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Abstract:  This paper presents a methodology applying Monte Carlo methods with delay-time 

analysis to test the effects of scheduled maintenance and inspection actions on factors affecting the 

operational efficiency of a marine system which is subject to degradation. The aim is to demonstrate 

how a Monte Carlo model incorporated into delay time analysis can be used to predict the transition 

behaviour of a system under analysis. The model presented in this paper focuses on the effects on 

system failure probability and downtime of various maintenance and inspection policies. The impact 

on spare part requirements is also investigated.   
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1. Introduction   

Maintenance and inspection policy is an important part of any study assessing Reliability, Availability, 

Maintainability and Safety (RAMS). A number of papers are available on the subject of maintenance 

optimisation and decision making for engineering systems1-10. Maintaining key systems contributes 

substantially to the effective operation of a marine vessel. Maintenance can be described as a 

combination of all technical and administrative actions, including supervision actions, intended to 

maintain or restore a state in which the system can perform its required function11. 

Due to the large number of factors which may affect maintainability it is difficult to optimise 

maintenance and inspection policies for a given system. As well as aspects such as system 

unavailability and crew costs additional factors must be considered to ensure that the 

implementation of maintenance and inspection policies are not overly detrimental to productivity. 

Factors such as the effective stocking of spare parts can have a major influence on system operation 

due to factors such as downtime which may be incurred as a result of having insufficient spare parts 

for repair12. Spare part stocking is especially important in the marine industry as vessels will often 

operate in remote locations where the ordering of additional parts is not desirable. As well as 

ensuring that sufficient numbers of spare parts are available should a fault occur, it is important not 

to over stock due to limited space and cost factors. 

 

The degradation of components is also an important factor when assessing the maintainability of a 

system. A common method for modelling degradation is to plot the life cycle of a component using a 
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Weibull distribution3,13,14. However, extensive data is required to produce an accurate Weibull 

distribution and this data is not always readily available. Other methods have been proposed using 

simulation to model the degradation of a system15,16. These methods are of particular interest to the 

marine industry as it is difficult to obtain sufficient data, concerning reliability, over the life-time of 

marine systems due to uncertain operating conditions. 

A Monte Carlo (MC) model has been developed previously to assess the efficiency of a marine 

cooling system17. The MC model provides reliability data such as system failure probability, 

downtime and maintainable item contributions taking into account the complex nature of the 

systems transition behaviour. A method is also included in the previously developed model which 

determines the failure mode of a given transition. This updates the repair time of components based 

on the failure mode rather than relying on deterministic repair times. The model was found to 

produce accurate results for system reliability as well as useful information regarding spare part 

requirements.  

The model presented in this paper develops this MC model by focusing on modelling the effects of 

scheduled maintenance and inspection actions within the system transition logic. Additionally a 

method of modelling component degradation has been added and the manner by which spare part 

stock is assessed has been modified.  It has already been shown in previous papers that MC methods 

can be a valuable tool for the optimisation of maintenance and stock policies for deteriorating 

systems15,16,18. To implement the proposed model MC sampling has been applied in conjunction with 

an adaptation of Delay-Time Analysis (DTA). The model is intended to realistically assess the effects 

of maintenance and inspection actions in a single model by allowing said actions to have a direct 

effect on the analysis of the system under consideration.  

2. Background  

2.1 Delay - Time Analysis  

Currently the most commonly used methods for reliability and maintenance studies are based on the 

concepts of mean time to failure (MTTF), or mean time between failures (MTBF). These methods can 

often be unreliable due to the fact that they rely on data that can be inaccurate and can produce 

unrealistic estimates for reliability data. These methods can often lack sufficient testing verification 

or validation19.  

The methods of implementation for the inspection algorithms used in the model presented in this 

paper, draw largely from DTA and are applied using simulation. DTA is an alternative method for 

analysing inspection policies which provides engineers with a tool to help minimise system downtime 

as well the downtime of individual components within the system. DTA achieves this by introducing 

the idea of periodic inspection intervals. If the way in which defects arrive can be modelled along 

with their associated delay-times, the DTA concept can be applied to understand the relationship 

between inspection frequency and system failures20-22. Fig 1 illustrates how DTA models the 

behaviour of component failures. 
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Fig 1: Diagram illustrating Delay-time concepts [Adapted from Christer19]. 

In Fig 1 u represents the initial ‘tell-tale’ time at which signs of a fault may be detected and h 

represents the ‘delay-time’ from the point u, to a failure occurring. The point u is used to model the 

arrival rate of defects and the value of h determines the amount of time in which a fault may be 

detected before propagating to failure. When using DTA to assess inspection policies it is assumed 

that if an inspection occurs within the period, h, the fault is detected and a failure is prevented 

incurring a significantly reduced downtime for repair. By modelling the failure pattern of a system in 

this way DTA can compare different inspection policies to determine the best option for detecting 

the greatest amount of faults. Performing a comparison of the different options allows inspection 

policies to be implemented such that system reliability and availability are optimised. In the model 

presented in this paper DTA is applied by using MC sampling to model the arrival rate of failures to 

determine the arrival rate of defects and the initial point, u. In standard DTA the opposite is true such 

that the point, u, is used to determine when a failure will occur. For this reason the method for 

analysing inspection policies presented in this paper has been dubbed ‘reverse – DTA’. 

DTA has been previously applied using MC methods by Cunningham et al11. The process was 

separated from the rest of the model focusing only on the applicability of MC methods to DTA. 

Cunningham et al11 use MC to facilitate DTA looking at both perfect and imperfect inspections. The 

model presented by Cunningham et al11 can be considered in two parts. MC is used to generate 

arrival rate of defects and delay-times values. The analysis of optimum inspection intervals is 

considered separately.  

The model presented in this paper contains the DTA algorithm within a larger MC simulation. This is 

so that the process is contained within the modelling of the system and therefore affects the 

transition logic of the system depending on the outcome of the DTA. Rather than gathering failure 

data and applying DTA manually the inspection actions taken are intrinsically linked to the system 

behaviour. This means that the DTA process directly affects the downtime and reliability of the 

system. The system is modelled such that inspection actions are being carried out throughout the 

course of the mission time rather than looking at effects of inspection actions after the analysis has 

been performed. This means that the inspection policy itself can have an effect on the arrival rate of 

defects.  

An assumption of constant arrival rate of defects, kf, is reasonable for systems that have been 

running for a long enough period to be considered mature. This assumption is based on the idea that 

repair actions are perfect. When applying DTA with the assumption of perfect repair this is 

considered to be the case and the value, kf, follows a Homogeneous Poisson Process (HPP). The 

parameters for standard DTA are defined by Christer & Wang20 in detail. 

The model presented in this paper considers repair actions taken upon inspection to be imperfect. In 

this model DTA is applied in a different way to standard models. This is because the arrival of failures 

is determined first and the model works backwards to determine when signs of defect were apparent 

u Failure 

h 
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based on the value, h. The arrival of failures is obtained using MC analysis based on the failure rate, 

λ, which varies due to the degradation present in the model. Brown & Prochan23 suggest that 

imperfect repair should be considered for models looking at ‘minimal repair at failure’. When 

defining scheduled maintenance actions within the current model, repairs are considered perfect 

and λ is set to ‘as good as new’. This is not true for repair upon inspection, as it is considered that 

‘minimal repair’ actions are taken. For this reason repair actions upon inspection are considered to 

be imperfect meaning that the arrival rate of defects follows a Non-Homogeneous Poisson Process 

(NHPP). As with standard DTA it is assumed that inspections are perfect such that faults present upon 

inspection will always be identified. 

In standard DTA it is assumed that downtime is incurred upon inspection regardless of whether a 

fault is detected. This is because operational research is performed upon inspection meaning the 

dissection of certain parts is required. In the model presented in this paper it is assumed that all 

inspections are purely observational meaning that downtime is only incurred if a fault is detected 

and repair actions are required.  

2.2 Degradation of Components 

A common assumption in reliability studies is that of constant failure rate when analysing 

components during their ‘steady state’ period. Though work has been done on modelling 

degradation of components much of it requires significant historical data making it difficult to 

implement accurately3,13,14,28. Alternative approaches have been found however, using MC methods 

to model random degradation by sampling from a distribution that is a function of the failure 

probability of the component under analysis16-17.  These models randomly update the degradation of 

components at different intervals making it possible to assess when the component reaches a 

predetermined degradation threshold at which the component is considered failed. 

The study performed by Barata et al15 models degradation as a function of the failure rate. A 

degradation threshold is set based on a failure rate that is considered unacceptable for the 

component under analysis. The study performed by Cadini et al16 uses similar methods to suggest a 

model for condition-based component replacement based on degradation of active components. 

Ideas have been drawn from Cadini et al15 and Barata et al16 so that a method for determining 

random degradation can be incorporated into the model presented in this paper. A calculation has 

be implemented which is used to assess the degradation of the component which is undergoing 

transition. Based on the level of degradation the manner in which the system transitions, is altered. A 

model for random degradation has been included as degradation gives additional depth to the 

model. By taking into account degradation other aspects of the system behaviour such as repair 

actions are given increased practical meaning within the model. 

 

 

 



5 
 

3. Methodology 

Fig 2: Process of development for proposed Monte Carlo maintenance model. 

Development of initial 

Monte Carlo model  

Suggest improvements 

Define system Define operational constraints of the 

system as well as behaviour of 

maintenance and inspection actions 

Determine a suitable method to 

model component degradation and 
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different levels of component degradation 

Modify the inventory algorithm to 
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Map system transition logic 

using flow diagrams 

Analyse spare part data to 

improve the results acquired 

from the existing inventory 

system 

Produce results Validation 

Analyse the results obtained and test the 

effects on RAMS for the system for 

various maintenance and inspection 

policies  

Fortran code generation 

Run simulation a large 

number of times 
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Fig 2 illustrates the development of the proposed model. After the development of the initial MC 

model a number of improvements have been suggested to increase the scope of the model for 

decision making purposes. In order to model the effects of maintenance and inspection policies as 

well as component degradation a number of additional techniques must be defined. Additional data 

is also required for the improvement of the previously developed inventory system to assess spare 

part requirements. 

3.1 Defining the System 

The general constraints for the system behaviour of the model presented in this paper are defined by 

the logic of the initial MC model. A simple system is used to demonstrate the logic of the applied 

methods. This system is shown in Fig 3. 

Fig 3: Diagram showing the set-up of a simple system. 

The system in Fig 3 consists of two pumps each with three possible states i.e. working (W), failed (F) 

and ‘cold standby’ (SB). The system is defined such that only pump B can be in the state SB when 

pump A is working. Table 1 shows the possible states for the system. The vector B represents the 

state of the system and b1 and b2 represent the state of pump A and B respectively. 

Table 1: System states and their associated system state vector (B). 

B b1  b2  Flow Out? 

1 W SB YES 

2 W W Yes 

3 F W YES 

4 W F YES 

5 F F NO 

  

Table 1 shows the possible states for the system defined by the MC model before the modelling of 

scheduled maintenance, inspection actions and component degradation has been implemented. A 

number of additional factors must be considered, to facilitate the implementation of the new 

methods as these have a significant impact of the operational constraints of the system.  

Due to the nature of MC analysis a large number of trials are required to provide accurate data on 

item contributions for the system. To obtain accurate results the number of trials required is often in 

excess of 106. Over a number of trials a large number of failures will be attributed to each 

maintainable item and an average can be obtained by dividing the number of contributions by the 

number of trials. This is always the case when obtaining averages using MC analysis. This then shows 

how many of the total component failures are attributed to each specific part on average over the 

specified mission time. The system state vector (B) lists the possible states of each constituent 

component. Under certain conditions, a component’s state can change from one to another. 

3.2 Modelling Scheduled Maintenance     
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Over the past decade, there have been many reported developments on scheduled maintenance 

with reference to the use of DTA24. For example, a stochastic model for joint spare parts inventory 

and planned maintenance optimisation was proposed and demonstrated through the DTA developed 

for inspection modelling25,26. Another example is that the periodic inspection interval for systems 

with cold standby system was optimised using the DTA27. However, it is worth noting that the 

fundamental theory for modelling scheduled maintenance remains the same. This study uses the 

basic preventive maintenance theory incorporating the fundamental delay time concept. 

The timing of scheduled maintenance in this model is based on system operating time rather than 

the operational time of each component. The desired time period between scheduled maintenance 

for each component must be specified to determine how often maintenance will occur during the 

analysis. When a maintenance action occurs the system transitions as if the component under 

maintenance has failed, but a failure of the component is not actually logged. After maintenance has 

been completed the parameters for the component are reset and it is considered to be ‘as good as 

new’. The failure rate, λ, of the component is reset meaning degradation is set to zero, and the time 

of the next scheduled maintenance is set to the time when maintenance has been completed plus 

the predetermined period between maintenance actions. The downtime incurred by maintenance is 

also logged. If the component has failed it is considered that maintenance has been performed to 

repair the component and the values are similarly updated with the addition that a failure of the 

component is logged.  

Before scheduled maintenance actions are analysed a random transition time, T, is generated by MC 

sampling from the initial model. The component undergoing transition is also determined by MC 

sampling. Once these parameters are established the model checks which component is next for 

scheduled maintenance. For the system shown in Fig 3 this is determined by the values TMNA and 

TMNB which represent the time when maintenance is scheduled for pump A and pump B 

respectively. The model then checks whether the current transition has occurred before or after 

scheduled maintenance should have been performed. For example if it is determined that pump A is 

due for maintenance first and the system is in the nominal state, B =1, the model checks if the 

transition time, T > TMNA. If the transition time, T, exceeds the time when maintenance should occur 

a transition occurs without a component failure at the scheduled maintenance time and the values 

are updated depending on which component is under maintenance. The initial time for the analysis, 

T0, is then set to the scheduled maintenance time and the system is put back online in the 

appropriate operating condition. Fig 4 illustrates the process of such a transition. 

Fig 4: Example transition when scheduled maintenance is performed. 

Fig 4 shows that if T > TMNA the random failure obtained from MC sampling effectively does not 

occur as scheduled maintenance is performed beforehand. This changes the events which have 
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occurred in the system as a transition has taken place before the randomly sampled time. In this case 

the initial time parameter, T0, is set to TMNA and the analysis continues in state B = 2. Subsequent 

transitions will then check if pump A has become available. Once maintenance is completed the 

analysis continues from T0 = TMNA + τ, where τ is the repair or maintenance time. The value of TMNA 

is then updated as shown in Fig 4 where TMGA is the period between scheduled maintenance for 

pump A. In Fig 4 TMNA > Tm, where Tm is the mission time for the analysis, meaning no subsequent 

maintenance actions on pump A will be performed during the analysis period. It is assumed that if no 

subsequent transitions have been detected, scheduled maintenance has been performed without 

effect on the system.  

In Fig 4 the value, MAIN (1) has been presented. This is a value which determines the nature of the 

transition of pump A. For example, if MAIN (C) = 1 the transition has been caused by scheduled 

maintenance and if MAIN (C) = 0 the transition has been caused by a random failure, where, C, is a 

value representing the component under analysis (i.e. C = 1 and 2 for pumps A and B respectively). 

This has been implemented to reduce the number of system states. Note that if MAIN (C) = 1, a 

component failure is not logged by the model. The addition of scheduled maintenance gives rise to a 

number of additional system states. This is due to the fact that each component can be in the states 

W, F, and SB as well as the additional case of the component being under scheduled maintenance. 

Table 2 shows the system states for the system in Fig 3 when maintenance is possible where, ‘M’ 

signifies that the component is under maintenance.  

Table 2: Possible system states for maintenance model test case. 

B b1 b2 

1 W SB 

2 W W 

3 W M 

4 W F 

5 M W 

6 M M 

7 M F 

8 F W 

9 F M 

10 F F 

 

The value, MAIN(C), allows the system states shown in Table 2 to be reduced to those presented in 

Table 1. Rather than defining the logic for an entirely different system state an algorithm is 

implemented based on MAIN(C) to determine the nature of the previous transition. Looking at Table 

2 it can be considered that B=3 and B=4 are the same system state with certain variables modified 

based on the value of MAIN(C) from the previous transition. It is important to update this value as it 

can determine whether or not a system failure occurs later in the analysis. If a component failure 

causes the system to become unavailable and the value of MAIN(C) = 0 for the previous transition 

then a system failure, SF, will be logged as both components are failed. If the value of MAIN(C) = 1 for 

the previous transition however, system downtime is logged but SF is not updated as it is considered 

that the previous component is not failed as it has been taken offline voluntarily.  



9 
 

Consider again the case where pump A is scheduled for maintenance next. If the transition time, T < 

TMNA, then no subsequent maintenance actions have yet been performed and the system 

transitions as if a random component transition has occurred. If it is determined that a failure has 

occurred, the system will transition at T. At this point corrective maintenance is performed on the 

failed component in the same manner as if the component had been taken offline for scheduled 

maintenance. The key difference with this mode of transition, aside from the time at which the 

failure has occurred, is the value of MAIN(C). The value of MAIN(C) is 0 rather than 1 showing that 

the component is failed rather than under scheduled maintenance. The value of TMNA is still 

updated upon the component coming back online as actions equivalent to scheduled maintenance 

have been performed upon the failure occurring.  

The model has been defined such that scheduled maintenance will not occur if taking the component 

offline for maintenance will cause the system to become unavailable. If this is the case the 

maintenance schedule for the system is delayed by the period between the time when scheduled 

maintenance should have occurred and the time when a sufficient number of components are online 

such that taking a component offline for maintenance will not lead to system unavailability. This 

means that the system cannot enter a state equivalent to that of B = 6 in Table 2. The state B = 9 is 

still viable as the failure of pump A may occur after pump B has been subject to maintenance.  

It is important that the model determines component downtimes due to scheduled maintenance 

between the time of last transition, T0 and Tm where no subsequent transitions have occurred. At the 

end of each trial the model checks how many maintenance actions are scheduled to occur between 

T0 (equal to 0 if no transition occurs previously) and Tm. Once this is established the model updates 

the component downtimes due to maintenance before exiting for the next trial.  

3.3 Modelling Inspection Actions   

When modelling inspection actions it is considered that any corrective repairs performed upon the 

detection of a fault incur less downtime than scheduled maintenance or random failures as only 

‘minimal repair’ actions are performed. If a fault is identified upon inspection the repair actions 

performed are considered to be imperfect and the component is subject to random degradation. 

Unlike scheduled maintenance, inspections are performed based on the operational time of 

components rather than system operating time meaning that only components which are active will 

be inspected.  

A form of DTA has been applied within the MC analysis to allow the effects of varying inspection 

policies to be modelled in a single analysis. Rather than generating fault occurrences, MC sampling is 

used to provide component failure times for the initial developed model. Using so called, ‘reverse-

DTA’ inspections are analysed by looking at the time of failure.  Then by using a predetermined h 

value the model works backwards to find the initial point, u. With this the model is capable of 

determining whether an inspection has been performed within the delay time period. Fig 5 illustrates 

this process. 
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Fig 5: Illustration of inspection analysis. 

At point 1 in Fig 5 the failure time, T, is obtained by MC sampling. At point 2 the time at which the 

initial ‘tell-tale’ sign, u, occurs is identified by moving backward by the value of h. With this 

established the model checks whether an inspection has been performed between u and T to 

determine whether the fault has been identified. The points marked ‘A’ represent inspection actions 

for a policy which would fail to identify the fault. Conversely the points marked ‘B’ represent an 

inspection policy in which the fault would be identified. Note that the value, TIG, is the predetermined 

gap between inspection actions. The desired time between inspections must be defined to 

determine how often the components are to be inspected. The calculation in Equation 1 determines 

how many inspections will occur during the mission time. 

                                                                  𝑁𝐼 = 𝐼𝑁𝑇(𝑏)(𝑇𝑚 ÷ 𝑇𝐼𝐺)                                                                  (1) 

where: 
NI = No. of inspection actions throughout the proposed mission time; 
Tm = Mission time for the analysis. 
NB. The function, INT (b), in Equation 1 rounds the value to largest integer value not exceeding b, 

where b is equal to TM ÷TIG.  

The delay-time, h, is defined by the user based on the components within the system. When a 

transition occurs the current operating time of the component which has caused the transition must 

be determined. This is calculated as shown in Equation 2. 

                                                               𝑂𝑃𝐶𝑁 = 𝑂𝑃𝐶𝑂 + (𝑇 − 𝑇0)                                                                  (2) 

where: 

OPCN = Operating time of the component at transition time, T (current operating time); 
OPCO = Previous operating time of component (operating time when previous transition occurred; 
equals zero at start of each trial); 
T = Transition Time (Actual time transition occurs within the mission time of the analysis); 
T0 = Initial Time (Actual time at point of previous transition; equals zero at start of each trial). 

When considering a system with multiple components the operating time must be updated for each 

of the active components at the point of transition. The operational time of the component is used to 

determine if the latest inspection has identified a fault before a failure occurs. If the inspection fails 

to identify the fault the system transitions due to a random component failure at time, T. If the 
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inspection identifies the fault, the transition occurs based on the level of degradation of the 

component. If the degradation level exceeds the maximum value it is considered that the component 

is equivalent to being failed and the component will transition in the same manner as if a random 

failure has occurred at the time the fault is detected (FT). If the degradation level is acceptable the 

component will transition at time, FT, but the downtime incurred is reduced by IR, which is the factor 

by which the repair time is reduced if a fault is addressed during inspection before it has propagated 

to failure.  

With maintenance and random failures spare parts are required for repair. This is not true when 

corrective maintenance is performed upon inspection as it is considered that ‘minimal repair’ is 

performed as the component has not yet failed. However, as ‘minimal repair’ is performed the 

component is not ‘as good as new’ and the degradation level is not reset to zero23.  

3.4 Modelling Component Degradation 

Intermittent data regarding the state of the components throughout their lifetime is not readily 

available for marine systems. Due to the lack of data for the components in this study, it is not 

possible to generate a suitably accurate distribution for degradation over time. A method for 

modelling degradation has been incorporated in the current model however, as neglecting 

degradation would decrease the scope of other methods which have been applied. For the purpose 

of this model degradation is considered to be random and is represented by modelling the 

degradation as a modification of the failure rate, 𝜆, for the component under analysis. If a fault is 

detected upon inspection it is considered that the component is no longer ‘as good as new’ and the 

component is randomly degraded. This raises the failure rate for the component increasing the 

likelihood that the component will fail later in the mission time. The calculation for random 

degradation as a function of the component failure rate can be seen in Equation 3. 

                                                                      𝜆𝑀 = (𝑅𝐷 × 𝜆) +  𝜆𝑀
∗

                                                                                                                    (3) 

where: 
λM = Component failure rate modified by degradation; 
𝜆𝑀

∗  = Component failure rate before the modification due to further degradation; 
RD = Random variable, U ~ [0,1); 
λ = Nominal component failure rate. 

Equation 3 is performed upon inspection and the value of λM determines the manner in which the 

component transitions. The degradation threshold is defined by the value λMAX. The value of λMAX 

represents a component failure rate which is considered to present an unacceptable risk. If, λM ≥ 

λMAX, the component is in excess of the degradation threshold and is considered to be in a state, 

equivalent to failure. 

If it is found that, λM ≥ λMAX, maintenance is performed and the degradation is reset so that λM = λ, 

representing that the component is ‘as good as new’. This also occurs if repairs are performed on the 

component due to scheduled maintenance or corrective maintenance following a random failure. 

Though maintenance is performed if a fault is found upon inspection, the value of λM remains the 

same due to the ‘minimal repair’ actions performed. This presents a downside to inspection repairs 

as the system will be operating at a reduced level of reliability for a longer period of time. 
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Modelling degradation in this way gives scheduled maintenance actions additional meaning within 

the model. By resetting the degradation upon scheduled maintenance it means that the risk of taking 

a component offline for a period of time can have a positive effect on the long term reliability of the 

system.  

3.5 Modification of Inventory System 

An inventory system has been previously developed using MC sampling and data from an OREDA 

study29 to provide results for the contribution of specific replacement parts within a system17. The 

initial model has limited scope due to incomplete data and the fact that only one replacement part is 

attributed to each failure. The number of replacement parts for a maintainable item is usually much 

smaller than 1 (i.e. << 1) within the mission time17. Additional data has been gathered and 

modifications have been made to increase the scope of this inventory system.  

Improved data has been acquired from OREDA30 in which the information on part contributions is 

more comprehensive than that used previously. Due to the fact that the data has been acquired has 

been taken from offshore installations certain item contributions have been omitted as some factors 

do not apply to components operating specifically in the marine industry. Schematics for the 

components under analysis have been obtained showing the parts which can be replaced within each 

component. The parts shown in the schematics which are required for repair due to each of the item 

contribution stated in OREDA30 have been determined by consulting an expert with over 15 years of 

experience as a chief engineer. The spare part requirements for each failure have been modelled in 

the system logic so that the model provides data on how many of each of the parts contained within 

the schematic are required over a specified mission time. It is also taken into consideration that 

certain items contributions require multiple parts for repairs to be performed due to ‘knock-on’ 

effects.  

The effect of scheduled maintenance on spare part requirements has also been modelled. Certain 

items for each active component are always replaced during scheduled maintenance. To incorporate 

this into the model an algorithm has been implemented to update the number of the relevant spare 

parts required when scheduled maintenance is performed on a specific component. 

3.6 Mapping System Transition Logic & Code Generation 

Once the methods have been established it is necessary to map the system transition logic using flow 

charts. The previously developed MC model is used as a basis for this process but the additional 

methods presented significantly alter the possibilities for system transitions. 

With the logic of the system determined completely, Fortran code is generated to model the 

processes of the newly applied methods within the system under analysis. With this complete the 

simulation is run for a large number of trials (N) to aggregate the results for the key parameters 

under analysis. 

4. Case Study 

The proposed model has been applied for use to optimise maintenance and inspection policies as 

well as spare part stocking options. The system for which the model has been applied is the main 
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engine sea water cooling system taken from the “MV Hamnavoe”, a RO/RO passenger ferry. The 

component layout for the system under analysis is shown in Fig 6. 

 

Fig 6: Simplified cooling system under consideration [Adapted from Cunningham et al 28]. 

The components V1, V2, V3, P1, P2, P3, PC1 and PC2 represent valve 1, valve 2, valve 3, pump 1, 

pump 2, pump 3, plate cooler 1 and plate cooler 2 respectively. There are eight components in the 

system under analysis, each with three possible states, working, failed or standby (W, F or SB), giving 

rise to 38 = 6,561 system states. The state SB can be grouped with W, as although components in SB 

are offline they are still available and the transition from SB to W is instantaneous. This gives rise to 

28 = 256 system states. Though there are 8 components only five are operating at any given time, 

namely two valves, two pumps and one plate cooler. The system is defined such that a minimum of 

two vales, two pumps and one plate cooler must be available for the system to operate properly. By 

considering the operational constraints and using Boolean Representation Method (BRM) the 

number of possible system states is reduced to 34; with 21 working states and 13 failed states. The 

basic logic for the working states is defined by the initial MC model with all other states resulting in 

system unavailability.  

The failure rate for each component has been taken from OREDA30 and the system failure rate (λS) is 

the sum of the failure rates for the active components. Each component has a number of different 

failure modes incurring different failure mode specific repair times and maintainable item 

contributions. Modifications have been made to the initial MC model to incorporate the new 

methods employed, but the general constraints of the system remain the same with regard to basic 

failures. Some key factors must be addressed when applying the proposed methods to the cooling 

system under analysis. 

The degradation threshold must be set relating to the failure rate, λ, for each component. For this 

case study the system has been defined such that a component is considered failed if its modified 

failure rate, λM, is over double the nominal value (i.e. λMAX = (λ×2)). Additionally the policies for 

scheduled maintenance and inspection actions under analysis must be defined to determine the 

scope of the analysis. This is performed by defining the time between these actions so that it can be 

determined how often these actions occur for the system within the mission time, Tm. The value, Tm 

for this case study is based on an analysis period of 1 year (i.e. 8760 hours). As previously stated 

inspections only incur downtime if a fault is detected and the downtime incurred is significantly 

reduced. The value, IR, determining the factor by which downtime is reduced when repairs are 

performed pre-emptively upon fault detection is ¼ of the failure mode specific repair time. The 

downtime incurred by scheduled maintenance actions has been defined as slightly higher than the 

average repair time for each component as it is considered that a thorough analysis is performed 

when scheduled maintenance takes place. 

V1 

V2 

V3 

P2 

PC1 P1 
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For the cooling system presented, multiple component operating times must be updated upon 

transition whether they have caused the transition or not. This is because although they may be in a 

steady state they are still operational and simulated inspections are being performed without 

incident. For this reason the component operating times of all active components are updated by the 

same amount as the increase in the operational time of the component undergoing transition during 

the current system state.  

As scheduled maintenance is performed at specified points within the mission time it means that 

components which are not active may still be scheduled for maintenance. When a transition occurs 

in the cooling system, the maintenance scheduling of all components must be checked. As scheduled 

maintenance causes a change in the system state vector, B, it is only the earliest scheduled 

maintenance action which affects the current transition. After the effects of scheduled maintenance 

have been analysed the maintenance schedule for the system is updated accordingly and the analysis 

continues. 

An integer value, C, has been assigned to each component in the system which alters certain key 

values based on the component undergoing transition. For components V1, V2, V3, P1, P2, P3, PC1 

and PC2 the integer value of C is 1, 2, 3, 4, 5, 6, 7 and 8 respectively. The value applies to the time of 

next scheduled maintenance action (TMN (C)), the time at which components are brought back 

online (TT (C)), the operational time of components (OP (C)), the component failure rates (λ (C)/λm 

(C)), component downtimes (DT (C)) and the modifier MAIN (C). This has been done to make the 

modelling of the system transition logic more efficient as many system states behave in the same 

manner with only the specific component variables being affected.  

In the previously developed MC model the value for the system failure rate, λS, was constant 

throughout this analysis17. This is no longer true due to the degradation model. Due to degradation 

the failure rate for each component can be altered. This additional factor means that a calculation 

must be performed before the transition time, T, is sampled. This updates the value of λS to equal the 

sum of the failure rates of the components which are active taking into account their current level of 

degradation. The degradation level of individual components affects the nature of transitions by 

inspection as well as determining whether or not spare parts are required for repair. Unlike 

scheduled maintenance actions repairs are always performed if a fault is detected upon inspection 

regardless of the system state.  

With the parameters for the analysis defined the methods can be applied to model the system 

transition logic of the cooling system incorporating the effects of the new methods. Though there are 

21 different working states for the cooling system the transition logic can be separated into four 

distinct types based on the condition of the system. This is such that many of the system states 

follow the same patterns as others regarding logic but the variables within the logic change 

depending on the system state. The four working conditions affecting the transition logic for the 

system are defined as follows: 

 Condition 1: The system is in the nominal state; all components are subject to maintenance; 
system downtime cannot occur directly. 

 Condition 2: A single plate cooler is failed/under maintenance; maintenance actions cannot be 
performed on plate coolers; system downtime can be caused by an additional plate cooler 
failure. 



15 
 

 Condition 3: A single valve/pump is failed/under maintenance; maintenance actions cannot be 
performed on valves or pumps; system downtime can be caused by an additional failure of 
either a valve or a pump. 

 Condition 4: A single valve/pump plus a single plate cooler are failed/under maintenance; 
maintenance actions cannot be performed on any component without system unavailability; 
the failure of any subsequent component will result in system downtime. 

Any other parameters than those defined by Conditions 1-4 will result in the system being in a state 

other than working. This could be offline due to maintenance or failed. With this, detailed flow 

diagrams of each working state can be produced to illustrate the system transition logic. The logic for 

the system is the same for all states operating under the same condition; it is only the variables 

which are updated that are altered based on the specific components which have undergone 

transition. 

Once the system transition logic has been determined for all system states, the inventory algorithm 

and the final calculations are applied to complete the model. The final calculations aggregate the 

results found during the MC analysis to provide average values.  

5. Results  

Results obtained by the application of the proposed model to the cooling system are now presented. 

Firstly the model has been applied to the same case as the previously developed MC model to test 

the effects of the newly applied methods. The model has then been applied to the case study in 

Section 4 for varying maintenance and inspection policies to assess optimal policies for the system 

over a specified mission time. Finally the convergence of the MC model is tested to ensure the results 

remain accurate for varying values of N. The reliability data such as failure rates, failure mode specific 

repair times and maintainable item contributions for components in the system has been taken from 

OREDA30. The data is based on ball valves, centrifugal machinery pumps and plate heat exchangers. 

For comprehensive data on these components consult OREDA30. As previously stated the downtime 

associated with scheduled maintenance differs from the data in OREDA30. The downtime incurred by 

scheduled maintenance actions is higher than the average downtime for each component. The 

downtimes for scheduled maintenance have been set to 10 hours, 30 hours and 14 hours for valves, 

pumps and plate coolers respectively. The reduction factor in downtime incurred for repairs upon 

inspection is constant for all components at ¼ of the repair time incurred by the selected failure 

mode. 

5.1 Test Results 

The first stage in gathering results is to check whether the new methods affect the model in a 

manner that is expected. Testing is necessary to ensure the model is working correctly before further 

results are obtained for analysis. This also serves as partial validation of the proposed methods. A 

number of result sets have been gathered from the model where certain aspects of the new methods 

are omitted. This is done by setting the times for maintenance and inspection intervals to much 

higher than the mission time, Tm. The methods are still present within the model but they have no 

effect on the system operation as their associated actions never occur. These tests are performed 

using the same operational constraints and mission time as the case for which the previous MC 

model was applied. The different results sets are explained below. 
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 Result Set 1: Scheduled maintenance and inspection actions are omitted. 

 Result Set 2: Scheduled maintenance is omitted but inspection actions are included.  

 Result Set 3: Inspection actions are omitted but scheduled maintenance is included.  

 Result Set 4: Inspection actions and scheduled maintenance are included (Complete model). 

It should also be noted that where inspection actions are omitted no component degradation is 

present. The mission time, Tm, for which each test is performed, is equal to 532. The number of trials, 

N, is set to 107 as this provides a suitable level of accuracy in the results. Table 3 shows the output 

values for key reliability data obtained for each of the result sets. 

Table 3: Results obtained from various tests excluding certain aspects of the proposed model. 

 Result Set 1 Result Set 2 Result Set 3 Result Set 4 

FV1 1.08E-02 8.04E-03 3.39E-03 2.48E-03 

FV2 2.69E-04 1.17E-04 5.04E-04 3.01E-04 

FV3 1.08E-02 8.10E-03 3.72E-03 2.76E-03 

FP1 4.19E-01 3.20E-01 1.31E-01 9.74E-02 

FP2 1.04E-02 4.68E-03 1.94E-02 1.19E-02 

FP3 4.19E-01 3.20E-01 1.45E-01 1.07E-01 

FPC1 9.90E-03 7.41E-03 3.49E-03 2.54E-03 

FPC2 1.00E-07 1.00E-07 3.00E-07 2.30E-07 

DTV1 1.31E-01 1.06E-01 1.99E+01 1.99E+01 

DTV2 3.33E-03 1.74E-03 2.00E+01 2.00E+01 

DTV3 1.32E-01 1.07E-01 2.00E+01 2.00E+01 

DTP1 5.06E+00 4.17E+00 8.95E+01 8.92E+01 

DTP2 1.25E-01 6.82E-02 8.97E+01 8.97E+01 

DTP3 5.06E+00 4.18E+00 8.91E+01 8.88E+01 

DTPC1 1.39E-01 1.12E-01 1.40E+01 1.40E+01 

DTPC2 1.44E-05 1.12E-05 1.40E+01 1.40E+01 

DTS 1.28E-01 7.95E-02 4.57E-01 3.87E-01 

FSYS 2.13E-02 1.10E-02 6.61E-03 3.23E-03 

PSF 2.11E-02 1.09E-02 6.58E-03 3.23E-03 

 

Probability of system failure (PSF) and average downtime of the system (DTS) are highlighted in Table 

3 as they are the key values of interest for the analysis. This is because the analysis focuses on the 

effect to the system as a whole rather than the individual components within the system. The 

average number of failures for the system (FSYS) is also provided. Values relating to individual 

components are also presented. The variables FV1, FV2, FV3, FP1, FP2, FP3, FPC1 and FPC2 show the 

number of failures for valve 1, valve 2, valve 3, pump 1, pump 2, pump 3, plate cooler 1 and plate 

cooler 2 respectively. Additionally the variables DTV1, DTV2, DTV3, DTP1, DTP2, DTP3, DTPC1 and 

DTPC2 show the downtimes for valve 1, valve 2, valve 3, pump 1, pump 2, pump 3, plate cooler 1 and 

plate cooler 2 respectively. The mission time over which the analysis runs regarding the results 

shown in Table 3 is relatively short when considering maintenance scheduling.  

Results Set 1 is the initial test with all maintenance and inspection actions omitted. When applying 

the same reliability data from OREDA30 to the previously developed MC Model it is found the these 

results are in agreement showing that the model works correctly with the maintenance and 

inspection schedules set outside of the mission time. This shows that with maintenance and 
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inspection omitted the core workings of the model remain the same despite the significant 

alterations to the transition logic.  

With the introduction of inspections in Result Set 2 a reduction in system downtime and failure 

probability can be seen. The inspection intervals for this test have been set to 24 hours. The 

reduction is expected as inspections introduce a possibility of component failures being prevented as 

well as incurring a significantly reduced downtime upon taking the component offline.  

With the introduction of scheduled maintenance in Result Set 3 it can be seen that while the failure 

probability is significantly reduced, the downtime of both the system and individual components is 

noticeably increased. Though this is to be expected the increase in downtime is more apparent in this 

test due to the relatively short mission time. With components being taken offline voluntarily the 

component downtimes are increased due to the fact that they will always be taken offline within the 

mission time. This also affects the system downtime as it means that with components being offline 

more frequently, if a random failure does occur, the likelihood that it will occur when another 

component is under maintenance is increased giving a greater chance the system to become 

unavailable. The increased downtime incurred by maintenance also emphasizes this effect. Though 

the downtime is increased the failure probability is reduced as the maintenance actions can stop the 

majority of component failures from occurring by performing preventative repair actions. The time 

periods between maintenance actions for this test have been set to 250 hours, 125 hours and 300 

hours for valves, pumps and plate coolers respectively. Note that pumps are maintained more 

frequently due to their significantly higher failure rate; this practice has been used throughout this 

analysis.  

Finally in Result Set 4, where the model is fully operational it can be seen that the output values are 

somewhat of a hybrid between Result Set 2 and Result Set 3. This is such that the system failure 

probability is reduced further and the system downtime lies between Result Sets 2 and 3. This is 

because both maintenance and inspection actions, increase the reliability of the system but have 

opposite effects on the downtime of the system.  

As well as the reliability data shown in Table 3 the effect on spare part requirements for Results Sets 

1-4 has also been observed. The most significant change to spare part requirements can be found for 

Result Set 3 when scheduled maintenance is added. This is because certain items are always replaced 

during scheduled maintenance meaning that the demand for these items is affected significantly 

depending on the frequency of maintenance actions. Some sample data has been taken looking at 

the average requirement of seals for pumps in the test cases to highlight this effect. In Result Set 1 

the average requirement for pump seals is 3.21 × 10-1 whereas in Result Set 3 the requirement is 

increased to 8.9417. Also the addition of inspection actions lowers the spare part requirements 

slightly. This is because repairs upon inspection assume that no parts are replaced meaning there is 

less chance of spare parts being needed.  

5.2 Case Study Results 

The frequency of scheduled maintenance actions has been altered whilst keeping the frequency of 

inspection actions constant. The maintenance schedule is altered by changing the input variables 

representing the period between maintenance actions. The maintenance of pumps occurs much 

more frequently than the other components due to a significantly higher failure rate. The 
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maintenance schedules have been assigned to the model with this criterion in mind. When looking at 

the results of the analysis shown in Figs 7 and 8 it is the maintenance interval for pumps which the 

results are concerned. This is because the analysis is more sensitive to the maintenance of pumps 

than that of valves and plate coolers due to the increased number of transitions attributed to pumps. 

Table 4 shows the corresponding values for the maintenance intervals of valves and plate coolers 

when compared with pumps. 

Table 4: Showing maintenance increments used for analysis of case study. 

 MAINTENANCE INTERVAL (Hours) 

Pumps Valves Plate Coolers 

1 720 2,000 2,500 

2 1,720 3,000 3,500 

3 2,720 4,000 4,500 

4 4,720 6,000 6,500 

5 6,720 8,000 8,500 

6 9,720 10,000 10,500 

 

Table 4 shows the maintenance intervals for each stage of the analysis. The purpose of altering the 

maintenance frequency in this way is to determine how it affects key output values obtained from 

the model. The maintenance intervals have been assigned taking into account their mean time to 

failure (MTTF). The initial settings for maintenance shown in the first row of Table 4 are assigned 

such that scheduled maintenance occurs before the MTTF. The mission time has been set to 1 year 

(8760 hours) for the analysis. Taking this into account the MTTF of both valves and plate coolers is 

much higher than the mission time used for the analysis. For this reason the maintenance intervals 

for valves and plate coolers are set to arbitrary values that are significantly higher than that of 

pumps. After the initial settings the maintenance intervals are increased by equal amounts for all 

components. The policy stated in row 6 of Table 4 represents a case where no maintenance actions 

take place as they are outside of the mission time. Inspections have been defined such that they take 

place every 24 hours and the delay-time, h, is equal to 6 hours. Figs 7 and 8 show the results of the 

analysis for key parameters with varying maintenance policies.  
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Fig 7: Graph showing how PSF varies as maintenance frequency is altered (Tm = 8760 hours) 

 

Fig 8: Graph showing how DTS varies as maintenance frequency is altered (Tm = 8760 hours). 

It can be seen in Figs 7 and 8 that in general as the frequency of maintenance actions decreases the 

probability of system failure (PSF) increases and the system downtime (DTS) decreases. This is as 

expected due to the downtime associated with maintenance as well as the potential to prevent 

failures.  At one point in Fig 7 however, there is a spike in the value of PSF and then a reduction 

with the next setting for maintenance frequency. This indicates that by setting the maintenance 

frequency to some value within this range it has caused the system to behave differently deviating 

from the usual pattern. It should be noted that at these points scheduled maintenance actions only 

take place once within the mission time it is only the time at which scheduled maintenance occurs 

which has changed. This indicates that the frequency of scheduled maintenance is not the only 

factor which affects the systems operation. The anomaly is also present at the same point for DTS 

in Fig 8. This shows that for the defined maintenance and inspection policies, the model identifies a 

point which minimises downtime at the cost of a slightly increased PSF value. The fact that the rest 

of the results obtained behave in a uniform manner indicates that the model is functioning 
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correctly as intended. This means that it is unlikely that the aberration in the results is due to an 

error in the model. This result is something that was not possible to predict but provides an 

indication of an optimum policy for reducing downtime in the system. This provides useful 

information for decision making which may not be apparent with other analysis techniques.  

In addition to the results shown in Figs 7 and 8 results have been obtained regarding how 

maintenance scheduling affects the number of spare parts required for the system. Tables 5 and 6 

show some sample data for spare part requirements.  

Table 5: Showing spare part requirements for maintenance policy (1). 

VAVLES: PUMPS: PLATE COOLERS: 

PART NAME  

NUMBER 

REQUIRED PART NAME  

NUMBER 

REQUIRED PART NAME  

NUMBER 

REQUIRED 

Body 2.55E-02 Pump Casing 8.61E-02 O-Ring 6.04E+00 

Bumper 5.79E-02 Pump Cover 8.61E-02   

Packing Nut 7.73E-02 Impeller 7.00E-01   

O-Ring(3_3) 1.18E+01 Shaft Key 4.78E-01   

O-Ring(2_3) 1.18E+01 Wear Ring 2.66E+01   

Stem 3.10E-02 Bearing Bush 2.62E+01   

Ball 1.18E+01 Bearing Plug 2.70E-01   

Handle 7.11E-02 Pump Shaft 3.98E-01   

Pin 7.11E-02 Distance Ring 8.61E-02   

Body Cap 9.21E-03 Mechanical Seal 3.13E+01   

O-Ring (1) 1.18E+01 Grease Seal 1.72E-01   

Spring 1.18E+01 Bearing Cover 5.40E-01   

Seat 1.18E+01 Bearing Housing 5.40E-01   

Positioner 1.50E-02 Circlip 2.70E-01   

  Bearing Sleeve 2.62E+01   

  Ball Bearing 5.32E+01   

  Propeller Shaft 3.35E-01   

  Motor Coupling 1.14E-01   

  O-Ring 9.37E+01   

  Seal 3.07E+01   

  Lubricating Nipple 2.40E-01   

  Grease Plug 1.20E-01   

  Drain Plug 5.20E+01   

  Lubricating Pipe 1.20E-01   

  Pump Foot 6.46E-01   

  Motor Pedestal 1.14E-01   

  Actuating Device 8.61E-02   

  Diaphragm 8.61E-02   

  Filter(s) 2.29E-01   

  Filter, Cyclone 9.32E-01   

  Flow, Indicator 9.35E-01   

  Pressure, Indicator 1.73E+00   

  
Temperature, 

Indicator 6.95E-01   

  
Vibration, 

Indicator 6.19E-01   

  
Power Supply(3 

Ph) 8.61E-02   

  Priming Unit 7.55E-01   
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Table 6: Showing spare part requirements for maintenance policy (4). 

(N=10^7, TM=8760, OREDA (2009), TMGV= 6000, TMGP = 4720, TMGPC = 6500, TIG =24, h = 6) 

VAVLES: PUMPS: PLATE COOLERS: 

PART NAME  
NUMBER 
REQUIRED PART NAME  

NUMBER 
REQUIRED PART NAME  

NUMBER 
REQUIRED 

Body 2.79E-02 Pump Casing 9.57E-02 O-Ring 2.05E+00 

Bumper 6.30E-02 Pump Cover 9.57E-02   

Packing Nut 8.41E-02 Impeller 7.77E-01   

O-Ring(3_3) 2.91E+00 Shaft Key 5.31E-01   

O-Ring(2_3) 2.91E+00 Wear Ring 1.84E+00   

Stem 3.42E-02 Bearing Bush 1.36E+00   

Ball 2.88E+00 Bearing Plug 3.01E-01   

Handle 7.73E-02 Pump Shaft 4.41E-01   

Pin 7.73E-02 Distance Ring 9.57E-02   

Body Cap 1.02E-02 Mechanical Seal 7.06E+00   

O-Ring (1) 2.90E+00 Grease Seal 1.91E-01   

Spring 2.86E+00 Bearing Cover 6.02E-01   

Seat 2.90E+00 Bearing Housing 6.02E-01   

Positioner 1.65E-02 Circlip 3.01E-01   

  Bearing Sleeve 1.36E+00   

  Ball Bearing 3.72E+00   

  Propeller Shaft 3.72E-01   

  Motor Coupling 1.27E-01   

  O-Ring 2.09E+01   

  Seal 6.38E+00   

  Lubricating Nipple 2.67E-01   

  Grease Plug 1.33E-01   

  Drain Plug 2.31E+00   

  Lubricating Pipe 1.33E-01   

  Pump Foot 7.18E-01   

  Motor Pedestal 1.27E-01   

  Actuating Device 9.57E-02   

  Diaphragm 9.57E-02   

  Filter(s) 2.53E-01   

  Filter, Cyclone 1.03E+00   

  Flow, Indicator 1.04E+00   

  Pressure, Indicator 1.92E+00   

  
Temperature, 

Indicator 7.71E-01   

  Vibration, Indicator 6.86E-01   

  Power Supply(3 Ph) 9.57E-02   

  Priming Unit 8.39E-01   

 

As expected decreasing the frequency of scheduled maintenance generally decreases the average 

amount of parts needed. This is not the case for all parts however; the parts required upon 

scheduled maintenance drop noticeably whereas demand for other parts is increased. This is because 

more random failures are occurring allowing parts to contribute to failure which would not, if 

adequate maintenance had been performed. 

The results from the analysis for varying inspection intervals are now presented. As with scheduled 

maintenance the inspection analysis is performed by keeping the frequency of scheduled 

maintenance constant. The intervals for scheduled maintenance for this analysis are 720, 2000 and 

2500 hours for pumps valves and plate coolers respectively. It is well understood that different 

components would have different delay times due to their failure modes and other reasons such as 

operational conditions. However, for ease of demonstration of the proposed approach, the delay-

time, h, for all inspection policies has been set 6 hours as this is significantly lower than the lowest 

inspection interval as well as being high enough so that the effects of inspection are apparent. The 

inspection intervals that have been used for this analysis are 1 day (24 hours), 2 days (48 hours), 1 
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week (168 hours), 1 month (672 hours), 6 months (4032 hours) and 10,000 hours (over a year). The 

initial inspection interval is set to 24 hours as it has been suggested by expert opinion that this is 

standard practice for inspections on marine vessels. The intervals are increased progressively with 

the final value being such that inspection does not occur during the time of analysis. For the analysis 

of the case study the inspection intervals are the same for all components. Figs 9 and 10 show the 

results of this analysis.  

Fig 9: Graph showing how PSF varies as the inspection interval is altered (Tm = 8760 hours). 

Fig 10: Graph showing how DTS varies as the inspection interval is altered (Tm = 8760 hours). 

As can be seen in Figs 9 and 10 both the system failure probability and downtime increase as the 

interval between inspection actions increases. This is as expected as inspection actions have a chance 

to reduce downtime as well as preventing certain component failures. It can be seen from this 

analysis that there is no disadvantage to regular inspections and inspecting the system more 

frequently increases its operational efficiency by reducing downtime and increasing reliability. This is 

due to the fact that for this model inspection actions only incur downtime if a fault has been 
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identified. Inspections are considered to be observational meaning a component does not have to be 

taken offline for an inspection to be performed. The model has been defined in this way to reflect 

inspections which take place whilst a vessel is in operation. This would not be the case if standard 

DTA had been applied to the model as it is considered that operational research is performed 

requiring components to be taken offline.  

The spare part requirements for the system are also reduced when more frequent inspections are 

performed. This is because ‘minimal repair’ actions are taken upon a fault being detected and it is 

considered that no spare parts are required for these actions. For example when inspections are 

performed every 24 hours, the average requirement for mechanical seals is 31 units for the specified 

maintenance schedule. For the same maintenance schedule the average requirement for mechanical 

seals is increased to 32 units when inspections are performed every 48 hours. Though inspection 

intervals affect the number of spare part required, the impact is far less significant than when 

altering scheduled maintenance actions.  

The degradation algorithm also becomes a factor when inspection actions are in place as it means 

that components can be operating with reduced reliability. With scheduled maintenance in place 

however it is possible for the system to repair degradation at certain scheduled points meaning the 

likelihood that degradation will propagate to failure is reduced. For the results obtained it is found 

that the benefit of inspections outweighs the fact that unavailability may be experienced due to the 

analysis of degradation upon inspection.   

5.3 Convergence of Results 

Finally the accuracy of the results obtained from the model must be tested. The model has been 

tested for the case study for a varied number of trials, N. This has been done to test the scope of the 

proposed MC model. It is necessary to determine that the results are suitably accurate and do not 

diverge. The test has been performed using the initial maintenance frequencies shown in row 1 of 

Table 4. The standard inspection interval of 24 hours is also in place. Figs 11 and 12 show the 

convergence of PSF and DTS as the value of N is increased.  

Fig 11: Graph showing convergence of PSF as number of trials, N is increased. 
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Fig 12: Graph showing convergence of DTS as number of trials, N is increased. 

As can be seen in Figs 11 and 12 the results for both PSF and DTS converge at around 107 trials with 

only a slight variation as the number of trials is increased. The difference between the results from 

106 and 107 trials is around 0.3% and 0.1% for PSF and DTS respectively. The variation in the results is 

suitably low such that it can be considered insignificant showing that the results obtained are valid 

for a number of N values. For the case study results an N value of 107 has been used as it provides 

suitably accurate results in a manner that is efficient. 

6. Discussion  

Looking at the results for varying maintenance schedules the outputs from the model are largely as 

expected. It can be seen that the highest level of maintenance is where the system is most reliable. 

However, in general it can be said that that lower maintenance frequencies are better for the system 

due to significantly reduced downtime and spare part requirements. These reductions far outweigh 

the increased reliability experienced due to frequent maintenance. As with PSF an anomaly is found 

for the results regarding DTS for the maintenance policy stated in row 4 of Table 4. Unlike the results 

for PSF the results at this point represent a minimum for system downtime. This means that row 4 of 

Table 4 represents the best maintenance policy for optimising system availability. 

The anomaly shown in Figs 7 and 8 has not been anticipated and is of significant interest to the 

analysis of the model. Dubi32 states that the assertion that systems have a “monotone” behaviour i.e. 

that improving any unit in the system improves the system is unfounded in reality, suggesting that it 

is not always possible to predict the effects of varying factors for complex systems using analytical 

methods. The anomalous result indicates that the model has identified something that changes the 

effect of scheduled maintenance when applied at the points specified. The model is capable of 

identifying a critical point in the analysis which would be difficult to determine using standard 

methods. This is a very useful function of the model as it can be seen that the point where this 

aberration occurs is actually a minimum for system downtime with the reliability being slightly higher 

than other options with low downtimes. This provides the optimum level of maintenance scheduling 

when the inspection policy is set to a daily bases. When inspection actions are taken every 24 hours 

the optimum frequencies for maintenance actions are 6,000, 4,720 and 6,500 hours for valves, 

pumps and plate coolers respectively for the cooling system under analysis.  
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When analysing the system for various inspection policies the results obtained are as expected. 

Having regular inspections decreases probability of system failure as well as the system downtime. 

This indicates, for the purpose of this study, that there is no disadvantage to increasing the regularity 

of inspection actions. Downtime due to inspection is not significant in this model as inspections are 

considered to be observational and downtime is only considered when a fault is found. As in the 

manufacturing industry, for which DTA was initially developed, it is required in the marine industry 

that inspections are implemented requiring component dissection which in-turn incurs downtime. 

Unlike the manufacturing industry these inspections are generally performed during periods of 

inactivity such as when a vessel is dry-docked. As the model presented is concerned only with the 

operating time of the system the assumption of no downtime for inspections is valid when applying 

DTA in the marine industry. In the case where a fault is found upon inspection the downtime is lower 

than for a random failure meaning that inspections only serve to increase availability.  If man-hours 

for inspections are also considered it would be the case that more regular inspections yield a higher 

level of man-hours. This is undesirable due to cost factors and the adverse effect it would have on 

the efficiency of crew management.   

7. Conclusion  

The purpose of the model presented in this paper is to provide data on the effects of scheduled 

maintenance and inspections for a system in the marine industry to facilitate decision making. 

Factors such as these can have a significant effect on efficiency as they contribute to reliability as 

well as cost factors associated with system operation. 

The results for the case study presented in this paper serve to show how MC analysis can be used in 

conjunction with methods such as DTA to provide comprehensive data on the effects maintenance 

and inspection policies for a system that is subject to degradation. The model is applied using the 

proposed methods such that the complexities of the operation of the cooling system are reflected in 

the results obtained. Applying the proposed methods in a single model allows maintenance and 

inspection policies to have a real effect on the system rather than performing a separate analysis 

once the behaviour of the system is defined. This allows optimisation decisions to be made with a 

high degree of confidence as the model reflects real parameters which affect the operational 

efficiency of marine systems.  

By modifying a previously developed method the model is capable of determining how altering 

maintenance and inspection policies affects the number of spare parts required for the mission time. 

This analysis of spare part stock control is useful when considering repair or replace options for key 

components within a system. By combining the proposed methods data is provided for aspects 

including reliability, availability and spare part requirements for varying parameters. In addition the 

model is able to identify factors which are hard to determine using analytical methods due to the 

complexity with which the system under analysis is modelled.  

The data obtained from the model in this chapter can be used to perform analyses for optimising key 

factors which are critical to the efficiency of marine operations. It is suggested that the data obtained 

from this model is suitable to facilitate a cost-benefit analysis to be used for further analysis of the 

optimisation of marine operations.  
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