example for a route 



and come back to the depot. 

Recall that the problem to be addressed in this paper is a practical variant of the VRP, and it consists of time windows 

and loading constraints. We assume that there is a customer at each vertex, and each customer needs some items from the 

depot. The items are specified with pre-defined total weights, and they are a three-dimensional cuboid of length li, width wi 

and height hi. At the depot vertex, there are some vehicles with a fixed loading space (a container) of dimension L×W×H, 

where L, W and H are the length, width and height of the loading space, respectively. In addition, each vehicle is specified 

with a weight capacity D. To make this VRP realistic, time windows are also considered in this paper. Each vertex (the 

depot and customers) has a particular work time window [tsi, tei][tsi, tei] and a work time ti. All work at a vertex must be 

started within that vertex’s work time window. An example of time windows in a route is given in Fig. 1, and the loading 

constraint is discussed below. 

In the VRPTWP, the following demands must be met: 

(i) Each customer (vertex) is visited only once, i.e., one customer belongs to only one route. 

(ii) All routes start from the depot and end at the depot. 

(iii) All routes (vehicles) must depart and return within the time window of the depot. 

(iv) All customers (vertices) are available during their work time window. 

(v) All items needed by the customers in one route are loaded on the vehicle serving that route. 

Before a vehicle can depart from the depot, it is necessary to ensure that all needed items should be loaded on the 

vehicle. This can be considered as a process of verifying the feasibility of the three-dimensional loading problem while 

taking into account the following conditions: 

(i) All items must be completely loaded and fitted into the container of a vehicle, i.e., the edges of items and the 

container must not intersect each other. 

(ii) Items are not allowed to overlap. 



(iii) The bottom of each item must be sufficiently supported by the top of other items or by the bottom of the 

container. 

(iv) The surface of each item must be in parallel with the surface of container. 

In addition to the above basic conditions, we add the following conditions to better reflect real-world situations: 

(v) Orientation: Items have fixed vertical orientation, which means they have fixed bottom surfaces. 

(vi) Capacity: The sum of the items’ weight is less than or equal to the vehicle’s loading capacity. 

(vii) Fragility: Nonfragile items cannot be loaded on the top of fragile items. 

(viii) LIFO: If customer i is visited earlier than customer j, then the items of customer j should be packed earlier than 

those of customer i. 

In mathematical formulations, our objective is to find the minimum travel distance, which can be expressed as follows: 

 min ∑ (∑ 𝐶𝑗(𝑗+1)
𝑛𝑖−1
𝑗=1

𝑟
𝑖=1 )    (1) 

where r is the number of routes, which is equal to the number of vehicles, ni is the number of customers in route i and 

𝐶𝑗(𝑗+1) denotes the cost of traveling from customer j to customer j+1 (in this paper the traveling cost is equal to the 

distance).  

The time windows constraints can be described as follows 

 𝑡𝑎𝑖 < 𝑡𝑒𝑖  (2) 

 where 𝑡𝑎𝑖 = 𝑡𝑙(𝑖−1) + 𝑡𝐶𝑖(𝑖−1), (3) 

 𝑡𝑙𝑖 = {
𝑡𝑎𝑖 + 𝑡𝑖 , 𝑖𝑓 𝑡𝑎𝑖 > 𝑡𝑠𝑖

𝑡𝑠𝑖 + 𝑡𝑖 , otherwise
 (4) 

where tsi is the start time of customer (vertex) i in the route, tei is the end time of customer i in the route, tai is the time 

the vehicle arrives in customer i, tli is the time the vehicle leaves from customer i, ti is the complete work time for customer 

i in the route, and 𝑡𝐶𝑖(𝑖−1) is the time cost traveling from customer i to customer i-1. 

Because the loading constraint is met by a construction heuristic algorithm, there is no need to provide the mathematical 



formulation for this constraint. Note that the VRPTWP can be considered as a combination of two NP-hard sub-problems. 

Thus, the VRPTWP as a whole is an NP-hard problem, and it is addressed in this work using a heuristic algorithm. 

3. The Proposed Approach 

According to the description in Section 2, the VRPTWP can be treated as a combination of a VRP with 

three-dimensional loading constraints and time window constraints. We propose a two-stage approach that considers 

multiple strategies to solve the three-dimensional loading problem and a hybrid algorithm with Tabu Search and artificial 

bee colony to solve the VRPTW. 

3.1. Three-dimensional Loading Problem 

One of the key aspects of the proposed approach is the method to judge whether boxes (items) needed by customers in a 

route may be packed on the vehicle. Such a feasibility test has a significant effect as it is repeatedly invoked by the master 

algorithm described in Section 3.2.  

3.1.1. Loading Positions 

We place the container (of a vehicle) in a three-dimensional system of coordinates (Fig. 2.), and the origin of 

coordinates is in the left bottom of the container. The values of L, W and H represent the length, width and height of the 

container. Based on loading good practices, the boxes to be loaded should be close to the container or boxes already loaded. 

Since boxes can be rotated in the horizontal direction, when a box i of length li, width wi and height hi is loaded in the 

container, its values along the x, y and z axes < li’, wi’, hi’ > may be considered as < li, wi, hi > or < wi, li, hi >.  

We denote B = {b1, b2, …, bn} as a set of boxes. Firstly, there is an available loading position (0, 0, 0) and b1 is loaded on 

(0, 0, 0). After that b2 gets three available loading positions, they are (l1’, 0, 0), (0, w1’, 0) and (0, 0, h1’). Supposed b2 is 

loaded on (l1’, 0, 0), then (l1’, 0, 0) is deleted and another three available loading positions (l1’ +l2’, 0, 0), (l1’, w2’, 0) and 



(l1’, 0, h2’) are generated, which means b3 has five available loading positions. Considering the ith box, if it is loaded on (x, 

y, z), (x, y, z) will be deleted from available loading positions list, (x+li’, y, z), (x, y+ wi’, z) and (x, y, z+ hi’) will be added 

to the available loading positions list (Fig. 1.). When a box is loaded, one available loading position is deleted and three 

new available loading positions are added, so there will be 2(i-1) +1 available loading positions considering bi. If bi cannot 

be loaded on at least one of the available loading positions, then it is assumed that boxes {b1, b2,…, bn} cannot be packed in 

the container. 

3.1.2. Reference Line 

To control the space used and to pack efficiently, two reference lines are considered in this work. They are reference line 

Lz on the z axis and reference line Lx on the x axis. When we check whether bi can be loaded on (x, y, z), it must not only 

meet demands in Section 2, but also must satisfy z+hi < Lz and x+li < Lx. Once an available loading position is feasible for 

bi, bi will be loaded on it and the available loading positions list will be updated. If none of available positions is feasible, 

then, two situations are considered. (1) If Lx < L, Lx will increase to L; (2) if Lz < H, Lz will increase to H. If there still is 

not a feasible position for bi after (1) and (2), then boxes cannot be packed into the container. 

3.1.3. Translational operator. 

Once an available loading position is chosen and the box is loaded, according to loading good practices, we will try to 

move box towards a lower x, then move it towards a lower y, finally move it towards a lower z until the container and other 
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Fig. 2. Updating process of loading positions. 



boxes blocks. 

3.1.4. Loading algorithm. 

 In this paper, the loading algorithm (Algorithm 1) is from [37]. I is a list of available loading positions from small to 

large sorted by x, breaking ties by y, and breaking ties by z, and I will be kept in order as it is being updated. A flag 

variable is used to express whether a box can be loaded into the container or not. The inputs of the loading algorithm are 

set B of ordered boxes and the container of the vehicle. The algorithm will return whether all boxes can be loaded into the 

container. 

Initially, the original available loading position is (0, 0, 0), and Lz and Lx are equal to 0. Boxes are to be loaded in the 

container in order. For each box, the algorithm first tries to load the box in the container in a position that does not exceed 

the reference lines. If this fails, the algorithm changes the value of Lx. If Lx is equal to 0 or L, it means that Lz should be 

increased. When Lz is equal to H and the box still cannot be loaded, Lx should be increased. As Lx is increased, all 

positions whose x = Lx and y = 0 have to be tested for loading feasibility. Once Lx is equal to L and the box cannot be 

loaded, the algorithm returns false. When a box is loaded successfully, the selected loading position is deleted from the list 

I. After the box is moved with translational operators, three new available loading positions are generated. The algorithm 

will return true if all boxes are loaded successfully, otherwise it will return false. If it returns false, we will consider some 

boxes cannot be loaded successfully. 



3.2. Overall Structure of the VRPTWP Solution 

Recall that the VRPTWP consists of two problems, namely, the VRP with three-dimensional loading constraints 

(3L-CVRP) and the VRPTW. As the three-dimensional loading problem has been addressed in Section 3.1, we are now 

ready to solve the VRPTWP. In our approach, we use a local search as the fundamental way to improve the solution. We 

define six neighbourhood structures, one of them is randomly selected and try to find a better solution with less cost at 

each iteration. However, this strategy may lead the algorithm to be stuck in local optima. To avoid this risk, we adopt the 

ideas of Tabu search and artificial bee colony.  

3.2.1. Construction of the Initial VRPTWP Solution 

Our algorithm begins by generating an initial feasible solution (explained below). Once this initialisation step is done, 

Algorithm 1.Verifying the Feasibility of Three-Dimensional Loading 

PalletisationFeasibility(B, Vehicle) 

1. I = {(0, 0, 0)}, Lz = Lx = 0; 

2. for i = 0 to n 

3.   flag = false; 

4.   for (x, y, z) ∈ I 

5.    if 𝑥 + 𝑙𝑖
′ ≤ 𝐿𝑥, 𝑧 + ℎ𝑖

′ ≤ 𝐿𝑧 and bi can be loaded on (x, y, z) 

6.     flag = true, go to line 19; 

7.   if Lx = 0 or Lx = L 

8.    if bi can be loaded on (0, 0, Lz) 

9.     x = 0, y =0, flag = true, z = Lz, Lz = Lz + hi’ , Lx = li’; 

10.    else 

11.     Lz = H, Lx = L, i = i – 1; 

12.   else  

13.    for (x, y, z) ∈ I 

14.      if  x = Lx and y = 0 

15.      if 𝑧 + ℎ𝑖
′ ≤ 𝐿𝑧 and bi can be loaded on (x, y, z) 

16.       Lx = Lx + li’ , flag = true, go to line 18; 

17.      else 

18.       Lx = L, i = i – 1; 

19.   if flag = true 

20.    load bi on (x, y, z), I = I/ (x, y, z), move bi with the translational operator and mark bi’s new position (x’, y’, z’), I=I∪

(x’+ li’, y’, z’), (x’, y’+ wi’, z’), (x’, y’, z’+ hi’); 

21.   else 

22.    return false; 

23. return true; 

 



further improvement can be performed to achieve better results. Note that all constraints described in Section 2 must be 

satisfied by this initial solution. 

Customers are randomly inserted into the routes one by one. During the insertion process, the customer is to be inserted in 

the position which leads to the smallest increase of cost, and all of the constraints mentioned in Section 2 must be satisfied. 

When a new customer is being inserted and all existing routes cannot be assigned for that customer, a new route will be set 

up. If the total number of routes exceeds the number of available vehicles, the algorithm restarts; otherwise, the algorithm 

continues with the traversal of all customers until they are processed. The process of construction of initialization is 

presented in Algorithm 2. 

3.2.2. Neighbourhood Solutions 

When we try to find a better solution, we can reassign positions of vertices in different routes to construct a new 

solution. At each step, we choose a neighbourhood structure randomly. Six neighbourhood structures (Fig. 3.) are applied 

in this paper and are defined as follows: 

(i) Swapping: In this strategy, the locations of two customers are exchanged. Two customers can be in the same 

route, and also they can be in different routes. 

Algorithm 2. Initialisation of VRPTWP 

Initialisation (C) 

1. Route_Num =  0, 𝑐 =  𝐶, 𝑆 = 𝜙; 

2. while 𝑐 ≠ 𝜙 

3.  Select customer ci from C randomly. 

4.   if Route_Num = 0  

5.    Route_num = Route_num + 1; 

6.    Generate a new route s, S = S + s; 

7.    Insert ci to s, c = c/ ci; 

8.    else if ci can be inserted into a route in S 

9.    Select s that causes least increase of cost after insertion; 

10.     Insert ci into s in the position that causes least increase of cost after insertion; 

11.    c = c/ ci; 

12.   else 

13.    Route_num = Route_num + 1; 

14.    if Route_num > number of vehicles 

15.     Go to line 1; 

16.    else 

17.     Generate a new route s, S = S + s; 

18.     Insert ci to s, c = c/ ci; 

𝐶 is the set of customer, S is the set of routes and Route_Num is the number of routes. 



(ii) Relocation: With this strategy, a customer is moved to another position. The new position can be in its original 

route or another route. 

(iii) Routes swapping: Each route is divided into two sub-routes by a vertex (customer). Two sub-routes (the part that 

is visited after the specific vertex) of the two routes are exchanged entirely. 

(iv)  Route reversal: A sub-route reverses the order of customers. 

3.2.3. Tabu-ABC 

Tabu-ABC is a combination of Tabu search and artificial bee colony algorithm. It uses Tabu search to rapidly generate 

fast and high quality solutions that are used by artificial bee colony. Meanwhile, artificial bee colony takes advantage of 

the Tabu to increase food source variety. 

Tabu search is designed to search for the best solution in its neighbourhood, even if there is no better solution. This 

could pose a risk of getting stuck in local optima (Fig. 4). In the example in Fig. 4, A, B, C and D are four different 

1 2 3 4 5 6 7 8 9 10

1 2 7 4 5 6 3 8 9 10

1 2 3 4 5 f g h i j

a b c d e 6 7 8 9 10

1 2 c 4 5 6 7 8 9 10

a b 3 d e f g h i j

1 2 3 4 5 6 7 8 9 10

1 2 7 6 5 4 3 8 9 10

1 2 3 4 5 6 7 8 9 10

a b c d e f g h i j

1 2 c 4 5 6 7 8 9 10

a b 3 d e f g h i j

1 2 3 4 5 6 7 8 9 10

1 2 4 5 6 7 3 8 9 10

1 2 3 4 5 6 7 8 9 10

a b c d e f g h i j

1 2 4 5 6 7 8 9 10

a b c 3 d e f g h i j

Swapping in a route Swapping in two routes

Relocation in a route Relocation in a route

Routes swappingRoute reverse  
Fig. 3. Neighbourhood structures. 



solutions. In A’s neighbourhood, B is the best solution, C is the best in B’s neighbourhood, and A is the best in C’s 

neighbourhood. Using the proposed algorithm, the best solution found can only be B, C and A. This is the situation in 

which the local search can become stuck in a loop, and the solution cannot be improved any further. Although D is the true 

best solution, it is missed by the algorithm. This case highlights the problem of the search being trapped in the local 

optima. 

To avoid this trap, a Tabu list is introduced to prohibit previously visited customers from being revisited by the 

algorithm. Once we have found a better solution with the neighbourhood structure, the current exchanged customers are 

inserted into a Tabu list. In the next iterations of searching, these customers are not selected unless they can obtain a better 

solution. The maximum length of the Tabu list is called the Tabu tenure. 

The artificial bee colony algorithm is a class of swarm intelligence techniques. Honey bees are classified into three 

types: employed bees, onlookers and scouts. The job of employed bees is to exploit the food sources. They gather and 

share information with onlookers. According to the information shared by employed bees, onlookers are going to choose a 

food source with higher equality. Hence, good sources are chosen by onlookers. Scout bees’s job is to randomly 

explorenew food sources. When onlookers and scout bees find a new food source, they become employed bees.  

Since Tabu search starts with a random solution, the performance of Tabu search is easily influenced by the initial 

A

B

D（global optima）

C

  
Fig. 4. Trap of Local optima 



solution. Therefore, we combine it with the artificial bee colony algorithm to help alleviate this shortcoming. Artificial bee 

colony can generate a set of initial solutions for Tabu search, which eliminates the influence from single initial solutions. 

Also, the Tabu principle helps artificial bee colony generate better food sources: it encourages the colony to explore new 

food sources rather than coming back to previously explored sources. So a hybrid algorithm (Tabu-ABC) is developed in 

this paper. 

Tabu-ABC (Algorithm 3) starts by generating random solutions as the food sources and associating each source with 

some employed bees. Before associating, Tabu search is applied to improve initial solutions, which are food sources. Then 

each employed bee determines a new food sources in the neighbourhood of its associated food source. If it finds a new 

better food sources, it will leave the old one and move to the new one. After all employed bees finish their works in a fixed 

iteration, they share information with onlookers. According to the traditional roulette wheel selection, onlookers select 

food sources. After onlookers have selected their food sources, they explore and evaluate new food sources around its 

chosen food source. For each old food source, if a new better food source is found, the old one is replaced by the new one. 

Also, a food source is abandoned if it has not been improved in a predetermined iteration times. In this case, the employed 

bee becomes a scout, and associates itself with a new food source. Here we introduce Tabu again. The similarity of the new 

food source and old food sources cannot exceed a predetermined limit. New food source are randomly generate until one 

satisfies similarity demand. For the VRPTWP in this paper, the similarity of two routes, say route a and route b, is 

determined by the length of their longest common subsequence divided by the length of route a. The similarity of two 

solutions, say solution A and solution B, is determined by the average of highest similarities of all A’s routes to B’s routes. 

The algorithm is terminated as it satisfies a termination condition, such as a predetermined iteration number.  



4. Computational Results 

To obtain effective solutions for the VRPTWP and to provide a basis of comparison for further study, we construct a set 

of benchmarks for the VRPTWP and report their computational results. To generate the benchmarks, we combine two 

famous instances. One is the set of instances proposed in [38] , the 3L-CVRP, and the other is the well known set of the 

VRPTW introduced by Solomon [39]. The positions information in the 3L-CVRP instances are replaced by 27 instances 

(C1, C2, and R101 - R110) of Solomon’s one by one. Meanwhile, the time window information is imported, too. To keep 

the feasibility of instances, double vehicles are supplied. We generated a set of benchmarks1 and tested the proposed 

approach. The computational results will serve as baseline approaches for any future developments in this field. 

In this section, the computational results on the VRPTWP and the VRPTW are presented. The proposed algorithm is 

coded in C++ and run on a machine with Intel Core i5 CPU, 2.6GHz/8G of RAM. 

4.1. Sensitivity analysis of parameters 

Considering the influence of parameters, after numerous experiments, we choose some parameters and do some 

experiments with different parameters setting. In order to know the relationship between the consumption of time and 

quality of solutions, we applied Tabu search on four instances with 800 iterations in 10 runs. Fig.5 presents the process of 

                                                             
1 https://github.com/maomiT/VRPTWP 

Algorithm 3. The framework of Tabu-ABC 

Tabu-ABC 

1. Find original food sources 𝑥𝑖 , 𝑖 = 1,2, … , 𝑛, with initialisation; 

2. Evaluate the fitness of each food source 𝑓(𝑥𝑖), 𝑖 = 1,2, … , 𝑛; 

3. Improve the fitness of food sources with Tabu search (Searching for new food sources in neighbourhood, if a new food source is better than old one 
and not in the Tabu tenure, replace the old one with it); 

4. No update times: 𝑙1 = 𝑙2 = ⋯ = 𝑙𝑛 = 0; 

5. While not satisfy termination condition do 

6.   Employed bees stage: search 𝑥𝑖′ in neighbourhood of 𝑥𝑖, if 𝑓(𝑥𝑖′) is greater than 𝑓(𝑥𝑖), replace 𝑥𝑖 with 𝑥𝑖′, 𝑙𝑖 = 0; else 𝑙𝑖 = 𝑙𝑖 + 1; 

7.   Onlookers stage: Select a 𝑥𝑖′ according to the traditional roulette wheel selection; find the best 𝑥𝑖′ in neighbourhood of 𝑥𝑖, if 𝑓(𝑥𝑖′) is 

greater than 𝑓(𝑥𝑖), replace 𝑥𝑖 with 𝑥𝑖′, 𝑙𝑖 = 0; else 𝑙𝑖 = 𝑙𝑖 + 1; 

8.   Scout bees stage: for each food source 𝑥𝑖, if 𝑙𝑖 = 𝑙𝑖𝑚𝑖𝑡, find a new food sources that similarity with all existed food sources is lower than 

the predetermined limit, and replace 𝑥𝑖 with it; 

9. End while. 

 



Tabu search on instances r104, r208, rc104 and rc208, where the horizontal axis shows the number of iterations, the 

vertical axis shows the total travel distance, which is also the cost of a solution. The figure shows the improvements are not 

significant after 300 iterations (finally reaching the lowest point at 1037.95, 758.38, 1224.74 and 946.74 respectively). In 

Fig. 6, the average results from different Tabu tenures are shown. The travel distance with Tabu tenure 30 is shorter 

generally. In order to test more parameters on Tabu-ABC, Fig. 7 presents the influence of update restriction (the maximum 

allowable number of iterations without an update) and Fig. 8 presents the influence of similarity restriction (the least 

similarity that allows scout bees to accept a new source). According to Fig.7 and Figl8, update restriction and similarity 

restriction shows insignificant influence on final results. Although different values of update restriction may cause a large 

influence on specific instances (such as r104 and rc208), they still show similar results on average. Changing the similarity 

restriction basically do not have any clear impact on the results, althouth when similarity restriction is 0.7, the average 

result of four instances is slightly better. According to the figures, we can conclude that Tabu-ABC is robust against 

changes in the parameters.  

Based on the sensitivity analysis, the chosen value for each parameter is as follow: For the experiments on the 

VRPTWP instances, the length of Tabu tenure is 30 and the Tabu search is conducted within 300 iterations, the group size 

of food sources is 10, the limit of no update times is 10n (n is the number of customers), the limit of sources’ similarity is 

0.7, and the ABC is conducted 50n iterations. For the experiments on the VRPTW, Tabu search is conducted within 500 

iterations, the population size of food sources is 20, ABC is conducted 200n iterations, and others are the same with the 

VRPTWP instances. 



 

 
Fig. 5. Process of Tabu search on instances. 
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Fig. 6. Results on different Tabu tenure. 
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Fig. 7. Results on different update restriction. 
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4.2. Computational Results on the VRPTWP instances 

Results on the VRPTWP are presented in table II, in which “NV” represents the number of vehicle, “TD” means the 

total travel distance (solution cost) and “CPU” denotes the computational times (in second). For each instance, the results 

were averaged over 10 runs. The proposed Tabu-ABC algorithm is computationally expensive, because it deals with the 

three-dimensional loading problem that is also computationally expensive (some computational results of 

three-dimensional loading problem are presented in [37]) According to the table II, a greater fleet size does not necessarily 

mean a greater cost. As can be seen in the VRPTWP15 and VRPTWP22, the lowest cost actually has a greater fleet size 

than the average fleet size over all runs. Same situations are shown in table V and table VI.   

The parameters setting are shown in table I. 

 
Fig. 8. Results on different similarity restriction. 
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TABLE I 

PARAMETERS SETTING 

 

Tabu tenure 30 

Tabu search iterations  300 in the VRPTWP and 500 in the VRPTW 

group size of food sources 10 in the VRPTWP and 20 in the VRPTW 

limit of no update times 10n, n = the number of customers 

the limit of sources’ similarity 0.7 

ABC iteraiion times 50n in the VRPTWP and 200n in the VRPTW 

n = the number of customers 

. 

 



TABLE II 

RESULTS OF THE VRPTWP 

Data Set 
Best Mean 

Gap Sd CPU 
NV TD NV TD 

VRPTWP01 5 322.33  5  322.33  0  0  325.10  

VRPTWP02 5 295.29  5  299.89  0.02  3.61  232.28  

VRPTWP03 5 303.60  5  303.60  0  0  430.27  

VRPTWP04 6 380.19  6  380.80  0  0.57  371.88  

VRPTWP05 7 416.35  7  417.66  0  2.95  545.72  

VRPTWP06 7 408.99  7  409.09  0  0.07  306.38  

VRPTWP07 7 407.91  7  409.89  0  1.81  604.70  

VRPTWP08 7 425.90  8  425.90  0  0  637.32  

VRPTWP09 8 530.50  10  532.63  0  1.80  549.60  

VRPTWP10 10 668.74  11  669.11  0  0.83  956.40  

VRPTWP11 11 619.34  9  626.27  0.01  4.21  1032.98  

VRPTWP12 9 688.60  10.40  690.10  0  1.56  671.37  

VRPTWP13 11 626.72  8.40  630.43  0.01  4.40  1347.24  

VRPTWP14 8 765.37  12  766.78  0  1.93  1221.68  

VRPTWP15 12 713.23  10.60  715.72  0  3.41  1091.86  

VRPTWP16 11 746.67  11.80  748.15  0  0.83  429.32  

VRPTWP17 15 994.28  15.20  997.27  0  4.55  484.99  

VRPTWP18 18 1206.51  18  1207.60  0  1.49  636.18  

VRPTWP19 16 1211.99  15.60  1217.63  0  4.87  783.59  

VRPTWP20 24 1644.56  23.20  1652.96  0.01  6.52  1512.11  

VRPTWP21 23 1603.88  22  1612.42  0.01  9.29  2174.74  

VRPTWP22 26 1811.19  26.20  1817.75  0  5.83  2170.98  

VRPTWP23 24 1654.13  24  1675.25  0.01  15.22  1950.79  

VRPTWP24 21 1644.55  21.40  1649.61  0  7.22  1745.54  

VRPTWP25 27 1836.02  26.80  1856.52  0.01  16.43  2877.48  

VRPTWP26 32 2144.47  32  2160.37  0.01  10.42  3250.49  

VRPTWP27 28 2002.63  29.60  2030.71  0.01  21.35  3037.26  

Gap = (Mean TD − Best TD)/Best TD, and Sd is the standard deviation of 15 times TD. 

 

4.3. Computational Results on the VRPTW instances 

The contribution of our work in this paper is not only proposing the new VRPTWP, but also proposing a new strategy 

which is Tabu-ABC. To quantify the performance of the algorithm in this paper, in this section, the algorithm runs in the 

set of Solomon’s 100 customers VRPTWP, and results are compared with other heuristic approaches. Solomon’s VRPTW 

are divided into six sets C1, C2, R1, R2, RC1 and RC2. The customers in sets C1 and C2 are clustered in groups, in sets 

R1 and R2 they are uniformly distributed, and in sets RC1 and RC2, they are semi-clustered. The proposed algorithm has 

given 10 independent runs on each instance. 



In order to prove the effectiveness of Tabu-ABC, results are compared with the results from nine other heuristic 

approaches. The comparison is presented in Table III, which presents the average best total distance and number of 

vehicles for each set. The proposed algorithm achieves the best result in C1, R2 and RC2, and the average result also better 

than some heuristics. Table IV compares the average mean total distance and number of vehicles for each set. The results 

show that Tabu-ABC achieves the best solution in four sets, which are R1, R2, RC1 and RC2, and it also achieves the best 

average value over all sets. 

In table V we compare Tabu-ABC with heuristics from some recent published papers on the VRPTW. According to the 

table, in most instances, the proposed algorithm achieves the best solutions. We also compare our work with the 

best-known solutions from the literature in Table VI. Most of the best-known results are summarized in [44], and some 

values are updated according to some papers which we have known. According to the table, out of 56 instances our 

algorithm achieves better solutions in 15 instances. equals the best-known solutions in 4 other instances, and achieves near 

best solutions in all other instances. Also, Tabu-ABC achieves better results on the four specific instances on Fig.5, which 

demonstrates that Tabu-ABC improves the pure Tabu effectively. Table VI illustrates the fact that solving this type of 

problem is computational expensive (see the CPU time column), and Table VII demonstrates that Tabu-ABC can 

significantly decrease computational time by using the right set of parameters (the left side of Table VII) while still achieve 

similar high quality solutions. 

 

TABLE III 

COMPARISON AMONG DIFFERENT HEURISTICS ON THE VRPTW (AVERAGE OF BEST SOLUTIONS)  

Date Set 
 

Tan et al. (2006) [43] Yu et al. (2011) [44] Cordeau and Maischberger (2011) [49] Gong et al. (2012) [45] 

C1 NV 10 10 10 10 

 
TD 828.71 829.01 828.38 835.91 

C2 NV 3 3.3 3 3 

 
TD 590.07 590.78 589.86 593.41 

R1 NV 12.92 13.1 12 12.58 

 
TD 1187.35 1196.96 1209.19 1232.28 



R2 NV 3.55 4.6 2.73 3 

 
TD 951.74 951.36 951.17 1016.66 

RC1 NV 12.38 12.7 11.5 12.13 

 
TD 1355.37 1380.55 1385.9 1385.47 

RC2 NV 4.25 5.6 3.25 3.38 

 
TD 1068.26 1095.84 1120.53 1169.07 

Avg. NV 6.59 7.04 6.07 6.30 

 
TD 996.92 1007.42 1014.17 1038.80 

  
Barbucha. (2014) [46] Luo et al. (2015) [47] Yassen et al. (2015) [48] Tabu-ABC 

 

C1 NV 10 10 - 10 
 

 
TD 828.38 828.38 838.47 828.38  

 
C2 NV 3 3 - 3 

 

 
TD 589.86 589.86 605.41 590.39  

 
R1 NV 11.92 11.92 - 13.75 

 

 
TD 1232.13 1210.34 1207.76 1187.90  

 
R2 NV 3.09 2.73 - 4.64 

 

 
TD 922.48 951.03 977.19 891.24  

 
RC1 NV 12 11.5 - 13.13 

 

 
TD 1355.36 1384.16 1381.96 1361.08  

 
RC2 NV 3.38 3.25 - 5.5 

 

 
TD 1106 1119.24 1099.12 1017.47  

 
Avg. NV 7.23 7.07 - 8.34  

 

 
TD 1005.70 1013.84 1018.32 979.41  

 

TABLE IV 

COMPARISON AMONG DIFFERENT HEURISTICS ON THE VRPTW (AVERAGE OF MEAN SOLUTIONS) 

Date Set 
 

Chiang and Russell (1997) [41] Lau et al. (2003) [42] Tan et al. (2006) [43] Yu et al. (2011) [44] 

C1 NV 10 10 - 10 

 
TD 828.38 828.38 837.21 841.92 

C2 NV 3 3 - 3.3 

 
TD 591.42 589.86 632.42 612.75 

R1 NV 12.17 12 - 13.1 

 
TD 1204.19 1217.73 1240.31 1213.16 

R2 NV 2.73 2.73 - 4.6 

 
TD 986.32 967.75 1068.57 952.3 

RC1 NV 11.88 11.63 - 12.7 

 
TD 1397.44 1382.42 1381.23 1415.62 

RC2 NV 3.25 3.25 - 5.6 

 
TD 1229.54 1129.19 1154.88 1120.37 

Avg. NV 7.17 7.10 - 8.22 

 
TD 1039.55 1019.22 1052.44 1026.02 

  
Cordeau and Maischberger (2011) [49] Gong et al. (2012) [45] Luo et al. (2015) [47] Tabu-ABC 

C1 NV 10 10 10 10 

 
TD 828.94 856.44 828.38 828.73 

C2 NV 3 3.03 3 3 

 
TD 590.85 612.93 589.86 591.45 

R1 NV 12.02 13.01 11.92 13.82 

 
TD 1213.57 1263.25 1210.75 1195.49 

R2 NV 2.73 3.1 2.7 4.5 



 
TD 959.62 1073.72 951.51 902.88 

RC1 NV 11.55 12.66 11.5 13.56 

 
TD 1386.39 1400.97 1384.62 1373.25 

RC2 NV 3.25 3.59 3.25 5.47 

 
TD 1130.27 1228.95 1119.63 1028.92 

Avg. NV 7.09 7.57 7.06 8.39  

 
TD 1018.27 1072.71 1014.13 986.79  

TABLE V 

COMPARISON AMONG FOUR HEURISTICS 

Algorithm HSFLA (2015) [47] CPLA (2014) [46] PITSH (2012) [49] Tabu-ABC 

Data Set TD NV TD NV TD NV TD NV 

C101 828.94 10 828.94 10 828.94 10 828.94 10 

C102 828.94 10 828.94 10 828.94 10 828.94 10 

C103 828.06 10 828.06 10 828.07 10 828.07 10 

C104 824.78 10 824.78 10 824.78 10 824.78 10 

C105 828.94 10 828.94 10 828.94 10 828.94 10 

C106 828.94 10 828.94 10 828.94 10 828.94 10 

C107 828.94 10 828.94 10 828.94 10 828.94 10 

C108 828.94 10 828.94 10 828.94 10 828.94 10 

C109 828.94 10 828.94 10 828.94 10 828.94 10 

C201 591.56 3 591.56 3 591.56 3 591.56 3 

C202 591.56 3 591.56 3 591.56 3 591.56 3 

C203 591.17 3 591.17 3 591.17 3 591.17 3 

C204 590.6 3 590.6 3 590.6 3 594.89 3 

C205 588.88 3 588.88 3 588.88 3 588.88 3 

C206 588.49 3 588.49 3 588.49 3 588.49 3 

C207 588.29 3 588.29 3 588.29 3 588.29 3 

C208 588.32 3 588.32 3 588.32 3 588.32 3 

R101 1650.8 10 1656.21 19 1650.8 19 1643.18 20 

R102 1486.12 17 1501.97 17 1486.12 17 1460.26 18 

R103 1292.67 13 1295.6 13 1294.23 13 1217.39 15 

R104 1007.31 9 1017.38 9 981.2 10 987.61 11 

R105 1377.11 14 1381.89 14 1377.11 14 1363.91 15 

R106 1252.03 12 1258.76 12 1252.62 12 1247.90 13 

R107 1104.66 10 1117.85 10 1104.66 10 1087.50 12 

R108 960.88 9 976.06 9 963.99 9 961.85 11 

R109 1194.73 11 1229.71 11 1194.73 11 1152.99 13 

R110 1118.84 10 1196.49 10 1118.84 10 1091.50 12 

R111 1096.73 10 1123.64 10 1096.73 10 1067.46 12 

R112 982.14 9 1030.02 9 989.27 9 973.25 10 

R201 1252.37 4 1253.02 4 1252.37 4 1174.69 6 

R202 1191.7 3 1086.08 4 1191.7 3 1046.10 5 

R203 939.5 3 945.8 3 941.08 3 884.02 5 

R204 825.52 2 752.13 3 825.52 2 750.40 4 

R205 994.43 3 1017.93 3 994.43 3 960.75 5 

R206 906.14 3 920.37 3 906.14 3 900.97 4 

R207 890.61 2 815.26 3 890.61 2 809.72 4 

R208 726.82 2 729.42 2 726.82 2 723.14 5 

R209 909.16 3 916.33 3 909.16 3 863.12 5 

R210 939.37 3 943.1 3 939.37 3 927.54 5 

R211 885.71 2 767.82 3 885.71 2 763.22 4 

RC101 1696.95 14 1626.09 15 1696.95 14 1646.17 16 



RC102 1554.75 12 1486.17 13 1554.75 12 1481.61 14 

RC103 1261.67 11 1268.79 11 1261.67 11 1280.76 12 

RC104 1135.48 10 1136.27 10 1135.48 10 1162.03 11 

RC105 1629.44 13 1542.29 14 1633.72 13 1545.30 16 

RC106 1424.73 11 1394.1 12 1424.73 11 1401.17 14 

RC107 1230.48 11 1234.06 11 1232.2 11 1235.28 12 

RC108 1139.82 10 1155.1 10 1147.69 10 1136.35 11 

RC201 1406.94 4 1435.27 4 1406.94 4 1271.78 7 

RC202 1365.64 3 1162.8 4 1367.09 3 1116.21 6 

RC203 1049.62 3 1062.32 3 1050.64 3 941.81 5 

RC204 798.46 3 799.08 3 798.46 3 801.87 4 

RC205 1297.65 4 1303.68 4 1297.65 4 1165.82 7 

RC206 1146.32 3 1155.33 3 1153.61 3 1072.85 5 

RC207 1061.14 3 1095.37 3 1061.14 3 977.11 5 

RC208 828.14 3 834.16 3 828.71 3 792.33 5 

 

TABLE VI 

DETAIL RESULTS OF OUR ALGORITHM AND COMPARISON WITH BEST-KNOWN SOLUTIONS 

 
Best-known 

 
This work 

Data Set NV TD Authors Best TD NV Mean TD NV Gap Sd CPU 

C101 10 827.3 Desrochers,Desrosiers, and Solomon (1992) [50] 828.94 10 828.94 10 0 0 3592.54  

C102 10 827.3 Desrochers et al. (1992) [50] 828.94 10 828.94 10 0 0 668.07  

C103 10 826.3 Tavares, Pereira, Machado, and Costa (2003) [51] 828.07 10 828.07 10 0.00  0.00  252.88  

C104 10 822.9 Tavares et al. (2003) [51] 824.78 10 827.93 10 0.54  5.57  140.18  

C105 10 827.3 Tavares et al. (2003) [51] 828.94 10 828.94 10 0 0 1204.79  

C106 10 827.3 Desrochers et al. (1992) [50] 828.94 10 828.94 10 0 0 1184.74  

C107 10 827.3 Tavares et al. (2003) [51] 828.94 10 828.94 10 0 0 782.00  

C108 10 827.3 Tavares et al. (2003) [51] 828.94 10 828.94 10 0 0 498.37  

C109 10 827.3 Tavares et al. (2003) [51] 828.94 10 828.94 10 0 0 252.69  

C201 3 589.1 Cook and Rich (1999) [52] 591.56 3 591.56 3 0 0 4155.89  

C202 3 589.1 Cook and Rich (1999) [52] 591.56 3 591.56 3 0 0 630.48  

C203 3 591.17 Li and Lim (2003) [53] 591.17 3 591.31 3 0.35  3.66  278.99  

C204 3 590.6 Potvin and Bengio (1996) [40] 594.89 3 603.16 3 2.95  10.12  152.45  

C205 3 588.88 Potvin and Bengio (1996) [40]  588.88 3 588.88 3 0.00  0.00  1731.04  

C206 3 588.49 Lau te al. (2003) [42] 588.49 3 588.49 3 0.00  0.00  1181.93  

C207 3 588.29 Rochat and Tailard (1995) [54] 588.29 3 588.29 3 0 0 853.12  

C208 3 588.03 Tan et al. (2006) [43] 588.32 3 588.32 3 0 0 476.75  

R101 18 1607.7 Desrochers et al. (1992) [50] 1643.18 20 1645.82 20 0.39  5.48  1137.93  

R102 17 1434 Desrochers et al. (1992) [50] 1460.26 18 1463.91 18.08  0.43  4.00  434.26  

R103 13 1175.67 Lau, Lim, and Liu (2001) [55] 1217.39 15 1223.27 14.92  0.30  2.41  398.70  

R104 10 974.2 Tan et al. (2006) [43] 987.61 11 1002.54 11.33  0.92  6.04  227.74  

R105 15 1346.12 Kallehauge, Larsen, and Madsen (2006) [56] 1363.91 15 1372.01 15.75  0.68  5.45  641.26  

R106 13 1234.6 Cook and Rich (1999) [52] 1247.90 13 1256.45 13.42  0.93  4.76  457.90  

R107 11 1051.84 Kallehauge et al. (2006) [56] 1087.50 12 1097.41 12.00  1.03  4.46  336.94  

R108 10 954.03 Tan et al. (2006) [43] 961.85 11 965.82 10.83  1.25  5.91  220.71  

R109 12 1013.2 Chiang and Russell (1997) [41] 1152.99 13 1163.07 13.00  1.23  7.20  365.31  

R110 12 1068 Cook and Rich (1999) [52] 1091.50 12 1100.83 12.17  1.49  8.51  340.76  

R111 12 1048.7 Cook and Rich (1999) [52] 1067.46 12 1076.61 12 0.98  7.16  302.90  

R112 10 953.63 Rochat and Tailard (1995) [54] 973.25 10 978.16 10.67  0.71  6.47  240.36  

R201 8 1198.15 Tan et al. (2001) [57] 1174.69 6 1178.90 6.08  0.46  4.85  547.67  

R202 6 1077.66 Tan et al. (2001) [57] 1046.10 5 1053.44 5.08  1.41  7.88  331.63  

R203 5 933.286 Tan et al. (2001) [57] 884.02 5 896.05 4.92  1.43  7.77  273.62  

R204 3 752.13 Barbucha (2014) [46] 750.40 4 758.13 4 1.52  6.50  230.77  



R205 3 994.42 Rousseau, Gendreau, and Pesant (2002) [58] 960.75 5 975.83 4.92  1.36  7.61  290.46  

R206 3 833 Thangiah, Osman, and Sun (1994) [59] 900.97 4 908.18 4.25 1.61  6.76  226.36  

R207 3 814.78 Rochat and Tailard (1995) [54] 809.72 4 826.74 4 2.15  11.31  234.11  

R208 2 729.42 Barbucha (2014) [46] 723.14 5 732.31 3.42  1.37  6.99  198.33  

R209 3 855 Thangiah et al. (1994) [59] 863.12 5 882.22 4.92  1.35  6.71  226.84  

R210 3 943.10 Barbucha (2014) [46] 927.54 5 938.63 4.92  2.09  9.31  232.11  

R211 2 767.82 Barbucha (2014) [46] 763.22 4 781.23 4 2.18  7.61  189.63  

RC101 15 1619.8 
Kohl, Desrosiers, Madsen, Solomon, and Soumis (1999) 

[61] 

1646.17 16 1656.01 16.33  0.66  6.93  663.29  

RC102 13 1470.26 Tan et al. (2006) [43] 1481.61 14 1488.79 14.83  0.81  7.29  441.74  

RC103 12 1196.12 Tan et al. (2006) [43] 1280.76 12 1298.32 12.08  1.94  18.50  308.63  

RC104 10 1135.48 Cordeau, Laporte, and Mercier (2001) [62] 1162.03 11 1168.13 11.00  0.60  5.43  217.15  

RC105 14 1542.29 Barbucha (2014) [46] 1545.30 16 1554.79 16.17  1.57  8.50  545.30  

RC106 13 1371.69 Tan et al. (2006) [43] 1401.17 14 1413.38 14.00  0.82  7.41  301.56  

RC107 11 1222.16 Tan et al. (2006) [43] 1235.28 12 1256.98 12.50  1.96  11.91  277.52  

RC108 11 1133.82 Luo, Li, Chen and Liu (2015) [47] 1136.35 11 1149.65 11.17  1.67  9.76  235.20  

RC201 6 1134.91 Tan et al. (2006) [43] 1271.78 7 1284.59 6.92  0.78  5.71  476.51  

RC202 5 1130.53 Tan et al. (2006) [43] 1116.21 6 1122.97 5.75  0.71  5.25  350.15  

RC203 4 1026.61 Tan et al. (2006) [43] 941.81 5 951.30 5.08  0.79  6.33  226.52  

RC204 3 799.08 Barbucha (2014) [46] 801.87 4 809.09 4 2.22  8.13  162.89  

RC205 5 1295.46 Tan et al. (2006) [43] 1165.82 7 1172.80 7 2.23  16.34  335.38  

RC206 4 1112.2 Yu et al. (2011) [44] 1072.85 5 1082.93 5.50  1.15  8.40  272.82  

RC207 4 1040.67 Tan et al. (2006) [43] 977.11 5 998.46 5.42  2.34  9.82  211.82  

RC208 3 829.69 Rousseau et al. (2002) [58] 792.33 5 809.23 4.67  2.11  8.65  191.15  

Gap = (Mean TD − Best TD)/Best TD, and Sd is the standard deviation of 15 times TD. 

 

TABLE VII 

DETAIL COMPARISON BETWEEN TWO PARAMETERS SETTING 

Data 

Set 

Tabu tenure = 30, Tabu iteration times = 500,  

ABC iteration times = 200n, similarity restriction = 0.7 and update 

restriction  = 10n 
 

Tabu tenure = 30, Tabu iteration times = 500,  

ABC iteration times = 200n, similarity restriction = 0.6, and update 

restriction  = 50n 

Best TD NV Mean TD NV CPU 
 

Best TD NV Mean TD NV CPU 

C101 828.94 10 828.94 10 3592.54 
 

828.94 10 828.94 10 1070.42 

C102 828.94 10 828.94 10 668.07 
 

828.94 10 828.94 10 280.49 

C103 828.07 10 828.07 10 252.88 
 

828.07 10 828.07 10 116.66 

C104 824.78 10 827.93 10 140.18 
 

824.78 10 829.26 10 60.94 

C105 828.94 10 828.94 10 1204.79 
 

828.94 10 828.94 10 478.01 

C106 828.94 10 828.94 10 1184.74 
 

828.94 10 828.94 10 389.41 

C107 828.94 10 828.94 10 782.00 
 

828.94 10 828.94 10 322.39 

C108 828.94 10 828.94 10 498.37 
 

828.94 10 828.94 10 185.52 

C109 828.94 10 828.94 10 252.69 
 

828.94 10 828.94 10 83.06 

C201 591.56 3 591.56 3 4155.89 
 

591.56 3 591.56 3 1337.71 

C202 591.56 3 591.56 3 630.48 
 

591.56 3 591.56 3 348.48 

C203 591.17 3 591.31 3 278.99 
 

591.17 3 593.21 3 132.09 

C204 594.89 3 603.16 3 152.45 
 

590.6 3 608.03 3 53.45 

C205 588.88 3 588.88 3 1731.04 
 

588.88 3 588.88 3 619.37 

C206 588.49 3 588.49 3 1181.93 
 

588.49 3 588.49 3 473.96 

C207 588.29 3 588.29 3 853.12 
 

588.29 3 588.29 3 322.58 

C208 588.32 3 588.32 3 476.75 
 

588.32 3 588.32 3 234.39 

R101 1643.18 20 1645.82 20 1137.93 
 

1644.5 20 1650.89 20.27 521.88 

R102 1460.26 18 1463.91 18.08 434.26 
 

1463.52 18 1469.81 18.07 187.46 

R103 1217.39 15 1223.27 14.92 398.70 
 

1224.44 15 1228.17 14.8 141.13 

R104 987.61 11 1002.54 11.33 227.74 
 

1001.89 12 1011.12 11.8 85.29 



R105 1363.91 15 1372.01 15.75 641.26 
 

1369.07 16 1378.44 15.93 235.14 

R106 1247.90 13 1256.45 13.42 457.90 
 

1251.71 13 1263.34 13.73 174.85 

R107 1087.50 12 1097.41 12.00 336.94 
 

1093.99 12 1105.3 11.93 130.82 

R108 961.85 11 965.82 10.83 220.71 
 

958.44 11 970.46 10.87 87.48 

R109 1152.99 13 1163.07 13.00 365.31 
 

1160.06 13 1174.37 13.27 162.67 

R110 1091.50 12 1100.83 12.17 340.76 
 

1095.34 12 1111.61 12.13 154.76 

R111 1067.46 12 1076.61 12 302.90 
 

1073.29 12 1083.78 12.2 131.07 

R112 973.25 10 978.16 10.67 240.36 
 

981.67 11 988.63 10.87 118.97 

R201 1174.69 6 1178.90 6.08 547.67 
 

1178.91 6 1184.33 6.07 196.05 

R202 1046.10 5 1053.44 5.08 331.63 
 

1041.48 5 1056.15 5.2 119.36 

R203 884.02 5 896.05 4.92 273.62 
 

889.4 5 902.09 4.53 85.53 

R204 750.40 4 758.13 4 230.77 
 

748.15 4 759.52 4 69.77 

R205 960.75 5 975.83 4.92 290.46 
 

968.89 5 982.09 4.8 116.61 

R206 900.97 4 908.18 4.25 226.36 
 

897.2 4 911.63 4 78.55 

R207 809.72 4 826.74 4 234.11 
 

812.61 4 830.07 4 73.13 

R208 723.14 5 732.31 3.42 198.33 
 

725.58 4 735.53 3.13 65.18 

R209 863.12 5 882.22 4.92 226.84 
 

872.65 5 884.44 4.93 90.78 

R210 927.54 5 938.63 4.92 232.11 
 

919.41 5 938.66 4.8 95.88 

R211 763.22 4 781.23 4 189.63 
 

769.28 4 786.04 4 77.49 

RC101 1646.17 16 1656.01 16.33 663.29 
 

1650.2 16 1661.04 16.4 271.72 

RC102 1481.61 14 1488.79 14.83 441.74 
 

1481.48 14 1493.5 14.8 193.72 

RC103 1280.76 12 1298.32 12.08 308.63 
 

1288.36 12 1313.42 12.13 143.69 

RC104 1162.03 11 1168.13 11.00 217.15 
 

1174.46 11 1181.55 11.27 92.34 

RC105 1545.30 16 1554.79 16.17 545.30 
 

1535.94 15 1560.12 16.53 195.66 

RC106 1401.17 14 1413.38 14.00 301.56 
 

1411.51 14 1423.01 13.87 163.77 

RC107 1235.28 12 1256.98 12.50 277.52 
 

1236.27 12 1260.54 12.07 137.43 

RC108 1136.35 11 1149.65 11.17 235.20 
 

1131.4 11 1150.3 11.4 132.3 

RC201 1271.78 7 1284.59 6.92 476.51 
 

1285.14 7 1295.15 6.73 174.15 

RC202 1116.21 6 1122.97 5.75 350.15 
 

1116.58 6 1124.5 5.87 122.95 

RC203 941.81 5 951.30 5.08 226.52 
 

944.87 5 952.32 5 82.79 

RC204 801.87 4 809.09 4 162.89 
 

791.76 4 809.33 4.2 56.04 

RC205 1165.82 7 1172.80 7 335.38 
 

1163.29 7 1189.25 6.6 115.08 

RC206 1072.85 5 1082.93 5.50 272.82 
 

1070.82 6 1083.09 5.47 98.9 

RC207 977.11 5 998.46 5.42 211.82 
 

980.87 5 1003.8 5.13 85.6 

RC208 792.33 5 809.23 4.67 191.15 
 

799.11 4 816 4.73 81.55 

5. Conclusion 

This paper introduces a vehicle routing problem with time windows and pallet loading constraints, and proposes a new 

algorithm named Tabu-ABC. The VRPTWP comprises two sub NP-hard problems, namely the three-dimensional loading 

problem and the VRPTW. In addition, the VRPTWP addressed in this paper closely reflects real-world situations, and time 

window constraints are considered. To the best of our knowledge, the VRPTWP is a new problem that has never been 

addressed before. We apply Tabu-ABC to solve the VRPTWP and create a set of benchmark for the new VRPTWP. 

Tabu-ABC is a hybrid algorithm with Tabu search and ABC. According to the comparison among some heuristics on 



Solomon’s VRPTW instances, it is proved to be effective. As a future work, we would like to develop more efficient 

approach to solving VRPTWP, since the CPU times cost of Tabu-ABC to solve VRPTWP is not stable and high sometimes. 

Meanwhile, Tabu-ABC can be applied to other problems also, and we will consider using it in other problems. 
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