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Abstract

The purpose of this paper is to investigate a multiple ship routing and speed optimization problem under time,

cost and environmental objectives. A branch and price algorithm as well as a constraint programming model are

developed that consider (a) fuel consumption as a function of payload, (b) fuel price as an explicit input, (c) freight

rate as an input, and (d) in-transit cargo inventory costs. The alternative objective functions are minimum total trip

duration, minimum total cost and minimum emissions. Computational experience with the algorithm is reported

on a variety of scenarios.

Keywords: Ship speed optimization, multi-commodity pickup and delivery, Branch-and-Price, combined ship

speed and routing

1. Introduction1

Ships travel slower than the other transportation modes. As long-distance trips may typically last one to two2

months, the benefits of a higher ship speed mainly entail the economic added value of faster delivery of goods, lower3

inventory costs and increased trade throughput per unit time. However, fast ship speeds entail increased emissions4

as the latter are proportional to fuel burned, which is an increasing function of ship speed. At the same time, the5

above benefits may become elusive whenever shipping markets are depressed and whenever fuel prices are on the6

increase. In such situations, ships tend to slow down, and slow steaming is a prevalent practice.7

Because of the non-linear relationship between ship speed and fuel consumption, a ship that goes slower will8

burn much less fuel and produce much fewer emissions than the same ship going faster. Hence speed reduction is9

a tool that could reduce both fuel costs and emissions at the same time, and may potentially constitute a win-win10

proposition. It is certainly a prime tool for improving a ship’s environmental performance, provided of course the11

relevant opportunity is adequately exploited.12

In the charter (tramp) market, those who pay for the fuel, that is, the ship owner whose ship trades on the spot13

market, or the charterer if the ship is on time or bare-boat charter, will typically choose ship speed as a function14
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of two main input parameters: (i) the fuel price and (ii) the market freight rate. In periods of depressed market15

conditions, as is the typical situation in recent years, ships tend to slow steam. The same is the case if bunker16

prices are high. Conversely, in boom periods or in case fuel prices are low, ships tend to sail faster.17

A similar situation plays out in the liner market. Container and Ro-Ro operators typically operate a mixed18

fleet of vessels, some of which are owned vessels and some are chartered from independent owners who are not19

engaged in liner logistics. In either case, fuel is paid for by the liner operator. The operator receives income from20

the multitude of shippers whose cargoes are carried on the ship and the rates charged to these shippers can be high21

or low depending on the state of the market. As in the charter market, high fuel prices and/or depressed market22

conditions imply lower speeds for the fleet.23

Investigating the economic and environmental implications of ship speed is not new in the maritime transporta-24

tion literature and this body of knowledge is rapidly growing. In [1], some 42 relevant papers were reviewed and25

a taxonomy of these papers according to various criteria was developed. More papers dealing with ship speed are26

being published, as documented by the above paper’s Google Scholar citations, which in October 2016 stood at27

110, more than double the number a year before. Last but not least, a limited number of papers in recent years28

consider combined ship routing and speed decision problems. It is fair to say that this particular research area is29

still a new one, and much potential for further development still exists.30

In that context, the purpose of this paper is to investigate a multiple ship routing problem with simultaneous31

speed optimization and under alternative objective functions. A heuristic branch-and-price algorithm as well as a32

constraint programming model are developed that consider (a) fuel consumption as a function of payload, (b) fuel33

price as an explicit input, (c) freight rate as an input, and (d) in-transit cargo inventory costs. The alternative34

objective functions are minimum total trip duration, minimum total cost and minimum emissions. Computational35

experience with the algorithm is reported on a variety of scenarios. Moreover, in order to evaluate the quality of36

the heuristic, an exact constraint programming model has also been developed. The reason for not comparing with37

an exact version of the branch-and-price algorithm is that the pricing problem is non-linear and that no known38

methods are available for solving it to optimality. This made constraint programming a natural choice.39

We clarify right at the outset that weather routing considerations are outside the scope of this paper. Weather40

routing involves choosing the ships path and speed profile between two specified ports under variable and dynam-41

ically changing weather conditions. In weather routing, the ships fuel consumption function depends not only on42

ship speed and payload, but also on the prevailing weather conditions along the ships route, including wave height,43

wave direction, wind speed, wind direction, sea currents, and possibly others. Weather routing models (see for44

instance [2], among many others) take these factors into account. But models in a ship routing and scheduling45

context, including those developed in our paper, take a simpler approach: they do not deal with the problem of46

determining the best path between two ports, and they implicitly factor the average weather conditions the ship47

expects along its route into the fuel consumption function.48

A related issue that we do not consider in this paper is the integration of risk and ship load monitoring data in49
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the decision making process for optimal ship routing. Related research considers the impact of weather variables on50

ship safety attributes along a ships route. These include a ships structural integrity, the safety of the passengers,51

and possibly others. For an exposition see [3].52

The rest of this paper is organized as follows. Section 2 discusses how some problem parameters that are53

considered important are treated in the literature. Section 3 describes the problem and Section 4 develops two54

mathematical formulations for it, a set partitioning formulation and a compact formulation. Section 5 develops a55

heuristic Branch-&-Price algorithm for the problem, together with an alternative constraint programming approach56

for comparison purposes. Section 6 describes and interprets the computational results and finally Section 7 presents57

the conclusions of the paper.58

2. Which problem parameters are important? A focused look at the literature59

It is outside the scope of this paper to conduct yet another full review of the literature, that close to the previous60

one. Rather, we list a number of input parameters and model assumptions that we consider important in ship speed61

optimization, and observe how these parameters are treated in a limited sample of the literature. In that context,62

the following may or may not be true in a model in which ship speed is a decision variable:63

(a) fuel consumption is a function of payload,64

(b) fuel price is an input (explicit or implicit),65

(c) freight rate is an input, and66

(d) in-transit cargo inventory costs are considered.67

All of the above (a) to (d) can be important. The degree of importance depends on the particular scenario examined.68

Briefly below we argue about the importance of each.69

As regards (a), it is clear that ship payload can drastically influence fuel consumption (and hence emissions)70

at a given speed, with differences of the order 30% between fully laden and ballast conditions being observed for71

the same speed. The dependency on payload is more prevalent in tankers and bulk carriers that sail either full or72

empty and less prevalent in other types of ships, which can be partially laden (container ships) or their payload does73

not change much (Ro-Ro ships, passenger ships, cruise ships). The functional relationship between ship speed and74

payload on the one hand and fuel consumption on the other is typically non-linear and may not even be available75

in closed form. Section 3 presents a realistic closed-form approximation.76

As regards (b) and (c), in [1] it was shown that it is mainly the non-dimensional ratio of fuel price over the market77

spot rate that determines optimal ship speed, with higher speeds corresponding to lower such ratios. Optimal here78

is defined as maximizing the average per day profit of the ship owner. This reflects the typical behavior of shipping79

companies, which tend to slow steam in periods of depressed market conditions and/or high fuel prices and go faster80

if the opposite is the case. As regards (b), fuel price may be given either explicitly in the model, in the form of a81
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distinct input, or implicitly, whenever a fuel cost function is given. An implicit formulation has the drawback of82

not allowing someone to directly analyze the functional dependency between fuel price and optimal speed.83

Finally as regards (d), in-transit inventory costs accrue while the ship is in transit, and they can be a non-trivial84

component of the cost that the owner of the cargo (that is, the charterer) bears if the ship will sail at a reduced85

speed. They can be important if timely delivery of the cargo is significant. They can also be important if the voyage86

time and/or the quantities to be transported are non-trivial. This can be the case in long-haul problems. In-transit87

inventory costs are also important for the ship owner, as a charterer will prefer a ship that delivers his cargo earlier88

than another ship that sails slower. Thus, if the owner of the slower ship would like to attract that cargo, he may89

have to rebate to the charterer the loss due to delayed delivery of cargo. In that sense, the in-transit inventory cost90

is very much relevant in the ship owner’s profit equation, as much as it is relevant in the charterer’s cost equation.91

Table 1 lists a limited sample of papers and lists whether or not each of (a) to (d) above is true. Based on the92

table, we can advance the conjecture that whatever the shipping market and logistical context, ours is the only93

paper in the maritime literature that addresses a multiple ship scenario in which all of parameters (a) to (d) above94

are true.95

It should be clarified here that no time windows are assumed in our model. Whereas this may be perceived96

as a potential limitation, there is a specific reason that we do not consider them: time windows may implicitly97

or explicitly dictate what the speed of the ship might be (at least in some trip legs) and, as such, may limit the98

flexibility of choosing an optimal speed according to a prescribed objective. They would also prevent one to see the99

variety of solutions under alternative objectives, since if speed is more or less fixed, some of the problem’s objectives100

may be rendered to produce the same solutions. It should also be noted that in practice time windows are not really101

exogenous inputs, as most of the literature assumes, being usually the subject of negotiation and agreement between102

the shipper and the shipping company so that feasible solutions are obtained. It is also important to consider the103

fact that in-transit cargo inventory costs will make sure that cargo is delivered on time and not delayed, which104

makes this objective component a surrogate for time-windows.105

3. Problem description and mathematical formulation106

We consider the optimization of routes and speeds of an heterogeneous fleet that needs to pickup and deliver107

a set of cargoes. Each cargo has a specific weight, pickup and delivery destination. Cargoes cannot be split and108

should be picked up by exactly one ship during one visit, however the ships are allowed to make multiple visits in109

a ports if this is necessary.110

We assume that the ships used for the delivery are on time charter with given freight rates (expressed in $/day).111

These freight rates are assumed to be known for each ship and independent of charter duration1. In general they112

1In general the time charter rate is a function of charter duration, but for charters of the same time range (e.g. short term as opposed

to long term) one can assume that the rate is independent of charter duration.
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Papers Shipping

market

Logistical context Number of

ships

(a) Fuel/payload (b) Fuel price (c) Freight rate (d) In-transit

cargo costs

[4] Tramp Fixed route One No Explicit Yes No

[5] Container Fleet deployment Many No Explicit Yes No

[6] Tanker World oil network Many Only for laden and bal-

last conditions

Explicit No. Equilibrium spot

rate computed

Yes

[7] Container Fixed route Many No Explicit No No

[8] Tramp Pickup and deliv-

ery

Many No Implicit No No

[9] Container Fixed route Many No Explicit No Yes

[10] Tanker Fixed route Many Only for laden and bal-

last conditions

Explicit Yes Yes

[11] General Fixed route One No Implicit No No

[12] Tramp Pickup and deliv-

ery

Many No Implicit For spot cargoes No

[13] General Fixed or flexible

route

One For any loading condi-

tion

Explicit Yes Yes

[14] Container Fixed route in SE-

CAs

Many No Explicit No No

[15] Ro-Ro Fleet deployment Many Only for laden and bal-

last conditions

Implicit No No

[16] Ro-Ro Route selection in

SECAs

One No Explicit No No

[17] Container Disruption man-

agement

One No Implicit No No

[18] Container Fleet deployment Many For any loading condi-

tion

Explicit Yes No

[19] Container Berth allocation,

virtual arrival

Many No Implicit No No

[20] General Speed optimiza-

tion in a dynamic

setting

One No Explicit Yes No

This Paper General Pickup and deliv-

ery

Many For any loading condi-

tion

Explicit Yes Yes

Table 1: Sample of speed papers and whether parameters (a) to (d) are included in the model. The parameters indicate: (a) If fuel

consumption is a function of payload, (b) if fuel price is an implicit or explicit input, (c) is freight rate is an input, (d) if in-transit cargo

inventory costs are considered.

will be different for each ship, as they depend on ship size. Each ship is initially located at a given port and has a113

known payload capacity that cannot be exceeded. A ship can sail at different speeds on different legs of the route114

as long as the speeds are within its feasible speed range (which is dictated by the ship’s engine size and technology).115

The daily fuel consumption of each ship (in tons/day) is given by a function f(v, w) of the ship’s speed v (in116

nautical miles/day, or knots) and payload w (in tons). In this work, we use the realistic closed-form approximation117

of f given in [13]:118

f(v, w) = G(P + vT )(w +A)2/3 (1)

where G > 0, P ≥ 0 and T ≥ 3 are ship related constants, and A is the modified ‘lightship weight’, that is, the119

weight of the ship if empty including fuel and other consumables but without any cargo on board. Strictly speaking,120

f must take into account the reduction in the ship’s total displacement due to fuel being consumed along the ship’s121
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route. However, since displacement would not change much as a result of that consumption, one can practically122

assume f independent of en-route fuel consumption. In addition, we consider a heterogeneous fleet, meaning that123

the initial ports, the capacities, the freight rates, the feasible speed ranges, and the fuel consumption parameters124

can be different for each ship.125

Equation (1) assumes that the average weather conditions that the ship expects along its route are implicitly126

factored into the fuel consumption function. As stated earlier, and as this is not a weather routing model, no127

explicit consideration of weather variables is included.128

We assume that the charterer (the cargo owner) bears all cargo inventory costs. These have two components:129

1) port inventory cost, the cost due to cargo waiting to be picked up, and 2) in-transit inventory cost, the cost due130

to cargo being in transit. These inventory costs are assumed to be linear in time and in cargo volume. A zero port131

inventory cost assumes that the cargoes are available at the origin ports in a ‘just-in-time’ fashion.132

The objective of this problem is to minimize the total cost over all route legs. Three cost components are133

considered: fuel costs, cargo inventory costs and time charter costs.134

As pointed out in [13], for a single ship and a given route, the total cost of an individual route leg (L,L′) is

equal to

COST (L,L′) =

(
UG(P + vT )(w +A)2/3 + αu+ βw + F

)
· dLL′

v
(2)

where135

dLL′ : the distance of leg (L,L′) (in nautical miles)136

U : the fuel price (in $/ton)137

F : the time charter freight rate of the ship (in $/day)138

α: the unit cargo port inventory cost (in $/tons/day)139

β: the unit cargo in-transit inventory cost (in $/tons/day)140

u: the amount of cargo still waiting to be picked up (in tons)141

142

It is obvious that COST (L,L′) is a function of speed v when the route sequence is fixed. To obtain the speed

that leads to a minimum value of COST (L,L′), we just need to identify the speed that minimizes (1) and compare

it with the ship’s speed range [vLB , vUB ]. This speed point can be obtained by setting the first derivative of

COST (L,L′) to zero as follows:

v̂ =

(
UGP (w +A)2/3 + αu+ βw + F

UG(w +A)2/3(T − 1)

) 1
T

(3)

The optimal speed v∗ should be v̂ if vLB ≤ v̂ ≤ vUB , vLB if v̂ ≤ vLB , and vUB if v̂ ≥ vUB .143

3.1. Mathematical Formulations144

We can define a problem with n cargoes and m ships on a graph G = (N,E), where N is the set of all the nodes145

and E is the set of feasible arcs in the graph. Let P = {1, ..., n} denote the set of pickup nodes and D = {n+1, ..., 2n}146
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the set of delivery nodes. Cargo i is represented by the node pair (i, n + i). Let K denote the set of ships. Ship147

k ∈ K starts from node o(k) and returns to a dummy node d(k). Let dij denote the distance between node i and148

node j. If the ships are not required to end their journey at specific ports, we can just set did(k) = 0 for all i and149

k. The set of all the nodes is N = P ∪ D ∪ {o(1), ..., o(m)} ∪ {d(1), ..., d(m)}. Let N+
i = {j : (i, j) ∈ E} and150

N−i = {j : (j, i) ∈ E} be the set of nodes that can be reached from node i, and can reach node i respectively.151

For each node i, let Hi denote the amount of cargo to be loaded, Hi > 0 for i ∈ P , and Hi = −Hi−n for152

i ∈ D. The per unit volume and per unit time cargo port inventory cost α and cargo in-transit inventory cost β153

are assumed the same for all the cargoes. Each ship k ∈ K has a capacity Qk and can sail at any speed between its154

minimum speed Lk and maximum speed Uk. The freight rate of ship k is Fk per unit time. Let Ak denote ship k’s155

lightship weight. Let Gk, Pk and Tk denote the corresponding parameters in the fuel consumption formula (1) for156

ship k. The per unit volume fuel cost is denoted by U .157

3.1.1. A compact formulation158

Let the binary decision variable xkij be 1 if ship k ∈ K sails from node i ∈ N to j ∈ N and 0 otherwise. Let

auxiliary variable v̂kij denote the optimal speed from (3) for ship k on leg (i, j), and let the decision variable vkij be

the actual sailing speed of ship k when sailing from node i to j. The variable qki represents the load of ship k after

loading/unloading cargo at node i. For the purpose of evaluating the total cost of ship k on leg (i, j), we need to

keep track on the total weight of cargo not yet picked up while ship sails on each leg. We therefore define variable

tk as the total weight ship k delivers on the entire route, and variable hki as the total weight ship k has already

delivered after loading/unloading at node i. The total weight of the cargo waiting to be picked up by ship k after

visiting node i is tk − hki . Finally, let ui be the sequence variable used to eliminate subtours.

z∗ = min
∑
k∈K

∑
(i,j)∈E

xkij

(
UGk(Pk + vkij

Tk )(qki +Ak)2/3 + α(tk − hki ) + βqki + Fk

)
dij

vkij
(4)

s.t.
∑
k∈K

∑
j∈N+

i

xkij = 1 ∀i ∈ P (5)

∑
j∈N+

o(k)

xko(k)j = 1 ∀k ∈ K (6)

∑
j∈N+

i

xkij −
∑

j∈N−i

xkji = 0 ∀i ∈ P ∪D, k ∈ K (7)

∑
j∈N−

d(k)

xkjd(k) = 1 ∀k ∈ K (8)

uj ≥ ui + 1−M(1− xkij) ∀(i, j) ∈ E, k ∈ K (9)∑
j∈N+

i

xkij −
∑

j∈N+
n+i

xkn+i,j = 0 ∀i ∈ P, k ∈ K (10)

un+i ≥ ui ∀i ∈ P (11)

tk =
∑

j∈N+
i

∑
i∈P

Hix
k
ij ∀k ∈ K (12)

qkj ≥ qki +Hix
k
ij −M(1− xkij) ∀(i, j) ∈ E, k ∈ K (13)

hkj ≥ hki + max{0, Hi}xkij −M(1− xkij) ∀(i, j) ∈ E, k ∈ K (14)

max{0, Hi} ≤ qki ≤ Qk ∀i ∈ N, k ∈ K (15)

7



v̂kij =

(
UGkPk(qki +Ak)2/3 + α(tk − hki ) + βqki + Fk

UGk(qki +Ak)2/3(Tk − 1)

) 1
Tk ∀(i, j) ∈ E, k ∈ K (16)

Lk + max{0, v̂kij − Lk} ·M ≥ vkij ≥ Lk ∀(i, j) ∈ E, k ∈ K (17)

Uk ≥ vkij ≥ Uk + min{0, v̂kij − Uk} ·M ∀(i, j) ∈ E, k ∈ K (18)

v̂kij + max{0, Lk − v̂kij , v̂kij − Uk} ·M ≥ vkij ≥ v̂kij −max{0, Lk − v̂kij , v̂kij − Uk} ·M

∀(i, j) ∈ E, k ∈ K
(19)

xkij ∈ {0, 1} ∀(i, j) ∈ E, k ∈ K (20)

tk, hki , q
k
i , v̂

k
ij , v

k
ij ≥ 0 ∀i ∈ N, k ∈ K (21)

ui ∈ Z+ ∀i ∈ N (22)

159

The objective (4) minimizes the total cost of all the route legs. Constraints (5) make sure that each cargo is160

delivered by exactly one ship. Constraints (6)–(8) are the flow conversation constraints. Constraints (9) eliminate161

the subtours. Constraints (10) and (11) are so-called paring constraints and precedence constraints that enforce162

each cargo to be first picked up and then delivered by the same ship. Constraints (12) calculate the total weight of163

cargoes assigned to each ship. Constraints (13) and (14) keep track on the load of the ship and the total weight the164

ship has already delivered after loading/unloading at a node. Constraints (15) are the ship capacity constraints.165

Constraints (16) calculates the v̂kij value for ship k on leg (i, j) in the same way as (3). The optimal speed vkij is166

determined by constraints (17)–(19). Finally, the decision variables are defined by (20)–(22).167

3.1.2. A Set Partitioning formulation168

This problem can also be formulated as a Set Partitioning Problem. Let Rk be the set of feasible routes for169

ship k ∈ K, all of which start from node o(k), end at node d(k), satisfy the paring and precedence constraints, and170

are feasible with respect to the ship’s capacity and speed range. Let ckr denote the cost of route r ∈ Rk for ship k,171

calculated as the sum of total cost over all the legs in the route. Parameter air equals 1 if route r covers cargo i,172

and 0 otherwise. Let the binary variable ykr be 1 if route r ∈ Rk is taken by ship k, and 0 otherwise. The problem173

can then be formulated as follows:174

z∗ = min
∑
k∈K

∑
r∈Rk

ckry
k
r (23)

s.t.
∑
k∈K

∑
r∈Rk

airy
k
r = 1 i ∈ P (24)

∑
r∈Rk

ykr ≤ 1 k ∈ K (25)

ykr ∈ {0, 1} ∀r ∈ Rk, k ∈ K (26)

The objective is to minimize the cost of the selected routes in such way that each cargo is delivered (24) and175

each ship is assigned to at most one route (25).176
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The LP relaxation of the set partitioning formulation will always provide the same or better lower bound177

compared to the LP relaxation of the compact formulation.178

4. Solution methods179

We propose two solution methods: a Heuristic Branch-and-Price (H-B&P ) in Section 4.1 and a Constraint180

Programming Model (CPM ) in Section 4.2.181

4.1. Heuristic Branch-and-Price182

Solving model (23)–(26) directly by an IP solver requires the enumeration of all feasible ship routes, which

seems impossible given the huge size of feasible routes. Instead, we solve the model by a heuristic branch-and-price

algorithm similar to [21]. Branch-and-Price (B&P) is a version of branch-and-bound, where the linear programming

(LP) relaxation at each node of the branch-and-bound tree is obtained by using the Column Generation (CG) method

([22]). The LP relaxation of the problem (denoted by LP-SP) can be obtained by relaxing the binary constraints

(26) as follows:

ykr ≥ 0 ∀r ∈ Rk, k ∈ K

The CG starts by solving a restricted LP-SP, called the master problem, where only a subset of ship routes are183

considered, and then gradually generates the rest of the routes that can potentially improve the objective function184

and adds them to the model. A solution to the master problem provides the the dual variables πi and λk corre-185

sponding to constraints (24) and (25). These values can be used to calculate the reduced cost of a route r ∈ Rk for186

ship k ∈ K as ĉkr = ckr −
∑

i∈P airπi − λk. From the theory of the Simplex method, adding a route with negative187

reduced cost can possibly produce an improved LP solution. If ĉkr ≥ 0 for all feasible route r and all ship k then the188

solution to the restricted LP-SP is also optimal to the full LP-SP. Otherwise, the route with negative reduced cost189

should be added to the master problem and the master problem needs to be solved again to get new dual variables.190

Finding the route with the lowest ĉkr is done by solving a pricing problem. In our case, the pricing problem is

an elementary shortest path problem with capacity, pickup and delivery, variable speed and variable arc costs, in

which the speed and cost of each arc varies as the route sequence varies. Here we examine how to define the speed

and arc cost in the shortest path problem related to ship k ∈ K. For a given route r ∈ Rk, the speed of leg (i, j)

in route r is defined as

vkijr =


Lk if v̂kijr ≤ Lk

v̂kijr if Lk ≤ v̂kijr ≤ Uk

Uk if Uk ≤ v̂kijr

where

v̂kijr =

(
UGkPk(wijr +Ak)2/3 + αuijr + βwijr + Fk

UGk(wijr +Ak)2/3(Tk − 1)

) 1
Tk
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and wijr and uijr are the payload and the weight to be picked up during leg (i, j) in route r. The cost of leg (i, j)

in a route r in the pricing problem is calculated as

ĉkijr =


ckijr − πi if i ∈ P

ckijr if i ∈ D

ckijr − λk if i = o(k)

where

ckijr =

(
UGk

(
Pk + (v̂kijr)Tk

)
(wijr +Ak)2/3 + αuijr + βwijr + Fk

)
dij
v̂kijr

.

By using the above defined arc cost ĉkijr, the cost of route r will equal the reduced cost of the corresponding variable.191

The resource constrained shortest path problem is usually solved by labeling algorithms [23]. However, solving192

our pricing problem to optimality can be time consuming given its high complexity. To be able to solve the problem193

in reasonable computational time, we use a cheapest insertion heuristic. The heuristic starts from a route containing194

only one cargo, and gradually inserts the remaining cargoes that least increases the reduced cost of the route. During195

the insertion, we keep track of the routes with most negative reduced costs. The procedure is repeated with every196

cargo as a starting point and for every ship k ∈ K. If the heuristic fails to find any route with negative reduced197

cost, the column generation procedure stops and proceeds as if we have solved the LP-SP to optimality. However,198

we can not guarantee the optimality due to the fact that the pricing problem is solved heuristically. We call this199

method of solving the LP-SP as heuristic column generation (H-CG).200

If the solution obtained by the H-CG is an integer solution, the H-B&P algorithm stops. Otherwise, we branch on

the arc variables as suggested in [24]. The algorithm uses strong branching in order to decide which arc to branch

on. A number, γ, of branching candidates are evaluated by enforcing the branch and computing the resultant

improvement in the lower bounds (∆1 and ∆2) in the two child nodes. Following [25], the algorithm chooses the

branch that maximizes

µmin{∆1,∆2}+ (1− µ) max{∆1,∆2}

where 0 ≤ µ ≤ 1 is a parameter.201

The H-B&P stops until all the nodes in the search tree are explored. Since the LP-SP is solved by the H-CG and202

the solution found by the H-B&P is not necessarily optimal, it can potentially be improved. In a post-optimization203

phase, we use an IP solver to solve the set partitioning model with all the columns found in the branch-and-price204

procedure. The solution to such model is at least as good as the solution found by the branch-and-price.205

4.2. A Constraint Programming model206

Changing the solution method of the pricing problem with an exact approach, could give use the possibility207

of comparing our heuristic solutions to the optimal ones. In the literature, the only know method to solve a208

similar problem is the dynamic programming approach proposed in [13]. This procedure is, however, not able to209
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scale to multiple vessels and a larger set of ports. Thus, we sought an alternative solution approach, constraint210

programming, which not only it is an exact method but it can also deal with non-linear functions.211

Constraint programming is a search based approach to solve constraint satisfaction problems. Problems are212

modeled in terms of variables and their domains, and a set of constraints (relations between variables). At each213

step of the search, specialized filtering algorithms analyze the constraints and remove infeasible values from the214

variables domain. In case of an optimization problem, the search can be performed within a branch & bound215

algorithm which thus allows the finding of optimal solutions. The filtering and search algorithms are often part of a216

solver (as it is in this case). We thus only present a description of the model and refer the reader to [26] for further217

information.218

The model is an adaptation of the VRPPD model presented in [26] and uses the same notation and node219

representation described in Section 3.1. A solution to the problem is represented by a sequence of nodes determined220

by the variable pi ∈ N , which indicates the node immediately before node i ∈ N . The speed used to reach node i221

from its preceding node pi is decided by the variable vi ∈ R+. Furthermore, the model makes use of a number of222

auxiliary variables: li ∈ Z+ is the load of the ship going to node i, si ∈ K is the ship sailing to node i, ri ∈ Z+223

is the amount of cargo yet to be picked-up after leaving node i, and ci ∈ R+ is the total cost at node i. Finally,224

a number of variables have been introduced to ease the modeling of the problem: oi ∈ N is the node at position i225

in the solution sequence (e.g. if node 5 is the first in the sequence then it must be the case that o1 = 5), bi ∈ N226

is the position of node i in the sequence (e.g. if node 5 is the first in the sequence then it must be the case that227

b5 = 1), and aij ∈ {0, 1} which is 1 iff node i is visited after node j and 0 otherwise.228

circuit(P,D) (27)

po(k+1) = d(k) ∀k ∈ K (28)

so(k) = k ∀k ∈ K (29)

sd(k) = k ∀k ∈ K (30)

spi
= si ∀i ∈ P ∪D (31)

li = lp(i) +Hi ∀i ∈ N (32)

li ≤ Qsi ∀i ∈ N (33)

oi ≤ on+i ∀i ∈ P (34)

oi = poi+1
∀i ∈ N (35)

allDifferent(O) (36)

si = sn+i ∀i ∈ P (37)

Lsi ≤ vi ≤ Uvi ∀i ∈ N (38)

optimalSpeed(vi, li, si, ri) ∀i ∈ N (39)
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oi = j ⇔ bj = i ∀i, j ∈ N (40)

aij = (bi < bj) ∧ (vi = vj) ∀i, j ∈ N (41)

ri =
∑
j∈P

djaij ∀i, j ∈ N (42)

costFunc(ci, vi, li, si, ri) ∀i ∈ N (43)

Constraint (27) uses the global constraint Circuit [26] to force the set P = {pi : i ∈ N} of all pi variables to229

form an Hamiltonian circuit. Moreover, this constraint keeps track of the sailed distance at each node, where D is230

the distance matrix. The filtering algorithm also imposes sub-tours elimination. Constraints (28) - (31) are related231

to the vessel. Constraint (28) forces the depot end node (d(k)) of vessel k ∈ K to be immediately followed by the232

next vessel’s depot start node (o(k + 1)). This constraint not only ensures the consistency of the solution, it also233

removes symmetrical sequences where the routes of the different ships exchange position in the solution encoding.234

Constraint (29) - (30) binds the sk ship variables to their corresponding depot start and end node. Constraint (31)235

imposes that only one ship can be present in one route. Note that it is possible to have multiple routes since the236

constraint is only posted for the the pickup (P ) and delivery (D) nodes. The cargo and ship capacity are constrained237

by (32) and (33). The first ensures that the load of the ship visiting node i ∈ N (li) is updated by the demand Hi,238

while the second ensures that the capacity of the assigned ship is not exceeded. Constraint (34) forces a precedence239

between a pickup node i ∈ P and its corresponding delivery node n + i. The order variables oi are linked to the240

predecessor variables pi via constraint (35). To improve pruning, an allDifferent constraint [26]2 is imposed over241

the set of order variables (O = {oi : i ∈ K}) in constraint (36). Constraint (37) ensures that the same ship that242

picks up a cargo also delivers it. The speed at each node is limited to the minimum and maximum speed of the243

assigned ship by constraint (38). In order to model the speed of the ship we have, in Constraint (39), implemented244

a dedicated filtering algorithm, which, based on the optimal speed equation from [13], ensures bound consistency245

on the speed variables. In order to model the remaining cargo to be loaded (ri) at a node, we used a binary variable246

aij indicating if node i is visited before node j and they are both in the same route (or equivalently if they are247

visited by the same ship). To do so we needed the dual version of the order variable oi, which in Constraint (40)248

is obtained using a so called channeling constraint. Using the bi variable, Constraint (41) can then define the aij249

variables. The remaining cargo load (ri) is then obtained by collecting the demands yet to be visited (42). Another250

bound consistency filtering algorithm has been implemented for the cost calculation (43), which binds the different251

cost component to the cost variable ci. The filtering algorithms used in (39) and (43) are explained in detail in252

Section 4.3.253

The objective function (44) is then the minimization of the sum of all cost components ci.254

2Imposes that each variable in the given set must have a distinct value

12



z∗ = min
∑
i∈N

ci (44)

4.3. Speed and cost filtering algorithms255

The optimalSpeed() and costFunc() algorithms filter values respectively from the domain of the speed (vi) and256

cost (ci) variables. Both algorithm force the so called bound consistency, meaning that they can only adjust the257

lower and upper bound of the domains (contrary to arc-consistency where values within the domain set can be258

removed). Since both filtering algorithms have a dependency from other variables, which might have not yet been259

assigned, we must be able to work with the domain of these variable. For simplicity, let us define the lower bound260

of a variable x to be x̌ and the upper bound to be x̂. Thus, from the variable si ∈ K, ši and ŝi are respectively261

the smallest and largest, feasible, vessel index for node i ∈ N . Let Gi, Pi, Ti, Fi and Ai denote the corresponding262

parameters in Section 3.1 for a ship sailing to node i ∈ N . The per unit volume fuel cost is denoted by U . Again,263

for simplicity, we abuse the notation and define Ǧi, P̌i, Ťi, F̌i and Ǎi, to be the smallest values these coefficient can264

have at node i ∈ N , and Ĝi, P̂i, T̂i, F̂i and Âi, to be the highest (e.g. Ĝi = maxj∈Dom(si)Gj where Dom(si) is the265

current domain of variable si for node i ∈ N).266

For each i ∈ N the optimalSpeed(vi , li , si , ri) filters the domain of the vi variables as follows:

k̂1 = U
(
Ĝi(l̂i + Âi)

2
3

)
(45)

ǩ1 = U
(
Ǧi(ľi + Ǎi)

2
3

)
(46)

k̂2 = k̂1P̂i +
(
αr̂i + βl̂i + F̂i

)
(47)

ǩ2 = ǩ1P̌i +
(
αři + βľi + F̌i

)
(48)

ŝi =

(
k̂2

ǩ1(Ťi − 1)

) 1
Ťi

(49)

ši =

(
ǩ2

k̂1(T̂i − 1)

) 1
T̂i

(50)

Similarly, costFunc(ci, vi, li, ri) filters the domain of the ci variables as follows:

ĉi =
[
U Ĝi(P̂i + v̂3

i )(l̂i + Âi)
2
3 + αr̂i + βl̂i + F̂i

] δ̂i
v̌i

(51)

či =
[
U Ǧi(P̌i + v̌3

i )(ľi + Ǎi)
2
3 + αři + βľi + F̌i

] δ̌i
v̂i

(52)

where δ̂i and δ̌i are respectively the longest and shortest distance to from the previous node in the sequence (e.g.267

δ̂i = maxj∈Dom(pi) dij).268

4.4. Search strategy269

The model is solved using a dynamic branching that attempts at building routes backwards from each ship270

dummy end node. The strategy sequentially selects the first ship which route in not yet complete (which happens271
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Figure 1: Geographical locations of the ports

Piraeus

Limassol

Port Said

Tunis

Genoa

Barcelona

Valencia

when one of the predecessor variable pi is assigned to the dummy start node of the selected ship). It then attempts272

to assign the arc which incurs the highest cost (thus assigning a value to the pi variables). Since the speed variables273

vi are mainly derived by the rest of the variables, they are branched on at last. This branching is based on the274

traditional fail first strategy where the solver attempts at cutting as early as possible sub-optimal branches. The275

original strategy branches first on the variable with the smallest domain selecting a random value. During the276

experimental evaluation, the original strategy was able to provide faster optimal solutions to very small instances,277

but failed to provide even upper bound to larger ones.278

5. Computational Results279

This section presents the computational results of both solution methods on a set of generated realistic data.280

The H-B&P is implemented in C++ and run on a PC with Intel Core i7-3520M, 2.9Hz, 8GB RAM. The SP model281

in the H-B&P is solved by CPLEX 12.6. The parameters γ and µ in strong branching were set to 3
4 and 15, as in282

[27] and [21]. The computational time is limited to 30 minutes. The CPM is implemented in C++ and uses Gecode283

4.4 [28] and run on a similar Linux machine for 10 hours. In the following, Section 5.1 describes the testing data284

and Sections 5.2–5.4 present the results.285

5.1. Data286

Our instances contain cargoes that originate from 4-7 ports, whose geographical locations are illustrated in287

Figure 1. Distances between ports (in nautical miles) are taken from LinerLIB, a benchmark suite for liner shipping288

network design described in [29], and they are presented in Table 2.289
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port ID (name) 1 (Tunis) 2 (Port Said) 3(Piraeus) 4(Genoa) 5(Valencia) 6(Barcelona) 7(Limassol)

1 ( Tunis ) 0 1192 701 472 560 492 1150

2 ( Port Said ) 1192 0 619 1446 1699 1620 228

3 ( Piraeus ) 701 619 0 906 1174 1095 554

4 ( Genoa ) 472 1446 906 0 512 356 1393

5 ( Valencia ) 560 1699 1174 512 0 165 1657

6 ( Barcelona ) 492 1620 1095 356 165 0 1562

7 ( Limassol ) 1150 228 554 1393 1657 1562 0

Table 2: Distance matrix (port distances in nautical miles)

The number and size of the cargoes for each instance group are randomly defined. Table 3 presents the number290

of cargoes and ports used in each group.

Instance group ID G1 G2 G3 G4 G5 G6 G7 G8

# of cargoes 6 12 10 20 15 30 21 31

# of ports 4 4 5 5 6 6 7 7

Table 3: Instance data

291

In each scenario there are up to 3 vessels that can be used, the size of which varies from small to large. These ves-292

sels are deployed in the Intra-Mediterranean container trade. Detailed ship characteristics such as ship’s lightweight,293

total amount of cargo that can be transported (capacity), the range of sailing speeds, the fuel consumption at the294

maximum speed as well as the freight rate (the per day price which a charterer pays a shipowner for the use of each295

ship) are presented in Table 43.296

The fuel consumption per leg (for each ship) is calculated by using (1). In our instances we assume a cubic297

relationship between fuel consumption and speed, that is we set P= 0 and T= 3. By assuming the above, we are298

able to calculate the value of G that is in formula (1), such that at full capacity and at the maximum speed, the299

fuel consumption is equal to the ”fuel consumption at max speed” that is given in Table 4.300

In order to estimate the bunker costs a base value of U equal to 300 $ per ton fuel is assumed.301

As described in Section 3, the total inventory cost is also taken into account. Two types of inventory cost are302

assumed in this paper, in-transit inventory cost (β, which accrues from time cargo is on the ship until cargo is303

delivered) and port inventory cost (α, which accrues from time 0 until cargo is on the ship).304

In the general case, we assume that β is related to cargo value. If the market price of the cargo at the destination305

3The data of Table 4 are illustrative but realistic. They are drawn from various sources at the authors disposal, including private

communication with industry contacts. The ships span the lower end of the containership size spectrum and we thought they would be

a good example to test the models developed in the paper.
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Ship ID 1 2 3

Ship size Small Medium Large

Freight rate ($/day) 6700 7800 10650

min speed (knots) 6 7 8

max speed (knots) 13 14 16

capacity (ton) 9400 11000 15000

Lightship weight (ton) 3500 5000 5000

fuel consumption at max speed (tons/day) 20 30 45

Table 4: Ship data

(CIF price) is p $ per ton, then one day of delay in the delivery of one ton of this cargo will inflict a loss of p · r/365306

to the cargo owner, where r is the cost of capital of the cargo owner (expressed as an annual interest rate). This307

loss will be in terms of lost income due to the delayed sale of the cargo. Therefore, it is straightforward to see that308

β = p · r/365. We assume that the cargo owner’s cost of capital is equal to r = 5%. In the base scenario we also309

assume an average cargo value of 10.950 $ per ton (this can refer to expensive such as electronics etc.) therefore β310

is equal to 1.5 $ per ton cargo per day.311

It is obvious that the results depend much on fuel price, charter costs and also the inventory costs. Fuel prices312

and charter rates are very volatile, therefore a sensitivity analysis is also presented for a selected instance, see313

Section 5.4.314

5.2. Results from different problem variants315

As mentioned earlier, by setting the parameters differently we obtain different variations of the problem. Here316

we take instance G3 4 as an example to examine the solutions of the following four variations:317

1. Min total cost (F,U, α, β > 0): this is the general case where the parameters (a) fuel price, (b) state of the318

market (freight rate), (c) inventory cost of the cargo, and (d) dependency of fuel consumption on payload are319

taken into consideration in the routing decision at the operational level. The result for the G3 4 instance is320

depicted in Figure 2. We also provide details of the found solution in Tables 5, 6 and 7, which represent the321

set of routes for each ship. The visualization shows the routes allocation, while the table give details about322

the each leg. For each ship result table , the first column show the ports called in the route. For each port323

call, the second column specified the operations undertaken. This is done using a 3 digit code where the first324

letter indicate whether the it is a pickup (P) or a delivery (D) operation. The next two values are the origin325

and destination of the cargo e.g. P45 is the pickup of cargo going from port 4 to port 5, and the corresponding326

delivery is thus D45. The remaining columns indicate respectively the next sailing leg, the payload, the speed327

the travel distance and the sailing time. As it can be seen, in this example, all vessels are deployed and the328

sailing speeds are the maximum ones in almost all legs.329
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2. Min total cost with zero port cargo inventory cost ( α = 0 and F,U, β > 0): the case α = 0 assumes330

that cargo is available at the loading port in a just-in-time fashion and related waiting or delay costs are zero.331

In this instance, the small and the large vessels are deployed and the sailing speeds are the maximum ones in332

almost all legs. Solution details can be found in Appendix in Figure A.4.333

3. Min emission ( F = α = β = 0 and U > 0): the objective in this case is to minimize fuel consumption,334

which finds the routes and the speeds that consume the minimum amount of fuel. In case the ship wants to335

minimize total emissions (or equivalently minimize total fuel consumed or total fuel cost), it is straightforward336

to see that all legs should be sailed at minimum speed. The solution uses only the smallest vessel and the337

sailing speed in all legs is equal to the minimum speed as expected. Solution details can be found in Appendix338

in Figure A.5.339

4. Min total trip time (U = α = β = 0 and F > 0): the problem becomes the minimum total trip time340

problem, which finds the minimum total duration of all the routes. In this case, the ship will take the341

maximum speed. The solution shows that only one vessel is used (the largest one) and that the legs are sailed342

as expected at the highest speed in order to minimize the total time and, thus, the chartering cost. Solution343

details can be found in Appendix in Figure A.6.344

Piraeus

Port Said

Tunis

Genoa

Valencia

Ship 1
Ship 2
Ship 3

Figure 2: Solution with minimum cost for instance G3 4.

It is important to realize that different objective functions will generally produce very different solutions to the345

same instance, as it has be shown in the previous examples. In the last two cases the results are as expected and346

in line with [13]. In the first two cases and especially in the general one (cost minimization) the results depend on347
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port Pickup/delivery Next payload on the leg remaining weight speed Distance sailing time

stop operations leg (Ktons) to pickup (Ktons) (knots) (nautical miles) (days)

0 0–4 0 23 13 0 0

4 P45 4–5 7 16 13 512 1.641

5 D45 P53 5–3 7 9 13 1174 3.763

3 D53 P31 3–1 9 0 13 701 2.247

1 D31 1–0 0 0 13 472 1.513

Table 5: Detailed solution for ship 1 of instance G3 4.

port Pickup/delivery Next payload on the leg remaining weight speed Distance sailing time

stop operations leg (Ktons) to pickup (Ktons) (knots) (nautical miles) (days)

0 0–4 0 14 14 0 0

4 P41 4–1 5 9 14 472 1.405

1 D41 P14 1–4 9 0 14 472 1.405

4 D14 4–0 0 0 13.719 0 0

Table 6: Detailed solution for ship 2 of instance G3 4.

port Pickup/delivery Next payload on the leg remaining weight speed Distance sailing time

stop operations leg (Ktons) to pickup (Ktons) (knots) (nautical miles) (days)

0 0–4 0 17 16 0 0

4 P42 4–2 1 16 16 1446 3.766

2 P23 D42 P25 P21 2–3 15 1 16 619 1.612

3 D23 3–1 14 1 16 701 1.826

1 P15 D21 1–5 6 0 16 560 1.458

5 D15 D25 5–0 0 0 15.968 512 1.336

Table 7: Detailed solution for ship 3 of instance G3 4.

the parameters of the problem. To give a better overview we present, in Table 8, the solutions to all four variants.348

For each variant, the total sailing distance, the total sailing time, the total cost, the total amount of fuel consumed,349

the total chartering cost, the total port inventory cost and the total in-transit inventory cost over all the routes in350

the solution are given.351

As we can see in Table 8, in the minimum total trip time scenario the large ship is only deployed and sails the352

minimum total distance at the maximum speed, thus, the total sailing time is the least one (15.5 days) under this353

scenario. The reason this ship is chosen is that its maximum speed is the highest, among all ship types. On the354

other extreme side, one vessel is used again under the minimum emissions scenario sailing at the slowest speed for355

a total of 64.6 days. This is the smallest ship which has the lowest, among all ships, fuel consumption, and the356

solution would have that ship alone serve all cargoes using as much time as it would take.357
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In the quest for environmentally optimal solutions, one might actually assume that if the minimum distance358

route is sailed at the minimum possible speed in all legs, this would minimize emissions. However, it turns out that359

this is not necessarily the case as the fuel consumption also depends on the payload. In this instance, the solution360

that gives the minimum emissions actually has a total distance traveled that is longer than those under the other361

three objectives.362

In the minimum cost scenarios, both when the port inventory cost is zero and in the general case, it seems that363

the sailing speeds are high due to the high inventory costs.364

min total trip time min emission min total cost (JIT) min total cost

U = α = β = 0 F = α = β = 0 α = 0

Total dist (nautical miles) 5971.0 9299.0 6915.0 7641.0

Total trip time (days) 15.5 64.6 19.7 22.0

Total cost(k$) 165.6 28.5 531.0 759.2

Fuel consumption (tons) 593.8 95.1 487.3 515.9

Fuel cost (k$) – 28.5 146.2 154.8

Chartering cost(k$) 165.6 – 173.9 189.8

Port inv. cost(k$) – – – 204.7

In-transit inv. cost(k$) – – 210.9 210.0

# used ships 1 1 2 3

B&P time (sec) 0.2 0.4 0.5 0.3

Table 8: Results from different problem variants for instance G3 4

5.3. Results of the H-B&P and the CPM365

A comparison of the solutions provided by the H-B&P and the CPM are provided in Table 9. For the H-B&P ,366

the total cost as well as the four cost elements are given in columns 2–6. The number of ships used in the solutions367

and the computational times of the H-B&P are also given in the table. For the CPM , we present the best solution368

found within 10 hours. The solutions that are proven to be optimal by the CPM are indicated by *. As it can be369

seen from the table, the H-B&P finds the optimal solution for the first five instances. For the remaining instances,370

for which the optimal solution is unknown, the solution found by the H-B&P within 30 minutes is much better371

than the one found by the CPM model. For most of the instances, the H-B&P stops before reaching the time limit,372

which means the algorithm finishes exploring the branching tree using the heuristic column generation.373

5.4. Sensitivity Analysis374

To investigate how the fuel price, charter rate and inventory cost affect the solution, we have tested instance375

G3 4 with different inputs of these parameters. The solution values over these instances are given in Table 10–376
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Table 12. Table 10 provides the results when the fuel price varies from 100 $ per ton to 1300 $ per ton. Table 11377

and 12 shows the corresponding results when the relative changes of charter rate are from -60% to +60% and the378

inventory cost from 0 $ per ton per day to 3 $ per ton per day. With an interest rate of 5% these figures correspond379

to an average cargo value of 0 to 21.900 $ per ton.380

Figure 3 summarizes the results graphically, where the results for average speed, fule consumption and travel381

distance are plotted. The data is normalized in percentage deviation from the base value; that is 300 $ for fuel382

price, 0% for the charter rate, and 0.3 $ for the inventory cost. As it can be seen from the results in all cases except383

when the port cargo inventory cost is low ( α equal to 0 or 0.3) the total distance sailed is the same and all ships384

are being used. In addition, when the fuel price increases, the ships would try to reduce the fuel consumption by385

taking shorter routes and sailing at a lower speed revealed from the increasing trip time. The increase in freight386

rate does not seem to affect the speeds that much as the average speed remains the same in most of the cases.387

Finally, the figure shows that increases in the inventory cost parameters (α = β) lead to higher average speeds in388

order to reduce the trip time and thus the total inventory costs.389

6. Conclusions390

This paper has developed models that optimize ship speed for a spectrum of routing scenarios and for several391

variants that concern the objective function to be optimized. The paper extends the work presented in [13] to the392

multiple ship case and contributes to further research in this area, for instance in multiple ship problems where393

many of the properties identified in the single ship case are still valid. To our knowledge, this is the only paper in394

the maritime OR/MS literature that addresses a multiple ship scenario in which all of (a) the fuel price, (b) the395

market freight rate, (c) the dependency of fuel consumption on payload and (d) the cargo inventory costs are taken396

into account. In the quest for a balanced economic and environmental performance of maritime transport, we think397

that this work can provide useful insights.398
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Appendix A. Results from instance G3 4458
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Piraeus

Port Said

Tunis

Genoa

Valencia

Ship 1
Ship 2
Ship 3

SHIP ID 1

port Pickup/delivery Next payload on the leg remaining weight speed Distance sailing time

stop operations leg (Ktons) to pickup (Kton) (knots) (nautical mile) (days)

0 0–4 0 32 13 0 0

4 P45 4–5 7 25 13 512 1.641

5 D45 P53 5–3 7 18 13 1174 3.763

3 D53 P31 3–1 9 9 13 701 2.247

1 D31 P14 1–4 9 0 13 472 1.513

4 D14 4–0 0 0 13 0 0

SHIP ID 3

port Pickup/delivery Next payload on the leg remaining weight speed Distance sailing time

stop operations leg (Ktons) to pickup (Ktons) (knots) (nautical miles) (days)

0 0–4 0 22 15.968 0 0

4 P42 P41 4–1 6 16 16 472 1.229

1 D41 1–2 1 16 16 1192 3.104

2 D42 P23 P25 P21 2–3 15 1 16 619 1.612

3 D23 3–1 14 1 16 701 1.826

1 P15 D21 1–5 6 0 16 560 1.458

5 D15 D25 5–0 0 0 15.968 512 1.336

s Total 6915 19.729

Figure A.4: Solution with minimum cost (JIT) for instance G3 4.
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Piraeus

Port Said

Tunis

Genoa

Valencia

Ship 1
Ship 2
Ship 3

SHIP ID 1

port Pickup/delivery Next payload on the leg remaining weight speed Distance sailing time

stop operations leg (Ktons) to pickup (Ktons) (knots) (nautical miles) (days)

0 0–4 0 54 6 0 0.0

4 P45 4–5 7 47 6 512 3.6

5 D45 5–4 0 47 6 512 3.6

4 P41 P42 4–1 6 41 6 472 3.3

1 D41 1–2 1 41 6 1192 8.3

2 P23 D42 P25 2–3 6 35 6 619 4.3

3 D23 3–1 5 35 6 701 4.9

1 P15 1–5 6 34 6 560 3.9

5 D15 D25 P53 5–3 7 27 6 1174 8.2

3 D53 P31 3–1 9 18 6 701 4.9

1 D31 1–2 0 18 6 1192 8.3

2 P21 2–1 9 9 6 1192 8.3

1 D21 P14 1–4 9 0 6 472 3.3

4 D14 4–0 0 0 6 0 0

Total 9299 64.576

Figure A.5: Solution with minimum emissions for instance G3 4.
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H-B&P CPM

Fuel Chartering Port inv. In-transit inv. Total # of used Computational Total

cost (K$) cost(K$) cost(K$) cost(K$) cost (K$) ships time (sec) cost (K$)

G1 1 99.5 95.9 176.7 135.9 507.9 1 0.0 507.9*

G1 2 115.9 150.5 153.8 145.6 565.8 2 0.1 565.8*

G1 3 112.6 133.1 108.6 145.6 499.9 2 0.1 499.9*

G1 4 75.8 83.2 93.1 102.1 354.2 1 0.0 354.2*

G1 5 111.1 152.8 130.2 110.3 504.4 3 0.0 504.3*

G2 1 150.6 160.2 262.5 215.1 788.4 3 0.9 1,341.60

G2 2 184.0 192.3 261.1 270.1 907.5 3 0.7 1,340.90

G2 3 163.2 188.1 280.3 227.6 859.3 3 0.7 1,228.90

G2 4 123.7 119.7 168.2 181.3 592.9 2 0.9 947.50

G2 5 127.5 144.0 154.3 182.1 607.9 2 0.9 1,104.60

G3 1 140.5 181.5 133.6 190.1 645.8 3 0.3 798.10

G3 2 118.6 168.5 131.7 145.3 564.1 3 0.6 631.00

G3 3 170.2 214.9 158.4 213.2 756.8 3 0.4 828.20

G3 4 154.8 189.8 204.7 210.0 759.2 3 0.3 863.60

G3 5 172.7 219.5 277.7 225.8 895.8 3 0.3 896.20

G4 1 247.6 249.2 356.0 383.9 1,236.6 3 13.3 7,144.10

G4 2 277.4 275.7 606.1 451.7 1,610.9 3 48.9 7,728.00

G4 3 258.3 263.7 434.9 395.5 1,352.3 3 10.2 7,395.10

G4 4 265.8 284.9 543.3 397.4 1,491.3 3 36.6 7,087.00

G4 5 353.6 386.0 862.1 532.9 2,134.5 3 84.1 8,446.80

G5 1 194.9 230.5 275.8 240.6 941.7 3 5.5 2,140.50

G5 2 156.7 193.3 238.4 184.1 772.5 3 3.2 2,400.90

G5 3 193.9 237.6 262.5 271.4 965.4 3 3.2 3,010.80

G5 4 231.0 265.4 420.9 305.5 1,222.7 3 14.4 2,558.90

G5 5 191.5 225.0 326.0 258.9 1,001.3 3 2.8 3,512.50

G6 1 364.9 387.7 1,126.1 563.8 2,442.5 3 1,800.7 20,523.80

G6 2 291.2 301.5 656.4 448.7 1,697.8 3 1,800.7 15,597.90

G6 3 377.9 393.7 1,032.2 596.7 2,400.5 3 880.5 18,912.70

G6 4 354.6 355.1 954.2 568.5 2,232.3 3 603.6 19,347.30

G6 5 394.5 424.6 1,215.1 587.5 2,621.8 3 1,800.2 20,216.10

G7 1 319.1 354.7 728.6 493.4 1,895.7 3 153.5 9,672.40

G7 2 256.0 294.1 441.5 350.6 1,342.1 3 755.3 7,647.10

G7 3 274.3 332.5 585.1 380.6 1,572.5 3 103.5 5,989.00

G7 4 279.8 283.4 528.0 438.5 1,529.6 3 13.4 8,009.30

G7 5 348.7 402.0 787.5 492.8 2,031.1 3 80.3 9,200.10

G8 1 441.9 479.8 1,447.5 663.4 3,032.5 3 1,721.3 19,592.40

G8 2 435.4 467.3 1,274.9 615.9 2,793.5 3 1,801.5 21,203.50

G8 3 410.3 442.9 1,292.5 621.3 2,767.1 3 1,802.2 20,413.70

G8 4 400.5 423.0 1,248.6 596.1 2,668.2 3 1,800.9 19,972.30

G8 5 393.2 432.2 1,160.9 574.5 2,560.7 3 1,801.8 19,900.90

Average 243.3 269.5 537.5 352.9 1403.2 2.8 428.7 7,500.9

Table 9: Results of the H-B&P and the CPM
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Fuel Price ($/ton) 100 200 300 400 500 600 700 800 900 1000 1100.0 1200.0 1300.0

Total dist (nautical miles) 7641.0 7641.0 7641.0 7641.0 7641.0 7641.0 7641.0 7641.0 7641.0 7641.0 7641.0 7641.0 7641.0

Total trip time (days) 21.5 22.0 22.0 22.3 23.0 23.8 24.5 25.2 25.9 26.7 27.5 28.3 29.1

Total cost(K$) 653.7 707.6 759.2 810.3 858.5 903.5 945.9 986.0 1024.3 1060.4 1094.4 1126.6 1157.0

Fuel consumption (tons) 549.2 516.0 515.9 501.0 465.6 436.1 411.9 391.3 373.4 350.0 330.2 312.9 296.7

Fuel cost (K$) 54.9 103.2 154.8 200.4 232.8 261.7 288.3 313.0 336.1 350.0 363.3 375.5 385.7

Chartering cost(K$) 193.1 189.8 189.8 193.0 200.0 206.9 213.4 219.7 225.6 233.3 240.5 247.3 254.0

Port inv. cost(K$) 199.7 204.7 204.7 204.8 205.2 205.5 206.2 207.4 209.0 215.0 220.7 226.3 232.4

In-transit inv. cost(K$) 206.0 210.0 210.0 212.2 220.6 229.5 238.0 246.0 253.6 262.1 270.0 277.5 285.0

# used ships 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

Average speed (knot) 14.8 14.5 14.5 14.3 13.8 13.4 13.0 12.6 12.3 11.9 11.6 11.3 11.0

B&P time (sec) 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

Table 10: Sensitivity to the fuel price

Relative change of freight rate -60% -50% -40% -30% -20% -10% 0% +10% +20% +30% +40% +50% +60%

Total dist (nautical miles) 7641.0 7641.0 7641.0 7641.0 7641.0 7641.0 7641.0 7641.0 7641.0 7641.0 7641.0 7641.0 7641.0

Total trip time (days) 23.0 22.7 22.4 22.2 22.1 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0

Total cost(K$) 643.4 663.1 682.6 702.0 721.1 740.2 759.2 778.2 797.1 816.1 835.1 854.1 873.0

Fuel consumption (tons) 492.4 497.7 502.7 507.5 511.6 514.3 515.9 516.0 516.0 516.0 516.0 516.0 516.0

Fuel cost (K$) 147.7 149.3 150.8 152.3 153.5 154.3 154.8 154.8 154.8 154.8 154.8 154.8 154.8

Chartering cost(K$) 79.6 98.1 116.4 134.6 152.8 171.3 189.8 208.7 227.7 246.7 265.7 284.6 303.6

Port inv. cost(K$) 204.7 204.7 204.7 204.7 204.7 204.7 204.7 204.7 204.7 204.7 204.7 204.7 204.7

In-transit inv. cost(K$) 211.4 211.0 210.7 210.4 210.1 210.0 210.0 210.0 210.0 210.0 210.0 210.0 210.0

# used ships 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

Average speed (knot) 13.9 14.1 14.2 14.3 14.4 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5

B&P time (sec) 0.4 0.4 0.4 0.5 0.4 0.4 0.3 0.4 0.4 0.4 0.4 0.4 0.4

Table 11: Sensitivity to the charter cost

α = β ($/ton/day) 0.0 0.3 0.5 0.8 1.0 1.3 1.5 1.8 2.0 2.3 2.5 2.8 3.0

Total dist (nautical miles) 6915.0 6915.0 7641.0 7641.0 7641.0 7641.0 7641.0 7641.0 7641.0 7641.0 7641.0 7641.0 7641.0

Total trip time (days) 23.2 20.9 22.7 22.3 22.0 22.0 22.0 22.0 22.0 21.6 21.6 21.6 21.6

Total cost(k$) 307.3 400.9 480.5 551.3 620.9 690.1 759.2 828.3 897.4 966.4 1034.0 1101.6 1169.2

Fuel consumption (tons) 341.5 417.7 467.2 491.1 511.9 515.9 515.9 515.9 515.9 548.3 548.3 548.3 548.3

Fuel cost (k$) 102.4 125.3 140.2 147.3 153.6 154.8 154.8 154.8 154.8 164.5 164.5 164.5 164.5

Chartering cost(k$) 204.9 186.0 197.4 193.4 190.4 189.8 189.8 189.8 189.8 193.3 193.3 193.3 193.3

Port inv. cost(k$) 0.0 50.9 68.4 102.5 136.5 170.6 204.7 238.8 272.9 299.5 332.8 366.1 399.4

In-transit inv. cost(k$) 0.0 38.7 74.5 108.0 140.5 175.0 210.0 244.9 279.9 309.0 343.3 377.7 412.0

# used ships 2.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

Average speed (knot) 12.4 13.8 14.0 14.3 14.5 14.5 14.5 14.5 14.5 14.8 14.8 14.8 14.8

B&P time (sec) 0.3 0.4 0.4 0.4 0.4 0.4 0.3 0.3 0.4 0.3 0.5 0.4 0.3

Table 12: Sensitivity to the inventory cost
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Piraeus

Port Said

Tunis

Genoa

Valencia

Ship 1
Ship 2
Ship 3

SHIP ID 3

port Pickup/delivery Next payload on the leg remaining weight speed Distance sailing time

stop operations leg (Ktons) to pickup (Ktons) (knots) (nautical miles) (days)

0 0–4 0.0 54.0 16.0 0 0.0

4 P41 P45 P42 4–5 13.0 41.0 16.0 512 1.3

5 D45 P53 5–3 13.0 34.0 16.0 1174 3.1

3 D53 P31 3–1 15.0 25.0 16.0 701 1.8

1 D41 D31 1–2 1.0 25.0 16.0 1192 3.1

2 P23 D42 P25 P21 2–3 15.0 10.0 16.0 619 1.6

3 D23 3–1 14.0 10.0 16.0 701 1.8

1 P15 D21 P14 1–5 15.0 0.0 16.0 560 1.5

5 D15 D25 5–4 9.0 0.0 16.0 512 1.3

4 D14 4–0 0.0 0.0 16.0 0 0.0

Total 5971 15.5

Figure A.6: Solution with minimum trip time for instance G3 4.
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