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Abstract. Direct-to-Consumer genetic testing services are becoming more 

ubiquitous. Consumers of such services are sharing their genetic and clinical 

information with the research community to facilitate the extraction of 

knowledge about different conditions. In this paper, we build on these services to 

analyse the genetic data of people with different BMI levels to determine the 

immediate and long-term risk factors associated with obesity. Using web 

scraping techniques, a dataset containing publicly available information about 

230 participants from the Personal Genome Project is created. Subsequent 

analysis of the dataset is conducted for the identification of genetic variants 

associated with high BMI levels via standard quality control and association 

analysis protocols for Genome Wide Association Analysis. We applied a 

combination of Random Forest based feature selection algorithm and Support 

Vector Machine with Radial Basis Function Kernel learning method to the 

filtered dataset. Using a robust data science methodology our approach identified 

obesity related genetic variants, to be used as features when predicting individual 

obesity susceptibility. The results reveal that the subset of features obtained 

through the Random Forest based algorithm improve the performance of the 

classifier when compared to the top statistically significant genetic variants 

identified in logistic regression. Support Vector Machine showed the best results 

with sensitivity=81%, specificity=83% and area under the curve=92% when the 

model was trained with the top fifteen features selected by Boruta. 

Keywords: Bioinformatics, Data Science, Machine Learning, Feature Selection, 

Genetics, Obesity, SNPs. 

1. Introduction 

The global prevalence of obesity has reached epidemic proportions [1]. According to 
the World Health Organization (WHO)1, approximately 2.8 million people die each 
year as a consequence of being overweight or obese [2]. Obesity is a major risk for 
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other chronic diseases which include diabetes, cardiovascular diseases and cancer [3]. 
The occurrence of obesity is a common problem in high-income countries but, its 
frequency is also rising in low and middle-income countries [4]. In England, the 
National Obesity Observatory (NOO) reported that the direct cost to the National 
Healthcare Service (NHS) for treating overweight, obesity and related morbidities 
increased from £479.3 million in 1998 to £4.2 billion in 20072. The effects of obesity 
are so grave that it reduces life expectancy on average by 3 years – in cases of severe 
obesity this can be between 5 and 13 years [5].  

Advances in Human Genomics have provided significant opportunities and research 
suggests that it might be possible to quantify an individual’s susceptibility to obesity 
from an early age and manage risk as individuals’ progress through life [6]. Therefore, 
combining personalised medicine with genomic information and integrating it into 
medical care and individualised risk assessments will allow us to mitigate the long-term 
effects of obesity and its associated co-morbidities. This is being made possible through 
advances in bioinformatics [7], data science [8] and advanced machine learning 
algorithms [9].  

This paper explores these ideas further and proposes a robust methodology to 
combine state-of-the-art bioinformatics and data science to investigate genetic profiling 
and risk factor assessment for obesity. We combined two statistical approaches for 
Single Nucleotide Polymorphism (SNP) evaluation. Risk-Based approach and 
Classification-Based Approach. The first approach is applied to identify statistically 
significant SNPs whilst the second is used to identify a set of SNPs appearing conjointly 
which can serve to predict obesity. The motivation for this research is to identify strong 
genetic markers for use in decision support systems. Data science is utilised to 
automatically build a dataset, using publicly available demographic and genetic 
information provided by individuals. This dataset and subsequent analysis is intended 
to provide a starting point for genetic variants data analysis. 

2. Background 

The decreased costs associated with Deoxyribonucleic acid (DNA) sequencing have 
made it easier to obtain genomic data. For example, the 100,000 Genomes Project3, 
conducted by Genomics England, has sequenced 100,000 genomes from 70,000 NHS 
patients suffering with rare diseases. The information will be used to create a genomic 
medicine service for the NHS and enable new scientific discovery and medical insights. 
In the private sector, genetic screening services are delivered directly to consumers. 
Individuals provide a saliva sample to a Direct-to-Consumer Genetic Testing (DTCGT) 
company and obtain genetic information without any health care provider involvement 
[10]. Many of these DTCGT services use SNP identification to determine ancestry and 
genetic markers associated with specific diseases with the objective of informing clients 
about their health and how to change behaviours to improve it [10].  

The Personal Genome Project (PGP)4 is a non-profit organization created to promote 
the availability and use of personal health information and genome data to help 
accelerate the understanding of genetic variation in humans. While many object to 
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privacy, confidentiality and anonymity issues, the PGP believes that sharing such data 
is fundamentally advantageous for the advances in science and society. This is a view 
endorsed by members of the public who understand the risks and share their personal 
information. The founding pilot project of the PGP was initiated by the Harvard 
Personal Genome Project, which now hosts publicly shared genomic and health data 
from thousands of participants. In 2005 information on 10 fully identified individuals 
was available; today, more than 4000 US participants have publicly shared their 
genomic information. There is also evidence that information across initiatives is being 
shared with genetic data from 23andMe appearing in PGP datasets [11]. 

Bioinformaticians routinely extract information from websites using web-scrapping 
techniques to obtain content originally presented for human use [12].                                                                                                                        
Collecting this data is tedious and time-consuming. Several institutions have invested 
heavily in data collection, gathering clinical and genetic data within different domains 
for decades. This has resulted in significant amounts of big data [13] and today 
organisations, such as the National Institute of Health (NIH), which sponsored the 
Database of Genomes and Phenotypes (dbGaP), are making this data available to 
interested parties, subject to specific terms and conditions [14]. However, to access this 
data, researchers must follow a data request procedure that can be restrictive to general 
users from other domains that want to make use of genetic data.  Consequently, other 
organisations such as the PGP rely on a different strategy defined by publicly accessible 
data that anybody from diverse backgrounds can use to get started on genetic data 
analysis. Having access to such repositories has had a huge positive impact on the 
scientific community who no longer need to generate their own data for the studies that 
they conduct.  

Approximately 99.5% of the total number of base pairs (nucleotides) in the human 
genome are identical for any two human individuals [15]. Hence, in genetic association 
studies, bases where there is variation between humans are commonly considered. 
Studies utilizing hypothesis-free methodologies such as genome-wide association 
studies (GWAS) have been used in obesity studies to identify many obesity related loci. 
GWAS permit the analysis of a large number of genetic variants (whole genome) for 
association with traits of interest. In statistical association test, logistic regression is 
often the preferred approach as it has been extensively developed although it is not the 
only one [16]. Currently, associations of common variants usually should reach 
threshold levels of P < 5x10-8 to be considered significant [17]. Conversely, variants 
with threshold levels of P < 10-5 are termed suggestive SNPs [18] and could be studied 
further. The importance of GWAS is advancing scientific understanding of disease 
mechanisms and providing starting points and potential opportunities for researchers to 
improve the development of medical treatments. 

Following an open data initiative, genetic association analysis and predictive 
modelling strategies are conducted in this study for the analysis of obesity as a binary 
trait.  

3. Materials & Methods 

The dataset used in this paper comprises 230 participants from the PGP, which donated 
genetic data from Direct-to-Consumer genotyping. This data is extracted and analysed 
by 23andMe using microarray genotyping, which provides an efficient and cost-
effective way of evaluating genetic variation in individuals and across populations [19]. 
In addition to genetic data, clinical information is also provided. Collected contributors 



are aged between 23 and 79 years of age (average age 46.59) and are all from the United 
States of America. The average height, body weight and BMI of all participants is 1.74 
meters, 78.97 kg, and 25.97 respectively. Of the total population, 150 (65.22%) are 
males and 80 (34.78%) females. All participants considered in the study reported white 
as ethnical background. 

3.1 Data Collection and Description 

During the initial data collection process, 733 observations/participants and 9 variables 
were scrapped from the PGP website5. Table 1 provides a description of the data fields 
extracted for each participant.  

The Participant_ID is a unique participant identifier assigned in the PGP. The 
variable Data link provides a Uniform Resource Locator (URL) used to download the 
genetic profile of each participant. In addition, DoB, Gender, Weight, Height, Ethnicity, 
and Blood Type contain personal information for each participant. Data about the 
condition Type 2 diabetes (T2D) was also included, although more features based on 
the existing variables were subsequently incorporated to the clinical data file. 

The resulting dataset contained several empty fields. Only observations with 
complete values for the variables in Table 1 were retained. Individuals who reported 
being of ethnicities other than white were excluded to avoid population stratification in 
our analysis. This reduced the dataset to 235 observations. The data links for five 
participants were incorrect so these were also discarded from the final dataset, resulting 
in 230 individuals.  

Full genome profiles were downloaded in txt format using the variable Data Link 
identified in Table 1. Only full genome data was included in the analysis i.e., if a 
participant from the PGP uploaded exon and whole genome data to the PGP website, 
only the whole genome profiles were considered since full genome provides complete 
representation of the genome. The genetic profile of each participant contains four 
variables: rsid, chromosome, position and genotype, and several hundred thousand 
observations that depend on the amount of variants discovered by the genotyping 
process used by 23andMe [19]. The variables included in the genetic profiles represent 
genetic variants or SNPs. 

Table 1: Variables selected in the web scraping process. 

Variables Description 

Participant_ID Participant ID 

Data link Genetic data URL 

DoB Date of Birthday 

Gender Gender 

Weight Weight in Kg 

Height Height in meters 

T2D Type 2 Diabetes 

Ethnicity Ethnical background 

Blood Type Blood Type 
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Downloaded genetic profiles were converted to binary file format [20]. This type of 
format allows for a more efficient and convenient way of manipulating SNP data when 
using open source software for automated GWAS quality control (QC) and analysis, 
such as PLINK [20]. Subsequently, all 230 genetic profiles were merged into one main 
binary file (.bed, .bim, .fam). Finally, two main data frames were created – one 
containing the clinical information and the other containing genetic variants identified 
by 23andMe for the 230 participants. 

Additional features were generated using information from existing columns. These 
include body mass index (BMI), constructed from the Weight and Height variables and 

calculated using the metric formula, BMI =
Weight (Kg)

(Height(m))2. A Status feature was also 

generated from the BMI result. Following the WHO classification for BMI6, 5 standard 
weight status categories associated with BMI ranges for adults were derived. Table 2, 
summarizes the number of participants included in each status category. The category 
Normal range has the highest representation among the participants (50%) whereas 
Underweight is the category with the lowest representation (1.74%). The categories 
Overweight, Obese and Extremely obese, when grouped together, constitute 111 
participants. In other words, 48.26% of the participants analysed were included in one 
of these three status categories. Hence, as shown in Table 2, two closely balanced 
classes based on the BMI were created, representing the phenotypic variable for risk 
prediction of obesity. The variables considered in the clinical data frame are: 
Participant_ID, age, gender, height (m), weight (kg), BMI, Status, T2D, Race and blood 
type. In the case of the genetic information, the variables considered are: SNP name 
(rsid), chromosome number, position in the DNA sequence and genotype. 

Table 2: BMI status among participants included in the study. 

Class Status Total number 

Normal 

51.74% 

Underweight 4 

Normal range 115 

Risk 

48.26% 

Overweight 65 
Obese 41 

Extremely obese 5 

3.2 Data Pre-processing  

Analyses were conducted using PLINK and R software7. After the data set construction, 
and prior to analysis, data QC was performed. Cases and controls in the present study 
are defined as risk and normal. Following protocols for genetic case-control association 
studies, QC was performed on individuals and then on markers, to optimise the number 
of SNPs remaining in the study [21].  

In the per-individual QC process, 7 individuals were removed leaving 223 remaining 
individuals of which, 107 are cases and 116 are controls.  Individuals were excluded if 
they showed abnormal heterozygosity, discordant sex information, were duplicated or 
related individuals, and individuals of divergent ancestry. Strict values for missing rate 
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were not considered since most samples in the study would be removed. This might be 
an indicative of poor quality DNA sample [22].  

In the per-marker QC process, SNPs with minor allele frequency (MAF<4%), call 
rate of <98% and deviations from Hardy-Weinberg equilibrium (p<1×10–3) were 
excluded. A MAF cut point of 4% is commonly applied in small sample settings due to 
statistical power considerations [23]. 

3.3 Genetic Association Analysis 

For discovery, association analysis on 107 risk cases and 116 controls was performed 

by testing SNPs and individuals that satisfied quality control. Logistic regression was 

used to identify SNPs showing a strong association with the trait of interest. However, 

none of the SNPs reached significance level (P-value < 5×10-8) nor were suggestive of 

association (P-value < 1×10-5) as shown in Fig. 1(a), a Manhattan plot of genome 

genome-wide association analysis results. The figure illustrates, in the y-axis, the level 

of statistical significance as measured by the negative log of the corresponding P-value, 

for each SNP. Significant and suggestive levels are represented in red and blue 

respectively. Each typed SNP is indicated by a dark-blue or orange dot. In the x-axis, 

SNPs are arranged by chromosomal location. 
While no SNPs were identified as significant or suggestive, a subset of SNPs with 

P-values < 1×10-3 were considered for subsequent analysis as similarly performed in 
[24]. Consequently, a total of 261 SNPs showing the strongest association with the 
phenotype (risk or normal) were identified. Extracted features were ordered by 
statistical significance, being the most important those with lower P-values. In Fig. 1(b), 
SNPs with P-values lower than 10-3 are highlighted in green. The red line represents 
the significant level while the blue line indicates, this time, the new threshold 
considered (P-values < 1×10-3). The figure displays a Manhattan plot of SNPs 
considered after suggestive threshold modification. 

 
Fig.1. Manhattan Plot for GWAS: (a) suggestive threshold P-value < 1×10-5, (b) after 

suggestive threshold modification P-values < 1×10-3. 

4. Feature Selection  

After features were extracted, we explored feature selection to determine which features 
might be the most relevant when discriminating between risk and normal classes.  

 

 

 

 

(a) (b) 



Some samples had missing genotypes for some individuals so we removed them, 
resulting in a final number of 185 SNPs considered as features for classification 
analysis. Additionally, age, gender and T2D were not included in the total set of features 
i.e., only genetic variants were considered.  

Feature selection is performed using Boruta, a random forest (RF) based feature 
selection method, which provides unbiased and stable selection of important and non-
important attributes [25]. Random Forest has been successfully used in genomic data 
analysis as it is highly data adaptive and accounts for correlation as well as interactions 
among features[26].  

Features selected identified were ranked by importance and divided into three 
groups. The first group contained the top five most prominent features, the second 
group the top ten and the third group the top fifteen.  

Results were compared against those reported when the top most notable features 
extracted from association analysis were considered, as we will discuss in the following 
sections. 

5. Results 

This section presents the classification results for normal and risk BMI status using data 
extracted from the PGP website.  

After the QC filter process, 722,512 genetic variants and 223 people (145 males and 
78 females) remained for the analyses. Subsequent genetic association analysis using 
logistic regression allowed us to reduce the number of variants to 261. However, 
missing genotypes in some of the samples caused a further reduction in the number of 
SNPs (185 SNPs remained). 

The top features extracted after QC and association analysis and, those selected by 
Boruta, are used to model a Support Vector Machine with Radial Basis Function Kernel 
(SVM) classifier. Support Vector Machine is a well-known machine learning algorithm 
which provided the best results in previous experiments using similar data [27].The 
performance is measured using sensitivity (SE), specificity (SP) and area under the 
curve (AUC) values. In this study, it is important to predict risk classes, therefore SE 
are considered higher priority than SP.  

K-fold cross validation is used as a prediction metric with 10 folds and 30 repetitions. 
The average performance obtained from 30 simulations is utilized. This number is 
considered, by statisticians, to be an adequate number of iterations to obtain an 
acceptable average. Support Vector Machine was designed and evaluated using 
appropriate training and testing sets. The selection of hyperparameters to establish an 
approximately optimal configuration for SVM is addressed using Caret for random 
search parameter tuning [28]. Tuning parameters, free parameter of the Gaussian radial 
basis function (sigma) and penalty cost (C), shown in Table 3 and Table 5 produced the 
models with the best receiver operator characteristic (ROC) curve values.  

The performance of SVM when the algorithm is trained and tested with the top 
features identified in the association analysis ranked by P-value is shown in Table 3 and 
Table 4 respectively. Conversely, the performance of SVM when fed with the features 
selected by Boruta are organised in Table 5 for training and Table 6 for testing. Details 
on the SNPs extracted and selected can be found in Appendix. 



 

 

 

 

Table 3. Training 

Association 

Features 
Sensitivity Specificity ROC 

Best tuning 

parameters 

Top 5 SNPs 0.6322 0.8476 0.7859 
σ = 0.0215 

C = 1.0203 

Top 10 SNPs 0.7856 0.7325 0.8672 
σ = 0.0125 

C = 1.0203 

Top 15 SNPs 0.8399 0.8578 0.9142 
σ = 0.0105 

C = 1.0203 

Sensitivity, Specificity and ROC values for SVM performance in the training 

data when using extracted features from association analysis. 

Table 4. Prediction 

Association 

Features 
Sensitivity Specificity ROC 

Top 5 SNPs 0.7692 0.6897 0.8150 

Top 10 SNPs 0.6923 0.9586 0.8622 

Top 15 SNPs 0.8462 0.8276 0.9092 

Sensitivity, Specificity and AUC values for SVM when 

predicting the two classes in the test data, using extracted 

features from association analysis. 

Table 5. Training 

RF Features Sensitivity Specificity ROC 
Best tuning 

parameters 

Top 5 SNPs 0.7514 0.7855 0.8318 
σ = 0.0183 

C = 1.0203 

Top 10 SNPs 0.7849 0.7704 0.8482 
σ = 0.0106 

C = 1.0203 

Top 15 SNPs 0.8291 0.8071 0.9011 
σ = 0.0120 

C = 1.0203 

Sensitivity, Specificity and ROC values for SVM performance in the training 

data when using features selected by Boruta. 

Table 6. Prediction 

RF Features Sensitivity Specificity ROC 

Top 5 SNPs 0.6154 0.7931 0.8176 

Top 10 SNPs 0.7692 0.7931 0.8674 

Top 15 SNPs 0.8077 0.8276 0.9231 

Sensitivity, Specificity and AUC values for SVM when 

predicting the two classes in the test data, using features 

selected by Boruta. 



To illustrate the performance in binary classification, it is particularly advantageous 
to use the ROC curve. It is a convenient way of displaying the cut-off values for the false 
and true positive rates. The ROC curves in Fig. 2 illustrates the SE, SP and AUC values 
in Table 4 and Table 6. The models with ROC curve closer to the top left corner show 
higher performance as the SE and SP increase. Therefore, the area under the curve 
increases as the curve moves away from the grey diagonal line towards top left corner 
of the graph. 

 

Fig. 2. ROC curves for PGP data when using the subsets of SNPs 

extracted by association analysis and selected by Boruta. 

6. Discussion  

The web-scrapping process applied in this study is susceptible to failures in the future if 
the PGP website structure changes. This is an issue referred to as “medieval torture” 
[29].  

PGP dataset is pre-processed via standard QC and association analysis protocols for 
GWAS. Although no SNPs were identified as significant or suggestive, we included 
SNPs with P-values lower than 1×10-3 for subsequent analyses as accomplished 
somewhere else [24]. After QC, 722,512 SNPs were considered for association and 
lately reduced to 261 SNPs showing certain level of importance among all the variants, 
using logistic regression. These SNPs are highlighted in Fig. 1(b). Finally, 185 SNPs 
were considered for classification analysis. 

The total 185 features are a subset with the most relevant SNPs obtained after 
applying QC and logistic analysis to the genetic data binary files. The top most 
significant features were then organised in three groups to be compared against the most 
relevant features selected by Boruta. 

Using RF-based algorithm as a feature selection technique, three groups of the top 
features with the highest discriminatory capacity were selected.  



Results revealed that using RF-based algorithm ranking of features resulted in an 
improvement in the performance of SVM when predicting the risk and normal cases. All 
the ROC values obtained with the three sets of SNPs in Table 7 are higher than those 
obtained by the set of most statistically significant features listed in Table 5. In most 
cases, SE were lower than SP, which is not encouraging given that predicting 
pathological cases is more important than those that are normal. However, when RF-
based method is used, the top fifteen features produced a closely balance SE and SP 
values of 81% and 83% respectively.  

Results in Table 7 indicate that SVM showed the best results with SE=81%, SP=83% 
and AUC=92% when the model was trained with the top fifteen features selected by 
Boruta. These features are listed in Appendix section. Reducing the number of features 
to five did not result in an improvement in the classifier performance.  

The ROC curves from Fig. 2 shows how using the top fifteen features selected by 
Boruta (red ROC curve) allows the highest discrimination between the two classes 
considered in our study. The lowest performance was achieved with the top five SNPs 
extracted in association analysis, which is represented in green colour in Fig. 2. 

Additionally, the most important feature reported in both approaches was rs4821758 
as reported in Appendix. 

7. Conclusions 

This paper focuses on an approach for selecting informative SNPs from publicly 
available data collected using web scrapping techniques. The created dataset was built 
from research-grade data (that is, not for clinical use), and the conductors of the PGP 
stated that many types of errors are possible. Some of these include errors in the data, 
failure to report or discover significant genetic issues and ambiguous or false positive 
findings. This suggests the utilisation of a more reliable data set in future studies, for a 
solid discovery of genetic risk variants in complex disease prediction. 

A small portion of SNPs that have main effects on obesity as binary trait, have been 
selected after applying QC and association analysis using logistic regression. 
Subsequent analysis applying a Support Vector Machine with Radial Basis Function 
Kernel classifier are conducted for the evaluation of the model in two scenarios. First, 
the algorithm was evaluated using a subset of the most statistically significant genetic 
variants obtained from GWAS analysis, based on a modified suggestive threshold. 
Then, results were compared when a subset of features were selected using the Random 
Forest based algorithm Boruta. Using the selected features improved the performance 
of SVM although the subset of fifteen SNPs achieved the highest performance. 

While the results show specific genetic variants that could serve as good 
discriminators in the investigation of classification studies, more analysis with a higher 
representation of samples must be carried out. We propose a set SNPs to be used in 
future studies as features for the prediction of obesity and other comorbidities such as 
T2D. The identified genetic variants need to be validated and contrasted with other 
studies, particularly the SNP rs4821758, which was the most important feature in the 
association analysis as well as the feature selection process using Boruta. Future work 
will consider the discriminative capacity of the SNPs identified in this study evaluated 
in a more complete dataset. A comparison between various feature selection techniques 
will also be considered. 
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