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Abstract— Nitrate is a common pollutant in surface waters 

which water companies must monitor for regulatory and safety 

reasons. The presence of nitrate in deionised water is detected and 

concentration estimated from microwave spectroscopy 

measurements in the range 9kHz-6GHz. Experimental results 

were obtained for 19 solutions (18 salt solutions in deionised water 

and 1 deionised water),  each measured 10 times with 4001 points 

(total N=190). The resulting data was randomly assigned into 

equal parts training and test data (N=95 each). Both regression 

(for the estimation of nitrate concentration) and classification (for 

detecting the presence of nitrate) methods were considered, with a 

rigorous feature selection procedure used to identify two 

frequencies for each of the classification and regression problems. 

For detection classification models were applied with nitrate 

levels binned using 30mg/l as the threshold. A logistic regression 

model achieved AUROC of 0.9875 on test data and a multi-layer 

perceptron achieved AUROC of 0.9871. In each case the positive 

predictive value of the model could be optimised at 100% with 

sensitivity of 90% and specificity of 100%. For the concentration 

estimates, a linear regression model was able to explain 42% of the 

variance in the training data and 45% of the variance in the test 

data and an MLP model delivered similar performance, 

explaining 43% of variance in the training data and 47% of 

variance in the test data. A sensor based on this model would be 

appropriate for detecting the presence of nitrate above a given 

threshold but poor at estimating concentration. 

Index Terms—Microwave sensors, water pollution, machine 

learning, feature selection 

 

I. INTRODUCTION 

ITRATE is an inorganic anion of nitrogen, anthropogenic 

sources of reactive nitrogen (particularly from agriculture) 

have increased considerably since the 1950s and exceed 

that produced by natural sources, fundamentally altering the 

nitrogen cycle [1]. While the use of reactive nitrogen as 

fertiliser plays an important role in food production, careful 

monitoring and removal of these contaminants from the 

environment is vital. Alongside other nitrogen ions, nitrate 

pollution contributes to eutrophication of surface waters [1, 2], 

posing a threat to biodiversity in aquatic environments, and 

high concentrations of nitrate in drinking water supplies can 

cause acute toxic effects in human beings, notably 

Methemoglobinemia in infants (also known as “blue baby 

syndrome”) [1]. Ingested nitrate may contribute to some 

cancers and reproductive harms [3]; a 2010 IARC monograph 

classified ingested nitrate under certain conditions “probably 

carcinogenic to humans” (IARC class 2A) [4] and a 2015 study 

of 1,087 patients in Spain found that long term exposure to very 

high levels of nitrate in drinking water was associated with 

increased risk of bladder cancer [5]. This paper aims to serve as 

a proof of concept for applying rigorous feature selection 
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methods to the detection of nitrates using an electromagnetic 

wave sensor, testing both the ability of microwave spectroscopy 

to detect the presence and concentration of nitrate ions in simple 

solutions and the ability of information theoretic feature 

selection methods to identify the most useful microwave 

frequencies for this purpose. 

Previous work by our group has investigated the use of 

electromagnetic wave sensors to measure the presence of 

substances in solution, including small ions such as nitrate, 

sulphate [6] and organic pollutants such as the herbicide 

glyphosate [7]. These previous investigations have involved 

identifying peaks in spectra where some visible difference 

exists on average in measurements carried out on solutions of 

varying substance and/or concentration, this paper extends this 

by incorporating feature selection to identify the best possible 

frequencies for discerning concentration of a selected 

substance. 

In the UK nitrates in surface water are regulated by the 

Drinking Water Inspectorate, the relevant legislation is the EU 

Nitrates Directive. While the Nitrates Directive specifies a limit 

of 50 mg/l for surface water, DEFRA have historically tracked 

the percentage of river length with greater than 30 mg/l as an 

indicator, finding that 29% of river length in England was over 

this limit as of 2009 [8], for this reason this 30 mg/l level has 

been used in his paper as a level at which concern might be 

raised. I.e. 30 mg/l represents a point at which nitrate levels are 

sufficiently high that the body responsible for monitoring a 

body of water may wish to investigate further and consider 

appropriate action to prevent nitrates from reaching levels 

dangerous to either human populations or the environment). 

Currently detection of nitrates and other ions in drinking 

water management uses ion sensitive electrodes, this is carried 

out “off-line” and intermittently, an on-line network of sensor 

systems capable of monitoring either the current concentration 

of a contaminant or whether that concentration has crossed 

some critical threshold in surface water bodies in real time 

would allow for better information and faster response to 

problems as and when they occur [9]. Online sensors do 

currently exist on the market, though these are currently not 

used by many water management companies. 

Existing online monitoring systems for nitrates include “wet 

chemistry” systems that require a supply of reagents to run, ion 

sensitive electrode sensors and optical/UV sensors such as the 

Sea-Bird Coastal SUNA V2, which uses UV spectroscopy to 

quantify nitrate levels in the range 0.03-277.90 mg/l NO3
- [10]. 

Optical sensors have a high degree of precision in monitoring 

exact nitrate levels, but can perform poorly in bodies of water 

with high turbidity as visible and UV light cannot pass as easily 

through these media. These systems rely on telemetry stations, 

which are large, expensive pieces of equipment. Demand exists 
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within industry for a cheaper online monitoring system which 

works within a wide range of environments and does not require 

an additional supply of reagents. This study serves as a proof of 

concept for such a sensor grounded in rigorous statistical 

methodology. 

The high dimensionality of spectral measurements runs the 

risk of models overfitting the data unless the dimension of the 

regression space is minimised [11]. Feature selection is the 

elimination of those features in a dataset which are either 

irrelevant or redundant. In addition, features that are strongly 

correlated with each other make it difficult to identify a 

consistent minimal subset even using linear statistical models. 

For electromagnetic spectroscopy, feature selection is essential 

to the identification of a minimum set of frequencies at which 

S measurements can be used to make predictions about a 

variable of interest [12]. In this paper we describe the 

application of feature selection to microwave spectra and show 

the predictive value that can be obtained for making a smart 

measurement with these sensors. Identifying the appropriate 

minimum subset of frequencies can then inform the 

development of a smaller, more specific sensor in future 

applications. 

II. MATERIALS AND METHODS 

The experimental data comprises 19 solutions (18 of a salt in 

deionised water and one of pure deionised water) prepared in 

15ml plastic centrifuge tubes in the formulations listed in table 

1. Each sample was placed in a cylindrical aluminium cavity 

with internal radius 17mm and depth 110mm attached to a 

Rohde & Schwarz ZVL vector network analyser (VNA) and 

electromagnetic (microwave range) spectroscopy readings in 

the range 9kHz to 6GHz with 4001 points were carried out, 

similar to the experimental set up in [6]. For each solution, 10 

measurements were taken, each of which is treated as an 

independent sample for the purposes of this paper due to the 

variation in magnitude across multiple readings on the same 

solution. 

The measurement of interest is the concentration of nitrate ions, 

with the pure deionised water and sodium chloride solutions 

serving as controls with 0 mg/l of nitrate. The inclusion of the 

sodium chloride solutions allows for a greater degree of 

confidence that results are specific to nitrate levels. 

The microwave absorption spectrum was calculated by 

taking the S12 magnitude (difference between signal transmitted 

at port 1 and received at port 2) readings for each solution were 

imported into a 190 × 4001 data matrix in Matlab 2016a, 

which was used for all statistical work in this paper, the 

multilayer perceptron classifier model was produced using the 

Netlab toolbox [13]. 

A. Statistical analysis 

Statistical modelling was carried out using both linear and non-

linear methods, with both classification and regression to 

implement detection and calibration, respectively. The 

threshold for detection was taken to be a concentration of NO3
- 

greater than 30 mg/l. Data was randomly assigned to training 

and test groups (N=95 for both groups). Regression models will 

be compared using percentage of variance explained in the test 

data (calculated as Pearson’s r squared between target and fitted 

value), classification models will be compared using the ROC 

framework. The models to be used are shown in table 2. 

 
In order to select the features which provide the greatest 

predictive power for nitrate concentration, a feature selection 

based on pairwise χ2 tests and G tests for conditional 

independence was used, with stepwise forward search (SFS). 

Stepwise forward search does not test all possible models, 

instead aiming simply to optimise the objective function at each 

step of the process [11]. This is appropriate for spectral data as 

the total size of the hypothesis space for multiple tests of 

dependence vs. independence of each feature with a variable of 

interest, given 4001 features is of size 24001 ≈ 2.6 × 101204. 

The feature selection algorithm starts with an empty set of 

features and, at each stage, adds the feature most strongly 

associated with nitrate concentration (based on mutual 

information), only adding a feature if at least one of the 

remaining candidate features is significantly associated with 

nitrate given the features already included in the model, this 

process is summarised below: 

1. Let T be the concentration of nitrate, F be the set of 

all candidate features and F' be the set of features 

included in the model. 

2. For i=1:len(F): 

a. Test 𝑇 ⊥ 𝐹𝑖 using a 𝜒2 test for pairwise 

independence and calculate the pointwise 

mutual information, 𝐼(𝑇; 𝐹𝑖) 

b. If 𝑇 ⊥ 𝐹𝑖, remove 𝐹𝑖 from F 

3. Append the feature with the greatest mutual 

information to F' and remove it from F 

4. While F≠∅: 

a. For i=1:len(F): 

TABLE I 

CONCENTRATION OF IONS IN SALT SOLUTIONS 

SOLUTION 
NA

+
 

(MG/L) 

K+
 

(MG/L) 

NO3
-
 

(MG/L) 

CL
-
 

(MG/L) 

Deionised water 0.0000 0.0000 0.0000 0.0000 
20 mg/l NaNO3 5.4099 0.0000 14.5901 0.0000 

40 mg/l NaNO3 10.8197 0.0000 29.1803 0.0000 

60 mg/l NaNO3 16.2296 0.0000 43.7704 0.0000 
80 mg/l NaNO3 21.6395 0.0000 58.3605 0.0000 

100 mg/l NaNO3 27.0493 0.0000 72.9507 0.0000 

120 mg/l NaNO3 32.4592 0.0000 87.5408 0.0000 
20 mg/l NaCl 7.8678 0.0000 0.0000 12.1322 

40 mg/l NaCl 15.7357 0.0000 0.0000 24.2643 

60 mg/l NaCl 23.6035 0.0000 0.0000 36.3965 
80 mg/l NaCl 31.4713 0.0000 0.0000 48.5287 

100 mg/l NaCl 39.3392 0.0000 0.0000 60.6608 

120 mg/l NaCl 47.2070 0.0000 0.0000 72.7930 
20 mg/l KNO3 0.0000 7.7345 12.2655 0.0000 

40 mg/l KNO3 0.0000 15.4689 24.5311 0.0000 

60 mg/l KNO3 0.0000 23.2034 36.7966 0.0000 
80 mg/l KNO3 0.0000 30.9379 49.0621 0.0000 

100 mg/l KNO3 0.0000 38.6724 61.3276 0.0000 

120 mg/l KNO3 0.0000 46.4068 73.5932 0.0000 

 

 

TABLE II 
STATISTICAL MODELS USED BY TYPE 

 REGRESSION CLASSIFICATION 

Linear Least squares linear 

regression 

Model: Binary logistic 

regression 

Non-linear Model: MLP for 
regression 

Model: MLP for 
classification (Sigmoid) 
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i. Test 𝑇 ⊥ 𝐹𝑖  |𝐹′ using a G test and 

calculate the conditional mutual 

information 𝐼(𝑇; 𝐹𝑖  |𝐹
′) 

b. If 𝑇 ⊥ 𝐹𝑖  |𝐹′ remove 𝐹𝑖 from F 

c. Append the feature with the greatest mutual 

information to F' and remove it from F 

 

Due to the large number of comparisons being made at each 

stage of this process, there is a risk of inflating the false positive 

rate, this was controlled using q-values as described by [14]. 

For each iteration through the set of candidate features in step 2 

or 4, q-values were calculated and an association was 

considered to be significant if the corresponding q-value was 

less than or equal to 0.05. 

III. RESULTS 

A. Classification 

SFS (with S12 features binned by tercile and nitrate binned by 

above or below 30 mg/l for the 𝜒2 and G tests) identified 2 

frequencies at approximately 4.1GHz and 4.6GHz at which S12 

distinguished between those solutions in class 0 (less than 30 

mg/l of NO3
-) and class 1 (at least 30 mg/l of NO3

-), summarized 

in table 3. 

 
Figure 1 shows spectra plots for four of the solutions used; 

deionised water, NaNO3 120mg/l, KNO3 120mg/l and NaCl 

120mg/l. In the normalised plot, clear separation between the 

nitrate containing solutions and the control solutions is visible 

at the two selected features. Greater absorption at 4.1GHz is 

associated with greater probability of higher nitrate levels and 

greater absorption at 4.6GHz associated is with lower nitrate 

levels. 

The logistic regression and multi-layer perceptron models 

both perform well in separating the two classes, achieving 

AUROC of 0.9875 and 0.9871 respectively on the test data. 

Both models achieved 96% classification accuracy where a 

threshold is selected to maximise the positive predictive value 

(PPV); where 0.5 is used as the threshold for classification, the 

logistic regression model achieves 94% accuracy and the MLP 

achieves 89% accuracy. Further detail on the results and the 

decision boundaries given by the two models is given in the 

following subsections. The very similar performance, selected 

thresholds and decision boundaries produced suggest that using 

a non-linear method adds very little predictive power for this 

data and a logistic regression model would be more appropriate 

as a result.  

 

 
1) Logistic regression 

A logistic regression model was fitted to the training data, the 

model is outlined in table 4. 

 
 

Figure 2 shows the receiver operating characteristic (ROC) 

curves for predictions on both the training and test data using 

the logistic regression model and figure 3 shows scatter plots of 

the selected features on the training and test data with decision 

boundaries given by the logistic regression model. 

TABLE III 
SELECTED FEATURES FOR CLASSIFICATION 

FEATURE 

(S12 AT GIVEN 

FREQUENCY) 

PAIRWISE 

SIGNIFICANCE 

(𝜒2) 

PMI 

SIGNIFICANCE 

GIVEN OTHER 

FREQUENCY (G) 

CMI 

4,147,502,848Hz * 0.6943 * 0.2502 

4,558,502,400Hz * 0.6943 * 0.2502 

*p<0.0001 

 

 

 
Fig. 1.  Spectra plots at selected ranges. Shows average spectra plots for 

deionized water and the 120mg/l solutions of each substance both as actual S12 

magnitude and normalized between 4.1 and 4.6 GHz. 

TABLE IV 
LOGISTIC REGRESSION MODEL 

TERM BETA SIGNIFICANCE 

Constant -1135.6523 0.4459 

S12@4147502848Hz -183.3223 0.0162 

S12@4558502400Hz 143.8818 0.0053 
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For the test data, three classification thresholds were 

considered – the highest threshold which provided 100% 

sensitivity or recall (0.027), 0.5 and the point on the empirical 

ROC curve for the test data with the smallest Euclidean distance 

from the point [1,0] i.e. the threshold which provides an optimal 

compromise between sensitivity and false positive rate (0.622). 

The relevant parameters are summarised in table 5. 

Maximum positive predictive value, specificity and overall 

accuracy are obtained for a threshold of 0.622 improves 

accuracy, specificity, positive predictive value (PPV) and 

negative predictive value (NPV) without sacrificing sensitivity 

relative to a threshold of 0.500. This is our selected point on the 

ROC curve. 

 

 

 
 

2) Multi-layer Perceptron 

The multi-layer perceptron model (produced in Netlab) used 

cross entropy as its objective function, using a quasi-Newton 

optimisation algorithm with 20 hidden nodes and a prior weight 

decay of 0.001. 

Table 6 summarises the results for the MLP model on the test 

data (again using the highest threshold with 100% sensitivity, 

the threshold closest to [0,1] on the ROC curve and 0.5) and 

figure 4 shows the ROC curves provided by the MLP on the 

training and test data. As with the logistic regression model, 

classification performance was high, with the best performing 

threshold providing 96% accuracy and the 0.5 threshold 

providing 89% accuracy. Figure 5 shows scatterplots on the 

selected features for training and test data with the decision 

boundaries given by the MLP. 

 

TABLE V 
ROC PARAMETERS AT THREE THRESHOLDS – LOGISTIC REGRESSION 

THRESHOLD 0.027 0.500 0.622 

# True Positive 38 34 34 
# False positive 9 2 0 

# True negative 48 55 57 

# False negative 0 4 4 
Accuracy 90.53% 93.68% 95.79% 

Sensitivity 100.00% 89.47% 89.47% 

Specificity 84.21% 96.49% 100.00% 
PPV 80.85% 94.44% 100.00% 

NPV 100.00% 93.22% 93.44% 

 

 

 

 
Fig. 2.  ROC curves for logistic regression models. Classification performance 
is high for both training and test data. AUROC was 0.9973 for the training data 

and 0.9875 for the test data. 

 

 
Fig. 3.  Scatter plots with logistic regression decision boundaries. Contour 

lines show the predicted posterior probability for the logistic regression model. 
The two classes are linearly separable on the selected frequencies with a high 

level of accuracy. 
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B. Regression models 

For the regression models, both S12 measurements and nitrate 

concentration were binned by terciles of the training data for 

SFS and two useful frequencies at approximately 2.4GHz and 

4.5GHz were identified, S12 at these frequencies was used to fit 

a least squares linear regression model and a multi-layer 

perceptron model. Figure 6 shows scatter plots of the two 

selected features vs. nitrate concentration in the training data 

only. 

 
The performance of both the linear and MLP models was 

similar, Figure 7 shows the surfaces produced by the MLP and 

linear regression models over the domain of the selected 

features. 

 

TABLE VI 
ROC PARAMETERS AT THREE THRESHOLDS – MULTI-LAYER PERCEPTRON 

THRESHOLD 0.024 0.500 0.601 

# True Positive 38 34 34 
# False positive 10 3 0 

# True negative 47 54 57 

# False negative 0 4 4 
Accuracy 89.47% 92.63% 95.79% 

Sensitivity 100.00% 89.47% 89.47% 

Specificity 82.46% 94.74% 100.00% 
PPV 79.17% 91.89% 100.00% 

NPV 100.00% 93.10% 93.44% 

 

 

 

 
Fig. 4.  ROC curves for multi-layer perceptron models. Classification 

performance is high for MLP models. AUROC is 0.9975 for the training data 

and 0.9871 for the test data. 

 

 
Fig. 5.  Scatter plots with MLP decision boundaries. Contour lines show the 

predicted posterior probability for the multi-layer perceptron model. The 

resulting model is nearly indistinguishable from that produced by linear 

methods. 

TABLE VII 
SELECTED FEATURES FOR REGRESSION 

FEATURE 

(S12 AT GIVEN 

FREQUENCY) 

PAIRWISE 

SIGNIFICANCE 

(𝜒2) 

PMI 

SIGNIFICANCE 

GIVEN OTHER 

FREQUENCY (G) 

CMI 

2,389,505,536Hz * 0.4842 * 0.5618 

4,495,502,336Hz * 0.2653 * 0.3430 

*p<0.0001 
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1) Least Squares Linear Regression 

The linear regression model using the two selected features is 

summarised in table 8. For both features, greater absorption is 

associated with higher nitrate concentration. The model 

performed better than chance, but only explained 42% of the 

variance in nitrate concentration in the training data and 45% of 

the variance in the nitrate concentration in the test data. Figure 

8 shows the performance of the linear regression model on both 

test and training data. 

 
 

 

TABLE VIII 
LINEAR REGRESSION MODEL 

TERM 

(S12@) 
COEFFICIENT 

STD. ERR OF 

COEFFICIENT 
SIGNIFICANCE 

Constant 8228.5000 1717.3000 * 

2389505536Hz 82.2910 13.8420 * 

4495502336Hz 417.4500 119.0300 0.0007 
 

*p<0.0001 

• Number of observations: 95, Error degrees of freedom: 92 
• Root Mean Squared Error: 22.2 

• R-squared: 0.416, adjusted R-Squared 0.403 

• F-statistic vs. constant model: 32.8, p-value = 1.78× 10−11 

 

 
Fig. 6.  Scatter plots of S12 at the selected frequencies vs. nitrate concentration. 

 
Fig. 7.  Surfaces produced by the two regression models. Shows the surface fitted across the domain of the selected features for the linear regression (left) and MLP 

(right) models. Both show a generally monotonic relationship between the selected features and nitrate concentration, though there is some curvature to the MLP. 
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2) Multi-layer perceptron 

For the MLP, the selected features were first normalised using 

a Z transform, the parameters used were: 

 Number of hidden nodes: 20 

 Learning rate: 0.001 

 Momentum: 0.100 

 Weight decay: 0.005 

 Maximum number of epochs: 50,000 

The model explained 43% of the variance in nitrate 

concentration for the training data and 47% of the variance in 

nitrate concentration for the test data. Figure 9 shows the 

performance of the multi-layer perceptron for both training and 

test data. 

 

IV. DISCUSSION 

We propose a novel feature selection methodology to identify 

a minimal set of predictive measurements for the detection and 

estimation of nitrate concentration in deionised water from 

microwave absorption spectra. This methodology can 

contribute to narrowing down the range of investigated 

frequencies for future experiments and for the identification of 

frequencies at which measurements could be made using a 

smaller, less expensive device in future practical applications. 

It appears to be relatively straightforward to identify a small 

number of frequencies to accurately classify the samples on the 

chosen concentration threshold of 30mg/l. The calibration task 

is more challenging, with a high level of noise in the data 

making precise measurements difficult and accuracy poor in 

comparison to existing ion selective electrode and optical 

sensor technology. 

Using non-linear methods does not seem to improve 

performance for these data to any great extent. Both the linear 

(logistic regression) and non-linear (MLP) classification 

models achieved 96% accuracy at their optimum threshold, the 

improvement in performance from using an MLP is very small. 

 

 
Fig. 8.  Scatter plot of fitted value from linear regression vs. Nitrate 

concentration. 

 

 
Fig. 9.  Scatter plot of fitted value from multi-layer perceptron vs. Nitrate 

concentration. 

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JSEN.2017.2705281

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



This is likely a result of the simplicity of the samples considered 

(each of the salt solutions contained only a single solute). More 

complex, real world solutions (such as samples from raw river 

water) may require the use of non-linear methods as some 

contaminants may have similar effects on the same part of the 

EM spectrum, this is outside of the scope of this paper as an 

early proof of concept, but will inform future work from our 

group. 
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