Facial reconstruction

Search LJMU Research Online

Browse Repository | Browse E-Theses

15N Fractionation in Infrared-Dark Cloud Cores

Zeng, S, Jimenez-Serra, I, Cosentino, G, Viti, S, Barnes, AT, Henshaw, JD, Caselli, P, Fontani, F and Hily-Blant, P (2017) 15N Fractionation in Infrared-Dark Cloud Cores. Astronomy and Astrophysics (A22). ISSN 0004-6361

1705.04082v1.pdf - Published Version

Download (523kB) | Preview


Nitrogen is one of the most abundant elements in the Universe and its 14N/15N isotopic ratio has the potential to provide information about the initial environment in which our Sun formed. Recent findings suggest that the Solar System may have formed in a massive cluster since the presence of short-lived radioisotopes in meteorites can only be explained by the influence of a supernova. The aim of this project is to determine the 14N/15N ratio towards a sample of cold, massive dense cores at the initial stages in their evolution. We have observed the J=1-0 transitions of HCN, H13CN, HC15N, HN13C and H15NC toward a sample of 22 cores in 4 Infrared-Dark Clouds (IRDCs). IRDCs are believed to be the precursors of high-mass stars and star clusters. Assuming LTE and a temperature of 15K, the column densities of HCN, H13CN, HC15N, HN13C and H15NC are calculated and their 14N/15N ratio is determined for each core. The 14N/15N ratio measured in our sample of IRDC cores range between ~70 and >763 in HCN and between ~161 and ~541 in HNC. They are consistent with the terrestrial atmosphere (TA) and protosolar nebula (PSN) values, and with the ratios measured in low-mass pre-stellar cores. However, the 14N/15N ratios measured in cores C1, C3, F1, F2 and G2 do not agree with the results from similar studies toward the same massive cores using nitrogen bearing molecules with nitrile functional group (-CN) and nitrogen hydrides (-NH) although the ratio spread covers a similar range. Amongst the 4 IRDCs we measured relatively low 14N/15N ratios towards IRDC G which are comparable to those measured in small cosmomaterials and protoplanetary disks. The low average gas density of this cloud suggests that the gas density, rather than the gas temperature, may be the dominant parameter influencing the initial nitrogen isotopic composition in young PSN.

Item Type: Article
Uncontrolled Keywords: astro-ph.GA; astro-ph.GA; astro-ph.SR
Subjects: Q Science > QB Astronomy
Q Science > QC Physics
Q Science > QD Chemistry
Divisions: Astrophysics Research Institute
Publisher: EDP Sciences
Related URLs:
Date Deposited: 17 May 2017 09:58
Last Modified: 04 Sep 2021 03:58
URI: https://researchonline.ljmu.ac.uk/id/eprint/6443
View Item View Item