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Abstract 

Dietary restriction (DR) is the only known nutritional manipulation that can 

increase both lifespan and healthspan in a variety of species. Underlying 

these increases are improvements in metabolic health and reductions in 

cancer incidence. Despite these physiological improvements, the 

regulation of skeletal muscle mass is extremely sensitive to alterations in 

nutrients [reviewed in (Sharples et al., 2015)] and as such has been 

reported to reduce regenerative potential and increase atrophy in skeletal 

muscle cells and myotubes. Interestingly, the activation of Sirtuin1 (SIRT1) 

has been reported during DR and its reduction abrogates lifespan 

extension. Importantly, SIRT1 activation via resveratrol treatment has 

been indicated to be important in the presence of inflammatory stress 

(TNF-α) (Saini et al., 2012). Resveratrol supplementation has also 

improved survival and regeneration of skeletal muscle cells as well in 

muscle cell remodelling following oxidative stress (Bosutti and Degens, 

2015). We therefore sought to create an in-vitro physiological model of DR 

by mimicking levels of glucose in the circulation and interstitium in-vivo in 

response to DR (Chapter 3) as well as optimising the activation and 

inhibition of SIRT1 using resveratrol and SIRT1 inhibitor, EX-527 

respectively (Chapter 4). With our ultimate aim to investigate the potential 

role and mechanisms of the activation/inhibition of SIRT1 in ameliorating 

the degenerative/atrophic effect of DR in both differentiating myoblasts 

(Chapter 5) and mature myotubes (Chapter 6). Indeed, in Chapter 3 we 

present two models of reduced glucose; one reduced (medium/ MED) and 

the other blocked (LOW) differentiation and myotube hypertrophy. The 

former represented circulatory glucose blood levels (MED 1.13 g/L or 6.25 

mM) and the latter interstitial represented glucose levels (LOW 0.56 g/L or 

3.12 mM) of rodents under DR. In Chapter 4 we also suggest that within 

the in vitro muscle cell model, activation/inhibition of SIRT1 

phosphorylation (western blot analysis) was thought to be most effective at 

10 M of resveratrol and 100 nM of EX-527 respectively. In chapter 5, we 

observed that resveratrol treatment did not improve fusion when 
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administered to differentiating myoblasts. Resveratrol did however evoke 

increases in myotube hypertrophy under normal glucose conditions.  

Importantly resveratrol enabled improved myotube hypertrophy over an 

acute 24 h period when administered to existing mature myotubes in low 

glucose environments. If this finding translates to whole organisms and 

human populations it could provide healthspan improvements via 

reductions in fragility associated with loss of muscle mass in individuals 

undergoing dietary restriction. After this 24 h period resveratrol was unable 

to reduce myotube atrophy and the myotubes continued to atrophy, 

suggestive of a need for repeated resveratrol treatment to enable 

continued protection against muscle atrophy under low glucose conditions.  

SIRT1 activation increased Myogenic regulatory factor 4 (MRF4) gene 

expression under LOW glucose conditions which was associated with the 

observed improvements in myotube size at 24 h. Whereas, SIRT1 

activation via resveratrol treatment in normal glucose conditions 

modulated increased gene expression of Myosin heavy chain 7 (MYHC7) 

coding for the slow isoform while inhibition of SIRT1 (EX-527) lead to 

reductions in gene expression of MYHC 1, 2 and 4, coding for faster IIx, 

IIa, IIb isoforms respectively. Perhaps suggesting that elevated SIRT1 was 

important in the activation of genes coding for slower myosin heavy chain 

isoforms. Furthermore, while SIRT activation via resveratrol did modulate 

increases in IGF-I gene expression, it did not appear to modulate energy 

sensing AMP activated protein kinase (AMPK) vs. growth related Protein 

70 S6 Kinase (p70S6K) signalling pathways. However, SIRT1 inhibition 

increased AMPK activity in both low and normal glucose with 

corresponding mean reductions in p70S6K in normal glucose conditions. 

This indicates that perhaps normal SIRT1 activity was required for 

appropriate AMPK activation, which may therefore prevent the 

suppression of p70S6K and the corresponding reductions in myotube size 

observed in SIRT1 inhibitor conditions. Furthermore, during low glucose 

induced myotube atrophy resveratrol reduced gene expression of the 

negative regulator of muscle mass, myostatin and protein degradative 

ubiquitin ligase enzyme, MUSA1. Overall, SIRT1 activation via a single 
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dose of resveratrol appears to have a role in acutely negating the effect of 

low glucose induced myotube atrophy and promoting myotube 

hypertrophy when glucose is readily available.  
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1. Introduction 

1.1. Calorie restriction 

The strikingly simple intervention of calorie restriction (CR) originates from 

the 1935 publication by McCay et al. in which reduced energy intake 

extended both mean and maximum lifespan in rats. Despite its simplicity 

CR is often mistaken for a minimal or lack of dietary intake known as 

fasting, when literature actually describes CR as an absence of 

malnutrition, while maintaining meal frequency, neither of which are 

present during fasting (Selman, 2014).  CR is most accurately described 

as a 20-50% reduction in caloric energy intake in comparison to ad libitum 

(AL) counterparts (Longo and Mattson, 2014, Fontana and Klein, 2007, 

Mccay et al., 1935). Replication these initial findings have since been 

observed in yeast, worms and mice, with similar trends being observed in 

rhesus monkeys (Fontana et al., 2010, Masoro, 2005, Mattison et al., 2012, 

Colman et al., 2009, Harper et al., 2006, Weindruch et al., 1986, 

Kaeberlein et al., 2006, Mccay et al., 1939). Although compelling data 

suggests that humans display beneficial health improvements under CR 

conditions, the effect on human lifespan is inconclusive (Roth et al., 2002, 

Holloszy and Fontana, 2007), partly due to the lack of long term CR 

studies in humans perhaps due poor adherence/motivation to undertake  

long term CR.  

 

1.2. Dietary restriction  

Alternative investigations into CR involve manipulation of micro and/ or 

macro nutrients which differ from ad lib counterparts, in addition or 

independently to an overall changes in energy intake. For the purpose of 

this thesis the term dietary restriction (DR) will henceforth encompass both 

the traditional definition of CR and the aforementioned nutritional 

manipulations (Selman, 2014). Dietary restriction increases longevity 

(Longo and Mattson, 2014, Fontana and Klein, 2007, Mccay et al., 1935). 

Before establishing how DR is instrumental in delaying the onset of ageing 

it is important first to understand the ageing phenotype. Eukaryotic aging 
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is defined as increasing dysfunction in both tissue and organs as a whole 

and can be considered both as a chronological and biological process 

(Hekimi and Guarente, 2003, Tatar et al., 2003, Carter et al., 2007). A 

plethora of functional changes have been associated with this pathology 

including a reduction in tissue regenerative capacity, a decrease in 

endocrine response and increases in oxidative stress (Lightfoot et al., 

2014, Carter et al., 2007). Not only does DR reduces mortality via the 

reduction of these age related changes it also reduces the prevalence of 

morbidity. Disease risk reductions during DR include, but are not limited to, 

the prevalence of type II diabetes, hypertension and obesity, as well as a 

decline in some cancers and cardio-vascular disease (Longo and Mattson, 

2014, Lam et al., 2013, Carter et al., 2007). Therefore, regardless of the 

limited data to suggest that DR improves lifespan in humans, the 

implementation of DR reduces numerous physiological afflictions often 

associated with obesity and age and is therefore widely considered to 

improve healthspan. Skeletal muscle is one such tissue that maybe 

particularly susceptible to age related changes and DR.  

 

1.3. DR, muscle size regulation and regeneration 

During chronic DR, there may be an increased dependence on protein 

metabolism thus leading to reductions in skeletal muscle mass as a result 

of reductions in protein synthesis and increases in protein degradation 

(Ballor et al., 1988, Carter et al., 2007, Fulco et al., 2008). Indeed, 

pioneering work in 2003 suggested that cells prioritized maintenance/ 

survival over growth during starvation (Inoki et al., 2003). They reported 

increased AMPK activity and phosphorylated tuberous sclerosis 2 (TSC2) 

under starvation, TSC2 then inhibited mammalian target of rapamycin 

(mTOR) and other downstream substrates, including translation initiators 

and elongators P70S6K, 4EBP-1 and EIF2. This subsequently resulted in 

reduced cellular growth rates. Despite this, fascinatingly, but perhaps 

intuitively, the complex nature of skeletal muscle mass regulation has led 

to inconsistent adaptations following DR. Indeed, short-term DR has 

actually been shown to increased skeletal muscle stem cell availability and 
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repair following injury in young and old mice (Cerletti et al., 2012). And DR 

has been shown to reduce both the loss of total fibres as well as the 

atrophy of the remaining slow twitch fibres in a long-lived hybrid rat strain 

(Mckiernan et al., 2004).  DR also appears to delay or prevent age-related 

loss of SkM mass in rats and rhesus monkeys (Phillips and Leeuwenburgh, 

2005, Aspnes et al., 1997, Hepple et al., 2008, Mckiernan et al., 2011). 

These observations may be as a result of alleviating the production of 

chronically upregulated inflammatory cytokines during DR (Spaulding et al., 

1997a). When chronically upregulated, TNF-α regulates inflammatory, 

apoptotic and protein degradative pathways and is associated with 

reduced muscle size with age (Bruunsgaard et al., 2003a, Greiwe et al., 

2001, Bruunsgaard et al., 2003b, Brüünsgaard and Pedersen, 2003). 

However, the mediation of these pathways has been shown to be reduced 

following the attenuation of TNF-α due to the implementation of DR 

(Spaulding et al., 1997b, Phillips and Leeuwenburgh, 2005). In addition to 

the reduction of chronic inflammation, DR has also been documented to 

reduce apoptotic cell death (Cohen, 2004), as well as oxidative and DNA 

damage, among other factors (Carter et al., 2009).   

 

 In humans, chronic DR (by 30% of recommended daily intake) for an 

average period of 9.6 years, resulted in reduced growth factor expression 

of insulin-like-growth-factor I (IGF-I) levels. Additionally AKT 

phosphorylation was reduced by 35 - 50% under DR conditions, consistent 

with the observed reductions in transcription, an important finding due to 

the AKT pathways’ associated involvement in growth/ protein synthetic 

signaling. Furthermore, in the same study authors showed the reduction in 

AKT resulted in an increase in genes associated with protein degradation, 

including FOXO3a (Mercken et al., 2013). Yet with increased FOXO3a the 

authors also observed increased genes associated with stress resistance 

and DNA repair (Mercken et al., 2013) as suggested above (Carter et al., 

2009).  Therefore, it is worth noting that with DR, this decrease in protein 

synthetic signaling, increase in protein degradation and shift from growth 

towards stress resistance, would potentially reduce protein synthesis and 
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increase degradation over time (Sandri et al., 2004, Edström et al., 2006) 

It is also worth noting that despite some unintuitive findings with respect to 

the influence of DR on muscle mass regulation some in-vivo studies that 

investigate the impact of DR on skeletal muscle mass provide muscle 

mass relative to fat mass or total mass, with DR animals reportedly 

possessing higher lean mass to fat mass and/ or total mass ratio, 

therefore perhaps underestimating the influence of DR on lean mass. 

(Colman et al., 2008, Mckiernan et al., 2011) (Mckiernan et al., 2011). 

Furthermore, even if muscle mass is maintained during a specific DR 

regimen, the ability of skeletal muscle to undergo hypertrophy may also be 

limited. This was observable within combined diet and resistance exercise 

training studies, where the loss of muscle mass experienced with DR in 

human cohorts was diminished when undertaken alongside resistance 

exercise in comparison to DR alone (Larson-Meyer et al., 2006, Ballor et 

al., 1988, Weiss et al., 2007, Ross et al., 2000, Janssen and Ross, 1999).  

 

As aluded to above, in addition to the reductions in AKT activity (Mercken 

et al., 2013) a reduction in the insulin/IGF signaling pathway is also 

present and has been previously associated with increased lifespan and 

healthspan in model organisms (Clancy et al., 2001, Holzenberger et al., 

2003, Barbieri et al., 2003, Tatar et al., 2003, Giannakou and Partridge, 

2007, Piper et al., 2008, Selman et al., 2008, Vallejo et al., 2009, Kenyon, 

2011, Selman et al., 2011). With ageing however, where considerable 

muscle loss occurs, there is a paradoxical reduction of approximately 33% 

in circulating IGF-I (Benbassat et al., 1997) and a 45% decline in SkM-

derived IGF-I mRNA in older (70 ± 0.3 years) vs. younger (20 ± 0.2 years) 

human males (Léger et al., 2008). These observations indicate that 

although DR may reduce IGF-I to evoke improvements in lifespan and 

healthspan, reduced IGF-I is associated with reductions in muscle mass 

with age.  Indeed, this is demonstrated in insulin receptor substrate 1 

(IRS1) knockout mice (required for intracellular signalling following 

successful IGF-I/IGFI receptor binding), where despite having increased 

lifespan, have reduced body weight and fat mass compared to age-
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matched controls (Pete et al., 1999, Selman et al., 2008) and importantly 

have reduced gastrocnemius skeletal muscle weight that is proportionately 

greater than the decrease seen in total body weight (Pete et al., 1999). 

 

 

DR therefore may be a successful intervention at improving lifespan and 

healthspan and evidence suggests in animal models that DR does not 

affect muscle mass possibly due to a reduction in inflammation 

Contradictory evidence suggests however that DR evokes a reduction in 

IGF-I and related signalling associated that is also observed with muscle 

loss in older age. Finally, the loss of cellular differentiation capabilities in 

myoblasts have been observed in low glucose conditions (Elkalaf et al., 

2013, Khodabukus and Baar, 2014). Fulco et al. (2008) suggested that 

increased activation of Sirtuin 1 (SIRT1) was responsible for the observed 

impaired differentiation in low glucose conditions.  Fulco et al. (2008) 

further suggests that this mediated via activation of the energy dependent, 

AMPK pathway, in which the expression of downstream genes such as 

FOXO, atrogin1/ MAFbx and MuRF1 associated with protein degradation 

are up regulated (Nakashima and Yakabe, 2007) an observation 

discussed later in this introduction under section 1.6, however suggests 

that further SIRT1 activation may be important under DR in skeletal 

muscle cells.  

 

1.5. SIRT1 and DR 

Indeed, Sirtuin 1 (silent information regulator/ SIRT1) is a nicotinamide 

adenine dinucleotide (NAD+) dependant class III histone deacetylase, the 

closest homologue of all seven mammalian Sirtuins to the yeast Sir2 

enzyme (Boily, 2008, Inoue et al., 2007). Both SIRT1 and Sir2 are 

activated via an increase in the NAD+: NADH ratio (Canto and Auwerx, 

2008, Bk, 2006). This reliance on nutrient sensing has led to extensive 

research on the involvement of Sir2 in yeast and more recently SIRT1 in 

mammalian longevity experienced during DR (Baur et al., 2012, 

Brenmoehl and Hoeflich, 2013, Gurd et al., 2011, Mercken et al., 2014a). 

Sir2 overexpression improves lifespan in budding yeast and similar trends 
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have been recorded regarding SIRT1 in mammalian models (Kaeberlein et 

al., 1999, Herranz et al., 2010).  

 

The effect SIRT1 has on lifespan is demonstrated by Boily (2008), in 

which the maximal survival of SIRT1 null mice is 24 months compared to 

approximately 32 months in similar wild type counterparts (Harper et al., 

2006). This suggests that adequate SIRT1 is required for normal lifespan. 

Furthermore, this reduced lifespan is further exacerbated by the 

employment of DR in these mice (Boily, 2008). These findings are 

indicative of SIRT1 knockout mice being unable to adapt to reduced 

calorie intake, thus highlighting the importance of SIRT in longevity during 

DR. Also, administration of the SIRT1 activator, STR2104 in murine 

populations has resulted in lifespan improvements similar to that observed 

during DR (Mercken et al., 2014b). Additionally, the use of an alternate 

SIRT1 activator, resveratrol has also shown improvements in age related 

diseases and ultimately lifespan in mice, albeit the most prominent 

research suggests this phenomenon is more likely to occur on a 

background of a high fat diet (Baur et al., 2006, Pearson et al., 2008, 

Barger, 2008). Short-term resveratrol supplementation in humans also 

elicits similar metabolic and inflammatory adaptations as those observed 

during DR (Timmers et al., 2011). Unfortunately, there are inconsistencies 

in the literature regarding overexpression of SIRT1 not always leading to 

lifespan improvements, however in these instances where longevity is not 

experienced, age-related disease prevalence appears to decline similarly 

to DR (Mercken et al., 2014b, Herranz et al., 2010), suggesting an 

important role in healthspan. Overall, it is evident that SIRT1 plays a 

significant role in both the life and health span experienced during DR.  

 

1.6. SIRT1 and skeletal muscle mass 

Although there is limited data regarding the effect of SIRT1 on skeletal 

muscle mass per se, its role in metabolism has been studied more 

extensively. Overexpression of SIRT1 in murine models has led to 

improved glucose uptake in skeletal muscle. In addition, the age-
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associated accumulation of nuclear foci of DNA damage proteins have 

been shown to be suppressed in comparison to wild type (WT) 

counterparts. Both these outcomes suggest a slowing in metabolic 

damage (Herranz et al., 2010). Bordone et al. (2007) implemented a 

transgenic mouse model (overexpresses SIRT1) and observed an 

increase in metabolic activity via increased oxygen and food consumption 

relative to body weight compared to their controls. SIRT1 may 

consequently play an important role in increasing metabolic activity, 

possibly preventing accretion of metabolic damage and ultimately inducing 

a reduction in overall pathological incidence. In some tissues, 

overexpression of SIRT1, despite no further improvements in lifespan, 

reduces pathological incidence such as eye infections and abnormal 

growths by 13% (Mercken et al., 2014a).  

 

There is also now emerging evidence that SIRT1 could also be involved in 

muscle mass regulation under stressful environments (see below). 

Overexpression of SIRT1 via the administration of SRT2014, during the 

employment of a 2 week hind-limb unloading protocol, has reportedly 

maintained skeletal muscle mass compared with unsupplemented controls, 

in addition to increasing rodent lifespan (Mercken et al., 2014b). Despite 

this, it has been observed that aged mice had a blunted hypertrophic 

response following synergistic ablation with a lower satellite cell 

content }and not as large an increases in in type II fibres vs. young adult 

mice (Ballak et al., 2015). However, resveratrol did not rescue the blunted 

hypertrophic response and actually even reduced, rather than increased, 

the number of satellite cells in the hypertrophied muscles. These findings 

indicate that SIRT1 may play an important role in stressful environments 

such as disuse and disease, yet perhaps not in basal ageing and warrants 

further investigation.  

 

1.6 Role of SIRT1 and DR in skeletal muscle cells in vitro:  

Adult skeletal muscle fiber number is set in-utero and adult fibers are post-

mitotic (incapable of cellular division) (Buckingham et al., 2003).. Despite 



 

 

25 

these phenomena, adult skeletal muscle is highly adaptable, readily 

responding environmental cues. Much of this adaptability (growth and 

repair) is achieved via resident adult stem cells, termed satellite or muscle 

precursor cells that have mitotic potential (Once activated these cells are 

termed myoblasts) (Brown and Stickland, 1993, Rudnicki et al., 2008, 

Charge and Rudnicki, 2004). 

 

Despite the sparse literature involving the role of SIRT1 in whole skeletal 

muscle maintenance, in vitro studies involving mouse skeletal muscle 

satellite cells, primary myoblasts and myoblast cell lines have also begun 

to be conducted. As previously discussed, the loss of differentiation 

capabilities in myoblasts, have been observed in low glucose (DR) (Elkalaf 

et al., 2013, Khodabukus and Baar, 2014). Also, as discussed above, 

Fulco et al. (2008) suggested that increased SIRT1 activity was 

responsible for impaired differentiation, mediated via activation of the 

energy dependent, AMPK pathway, in which the expression of 

downstream genes such as FOXO, atrogin1/ MAFbx and MuRF1 

associated with atrophy are up regulated (Nakashima and Yakabe, 2007).  

 

Contrary to this finding research by our group were first to demonstrate 

(Saini et al., 2012), with replication by Wang et al. (2014), a survival and 

regenerative effect of SIRT1 on myoblast differentiation when the SIRT1 

activator, resveratrol is administered together with an inflammatory 

cytokine known to induce an inhibition of myoblast differentiation, TNF-α 

(Saini et al., 2012). This is important given that TNF-α increases 

chronically in both the circulation and skeletal muscle tissue of elderly 

humans, and correlates with loss of muscle function, morbidity and 

mortality (Greiwe et al., 2001) (Greiwe et al., 2001, Bruunsgaard and 

Pedersen, 2003, Bruunsgaard et al., 2003a, Bruunsgaard et al., 2003c), 

Saini et al. (2012) observed an increase in SIRT1 mRNA associated with 

TNF-α induced cell death, which was further exacerbated through SIRT1 

inhibition by siRNA. However, death was rescued through SIRT1 

activation via resveratrol. These findings imply that SIRT1 is important in 
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cell survival. Furthermore, TNF-α induced reductions in differentiation 

were restored with SIRT1 activation via resveratrol administration also an 

indication that SIRT1 may actually be important in maintaining myoblast 

differentiation in stressful catabolic environments (Saini et al., 2012). 

Furthermore, resveratrol has been shown to improve myoblast migration 

(albeit not differentiation) in the presence of oxidative stress via hydrogen 

peroxide (Bosutti and Degens, 2016). Overall suggesting that SIRT1 

activation via resveratrol administration may mediate survival, remodelling 

and differentiation in muscle cells.  

 

1.7. Summary  

Despite the dramatic improvements in health observed under dietary 

restricted environments the chronic reduction in caloric intake may lead to 

impaired growth related signaling causing a potential breakdown in muscle 

protein over time. The activation of SIRT1 via resveratrol treatment in the 

presence of inflammatory and oxidative stress, has been previously shown 

to protect myoblasts from a loss of myotube formation and improve muscle 

cell remodelling, therefore the activation of SIRT1 under the alternate 

stress of DR may provide a similar protective effect.  

 

1.8 Aim 

The overall aim of this thesis was to determine whether the 

supplementation of resveratrol via activation of SIRT1 was able to 

ameliorate the potential losses in myoblast differentiation and myotube 

hypertrophy observed under DR conditions.  

  

1.9 Thesis Overview 

Following this introduction, we first documented the methodology used to 

carry our aims in the following four data chapters, this information can be 

found in Chapter 2. A physiological model of glucose restriction in vitro 

was then established in Chapter 3. Glucose concentrations that mimic 

both the circulating/ interstitial levels in rodents following DR where 

assessed for skeletal muscle cells differentiation capacity via 
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morphological (myotube number, diameter, area) and biochemical 

analysis (CK activity). In addition gene expression analysis was also 

performed for fundamental genes related to myogenisis, the differentiation 

program, myotube maturation and protein degradation (MyoD, MRF4, 

Myogenin, MYHC 1, 2, 4 and 7, IGFBP2, ID3, MUSA1 and SIRT1). In 

Chapter 4 the most appropriate doses of SIRT1 activator resveratrol and 

inhibitor (EX-527) was determined as to evoke increased/ decreased 

SIRT1 activity via western blot analysis, respectively.  Both Chapter 5 and 

6 utilised the findings from both chapter 3 and 4 and carried out glucose 

restriction in the presence of the SIRT1 activator and inhibitor. Chapter 5 

addressed the role of altering SIRT1 activity in differentiating myoblasts 

under glucose restriction via morphological, biochemical and gene 

expression analysis (as in chapter 3) to determine whether SIRT1 had a 

role in ameliorating the effect of low glucose on myoblast regeneration 

capacity. Finally, data from chapter 5 led us to believe SIRT1 activation 

may play a role in later myotube hypertrophy and therefore in Chapter 6 

we addressed the role of SIRT1 activation/ suppression in fully 

differentiated formed myotubes. This was carried out through extensive 

morphological analysis and gene expression of important genes identified 

above in this introduction and those associated with late differentiation and 

myotube maturation (MRF4, MYHC1, 2, 4 and 7) myotube hypertrophy 

(IGF-I, IGF-IR, IGF-II, IGF-IIR, IGFBP2, mTOR) and myotube atrophy 

(TNF-, myostatin, MuRF, MAFbx, MUSA1, FOXO1, 3, NF-kB, p53). 

Furthermore, we assessed protein activity of energy sensing (AMPK) vs. 

growth cellular signalling (P70S6K) identified in this introduction above to 

be important in DR in muscle cells Fulco et al. (2008) and other cell types 

(Inoki et al., 2003). Finally, Chapter 7 provides the final discussion and 

conclusions that can be drawn from the work, as well potential future 

directions. 
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2. Materials and Methodology  

2.1 General equipment and specialized 

software  

2.1.1 Cell Culture 

All cell culture experiments were performed in a certified class II cabinet 

(BioULTRA, Telstar, Terrassa, Spain).  All liquid handling was performed 

using a portable pipet aid (Drummond, PA, USA) and waste liquid was 

vacuum pump aspirated (Capex 8c, Charles Austen pump Ltd. U.K.). The 

cells were incubated in a CO2 incubator (CB 150, Binder, Germany), 

maintained at 37°C and 5% CO2.  

 

2.1.2 Biochemical Assays 

A CLARIOstar plate reader (BMG Labtech, Germany) was used for both 

total protein and CK at 540-590 nm and 340 nm respectively. The BCA 

protein assay kit was purchased from Thermoscientific (IL, USA) and the 

DiscretPak™ Creatinine kinase Reagent kit from Catachem (CT, USA). 

 

2.1.3 Real Time, Reverse Transcription quantitative Polymerase 

Chain Reaction (RT-qPCR) 

A Spectrophotometer (Nanodrop 2000, ThermoScientific, IL, USA) was 

used at absorbency ratios of 260/ 280 nm and 260/ 230 nm to measure 

quantity and quality of each RNA isolation. Samples were prepared for 

PCR using an automated pipetting system (QIAgility, Qiagen, Venlo, 

Netherlands). The prepared samples where then placed in a qPCR cycler 

(Rotor-gene Q®, Qiagen, Venlo, Netherlands). Reagents, reaction tubes 

and pipette tips used for q-PCR (Syber green, RT master mix and RNA 

free water) were all supplied by Qiagen (Venlo, Netherlands). 
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2.1.4 SDS-Page and Western Ligand Blotting 

Mini Protean Tetra stands with clamp kit (Bio-Rad Laboratories, Inc. CA, 

USA) were used for gel casting, a Powerpac Basic Power Supply used 

for electrophoresis and Trans-blot Turbo Blotting system (Bio-Rad 

Laboratories, Inc. CA, USA) for transfer from gel to nitrocellulose 

membrane. Protein detection was carried out using Pierce Fast Western 

Kit, Supersignal West Pico, Rabbit (Thermofisher scientific, MA, USA) and 

enhanced chemiluminescence (ECL) detections were performed using the 

Chemidoc MP system  (Bio-Rad Laboratories, Inc. CA, USA). 

 

2.1.5 Plastic ware 

Plasticware used during cell culture procedures were acquired from 

Falcon (Thermofisher scientific, MA, USA), this included; 75 cm2 Straight 

neck cell culture flask and 6 well plate cell culture plate. Biochemical 

assays used Falcon (Thermofisher scientific, MA, USA) 96 Well plates. 

Cryotubes used for cryopreservation where purchased from Nunc 

(Sigma-Aldrich, MO, USA). Differentiation media was filtered using 

Stericup Filter units (0.2 m) and collected into receiver flask produced 

by Merck Millipore (Darmstadt, Germany). Filtering of media components 

was performed using 0.2 m syringe filters originally produced by 

Corning (MA, USA) and purchased from Thermofisher scientific (MA, 

USA). Preparation of liquid for cell dosing and Biochemical assays was 

performed in either a 5, 10 and 25 ml Falcon tube (Thermofisher 

scientific, MA, USA). Extraction of samples from cell culture was aided 

using Fisherbrand cell scrapers (Thermofisher scientific, MA, USA) and 

the sample was collected into tubes originally produced by Eppendorf 

(Hamburg, Germany) of either 2, 1.5 or 0.5 ml. During RNA extraction and 

isolation Applied Biosystems 1.5 ml RNA free tubes were used, 

purchased from Thermofisher scientific (MA, USA). Reaction tubes for q-

PCR where purchased from Qiagen (Crawly, UK). Pipette tips used for cell 

culture, biochemistry and western blotting as well as filter tips for RNA 
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isolations were purchased from Fisherbrand (Thermofisher scientific, MA, 

USA). 

 

2.1.6 Cell Culture Reagents 

The purchase of sterile cell culture reagents is listed below: Dulbecco’s 

modified eagle’s medium (DMEM) from Sigma-Aldrich (MO, USA). Heat 

inactivated (hi) New Born Calf Serum (NBCS), hi Foetal bovine serum 

(FBS) and hi horse serum (HS) were originally produced by Gibco 

(Paisley, UK) and purchased from Sigma-Aldrich (MO, USA). Powdered 

DMEM with no glucose was also purchased from Sigma-Aldrich (MO, 

USA), the reconstitution of which was performed using Hyclone water, 

cell culture grade (endotoxin free) purchased from Thermofisher scientific 

(MA, USA). L-Glutamine 200 mM, Penicillin-Streptomycin solution 5000 

U/ml (Pen-strep), Trypsin EDTA (0.05%) and phenol red were produced 

by Gibco (Paisley, UK) and purchased from Thermofisher scientific (MA, 

USA). These items where purchased unsterile and where filtered using the 

above mentioned syringe filters. Porcine gelatine was reconstituted using 

1 g in 500 ml of D2O. Phosphate buffered saline (PBS) was reconstituted 

using 1 tablet per 100 ml of D2O. Both gelatine type A (from porcine skin 

(cat no. G2500-100G) and PBS were purchased from Sigma-Aldrich (MO, 

USA). The distilled water was produced using a Milli-Q direct 8 

purification system from (Merck Millipore, Darmstadt, Germany). These 

reagents were reconstituted in glassware bottles. These were then 

autoclaved. Items that where bought in large quantities e.g. Pen-strep and 

Trypsin were aliquoted into smaller volumes ready for use, this reduced 

the number of freeze thaw cycles. 
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2.2. Methodology- Principles and 

procedures 

2.2.1. C2C12 Skeletal Myoblasts 

The C2C12 cell line were used in both the cell and myotube studies (Blau, 

1993). These cells were purchased from the American type culture 

collection (ATCC). Once these cells arrive they are categorized as P0, the 

first passage is subsequently known as P1. Each additional passage 

increases the P number by 1. C2C12 and C2 myoblasts undergo 

spontaneous differentiation into myotubes on serum withdrawal, and do 

not require growth factor addition to stimulate the process (Blau, 1993, 

Tollefsen et al., 1989). 

 

2.2.2 Cell Culture of C2C12 Skeletal Myoblasts 

 T75 flasks were prepared using 8 ml of 0.2% gelatine left at room 

temperature for 10 min and then incubated at 37 °C for 10 min. The 

excess gelatine was removed and 14 ml of Growth Media (DM) (DMEM, 

10% hiFBS, 10% hiNCS, 1 % pen-strep) was added. Cryovials were 

brought up from liquid nitrogen containing 1-2 ml of cell solution consisting 

of 1-2 ml of growth media (GM) suspending 1 x106 cells per ml. The cells 

were then thawed at 37 °C, 1 ml cell solution was added to one pre-

prepared T75 and incubated at 37 °C and 5% CO2 for 72 hr. 

 

Following the 72 h incubation, cells were visually assessed in order to 

ensure confluency. Once achieved the GM was aspirated and the cells 

were washed twice using 8 ml of Phosphate Buffered Saline (PBS). Pre-

warmed Trypsin (1 ml per T75) was then applied for 5 min at 37 °C. Once 

cells were no longer adhered to the dish (assessed by looking at the cells 

under an Olympus CKX31 inverted microscope (Olympus Corporation, 

Japan) the Trypsin was neutralized by adding 4-8 ml of GM. The solution 

containing Trypsin, cells and GM was then removed into a 50 ml tube and 

homogenized gently using a 19G needle BD Microlance 3, (Becton, 



 

 

33 

Dickinson and Company, UK) to reduce cell clumps thus increasing the 

accuracy of the cell count (section 2.2.3). 

 

Prior to use, 6-well plates were pre-treated with 1 ml, 0.2% porcine 

gelatine per well and incubated for 10 min at room temperature (RT) and 

10 min in a humidified incubator at 37°C with 5% CO2. The excess 

gelatine was aspirated and cells were seeded at 8 x 104 cells per ml in 2 

ml of GM per well, these were then incubated until 80% confluency. High 

serum (20%) GM was removed and the cells were washed once with 2 ml 

PBS, 2 ml of low serum Differentiation Media (DMEM, 2% horse serum, 

1% pen-strep) was then added to each well. It is during this change in DM 

that the cells were treated in various conditions specific to individual 

chapters detailed below (Section 2.2.5.). 

 

2.2.3. Cell Counting via Trypan Blue Method 

The Trypan blue method of cell counting was originally devised to 

determine cell viability of the cell population by differentiating between 

trypan incorporated (blue non-vivable) and non-coloured (viable) cells. 

Here the Trypan blue dye infiltrates perforated cells, a characteristic of the 

impaired membrane integrity of non-viable cells, thus making them appear 

blue under a microscope where cell death occurs. A haemocytometer was 

used for manual counting; this consists of a thick glass microscope slide 

with two chambers. Each chamber can contain a total of 10 μl of liquid. 

(Fig.2.1).  
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Preparation of the cell solution consisted of a 1:1 dilution, produced using 

a 50 μl Trypan blue solution 0.4% (Thermofisher scientific, MA, USA) and 

50 μl cell solution, once removed from a confluent T75. The solution was 

applied in 10 μl to both chambers of the Bright-line haemocytometer 

(Sigma-Aldrich, MO, USA) and the coverslip was placed over the 

chambers. After leaving the solution to settle for 1-2 min the 

haemocytometer was placed under a CKX31 inverted microscope 

(Olympus Corporation, Tokyo, Japan) at a 10 x magnification. Each 

chamber was divided into 4 segments; A-D, the viable cells were counted 

in all of the segments and an average was calculated across all 4 

segments in both chambers. If one cell was situated across the singe line 

edge then it was not counted, if it was across the multiple lines (closest to 

the centre) then these were counted (Fig.2.1).  

 

Fig. 2.1. The original, unedited image was obtained from www.microbehunter.com/the-

hemocytometer-counting-chamber. Viable cells and dead cells are represented by grey 

and blue dots respectively. The red lines indicate a magnification of the area. 

http://www.microbehunter.com/the-hemocytometer-counting-chamber
http://www.microbehunter.com/the-hemocytometer-counting-chamber
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To obtain the number of cells per ml the average cell number was 

multiplied by 2. This is because the cell solution was diluted 1:1 with the 

Trypan blue. As each grid section in which the average cell count was 

obtained has a volume of 0.1 mm3 it must therefore contain 0.1 μl of 

solution. The value obtained above (following the x 2 multiplication) was 

therefore multiplied by 104 to obtain the number of cells ml-1. The same 

cell solution was used across both chambers as a duplicate and an 

average of these was also taken to ensure accurate cell numbers were 

obtained.   

 

2.2.4. Cell Cryopreservation and Resurrection 

Cells at densities above or below 1 x 106 cells/ml were diluted in GM or 

centrifuged (5 minutes at 2500 rcf) and resuspended in GM respectively to 

provide a concentration of 1 x 106 cells/ml. To prevent the formation of ice 

crystals cells were treated with 10% Dimethyl sulfoxide (DMSO). The 

treated solution was then aliquoted into labelled cryotubes (Sigma-Aldrich, 

MO, USA) and stored in a Mr FrostyTM Freezing container (Thermofisher 

scientific, MA, USA) at -80°C for 24 h. The cryotubes were then moved 

into a labelled holder and stored in liquid nitrogen until required for future 

experimentation. 

 

2.2.5. Dosing Cells 

2.2.5.1. Reconstitution of powdered cell culture media  

The powdered DMEM (Sigma, Cat no D5030) was reconstituted according 

to manufacturers instructions (8.3 g/L of DMEM) supplemented with 0.58 

g/L L-Glutamine, 3.70 g/L Sodium Bicarbonate, 0.11 g/L, Sodium Pyruvate, 

0.02 g/L, Phenol red and either 0 g/L or 4.5 g/L (25 mM) D-Glucose in 

HyPure™ Molecular grade water (Hyclone, Thermofisher scientific, MA, 

USA). This was to ensure the composition matched the more generally 

used liquid DMEM.  
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2.2.5.2 Procedure for Dosing Cells at various glucose concentrations 

Media of varying glucose concentrations are implemented in Chapters 3, 5 

and 6. To obtain the different concentrations of glucose containing media 

powdered glucose (4.5 g/L) media was diluted using powdered glucose 

free media (0 g/L) detailed above, by creating the following concentrations; 

24.90, 18.75, 12.50, 6.24, 3.12, 0.00 mM.  

 

2.2.5.3. Reconstitution of Resveratrol 

Resveratrol, cat no. 554325 (Calbiochem, USA) was purchased in from 

Merck Millipore, (Darmstadt, Germany) in powder form and was 

reconstituted using 1 ml DMSO per 25 mg (25 mg/ml). Once reconstituted 

the resveratrol was frozen at -20°C. Concentrations of 5, 10 and 15 μM 

where used in Chapter 4.  Chapter 5 used 10 μM only. 

 

2.2.5.4. Reconstitution of SIRT1 inhibitor 

SIRT1 inhibitor, EX-527 (Merck Millipore, Darmstadt, Germany) was 

reconstituted using 500 μl DMSO per 5 mg (concentration of 10 mg/ml). 

Once reconstituted aliquots of 15 and 10 μl were stored at -20°C for up to 

6 months. Concentrations of 30 μM and 60 μM and 100 and 200 nM were 

used on C2C12 cells in the dose response study (Chapter 4) and 100 nM 

was carried forward for use in the co-incubation studies (Chapter 5 and 6).  

Molarity calculations for each compound were first carried out based on 

the equation in Equation 2.1. The dilution equation, Equation 2.2, could 

then be used depending on the amount of media needed for the specific 

experiment.  

 

Equation 2.1. Resveratrol and SIRT inhibitor (EX-527) molarity 

calculation 

Molarity x Volume (L) = Amount of powder (g) / Molecular weight (kD) 

 

Molarity = Amount of powder (g) / Molecular weight (kD) 

    Volume (L) 

 



 

 

37 

Resveratrol:  

 

Molarity= 0.025 g / 228.2 MW 

  0.001L 

 

Molarity= 0.109 M 

 

SIRT1 inhibitor:  

 

M= (0.005 g /248.7 MW) 

   0.001L 

 

M= 0.0201 M 

 

Equation 2.2 Resveratrol and SIRT1 inhibitor dilution  

 

M1 x V1 = M2 x V2 

 

V1 = M2 x V2 

      M1  

e.g. Resveratrol (10 μM) in 50 ml of media: 

 

V1 = 0.000010 M x 50000μl (50 ml) 

                     0.109 M 

 

V1 = 4.59 μl in 50 ml of media 

 

e.g. SIRT1 inhibitor (100 nM) in 50 ml of media: 

 

V = 0.0000001M x 50000 μl 

                 0.0201 

 

V = 0.248 μl in 50 ml of media 
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2.2.6. Muscle cell morphological measures by microscopy  

2.2.6.1. Principle 

The assessment of myotube number using microscopy is a morphological 

measure of the myoblasts differentiating and forming myotubes. Myotube 

diameter and area can be used to assess if myotubes have increased in 

size (i.e. undergone hypertrophy or decreased (undergone atrophy).  

 

2.2.6.2. Procedure 

Following media aspiration and 2× PBS washes (1 ml/well), cells were 

fixed by adding 1 ml methanol/ acetone (1:1) to 1 ml PBS per well in a 

drop-wise manner and incubated for 10 min at room temperature. 

Following aspiration, 2 ml methanol and acetone (1:1) were added to each 

well and incubated for a further 10 min. Finally, PBS (2 ml/well) was added 

after removal of the methanol and acetone solution and plates were stored 

at 4 °C until further analyses. This fixing process allowed nuclei to become 

discernible under light microscopy alone, without the need for additional 

nuclear staining. A total of 6 fields per well in duplicate, thus 12 per 

experimental condition for each time point were captured with a cell 

imaging system at x10 magnification on a microscope (DM6000 FS, Leica, 

Germany). Automated mark and find setting on the microscope allowed 6 

images per well to be taken in the same position in each well automatically, 

with the 6 locations chosen equally spread around the well. Images were 

analysed using Image J (Java) software (National Institutes of Health, 

USA). Morphology was assessed by determination of myotube number of 

myotubes per view, diameter and area. A myotube was defined as 

containing 3+ nuclei encapsulated within cellular structures, so to avoid 

counting of single cells undergoing mitosis. Myotube diameter (μm) was 

determined by measuring the diameter of 3 equidistant points on each 

myotube (left end, middle, right end) and determining the mean of the 3 

values as previously described (Trendelenburg et al., 2009, Deane et al., 

2013, Hughes et al., 2016). Myotube area (μm2) was determined by 

carefully tracing around myotube structures using Image J software and 
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converting pixel length to the known distance in μm taken from the scale 

bar on each image produced on each image automatically by the 

microscope. 

 

2.2.7. Cell Lysis for total Protein and Creatine Kinase Assays 

Following the intended incubation time for cells under various conditions 

(see specific detail in each chapter) cells were washed once using 2 ml 

PBS per well and PBS aspirated. The cell lysis buffer: Tris/ MES Triton 

(TMT; 50 mM Tris-MES, pH 7.8, 1% Triton X-100). A volume of 300 μl 

TMT was applied to each well of a 6 well plate and was then left at room 

temperature for 5 min to allow lysis to take place. The cells where scraped 

and the solution was collected into a 1.5 ml eppendorf tube and vortexed. 

Tubes were labelled with experiment name and number, time point and 

condition. These samples where kept at -80°C until further analysis was 

performed.  

 

2.2.8. Total Protein Assay 

2.2.8.1. Principle 

Total protein measurements where carried out using the Bicinchoninic acid 

(BCA) assay, originally devised by Smith et al. (1985). This colorimetric 

detection, similar to the previously popular Lowery method, implements 

the biuret reaction which states that Cu2+ is reduced to Cu1+ in the 

presence of protein under alkaline conditions (Fig 2.2.).  

 

 

Fig. 2.2. Simplified diagram of the Biuret reaction. 

The sensitivity of the biuret reaction alone is approximately 100 times less 

accurate than the additional BCA step. This addition allows one atom of 

Cu1+ produced during the biuret reaction to chelate with two molecules of 
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BCA (Fig. 2.3.). Following a 30 min incubation at 37°C, this reaction 

creates a purple colour when protein is present. This colour is proportional 

to the number of peptide bonds utilized during the reaction. Following the 

colour analysis at a wavelength of 540-590 nm, linear response curves of 

known standards were produced with an r2 >0.95 (Fig. 2.5.).  

 

 

 

2.2.8.2. Procedure 

Ultimately this protocol will consist of comparing the obtained samples to a 

known set of standards. These standards were produced in house using 

the same TMT used for lysis of the experimental samples. Here 4 mg/ml of 

bovine serum albumin (BSA) was serially diluted to produce eight 

standards: 4.00, 2.00, 1.00, 0.50, 0.25, 0.13, 0.06 and 0.00 mg/ml. These 

standards along with an additional blank (0.00 mg/ml standard) were then 

pipetted (in duplicate) into the first 18 wells in a non-UV, 96 wellplate. 

Each standard and the blank were then pipetted in a volume of 10 μl per 

well in duplicate. The experimental samples were pipetted into the 

remaining wells in duplicate using the same volume of 10 μl as the 

standards (Fig 2.4.)  

Fig. 2.3. One molecule of Cu1+ produced from the Biuret reaction chelating with two 

molecules of BCA. 
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Both reagents needed for the BCA assay were purchased from Pierce (IL, 

USA). Reagent A consisted of sodium carbonate, sodium bicarbonate, 

bichoninic acid and sodium tartrate in 0.1 M of sodium hydroxide and 

reagent B consisted of 4% cupric sulphate. To calculate the amount of 

reagent A required in total, the number of standards and samples in 

duplicate were multiplied by 200 μl (the volume of reconstituted reagent A 

required per well). The calculation for working reagent in a full plate would 

therefore be: 96 x 200 μl = 19,200 μl or 19.2 ml. Then reagent B was 

mixed with Reagent A (19.2ml) in a 1:50 ratio to produce the reaction 

solution e.g.19,200 μl reagent A / 50  = 384 μl of reagent B. 
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2.2.8.3. Analysis 

The plate was incubated for 30 min at 37°C following the above 

preparation of the samples. After this time the plate was inserted into a 

CLARIOstar plate reader (BMG Labtech, Germany) and absorbance was 

measured at 540-590 nm. Background was removed through blank 

correction (0.00 mg.ml-1 and reagent). Absorbance of the BSA standards 

where plotted against their known concentrations thus creating a standard 

Fig. 2.4. Total Protein assay, 96 Well Plate layout. Depiction of the position of the 

standards, samples and their accompanying duplicates. 
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curve. (Fig 2.5.). Sample concentrations where then derived through 

comparison to this curve.    

 

 

 

2.2.9. Creatine Kinase Assay 

2.2.9.1. Principle 

Creatine Kinase (CK) in vitro is used to mark the withdrawal from the cell 

cycle when myoblasts are fusing/differentiating. Where CK activity 

increases are detectable 3 h after induction of differentiation and serum 

withdrawal and 6 h before fusion occurs, where at 48 h of 

differentiation/fusion CK can be over 400 fold higher in myoblasts 

(Chamberlain et al., 1985). Furthermore, CK gene expression is a 

transcriptional target of MyoD the muscle-specific protein that is able to 

induce myogenesis (Lassar et al., 1989) and therefore investigating its 

biochemical activity at the protein level can help to indicate 

increased/decreased differentiation/fusion between experimental 

conditons and together with myotube morphology (myotube number, 

Fig.2.5.  BCA standard graph produced for the sample values to be obtain following 

comparison. r value = 0.99 and r
2
 = 0.98.  
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diameter, area and gene expression of myoD/myogenin) enables a 

complete picture of changes in differentiation in myoblasts. 

2.2.9.2. Procedure 

Cells were lysed according to the above protein procedure (Section 2.2.6). 

As described above, the samples were kept at -80°C until further analysis 

was carried out. Samples were thawed at room temperature and vortexed. 

A TMT blank was pipetted into the first two wells of 96 well UV plate in a 

volume of 10 μl. Each sample was then pipetted in duplicate into the 

remaining wells at the same volume as the blank. 

 

In order for each reaction to take place a working reagent was created. 

These reagents included two reagents purchased in a specific CK kit from 

Catachem, Inc. (Connecticut, NE, USA). According to manufacturers 

instructions these were combined as follows: 5 ml of liquid from bottle A 

with 0.118 g of powder from bottle B. The amount of reagent required was 

calculated according to the following equation. Reagent from bottle A (μl) 

= Reagent needed for each reaction per well (200 μl) x number of wells in 

use.  

 

Because 0.118 g bottle B was required per 5 ml of bottle A, the amount of 

powder required per ml was calculated as follows: 0.118 ÷ 5 = 0.0236 g. 

This is summarised in the equation below (Equation 2.3.). Once 

thoroughly mixed the working reagent were poured into a mixing trough 

and 200 μl working reagent was added to each well (except the blanks) 

using a multichannel pipette.  

 

Amount of Reagent of Bottle A (μl) = 200 μl x number of samples in 

duplicate 

Amount of powder from Bottle B (g) = Amount of Reagent of Bottle A (μl) x 

0.0236 

 

Therefore the calculation for working reagent in a full plate would read: 

 Amount of reagent from Bottle A (μl) = 200 μl x 96  
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                   = 19,200 μl (or 19.2 ml) 

 Amount of powder from Bottle B (g)    = 18.8 ml x 0.0236 g 

                 = 0.45312 g 

 

Equation 2.3. Calculation to determine quantities of reagents A and B 

needed for the CK assay. 

 

2.2.9.3. Analysis 

The 96 well plate was inserted into a CLARIOstar plate reader (BMG 

Labtech, Germany) and readings were taken every minute for 15 minutes 

allowing a linear enzymatic relationship to be observed to carry out further 

analysis. The absorbance level of every sample in the plate per minute 

was read at 340 nm. A change in absorbance over time was used to 

calculate CK activity, Equation 2.4. was applied to the change in 

absorbance values. This was normalised to total protein content 

established using the BCA protein assay protocol above (Section 2.2.8). 

 

ΔA.min-1 = (Final A - Initial A) ÷ (Final Reading Time – Initial Reading time 

(min))  

CK activity was then determined using the following calculation: 

CK (U.l-1)  = (ΔA.min-1 × TV × 1000) ÷ (6.22 × SV) 

 

Where: 

ΔA.min-1 = Change in absorbance per minute at 340 nm 

TV  = Total volume (ml) 

1000  = Conversion of units per ml to units per litre.    

6.22  = Millimolar absorptivity of NADH at 340nm 

SV  =  Sample volume (ml) 

 

Therefore, using 10 μl of sample and 200 μl of reagent the following 

equation applies: 

CK (U.l-1) =  (ΔA.min-1 × 0.21 × 1000) ÷ (6.22 × 0.01)            
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Equation 2.4. Calculation of CK activity 

 

2.2.10. SDS Page and Immunoblotting 

2.2.10.1. Principle 

Separation of proteins according to their molecular weight (kilo Daltons 

(kDa)) is performed using discontinuous sodium dodecyl sulphate 

polyacrylamide gel electrophoresis (SDS-PAGE) (Laemmli, 1970). Bis-

Acrylamide at different concentrations allows for the polymerisation of the 

gel by forming cross-links between the acrylamide polymers and the 

differentiation of the protein of interest by size e.g. 7% bis-acrylamide gels 

for a protein of high molecular weight versus 12% gel for proteins of low 

molecular weight. The process of polymerisation is catalysed by mixing 

ammonium per sulphate (APS) and N, N, N’, N’-

Tetramethylethylenediamine (TEMED) and two stacking gels are 

generated for each SDS page: i) the resolving gel (10%) which separates 

the protein by size and ii) the stacking gel (5%) which enables large 

volume of dilute sample to be loaded into lanes and thus align at the gel 

interface, prior to separation occurring in the resolving gel. 

 

2.2.10.2. Procedure 

The procedure consists of: Sample preparation, SDS-page Gel production, 

Electrophoresis, Transfer of proteins to nitrocellulose membranes, 

Immunoblotting and Enhanced chemiluminescence (ECL).  

 

2.2.10.3. Sample Preparation 

Cell lysis buffer (10 mM TrisHCL, 5 mM EDTA, 50 mM Sodium Chloride, 

30 mM Sodium Pyrophosphate, 50 mM Sodium Fluoride, 100 μM Sodium 

Orthovanadate, 1 mM PMSF and 1% Triton X-100.) was supplemented 

with commercial protease and cOmplete™, Mini, EDTA-free Protease 

Inhibitor Cocktail (Roche, Switzerland). Following analysis of total protein 

via BCA assay as above (2.2.7) 30 μg of protein was reconstituted in a 5th 

volume of the loading buffer (5 x Laemmli buffer, made up of: 3 ml 1M 

TRIS-HCl (pH 6.8.), 1 g Sodium dodecyl sulphate, 5 ml glycerol and 1 ml 
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DH2O, 25 mg Bromophenol blue). 
 

2.2.10.4. SDS-Page Gel production 

The SDS-Polyacrylamide (SDS-Page) gels were cast in a Mini- 

PROTEAN® Tetra cell casting stand (Bio-Rad Laboratories, Inc. CA, USA). 

Glass plates were aligned and clipped into place with gaskets below 

sealing the opening. A 10% resolving gel solution (4 ml 30% acrylamide 

1% BIS solution, 3.4 ml d2H2O, 2.5 ml 1.5M Tris Base, 100 μl 10 % SDS, 

50 μl 10% APS and 5 μl TEMED) was syringed between the plates. A 

layer of butanol was then syringed across the top of the resolving solution. 

Once removed this created a straight line on the resolving gel. Following a 

30 min incubation the butanol was removed and a 5% stacking gel 

solution (1.7 ml 30% acrylamide 1% BIS solution, 5.7 ml D2H2O, 2.5 ml 

0.5M Tris Base, 100 μl 10% SDS, 50 μl 10% APS and 10 μl TEMED) was 

applied, again using a syringe. A comb was carefully inserted at this point 

to prevent any bubbles forming in the gel. The comb selected was 

dependant on the number of samples, this ranged between 10 and 15 

wells.  

 

2.2.10.5. Electrophoresis  

The prepared gels where removed from their casting stand and inserted 

into a Mini- PROTEAN® Tetra vertical electrophoresis cell (Bio-Rad 

Laboratories, Inc. CA, USA.). These gels were run at 200 V until the 

bromophenol blue dye line reached the bottom of the gel (approximately 1 

h). The gels were closely monitored to ensure the sample did not run off 

the bottom of the gel. In addition these gels were also monitored to ensure 

the Amps did not exceed 3 A as this causes overheating of the gels.  

 

2.2.10.6. Transfer 

Following fractionation of the protein based on molecular weight, the 

protein was transferred onto a nitrocellulose membrane. Originally 

described by Towbin et al. (1979) the polyacrylamide gel was stacked 

against nitrocellulose paper and scotch-brite pads. The scotch brite pads 
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where replaced with extra thick filter paper for these experiments (Fig 2.6).  

The construction of the gel stack was carried out within semi-dry Trans-

blot Turbo Blotting system (Bio-Rad Laboratories, Inc. CA, USA) 

cassette. This stack began with the extra thick filter paper (Bio-Rad 

Laboratories, Inc. CA, USA.), which had been pre-soaked in transfer buffer 

(20 ml 10 x Tris Glycine, 40 ml methanol and 140 ml DH2O) followed by a 

nitrocellulose membrane, the SDS-Page gel and a final sheet of pre-

soaked filter paper. Care was taken to remove bubbles using a roller. The 

cassette lid was firmly and evenly pressed against the sandwiched gel and 

locked into place. The transfer protocol was run at 200 V for 30 min. The 

gel was then disposed of and the nitrocellulose membrane was either 

used in the immunoblotting stage (see below) or stored in plastic wrap at 4 

°C until needed. 

 

 

 

 

 

 

 

Figure 2.6. Construction of transfer stack located within the cassette of the Trans-blot 

TurboBlotting system (Bio-Rad Laboratories, Inc. CA, USA). The specific order is 

required to perform accurate transfer of protein from SDS page gel to nitrocellulose 

membrane. 
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2.2.10.7. Immunoblotting 

The nitrocellulose membrane was prepared for detection using a Pierce 

Fast Western Kit, Supersignal West Pico (Rabbit) (Thermofisher scientific, 

MA, USA). The membranes were incubated using the wash buffer 

provided in these kits for 10 min, during all incubations caution was taken 

to ensure the membrane were covered. Following the wash buffer (which 

includes an unspecified blocking agent) the membrane was incubated in a 

primary antibody, the manufacturer, catalogue number and concentration 

of primary antibodies (all of which were raised in a rabbit) used in the data 

chapters are available in Table 2.1. The membrane was then washed 

twice for 5 min using TBS-Tween at 0.1% (TBS-T) (100 ml TBS, 900 ml 

DH2O, 1 ml Tween-20) followed by the secondary rabbit antibody, raised 

in mouse, provided in the fast western kit. Finally, the wash buffer from the 

Pierce Fast Western Kit was used again for 2 x 5 min washes before 

ECL detection (see details below).  

 

 

 

Antibody Catalogue Number Dilution Factor 

Phosphorylated AMPK 2535S 1:1000 

Total AMPK 2532 1:1000 

Phosphorylated P70S6K 9205S 1:1000 

Total P70S6K 9202 1:1000 

Phosphorylated SIRT1 2314L 1:2000 

Total SIRT1 07-131 * 1:2000 

GAPDH 5174 1:4000 

Table 2.1. Dilution factors and product information for Primary antibodies used during 

immunoblotting. All antibodies were raised in rabbits. All antibodies were purchased 

from Cell Signalling Technology (MA, USA) except the one marked * which was 

purchased from Merck Millipore (Darmstadt, Germany).  
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2.2.10.8. ECL detection 

The Peirce™ fast western blot kit (Thermofisher scientific, MA, USA) also 

provided the enhanced chemiluminescence (ECL) detection reagents, 

these were used in a 1:1 dilution and incubated over the membrane for 5 

min. The membrane was then placed in the Chemidoc™ MP System (Bio-

Rad Laboratories, Inc. CA, USA.) where the band images where detected 

by densitometry in which the first image was taken at 5 sec and intervals 

of 30.5 sec thereafter until either the bands where overexposed, appearing 

red in colour or a maximum of 46 images had been taken (25 min in total). 

  

2.2.10.9. Analysis 

Following imaging, the band volumes were detected using Image lab™ 

(Bio-Rad Laboratories, Inc. CA, USA.). The bands for the phosphorylated 

protein were normalised to its own total protein counterpart before 

determining changes between experimental groups. Glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) was detected on all membranes prior 

to further detection. To establish whether loading of protein was 

comparable, we determined the volume values for GAPDH, following 

determination that no change was present independent of loading when 

glucose concentration is changed. If GAPDH was significantly different 

following t-test, the samples were also relativized to the GAPDH before 

continuing with further analysis.  

 

2.2.11. RNA Extraction 

2.2.11.1. Principle 

The role of mRNA is to act as a chemical messenger to carry the genetic 

information from specific genes contained within the DNA to the protein 

factory, the ribosome, in order to produce functional proteins. As a result, 

there is usually an association between an increase in mRNA leading to 

an increase in a particular protein. The production of mRNA is also more 

rapid than changes in protein abundance due to the time it takes for 

proteins to be translated. Therefore, by assessing mRNA we are therefore 

able to assess important temporal changes following experimental 
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manipulation that provide information for potential alterations at the protein 

level. Furthermore, due to past literature characterising strong association 

between the alterations in gene expression with subsequent alterations in 

morphology or function (e.g. myogenin gene expression and myoblast 

differentiation), gene expression can be an important tool to establish the 

underlying molecular mechanisms to muscle cell adaptation. Prior to 

analysis of mRNA expression, extraction of RNA is required using the 

method below. 

 

2.2.11.2. Procedure 

RNA isolation was performed using the TRIzol method, as previously 

described by Simms et al. (1993). At specific time points, following 

relevant cell incubations current media was aspirated and the cells were 

washed once with 1ml PBS, which was then aspirated prior to the 

administration of 250 μl TRI Reagent® per well of a 6 well plate (Sigma-

Aldrich, MO, USA).  TRIzol was left at room temperature for 5 min and 

cells were scraped using Fisherbrand™ cell scrapers (Thermo Fisher 

Scientific, MA, USA). Wells containing the same sample conditions were 

pooled and collected into a 1.5 ml RNAfree tube and stored at -80 °C until 

RNA isolation was performed.  

 Samples were thawed at room temperature and vortexed 

thoroughly. Once fully defrosted 0.2 ml of chloroform was added per 1ml 

TRI Reagent®. Samples were then mixed via shaking vigorously and 

centrifuged for 15 min at 12,000 x g and 4 °C, with all tube hinges facing 

upwards. During centrifugation, separation of the solutions occurs, in 

which the colourless, aqueous phase resides on the top  (containing the 

RNA), the white interphase (where the DNA and protein reside) and finally 

the red, phenol-chloroform phase (cell debris) residing on the bottom (Fig. 

2.7.). The aqueous phase was carefully removed to avoid contamination 

with DNA from the milky interphase and collected into a new 1.5 ml RNA 

free tubes. Precipitation of RNA was performed via the addition of 0.5 ml 

of isopropanol, per ml of TRI Reagent® initially used. The samples were 
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vortexed and left at room temperature for 10 min and then centrifuged at 

12,000 x g for 10 min at 4°C.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

The centrifugation produced an RNA pellet at the bottom of the tube (Fig. 

2.8.), for which the surrounding supernatant was removed. A wash of 1 ml 

of 75% molecular grade ethanol was added to the pellet, gentle shaking 

then removed the pellet from the side of the tube and the sample was 

centrifuged at 7500 x g for 8 min at 4°C. Ethanol was removed and 

allowed to air dry and then dissolved in 30 μl RNA storage solution 

(Ambion®, Thermo Fisher Scientific, MA, USA). 

  

 

 
 

 

 

 

Aqueous phase; RNA 

Milky, DNA and protein phase 

Phenol-chloroform phase; cell 

debris 

Fig.2.7. Graphic representation depicting the three phases present following addition 

of chloroform and the first centrifugation of the RNA isolation protocol. 
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2.2.11.3. RNA quantification 

RNA purity and concentration was assessed using 1 μl of sample on a 

NanoDrop 2000c, UV-Vis (Ultraviolet–visible spectroscopy) 

spectrophotometer (Thermo Fisher Scientific, MA, USA) using ODs 

(Optical Density) of 260 and 280 nm. A ratio of these OD values was 

calculated for each sample with 1.8-2.2 being accepted as high RNA 

quality and were carried forward for reverse transcription and PCR 

amplification.  

 

2.2.12. PCR 

2.2.12.1. Principle  

Real-time Polymerase chain reaction analysed the extracted mRNA by 

first converting it to a double strand of complementary DNA (cDNA) using 

reverse transcriptase. This cDNA then undergoes a series of approx. 40- 

45 cycles of heating and cooling to allow denaturation of the cDNA, 

annealing of gene specific primers and extension of the new cDNA 

products using free nucleotides and the enzyme DNA polymerase. This 

process produces a doubling of the template cDNA at each cycle, with a 

fluorescent dye (e.g. SYBR green) incorporated into every double 

  

 

 

 

Supernatant  

RNA Pellet 

Fig.2.8. Graphic representation depicting the RNA pellet in the supernatant following 

addition of isopropanol and centrifugation. 
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stranded product. Therefore, as the product begins to accumulate above 

background levels, this allows quantification of the cDNA at the end of 

each cycle.  

 

2.2.12.2. Sample Preparation 

First, samples were all diluted to 7.3 ng/μl using RNA free water. This 

normalisation allowed the same amount of starting RNA to be present in 

all samples. The samples were added to the PCR reaction in a volume of 

9.5 μl, making a total concentration per reaction 70 ng per reaction/sample. 

Sample reactions where produced in optically clear strip tubes (Qiagen, 

Crawly, UK). The components of the aforementioned reactions consisted 

of: 

- 10 μl of 2x Quantifast SYBR green (Qiagen, Crawly, UK), 

- 0.2 μl Quantifast RT Mix (Qiagen, Crawly, UK), 

- 0.15 μl of both a forward and reverse primer (Sigma-Aldrich, MO, USA) 

of a specific stock/starting concentration of 100 μM. 

This process was carried out using a QIAGility automated pipetting system 

(Qiagen, Crawly, UK). 

 

2.2.12.3. PCR cycles  

One step RT-q-PCR (reverse transcription, quantitative PCR) was 

performed using a Rotorgene 3000 (Qiagen, Crawly, UK) and consisted of: 

10 min at 50°C (reverse transcription, cDNA production), 5 min at 95°C 

(transcription inactivation and initial denaturation), followed by 10 sec at 

95°C (denaturation), and 30 sec at 60°C (annealing and extension) for 40 

cycles. Melt curve analysis (Fig.2.9.) was performed as a final stage to 

identify non-specific amplifications and/or primer-dimer issues. Following 

initial characterisation and redesigning of primers where melt curves 

produced multiple peaks, all of the genes using the primers in table 2.2. 

produced a single melt curve peak suggestive of amplification of one 

single product. Average Efficiency of PCR reaction per sample (e.g. 100% 

is perfect doubling at every cycle) was determined by the software. All 

efficiencies for the primers of genes listed in table 2.2 were within 10% of 
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each other and therefore satisfied the MIQE guidelines (Lassar et al., 1989) 

for relative gene expression analysis (described below under section 

2.2.12.5.) where efficiency particular of the gene of interest and the 

calibrator gene should be within 10% of each other.  

 

2.2.12.4. Primer design 

Primers (Table 2.2.) were identified using a genome browser at 

www.genome.ucsc.edu or PubMed Gene 

(https://www.ncbi.nlm.nih.gov/gene/) and designed using web-based 

OligoPerfect™ Designer (Invitrogen, Life Technologies, Pasiley, U.K) or 

Primer Blast (https://www.ncbi.nlm.nih.gov/tools/primer-blast/). Primers 

were purchased from Sigma-Genosys (Suffolk, UK) without the 

requirement of further purification. Sequence homology searches against 

the Genbank database ensured specificity to ensure the primers only 

matched the sequence and therefore gene that they were designed for. 

Where possible, the primers were ideally designed to yield products 

spanning exon-exon boundaries to prevent any non-specific amplification 

of genomic DNA. Three or more GC bases in the last 5 bases at the 3’ end 

of the primer were avoided as stronger bonding of G and C bases can 

cause nonspecific amplification. Searches for secondary structure or 

inter/intra- molecular interactions (hairpins, self-dimer and cross-dimer) 

within the primer were also performed which would potentially lead too 

poor or no yield of the product. All primers designed were between 17 and 

24 bp and amplified a product of between 76-353 bp (Table 2.2.). GC 

content ranged between 38% and 60% (Table 2.2.). 
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Target 

Gene 

Primer Sequence (5’-3’) Reference 

number 

Amplicon 

length (bp) 

GC% 

 

MyoD F: CATTCCAACCCACAGAAC 

R: GGCGATAGAAGCTCCATA 

NM_010866.2 125 50.00 

50.00 

MRF4 F: GGCTCTCCTTTGTATCCAGGG 

R: CGATCTGTGGGGGCAGATTT 

NM_008657  

 

194 57.20 

55.00 

Myogenin F: CCAACTGAGATTGTCTGTC 

R: GGTGTTAGCCTTATGTGAAT 

NM_031189.2 173 47.37 

40.00 

MYHC1 F: CGGTCGAAGTTGCATCCCTA 

R: TTCTGAGCCTCGATTCGCTC 

NM_030679.1 145 55.00 

55.00 

MYHC2 F: GCGAAGAGTAAGGCTGTCCC 

R: GGCGCATGACCAAAGGTTTC 

NM_001039545.2 76 60.00 

55.00 

MYHC4 F: AGGAGGCTGAGGAACAATCC 

R: TTCTCCTGTCACCTCTCAACA 

NM_010855.3 192 55.00 

47.62 

MYHC7 F: TGTGCTACCCAGCTCCAAG 

R: CTGCTTCCACCTAAAGGGCTG 

NM_080728.2 77 57.89 

57.14 

ID3 F: AGCGTGTCATAGACTACATCCTC 

R: TCCTCTTGTCCTTGGAGATCAC 

NM_008321 135 47.82 

47.82 

MUSA1 F: CCTTGAGGCTCCCGGCAAAT 

R: ACTGCTCCACAAACCAATGGA 

NM_001168297 

 

189 60.00 

47.70 

SIRT1 F: ACAATTCCTCCACCTGAG 

R: GTAACTTCACAGCATCTTCAA 

NM_001159589.2 124 50.00 

38.10 

Myostatin F: TACTCCAGAATAGAAGCCATAA 

R: GTAGCGTGATAATCGTCATC 

NM_010834.3 194 36.36 

45.00 

IGF-I 

 

F:GCTTGCTCACCTTTACCAGC 

R:TTGGGCATGTCAGTGTGG 

NM_001111276.1 280 55.00 

55.56 

IGF-IR F:TGCGGTGTCCAATAACTAC 

R: TGTTGATGGTGGTCTTCTC 

NM_010513.2 110 47.40 

47.40 

IGF-II F: GTACAATATCTGGCCCGCCC 

R: GTATGCAAACCGAACAGCGG 

NM_010514.3 198 60.00 

55.00 

IGF-IIR F: GGAACTCCTGAATTTGTAACT 

R: CTACCAGATAGCCACCATT 

NM_010515.2  

 

181 38.00 

47.00 

IGFBP2 F: AGTGCCATCTCTTCTACAA  

R:  GCTCAGTGTTGGTCTCTT 

NM_008342.3 197 42.20 

50.00 

Table 2.2. Real qPCR primer sequences 

IGF-I mature and MGF were not designed by use and were taken from(Yang et al., 

1996)  
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2.2.12.5. Analysis 

Using RotorgeneQ 3000 software (Qiagen, Manchester, UK) a threshold 

line was positioned manually where there was an exponential rise in 

fluorescence above background levels on the lower third of the 

exponential increase (Bustin et al., 2009) (Fig. 2.9.). 

IGF-IEa F:GCTTGCTCACCTTTACCAGC 

R:AATGTACTTCCTTCTGGGTCT 

NM_010512.4 300 55.00 

50.00 

MGF F: GCTTGCTCACCTTTACCAGC 

R:AAATGTACTTCCTTTCCTCTC 

NM_184052.3 353 55.00 

38.10 

mTOR F: CACTCCACTATCCTGTTACCT 

R: GAGATCCTTGGCACACCT 

NM_020009.2 190 47.62 

55.56 

MuRf1 CCAAGGAGAATAGCCACCAG  

R: CGCTCTTCTTCTCGTCCAG 

NM_001039048.2 

 

84 55.00 

58.00 

MafBx F: GTCGCAGCCAAGAAGAGAA 

R: CGAGAAGTCCAGTCTGTTGAA 

NM_026346.3 156 53.00 

47.00 

FoxO1 F: AGTGGATGGTGAAGAGCGTG 

R: GAAGGGACAGATTGTGGCGA 

NM_019739.3 

 

96 55.00 

55.00 

FoxO3 F: CGGACAAACGGCTCACTTT 

R: TCGGCTCTTGGTGTACTTG 

NM_019740.2 

 

272 52.63 

52.63 

TNF-α F: TCAACAACTACTCAGAAACAC 

R: AGAACTCAGGAATGGACAT 

NM_001278601.1 130 38.10 

42.11 

TNFRS1b F: GTTGCTCTGTTATAGGATGGT 

R: TGCTGTCTGCTGTCTACT 

NM_011610.3  

 

113 42.00 

52.94 

NFκβ F: ACACGAGGCTACAACTCTGC 

R: GGTACCCCCAGAGACCTCAT 

NM_008689 

 

164 60.00 

55.00 

RPIIβ (a.k.a: 

pol2rb) 

F:GGTCAGAAGGGAACTTGTGGTAT 

R:GCATCATTAAATGGAGTAGCGTC 

NM_153798.2 197 47.82 

43.47 

https://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=76253923
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From this, the CT values (defined as the cycle at which the samples 

fluorescence trace crosses the threshold line) for all genes were compiled 

in table format imported into Excel to perform a relative analysis. Here a 

spreadsheet was formulated to apply the Delta Delta CT (ΔΔCT) equation 

Figure 2.9. A) Displays the output and threshold applied to actual data output. B) 

Shows an enlarged example of RT-PCR fluorescence (relative fluorescent units) at 

incrementing cycles of an experimental sample (exp) and a control sample. The 

threshold is positioned on the lower third of the exponential rise in fluorescence on the y 

axis above background levels of fluorescence vs. cycle number axis (x axis) and the 

threshold cycle (Ct) is calculated by reading of the cycle number on the x axis. Imaged 

acquired from http://www.bio-rad.com/webroot/web/pdf/lsr/literature/Bulletin_5990.pdf 

A 

B 
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(Equation 2.5. otherwise known as the Livak Method (Schmittgen and 

Livak, 2008)) 

 

Equation 2.5. Delta Delta CT (ΔΔCT) equation otherwise known as the Livak Method 

(Schmittgen and Livak, 2008).  

Equation 1: ΔCT = Mean CT (Target gene, test e.g. MyoD) – Mean CT  (Reference gene, test 

e.g. GAPDH   ) 

Equation 2: ΔCT = Mean CT (Target gene, calibrator) – Mean CT (Reference gene, calibrator) 

Equation 3: ΔΔCT= ΔCT of Equation 1 - ΔCT of Equation 2 

Equation 4: 2-ΔΔCT (gives a normalised expression ratio) 

 

Where:  

Mean CT (Target gene, test) = The average CT value (sample and duplicate) of 

targeted gene (e.g. myoD) in the experimental condition e.g. RNA isolated 

from C2C12 after 72 h in DM. 

 

Mean CT Reference gene, test = The average CT value (sample and duplicate) of 

reference housekeeping gene (e.g. RPII β/polr2b) in the experimental 

condition e.g. RNA isolated from C2C12 cells after 72 h in DM. 

 

Mean CT (Target gene, calibrator) = The average CT value (sample and duplicate) 

of targeted gene (e.g. myoD) in the calibrator condition e.g. RNA isolated 

from C2C12 cells after 0 h in DM (0 h being the calibrator condition in all of 

the experiments in this thesis). 

 

Mean CT (Reference gene, calibrator) = The average CT value (sample and 

duplicate) of  reference housekeeping gene (e.g. RPII β) in the calibrator 

condition e.g. RNA isolated from C2C12 cells after 0 h in DM. 

 

For Example: 

Equation 1: ΔCT = 22.18 (myoD, 72 hrs DM) – 20.69(RPII β, 72 hrs DM) 

then: 

Equation 2: ΔCT = 26.86 (myoD, 0 hrs DM) – 20.49 (RPII β, 0 hrs DM) 

Equation 3: ΔΔCT= ΔCT of Equation 1 (1.49) – ΔCT of Equation 2 (6.37) 
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Equation 4:  2-(-4.88) (gives a normalised expression ratio of 29.45) 

 

Therefore, in this example (which is hypothetical data and corresponds to 

no true analysis) the expression ratio of MyoD between C2C12 cells that 

have placed in DM for 0 h and 72 h is 29:1. Therefore, in this hypothetical 

example MyoD is highly expressed (29 fold higher) after 72 h in C2C12 

cells compared with the 0 h time point, and after being normalised to the 

housekeeping gene of RPII β. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

61 

 

 

 

 

Chapter 3 
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3. Determining Physiological 

Glucose Concentrations in vitro: 

A Model to investigate the 

impact of dietary restriction on 

muscle cell differentiation. 

3.1. Introduction  

Dietary restriction administered in vivo is calculated as a reduction in 

calories and/ or macronutrients in comparison to control ad libitum (AL) 

counterparts. Mimicking this model in culture however is more problematic. 

Firstly the assessment of calories consumed requires a more complex 

assessment in vitro than in vivo. Secondly, the current glucose 

concentration implemented in both rodent (Sharples et al., 2011, Stitt et al., 

2004, Dimchev et al., 2013, Hao et al., 2011, Staiger et al., 2004, Hao et 

al., 2006) and human culture (Steitz et al., 2001, Clempus et al., 2007) is 

24.9 mM or 4.5 g/L (NOR), which is much higher than has been detected 

physiologically. Despite this the concentration will therefore be carried 

forward as a reference control, allowing comparison with the existing 

literature and future glucose manipulation studies, however a more 

physiologically relevant dose needs to be established that mimics dietary 

restriction. 

 Various studies have compared changes in glucose 

concentration in both rodent and human studies, both determining a drop 

in serum/ blood glucose concentration during DR. Murine models have 

reported 30 – 40% reductions in glucose both acutely over a 3 week 

period from 2.79 to 1.63 g/L (15.5 to 9.1 mM) (Mahoney et al., 2006) and 

chronically over a 20 month period from 1.5 to 1 g/L (8.3 to 5.6 mM) 

(Cartee et al., 1994). Walford et al. (1992) suggested a 30% calorie 
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reduction decreased human serum levels from 0.92 g/L to 0.74 g/L (5.1 to 

4.1 mM) over 6 months. Whereas an average of 6.9 years calorie 

restriction in humans compared to western diet counterparts displayed a 

12.6% reduction in fasted glucose concentration (0.95 vs. 0.83 g/L and 5.2 

vs. 4.6 mM) (Fontana et al., 2006). 

 

 Although this data is indicative of the systemic effect of decreased calorie 

intake will have on the body it is not necessarily the concentration that 

skeletal muscle is exposed to due to the change in concentration from the 

blood and interstitial space. Glucose values in the muscle interstitium have 

been reported to be 30% lower than those found in the blood of both 

rodents (Aussedat et al., 2000) and humans (Maggs et al., 1995). To our 

knowledge, muscle interstitium values have unfortunately, not yet been 

reported during chronic DR, therefore using the above information we may 

only produce an approximation, as follows. The previously reported values 

for blood glucose during DR consisted of approximately 0.74 g/L (4.1 mM) 

in humans (Walford et al., 1992) and 1 g/L (5.6 mM) in murine models 

(Cartee et al., 1994). Therefore applying the aforementioned 30% 

reduction to represent the differences between interstitium and blood 

would estimate DR interstitium at nearly 0.5 and 0.7 g/L (2.8 and 3.9 mM) 

for humans and rat respectively.  

 

Fulco et al. (2008) initially assessed the effect of glucose deprivation on 

muscle in vitro, whose findings of reduced muscle differentiation was 

confirmed later by Elkalaf et al. (2013) and Khodabukus and Baar (2015). 

None of these studies reported the rationale behind the glucose 

concentration administered, which varied from 1 g/L (5.6 mM) (Elkalaf et 

al., 2013, Khodabukus and Baar, 2015) to 0.1 g/L (0.6 mM) (Fulco et al., 

2008). The former appears to be similar to the previously reported fasted 

blood glucose level and the latter is much lower than the predicted value 

for the interstitium during DR. Ideally we would aim to implement a 

physiologically relevant glucose concentration found in the interstitium, 

however, when undertaking studies in proliferating muscle cells the 
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viability of these cells must also be taken into account. Consequently, prior 

to carrying out any studies utilizing glucose concentrations in conjunction 

with other variables we will implement various percentage reductions in 

glucose concentration from the NOR, 4.5 g/L (25 mM) due to its 

widespread use in the literature (despite its lack of physiological relevance) 

in a dose response manor and assess the impact of these varying doses 

on growth and differentiation of muscle cells. These doses are as follows: 

4.50 g/L (NOR), 3.38 g/L, 2.25 g/L, 1.13 g/L (MED), 0.56 g/L (LOW) or 

0.00 g/L (25.00 mM (NOR), 18.75 mM, 12.50 mM, 6.25 mM (MED), 3.12 

mM (LOW) or 0.00 mM) where LOW, MED and NOR are closest to 

glucose levels expected during DR in the interstitium, circulation and in 

‘normal’ basal myoblast media respectively. 

 

We aimed initially to assess the impact on muscle cell differentiation via 

morphological analysis of myotube number, diameter and area and non-

subjective biochemical analysis (CK activity). Additionally molecular 

analysis of gene expression (mRNA) was performed to determine changes 

in genes that have been extensively characterised to be highly correlated 

with fusion/differentiation (IGF-1, myoD, myogenin, ID3 and IGFBP2), 

myotube maturation (MRF4, MYHC1 (IIx), 2 (IIa), 4 (IIb) and 7 (slow type I) 

and protein degradation (MUSA1) and survival (SIRT1). 

 

3.2. Methods 

3.2.1. Cell culture 
C2C12 murine myoblasts (Blau et al., 1985) at passage 12 were incubated 

in separate T75 flasks in a humidified, 37°C with 5% CO2 in Growth media 

(GM) containing: Dulbecco’s Modified Eagle Serum (DMEM) (D6429-6, 

Sigma-Aldrich, UK), 1% Penicillin Streptomycin (Pen Strep), 10% New 

born calf serum (NBCS) and 10% Fetal Bovine Serum (FBS) until 80% 

confluency was attained. 
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Experiments were initiated by removing GM (as described in the general  

methods, chapter 2, section 2.2.2), washing once with phosphate buffered 

saline (PBS) followed by the addition of differentiation media (DM). Two 

media forms were implemented for use in control DM conditions, 1) liquid, 

commercially available and ready to use with a 4.5 g/L glucose 

concentration (D6429, Sigma-Aldrich, UK) supplement with 2% horse 

serum (HS) and 1% PenStrep (PS) to allow a control that would be 

comparable to existing literature and 2) a powdered form (D5030, Sigma-

Aldrich, UK). The chosen powered DMEM was reconstituted according to 

manufactures instructions (8.3 g/L of DMEM) supplemented with 0.5840 

g/L L-Glutamine; 3.7000 g/L Sodium Bicarbonate; 0.1100 g/L, Sodium 

Pyruvate; 0.0159 g/L Phenol red and either 0 g/L or 4.5 g/L D-Glucose in 

order for the composition to match that of the more generally used liquid 

DMEM. This media was also supplemented with 2% HS and 1% PS. The 

powered DM supplemented with glucose was comparable to the liquid 

DMEM in section 3.3.1, thus making this DMEM a relevant control as well 

as being used to produce the dosing conditions described below under 

section 3.2.2. The reduction in serum content, causing the C2C12 

myoblasts to undergo spontaneous differentiation without requiring the 

addition of growth factors to initiate the process (Blau et al., 1985). Cells 

were seeded following trypsinization of the adherent cells, counts were 

preformed using haemocytometer in the presence of Trypan Blue dye as 

described in general methods (section 2.2.3).  

 

3.2.2. Cell dosing 

6Well plates where pre-treated with 0.2% porcine gelatine for 10 min at 

room temperature (RT) and 10 min in a humidified incubator at 37°C with 

5% CO2. The excess gelatine was aspirated and cells were seeded at 8 X 

104 cells/ml in 2 ml of GM, and incubated until 80% confluence. Cells were 

washed in PBS and transferred into 2 ml of DM at 37°C with 5% CO2 for 

up to 7 days (7D). Time point zero was defined as an incubation of 30 min 

after transfer to DM and is denoted as 0 hours (0 h). To assess the effect 

of glucose restriction on myoblasts the cells where incubated in 
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reconstituted powdered media as described above with either: 4.50 g/L, 

3.38 g/L, 2.25 g/L, 1.13 g/L, 0.56 g/L or 0.00 g/L or 25.00 mM, 18.75 mM, 

12.50 mM, 6.25 mM, 3.12 mM, 0.00 mM of glucose respectively. All 

experiments were carried out as N = 3, each N consisting of a different cell 

set brought out of liquid nitrogen at the same time.  

 

3.2.3. Morphology 

Myotube parameters including; number, diameter and size were assessed 

using a live imaging light microscope (AF600 modular system, Leica, 

Germany) cell imaging system at x10 magnification at time points; 0, 48 

and 72 hours and 7 days. Experiments were replicated three times (N=3), 

each experiment consisted of each time point and experimental condition 

being performed in duplicate with 6 images taken per well providing a total 

of 12 images per condition per timepoint. Analysis was performed on the 

images acquired at 72 h and 7D using ImageJ software (NIH, USA) (See 

general methods chapter 2, section 2.2.6.) 

 

3.2.4. Total protein content 

Protein was measured using BCA™ (Pierce, Rockfored, IL) according to 

instructions and detected using CLARIOstar® plate reader (BMG labtech, 

Germany) at a wavelength of 540-590 mM to quantify total protein 

concentrations prior to relative comparison of CK samples (See general 

methods chapter 2, section 2.2.8.). 

 

3.2.5. Creatine Kinase  

Assessment of creatine kinase activity was measured using an assay kit 

(Catachem, Inc, Connecticut, NE) according to manufactures instructions 

and detected using a CLARIOstar® plate reader (BMG labtech, Germany) 

at a wave length of 340 nm. See general methods chapter 2, section 2.2.9. 

 

3.2.6. RNA Extraction and analysis 

RNA extraction was performed using the TRIzol method (See method 

chapter 2, section 2.2.11.), following the manufactures instructions 
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(Invitrogen, Life technologies, Carlsbad, CA). RNA purity and 

concentration was assessed using 1 μl of sample on a NanoDrop 2000c, 

UV-Vis (Ultraviolet–visible spectroscopy) spectrophotometer (Thermo 

Fisher Scientific, MA, USA) using ODs of 260 and 280 nm. A ratio of these 

OD value was calculated for each sample with all samples possessing 

260/280 ratios of between 1.8-2.2 and therefore accepted as high RNA 

quality. 

 

3.2.7. Primer design 

Identification of target sequences were carried out via Gene 

(http://www.ncbi.nlm.nih.gov/gene). Primers (Chapter 2, section 2.2.12.4 

table 2.2.) were designed using Primer-Blast 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/). Primer details can be 

found under 2.2.12.4. 

 

3.2.8. RT-PCR and analysis 

RT-PCR was carried out using Quantifast SYBR green RT-PCR kit 

(Qiagen, Manchester, UK) on a Rotor-Gene® (Qiagen, Manchester, UK) 

supported by Rotor-Gene® Q Software, version 2.1.0.9 (Qiagen, 

Manchester, UK). The RT-PCR cycles consisted of; 48°C, 30 min (reverse 

transcription/ synthesis of cDNA), 95°C, 10 min (transcriptase inactivation 

and initial denaturation) followed by 40 cycles at 95°C, 15 sec 

(denaturation), 60°C, 1 min (annealing and extension in 1 step). 

Disassociation melt-curve analysis was performed to reveal and exclude 

non-specific amplification and primer dimer issues. All gene products 

yielded a single melt peak/temperature suggesting one product was 

amplified. Relative gene expression analysis was carried out using ΔΔCt 

equation, otherwise known as the Livak method (Schmittgen and Livak, 

2008), to establish normalised expression ratios, where the relative 

expression is calculated as 2-ΔΔCt
 and Ct represents the threshold cycle. 

RPIIβ was extremely stable between experimental conditions (mean Ct 

15.62 ± 0.11) and therefore used as the housekeeping gene in all RT-PCR 

assays and the pooled mean used in the ΔΔCt calculations. All RT-PCR 
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figures are presented as a relative gene expression in comparison to the 0 

h cell incubated in “Normal” glucose (4.5g/L or 25 mM). This sample was 

used as a calibrator condition in the subsequent equations in order to 

compare expression values across glucose concentrations. 

 

3.2.9. Statistical analysis 

All data was performed using three separate cell populations thus 

performed N=3. Analysis was then carried out using Minitab® 17 (Minitab 

Ltd, Coventry U.K). Outliers where removed using Grubbs outlier test. All 

data was parametric, assessed using the Anderson-Darling test for 

normality. General linear models where carried out for morphological data 

CK (3 x 3, time (48, 72 h and 7D) x glucose concentration (NOR, MED and 

LOW) and gene expression (3 x 3, time (0, 72 h and 7D) x glucose 

concentration (NOR, MED and LOW). Post hoc tests where performed 

using Bonferroni, Tukey and Fisher. The results produced through the 

Bonferroni tests are reported throughout the results as this test is more 

stringent. Use of Tukey and Fisher is stated within the text if no 

significance was observed using Bonferroni.  

 

3.3. Results 

3.3.1. Preliminary morphological analysis to eliminate irrelevant 

glucose concentrations from further analysis  

Two 25.00 mM concentrations were implemented and appeared to 

produce similar results regardless of DMEM used (reconstituted powder vs. 

commercially bought liquid) (Fig. 3.1.). Therefore, as the glucose dose 

response media was created using the reconstituted powder DM and there 

was no morphological difference between this media and the liquid form 

the reconstituted (powdered) DMEM was used as the control condition 

(NOR) for all subsequent studies (Fig. 3.2.). Glucose dose response 

(25.00, 18.75, 12.50, 6.25, 3.12, 0.00 mM) initially investigated 

morphological analysis only, as some of the lowest concentrations we 

expected to have few viable cells. 
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Following 72 h in 0 mM glucose it was determined that the majority of cells 

had died and were no longer adherent to the plate (Figure 3.2. top left 

image). As such, this concentration could not be utilized as a suitable 

model for DR in myoblasts and was therefore not carried forward for 

further investigation. A morphological reduction in differentiation was 

present in the 3.12 mM glucose concentration. This concentration was 

similar to the glucose levels observed in interstitial concentrations during 

DR and was therefore carried forward for further morphological, 

biochemical and molecular analysis below. The apparent morphology 

between the remaining concentrations (6.25, 12.50, 18.75 mM) did not 

appear to differ appreciably between conditions. However, as the 6.25 mM 

(MED) concentration was also the most reflective of serum concentrations 

of glucose in fasted (but not dietary restricted) rodents this dose was also 

carried forward. It should be noted that morphological images only (Fig. 

3.2) were conducted for this wide range of dosing in order to initially 

narrow the focus to more relevant dosing conditions. Based on these initial 

observations further analysis degrading myotube number, diameter and 

size, as well as CK activity and transcriptional response was performed on 

doses of 25 mM (NOR), 6.25 mM (MED) similar to fasted serum levels and 

3.12 mM (LOW), similar to predicted interstitial concentration during DR. 

 

Fig 3.1. Images displaying similar number and size of myotubes within two 

different types of DMEM. Two 25 mM glucose conditions, the first created using a 

powered DMEM and supplementing with glucose, this is denoted as “reconstituted”. 

The second created using a commercially available DMEM denoted as “liquid”.  
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3.3.2. Morphological and biochemical analysis for differentiation 

capacity was reduced in LOW and MED glucose conditions.  

Following a brief time course experiment (data not shown) we determined 

that myotube formation was slightly delayed in the cell population used in 

comparison to other groups utilizing C2C12 cell lines. As a result there 

were a limited number of myotubes present at the 72 h time point and a 

much greater number was present following 7D within the NOR condition. 

The end time point was therefore extended to 7D for future studies 

allowing late differentiation and myotube maturation to take place. We 

investigated differentiation via myotube imaging (Fig. 3.3.), this allowed 

Fig 3.2. Initial dose response for glucose concentrations following 72 h. Doses include 

the readily used 25.00 mM (NOR) and a serial dilution of 18.25 mM, 12.50 mM, 6.25 mM 

(MED), 3.13 mM (LOW) and 0.00 mM. The 25.00 mM is the control glucose condition 

this condition contained larger and more plentiful myotubes than the glucose restricted 

conditions. Compared to the control condition both 0.00 and 3.12 mM displays an 

increase in cell death, whereas 6.25 mM displayed a reduction in myotube 

differentiation, observed via reduced number of myotubes.  Glucose conditions 12.50 

and 18.75 mM appeared unchanged in comparison to the control  
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analysis of myotube number and these results were confirmed with a 

biochemical assay for CK (marker of differentiation). Finally, myotube 

hypertrophy was analysed via measurement of myotube area and 

diameter.  

 

 

 

 

 

 

 

 

No myotubes were formed in either the MED or LOW glucose conditions 

following 72 h as such no further morphological analysis was carried out. 

Following 7D myotubes had formed in MED and NOR conditions however 

the number was greatly diminished in MED glucose conditions following in 

comparison to the NOR glucose condition (NOR vs. MED: 21.72  1.22 vs. 

1.44  0.30, p < 0.001). Again no myotubes were observed in the LOW 

glucose condition (Fig 3.4.) As a result following ANOVA analysis there 

was a significant main effect for glucose condition (F(2,105)= 281.33, p < 

0.001).  

 

Fig 3.3. 10X magnification images of: 25.00 mM (NOR), 6.25 (MED) and 3.12 (LOW) 

glucose concentrations. Images taken following 72 h and 7D. No myotubes have been 

formed following 72 h in any condition. After 7D there are no myotubes formed in LOW 

glucose conditions and there is a large amount of cell death. In MED and NOR conditions 

myotubes have formed (only counted as a myotube when 3 or more nuclei were present) 

however there are a much greater number and area in NOR compared to MED.  
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To confirm morphological analysis of myotube number, CK activity a 

biochemical marker of fusion/ differentiation and early myotube formation 

was assessed (Fig 3.5.). Following an ANOVA test there was an 

interaction for CK activity between time and glucose dosing (F(4,99) = 2.43, 

p = 0.053) and as predicted there was also a significant main effect for 

glucose alone (F(2,99) = 49.23, p < 0.001). Post hoc tests revealed that the 

NOR glucose conditions exhibited higher CK activity than both the MED 

and LOW conditions at both 72 h (NOR: 208.20  84.00 vs. MED: 86.20  

68.90, p < 0.001 vs. LOW: vs. 37.21  26.03 mU.mg.ml-1, p < 0.001) and 

at 7D (NOR vs. MED vs. LOW: 281.50 101.50 vs. 84.03  32.63 vs. 

40.50  29.90 mU.mg.ml-1, p < 0.001, respectively, Fig 3.5). NOR was also 

significantly higher at 48 h than the LOW glucose condition (130  104 vs. 

46  13 mU.mg.ml-1, p = 0.042 (tukey)) with a definite trend towards 

significance between NOR and MED (130  104 vs. 79  21 mU.mg.ml-1, p 

= 0.055 (fisher)). Although not significant it is worth noting MED glucose 
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Fig 3.4. Myotube number is dramatically reduced at 7D in cells undergoing MED 

glucose restriction with no observable myotubes in LOW glucose conditions. Data was 

displayed as mean and SD values of following experimentation to three cell populations 

(n =3). Significant difference (p<0.05) is denoted using a *.  
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showed a trend towards an increased CK expression when compared to 

LOW at 72 h (86.20  68.90 vs. 37.21  26.03, mU.mg.ml-1, p = 0.061 

(fisher)) and 7D (84.03  32.63 vs. 40.50  29.90 mU.mg.ml-1, p = 0.096 

(fisher)).  

 

 

No myotubes were formed following 7D in the LOW condition therefore 

measurement of myotube size and diameter was only carried out on the 

MED and NOR conditions (Fig. 3.6.). The total size of the myotubes was 

established via measurements of myotube area. There was a significant 

reduction in size of myotubes between NOR and MED conditions (NOR vs. 

MED: 7395  4544 vs. 4805  2732 μM2, p < 0.001). Myotube diameter 

however displayed no significant difference between NOR and MED 

Fig 3.5. CK is relativized to total protein. The NOR dose indicates differentiation is 

occurring more rapidly between 48 h and 7D compared with MED and LOW glucose 

conditions. There is also significantly higher CK activity in NOR vs. MED and LOW 

conditions at 72 h and 7D and between NOR and LOW at 48 h. Significant 

differences (p<0.05) are denoted using a *. If approaching significance p value is 

stated. 
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conditions (NOR vs. MED: 15.55  5.14 vs. 16.80  6.51 μM, p = 0.103). 

Overall there was a significant reduction in number and size of myotubes 

in MED glucose conditions compared with NOR. Additionally myotube 

formation was completely inhibited under LOW conditions. 

 

 

3.3.3. Impaired expression of the myogenic regulatory factors (MRF) 

during LOW glucose. 

Myogenic regulatory factors (MRF’s) are involved in the lineage 

commitment of myoblasts, myoblast fusion and differentiation as well as 

Fig 3.6. Graphs depicting myotube size (A) and myotube diameter (B). As described 

above there are no myotubes observed under LOW conditions and as such there are no 

measurements to report and therefore this glucose concentration was removed from 

analysis. There are no significant difference present between MED and NOR glucose for 

diameter, Myotube size is significantly higher in the MED condition than in the NOR. 

Significant difference (p<0.05) is denoted using a *. 
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the maintenance of differentiation. MyoD underpins myoblast 

determination and the onset of fusion (Buckingham et al., 2003, Cooper et 

al., 1999), whereas myogenin regulates formation and executes the 

differentiation program (Berkes and Tapscott, 2005) Analysis of MyoD 

gene expression suggested a significant main effect for time (F(2,17) = 4.64, 

p = 0.025). No change in MyoD expression was observed over time for 

NOR glucose (0 h vs. 72 h: 0.98  0.53 vs. 0.70  0.21, p = 0.480, 0 h vs. 

7D: 0.98  0.53 vs. 0.90  0.66, p = 0.836, 72 h vs. 7D: 0.70  0.21 vs. 

0.90  0.66, p = 0.600). Compared to 0 h, LOW glucose displayed a 

reduced MyoD expression at 72h, (0 h vs. LOW: 0.98  0.53 vs. 0.08  

0.03, p = 0.020) and 7D (0 h vs. LOW: 0.98  0.53 vs. 0.22  0.04, p = 

0.044) whereas MED did not (0 h vs. 72 h MED: 0.98  0.53 vs. 0.38  

0.46, p = 0.107, 0 h vs. 7D MED: 0.98  0.53 vs. 0.37  0.20, p = 0.100). 

There is no significant difference at 72 h between NOR and both MED and 

LOW (NOR vs. LOW: 0.70  0.21 vs. 0.08  0.03, p = 0.135, NOR vs. 

MED: 0.70  0.21 vs. 0.38  0.46, p = 0.435). There is also no significant 

difference between MED and NOR following 7D (NOR vs. MED: 0.90  

0.66 vs. 0.37  0.20, p = 0.145), however for LOW in comparison to NOR 

there is a trend towards a decrease in MyoD expression under LOW 

conditions (NOR vs. LOW: 0.90  0.66 vs. 0.22  0.04, p = 0.066) This 

data suggests that LOW may have a reduced capacity to produce 

myotubes, a previously documented in the morphological data (Fig 3.7,A).   

 

MRF4 (myf6) activates differentiation so an early time point should see an 

increase in MRF4. There are no interactional or main effects for MRF4 

(Fig 3.7,B).  Despite the lack of significance across all time points and 

conditions the data was reduced on average between certain experimental 

conditions. The high stringency in our chosen post hoc tests led us to 

implement these to determine the pairwise comparisons. Following these 

post hoc tests there was a significant increase in gene expression in MED 

glucose at 72 h in comparison to both LOW and NOR (MED vs. LOW: 

3.66  4.76 vs. 0.09  0.06, p = 0.022, MED vs. NOR: 3.66  4.76 vs. 0.10 
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 0.01, p = 0.038). These findings suggest there is a difference between 

LOW and MED and these concentrations are not simply replicas. 

 

Myogenin promotes terminal differentiation and as such is observed in late 

differentiation. There was also no significant interaction or main effect 

present for myogenin (Fig 3.7,C), as with MRF4 despite this lack of 

significance we chose to assess the pair wise comparisons using post hoc 

tests due to their stringency. There is no significant difference between 0 h 

and NOR at 72h (0 h vs. NOR: 1.88  1.31 vs. 5.62  4.12, p = 0.069) 

which is indicative of the late activation of myogenin required for 

differentiation to take place. There is however a significant increase in 

myogenin expression at NOR 7D in comparison to 0 h (NOR vs. 0 h: 10.61 

 4.81 vs. 1.88  1.31, p = 0.010). Although there is no difference between 

LOW and MED concentrations at 72 h (LOW vs. MED: 1.48  1.53 vs. 

1.60  1.51, p = 1.00) there is a reduction in expression under MED 

conditions from NOR (MED vs. NOR: 1.60  1.51 vs. 5.62  4.12, p = 

0.053 (fisher)) as well as a significant reduction under LOW conditions 

(LOW vs. NOR: 1.48  1.53 vs. 5.62  4.12, p = 0.047 (fisher)). 

Additionally there is a significant reduction in LOW and MED compared to 

NOR at 7D (LOW vs. NOR: 0.68  0.76 vs. 10.61  4.81, p = 0.002, MED 

vs. NOR: 4.52  0.55 vs. 10.61  4.81, p = 0.006 (fisher)). Additionally 

there is a trend between LOW and MED (LOW vs. MED: 0.68  0.76 vs. 

4.52  0.55, p = 0.064 (fisher)), which suggests that LOW may reduce 

myogenin expression to a greater extent. This suggests that terminal 

differentiation is inhibited in both glucose-restricted conditions but more 

severely under LOW conditions. 
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 Fig 3.7. Graphs depicting means and SD’s for gene expression for: MyoD (A), MRF4 

(B) and Myogenin (C). LOW glucose is reduced compared to NOR or MED in at least 

one time point for all MRF’s studied. Significant difference (p<0.05) is denoted using a 

* . If approaching significance p value is stated. 
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3.3.4. Myosin Heavy Chain (MYHC) expression is impaired under 

MED and LOW glucose conditions compared to NOR. 

 Slow twitch fibres (MYHC7) have been observed to increase expression 

earlier during maturation whereas fast twitch fibres; MYHC: 1 (IIx), 2 (IIa) 

and 4 (IIb) tend to increase gene expression as myotubes become even 

more mature(Brown et al., 2012). No main or interactional effects are 

present for MYHC7. As with MRF4 and myogenin previously discussed, 

despite no significant main effect or interaction we still obtained pairwise 

comparisons using post hoc tests due to their stringency. These post hoc 

tests revealed an early increase in in MYHC7 in the NOR glucose 

condition at 72 h compared to 0 h, (NOR vs. 0 h: 5.54  2.40 vs. 1.46  

1.23, p = 0.027 (fisher)). We also see a significant difference between the 

0 h baseline and NOR glucose at 7D (0 h vs. NOR: 1.46  1.23 vs. 5.46  

4.94, p = 0.030 (fisher)). More importantly, we observed a main effect for 

glucose (F(2,18)  = 6.57, p = 0.007). This is readily observable at 7D where a 

significant difference is present between NOR and both the LOW (NOR vs. 

LOW: 5.46  4.94 vs. 0.61  0.27, p = 0.011 (fisher)) and MED (NOR vs. 

MED: 5.46  4.94 vs. 1.23  0.87, p= 0.023 (fisher)) conditions (Fig. 3.8, 

A). MYHC2 also displays no significant difference across time points or 

glucose concentrations in addition to no significant pairwise comparisons 

(data not reported, see figure 3.8, B). 
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MYHC4 displays a significant main effect for glucose (F(2,18) = 6.57, p = 

0.007), evidenced by the large increase under NOR conditions between 0 

h to 7D (0 h vs. NOR: 1.38  1.19 vs. 10.04  10.30, p = 0.016). There 

was no significance over time in the MED condition overtime (0 h vs. MED: 

1.38  1.19 vs. 2.30  1.53, p = 1.000). Importantly there was a significant 

difference in MYHC4 between NOR and both MED and LOW glucose 

conditions at 7D (NOR vs. MED: 10.04  10.30 vs. 2.30  1.53, p = 0.028 

(fisher), NOR vs. LOW: 10.04  10.30 vs. 0.91  0.06, p = 0.012 (fisher)) 

(Fig. 3.9, A). 

Fig. 3.8. Graphs depicting means and SD’s for gene expression for: A) MYHC7 B) 

MYHC2. MYHC7 is effected by restricted glucose whereas MYHC2 is not. Significant 

difference (p<0.05) is denoted using a * . If approaching significance p value is stated. 
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Finally, for MYHC1, a significant main effects for glucose (F(2,17) = 4.48 , p= 

0.027) and time (F(2,17) = 3.78, p = 0.044) as well as a significant 

interaction between the two (F(4,17) = 2.95, p = 0.051), was observed for 

MYHC1 (Fig. 3.9, B). Post hoc tests elucidated a significant increase in 

MYHC1 gene expression between NOR at 7D and 0 h (NOR vs. 0 h:  

386.00  333.00 vs. 1.13  0.77, p= 0.028). A significant difference was 

also present at 7D between NOR and LOW (NOR vs. LOW: 386.00  

333.00 vs. 3.37  1.71, p = 0.029). With fisher comparisons observing a 

significant difference between NOR and MED (NOR vs. MED: 386.00  

333.00 vs. 31.70  40.90, p= 0.002). These findings are similar to both 

MYHC4 and 7. Overall lowing glucose availability clearly affected early 

differentiation (MyoD) and myotube formation (myogenin) in line with the 

reduced myotube number and CK activity. This is in addition to impaired 

myotube maturation and hypertrophy demonstrated by a reduction in 

myotube size and gene expression of MYHC 1,4 and 7. 
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3.3.5. LOW and MED glucose do not have an increased atrophic gene 

expression.  

Work from our lab has previously documented a reduction in Insulin like 

growth factor binding protein 2 (IGFBP2) expression across the 

differentiation timecourse, when expression increased differentiation 

reduced (Fig 3.10, A) (Sharples et al., 2013a). There was a significant 

main effect for time for IGFBP2 in these experiments (F(2,17) = 15.29, p < 

0.001). Fisher posthoc tests then confirmed a significant reduction in 

IGFBP2 expression between the 0 h baseline compared to NOR, MED 

Fig. 3.9. Graphs depicting means and SD’s for gene expression for: A) MYHC4 B) 

MYHC1. Both MYHC4 and 1 display an increase in NOR at 7D compared to 0 h. 

Additionally there is a significant increase in expression for both MYHC4 and 1 between 

NOR and both MED and LOW. Significant difference (p<0.05) is denoted using a *.  If 

approaching significance p value is stated. 
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and LOW for both 72h (0 h vs. NOR: 1.25  0.82 vs. 0.38  0.31, p < 0.046, 

0 h vs. MED: 1.25  0.82 vs. 0.04  0.02, p = 0.017, 0 h vs. LOW: 1.25  

0.82 vs. 0.02  0.01, p = 0.008) and 7D (0 h vs. NOR: 1.25  0.82 vs. 0.07 

 0.06, p = 0.012, 0 h vs. MED: 1.25  0.82 vs. 0.09  0.05, p = 0.013, 0 h 

vs. LOW: 1.25  0.82 vs. 0.02  0.01, p = 0.008). This surprisingly 

suggests that all conditions are reducing IGFBP2 across the differentiation 

timecourse as a decrease over the timecourse has been previously 

correlated with improved differentiation (Sharples et al., 2013a).  

 

As inhibitor DNA binding protein 3 (ID3) inhibits differentiation. A 

significant reduction in ID3 is needed following proliferation in order to 

allow myotube formation to take place (Jen et al., 1992). By measuring 

ID3 we aimed to establish whether the reduction in MRFs, particularly 

MyoD, was driven by an increase in ID3 (Chen et al., 1997). There is a 

main effect for time present for ID3 expression (F(2,17) = 9.21, p = 0.002 

(fisher)). As expected this was due to the reduced expression in 

comparison to the 0 h for LOW and NOR at both 72 h (0 h vs. LOW: 1.11 

 0.63 vs. 0.04  0.01, p = 0.022, 0 h vs. NOR: 1.11  0.63 vs. 0.32  0.10, 

p = 0.055 (all fisher comparisons)) and 7D (0 h vs. LOW: 1.11  0.63 vs. 

0.12  0.08, p = 0.022, 0 h vs. NOR: 1.11  0.63 vs. 0.28  0.05, p = 0.043 

(all fisher comparisons)) signifying the end of proliferation (Fig 3.10, B). 

There was no difference between 72 h and 7D (NOR, 72 h vs. 7D: 0.32  

0.10 vs. 0.28  0.05, LOW, 72 h vs. 7D: 0.04  0.01 vs. 0.15  0.13, p > 

0.05). Nor was there a significant difference between glucose 

concentrations at either 72 h (NOR vs. MED: 0.32  0.10 vs. 0.46  0.68, 

vs. LOW: 0.04  0.01, MED vs. LOW: 0.46  0.68 vs. 0.04  0.01, p > 0.05) 

or 7D (NOR vs. MED: 0.28  0.05 vs. 0.44  0.41, vs. LOW: 0.15  0.13, p 

= 0.736, MED vs. LOW: 0.44  0.41 vs. 0.15  0.13, p > 0.05).  

 

Muscle ubiquitin ligase of SCF complex in atrophy-1 (MUSA1) is a 

Forkhead box O (FoxO) dependant ubiquitin ligase with a role in the 

tagging of proteins to undergo ubiquitination (Bodine and Baehr, 2014). An 
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increase in MUSA1 expression has been documented in muscle atrophy, 

particularly denervation (Bodine and Baehr, 2014) and fasting under the 

regulation of FoxO3 (Milan et al., 2015). Throughout the time course none 

of the glucose concentrations differed significantly form the 0 h (0 h: 1.35  

0.81 vs. LOW, 72 h: 0.84  0.01, vs. LOW, 7D:. 1.54  1.05, , vs. MED, 72 

h: 1.35  0.81 vs. 0.63  0.43, vs. MED, 7D: 1.35  0.81 vs. 0.45  0.25 vs. 

NOR, 72 h: 1.41 v 1.39, vs. NOR, 7D:. 0.83  0.54, p > 0.05). There was 

also no significant difference present between glucose restriction and 

NOR conditions at 72 h (NOR vs. MED: 1.41 v 1.39 vs. 0.63  0.43, NOR 

vs. LOW: 1.41 v 1.39 vs. 0.84  0.01, All p > 0.05) or 7D (NOR vs. MED: 

0.83  0.54 vs. 0.45  0.25, NOR vs. LOW: 0.83  0.54 vs. 1.54  1.05, All 

p > 0.05) (Fig 3.10, C). This data taken alone suggests that under glucose 

reduction there is no increase in atrophic gene expression, this is in direct 

conflict with the morphological and biochemical data. The reduction in 

myotube formation observed here may therefore be due to a reduction in 

hypertrophic gene expression only or MUSA1 is playing a different role in 

differentiating muscle cells than the previous observations in mature 

muscle fibres in-vivo, described above (Milan et al., 2015).  
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Fig. 3.10. Graphs depicting means and SD’s for gene expression for: A) IGFBP2 B) 

ID3 and MUSA1 C). All experimental conditions are significantly reduced in 

comparison to 0h. The same is true for LOW and NOR conditions for ID3 gene 

expression. There are no significant differences present for MUSA1. Significant 

difference (p < 0.05) is denoted using a * . If approaching significance p value is 

stated. 

CON LOW MED NOR LOW MED NOR
0.0

0.5

1.0

1.5

2.0

2.5

IG
F

B
P

2
 Δ
Δ

C
T

 e
x
p

re
s
s
io

n
 v

a
lu

e

0 h 72 h 7D

*
*

*
*

*
*

CON LOW MED NOR LOW MED NOR
0.0

0.5

1.0

1.5

2.0

ID
3

 Δ
Δ

C
T

 e
x
p

re
s
s
io

n
 v

a
lu

e

0 h 72 h 7D

*

*
p = 0.055

*

A

B C

CON LOW MED NOR LOW MED NOR
0

1

2

3

M
U

S
A

1
 Δ
Δ

C
T

 e
x
p

re
s
s
io

n
 v

a
lu

e

0 h 72 h 7D



 

 

85 

 3.3.6. SIRT1 expression increases following LOW glucose conditions  

We have previously observed increases in SIRT1 mRNA expression under 

the stress induced by the presence of the inflammatory cytokine TNF-α. 

This increase promoted cell survival in muscle cells as confirmed via SIRT 

siRNA in which further cell death was promoted, Furthermore SIRT1 

activation via resveratrol administration aided the maintenance of 

differentiation under the aforementioned TNF-α condition (Saini et al., 

2012). For SIRT1 gene expression we observed significant main effects 

for glucose (F(2,17) = 9.62, p = 0.002) and time (F(2,17) = 6.60, p = 0.008) as 

well as an interaction between glucose dose and time (F(4,17) = 5.40, p = 

0.005). Interestingly the changes over time for the NOR group consisted of 

a decrease between 0 h and both 72 h (0 h vs. NOR: 1.41  0.54 vs. 0.55 

 0.23, p = 0.046 (fisher)) and 7D (0 h vs. NOR: 1.41  0.54 vs. (Fig 3.11). 

There is however no significant difference for NOR glucose between these 

time points (72 h vs. 7D: 0.55  0.23 vs. 0.58  0.44, p > 0.05).  

 

The observation above in which the NOR condition is decreased in 

comparison to the 0 h time point is not detected following 72 h in MED 

glucose (0h vs. MED, 72 h: 1.41  0.54 vs. 1.27  0.01, p > 0.05). At 72 h 

there is no significant reduction in SIRT1 present and the expression 

remained the same as 0 h. A trend similar to the abovementioned 

reduction in SIRT1 under NOR conditions is instead observed at 7D 

compared to 0 h (0 h vs. MED, 7D: 1.41  0.54 vs. 0.65  0.25, p = 0.075 

(fisher)).  

 

Importantly, initial changes in SIRT1 expression under LOW glucose 

conditions display an opposing pattern to NOR conditions (Fig 3.11). A 

large significant increase in SIRT1 expression is observed under LOW 

conditions following 72 h in comparison to 0 h (0h vs. LOW: 1.41  0.54 vs. 

2.97  0.84, p = 0.038). LOW glucose causes a significantly larger 

expression of SIRT1 than both MED and NOR following 72 h (LOW vs. 

MED: 2.97  0.84 vs. 1.27  0.01, p = 0.047, LOW vs. NOR: 2.97  0.84 

vs. 0.55  0.23, p < 0.001). This observation is similar to that previously 
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documented under an alternative stress, the presence of TNF-α (Saini et 

al., 2012). After this initial increase, we observed a dramatic significant 

decrease at 7D (LOW, 72h vs. LOW, 7D: 2.97  0.84 vs. 1.10  0.33, p = 

0.007). This decrease brings SIRT1 levels back to a similar level of the 0 h 

control (0 h vs. LOW, 7D: 1.41  0.54 vs. 1.10  0.33, p > 0.05). At this 

timepoint there was no longer a significant difference between any of the 

glucose conditions (LOW vs. MED: 1.10  0.33 vs. 0.65  0.25, LOW vs. 

NOR: 1.10  0.33 vs. 0.58  0.44, MED vs. NOR: 0.65  0.25 vs. 0.58  

0.44, All p > 0.05). The complete loss of myotube formation observed 

during the LOW glucose conditions may therefore be closely related to this 

initial increase in SIRT1 (Fig 3.11). where the cells are attempting to 

survive rather than differentiate. Importantly, by activating SIRT1 in LOW 

glucose conditions, as in TNF-α administration, we may be able to 

promote maintenance of differentiation under nutrient stress.  



 

 

87 

  

Fig. 3.11. Graphs depicting means and SD’s for gene expression for SIRT1. LOW 

glucose is significantly increased in comparison to NOR and MED following 72 h. 

Significant difference (p<0.05) is denoted using a * . If approaching significance p 

value is stated. 
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3.4. Summary 

Following reductions from the normal in vitro glucose concentration (NOR) 

we established that two concentrations were more physiologically relevant 

than the other possibilities.  The morphological and biochemical data 

determined that there was a reduced ability to differentiate under MED 

glucose conditions evidenced through the reduction in myotube size. 

Under LOW conditions no myotubes where formed. This provided us with 

models of reduced (MED) and impaired (LOW) differentiation which where 

also physiologically relevant to muscle interstitium levels under regular 

calorie consumption (MED) and restricted levels (LOW). Gene expression 

of the MRF’s was impaired in both concentrations in comparison to NOR, 

however the restricted concentrations did not differ from each other in 

MyoD nor Myogenin. There was, however a significant difference between 

the two for MRF4 suggesting that the gene expression for these two 

concentrations are not simply replicas.  

 

MYHC 4 and MYHC 1 expression was reduced in both LOW and MED 

compared to the NOR glucose condition. As these isoforms are 

prerequisites to fast and slow twitch fibres respectively it suggests that a 

change in composition is not present, instead the expression is reduced 

possibly due to the reduction in both size and number observed under 

restricted glucose conditions (Fig. 3.4 and 3.6.). NOR glucose had higher 

expression of MYHC 1, 4 and 7 suggesting that there was no real 

modification in myotube composition under LOW and MED conditions, 

instead there was just a reduced expression possibly due to the reduction 

in myotube size and number. There was no significant difference between 

any of the glucose concentration in the atrophic gene expression, which is 

in a direct conflict of the morphological and biochemical data. This may 

suggest that the reduction in myogenic gene expression drives the 

reduction in differentiation observed. There was however a reduction in 

ID3 following in NOR glucose after 0 h which may have given rise to the 

increase in MyoD observed at the same time points. Although, in 
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opposition to NOR conditions MyoD was reduced in LOW glucose (Fig 

3.5.) there was no significant increase in ID3 (Fig 3.10) which would be 

indicative of an ID3 mediated increase in MyoD.  

 

As myotube formation was greatest in the NOR condition and there was a 

reduction observed in SIRT1 it would be most logical to suggest that this 

reduction may be required for differentiation to take place, especially given 

that MED glucose conditions display an impaired differentiation and 

myotube maturation while the reduction in SIRT1 is delayed. Alternatively, 

based on our groups previous findings, in which an increase in SIRT1 

under stress environments is a survival mechanism stress aiding 

improvements in differentiation (Saini et al., 2012). In this instance this 

data may be interpreted that under NOR glucose conditions appropriate 

differentiation is occurring and as such no survival mechanism is required, 

thus SIRT1 is not increased.  

 

3.5. Conclusion 

We can conclude from this data that we have been able to establish a 

model to investigate the impact of glucose concentration on muscle cell 

differentiation. The two concentrations we performed in depth 

morphological, biochemical and gene expression investigations on are 

models of reduced (MED) and impaired (LOW) differentiation which also 

provide an in vitro representation of both glucose conditions under normo-

caloric and restricted levels respectively. Finally, as we observed similar 

results to those previously documented in the presence of TNF-α, in which 

SIRT1 is increased under stress. If indeed an increase in SIRT1 under 

stress environments is a survival mechanism, further activation of SIRT1 

than produced by stressed cells may promote successful survival and 

improvements in myotube differentiation (Saini et al., 2012). Before this 

can be performed however an optimum SIRT1 activation must first be 

established.  
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4. The activation of SIRT1 in 

myoblasts in response to a 

pharmacological administration 

of resveratrol and EX-527. 

4.1. Introduction 

The antioxidant resveratrol (RES) has been used widely as a mimetic of 

dietary restriction (DR) due to its ability to increase cell survival in budding 

yeast (Howitz et al., 2003) and its purported role in the extension of 

lifespan in mice consuming high calorie diets (Baur et al., 2006). Found 

predominately in the skin of red grapes, this polyphenol was originally 

determined to activate Sir2 in yeast and more recently the Sir2 

mammalian homologue SIRT1 (Vinciguerra et al., 2010, Zu et al., 2010). 

Although most frequently studied in relation to SIRT1 activation RES also 

increases, which may be responsible for some of the many discrepancies 

observed within the literature (Gertz et al., 2012). SIRT1 activation via 

RES administration, can also regulate AMPK activity and mitochondrial 

function (Price et al., 2012). Calorie restriction has previously been 

documented to evoke an increase in SIRT1 activity as a potential survival 

mechanism (Chen et al., 2008) while Fulco et al. (2008) suggest that the 

increase in SIRT1 is the mechanism that instigates the loss in muscle 

mass under this nutritional stress.  

 

Previous literature has administered RES to assess growth, differentiation 

and migration in murine skeletal muscle cells (Fröjdö et al., 2011, 

Kaminski et al., 2012), and has been used to treat parental C2 (Saini et al., 

2012) and daughter C2C12 cells (Deane and Sharples et al, Unpublished) 

It was shown to enable the maintenance of differentiation in the presence 

of increased inflammation (Saini et al., 2012), with other groups also 
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suggesting that resveratrol can improve myoblast migration following 

oxidative stress (Bosutti and Degens, 2015). Therefore, the use of RES to 

activate SIRT1 in muscle cells may enable us to elucidate the role of 

SIRT1 activation and the impact of blocked/impaired muscle cell 

differentiation/myotube hypertrophy under nutrient/glucose restriction 

(chapter 3) in future chapters (chapter 5 and 6). Although the 

aforementioned studies used resveratrol, these studies have only 

characterised the total protein and/or mRNA of SIRT1 (or neither) and 

have not characterised SIRT1 activity (phosphorylation) in response to 

resveratrol administration in muscle cells. Therefore we aim to elucidate 

the changes in SIRT1 activation (phosphorylation) following resveratrol 

administration in skeletal muscle cells in a dose responsive fashion.  

 

Inhibition of SIRT1 activation will be implemented in order to act as 

relevant negative control opposing increases in SIRT1 activity in the 

presence of low glucose conditions later documented in chapters 5 and 6..  

SIRT1 inhibition at the gene expression level has been performed in 

previous studies using siRNA (Rodgers et al., 2005a, Saini et al., 2012). 

Alternatively, selective SIRT1 inhibitors have also been utilized, EX-527 is 

one such SIRT1 inhibitor able to reduce SIRT1 activity in a wide variety of 

cells including; astrocytes (Kauppinen et al., 2013), human embryonic 

kidney and fibrosarcoma cell lines (Yang et al., 2007). However to the 

authors’ knowledge, there are no studies using EX-527 in myoblasts that 

assess the impact of this treatment on SIRT1 activation.  

 

This group have previously administered C2C12 cells with concentrations 

of RES at 30 and 60 μM however these doses compromised cell viability 

(Deane and Sharples et al., 2015 unpublished). Cell death has also been 

observed at these doses by other groups in C2C12’s (Bosutti and Degens, 

2015). We therefore undertook a dose response of resveratrol at 5, 10 and 

15 M and investigate the impact on SIRT1 activation. Additionally recent 

evidence suggests that 10 M is beneficial in C2C12 myoblasts 

remodelling under oxidative stress and as such has potential to be 
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beneficial under an alternative stress environment (DR) (Bosutti and 

Degens, 2015). We also aimed to undertake dosing of muscle cells with 

the SIRT1 inhibitor (EX-527) at both 30 and 60 µM. We hypothesised that 

SIRT1 activity would increase and decrease following RES/ EX-527 

administration respectively in a dose responsive manner. The ultimate aim 

was to establish whether activation/inactivation of SIRT1 can ameliorate 

the nutrient restriction induced block in muscle cell differentiation observed 

in low glucose (mimicking muscle interstitium glucose during DR) and the 

reduced differentiation in medium glucose (circulatory glucose during DR) 

respectively. 

 

4.2. Methods 

4.2.1. Cell culture 
6Well plates were pre-treated with 0.2% porcine gelatine for 10 min at 

room temperature (RT) and 10 min in a humidified, 37°C with 5% CO2. 

The excess gelatine was aspirated and cells were seeded at 8 × 104 

cells/ml in 2 ml of GM per well, these were then incubated until 80% 

confluence. Cells were washed in PBS and transferred into 2 ml of DM in 

37°C with 5% CO2 for up to 7 days (7D). Time point of extraction was as 

described in the methods section 2.2.2. i.e. 15 min following administration 

of the SIRT1 activator/ inhibitor. In order to determine the optimum 

concentration to increase expression of SIRT1 cells were incubated with 

either: 5 μM, 10 μM or 15 μM of RES (5RES, 10RES and 15RES 

respectively). Inhibition of SIRT1 expression was initially assessed via 

incubation of 30 or 60 μM and then subsequently lower doses of 100 nM 

or 200 nM of EX-527. All SIRT1 activation and inhibition experiments for 

this dose response study were performed in the same reconstituted 

differentiation media as discussed in chapter 3 at a glucose concentration 

of 4.5 g/L (NOR condition). Further information of cell culture methods can 

be found in section 2.2.1 in chapter 2.  
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4.2.2. Total protein content 

Protein was measured using BCA™ (Pierce, Rockfored, IL) according to 

instructions and detected using CLARIOstar® plate reader (BMG labtech, 

Germany) at a wavelength of 540-590 mM to quantify total protein 

concentrations prior to relative comparison of CK samples (See general 

methods chapter 2, section 2.2.8.). 

 

4.2.3. SDS-PAGE and immunoblotting 

Full methods can be found in in chapter 2, section 2.2.10. Briefly, western 

blot analysis via SDS-PAGE and immunoblotting was carried out on 10% 

resolving gels using 30 μg of protein per sample. Semidry transfer was 

utilized and immunoblotting for total and phosphorylated SIRT1 was 

carried out using catalogue number 07-131 from Merck Millipore 

(Darmstadt, Germany) and catalogue number 2314L (Cell Signalling 

Technology, MA, USA) respectively. Additionally, GAPDH 5174 (Cell 

Signalling Technology, MA, USA) was implemented as a loading control, 

further information on protocol and the antibody concentrations used 

factors can be found in chapter 2, section 2.2.10.  

 

4.2.4. Statistical analysis 

All data was performed using three separate cell populations thus 

performed N=3. Analysis was then carried out using Minitab® 17 (Minitab 

Ltd, Coventry U.K). Outliers where removed using Grubbs outlier test. All 

data was parametric, assessed using the Anderson-Darling test for 

normality. General linear models where carried out for the initial RES 

analysis (4 x 1) for RES concentration (DM, 5, 10,15 μM) and for the 

selected time point, this analysis was carried out for timepoints (15 min, 30 

min, 2 h and 24 h). Time course analysis for 10 and 15RES were carried 

out using a (2 x 4) general linear model for RES concentration (10, 15 μM) 

and time (15 min, 30 min, 2 h and 24 h). The timecourse, which compared 

DM to 10 and 15 RES, implemented a general linear model (3 x 4) for 

RES concentration (DM, 10 and 15 μM) and timepoint (15 min, 30 min, 2 h 

and 24 h). The SIRT1 inhibitor (EX-527) analysis was performed via a 
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general linear model (2 x 4) for RES concentration (DM, 100 nM) and 

timepoint (15 min, 30 min, 2 h and 24 h). Post hoc tests were performed 

using Fisher, Bonferroni and Tukey. The results produced through the 

Bonferroni tests are reported throughout results unless otherwise stated. 

 

4.3. Results 

4.3.1. Initial resveratrol dose response. 

A dose response investigation was implemented to study whether 

resveratrol (RES) administration could be used to effectively activate 

SIRT1. Our first objective was to establish the optimal dose of resveratrol 

in activating SIRT1 via western blot analysis of phosphorylated SIRT1 

concomitantly with any changes in total SIRT1 protein levels. Based on 

our unpublished results that 30 and 60 uM resveratrol reduces myoblast 

cell viability, as observed by others (Bosutti and Degens, 2015). We 

undertook a dose response for resveratrol of 5, 10, 15 μM. There was an 

average increase observed for 5, 10 and 15 μM in comparison to the DM 

condition following 30 min in which 10RES appeared to possess a higher 

average activity rate (30 min: 5RES vs. 10RES: 1.27 ± 0.48 vs. 1.34 ± 

0.01, p > 0.05, Fig. 4.1.). As this was non-significant to establish whether 

RES increased over time, therefore we carried out a timecourse analysis 

over a longer period e.g. 15, 30 mins, 2 h and 24 h. During this analysis 

we did not carry forward the 5RES as the activation was slightly less 

favorable than the higher dose of 10 μM (5Res vs. 10RES: 1.27 ± 0.48 vs. 

1.34 ± 0.01, p > 0.05). 

 

4.3.2. Effect of 10 μM RES on SIRT1 activation 

We observed significant increases in SIRT1 activity following 10RES 

supplementation following 15 min and 24 h with an increase suggested 

following 30 min (DM 15 min: 1.00 ± 0.00 vs. 10RES 15 min: 16.34 ± 4.26, 

p = 0.021 vs. 10RES 24 h: 15.65 ± 7.70, p = 0.026, 10RES 2 h: 11.22 ± 

5.54, p = 0.088, (all fisher comparisons) Fig. 4.1.). Similarly, 15RES also 

increased significantly from the 15 min DM at 2 h and 24 h (DM 15 min: 
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vs. 15RES 24 h: 17.50 ± 10.86, p = 0.014, 15RES 2 h: 13.72 ± 8.51, p = 

0.047(all fisher comparisons) Fig 4.1), 15RES also increased significantly 

after 30 min but not 15 min (DM 15 min: 1.00 ± 0.00 vs. 15RES 30 min: 

13.78 ± 6.41, p = 0.046 (fisher) Fig 4.1.). SIRT1 activity was therefore 

increased in both 10RES and 15RES. As there was still no observable 

difference between these two concentrations therefore to save additional 

reagent costs at higher concentrations the use of the lower concentration 

10RES was taken forward. Especially given recent evidence that 10 M is 

beneficial in C2C12 myoblasts remodelling under oxidative stress (Bosutti 

and Degens, 2015).  
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4.3.2. The Effect of the SIRT1 inhibitor (EX-527) at a concentration of 

30 μM and 60 μM on SIRT1 activation 

We also undertook a dose response study of SIRT1 inhibitor (EX-527). 

Initially we carried this out using 30 μM and 60 μM concentrations as this 

inhibitor at 30 μM has been previously shown to inhibit SIRT1 at these 

Fig.4.1. Control corrected, Phosphorylated SIRT1 relative to Total SIRT1 across the 

time course, relative to the loading control, GAPDH. Both 10 and 15RES displayed an 

increase in SIRT1 in comparison to DM. Significant difference (p < 0.05) is denoted 

using a *. 
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concentrations in C2C12 cells (Price et al., 2012). We however discovered 

no significant differences in p-SIRT at 15 min, 30 min nor 2 h (All 

comparisons, p > 0.05, Fig.4.2.). Indeed, in some instances there was 

increased SIRT1 activity with EX-527 administration (Fig. 4.2). A lower 

doses of 100 nM was consequently carried out, as the lower concentration 

of 100 nM had been previous shown to inhibit SIRT1 in other non-muscle 

cell types (Solomon et al., 2006).  

 

Fig.4.2. Phosphorylated SIRT1 relative to Total SIRT1 at 15 min (A), 30 min (B) and 2 

h (C) displayed no significant differences for any experimental conditions. 
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4.3.3. The Effect of the SIRT1 inhibitor (EX-527) at a concentration of 

100 nM on SIRT1 activation  

We observed an average decrease of 71% in SIRT1 activity following 24 h 

in the presence of 100 nM of EX-527 in comparison to the DM control at 

15 min, an observation that approached significance (DM 15 min vs. EX-

527 24 h: 1.00 ± 0.54 vs. 0.29 ± 0.13, p = 0.062 (fisher), Fig. 4.3.) 

compared to only a 50% reduction after 24 h in SIRT1 phosphorylation 

without EX-527 administration (DM 15 min vs. DM 24 h: 1.00 ± 0.54 vs. 

0.48 ± 0.34, p > 0.05). This suggested that on average there was a 20% 

larger reduction in SIRT1 by 24 h with the addition of EX-527 vs. 15 min 

SIRT1 expression in DM (Fig 4.3.). Additionally, EX-527 at a concentration 

of 100 nM at 2 and 24 h was also reduced by an average of 20 and 40% 

respectively in comparison to DM at the same time points although this did 

not achieve statistical significance (2 h, DM vs. EX-527: 0.48 ± 0.32 vs. 

0.40 ± 0.31, 24 h, DM vs. EX-527: 0.48 ± 0.34 vs. 0.29 ± 0.13, p > 0.05).    
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4.4. Summary 

To establish whether SIRT1 activation/inhibition would improve growth and 

differentiation in muscle cells in glucose restricted environments we 

needed to establish SIRT1 phosphorylation in the absence or presence of 

commercially available SIRT1 activator/inhibitor, resveratrol and EX-527 

respectively. We observed a significant increase in SIRT1 activity with 

Fig.4.3. Phosphorylated SIRT1 relative to Total SIRT1 across the time course. A 

larger mean decrease in SIRT1 activity was observed between 15 min DM and 24 h 

following EX-527 at 100 nM. Significant difference (p < 0.05) is denoted using a *. If 

approaching significance p value is stated. 
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both 10 and 15 uM RES. Activation seemed more consistently elevated 

over the time course of 15 min, 30 min, 2, and 24 h with 10 uM RES, with 

the largest increase in SIRT1 Phosphorylation at 15 min with RES 10 uM. 

There was also no significant difference between 10 or 15 uM of RES. 

Therefore, these results and in order to save additional reagent costs at 

higher concentrations the use of the lower concentration 10RES was 

taken forward to chapter 5 and 6. Especially given recent evidence that 10 

M is beneficial in C2C12 myoblasts remodelling under oxidative stress 

(Bosutti and Degens, 2015). Furthermore, it is worth bearing in mind that 

oral resveratrol treatment is financially expensive and in-vivo resveratrol 

may have poor bioavailability through the gut (Walle et al., 2004), low 

concentration may only be available to skeletal muscle tissue, 

subsequently if lower concentrations were able to affect the block/reduced 

differentiation/ observed in chapter 3 during glucose restriction this would 

potentially reduce the amount of resveratrol required to pass through the 

gut and be available to skeletal muscle tissue (Walle et al., 2004). 

 

On average EX-527 reduced SIRT1 across the timecourse to the greatest 

extent following administration of 100 nM EX527, although this was not to 

as greater extent as we had previously anticipated. Indeed, initially higher 

doses of 30 and 60 uM did not decrease SIRT1 activity and in some 

instances paradoxically increased SIRT1 activation. There was no 

explanation as to why these higher doses may increase SIRT1 activation, 

however doses of 48-100 nM have previously been shown to inhibit SIRT1 

by approximately 50% (Solomon et al., 2006, Napper et al., 2005, Zhao et 

al., 2013). Inhibition in these instances was measured via vitro Fluor de 

Lys deacetylation assays in embryonic kidney cells to assess SIRT1s 

deacetylation activity and not phosphorylation (Solomon et al., 2006). 

Reductions in phosphorylation have been associated with reduced 

deacetylation activity of SIRT1. Therefore despite the poorer than 

anticipated reduction in SIRT1 phosphorylation following 100 nM of EX-

527 we suggest that the deacetylation may have decreased accordingly or 

to a greater extent within the C2C12 cells.  
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In the next chapter the objective was to implement these concentrations of 

SIRT1 activator/ inhibitor in the presence or absence of low glucose 

conditions as characterised in the previous chapter (3). This would enable 

us to determine whether the activation/inhibition of SIRT1 was able to alter 

the block/reduction of differentiation observed in low/ medium glucose 

concentrations respectively that mimic circulatory (MED) and interstitial 

glucose levels (LOW) observed during DR in rodents (observed in chapter 

3).  
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5. SIRT1 activation and 

inhibition in myoblasts under 

reduced glucose conditions. 

5.1. Introduction 

In chapter 3 we provided evidence for a model of reduced (MED glucose) 

and blocked (LOW glucose) muscle cell differentiation with glucose 

concentrations that were physiologically relevant to dietary restricted 

circulatory blood levels (MED 1.13 g/L or 6.25 mM) and that of the 

interstitium (LOW 0.56 g/L or 3.12 mM) in rodents. Furthermore, in chapter 

3, we also observed increased SIRT1 gene expression where myotube 

formation was completely blocked in LOW glucose conditions. Because 

the SIRT1 activator, resveratrol, has been previously observed to improve 

differentiation, where differentiation was blocked due to TNF- 

administration (Saini et al., 2012). We suggested that SIRT1 activation via 

resveratrol treatment may improve differentiation and myotube maturation 

in skeletal muscle cells under reduced glucose conditions. Furthermore, in 

chapter 4 we determined the concentrations of RES and EX-527 for the 

activation and suppression respectively of SIRT1 activity in myoblasts. 

Therefore these data from chapter 3 and 4 combined to allow us to 

determine whether SIRT1 activation or inhibition would affect the loss of 

differentiation in LOW glucose conditions and the impaired differentiation 

observed in MED glucose conditions. We aimed to activate or inhibit 

SIRT1 activity under MED, LOW and NOR glucose conditions in 

differentiating myoblasts. We hypothesised that SIRT1 activation may 

ameliorate the blocked and reduced differentiation capacity observed 

under LOW and MED conditions respectively.  

 

 



 

 

105 

5.2. Methods 

5.2.1. Cell culture 
C2C12 murine myoblasts (Blau et al., 1985) at passage 12 were incubated 

in separate T75 flasks in a humidified, 37°C with 5% CO2 Growth media 

(GM) containing: Dulbecco’s Modified Eagle Serum (DMEM) (D6429-6, 

Sigma-Aldrich, UK), 1% Penicillin Streptomycin (Pen Strep), 10% New 

born calf serum (NBCS) and 10% Fetal Bovine Serum (FBS) until 80% 

confluency was attained. 

 

Experiments were initiated by removing GM (as described in the general  

methods, chapter 2, section 2.2.2), washing once with phosphate buffered 

saline (PBS) followed by the addition of powdered differentiation media 

(DM). The chosen powered DMEM was reconstituted according to 

manufactures instructions (8.3 g/L of DMEM) supplemented with 0.5840 

g/L L-Glutamine; 3.7000 g/L Sodium Bicarbonate; 0.1100 g/L, Sodium 

Pyruvate; 0.0159 g/L Phenol red and either 0 g/L or 4.5 g/L D-Glucose in 

order for the composition to match that of the more generally used liquid 

DMEM. This media was also supplemented with 2% HS and 1% PS. The 

powdered DM supplemented with glucose was compared to the liquid 

DMEM in section 3.3.1, thus making this powdered DMEM a relevant 

control as well as being used to produce the dosing conditions described 

below under section 3.2.2. The reduction in serum content, causing the 

C2C12 myoblasts to undergo spontaneous differentiation without requiring 

the addition of growth factors to initiate the process (Blau et al., 1985). 

Cells were seeded following trypsinization of the adherent cells, counts 

where performed using haemocytometer in the presence of Trypan Blue 

dye as described in general methods (section 2.2.3).  

5.2.2. Cell dosing 

6 Well plates where pre-treated with 0.2% porcine gelatine for 10 min at 

room temperature (RT) and 10 min in a humidified, 37°C with 5% CO2. 

The excess gelatine was aspirated and cells were seeded at 8 X 104 

cells/ml in 2 ml of GM, these were then incubated until 80% confluence. 
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Cells were washed in PBS and transferred into 2 ml of DM in 37°C with 

5% CO2 for up to 7 days (7D). Time point zero was defined as an 

incubation of 30 min after transfer to DM and is denoted as 0 hours (0 h). 

To assess the effect of SIRT1 manipulation under a glucose restricted 

environment in myoblasts the cells where incubated in reconstituted 

powdered media as described above and originally in chapter 2, section 

2.2.5.1 with either 25.00 mM (NOR), 6.25 mM (MED), or 3.12 mM (LOW) 

glucose. Resveratrol and EX-527 where also reconstituted as described in 

chapter 2, section 2.2.5.1. RES was used at a concentration of 10 μM and 

EX-527 at 100 nM. 

 

5.2.3. Morphology 

Myotube parameters including; number, diameter and size were assessed 

using a live imaging light microscope (AF600 modular system, Leica, 

Germany) cell imaging system at x 20 magnification at time points; 0, 72 h 

and 7D post transfer into DM. Per experiment, each time point and 

experimental condition was performed in duplicate with 12 images taken 

per well providing a total of 24 images per condition per timepoint. 

Experiments were then repeated n = 3. Analysis was performed on the 

images acquired at 0 h, 72 h and 7D using ImageJ software (NIH, USA) 

(See general methods chapter 2, section 2.2.6.) 

 

5.2.4. Total protein content 

Protein was measured using BCA™ (Pierce, Rockfored, IL) according to 

instructions and detected using CLARIOstar® plate reader (BMG labtech, 

Germany) at a wavelength of 540-590 mM to quantify total protein 

concentrations prior to relative comparison of CK samples (See general 

methods chapter 2, section 2.2.8.). 

 

5.2.5. Creatine Kinase  

Assessment of creatine kinase activity was measured using assay kit 

(Catachem, Inc, Connecticut, NE) according to manufactures instructions 
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and detected using a CLARIOstar® plate reader (BMG labtech, Germany) 

at a wave length of 340 nm. See general methods chapter 2, section 2.2.9. 

 

5.2.6. RNA Extraction and analysis 

RNA extraction was performed using the TRIzol method (See method 

chapter 2, section 2.2.11.), following the manufactures instructions 

(Invitrogen, Life technologies, Carlsbad, CA). RNA purity and 

concentration was assessed using 1μl of sample on a NanoDrop 2000c, 

UV-Vis (Ultraviolet–visible spectroscopy) spectrophotometer (Thermo 

Fisher Scientific, MA, USA) using ODs of 260 and 280 nm. A ratio of these 

OD value was calculated for each sample with all samples possessing 

260/280 ratios of between 1.8-2.2 and therefore accepted as high RNA 

quality. 

 

5.2.7. Primer design 

Identification of target sequences were carried out via Gene 

(http://www.ncbi.nlm.nih.gov/gene). Primers (Chapter 2, section 2.2.12.4.- 

table 2.2) were designed using Primer-Blast 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/).  

 

5.2.8. RT-PCR and analysis 

RT-PCR was carried out using Quantifast SYBR green RT-PCR kit 

(Qiagen, Manchester, UK) on a Rotor-Gene® (Qiagen, Manchester, UK) 

supported by Rotor-Gene® Q Software, version 2.1.0.9 (Qiagen, 

Manchester, UK). The RT-PCR cycles consisted of; 48°C, 30 min (reverse 

transcription/ synthesis of cDNA), 95°C, 10 min (transcriptase inactivation 

and initial denaturation) followed by 40 cycles of 95°C, 15 sec 

(denaturation), 60°C, 1 min (annealing and extension in 1 step). 

Disassociation melt-curve analysis was performed to reveal and therefore 

exclude non-specific amplification and primer dimer issues. All out gene 

products yielding on single melt peak/temperature suggesting one product 

was amplified. Relative gene expression analysis was carried out using 

ΔΔCt equation, otherwise known as the Livak method (Schmittgen and 
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Livak, 2008), this is to establish normalised expression ratios, where the 

relative expression is calculated as 2-ΔΔCt
 and Ct represents the threshold 

cycle. RPIIβ was extremely stable between experimental conditions (mean 

Ct 15.62 ± 0.11) and therefore used as the housekeeping gene in all RT-

PCR assays and the pooled mean used in the ΔΔCt calculations. All RT-

PCR figures are presented as a relative gene expression in comparison to 

the 0 h cell incubated in “Normal” glucose (4.5g/L or 25 mM). This sample 

was used as a calibrator condition in the subsequent equations in order to 

compare expression values across glucose concentrations. 

 

5.2.9. Statistical analysis 

All data was performed using three separate cell populations thus 

performed N=3. Analysis was then carried out using Minitab® 17 (Minitab 

Ltd, Coventry U.K). Outliers where removed using Grubbs outlier test. All 

data was parametric, assessed using the Anderson-Darling test for 

normality. General linear models (3 x 3 x 3) for time (0, 72h, 7D), glucose 

concentration (LOW, MED, NOR) and SIRT1 activation/inhibition (DM, 

RES, EX-527) where carried out for morphological analysis of myotube 

number and CK activity and a general linear model (4 x 3 x 3) for time (0, 

24, 72h, 7D), glucose concentration (LOW, MED, NOR) and SIRT1 

activation/inhibition (DM, RES, EX-527) gene expression. (Post hoc tests 

were performed using Bonferroni, Tukey and Fisher). The results 

produced through the Bonferroni tests are reported throughout results 

unless otherwise stated. 
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5.3. Results

 

Fig. 5.1. Representative images for 72 h and 7D of myoblast culture in LOW, MED 

and NOR glucose alone and with the addition of RES or EX-527. 



 

 

110 

5.3.1. Effect of EX-527 administration on myotube number under 

Myotube number displayed a significant interaction for time, glucose 

concentration and SIRT1 manipulation (F(8, 868) = 12.32, p < 0.001), There 

was also a significant interaction between glucose concentration and 

SIRT1 (F(4, 868) = 20.62, p < 0.001), glucose and time (F(4, 868) = 58.29, p < 

0.001. There were significant main effects also present for glucose (F(2, 868) 

= 114.82, p < 0.001) and time (F(2, 868) = 135.41, p < 0.005) but not SIRT1 

activation/inhibition alone (F(2, 868) = 0.87 p > 0.05). As readily observed in 

Figure 5.1.  

 

In the presence of the SIRT1 inhibitor measurable myotubes were 

produced in LOW glucose conditions following 7D. This condition was the 

only LOW glucose condition to produce observable myotubes. Despite this, 

there was no significant difference between the SIRT1 inhibitor and the 

LOW glucose alone (LOW EX-527 vs. LOW: 0.03 ± 0.17 vs. 0.00 ± 0.00, p 

> 0.05, Fig. 5.2.). Therefore SIRT1 activation/inhibition via RES and EX-

527 respectively had little or no effect on restoring blocked differentiation 

observed when no increase was detected in myotube number in LOW 

glucose conditions at either 72 h or 7D. 

 

At 72 h there was no significance difference in myotube number following 

administration of RES or EX-527 within either the MED or NOR glucose 

concentrations. At 7D however, surprisingly under NOR conditions 

myotube number was significantly reduced when SIRT1 was activated 

under RES administration (NOR vs. NOR RES: 4.92 ± 3.30 vs. 3.67 ± 2.99, 

p = 0.009, Fig. 5.2.). SIRT inhibition via EX-527 administration in NOR 

glucose further reduced myotube number at 7D vs. NOR alone (NOR vs. 

NOR EX-527: 4.92 ± 3.30 vs. 2.03 ± 2.75, p < 0.001, Fig. 5.2.). Importantly, 

EX-527 administration in NOR glucose produced the lowest number of 

myotubes that were also significantly reduced vs. RES in NOR glucose at 

7D (p < 0.001). In MED glucose concentrations at 7D, there was a non-

significant increase in myotube number in the presence of RES (MED 

RES 0.59 ± 0.33 vs. MED 0.60  ± 0.21, p > 0.05). There was however a 
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significant increase in myotube number in MED glucose conditions in the 

presence of EX-527 in comparison to both MED glucose alone and MED 

glucose in the presence of resveratrol (MED EX-527 vs. MED: 3.04 ± 3.11 

vs. 0.13 ± 0.34, p < 0.001 and vs. MED RES: 0.79 ± 1.32, p < 0.001, Fig. 

5.2.).  

 

 

 

5.3.2. Resveratrol increases creatine kinase activity at 7D in LOW 

glucose conditions despite no increase in myotube formation and 

reduces CK activity with SIRT1 inhibition in normal glucose 

conditions.  

To confirm myotube number morphology as a measure of 

differentiation/fusion, biochemical activity of differentiation marker creatine 

kinase was assessed and produced a significant main effect for glucose 

(F(2,293) = 76.72, p  0.001) and time (F(2,293) = 4.80, p < 0.005). Additionally, 
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Fig. 5.2. Myotube number is reduced in cells undergoing MED glucose restriction, 

regardless of SIRT1 manipulation. No myotubes were observed in any LOW glucose 

conditions at any timepoint. Formation of myotubes under NOR conditions is impaired 

following the addition of RES at 7D and further impaired following the addition of EX-

527. Significant difference (p < 0.05) is denoted using a *. 
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a significant interaction was observed between time, glucose 

concentration and SIRT1 activation/inhibition (F(2,293) = 4.80, p= 0.009). As 

suggested in chapter 3 and confirmed here the LOW glucose condition 

had significantly lower CK activity across the time points in comparison to 

NOR glucose conditions (LOW vs. NOR; 48 h: 26.47  18.39 vs. 98.68  

29.56 mU.mg.ml-1, p < 0.001 (fisher), 72 h: 38.1  73.3 vs. 98.91  32.39, 

p = 0.003 (fisher), 7D: 16.82  15.95 vs. 139.56  22.17 mU.mg.ml-1, p < 

0.001). The same trend was also present for MED when compared to 

NOR glucose (MED vs. NOR; 48 h: 60.09  21.36 vs. 98.68  29.56, p = 

0.056 (fisher), 72 h : 21.71  17.93 vs. 98.91  32.39, p = 0.055, 7D: 44.4 

 27.14 vs. 139.56  22.17 mU.mg.ml-1, p < 0.001). There was however no 

significant difference between LOW and MED across time points (LOW vs. 

MED; 48 h: 26.47  18.39 vs. 60.09  21.36, p = 0.997, 72 h: 38.1  73.3 

vs. 21.71  17.93, p > 0.05, 7D: 16.82  15.95 vs. 44.4  27.14 mU.mg.ml-

1, p > 0.05). Again this morphology and CK activity data confirms the data 

in chapter 3 and suggests within the present chapter these data were 

relevant control conditions to elucidate any additional changes in the 

presence of absence of SIRT1 activation/inhibition. There was however, 

no significant differences in CK activity in the presence of RES on a 

background of LOW glucose at either 48 h (LOW vs. LOW RES: 26.47  

18.39 vs. 16.0  46.8 mU.mg.ml-1, p > 0.05), or 72 h (LOW vs. LOW RES: 

38.1  73.3 vs. 14.0  34.8 mU.mg.ml-1, p > 0.05). There was however an 

average increase at 7D that approached significance using fisher 

comparisons where RES administration was responsible for an increase in 

CK activity under LOW glucose conditions (LOW vs. LOW RES: 16.82  

15.95 vs. 54.4  44.7 mU.mg.ml-1, p = 0.069). CK values were however, 

still significantly lower under LOW conditions with the administration of 

RES than values observed in the NOR glucose condition at the same time 

point (LOW RES vs. NOR: 54.4  44.7 vs. 139.56  30.08, p = 0.016), 

therefore while SIRT1 activation was able to somewhat improve CK 

activity via resveratrol administration under LOW conditions these levels 

did not reach those observed under NOR conditions nor did we detect any 
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improvement in morphological differentiation via myotube number analysis, 

discussed above. There was also no significant difference present 

following the administration of EX-527 compared to LOW glucose alone 

conditions at 48 h (LOW EX-527 vs. LOW: 38.87  25.25 vs. 26.47  

18.39, p > 0.05) or 7D (LOW EX-527 vs. LOW: 22.1  10.1 vs. 16.82  

15.95, p > 0.05). At 72 h, however there was a significant reduction in CK 

under the EX-527 conditions (LOW EX-527 vs. LOW: 22.1  10.1 vs. 

16.82  15.95, p = 0.019 (fisher)). This is indicative of a complete loss of 

differentiation under EX-527 administration following 72 h. SIRT activation 

improved CK activity at 7 days. These findings confirm a role for SIRT1 in 

differentiation in the presence of nutrient stress, albeit SIRT1 activation 

was unable to return differentiation back to control levels.  

 

We observed no significant differences when resveratrol was administered 

in the presence of MED glucose alone at any of the time points analysed 

(MED RES vs. MED; 48 h: 60.09  21.36 vs. 54.65  30.00, p > 0.05, 72 h: 

39.83  22.20 vs. 21.71  17.93, p > 0.05, 7D: 14.4  79.6 vs. 44.4  27.14, 

p > 0.05). Nor was there any significance present following EX-527 

administration under MED conditions (MED vs. MED EX-527: 48 h: 60.09 

 21.36 vs. 61.08  23.85, p > 0.05, 72 h: 21.71  17.93 vs. 43.6  42.2, p 

> 0.05, 7D: 44.4  27.14 vs. 69.3  12.3, p > 0.05). As with the MED 

glucose alone condition there was also no significant difference present 

under NOR conditions at any time point when supplemented with either 

RES (NOR vs. NOR RES; 48 h: 98.68  29.56 vs. 92.8  42.8, p > 0.05, 

72 h: 98.91  32.39 vs. 88.8  36.7, p > 0.05, 7D: 139.56  22.17 vs. 132.9 

 30.08, p > 0.05) or EX-527 (NOR vs. NOR EX-527; 48 h: 98.68  29.56 

vs. 99.2  49.8, p > 0.05, 72 h: 98.91  32.39 vs. 85.2  43.3, p > 0.05, 7D: 

139.56  22.17 vs. 110.1  48.8, p > 0.05).  

 

Therefore overall, while there was increased CK activity in LOW glucose 

conditions in the presence of RES (Fig. 5.3), there was no increase in 

morphological differentiation/myotube number in these conditions (Fig 
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5.1.). This may suggest that CK may not be a relevant marker of 

differentiation in this instance and may perhaps be more a marker of 

potential differentiation when in a larger cell population. If this is the case it 

would suggest that SIRT1 activation via resveratrol administration maybe 

increasing CK activity in an attempt to initiate differentiation in LOW 

glucose, without leading to successful forming myotubes observable at the 

morphological level. However, SIRT inhibition via EX-527 administration in 

low glucose conditions at 72 h did lead to a complete loss of CK activity vs. 

low glucose alone and RES conditions. Finally, SIRT1 activation via 

resveratrol seems to be unable to improve reduced differentiation 

observed in MED glucose conditions and surprisingly both activation and 

inhibition of SIRT1 via resveratrol and EX-527 administration was actually 

detrimental to myotube formation/number and CK activity in normal 

glucose conditions (albeit lowest myotube formation was observed with 

SIRT1 inhibition vs. RES MED glucose alone).  
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5.3.3 Myotube size increased with resveratrol administration in NOR 

glucose conditions.  

There was no significant difference present for myotube size at 72 h for 

any condition within MED and NOR glucose conditions, readily observed 

in figure 5.4. Additionally, there was no significant difference following 7D 

in either MED or NOR conditions following the addition of EX-527 (All 

comparisons, p > 0.05). Myotubes were however significantly larger under 

NOR conditions with the addition of RES compared to the addition of EX-

527 (5718.00 ± 3532.00 vs. 4142.00 ± 1873.00, p = 0.021) and compared 

Fig 5.3. CK measurements of myoblasts undergoing differentiation under three different 

glucose conditions, with and without SIRT1 manipulation. As expected NOR glucose was 

significantly higher CK activity than the LOW and MED glucose concentrations at all time 

points. SIRT1 significantly increased CK activity in LOW glucose conditions at 7D, 

however this was without an increase in morphological myotube formation (Figure above 

5.1). Means and SD displayed. p < 0.05 is depicted by *. If approaching significance p 

value is stated. 
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to NOR glucose alone (NOR RES vs. NOR: 5718.00 ± 3532.00 vs. 

4551.00 ± 2836.00, p = 0.044, Fig 5.4.).  

 

Myotube diameter displayed a significant main effect for glucose condition 

(F(1, 281) = 18.01, p < 0.005), but no other main effect or interaction was 

present. Additionally, there was no significant change in diameter following 

the addition of either RES or EX-527 in either MED or NOR glucose 

conditions. As there were no observable myotubes in low glucose 

conditions as previously suggested this analysis was unavailable in these 

conditions.  

 

Therefore, although there were reductions in myotube number (Fig 5.2) 

and CK activity (Fig. 5.3) in the presence of RES in normal glucose 

conditions suggesting that RES actually impaired differentiation/myotube 

formation in these conditions (Fig. 5.4.). Resveratrol treatment actually 

increased myotube hypertrophy in normal glucose conditions shown by 

increases in myotube size, but not diameter, suggesting that while RES 

reduced myotube formation it increased the size of myotubes that were 

still present, potentially due to an increased length of myotubes (given that 

diameter did not increase and overall size did increase) (Fig. 5.4.). 

 



 

 

117 

 

 

Fig. 5.4. Graph A: Myotube area was significantly increased following the 

administration of RES in the NOR condition compared to NOR alone and EX-527 

supplementation. Additionally NOR RES also increased over time from 72 h and 7D. 

Graph B: No change was observed in myotube diameter. Significant difference (p < 

0.05) is denoted using a *. 
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5.3.4. MRF’s are unaltered following SIRT1 activation via resveratrol 

administration 

In order to elucidate the molecular mechanisms for the 

increased/decreased differentiation/ CK activity we examined the role of 

myogenin (differentiation/myotube formation) and MRF4 (late myotube 

differentiation/myotube maturation). Myogenin had a significant main effect 

for both time (F(3,54) = 29.31, p < 0.001) and glucose (F(3,54) = 36.87, p < 

0.001) as well as an interaction between the two (F(6,54) = 12.42, p = 0.004, 

Figure 5.4). However, the addition of RES or EX-527 did not significantly 

effect myogenin expression at any time point for both the glucose 

restricted conditions; MED (all comparisons p > 0.05, Fig 5.4). In NOR 

glucose conditions however, the addition of both EX-527 and RES 

significantly decreased the expression of myogenin at 72 h (NOR vs. NOR 

RES: 29.68  4.71 vs. 16.80  20.80, p = 0.007 (fisher), NOR vs. NOR EX-

527: 29.68  4.71 vs. 18.45  6.46, p = 0.017 (fisher)). This reduction in 

myogenin (Fig. 5.5.) corresponded with later reductions in myotube 

number by 7D (Fig 5.2) in these conditions. However, there was also an 

increase in myogenin in the presence of EX-527 at 7D, in which 

expression was significantly increased compared to NOR glucose alone at 

this time point (NOR vs. NOR EX-527: 21.60  18.70 vs. 33.36  0.33, p = 

0.013 (fisher)). RES however, induced no change in NOR conditions 

following 7D. Additionally NOR glucose with the addition of EX-527 also 

significantly increased over time, where expression was higher at 7D than 

at 72 h (7D vs. 72 h: 33.36  0.33 vs. 18.45  6.46, p = 0.002 (fisher)). 

Overall however the myogenic regulatory factor, myogenin does not seem 

to be involved in the improvements in CK activity and differentiation with 

the addition of resveratrol in the low glucose conditions at 7D or increases 

in myotube size with RES in normal glucose conditions.  
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There were also no significant differences in MRF4 expression with the 

addition of RES or EX-527 at any glucose concentration at 24 h and 72 h 

(all comparisons p > 0.05; Fig 5.6). Following 7D there was also no 

significant difference when SIRT1 was manipulated via resveratrol 

treatment in the NOR and the LOW conditions (all comparisons p > 0.05., 

Fig. 5.6.). The addition of EX-527 in MED conditions did not significantly 

Fig. 5.5. Graph depicting means and SD’s for gene expression for Myogenin. 

Myogenin in NOR glucose conditions in the presence of both RES and EX-527 was 

significantly decreased in comparison to NOR glucose alone at 72 h. Significant 

difference (p < 0.05) is denoted using a * . 
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change MRF4 expression following 7D (MED vs. MED EX-527: 1.02  

1.38 vs. 5.70  4.83, p > 0.05). Unexpectedly, MRF4 in MED glucose 

conditions was however increased under RES conditions in comparison to 

MED glucose alone (MED vs. MED RES: 1.02  1.38 vs. 58.70  79.30, p 

< 0.001 (fisher)), however, large standard deviations were observed in this 

condition and is therefore unlikely to be an accurate representation of 

expression in this condition. 

 

Fig. 5.6 Graph depicting means and SD’s for gene expression for MRF4. Significant 

difference (p < 0.05) is denoted using a * . 
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5.3.5. Resveratrol administration increased MYHC7 and MYHC4 gene 

expression in NOR glucose conditions. 

With an increase in myotube hypertrophy/size with resveratrol in normal 

glucose conditions and after observing a reduction in MYHCs with 

myotube atrophy under MED and LOW glucose concentrations in Chapter 

3. The gene expression of MYHC’s was assessed in order to analyse 

whether there was potentially increased contractile protein mRNA being 

transcribed in RES conditions that would subsequently lead to increased 

myotube protein content and hypertrophy and if there was a preference of 

either slow or fast MYHC’s. Gene expression of the MYHC’s within the 

muscle cells changed over time, suggested via a significant main effect for 

time for all MYHC measured including: MYHC7 (transcript coding for slow 

type I protein isoform) (F(3,51) = 8.95, p < 0.001),  MYHC2 (IIa) (F(3,59) = 

9.32, p < 0.001), MYHC4 (IIb) (F(3,57) = 23.90, p< 0.001), MYHC1 (IIx) 

(F(3,63) = 33.83, p < 0.001). 

 

Following 72 h there was no significant difference in MYH7 (slow type I) 

gene expression in any glucose dose condition supplemented with either 

RES or EX-527 (all comparisons p > 0.05, Fig. 5.7). The 7D time point 

revealed similar results for the LOW glucose condition in which there was 

no significant difference with the addition of RES or EX-527 (all 

comparisons p > 0.05, Fig. 5.6). The SIRT1 inhibitor however, significantly 

reduced the MYHC7 gene expression within the MED glucose condition at 

the same time point (MED vs. MED EX-527: 58.90  69.20 vs. 14.30  

18.40, p = 0.019 (fisher)). EX-527 did not however, significantly affect the 

MYHC7 expression under NOR glucose conditions (p > 0.05.). Importantly, 

the only significant increase in expression following RES administration 

was observed under the NOR glucose condition (NOR vs. NOR RES: 

10.53  9.84 vs. 77.50  102.40, p = 0.002 (fisher)) suggesting an 

increase in MYHC7 slow type I gene expression was present under these 

conditions that corresponded with an increase in myotube 

area/hypertrophy under these conditions at 7D. As described in chapter 3,  
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MYHC2 (type IIa) showed no significant differences in any condition (all 

comparisons, p > 0.05. (Fig. 5.8.). 

  

 

Fig. 5.7. Graph depicting means and SD’s for gene expression for: MYHC7. Gene 

expression under NOR RES conditions was significantly increased in comparison to 

NOR alone at 7D. Significant difference (p < 0.05) is denoted using a *.  
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In addition to the above reported significant main effect for time, MYHC4 

(type IIb) also displayed a significant main effect for glucose (F(2,57) = 4.77, 

p= 0.012) as well as a significant interaction between time and glucose 

(F(6,57) = 4.38, p = 0.001). There were no significant individual differences 

between any of the glucose conditions and the addition of RES or EX-527 

at 24 h or 72 h (all comparisons p > 0.05, Fig. 5.9).  In LOW and MED 

Fig. 5.8.  Graph depicting means and SD’s for gene expression for: MYHC2., in 

which no significant interactions were observed 
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glucose conditions no significant differences were observed following 7D 

conditions following the addition of resveratrol. In LOW glucose conditions 

the addition of EX-527 was also non- significant (all comparisons p > 0.05). 

There was a significant increase in MYHC4 expression with EX-527 

supplementation in MED conditions at 7D (MED vs. MED EX-527: 36.20  

42.20 vs. 79.90  51.10, p = 0.048 (fisher)). This confirms the morphology 

findings in which myotube number was increased in MED EX-527 in 

comparison to MED alone. Myotube number was also reduced in MED 

RES in comparison to MED EX-527, again MYHC4 expression mirrored 

these findings (29.60  32.80 vs. 79.90  51.10, p = 0.024). Contrary to 

the findings observed for MED glucose the NOR condition displays no 

significance with the addition of EX-527 (p > 0.05). However, MYHC4 

expression was increased in NOR RES conditions in comparison to NOR 

EX-527 (172.40  111.80 vs. 87.70  123.90, p = 0.002 (fisher)), these 

findings complement those observed in morphological data in which area 

was also increased under the supplementation of RES in comparison to 

EX-527 supplementation. MYHC4 expression in NOR conditions 

supplemented with RES is also significantly increased in the presence of 

NOR glucose (NOR vs. NOR RES: 67.90  19.20 vs. 172.40  111.80, p < 

0.001 (fisher)). These findings corroborate the morphological findings in 

which myotube area was increased following RES administration in NOR 

glucose.  
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Similarly to the MYHC4 data above there was a significant main effect for 

glucose dose (F(2,63) = 22.74, p < 0.001) present for MYHC1 (type IIx), as 

well as a significant interaction between time and glucose dose (F(6,63) = 

Fig. 5.9. Graph depicting means and SD’s for gene expression for: MYHC4. RES in 

NORM glucose conditions was significantly increased compared to NOR alone and 

vs. NOR with the addition of EX-527 at 7D. Significant difference (p < 0.05) is denoted 

using a *. 
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12.24, p < 0.001; Fig. 5.9). Comparisons of individual experimental 

conditions revealed no significant differences with the addition of RES or 

EX-527 for 24 h and 72 h (all comparisons p > 0.05, Fig. 5.10.). Following 

7D there was also no significant differences in MYHC1 between MED or 

LOW glucose conditions (all comparisons p > 0.05). Resveratrol increased 

MYHC1 on average in NOR glucose conditions however, they were not 

significant different to NOR alone (NOR vs. NOR RES: 212.40  120.40 vs. 

242.20  57.00, p > 0.05). There was however, a significant reduction in 

MHYC1 with EX-527 in NOR glucose conditions (NOR vs. NOR EX527: 

212.40  120.40 vs. 123.00  174.00, p = 0.008 (fisher)). 
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These data suggest that the activation of SIRT1 via RES administration in 

NOR glucose conditions perhaps evokes increases in both MYHC7 and 

MYHC4 gene transcripts coding for slow type 1 and fast IIb protein MYHC 

Fig. 5.10. Graph depicting means and SD’s for gene expression for: MYHC1. Gene 

expression under NOR EX-527 conditions was significantly reduced in comparison to 

NOR alone and NOR RES at 7D. Significant difference (p < 0.05) is denoted using a *. 
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isoforms in order to improve myotube hypertrophy as observed here by an 

increase in myotube size. Furthermore, SIRT inhibitor conditions suggest 

that MYHC1 gene transcript coding for fast IIx protein MYHC isoforms is 

reduced and therefore normal SIRT activity is perhaps important to 

maintain adequate fast IIx isoform gene expression. Having said this, 

MYHC changes do not seem to be involved in the improved 

differentiation/CK activity observed with resveratrol administration in LOW 

glucose conditions at 7 days.  

 

5.3.6. SIRT1 is reduced in all conditions following 7D and GCN5 

remains unchanged under most experimental conditions. 

SIRT1 gene expression possessed a significant interaction for time, 

glucose concentration and SIRT1 manipulation (F(12,50 = 1.83, p = 0.069). 

Additionally, a significant interaction was present between time and 

glucose (F(6,50) = 3.58, p = 0.005) and a significant main effect for time 

alone (F(3,50) = 31.02, p < 0.001; Fig 5.10). Interestingly, in NOR, MED and 

LOW conditions there was a drop in SIRT1 gene expression over the 

timecourse (observed by a significant main effect of time). Further, EX-527 

reduced SIRT1 gene expression in NOR and MED conditions over time 

(NOR EX-527: 24 h vs. 72 h: 0.72  0.05 vs. 0.18  0.04, p = 0.028 (fisher) 

and DM 0 h vs. MED EX-527 24 h: 1.01  0.04 vs. 0.47  0.31, p = 0.012 

(fisher). Where, MED EX-527 glucose conditions demonstrated the lowest 

reduction at 72hrs vs. NOR EX-527 (0.77  0.09 vs. 0.21  0.00). There 

was however no observed effect of SIRT1 activation or inhibition via 

resveratrol and EX-527 administration respectively in normal or MED 

glucose conditions within time points of 24 h, 72 h and 7d (All comparisons 

p > 0.05, Fig 5.11).  

  

Finally, as observed in chapter 3 in LOW glucose conditions alone there 

was an average increase vs. NOR and MED glucose alone conditions 

across the timecourse (24 h: LOW: 0.56   0.23 vs. MED:  0.60  0.21 vs. 

NOR:  1.00  0.53,  72 h: LOW : 1.34  1.06 vs. MED: 0.75  0.38 vs. 

NOR:  0.39  0.14,   7D: LOW :  0.18  0.00 vs. MED: 0.09  0.01 vs. 
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NOR:  0.11  0.00, all comparisons, p > 0.05), however the data presented 

here failed to reach significance due to large standard deviations in the 

LOW glucose condition. Furthermore, there was no difference in SIRT1 

gene expression in LOW glucose conditions with the addition of RES or 

EX-527 at 24 h, 72h and 7D (all comparisons, p > 0.05). Overall, therefore 

the supplementation of RES or EX-527 did not significantly change SIRT1 

expression values for NOR, MED or LOW glucose.  
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Fig. 5.11. Graph depicting means and SD’s for gene expression for SIRT1. Significant 

difference (p < 0.05) is denoted using a *. 
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5.4.Summary 

In this chapter we aimed to activate or inhibit SIRT1 activity under MED, 

LOW and NOR glucose conditions in differentiating myoblasts. We 

hypothesised that SIRT1 activation (Chapter 4) may ameliorate the 

blocked and reduced differentiation capacity observed under LOW and 

MED conditions respectively (observed in chapter 3). Overall, we partially 

rejected our hypothesis in that while there was increased CK activity 

indicative of increased differentiation in LOW glucose conditions in the 

presence of resveratrol, the SIRT1 activator was unable to prevent the 

block on morphological differentiation in low glucose conditions. This 

suggested that SIRT1 activation via resveratrol administration maybe 

increasing CK activity in an attempt to initiate differentiation in LOW 

glucose. Due to the small number of viable cells however, there is a lack 

of proximity to allow fusion to take place thus this increase in CK does not 

lead to the successful myotube formation observable at the morphological 

level.  

 

It is worth mentioning that SIRT inhibition via EX-527 administration in low 

glucose conditions at 72 h did lead to a complete loss of CK activity vs. 

low glucose alone and RES conditions. NOR glucose conditions SIRT1 

inhibition produced the lowest number of myotubes vs. resveratrol and 

control conditions at 7D, suggesting that normal SIRT1 activity was 

required to enable normal CK activity in low glucose conditions and basal 

myotube formation in normal glucose conditions. Furthermore, SIRT1 

activation via resveratrol was unable to improve the impaired 

differentiation observed in MED glucose conditions (therefore rejecting the 

original hypothesis). Both activation and inhibition of SIRT1 via resveratrol 

and EX-527 respectively was detrimental to myotube formation/number, 

CK activity in normal glucose conditions (albeit lowest absolute myotube 

formation was observed with SIRT1 inhibition vs. RES/MED glucose 

alone). Surprisingly, inhibition of SIRT1 via EX-527 caused an increase in 
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myotube number, a finding that was unexpected and warrants future 

investigation.  

 

The most unexpected and important finding in this study was that while the 

addition of both RES and EX-527 impaired CK activity, myogenin 

expression and formation of myotubes in NOR glucose conditions, in the 

myotubes that were still present resveratrol evoked an increase in 

myotube size/hypertrophy. This observation also corresponded with an 

increase in MYHC7 gene expression MYHC4 coding for the slow type I 

and fast IIb MYHC protein isoforms respectively. These data suggest that 

this adaptation following increased SIRT1 activity via resveratrol 

administration is perhaps responsible for the increased myotube size 

observed via the increased laying down of these contractile proteins. 

Furthermore, SIRT inhibitor conditions suggest that MYHC1 coding for the 

fast IIx MYHC protein isoform is reduced in normal glucose conditions and 

therefore suggests that normal SIRT activity is perhaps important to 

maintain adequate fast isoform gene expression. Having said this, MYHC 

changes do not seem to be involved in the improved differentiation/CK 

activity observed in LOW glucose conditions at 7D, which is partly 

expected as despite increases in CK activity this did not result in increased 

myotube formation.  

 

5.4.1. Future directions for chapter 6 

RES did not improve differentiation as we had previously hypothesized. 

There was however a beneficial increase in CK activity appears to be an 

indicator of differentiation potential rather than a quantifier of differentiation. 

As such regardless of this increase improvement in differentiation under 

LOW glucose conditions was present. This is potentially due to the limited 

cell population still present not being in close proximity to each other 

making fusion difficult. Therefore, in the next chapter we wished to 

examine the role of SIRT1 activation/inhibition in LOW and NORM glucose 

conditions on existing myotube cultures. The reasons for this were 

threefold; 1) because low glucose completely blocks myotube formation 
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(chapter 3), yet resveratrol does drive increases in CK activity despite no 

improvement in myotube formation in these conditions it is feasible that in 

the presence of existing myotubes, resveratrol may prevent myotube 

atrophy; 2) myotube cultures are perhaps more indicative of in-vivo tissue 

where myofibres already exist rather than differentiating myoblasts 

creating primary myotubes which more closely mimics 

development/regeneration; 3) and we would like to ascertain whether the 

increases in myotube hypertrophy are also observed in existing myotubes. 

In addition SIRT1 activation via resveratrol treatment in normal glucose 

concentrations increased myotube hypertrophy together with elevated 

slow type 1 MYHC (7) and type IIb MYHC4 gene expression. 
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6. Resveratrol reduces acute 

myotube atrophy with glucose 

restriction 

6.1. Introduction 

In the previous chapter we determined the advantageous affects present 

following SIRT1 activation via resveratrol administration in LOW glucose 

conditions. This consisted of an increase in CK activity despite an inability 

to ameliorate the lack of differentiation capacity under LOW glucose 

observed in chapter 3. In addition to these findings we also observed an 

increase in myotube hypertrophy in NOR glucose conditions which was 

coupled with an elevation in slow type 1, MYHC7 and type IIb MYHC4 

gene expression. We therefore aimed in the following chapter to ascertain 

the role of SIRT1 activation/ inhibition in LOW and NOR glucose 

conditions on mature myotubes. We hypothesised that activation of SIRT1 

may reduce myotube atrophy observed in nutrient (LOW glucose) 

restricted conditions and that resveratrol may accentuate hypertrophy 

myotubes in normal glucose conditions.  

 

6.2. Methods 

6.2.1. Cell culture and treatments  

6well plates where pre-treated with 0.2% porcine gelatine for 10 min at 

room temperature (RT) and 10 min in a humidified, 37°C with 5% CO2. 

The excess gelatine was aspirated and cells were seeded at 8 x 104 

cells/ml in 2 ml of GM per well, these were then incubated until 80% 

confluence. Cells were washed in PBS and transferred into 2 ml of normal 

glucose DM in 37°C at 5% CO2 for 7D in order to differentiate. Once 

existing myotubes had been formed over 7D in DM, cells were dosed in 

the below experimental conditions for a further 72 h (total 10 days in 
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culture) to assess the impact of the activation/inhibition of SIRT1 in 

nutrient restriction on existing myotubes: LOW (0.5 g/L glucose); NOR (4.5 

g/L glucose); LOW + Resveratrol (RES) (0.5 g/L glucose + 10 μM RES), 

MED + RES (1.125 g/L glucose + 10 μM RES), NOR + RES (4.5 g/L 

glucose + 10 μM RES); LOW + SIRT1 inhibitor (EX-527) (0.5 g/L glucose 

+ 100 nM EX-527); MED + EX-527 (1.125 g/L glucose + 100 nM EX-527) 

or NOR + EX-527 (4.5 g/L glucose + 100 nM EX-527). Morphological 

analysis of myotube number, diameter and area were both performed at 0 

and 72 h initially and then at 24 and 48 h for additional analysis (see 

results section). For these experiments the 0 hours baseline control 

condition was 30 minutes in NOR glucose (DM 0 h). Protein activity of 

AMPK and p70s6K were completed at 0, 15 min, 30 min, 2 h and 24 h 

time points after dosing in order to investigate energy sensing vs. protein 

synthetic/growth associated cellular signalling in myotubes. Gene 

expression for later differentiation and myotube maturation (MRF4, 

MYHC1, 2, 4, 7) and genes associated with myotube hypertrophy (IGF-I, 

IGF-IR, IGF-II, IGF-IIR, IGFBP2, mTOR) and myotube atrophy (TNF-, 

myostatin, MuRF, MAFbx, MUSA1, FOXO1, 3, NF-kB, p53) as well as 

SIRT1 gene expression were completed at 0, 72hrs, with targeted gene 

expression based on the results from 72 h data were followed up to 

investigate changes at 24 h (see results below). Precise methods for 

morphological analysis, gene expression (RT-PCR) and cell signalling 

(western blotting) can be located in the methods section in chapter 2.  

 

6.2.2. Statistical analysis 

All data was performed using three separate cell populations thus 

performed N=3. Analysis was then carried out using Minitab® 17 (Minitab 

Ltd, Coventry U.K). Outliers where removed using Grubbs outlier test. All 

data was parametric, assessed using the Anderson-Darling test for 

normality. General linear models (2 x 2 x 3) for time (0, 72 h), glucose 

concentration (LOW, NOR) and SIRT1 activation/inhibition (DM, RES, EX-

527) were carried out for morphological analysis of myotube number, area 

and diameter for the 72 h data. Morphological analysis for the additional 
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24 and 48 h data was also performed using a general linear model (2 x 3 x 

3) for time (0, 24 and 48 h), glucose concentration (LOW, NORM) and 

SIRT1 activation/inhibition (DM, RES, EX-527). Gene expression data for 

both the 72 h and 24 h data was performed using a general linear model 

(2 x 2 x 3) for time (0, 72 h or 0, 24 h), glucose concentration (LOW, NOR) 

and SIRT1 activation/inhibition (DM, RES, EX-527). A general linear 

model for glucose (LOW , NOR) and SIRT1 activation/inhibition (DM, RES, 

EX-527) was performed for protein activity. Post hoc tests were performed 

using Bonferroni, Tukey and Fisher. The results produced through the 

Bonferroni tests are reported throughout results unless otherwise stated. 
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6.3. Results 

6.3.7. Myotube diameter and area were increased in LOW glucose 

conditions at 24 h after resveratrol supplementation.  

Following myotube imaging (Fig 6.1.) further analysis observed reduced 

myotube number under EX-527 supplementation following 24 and 48 h (24 

h: NOR vs. NOR EX-527: 10.69  3.81 vs. 8.58  3.71, p = 0.004 (fisher), 

48 h: NOR vs. NOR EX-527: 10.95  3.15 vs. 9.48  2.68, p = 0.046 

Fig. 6.1. Representative images following 24 h in LOW and NOR glucose alone and 

with the addition of RES or EX-527. 
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(fisher)). Resveratrol was unable to improve myotube number in any NOR 

glucose condition or timepoint, as well as any LOW glucose condition (p > 

0.005) (Fig. 6.2.). Following 48 h in NOR conditions RES supplementation 

not only did not improve number but it produced a negative affect in which 

myotube number was reduced (NOR vs. NOR RES: 10.95  3.15 vs. 9.43 

 2.90, p = 0.039 (fisher)).   

 

Myotube diameter remained unaffected at 24 h and 48 h in NOR 

conditions following the supplementation of both RES and EX-527. 

Resveratrol had no effect at the later time point on LOW glucose at 48 h 

(LOW vs. LOW RES: 13.48  4.11 vs. 13.50  4.75 μM, p > 0.05. EX-527 

also had no significant effect on myotube diameter at 48 h and at 24 h in 

either NOR nor LOW glucose conditions (p > 0.05) (Fig 6.3.). Importantly, 

at 24 h RES significantly increased myotube diameter in LOW glucose 

condition (LOW RES vs. LOW: 13.23  4.12 vs. 12.47  4.05 μM, p = 

0.022 (fisher)). 

Fig. 6.2. Mean and SD of Myotube number is represented above. Myotube number 

declined in NOR conditions due to the supplementation of EX-527. No improvements 

in myotube number were observed following RES administration. Significant 

difference (p < 0.05) is denoted using  *. 

 

 

 

Significant difference (p < 0.05) is denoted using a *. 
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Importantly, under both LOW and NOR conditions at the 24 h timepoint 

the supplementation of RES significantly increased myotube area (LOW 

vs. LOW RES: 2635  1524 vs. 3474  2235 μM2, p < 0.001, NOR vs. 

NOR RES: 2835  1959 vs. 3454  2110 μM2, p = 0.009). As with the 

diameter data above, RES did not improve area at 48 h in low glucose 

conditions (Fig. 6.4.). Also, as with the data presented above at the 72 h 

timepoint, RES administration also increased myotube size in NOR 

glucose conditions at 48 h (NOR vs. NOR RES: 2835.20  1959.40 vs. 

3858.00  2800.00 μM2, p = 0.023 (fisher)) (Fig. 6.4.). The addition of EX-

527 had no significant affect on myotube area following 24 h and 48 h for 

NOR nor LOW glucose conditions (p > 0.05). 

 

Fig. 6.3. Myotube diameter increased over time, however only RES supplementation 

increase diameter at 24 h whereas EX-527 decreased myotube diameter. Significant 

difference (p < 0.05) is denoted using  *. 
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These data suggest that RES administration in LOW glucose does not 

improve myotube diameter or area at the later, 48 and 72 h timepoints. 

Following 24 h however resveratrol did ameliorate the myotube atrophy 

observed under LOW glucose conditions. This suggests that the low 

glucose conditions over a period of 3 days is driving considerable atrophy 

and that a single dose of RES may be sufficient to return myotubes to 

normal growth over the first 24 h, yet perhaps repeated doses would be 

required when low glucose conditions are maintained over 48-72 h.  

 

Following RES administration in NOR glucose conditions MYHC7 gene 

expression increased in differentiating myoblasts, documented in chapter 

5. Both MYHC7 and IGF-I gene expression were increased in mature 

myotubes following a 72 h incubation also following RES administration in 

NOR glucose conditions. As a result we next wished to assess these 

genes in resveratrol treated low glucose conditions at 24 h where we 

Fig. 6.4 Myotube area is increase by the supplementation of RES in NOR conditions 

at both 24 and 48 h whereas this increase was only observed at 24 h when in LOW 

glucose conditions. Supplementation of EX-527 did not differ from DM when RES 

increased area however it was significantly reduced in comparison to the RES 

condition. SD’s represented as error bars. Significant difference (p < 0.05) is denoted 

using a *. 
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observed an improvement in myotube size. Furthermore, as we found 

reduced gene expression of protein degradative Ub ligase MUSA1 in RES 

treated low glucose conditions at 72 h, without improvements in 

morphology at 72 h, we also sought to investigate these genes for their 

role in the improvements in myotube diameter and size observed in low 

glucose with RES at 24 hrs.  

 

6.3.8. Resveratrol increased MYHC7 expression in NOR conditions 

after 24 h but not in LOW glucose conditions. 

MYHC7 displayed a significant main effect for time (F(1, 20) = 19.79, p < 

0.001). Gene expression for MYHC7 was increased in NOR glucose 

conditions supplemented with RES over time vs. 0 h (NOR RES vs. 0 h: 

3.85  0.60 vs. 9.77  1.24, p = 0.048 (fisher). However, there were no 

significant differences present for either glucose condition following the 

activation or inhibition of SIRT1 at 24 h (Fig 6.5.).  

 

A significant main effect for time was observed for IGF-I (F(1, 20) = 174.82, 

p < 0.001). However, there was no significant difference following SIRT1 

activation/inhibition in either NOR or LOW glucose conditions at 24 h (Fig 

6.5.).   
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6.3.9. MRF4 increased after 24 h with resveratrol supplementation in 

LOW glucose  

Without changes in MYHC’s or IGF-I at 24h in low glucose with RES 

treatment to support the improved myotube size in the conditions at this 

timepoint. We therefore decided to investigate MRF4 gene expression as 

this is expressed temporally before adult MYHC’s in the stages of myotube 

maturation and hypertrophy. We observed a significant increase in MRF4 

gene expression with the administration of RES in LOW glucose 

conditions at 24 h, however, surprisingly the SIRT1 inhibitor also 
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Fig. 6.5. As significant increase in MYH7 (A) expression from 0 h was observed in 

LOW glucose alone and following the addition of EX-527 but not in RES. NOR RES 

was significantly increased in 24 h compared to 0 h but not in either of the other NOR 

conditions. IGF-I (B) expression was significantly higher in 0 h than any other 

condition at 24 h.  SD’s represented as error bars. Significant difference (p < 0.05) is 

denoted using a *. 
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increased MRF4 gene expression at this time point (LOW vs. LOW RES: 

1.43  0.25 vs. 21.5  24.2, p = 0.048 (fisher), LOW vs. LOW EX-527: 1.43 

 0.25 vs. 25.6  20.3, p = 0.020 (fisher), LOW RES vs. LOW EX-527:  

21.5  24.2 vs. 25.60  20.30, p = 0.638).  

 

6.3.10. No significant changes were present in MUSA1 gene 

expression following the activation/ inhibition of SIRT1.  

MUSA1, a ubiquitin ligase involved in protein degradation, was reduced at 

72 h in low glucose conditions in the presence of RES, yet morphological 

findings suggested there was no change in myotube size at this timepoint. 

We therefore investigated MUSA1 expression at 24 h where an 

improvement in myotube diameter and size were observed with RES 

treatment in low glucose conditions. Following 24 h MUSA1 displayed a 

significant main effect for time (F(1,18) = 320.00, p < 0.001) (Fig 6.6.). All 

experimental conditions are significantly reduced in comparison to the 0 h 

control (0 h: 0.99  0.09 vs. LOW: 0.29  0.13, p < 0.001 vs. LOW RES: 

0.25  0.00, p < 0.001, 0 h vs. LOW EX-527: 0.30  0.06, p < 0.001 0 h vs. 

NOR: 0.19  0.00, p < 0.001, 0 h vs. NOR RES: 0.27  0.14, p < 0.001, 0 

h vs. NOR EX-527: 0.24  0.08, p < 0.001). MUSA1 however, displayed 

no significance was present for LOW or NOR glucose after the addition of 

either RES or EX-527 (Fig 6.6.).  
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Finally, despite no changes in gene expression at 24 h timepoint, we 

hypothesised that cell signalling would be temporally more immediate than 

gene expression changes over the first 24 h and may indicate the potential 

mechanisms of RES/SIRT1 activation induced improvements in myotube 

size vs. low alone conditions. We therefore investigated energy sensing 

Fig. 6.6. Both graphs depict average changes using mean values and error bars 

represent SD’s. MRF4 (A)  was significantly increased in LOW glucose following both 

the addition of RES and EX-527.  MUSA1 (B) was significantly reduced from 0 h to 24 

h in all conditions, however SIRT1 manipulation did not instigate any significant 

changes. Significant difference (p < 0.05) is denoted using  *.  
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(AMPK) vs. protein synthetic signalling (p70S6K) across a range of 

timepoints over the first 24 h (0, 15, 30 min, 2 and 24 h) (Alterations in 

AMPK with starvation have previously been associated with reductions in 

mTOR/p70s6K via TSC1/2 (Inoki et al., 2003)). A significant interaction 

was present for AMPK protein activity between glucose and SIRT1 

manipulation (F(2,35) = 3.13, p = 0.056 (Fig. 6.7)). Following 15 min there 

was a trend toward a significant increase in AMPK activity following the 

administration of EX-527 in LOW glucose compared to LOW with the 

addition of RES (LOW RES vs. LOW EX-527: 0.95 ± 0.41 vs. 2.01 ± 1.11, 

p = 0.055 (fisher)). Individual differences between glucose concentration 

or the activation/ inhibition of SIRT1 were observed. 

 

Once incubated for 30 min the addition of EX-527 to NOR glucose 

increased AMPK in comparison to NOR glucose alone (Fig 6.8.) (2.63 ± 

1.66 vs. 1.00 ± 0.63, p = 0.066 (fisher)) and when NOR glucose was 

supplemented with RES (2.63 ± 1.66 vs. 1.00 ± 0.63, p = 0.066 (fisher)). A 

trend for AMPK activity to increase was also observed in the presence of 

EX-527 under NOR glucose conditions in comparison to NOR glucose 

alone at both 2 h (NOR vs. NOR EX-527: 1.00 ± 0.36 vs. 2.24 ± 1.45, p = 

0.086 (fisher)) (Fig 6.9.) and 24 h (NOR vs. NOR EX-527: 1.00 ± 0.43 vs. 

2.61 ± 0.75, p = 0.069 (fisher)) (Fig 6.10.). Increases in AMPK with EX-527 

in NOR glucose conditions also reduced protein activity for p70S6K at 15 

min (Fig 6.11.) and 30 min (Fig 6.12.) vs. NOR alone, although this was 

not significantly different (15min, NOR vs. NOR EX-527: 1.30 ± 0.02 vs. 

0.94 ± 0.20, 30 min, NOR vs. NOR EX-527: 1.30 ± 0.02 vs. 0.94 ± 0.20, p 

> 0.05). There were no significant difference over 2 h (Fig 6.13.) or 24 h 

(Fig 6.14.) for NOR glucose conditions. There were also no significant 

differences in AMPK or P70S6K in low glucose conditions in the absence 

or presence of SIRT1 activation/ inhibition (see figures 6.7- 6.14 below). 
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Fig. 6.7. Phosphorylated AMPK (p-AMPK) relative to Total AMPK and calibrated to 

NOR glucose at 15 min., this timepoint was additionally compared to GAPDH as 

there was a significant difference present between loading values. A trend towards 

significance was present for LOW RES vs. LOW EX-527.  Significant difference (p < 

0.05) is denoted using  *. P values approaching significance are displayed. 
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Fig. 6.8. Phosphorylated AMPK (p-AMPK) relative to Total AMPK and calibrated to NOR 

glucose at 30 min. 30 min incubation saw an increase in AMPK protein activity for NOR 

EX-527 compared to NOR, NOR RES and LOW EX-527. Significant difference (p < 

0.05) is denoted using  *. P values approaching significance are displayed. 
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Fig. 6.9. Phosphorylated AMPK (p-AMPK) relative to Total AMPK at 2 h and 

calibrated to NOR glucose at 2h. A trend was present at the 2 h timepoint 

suggesting NOR EX-527 increased AMPK activity compared to NOR and LOW EX-

527. Significant difference (p < 0.05) is denoted using  *. P values approaching 

significance are displayed. 
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Fig. 6.10. Phosphorylated AMPK (p-AMPK) relative to Total AMPK at 24 h and 

calibrated to NOR glucose at 24h.  The addition of EX-527 significantly increased 

AMPK content compared to LOW EX-527 and NOR glucose alone. Significant 

difference (p < 0.05) is denoted using a *. P values approaching significance are 

displayed. 
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Fig. 6.11. Phosphorylated p70S6K (p-p70S6K) relative to Total p70S6K at 15 

min and calibrated to NOR glucose at 15 min displayed no significant differences 

for any experimental conditions. 
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Fig. 6.12. Phosphorylated p70S6K (p-p70S6K) relative to Total p70S6K at 30 min and 

calibrated to NOR glucose at 30 min displayed no significant differences for any 

experimental conditions. 
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Fig. 6.13. Phosphorylated p70S6K (p-p70S6K) relative to Total p70S6K at 2 h and calibrated to 

NOR glucose at 2 h displayed no significant differences for any experimental conditions. 
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When the time points were extended to 72 h changes in myotube number 

and size were observed NOR glucose following manipulation of SIRT1, 

despite this genes associated with skeletal muscle atrophy and protein 

degradation appear to be unchanged. (All data presented in Appendix 1). 

Under LOW glucose conditions there appeared to be a reduction in 

atrophy/protein degradative genes such as myostatin and MUSA1, despite 

no increases in myotube size or number with RES treatment. This could 

be a continued compensatory drive to restore the atrophy observed under 

low glucose, although unsuccessful. 

Fig. 6.14. Phosphorylated p70S6K (p-p70S6K) relative to Total p70S6K at 24 h and 

calibrated to NOR glucose at 24 h displayed no significant differences for any 

experimental conditions. 
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6.4. Summary 

RES was able to increase both myotube area and diameter acutely over a 

24 h time point. This was accompanied by increases in MRF4 (as perhaps 

would be expected given that MRF4 is an early driver of myotube 

maturation). This data suggests that the LOW glucose conditions over a 

period of 3 days is impairing growth and that a single dose of resveratrol 

may be sufficient to return myotubes to normal growth over the first 24 h. 

We observed that RES does not improve myotube diameter or area/ size 

in LOW glucose at the later time points of; 48 and 72 h (appendix 1) that 

repeated doses of RES when glucose conditions are restricted may 

maintain this increase over 48- 72h. 

 

Area but not diameter was also increased following RES administration in 

NOR glucose conditions, however this was accompanied with a reduction 

in myotube number. These myotubes did not significantly differ from the 

other NOR glucose conditions, however compared to the 0 h timepoint 

they increased in the slow twitch myosin isoform (MYHC7). When the data 

was extended to the later 72 h timepoint however MYHC7 was 

significantly increased following RES supplementation in comparison to 

NOR glucose alone (appendix1). At this time point myotube number is no 

longer significantly reduced whereas myotube area is still increased in 

comparison to no RES supplementation. This is suggestive of a potential 

switch towards a greater number of oxidative fibres which is driving the 

myotubes enlarged size.  

 

Inhibition of SIRT1 via EX-527 supplementation reduced myotube number 

in NOR conditions and reduced diameter within LOW conditions. As these 

findings do not directly oppose those observed with RES supplementation 

there is clearly a more complex relationship between SIRT1 and  

differentiation. 
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Despite the investigation of energy sensing pathways (AMPK) sensitive to 

changes in energy status have previously been shown to supress growth 

signalling (p70s6k) under starvation (Inoki et al., 2003). We observed a 

trend towards increased AMPK with SIRT1 inhibition (EX-527 

administration) approaching significance in normal glucose conditions 

together with non-significant reductions in p70S6K where in this condition 

there was a corresponding suppression of myotube hypertrophy. 

Furthermore, we observed increased AMPK with SIRT1 inhibition at 15 

minutes in low glucose conditions in comparison with resveratrol 

conditions, yet the increase was not significant versus control conditions 

and no corresponding changes in p70S6K were observed at this timepoint. 

However, there were no other alterations in low glucose conditions at any 

other time points with the activation or inhibition of SIRT1. No changes in 

myotube hypertrophy were observed in normal glucose at 24 and 72h in 

the presence of increased SIRT1 activity via RES administration. This 

suggested that only SIRT1 inhibition was able to increase AMPK activity in 

both glucose conditions however this only resulted in non-significant 

reductions in p70S6k in normal glucose conditions. Despite this it is 

unlikely that, alterations in energy status impacted on protein synthetic 

signalling in the presence of RES and therefore not associated with the 

increased myotube hypertrophy at 24 h in low glucose and 24-72 h in 

normal glucose.  
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7. Discussion 

7.1. Relevant physiological model of glucose restriction 

Within chapter 3 we presented two models of glucose restriction. Where 

under medium (MED) and low (LOW) glucose we observed a reduction 

and blocking (LOW glucose) in differentiation and myotube hypertrophy 

respectively assessed via morphological, biochemical and gene 

expression analysis. By using the two glucose concentrations we 

attempted to model physiologically similar glucose concentrations 

observed after dietary restriction (DR) in vivo. Where the MED condition 

possessed a glucose concentration of 1.13 g/L or 6.25 mM, similar to the 

average 1 g/L (5.6 mM), which has been previously observed in the 

circulation of rodents during DR (Cartee et al., 1994, Walford et al., 1992). 

Additionally, this concentration was similar to the concentration used in 

previous in vitro studies utilizing models of nutrient restriction (Elkalaf et al., 

2013, Khodabukus and Baar, 2015), therefore also allowing for more 

accurate comparisons to be made between studies. Furthermore, based 

on the work of Aussedat et al. (2000) and Maggs et al. (1995) the 

concentration of glucose was observed to be approximately 30% lower in 

the interstitium than those levels found in circulating blood, as such the 

LOW glucose concentration was therefore in line with these levels at a 

concentration of 0.56 g/L or 3.12 mM, therefore making MED and LOW 

concentrations physiologically relevant to both circulatory and  interstitial 

levels respectively following DR in vivo.  

 

Accompanying the aforementioned morphological analysis, reductions in 

differentiation and myotube formation observed in these models was 

associated with a reduction in biochemical differentiation (reduced CK), as 

well as gene expression of important myogenic regulatory factors (MRF’s). 

MyoD underpin the lineage determination of myoblasts and the onset of 

fusion (Buckingham et al., 2003, Cooper et al., 1999), whereas myogenin 

regulates formation and promotes terminal differentiation (Berkes and 

Tapscott, 2005). The reductions in these MRF’s confirm reductions in 
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differentiation observed in these restricted glucose conditions. This data is 

in line with previous research that suggests starvation in myoblasts during 

differentiation reduced these MRFs and indeed that overexpression of 

MyoD can help restore differentiation in the presence of starvation, albeit 

starvation in this instance was removal of serum, amino acids and glucose 

(Lagirand-Cantaloube et al., 2009).  

 

Furthermore, the reduction in myotube hypertrophy at 7 days in glucose-

restricted conditions resulted in a reduction in gene expression of MYHC’s 

1,4 and 7, which code for the myosin heavy chain protein isoforms of type 

IIx, IIb and slow twitch fibers respectively. With respect to LOW glucose 

the expression of MYHC’s was almost completely abolished as a 

consequence of no myotubes being formed in this condition. Whereas, the 

MED glucose condition there was impaired yet not completely blocked 

myotube formation the expression of MYHC was not completely abolished, 

however there was a significant reduction in the expression in comparison 

to the control. A reduction in total MYHC protein in C2C12 cells has 

previously been reported under low glucose conditions, therefore 

suggesting again that we possess a suitable model of impaired 

differentiation and myotube atrophy in MED glucose and blocked 

differentiation in LOW glucose conditions (Fulco et al., 2008).  

 

Notably, we observed an increase in SIRT1 gene expression in the lowest 

glucose condition. Activation of SIRT1 (phosphorylation) has been 

previously observed in C2C12 muscle cells under low glucose conditions 

(Fulco et al., 2008). Upregulation of SIRT1 gene expression has also been 

observed to also take place in the presence of the inflammatory cytokine, 

TNF-α in C2 myoblasts (Saini et al., 2012). Within this model of 

inflammation gene silencing of SIRT1 increased cell death in the presence 

of TNF-α whereas activation of SIRT1 via resveratrol (RES) administration 

ameliorated the inflammatory induced increase in cell death and reduction 

in differentiation. Suggesting that resveratrol is an important in survival 

and differentiation in myoblasts under stress.  Inferring from the previous 
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literature (Fulco et al., 2008), although it was demonstrated that  SIRT1 

increased at the gene expression level in the presence of TNF-α, that 

perhaps this was a precursor for increased SIRT1 protein levels available 

for subsequent increases in SIRT activity. We therefore suggested that 

this increase may not have caused the reduction in differentiation rather 

was a unsuccessful attempt to improve survival and perhaps 

enable/initiate differentiation under nutrient stress. As such we 

hypothesised that similarly to the findings observed under inflammation 

that SIRT1 activation via resveratrol treatment may improve differentiation 

and myotube maturation in skeletal muscle cells under reduced glucose 

conditions.  

 

7.2. Dose response for SIRT1 activation and inhibition 

Before the manipulation of SIRT1 activation would be possible under 

reduced glucose conditions, we first aimed to optimise the dosing of 

resveratrol and the SIRT1 inhibitor (EX-527) in chapter 4.  Previously, we 

have administered C2C12 cells with 30 and 60 μM of RES, however cell 

viability was compromised at these doses (Deane and Sharples et al, 

2015, unpublished). Decreased cell viability has also been observed in 

C2C12 at doses of 20 M and higher (Higashida et al., 2013, Bosutti and 

Degens, 2015). Despite Higashida et al. (2013) observing no change in 

total PGC-1α (a downstream protein modulated by SIRT1 (Rodgers et al., 

2005b)) following 5 and 10 μM after a 24 h incubation, recent evidence 

has suggested that 10 μM was beneficial in C2C12 myoblast remodeling 

under oxidative stress (Bosutti and Degens, 2015). We therefore 

performed a dose response of RES at 5, 10 and 15 μM. The impact of 

SIRT1 activation was investigated (phosphorylation via western blotting) in 

which a significant increase in SIRT1 activity was observed in both 10 and 

15 μM. Activation seemed more consistently elevated over the time course 

of 15 min, 30 min, 2 h, and 24 h with 10 M RES, with the largest increase 

in SIRT1 phosphorylation at 15 min with a resveratrol concentration of 10 

M. Indeed, there are limited studies characterising SIRT1 activity 

(phosphorylation) with RES administration in myoblasts. Studies that have 
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measured this previously have focused on SIRT1 mRNA (Saini et al., 

2012) or SIRT1 total protein levels (Fröjdö et al., 2011). Due to SIRT1 

being a histone deacetylase its function is determined both by total protein 

and its deacetylase activity. Phosphorylation of SIRT1 is required however 

to enable increases in deacetylase activity (Sasaki et al., 2008).  

 

As mentioned above we also aimed to ascertain the optimal concentration 

of the commercially available SIRT1 inhibitor EX-527. Initially we observed 

SIRT1 activity following administration of 30 and 60 M of EX-527. SIRT1 

activity did not significantly reduce activity under these concentrations and 

unexpectedly increased in some instances. EX-527 has an IC50 (inhibitory 

concentration 50%) of 98 nM for SIRT1 inhibition (Carafa et al., 2016) and 

as such has been previously documented to reduce SIRT1 activation by 

approximately 50% at concentrations between 48 and 100 nM. However, 

inhibition in these studies was measured via vitro Fluor de Lys 

deacetylation assays in embryonic kidney cells to assess SIRT1s 

deacetylation activity and not phosphorylation per se (Solomon et al., 

2006). We also observed average reductions in SIRT1 activity following 24 

h at a concentration of 100 nM, however this was analyzed via 

phosphorylation and not deacetylation. From this data it could be 

suggested that deacetylation activity would also be reduced as a result, 

given that phosphorylation of SIRT1 is required however to enable 

deacetylase activity (Sasaki et al., 2008). However was not tested as 

deacetylation assays were unavailable in the labs at the time of data 

collection. This would be important to establish in future studies.  

 

7.3. SIRT1 activation and inhibition in restricted and normal glucose 

conditions 

The objective for chapter 5 was to manipulate SIRT1 activity using the 

concentrations characterised in chapter 4 on a background of restricted 

glucose previously established in chapter 3. By combining the findings 

from chapters 3 and 4 we were able to establish whether SIRT1 activation/ 

inhibition could attenuate the reduction in differentiation and myotube 
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hypertrophy observed in the MED glucose conditions and prevent the 

complete depletion of myotubes observed in the LOW glucose condition. 

We hypothesised that SIRT1 activation via resveratrol would ameliorate 

the diminished and reduced differentiation observed under LOW and MED 

glucose conditions respectively. Despite observed improvements in 

creatine kinase activity in the lowest glucose condition following SIRT1 

activation, we did however reject this hypothesis. Generally, RES was 

unable to prevent the loss of morphological differentiation in either glucose 

condition.  

 

It is worth noting however that SIRT inhibition produced absolutely no CK 

activity in LOW conditions at 72 h and the corresponding lowest number of 

myotubes in comparison to the other NOR glucose conditions. This 

suggests that normal SIRT1 activity was required for normal CK and basal 

myotube formation to take place in LOW and NOR conditions respectively. 

The opposite was however true for MED glucose conditions in which 

SIRT1 inhibition implemented an increase in myotube number following 

SIRT inhibition. The findings in MED glucose are similar to those 

previously observed by Fulco et al. (2008) in which the reduction of SIRT1 

via a retrovirus expressing short hairpin targeting SIRT1 mRNA (shSIRT1) 

was able to rescue differentiation under glucose restriction. The inference 

of which is that SIRT1 is required for the loss of differentiation observed 

under glucose-restricted conditions to take place. The glucose 

concentration administered in the Fulco et al. (2008) study was very 

similar the MED glucose condition (5.00 vs. 6.25 mM) which may be one 

such reason for the similarities. Although this glucose concentration was 

previously deemed to be physiologically similar to values available for DR 

in vivo it may also be more physiologically similar to non DR glucose 

concentrations than the NOR glucose control. As previously discussed 

NOR glucose condition is super physiological and may provide a model 

closer to hyperglycemia than NOR glucose in vivo. As such the reason 

that LOW and NOR observe improvements under SIRT1 increases may 

be due to their roles as physiological stress environments, whereas MED 
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glucose is not a true nutritional stress.  As our findings under NOR and 

LOW glucose however oppose these findings in which inhibition of SIRT1 

following 72 h abolished CK activity in LOW conditions. This could 

potentially suggest than when translated to whole organism populations 

that SIRT1 increases are only need under a nutritional stress and a 

reduction in SIRT1 may improve muscle growth under normocaloric 

environments due to the lack of stress present. 

 

Following administration of both EX-527 and RES in NOR glucose 

conditions there was an impairment in CK activity and myogenin 

expression as well as formation of myotubes. Despite this and possibly 

most importantly we observed an increase in myotube size in the 

remaining myotubes following the supplementation of resveratrol in normal 

glucose conditions. This observation was coupled with an increase in 

MYHC 7 and MYHC 4 gene expression, which code for the slow type I and 

fast type IIb MYHC protein isoforms respectively. These findings 

suggested that the adaptation observed following RES administration 

might be responsible for the increase in myotube size via an increase in 

the genes coding for contractile proteins. Indeed, these findings are in line 

with those previously observed by both Montesano et al. (2013) and 

Kaminski et al. (2012) in which total MYHC protein is increased in normal 

glucose conditions in the presence of RES. Montesano et al. (2013) did 

not measure myotube area, however they did observe significant 

increases in both myotube diameter and length following RES 

administration, suggesting that overall size would indeed be increased. 

Our measurements in myotube diameter however displayed no significant 

changes in any of our experimental conditions. Bosutti and Degens (2015) 

found that a RES concentration of 10 M (the same as we utilized) was 

the only concentration to enhance the percentage of cells in the G0-G1 

phase and this was not the case in a similar concentration to that used in 

the Montesano et al. (2013) study (20 M). It may be proposed therefore 

that the increase in myotube area observed under these conditions was 

due to earlier cell cycle exit. It is interesting, however that an increase in 
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area was also observed by Montesano et al. (2013) as they observed no 

increase in p21 protein content (associated with cell cycle exit and early 

differentiation) with the administration of RES in comparison to the DM 

conditions alone. Despite these findings Bosutti and Degens (2015) did 

not observe inhibition of this cell cycle arrest until much higher 

concentrations (40 - 60 M) therefore increases in myotube size may 

indeed be due to early exit of the cell cycle leading to earlier initiation of 

differentiation and subsequently allowing more time for myotube 

maturation and hypertrophy. Unfortunately, Montesano et al. (2013) did 

not measure myotube number therefore our proposal that RES 

administration increases myotube size without an increase in myotube 

number contributes to advancing understanding in these conditions. 

Additionally, this previous study did not measure activation or expression 

of SIRT1 and as such our data extends this work by suggesting a positive 

role for SIRT1 activation in myotube hypertrophy in normal glucose 

conditions.  

 

Although not measured within this study, resveratrol has been suggested 

to improve myoblast migration but not the impaired fusion induced by 

oxidative stress (Bosutti and Degens, 2015). The present study, albeit 

under the stress environment induced by low glucose, also suggested that 

resveratrol cannot improve fusion/ differentiation of myoblasts. Additionally, 

the present study also identified that the SIRT inhibitor (EX-527) evoked 

reductions in MYHC1 coding for the fast IIx MYHC protein in normal 

glucose conditions and therefore suggested that normal SIRT activity was 

perhaps important to maintain adequate fast isoform gene expression. A 

finding that to the authors knowledge has not been shown before. 

Moreover, future studies may wish to investigate the role of SIRT1 

activation/ inhibition on Nuclear factor of activated T-cells (NFAT) activity 

in skeletal muscle cells. As this transcription factor, regulates activation of 

muscle fiber genes associated with characterization of ‘slow’ and ‘fast’ 

myofibres (Chin et al., 1998) and is known to be transcriptionally 

suppressed by SIRT1 (Jia et al., 2014). Future studies may wish to 
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investigate the role of SIRT1 activation/inhibition on NFAT activity in 

skeletal muscle cells. Overall, chapter 5, SIRT1 activation lead to 

increases in myotube hypertrophy and SIRT1 inactivation a slowing of the 

myotube contractile apparatus in normal glucose conditions.  

 

Due to the interesting findings observed in chapter 5 in which RES 

treatment increased myotube hypertrophy in NOR glucose conditions and 

although resveratrol was unsuccessful in improving morphological 

measures, CK was increased in LOW glucose conditions following RES 

administration. We therefore examined the role of SIRT1 inhibition/ 

activation in both LOW and NOR glucose conditions on existing myotube 

cultures. Where in the previous chapter we observed changes in 

differentiating myoblasts and their ability to produce myotubes this chapter 

involved the use of mature myotubes, which could be suggested as more 

indicative of in-vivo tissue. As resveratrol was observed to increase 

myotube size in NOR glucose following 7D, we chose to administer RES 

following 7D in culture in which myoblasts had already differentiated into 

myotubes. In addition, in chapter 5 RES supplementation in LOW glucose 

conditions following 7D did drive increases in CK, despite no improvement 

in myotube formation. It is therefore feasible that in the presence of 

existing myotubes, resveratrol may prevent myotube atrophy evoked by 

LOW glucose conditions. We therefore hypothesised that activation of 

SIRT1 may reduce myotube atrophy observed in nutrient (LOW glucose) 

restricted conditions and that resveratrol may further induce myotube 

hypertrophy in normal glucose conditions. 

 

As observed in the myoblasts study from chapter 5, the inhibition of SIRT1 

via EX-527 reduced myotube number. In addition to this myotube size was 

also negatively affected and the activation of SIRT1 via resveratrol 

increased myotube area at 72 h after dosing on to myotubes. Again MYHC 

expression was altered corresponding with this data, however in the 

myotubes studies these alterations consisted of reductions in MYHC 1, 2 

and 4 following SIRT1 inhibition, coding for IIx, IIa, IIb isoforms 
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respectively and an increase in MYHC7 (slow twitch isoform) following 

SIRT1 activation. These findings suggest that increases in SIRT1 activity 

mediated an increase in slow fiber type isoform gene expression and a 

decrease in SIRT activity reduces fast fiber type isoform gene expression. 

A finding that consolidated observations made in chapter 5 where SIRT1 

inhibition reduced fast MYHC’s in differentiating myoblasts. These findings 

taken together with the corresponding increases in myotube size observed 

in normal glucose conditions following RES supplementation, suggest that 

the observed hypertrophy is resultant from the increase in the gene coding 

for increasing slow fiber type protein isoforms. As such despite possessing 

larger myotubes they may have a slower contractile potential. Resveratrol 

supplementation however little effect on myotubes in low glucose 

conditions at this 72 h timepoint. 

 

In addition to the regulation of MYHC expression observed at 72 h the 

increase in myotube number and size observed in NOR glucose following 

resveratrol treatment corresponded with increases in the expression of 

growth related genes IGF-I but not IGF-IR, IGF-II and IGF-IIR. IGF-I has 

previously been associated with increased differentiation; myotube 

hypertrophy and increases in muscle size in vivo (Scimè and Rudnicki, 

2006, Stewart and Rotwein, 1996, Jacquemin et al., 2004, Quinn et al., 

2007, Sharples et al., 2011, Sharples et al., 2010) and as such this 

observation may provide insight into the mechanisms underpinning the 

increase in myotube hypertrophy following RES supplementation after 72 

h. An increase in IGFBP2 gene expression was associated with the 

reduction in myotube size observed during the inhibition of SIRT1. IGFBP2 

is a known inhibitor of differentiation and myotube hypertrophy when 

protein levels are altered in differentiating myoblasts (Sharples et al., 2010, 

Sharples et al., 2013b), however within myotube studies its role is yet to 

be defined. However, overexpression of IGFBP2 in mice results in a 

reduction in muscle size (Rehfeldt et al., 2010). SIRT1 may thereby 

regulate IGFBP2 expression and subsequent reduction observed with EX-

527 in NOR glucose conditions.  
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Interestingly in low glucose conditions, despite no observable increases 

present in myotube size following 72 h with resveratrol treatment there 

was a reduction in myostatin, a negative regulator of muscle mass, 

myostatin (Mcpherron and Lee, 1997) and protein degradative gene 

MUSA1 (Milan et al., 2015). Similarly to the increase in CK, observed in 

LOW glucose in differentiating myoblasts (chapter 5) this may have been a 

compensatory mechanism attempting to restore the observed atrophy 

within this experimental condition. However this was unsuccessful in 

rescuing atrophy observed at 72 h.  

 

Most importantly within the final data chapter (6) resveratrol improved 

myotube area and diameter in LOW glucose at a more acute timepoint of 

24 h. This finding was observed despite no changes being observed at 48 

or 72 h.  These findings, however, were not driven by changes in MYHC 

as was the case for changes in NOR glucose in both myoblasts and 

mature myotubes. Improvements in myotube area and diameter where 

instead associated with increased MRF4 (myf6) which to our knowledge 

has not previously been associated with resveratrol in skeletal muscle. 

MRF4 is involved in the transition between differentiated and mature 

myotubes and therefore may be expected to be upregulated at the earlier 

timepoint of 24 h over MYHC expression (Ropka-Molik et al., 2011). From 

these findings we can infer that the muscle atrophy experienced under 

LOW glucose conditions may be attenuated following a single dose of 

resveratrol over a 24 h time period. Unfortunately, as these positive 

findings where not observed at later timepoints it suggests that a repeated 

dose may be required to main myotube hypertrophy over a longer time 

scale in low glucose conditions and therefore this warrants further 

investigation.  

 

It has previously been observed that glucose deprivation in skeletal 

muscle increases both AMPK and SIRT1 and that the AMPK- nampt- 

SIRT1 pathway allows the cell to respond to nutrient deprivation and adapt 
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accordingly in both muscle cells (Fulco et al., 2008) and animal models. 

Furthermore AMPK has been observed to suppress growth related 

signaling of p70S6K via TSC2 inhibition of mTOR (Inoki et al., 2003). 

Under normal glucose conditions with resveratrol treatment we observed 

increases in IGF-I gene expression and subsequent increases in myotube 

hypertrophy. Therefore, it may be expected that we would observe 

alterations in downstream p70S6K the translation initiator for protein 

synthesis from mRNA in the ribosome, thus enabling increased myotube 

hypertrophy (Rommel et al., 2001). We observed a trend towards 

increased AMPK with SIRT1 inhibition (EX-527 administration) 

approaching significance in normal glucose conditions together with 

average but non-significant reductions in p70S6K where in this condition 

there was a corresponding suppression of myotube hypertrophy. 

Furthermore, we observed increased AMPK with SIRT1 inhibition at 15 

minutes in LOW glucose conditions in comparison with resveratrol 

conditions, yet the increase was not significantly increased versus control 

conditions and no corresponding changes in p70S6K were observed at 

this timepoint. However, there were no other alterations in LOW glucose 

conditions at any other time points with the activation or inhibition of SIRT1. 

Additionally, no alterations where we observed myotube hypertrophy in 

normal glucose (observed at 24 and 72h) in the presence of increased 

SIRT1 activity via resveratrol administration. Suggesting that only SIRT1 

inhibition was able to increase AMPK activity in both glucose conditions 

however this only resulted in reductions (albeit non-significant) in p70S6k 

in normal glucose conditions. Suggesting that perhaps normal SIRT1 

activity was required for adequate AMPK activity to prevent the 

suppression of p70S6K and the corresponding reductions in myotube size 

observed in SIRT1 inhibitor conditions. Despite this the mechanisms 

responsible for the increased myotube hypertrophy following RES 

administration at 24 h in low glucose and 24- 72 h in normal glucose 

conditions are unlikely to be attributable to alterations in energy sensing 

signalling and/or protein synthetic signalling. 
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If there was significant changes present in the AMPK p70S6K pathway it 

would suggest that RES would be actively initiating hypertrophy, however 

as the morphological results following RES administration in LOW glucose 

condition do not significantly exceed NOR conditions it could be suggested 

that a reduction in atrogenes such as MuRF1 and MaFbx and not 

hypertrophic response per se. One such mechanism could be via 

modifications in FoXOs, previously suggested in skeletal muscle overload 

(Koltai et al., 2017).  

 

7.4. Conclusions 

Despite the initial hypothesis suggesting that resveratrol would improve 

the loss of differentiation observed under glucose restriction we rejected 

this hypothesis in differentiating myoblasts as little effect was observed 

under these conditions. Resveratrol did however evoke increases in 

myotube hypertrophy under normal glucose conditions and enable 

improved myotube hypertrophy over an acute 24 h period when 

administered to existing myotubes in LOW glucose. If this finding 

translates to whole organisms and human populations it could provide 

healthspan improvements in individuals undergoing diretary restriction. 

Unfortunately, after the 24 h period the myotubes continued to undergo 

atrophy, which is suggestive of the requirement for dosing every 24 h. In 

the LOW glucose condition SIRT1 activation increased MRF4 gene 

expression and was associated with the improved myotube size at 24 h in 

this condition. Whereas SIRT1 activation in normal glucose conditions 

modulated increased gene expression coding for slow MYHC isoforms 

while inhibition of SIRT1 lead to reductions in gene expression coding for 

fast MYHCs. This finding may be particularly usefully when concidering 

dieatary interventions in fed individuals who partake in aerobic activities, 

potentially providing a greater number of slow twitch fibres for 

improvements in aerobic economy.  While SIRT activation did modulate 

increases IGF-I gene expression, it did not appear to modulate energy 

sensing vs. growth related signaling pathways. However, SIRT1 inhibition 

(EX-527) did reduce AMPK activity in low and normal glucose conditions 
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with corresponding mean reductions in P70S6K in normal glucose 

conditions. In low glucose induced myotube atrophy resveratrol did 

however impair the negative regulator of muscle mass, myostatin, and 

protein degradative ubiquitin ligase enzyme, MUSA1. Overall, SIRT1 

activation via a single dose of resveratrol appears to have a role in acutely 

negating the effect of myotube atrophy in low glucose conditions and 

promoting hypertrophy when normal levels of glucose are available.  
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9. Appendix 1

 

 

6.3.1. Low glucose reduces myotube number and promotes myotube 

atrophy  

Following image collection (Fig A1.1) myotube number was analysed at 72 

h over time in comparison to a 0 h control, following this incubation a 

significant interaction between timepoint, glucose concentration and 

SIRT1 manipulation was observed (F(2, 466) = 6.55, p = 0.002) as well as 

between timepoint and glucose concentration (F(1, 466) = 16.89, p < 0.001). 

Additionally, all variables: glucose (F(1, 466) = 9.20, p = 0.003), time (F(1, 466) 

Fig. A1.1. Representative images following 72 h in LOW and NOR glucose alone and 

with the addition of RES or EX-527. 
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= 36.81, p < 0.001) and SIRT1 manipulation (F(1, 466) = 7.89, p < 0.001) 

displayed a significant main effect. No change in myotube area was 

observed from the 0 h control to 72 h in NOR glucose conditions. There 

was no change in myotubes grown in NOR conditions with the 

administration of RES compared with 0 h baseline control myotubes (0 h: 

8.25  2.85 vs. NOR: 9.00  2.59, p > 0.05, vs. NOR RES: 8.33  2.74, p > 

0.05). By supplementing NOR glucose conditions with SIRT1 inhibitor (EX-

527) a reduction in myotube number was observed from 0 h to 72 h (0h vs. 

NOR EX-527: 9.00  2.59 vs. 5.62  2.94, p < 0.001, Fig 6.2.). All LOW 

glucose conditions had a significantly reduced number of myotubes 

following 72 h versus the 0 h control (0 h: 8.25  2.85 vs. LOW: vs. 5.38  

2.28, p < 0.001, vs. LOW RES: 5.73  2.97, p < 0.001, vs. LOW EX-527: 

5.62  2.94, p < 0.001). However, there was no significant difference 

observed for this glucose concentration when SIRT1 activity was 

manipulated (LOW vs. LOW RES: 5.38  2.28 vs. 5.73  2.97, p > 0.05, 

LOW vs. LOW EX-527: 5.38  2.28 vs. 5.62  2.94, p > 0.05, LOW RES vs. 

LOW EX-527: 5.38  2.28 vs. 5.62  2.94, p > 0.05).  
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Fig. A1.2. Myotube number following the addition of EX-527 in NOR conditions in 

comparison to the 0 h control. All LOW glucose conditions where also reduced in 

comparison to the 0 h control. Significant difference (p < 0.05) is denoted using  *. 
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Myotube diameter displayed a significant main effect for time following 

comparisons between 0 h control and 72 h incubation (F(1, 3661) = 13.68, p 

< 0.001) and glucose concentration (F(1, 3661) = 138.24, p < 0.001) as well 

as a significant interaction for time x glucose concentration (F(1, 3661) = 

116.42, p < 0.001). There was also a significant increase in diameter for 

all NOR glucose conditions in comparison to the 0 h control (0 h: 12.86  

4.40 vs. NOR: 15.53  5.37 μm, p < 0.001, vs. NOR RES: 15.08  5.32 μm, 

p < 0.001, vs. NOR EX-527: 15.23  5.30 μm, p < 0.001). Whereas, in 

LOW glucose there was a significant decrease in diameter from the 0 h 

control across all conditions (0 h: 12.86  4.40 vs. LOW: 12.01  4.25 μm, 

p = 0.033 (fisher), vs. LOW RES: 11.79  4.32 μm, p = 0.007 (fisher), vs. 

LOW EX-527: 11.71  4.20 μm, p = 0.004 (fisher)). There were no 

significant differences observed at 72 h in low glucose conditions with 

Fig. A1.3. Myotube diameter is reduced in all LOW glucose conditions in comparison to the 0 h 

control whereas All NOR glucose conditions are significantly increased in comparison o the 0 h 

control. Repeated measures analysis carried out using 36 images per experimental condition 

provided significant values between the small changes observed between NOR and LOW 

glucose.  Significant difference (p < 0.05) is denoted using  *. 

 



 

 

199 

activation or inhibition of SIRT1 (All comparisons p > 0.05, Fig 6.3.).  

 

Significant interactions were present for myotube area again following a 72 

h incubation in comparison to a 0 h control: Timepoint x glucose 

concentration (F(1, 3723) = 51.43, p < 0.001), timepoint x SIRT1 

manipulation (F(2, 3723) = 4.28, p = 0.014), and SIRT1 manipulation x 

glucose (F(2, 3723) = 3.31, p = 0.037). Significant main effects were also 

observed for time (F(1, 3723) = 14.07, p < 0.001), glucose (F(1, 3723) = 55.86, p 

< 0.001) and SIRT1 manipulation (F(2, 3723) = 12.36, p < 0.001). Myotube 

area increased from 0 h in all NOR conditions (0 h: 2876  1628 vs. NOR: 

3785  2542 μm2, p < 0.001, vs. NOR RES: 4088  2728 μm2, p < 0.001, 

vs. NOR EX-527: 3433  2394 μm2, p < 0.001). However, there was no 

change from 0 h to 72 h in LOW glucose conditions (0 h: 2876  1628 vs. 

LOW: 2862  1947 μm2, p > 0.05 vs. LOW RES: 2816  2207 μm2 p = 

0.442, vs. LOW EX-527: 2643  1743 μm2, p = 0.250). At 72 h, although 

there were no increases in myotube size following RES administration in 

the LOW glucose condition, there was an increase with RES in NOR 

glucose (LOW vs. LOW RES: vs. 2816  2207 μm2, p > 0.05, NOR vs. 

NOR RES: 3785  2542 vs. 4088  2728 μm2, p = 0.052 (fisher)). 

Additionally, there was a reduction in myotube size with the addition of the 

SIRT1 inhibitor (EX-527) in NOR conditions; however this reduction was 

not observed in LOW glucose conditions at 72 h (NOR vs. NOR EX-527: 

3785  2542 vs. 3433  2394 μm2, p = 0.026 (fisher), LOW vs. LOW EX-

527: 2862  1947 vs. 2643  1743 μm2, p > 0.05, Fig. 6.4.).  
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Unlike SIRT1 activation via resveratrol administration improving 

differentiation at 7D in differentiating myoblasts, altering SIRT1 activity 

with resveratrol was unable to improve myotube survival/loss or myotube 

atrophy in low glucose conditions when administered to existing myotube 

cultures. Importantly however, SIRT1 inhibition (EX-527) reduced myotube 

number and myotube size and, SIRT1 activation via resveratrol increased 

myotube area in normal glucose conditions. As such we next wished to 

assess the impact on important regulators of late differentiation/ myotube 

maturation such as MRF4 and adult myosin heavy chains (MYHC) 1, 2, 4 

and 7 gene expression that would be involved laying contractile proteins 

for myotube maturation/hypertrophy. 

 

Fig. A1.4. Myotube area is increased in all NOR glucose conditions in comparison to 

the 0 h control. In NOR glucose RES increases whereas EX-527 decreased area. 

Significant difference (p < 0.05) is denoted using  *. 
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6.3.2. MRF4 was unchanged with resveratrol or SIRT1 inhibitor 

As with the morphological data the following gene expression analysis was 

carried out following a 72 h incubation. Following this 72 h incubation on 

existing myotubes there were no significant interactions for MRF4 in either 

of the previous myoblast studies in chapters 3 and 5. MRF4 is involved in 

late differentiation/early myotube maturation, as such in mature myotubes 

a significant interaction between glucose and time was observed (F(1, 36) = 

4.86, p = 0.034). There was also a significant main effect for glucose 

dosing (F(1, 36) = 4.86, p = 0.034), and time (F(1, 36) = 64.35, p < 0.001). All 

conditions were significantly reduced following 72 h compared to the 0 h 

control (0 h: 1.01 ± 0.19 vs. NOR: 0.48 ± 0.09, p = 0.006, vs. NOR RES: 

0.52 ± 0.10, p = 0.015, vs. NOR EX-527: 0.53 ± 0.09, p = 0.039, vs. LOW 

RES: 0.68 ± 0.20, p = 0.008 (fisher), vs. LOW EX-527: 0.68 ± 0.14, p = 

0.005 (fisher)). This was perhaps because myotubes were already formed 

for 7 days in the 0h control and the peak MRF4 expression occurred 

earlier in myotube formation vs. 72hrs (total 10 days in differentiation). 

This reduction in MRF4 at 72 h in all conditions was with the exception of 

LOW glucose alone, where this did not significantly drop vs. 0h (0 h vs. 

LOW: 1.01 ± 0.19 vs. 0.83 ± 0.22, p > 0.05). These data suggest a 

prolonged MRF4 expression in low glucose alone. There were no 

significant differences with the addition of either of the SIRT1 

activation/inhibition within LOW conditions at 72 h (LOW vs. LOW RES: 

0.83 ± 0.22 vs. 0.68 ± 0.20, p > 0.05, LOW vs. LOW EX-527: 0.83 ± 0.22 

vs. 0.68 ± 0.14, p > 0.05). No significance was observed under SIRT1 

manipulations in NOR glucose conditions either. This data reflected the 

previous observations in myoblast studies (NOR vs. NOR RES: 0.48 ± 

0.09 vs. 0.52 ± 0.10, p > 0.05, NOR vs. NOR EX-527: 0.48 ± 0.09 vs. 0.53 

± 0.09, p > 0.05). There was however, significantly delayed reductions in 

MRF4 in LOW vs. NOR conditions without the supplementation of RES or 

EX-527 in which no significance was observed (LOW vs. NOR: 0.83  

0.22 vs. 0.48  0.09, p = 0.007 (fisher), LOW RES vs. NOR RES: 0.68  

0.20 vs. 0.52  0.10, p > 0.05, LOW EX-527 vs. NOR EX-527: 0.68  0.14 

vs. 0.53  0.09, p > 0.05), again suggesting that perhaps LOW may be 
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attempting to improve their delayed impaired differentiation by keeping 

MRF4 expression higher than NOR conditions. However, RES/SIRT1 

inhibitor did not significantly improve MRF4 in low glucose conditions.  

 

 

 

Fig. A1.5. Graph depicting means and SD’s for gene expression for MRF4 at 72 h 

compared to the 0 h control. All experimental conditions where significantly reduced in 

comparison to the 0 h control except LOW glucose alone. Significant difference (p < 

0.05) is denoted using  *. 

 

NOR LOW LOW RES LOW EX-527 NOR NOR RES NOR EX-527
0.0

0.5

1.0

1.5

M
R

F
4

 Δ
Δ

C
T

 e
x
p

re
s
s
io

n
 v

a
lu

e

0 h 72 h

*

*
*

*
*



 

 

203 

6.3.3. MYHC 7 expression is increased with SIRT1 activator 

resveratrol and MYHC 1,2,4 reduced with SIRT1 inhibitor EX-527 in 

normal glucose conditions.  

Significant main effects were observed for glucose dosing (F(1, 35) = 60.28, 

p < 0.001), SIRT1 manipulation (F(2, 35) = 4.39, p = 0.020) and time (F(1, 35) 

= 69.24, p < 0.001) for MYHC7 gene expression. Significant interactions 

were also present between time and both glucose (F(1, 35) = 60.28, p < 

0.001) and SIRT1 manipulation (F(2, 35) = 4.39, p = 0.020). The 

manipulation of SIRT1 did not significantly affect the LOW glucose 

conditions (LOW vs. LOW RES: 1.04 ± 0.22 vs. 1.29 ± 0.49, p > 0.05, 

LOW vs. LOW EX-527: 1.04 ± EX-527 0.22 vs. 1.39 ± 0.84, p > 0.05). 

Although there was an average reduction, there was no significant effect 

on MYHC7 expression in the NOR condition upon the administration of 

EX-527 (3.08 ± 0.81 vs. 2.52 ± 0.66, p > 0.05). There was however, a 

significant increase in MYCH7 expression following the addition of SIRT 

activator, RES in NOR conditions (3.08 ± 0.81 vs. 4.20 ± 0.82, p = 0.002 

(fisher)).  
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For MYHC2 gene expression, a significant main effect was present for 

time (F(1, 29) = 10.32, p = 0.003) and glucose concentration (F(1, 29) = 

156.49, p < 0.001). There was also a significant interaction between time x 

glucose concentration (F(1, 29) = 156.49, p < 0.001). As with MYHC1 there 

was no significant difference found following SIRT1 manipulation in the 

LOW glucose conditions (LOW vs. LOW RES: 0.37 ± 0.05 vs. 0.32 ± 0.11, 

p > 0.05, LOW vs. LOW EX-527: 0.37 ± 0.05 vs. 0.71 ± 0.83, p > 0.05). In 

the NOR condition RES did not affect MYHC2 expression (NOR vs. NOR 

Fig. A1.6. Graph depicting means and SD’s for gene expression for MYHC7 at 72 h 

compared to the 0 h control. RES significantly increased MYHC7 expression in NOR 

conditions. Significant difference (p < 0.05) is denoted using  *. 
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RES: 1.86 ± 0.41 vs. 1.89 ± 0.34, p > 0.05). In the NOR glucose conditions, 

the SIRT1 inhibitor EX-527 significantly reduced MYHC2 expression (NOR 

vs. NOR EX-527: 1.86 ± 0.41 vs. 1.55 ± 0.08, p = 0.034 (fisher)). 

 

MYHC4 displayed a significant main effect for glucose concentration (F(1, 

35) = 25.91, p < 0.001), time (F(1, 35) = 19.98, p < 0.001) as well as a 

significant interaction between glucose concentration and time (F(1, 35) = 

25.91, p < 0.001). In NOR glucose conditions, expression of MYHC4 was 

Fig. A1.7. Graph depicting means and SD’s for gene expression for MYHC2 at 72 h 

compared to the 0 h control. NOR glucose was significantly increased in comparison 

to NOR EX-527. Significant difference (p < 0.05) is denoted using  *. 
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significantly increased following 72 h in comparison to LOW glucose 

conditions (4.52 ± 2.83 vs. 0.92 ± 0.35, p = 0.011). SIRT1 

activation/inhibition had no effect on MYHC4 expression in LOW glucose 

conditions (LOW vs. LOW RES: 0.92 ± 0.35 vs. 0.60 ± 0.22, p > 0.05, 

LOW vs. LOW EX-527: 0.92 ± 0.35 vs. 2.02 ± 2.50, p > 0.05). There were 

also no significant differences following RES administration in NOR 

glucose conditions (NOR vs. NOR RES: 4.52 ± 2.83 vs. 5.95 ± 2.80, p > 

0.05). Again, as with MYHC2, there was a reduction in MYHC4 expression 

following SIRT1 inhibition via EX-527 administration (NOR vs. NOR EX-

527: 4.52 ± 2.83 vs. 2.72 ± 0.74, p = 0.058 (fisher)).  
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Similar to myoblast studies, MYHC1 displayed significant interactions 

between glucose concentration and time (F(1, 35) = 23.83, p < 0.001). There 

was also an individual main effects for glucose (F(1, 35) = 23.83, p < 0.001) 

and time (F(1, 35) = 23.09, p < 0.001). MYHC1 expression was significantly 

increased in NOR in comparison to LOW glucose conditions (3.39 ± 1.38 

vs. 1.20 ± 0.30, p = 0.007). There was however, no significant difference 

following the administration of RES in either NOR (NOR vs. NOR RES: 

3.39 ± 1.38 vs. 3.61 ± 1.61, p = 1.000) or LOW glucose conditions (LOW 

vs. LOW RES: 1.20 ± 0.30 vs. 1.05 ± 0.35, p > 0.05). There was also no 

significant difference following EX-527 administration in LOW glucose 

(LOW vs. LOW EX-527: 1.20 ± 0.30 vs. 1.63 ± 0.14, p > 0.05) or NOR 
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Fig. A1.8. Graph depicting means and SD’s for gene expression for MYHC4 at 72 h 

compared to the 0 h control. EX-527 reduced MYHC4 expression in NOR conditions. 

Significant difference (p < 0.05) is denoted using  *. 
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glucose, (NOR vs. NOR EX-527: 3.39 ± 1.38 vs. 2.26 ± 0.69, p = 0.094 

(fisher)), however there was a trend that was approaching significance.  

 

 

Overall, the inhibition (EX-527) of SIRT1 reduced myotube number and 

myotube size, The activation of SIRT1 via RES increased myotube area in 

normal glucose conditions. These findings corresponded with reductions in 

IIx, IIa, IIb coding MYHC isoforms (1,2,4 respectively) following SIRT1 

Fig. A1.9. Graph depicting means and SD’s for gene expression for MYHC1 at 72 h 

compared to the 0 h control. EX-527 significantly reduced MYHC1 expression in NOR 

conditions even when RES was supplemented. Significant difference (p < 0.05) is 

denoted using  *. 
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inhibition and increases in slow isoform coding MHYC7 gene expression 

with SIRT1 activation. Suggesting that changes in SIRT1 activity mediates 

gene expression of these important genes coding for increasing contractile 

protein isoforms. There are also associated with increased myotube 

maturation and hypertrophy observed in normal glucose conditions in the 

presence of SIRT1 activator, RES. However, SIRT1 activation had little 

effect on myotubes in low glucose conditions at this timepoint (72 h). 

 

Because of this interesting finding, we then wished to investigate some of 

the other important gene regulatory targets of altered SIRT1 activity 

following the same 72 h timepoint. Including genes associated with 

myotube growth/hypertrophy (IGF-I, IGF-IR, IGF-II, IGF-IIR, IGFBP2, 

mTOR) and myotube atrophy (TNF-, MuRF, MAFbx, MUSA1, p53, 

GADD45a and b, FOXO1 and 3, NF-kB), as well as SIRT1 gene 

expression. 

 

6.3.4. Myotube growth/hypertrophy 

Increased IGF-I has previously been observed with advancing 

differentiation and myotube hypertrophy in-vitro (Sharples et al., 2010, 

Sharples et al., 2011). This group has shown that a reduction in calories 

has been shown to reduce IGF-I expression (Sharples et al., 2015). The 

manipulation of SIRT1 during glucose restriction in mature myotubes 

displayed a significant interaction for glucose x time (F(2, 29) = 233.98, p < 

0.001) as well as a significant main effect for glucose alone (F(2, 29) = 

233.98, p < 0.001). Under all NOR glucose conditions there was an 

increase in IGF-I expression over time from 0 h to 72 h (0 h: 1.03 ± 0.01 vs. 

NOR: 1.61 ± 0.40, p = 0.024, vs. NOR RES: 2.12 ± 0.20, p < 0.001, vs. 

NOR EX-527: 1.79 ± 0.45, p = 0.002), whereas from 0 to 72 h LOW 

glucose decreased IGF-I expression in all conditions (0 h: 1.03 ± 0.01 vs. 

LOW: 0.05 ± 0.01, p < 0.001, vs. LOW RES: 0.05 ± 0.01, p < 0.001, 0 h vs. 

LOW EX-527: 0.46  0.01 p < 0.001). This resulted in gene expression for 

IGF-I being significantly lower in LOW versus NOR glucose conditions 

(LOW vs. NOR: 0.05 ± 0.01 vs. 1.61 ± 0.40, p < 0.001). SIRT1 inhibitor 
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EX-527 did not affect IGF-I under NOR (NOR vs. NOR EX-527: 1.61 ± 

0.40 vs. 1.79 ± 0.45, p > 0.05) or LOW conditions (LOW vs. LOW EX-527: 

0.05 ± 0.01 vs. 0.46 ± 0.01, p > 0.05). RES conditions significantly 

increase IGF-I expression in NOR (NOR vs. NOR RES: 1.61 ± 0.40 vs. 

2.12 ± 0.20, p < 0.033) conditions but not in LOW (LOW vs. LOW RES: 

0.05 ± 0.01 vs. 0.05 ± 0.01, p > 0.05 (Fig 5.9.)).  
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Fig. A1.10. Graph depicting means and SD’s for gene expression for IGF-I at 72 h 

compared to the 0 h control. RES significantly increased IGF-I expression in NOR 

conditions following RES administration. Significant difference (p < 0.05) is denoted 

using a *. 
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A significant interaction was present for IGF-IR gene expression between 

time, SIRT1 manipulation (F(2, 36) = 4.79, p = 0.014) and glucose 

concentration (F(1, 36) = 76.60, p < 0.001). Time (F(1, 36) = 73.40, p < 0.001), 

SIRT1 manipulation (F(2, 36) = 4.79, p = 0.014) and glucose concentration 

(F(1, 36) = 76.60, p < 0.001) were also significant main effects. All LOW 

glucose conditions at 72 h were significantly reduced IGF-IR expression in 

comparison to 0 h (0 h: 1.15 ± 0.04 vs. LOW: 0.74 ± 0.05, p < 0.001, vs. 

LOW RES: 0.66 ± 0.05, p < 0.001, vs. LOW EX-527: 0.79 ± 0.16, p < 

0.001 (Fig. 6.11)). NOR glucose remained unchanged overtime from 0 h to 

72 hrs (0 h vs. NOR: 1.15 ± 0.04 vs. 1.11 ± 0.13, p > 0.05), as did NOR 

RES (0 h vs. NOR RES: 1.15 ± 0.04 vs. 1.05 ± 0.05, p > 0.05). At 72 h In 

NOR glucose conditions supplemented with SIRT1 inhibitor, EX-527 

significantly increased IGF-IR expression in comparison to 0 h (0 h vs. 

NOR EX-527: 1.15 ± 0.04 vs. 1.29 ± 0.11, p = 0.034 (fisher)). NOR EX-

527 was also increased in comparison to NOR alone at 72 h (NOR vs. 

NOR EX-527: 1.11 ± 0.13 vs. 1.29 ± 0.11, p = 0.010 (fisher)). No other 

significant differences were detected in either glucose condition following 

the activation/inhibition of SIRT1 at 72 h (LOW vs. LOW RES: 0.74 ± 0.05 

vs. 0.66 ± 0.05, p > 0.05, LOW vs. LOW EX-527: 0.74 ± 0.05 vs. 0.79 ± 

0.16, p > 0.05, NOR vs. NOR EX-527: 1.11 ± 0.13 vs. 1.29 ± 0.11, p = 

0.667).  
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There was no significant interaction or main effect present for IGF-II 

expression. There was also no significant differences observed following 

post hoc tests (Fig. 6.12).  
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Fig. A1.12. Graph depicting means and SD’s for gene expression for IGF-II at 72 h 

compared to the 0 h control, in which no significant differences were observed. 

Significant difference (p < 0.05) is denoted using  *. 
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Fig. A1.11. Graph depicting means and SD’s for gene expression for IGF-IR at 72 h 

compared to the 0 h control. LOW conditions all displayed a reduced expression of 

IGF-IR following 72 h. No significant difference was observed from the control 

condition in NOR glucose until EX-527 was supplemented. Significant difference (p < 

0.05) is denoted using a *. 
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IGF-IIR had a significant main effect for glucose (F(1, 35) = 8.22, p = 0.007) 

and time point (F(1, 35) = 87.10, p < 0.001) and a significant interaction 

between the two (F(1, 35) = 8.22, p = 0.007). The two glucose conditions did 

not express significantly different IGF-IIR expression values at 72 h (LOW 

vs. NOR: 0.86 ± 0.09 vs. 0.79 ± 0.04, p = 1.000). All experimental 

conditions significantly reduced IGF-IIR expression compared to the 0 h 

control (0 h: 1.00 ± 0.05 vs. NOR: 0.79 ± 0.04, p  = 0.005, vs. NOR RES: 

0.78 ± 0.09, p = 0.003, vs. NOR EX-527: 0.72 ± 0.10, p < 0.001, vs. LOW: 

0.86 ± 0.09, p = 0.004 (fisher), vs. LOW EX-527: 0.86 ± 0.11, p < 0.001) 

except LOW glucose with RES supplementation at 72 h that was 

maintained at a similar level to 0 h control (0 h vs. LOW RES: 1.00 ± 0.05 
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vs. 0.95 ± 0.11, p = 1.000). As a result, at 72 h gene expression of IGF-IIR 

with RES administration under LOW conditions was higher than LOW 

alone (LOW vs. LOW RES: 0.86 ± 0.09 vs. 0.95 ± 0.11, p = 0.054 (fisher)). 

 

 

A significant interaction between glucose concentration and time was 

present for IGFBP2 gene expression (F(1, 24) = 2.12, p < 0.001) in addition 

to significant main effects for time and glucose concentration respectively 

(F(1, 24) = 2.12, p < 0.001), (F(1, 24) = 11.01, p = 0.003). IGFBP2 gene 

Fig. A1.13. Graph depicting means and SD’s for gene expression for IGF-IIR at 72 h 

compared to the 0 h control. RES significantly increased IGF-IIR in LOW conditions. 

Significant difference (p < 0.05) is denoted using  *. 
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expression in all NOR glucose conditions with or without supplementation 

or SIRT1 activator or inhibitor at 72 h is similar to 0 h control (0 h: 1.21 ± 

0.00 vs. NOR: 1.20 ± 0.55, p = 1.000, vs. NOR RES: 1.37 ± 0.27, p = 

1.000, vs. NOR EX-527: 1.65 ± 0.45, p = 1.000). LOW glucose on the 

other hand, significantly reduced IGFBP2 expression at 72 h in 

comparison to 0 h (0 h: 1.21 ± 0.00 vs. LOW: 0.44 ± 0.12, p = 0.003 

(fisher), vs. LOW RES: 0.22 ± 0.03, p = 0.022, vs. LOW EX-527: 0.46 ± 

0.25, p = 0.003 (fisher)). As such there was a significant difference 

between NOR and LOW glucose at 72 h (NOR vs. LOW: 1.20 ± 0.55 vs. 

0.44 ± 0.12, p = 0.042), as previously observed in myoblast studies in 

chapter 5. SIRT1 activation via RES supplementation did not affect either 

glucose concentration significantly at 72 h (NOR vs. NOR RES: 1.20 ± 

0.55 vs. 1.37 ± 0.27, p = 1.000, LOW vs. LOW RES: 0.44 ± 0.12 vs. 0.22 ± 

0.03, p = 1.000). SIRT1 inhibition via EX-527 administration increased 

IGFBP2 expression in NOR (NOR vs. NOR EX-527: 1.20 ± 0.55 vs. 1.65 ± 

0.45, p = 0.043 (fisher)) but not LOW glucose concentrations at 72 h (LOW 

vs. LOW EX-527: 0.44 ± 0.12 vs. 0.46 ± 0.25, p = 1.000).  
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There was no significant interaction or main effect for any of the variables 

analysed for mTOR expression. Additionally, there were no significant 

individual differences present between any experimental conditions 

following pairwise comparison analysis.  

 

Fig. A1.14. Graph depicting means and SD’s for gene expression for IGF-BP2 at 72 h 

compared to the 0 h control. LOW glucose conditions displayed a reduced expression 

of IGFBP2 after 72 h  whereas NOR conditions did not in fact EX-527 further 

increased IGFBP2 levels from the 0h control. Significant difference (p < 0.05) is 

denoted using a *. 
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With respect to genes associated with myotube growth, where there were 

increased number of myotubes and myotube hypertrophy with RES 

administration in normal glucose conditions there were corresponding 

increases in IGF-I but not IGF-IR, IGF-II, IGF-IIR. There were reductions in 

IGFBP2 (a known inhibitor of differentiation when at high levels (Sharples 

et al., 2013)) with RES in LOW glucose conditions and increases with 

SIRT1 inhibitor EX-527 in normal glucose conditions. The reductions in 

myotube size associated with SIRT1 inhibition corresponded with 

increased in IGFBP2 expression in normal glucose a known inhibitor of 

differentiation in myoblasts. Therefore, these changes in IGFBP2 may 

Fig. A1.15. Graph depicting means and SD’s for gene expression for mTOR at 72 h 

compared to the 0 h control. mTOR remained unchanged following 72 h 
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have been important in the myotube atrophy seen in normal glucose with 

SIRT1 inhibition, however, as yet there is an undefined role for IGFBP2 in 

myotubes. Somewhat, paradoxically SIRT1 inhibition increased IGF-IR 

expression perhaps as a compensatory drive, albeit unsuccessful in 

rescuing growth observed morphologically. In low glucose conditions, 

although no improvements in myotube growth were observed at 72 h with 

RES administration, RES was able to somewhat maintain normal IGF-IIR 

expression at 72 h. 

 

6.3.5. Genes associated with myotube atrophy and protein 

degradation: 

TNF-α displayed a significant main effect for time (F(1, 36) = 5.81, p = 0.021). 

There were however, no significant differences in TNF-α expression with 

SIRT1 manipulation.  
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TNFRSF1β (TNF-alpha soluble receptor) gene expression analysis revealed 

both a significant interaction (F(1, 35) = 92.48, p <0.001) and significant 

main effects were for glucose concentration (F(1, 35) = 92.48, p <0.001) and 

time (F(1, 35) = 4.30, p = 0.046). All LOW glucose conditions at 72 h where 

significantly increased in comparison to the 0 h control (0 h: 1.00 ± 0.13 vs. 

LOW: 0.56 ± 0.08, p < 0.001, vs. LOW RES: 0.65 ± 0.08, p = 0.009, vs. 

LOW EX-527: 0.73 ± 0.30, p = 0.001). Both NOR alone and NOR RES 

where significantly lower than the 0 h control (0 h: 1.00 ± 0.13 vs. NOR: 

1.32 ± 0.04, p = 0.039, vs. NOR RES: 1.33 ± 0.16, p = 0.023). The only 

condition that was not significant in comparison to the 0 h control was 
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Fig. A1.16. Graph depicting means and SD’s for gene expression for TNF-α at 72 h 

compared to the 0 h control. No experimental control elicited a change in TNF-

α.Significant difference (p < 0.05) is denoted using  *. 
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NOR glucose supplemented with SIRT1 inhibitor, EX-527 at 72 h (0 h vs. 

NOR EX-527: 1.00 ± 0.13 vs. 1.14 ± 0.16, p = 1.000). As a result, NOR 

glucose conditions with SIRT 1 inhibitor, EX-527 had a significantly lower 

expression than NOR RES at 72 h (NOR EX-527 vs. NOR RES: 1.14 ± 

0.16 vs. 1.33 ± 0.16, p = 0.039 (fisher)) and versus NOR glucose alone at 

72 h (NOR vs. NOR EX-527: 1.32 ± 0.04 vs. 1.14 ± 0.16, p = 0.055 

(fisher)). No significance was present between the three LOW conditions 

at 72 h (LOW vs. LOW RES: 0.56 ± 0.08 vs. 0.65 ± 0.08, p = 1.000, LOW 

vs. LOW EX-527: 0.56 ± 0.08 vs. 0.73 ± 0.30, p = 1.000).  
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p = 0.055

Fig. A1.17. Graph depicting means and SD’s for gene expression for TNFRSF1β at 

72 h compared to the 0 h control. A change over time was observed for TNFRSF1β, in 

addition to decreases in NOR following both RES and EX-527 supplementation. 

Significant difference (p < 0.05) is denoted using  *. p values approaching significance 

are displayed. 

 



 

 

221 

There was a significant main effect for time for myostatin gene expression 

(F(1,28) = 19.43, p < 0.001). NOR glucose alone and with the addition of 

EX-527 at 72 h were not significantly changed in comparison to the 0 h 

baseline control (0 h: 0.71 ± 0.17 vs. NOR: 1.27 ± 0.65, p = 1.000, vs. 

NOR EX-527: 1.58 ± 0.49, p = 1.000). Myostatin expression under NOR 

conditions with the addition of RES was significantly increased in 

comparison the 0 h control (0 h vs. NOR RES: 0.71 ± 0.17 vs. 1.99 ± 0.81, 

p = 0.007 (fisher)). This condition was also significantly increased in 

comparison to NOR glucose alone at 72 h alone (NOR vs. NOR RES: 1.27 

± 0.65 vs. 1.99 ± 0.81, p = 0.027(fisher)). Under LOW conditions alone 

there was a significant increase in myostatin expression over time (0 h vs. 

LOW: 0.71 ± 0.17 vs. 2.12 ± 1.33, p = 0.004 (fisher)). Despite no 

improvement in myotube number or size with RES addition in LOW 

glucose conditions, at 72 h in the addition of RES to LOW glucose 

significantly reduced the gene expression of the negative muscle mass 

regulator, myostatin (LOW vs. LOW RES: 2.12 ± 1.33 vs. 1.41 ± 0.70, p = 

0.024 (fisher)). 
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6.3.6. Ubiquitin Ligases: MAFbx, MuRF1 and MUSA1  

As discussed in the previous chapter (5) both muscle ring finger1 (MuRF1) 

and muscle atrophy F-box (MAFbx) and muscle ubiquitin ligase of SCF 

complex in atrophy 1 (MUSA1) have been identified as important 

regulators of skeletal muscle atrophy (Bodine and Baehr, 2014). There 

was a main significant effect for time for MuRF1 (F(1, 36) = 39.60, p < 0.001). 

There was a decrease over time in MuRF1 from 0 to 72 h in both the NOR 

and LOW glucose conditions (0 h: 1.03 ± 0.30 vs. NOR: 0.63 ± 0.20, p = 

0.011, vs. NOR RES: 0.72  0.17, p = 0.070 vs. NOR EX-527: 0.57  0.01, 

p = 0.016 vs. LOW: 0.58 ± 0.11, p = 0.022, vs. LOW RES: 0.47  0.10, p = 

0.002, vs. LOW EX-527: 0.61  0.17, p = 0.012 (all significance was 
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Fig. A1.18. Graph depicting means and SD’s for gene expression for myostatin at 72 

h compared to the 0 h control. RES decreased myostatin in LOW and increased in 

NOR. Significant difference (p < 0.05) is denoted using *. 
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observed following fisher comparisons, Fig 6.10.). However, there was no 

significant difference between these two conditions at 72 h (LOW vs. NOR: 

0.58 ± 0.11 vs. 0.63 ± 0.20, p = 1.000). Additionally, there were no 

significance differences present at 72 h when SIRT1 was activated or 

inhibited in either of the two glucose conditions investigated.  

 

Similarly to MuRF1, MAFbx also displayed a significant main effect for 

time (F(1, 35) = 34.05, p < 0.001). Compared to 0 h there was no significant 

reduction present when the glucose concentration was reduced at the 72 h 
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Fig. A1.19. Graph depicting means and SD’s for gene expression for MuRF1 at 72 h 

compared to the 0 h control, in which the 0 h control possessed a higher gene 

expresseion than all other experiemental conditions. Significant difference (p < 0.05) is 

denoted using *. 

 

Significant difference (p < 0.05) is denoted using a *. 
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(LOW vs. 0 h: 0.92 ± 0.20 vs. 1.01 ± 0.19, p = 1.000, Fig. 6.20). Under 

NOR conditions there was a significant reduction in MAFbx compared to 0 

h (0 h vs. NOR: 1.01 ± 0.19 vs. 0.69 ± 0.06, p = 0.006 (fisher)). 

Additionally, at 72 h there was a significant increase present in LOW vs. 

NOR glucose conditions (NOR vs. LOW: 0.69 ± 0.06 vs. 0.92 ± 0.20, p = 

0.044 (fisher)). The addition of RES or EX-527 had no effect on the NOR 

glucose conditions (NOR vs. NOR RES: 0.69 ± 0.06 vs. 0.72 ± 0.07, p = 

1.000, NOR vs. NOR EX-527: 0.69 ± 0.06 vs. 0.70 ± 0.02, p = 1.000). EX-

527 also had no effect on MAFbx gene expression in the LOW glucose 

conditions at 72 h (LOW vs. LOW EX-527: 0.92 ± 0.20 vs. 0.81 ± 0.13, p = 

1.000). There was however an average reduction in MuRF1 when RES 

was administered to LOW glucose condition (LOW vs. LOW RES: 0.92 ± 

0.20 vs. 0.71 ± 0.08, p = 0.064 (fisher)), despite no increase in myotube 

number or area in this condition.  
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MUSA1 increases in expression following denervation induced muscle 

atrophy where knockdown can attenuate the loss of muscle mass (Milan et 

al., 2015). A significant main effect was present for glucose (F(2, 35) = 9.13, 

p = 0.005) and time (F(1, 35) = 21.79, p < 0.001), as well as a significant 

interaction between these factors (F(2, 35) = 9.13, p = 0.005). In low glucose 

conditions LOW glucose expression of MUSA1 was significantly higher 

than the NOR glucose condition (LOW vs. NOR: 1.09 ± 0.16 vs. 0.74 ± 

0.05, p = 0.013). NOR glucose remains unchanged when SIRT1 was 

activated or inhibited (NOR vs. NOR RES: 0.74 ± 0.05 vs. 0.71 ± 0.10, p = 

1.000, NOR vs. NOR EX-527: 0.74 ± 0.05 vs. 0.74 ± 0.03, p = 1.000). The 

NOR LOW LOW RES LOW EX-527 NOR NOR RES NOR EX-527
0.0

0.5

1.0

1.5

M
a

fb
x
 Δ
Δ

C
T

 e
x
p

re
s
s
io

n
 v

a
lu

e

0 h 72 h

*
p = 0.064

*
*

*
*

*

Fig. A1.20. Graph depicting means and SD’s for gene expression for Mafbx at 72 h 

compared to the 0 h control. LOW glucose produced significantly higher expression of 

Mafbx in comparison to NOR, this was reduced following RES supplementation. 

Significant difference (p < 0.05) is denoted using a *. p values approaching 

significance are displayed. 
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increase in MUSA1 expression experienced under LOW glucose 

conditions alone was reduced following treatment with RES (LOW vs. 

LOW RES: 1.09 ± 0.16 vs. 0.77 ± 0.21, p = 0.023 (fisher)). However, these 

reductions were also observed with the SIRT1 Inhibitor, EX-527 (LOW vs. 

LOW EX-527: 1.09 ± 0.16 vs. 0.86 ± 0.28, p = 0.006 (fisher)).  

 

Fig. A1.21. Graph depicting means and SD’s for gene expression for MUSA1 at 72 h 

compared to the 0 h control. Decreases in LOW glucose following both RES and EX-

527 supplementation. Significant difference (p < 0.05) is denoted using  *. 
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SIRT1 expression did not possess any significant main or interactional 

effects. Unlike myoblasts studies (where there were increases in SIRT1 in 

low glucose conditions) but there were no significant pairwise comparisons 

between any experimental conditions for SIRT1 gene expression (Figure 

6.22). 
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Fig. A1.22. Graph depicting means and SD’s for gene expression forSIRT1 at 72 h 

compared to the 0 h control, in which no significant difference was observed.  

 

 


