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ABSTRACT

Context. There is a considerable deficiency in the number of known supernova remnants (SNRs) in the Galaxy com-
pared to that expected. This deficiency is thought to be caused by a lack of sensitive radio continuum data. Searches
for extended low-surface brightness radio sources may find new Galactic SNRs, but confusion with the much larger
population of HII regions makes identifying such features challenging. SNRs can, however, be separated from HII
regions using their significantly lower mid-infrared (MIR) to radio continuum intensity ratios.

Aims. Our goal is to find missing SNR candidates in the Galactic disk by locating extended radio continuum sources
that lack MIR counterparts.

Methods. We use the combination of high-resolution 1-2 GHz continuum data from The HI, OH, Recombination line
survey of the Milky Way (THOR) and lower-resolution VLA 1.4 GHz Galactic Plane Survey (VGPS) continuum data,
together with MIR data from the Spitzer GLIMPSE, Spitzer MIPSGAL, and WISE surveys to identify SNR candidates.
To ensure that the candidates are not being confused with HII regions, we exclude radio continuum sources from the
WISE Catalog of Galactic HII Regions, which contains all known and candidate HII regions in the Galaxy.

Results. We locate 76 new Galactic SNR candidates in the THOR and VGPS combined survey area of 67.4° > ¢ > 17.5°,
|b] < 1.25° and measure the radio flux density for 52 previously-known SNRs. The candidate SNRs have a similar
spatial distribution to the known SNRs, although we note a large number of new candidates near £ ~ 30°, the tan-
gent point of the Scutum spiral arm. The candidates are on average smaller in angle compared to the known regions,
6.4" +£4.7" versus 11.0°' & 7.8’, and have lower integrated flux densities.

Conclusions. The THOR survey shows that sensitive radio continuum data can discover a large number of SNR, candi-
dates, and that these candidates can be efficiently identified using the combination of radio and MIR data. If the 76
candidates are confirmed as true SNRs, for example using radio polarization measurements or by deriving radio spectral
indices, this would more than double the number of known Galactic SNRs in the survey area. This large increase would
still, however, leave a discrepancy between the known and expected SNR populations of about a factor of two.

Key words. HII regions — supernova remnants — methods: aperture photometry — radio continuum: ISM

1. Introduction

There is a severe discrepancy in the number of detected su-
pernova remnants (SNRs) in the Galaxy compared to that
expected. The most authoritative recent compilation con-
tains just 294 SNRs (Green, [2014} hereafter G14), but based
on OB star counts, pulsar birth rates, Fe abundances, and
the SN rate in other Local Group galaxies, there should be
2 1000 (Li et al., |1991; Tammann et all|{1994). These esti-

mates derive in part from studies of similar external galax-
ies, scaled to the Milky Way based on its luminosity. The
discrepancy may not be due to a true deficiency of Galactic
SNRs, but rather may hint at observational problems re-
lated to lack of sensitivity and confusion in the Galactic
plane (e.g., Brogan et al., 2006, hereafter B0G6).

The Galactic supernova (SN) rate is an important pa-
rameter for understanding the properties and dynamics
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of our Galaxy. Most SN arise from the core collapse of
massive stars (cf. Tammann et al| [1994)), and therefore
the number of SNRs in the Galaxy is tied to recent mas-
sive star formation activity. SN inject energy into the in-
terstellar medium (ISM), driving molecular cloud turbu-
lence and galactic fountains out of the disk (de Avillez &
Breitschwerdt), 2005} |Joung et al.| |2009; [Padoan et al., |2016;
Girichidis et al., [2016). This feedback can determine the
disk scale height and star formation properties of a galaxy
(Ostriker et all 2010; |Ostriker & Shetty} [2011; |Faucher-
Giguere et al. 2013]). The search for new Galactic SNRs is
therefore important for understanding the global properties
of the Milky Way.

SNRs are frequently identified at radio wavelengths.
According to the G14 catalog, ~ 90% of known SNRs are
detected and well-defined in the radio regime, ~ 40% de-
tected in X-rays, and ~ 30% in the optical. The radio emis-
sion is due to synchrotron radiation, which dominates the
Galaxy’s low-frequency radio emission. The most common
radio morphology in the G14 catalog is that of a shell, or a
partial shell.

Since many types of objects emit radio emission sim-
ilar to that of known SNRs, additional criteria are used
to determine if a radio continuum source is a true SNR.
These criteria are: 1) the radio spectrum of candidate has
a negative spectral index (typically ~ —0.5), 2) the radio
emission from the candidate is polarized, 3) the candidate
has associated X-ray or cosmic ray emission, and/or 4) the
candidate has a mid-infrared (MIR) to radio continuum flux
ratio much lower than that commonly found for thermally-
emitting plasmas. The first two criteria can distinguish
between thermal (flat spectrum, unpolarized) and non-
thermal (negative spectral index, polarized) radio emis-
sion. The third criterion is sensitive to high-temperature
(~ 107 K) plasma within SNRs that is rarely detected in
HII regions. The fourth criterion has characteristics of the
other three, in that it can also distinguish between ther-
mal and non-thermal emitters. The MIR emission from
dust arises from the interaction of the SN shock wave with
the ISM during the initial expansion phases (e.g., Douvion
et all [2001). Other non-thermal radio continuum sources
such as active galactic nuclei can be excluded from SNR
searches due to their small angular sizes.

Many researchers have shown that SNRs are deficient
in MIR emission compared to HII regions (e.g., |(Cohen &
Green, 2001; Pinheiro Gongalves et al., 2011)). For SNRs to
produce MIR emission, they must be sufficiently dense to
produce collisional heating (Williams et al., 2006]). [Pinheiro
Gongalves et al| (2011) found that a typical 24 um to
1.4 GHz flux density ratio for SNRs is ~ 5, although they
found flux density ratios ranging from 0.5 to 10. This low
MIR to radio flux ratio holds even for young regions like
Cas A, despite their strong MIR emission (see |Rho et al.,
2008)). Due to its powerful discriminatory power and rel-
ative ease of use, the MIR to radio flux ratio is of most
interest here.

SNR candidates can be identified efficiently in radio con-
tinuum surveys using their low MIR to radio continuum
flux ratios. While there is some faint associated MIR emis-
sion detected for some SNRs (Reach et al.| 2006 [Pinheiro
Gongalves et al|2011)), this emission is quite weak. At radio
frequencies high enough that H II regions are optically thin,
2 1 GHz, the MIR to radio flux ratio for SNRs is about 100
times lower than that of HII regions. [Helfand et al.| (2006)),

hereafter HO6, used the lack of MIR emission as one crite-
rion to identify 49 new SNR candidates in The Multi-Array
Galactic Plane Imaging Survey (MAGPIS) 20 cm data. B06
also used this criterion to identify 35 SNR candidates in
their VLA data. Recently, Green et al.|(2014) used the anti-
correlation between radio and 8 ym emission to identify 23
new SNR candidates from Molonglo Galactic Plane Survey
(MGPS) data.

These previous studies have first identified promising ra-
dio continuum candidates, and then examined their 8.0 pm
emission to determine their classifications. This method,
however, has an inherent bias toward objects that look like
SNRs, i.e. shell-type structures, at the expense of other pos-
sible SNR morphologies. A better method is to first identify
all HII regions from their MIR morphologies and high MIR
to radio continuum flux density ratios, and to then locate
radio continuum sources not associated with the HII re-
gions. This removes the confusion from HII regions in the
Galactic plane, which is a major difficulty in new SNR iden-
tifications given their potentially similar radio morpholo-
gies and the much higher spatial density of HII regions.
By excluding HII regions, one can search for non-thermal
emission features without imposing any source morphology
bias.

Here, we identify extended sources of emission in ra-
dio continuum data from The HI, OH, Recombination line
survey of the Milky Way (THOR; [Beuther et al., 2016)
combined with the 1.4 GHz radio continuum data from the
VLA Galactic Plane Survey (VGPS [Stil et al., [2006)). In
the identification process, we first use the WISE Catalog
of Galactic HII Regions (Anderson et al., [2014)) to sepa-
rate thermal and non-thermal extended emission. Compact
sources of radio continuum emission detected by THOR
are analyzed in Bihr et al.| (2016)) and Wang et al. (2017, in
prep.). We focus instead on diffuse, resolved sources that are
“discrete,” i.e. distinct from the diffuse background emis-
sion that pervades the Galactic disk.

2. Data
2.1. THOR

THOR is a ~ 20cm VLA survey of HI, OH, radio re-
combination line, and radio continuum emission in the
Galactic plane from 67.4° > ¢ > 14.5°, |b| < 1.25° It
was conducted in VLA C-configuration, with a resolution
of ~ 20”. More survey details are given in [Beuther et al.
(2016). When the THOR continuum data are combined
with 20cm VGPS continuum data, taken with the VLA
in D-configuration at a resolution of 60” and data taken
with the 100 m Effelsberg telescope at a resolution of 9’, the
resulting data product is the most sensitive radio contin-
uum Galactic plane survey in existence covering both large
and small spatial scales. We call this combined data set
“THOR+VGPS.” The THOR+VGPS data have an angu-
lar resolution of 25" because of smoothing we apply to the
THOR data (see Beuther et al., 2016]). Due to the coverage
of the VGPS, the THOR+VGPS data set is restricted to
£ > 17.5°, so our final longitude range is 67.4° > £ > 17.5°.

To detect low surface brightness SNRs, the radio ob-
servations must be sensitive to large, extended structures.
To reduce confusion in the Galactic plane, the data should
also have high angular resolution. The sensitivity of the
THOR+VGPS data changes slightly over the extent of the
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survey, but a typical 1o rms value is ~ 1 mJy beam ™! (Bihr
et al. [2016)), or ~ 1 x 10722 Wm~2 Hz ! sr~!. Over scales
greater than that of the VGPS VLA D-configuration data
(~ 15"), the surface brightness sensitivity should approach
that of the Effelsberg single-dish data used in the VGPS,
~ 1x10722Wm~2Hz 'sr~! (Reich & Reich, 1986; Reich
et al.l {1990), although the VLA data do add some noise on
large spatial scales. The low surface brightness noise thresh-
old, together with the sensitivity to small-scale structures,
makes the THOR survey the ideal data set to identify new
SNRs.

2.2. The WISE Catalog of Galactic HIl Regions

The WISE Catalog of Galactic HII Regions (Anderson
et al.l 2014)) is to date the largest, most complete catalog
of HII regions spanning the entire Galaxy. It was created
by searching WISE (Wright et al., |2010) data by-eye for
the characteristic mid-infrared (MIR) signature of HII re-
gions: ~ 20 um emission surrounded by ~ 10 gm emission
(Anderson et al.||2011)). The ~ 20 pm emission is caused by
small stochastically heated dust grains that are mixed with
the HII region plasma, while the ~ 10 pm intensity is dom-
inated by emission from polycyclic aromatic hydrocarbons
(PAHs). All known Galactic HII regions have this charac-
teristic morphology. Planetary nebulae can appear similar,
but they are distinguished by their small sizes and weak far-
infrared fluxes (Anderson et al.,|2012)). The HII region MIR
emission detected by WISE and Spitzer is about two orders
of magnitude more intense than the ~ 20 cm radio contin-
uum emission, and these observatories have sensitivities far
lower than that necessary to detect HII regions across the
entire Galactic disk (Anderson et al.,|2011},2014). This sin-
gle MIR morphological criterion can therefore be used to
identify all Galactic HII regions.

The WISE catalog contains ~ 8000 objects with the
MIR morphology of HII regions, of which ~ 2000 are HII
regions with measured ionized gas velocities (Ha or radio
recombination line, RRL). This includes all known HII re-
gions, indicating that the MIR morphological criterion can
be used to identify all known Galactic HII regions. The re-
maining ~ 6000 sources that lack ionized gas spectroscopic
detections are H IT region candidates, and there are two sub-
classes: ~ 2000 “radio-loud” candidates that have spatially
coincident radio continuum emission and ~ 4000 “radio-
quiet” candidates that do not. Radio continuum emission,
caused by the free-free emission of the ionized gas, makes
the identification of HII regions more secure (e.g., [Haslam
& Osborne, [1987). The distribution of known regions in
the catalog is statistically complete for all HII regions with
ionizing fluxes consistent with single O-stars of all spectral
sub-types (Armentrout et al., 2017, in prep., Mascoop et
al., 2017, in prep.).

2.3. Green Catalog

G14 is the most up-to-date and authoritative catalog of
Galactic SNRs. It currently contains 294 regions compiled
from the literature, and tabulates their spatial coordinates,
their 1 GHz flux densities, spectral indices, and angular
sizes. The catalog sources cover the entire sky, but since
it is not derived from a homogeneous survey, the cata-
log sensitivity varies with Galactic location. |Green| (2004])

suggest that an earlier version of the catalog than that
used here was complete to a radio surface density limit of
1072 Wm 2 Hz 'sr~!. In addition to the surface bright-
ness limit, the catalog appears to be lacking the small an-
gular size SNRs that are expected (Greenl 2015)).

3. Methodology

Our method relies on identifying discrete regions of radio
continuum emission that a) are not associated with HII re-
gions from the WISE catalog and b) lack Spitzer or WISE
MIR. emission. These criteria are somewhat redundant, as
nearly all discrete sources of coincident MIR and radio
continuum emission in the Galactic plane are HII regions
and are included in the WISE catalog. We do not have a
preferred morphology for the regions we identify aside for
avoiding long filamentary radio continuum features that,
based on the morphologies of known SNRs, are not likely
to be SNRs.

To locate new SNR candidates, we search the
THOR+VGPS data by-eye. We first identify all discrete,
extended radio continuum sources that are not associated
with an HII region in the WISE catalog. This initial search
allows us to separate SNR candidates from the much more
numerous population of H II regions. We then search Spitzer
GLIMPSE 8.0 um (Benjamin et al.l 2003 |Churchwell et al.)
2009) and MIPSGAL 24 ym (Carey et al., 2009)) data at the
location of each identified source to ensure that there is no
detectable MIR emission. These MIR surveys have sensi-
tivities sufficient to detect all HII regions across the entire
Galaxy. For the few sources with latitudes outside the range
of the Spitzer surveys, we use WISE 12 and 22 um data
(Wright et al., [2010)). Our process should remove plane-
tary nebulae and any remaining H IT regions not included in
the WISE catalog. The remaining radio continuum sources
are either SNR candidates or known SNRs. By matching
the positions and sizes with the G14 catalog, we determine
which of these sources have been previously identified as
SNRs. We illustrate the identification process in Fig. [T}

For each identified SNR candidate, as well as
all previously-known SNRs, we compute the 1.4 GHz
THOR+VGPS flux density using aperture photometry, fol-
lowing the methodology of |Anderson et al.| (2012). We de-
fine a circular aperture for each source that completely con-
tains its radio continuum emission. For SNR candidates
that have partial-shell morphologies, the circular aperture
follows the curvature of the visible portion of the shell. We
define four background apertures for each source. The back-
ground apertures sample the local background and avoid
discrete continuum sources not associated with the SNR.
We attempt to make the background apertures as large
as possible, and to space them evenly around the source. If
there are large-scale gradients in the background level, how-
ever, we sample these gradients. In complicated fields, we
must define smaller background apertures, but we still aim
to space them evenly around the source. Five SNR candi-
dates are low surface brightness and confused with nearby
regions, and we do not compute their flux densities.

We then compute the source integrated intensity as

4 4

1 1 B;
1:4211-:42([0—]\[8

i=1 *

x NS) Y
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and the source integrated intensity uncertainty as

where the summations are carried out over the four back-
ground apertures, [ is the average integrated source inten-
sity, I; is the integrated source intensity found using one
background aperture, I is integrated source intensity be-
fore background subtraction, B; is the integrated intensity
from one background aperture, Np ; is the number of pixels
within one background aperture, and Ng is the number of
pixels within the source aperture. This method subtracts
the mean intensity of a background aperture from every
pixel in the source aperture. The derived uncertainties ig-
nore the approximately 20% uncertainty in the absolute
intensity calibration of the THOR+VGPS data.

We convert I, which has units of Jybeam™!, to flux
densities in Jy using the THOR+VGPS circular synthe-
sized beam size of 25”. If there are any unrelated contin-
uum sources that fall within the source aperture (typically
extragalactic point sources or HII regions), we manually
remove their flux densities from the source flux density. We
use only the flux density values, rather than intensities, in
subsequent analyses.

There are a couple complications with our method.
First, there are numerous filamentary features in the
Galactic plane observed in radio continuum emission. These
features are frequently located near large massive star
formation complexes. We interpret them as being dense
thermally emitting ionized gas interacting with atomic or
molecular material in the ISM, and do not catalog such
regions as possible SNRs. Another unrelated complication
also arises around massive star formation complexes, where
bright continuum emission produces interferometric arti-
facts that do not have MIR counterparts, and therefore can
be mistaken for SNRs (see Beuther et al., 2016, their Figs. 7
and 8). To reduce the chance of identifying artifacts, we ver-
ify that all identified SNR candidates near large star for-
mation complexes are also detected in the NVSS (Condon
et al., [1998)) or MAGPIS surveys. Due to the higher proba-
bility that a radio continuum feature is thermally emitting
ionized gas or an interferometric artifact, we are conserva-
tive in our identifications around large star formation com-
plexes.

We classify the radio continuum morphology of each
SNR candidate as “shell,” for those with well-defined radio
continuum shells, “filled,” for those lacking an outer shell
but emission filling a roughly circular region, or “compos-
ite” for those that have a shell with a filled interior. For
seven of the smallest regions, the THOR+VGPS resolution
is insufficient to determine their morphological classifica-
tion.

4. Results

We identify 76 new Galactic SNR candidates, and detect
the radio continuum emission from 52 of 53 previously-
known SNRs from the G14 catalog. In our aperture pho-
tometry measurements, we create a circular aperture that
encloses the radio continuum emission of each source and
therefore define the centroid and radius of each region. We
give parameters of the new SNR candidates in Table [T}

which lists the Galactic longitude, Galactic latitude, and
radius, as defined in THOR+4VGPS data, the 1.4 GHz
THORA+VGPS flux density and its uncertainty, the radio
continuum morphological type, and the name from H06 if
the same source was identified there. Seven SNR candidates
are so confused with nearby radio continuum sources that
their flux densities are unreliable; we do not list flux den-
sities for these seven regions. We give the parameters of
the G14 regions in Table 2] which has the same columns
as Table [I] but additionally contains the 1 GHz flux den-
sity and spectral index («) from the G14 catalog. We show
THORA+VGPS and MIR two-color images for example SNR
candidates in Fig. 2] and for all candidates in the Appendix.
We plot the Galactic locations of all known and candidate
SNRs in Fig.

4.1. New SNR Candidates

All 76 SNR candidates have THOR+VGPS 21 cm contin-
uum emission and a deficiency of MIR emission compared
with HII regions. Of the 76 candidates, seven were identi-
fied previously as being possible SNRs in H06, and one was
identified in B06. These works utilized the same MIR deficit
as we use here, but also employed data from multiple radio
frequencies in an effort to determine the spectral indices.
Our identifications therefore provide some additional sup-
port to the object being a true SNR, although this support
is limited due to the similarities between our methodolo-
gies.

THOR includes multiple continuum spectral windows
that in principle allow for the computation of spectral in-
dices. Because the VGPS data only have one continuum
spectral window, however, we cannot compute spectral in-
dices for SNR candidates that require THOR+VGPS data
to be detected. Bihr et al.|(2016) did detect compact emis-
sion toward several smaller SNR candidates in individual
THOR spectral windows in the first half of the THOR sur-
vey, and several more were detected in the second half of
the survey (Y. Wang et al., 2017, in prep.). All candidates
detected in THOR data alone have negative spectral indices
consistent with them being true SNRs.

4.2. G14 SNRs

We confirm the radio emission for 52 G14 SNRs that lie
within the THOR+4VGPS zone, but we did not detect
THOR+VGPS radio emission from G66.0—0.0. This region
was detected in radio continuum emission by |[Sabin et al.
(2013) in the GB6 5 GHz data (Gregory et al.,|{1996). They
note that it was not detected at 20 cm, which we confirm
in the THOR+VGPS data. The nature of this source is
therefore unclear.

The flux densities derived from our aperture photome-
try measurements agree well with those listed in the G14
catalog, as illustrated by Fig. [4] The G14 catalog contains
flux densities at 1 GHz, extrapolated from the values mea-
sured using the derived spectral index, but does not contain
flux density uncertainties. Some 1 GHz flux densities are
marked as being uncertain in the G14 catalog, and these
have especially large discrepancies with the THOR+VGPS
values. That the relationship is so close to 1:1 is evidence
that the THOR+VGPS data are well-calibrated relative to
previous measurements in the literature.
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Table 1 THOR SNR Candidates

Name GLong GLat Radius® S1.4 0S51.4 Type HO06 Name
deg. deg. arcmin. Jy Jy
G17.80—0.02 17.800  —0.020 4.4 0.29 0.19 S
G18.45—0.42 18.450  —0.420 7.6 2.16 1.77 S
G18.53—-0.86 18.530  —0.860 8.6 0.43 0.15 S
G18.76—0.07 18.760  —0.073 0.8 0.26 0.04 7 18.7583—0.0736
G19.75—0.69 19.750  —0.690 13.2 8.06 4.96 F
G19.96—0.33 19.960 —0.330 5.9 0.45 034 C
G20.26—0.86 20.260 —0.860 7.5 1.97 0.74 F
G20.30—-0.06 20.300  —0.060 3.1 0.19 0.14 S
G21.66—0.21 21.660 —0.210 5.1 0.59 0.34 F
G22.324-0.11 22.320 0.110 5.5 0.86 0.77 S 22.3833+0.1000
G23.114-0.19 23.110 0.190 12.1 S
G23.85—-0.18 23.855  —0.180 2.7 0.34 0.08 S
G25.494-0.01 25.490 0.010 7.4 2.19 1.27 S
G26.04—0.42 26.040  —0.420 13.5 cee s C
G26.134-0.13 26.130 0.130 11.3 3.76 7.60 S
G26.534-0.07 26.530 0.070 11.2 5.67 2.75 S
G26.754-0.73 26.750 0.730 5.3 0.53 050 F
G27.064-0.04 27.060 0.040 7.5 4.31 0.67 S 27.1333+0.0333
G27.184-0.30 27.180 0.305 0.9 0.05 0.03 7
G27.24—-0.14 27.240  —0.140 6.1 5.36 1.31 F?
G27.394-0.24 27.390 0.240 2.4 0.16 0.22 F?
G27.4740.25 27.467 0.246 1.7 0.20 0.11 F?
G27.78—0.33 27.780 —0.330 3.7 0.19 0.06 S
G28.2140.02 28.210 0.020 2.5 0.23 0.13 F
G28.22—0.09 28.216  —0.087 1.7 0.06 0.09 F?
G28.334-0.06 28.330 0.060 3.2 0.42 029 F
G28.364-0.21 28.360 0.210 6.4 2.25 1.93 S 28.3750+0.2028
G28.564-0.00 28.564 0.000 1.5 0.89 0.10 S 28.5583—0.0083
G28.644-0.20 28.640 0.200 11.4 5.90 4.79 S 28.5167+0.1333
G28.78—0.44 28.780  —0.436 6.6 1.63 1.69 S 28.7667—0.4250
G28.88+4-0.41 28.880 0.410 8.9 1.97 2.26 S
G28.924-0.26 28.920 0.260 3.2 0.34 0.24 S?
G29.384-0.10 29.380 0.100 5.1 1.52 049 C 29.3667+0.1000
G29.41-0.18 29.410 —0.180 7.5 1.08 1.13 S
G29.924-0.21 29.920 0.210 2.1 0.26 0.11 F
G31.22—0.02 31.220  —0.020 3.1 0.55 0.37 S
G31.444-0.36 31.440 0.360 3.9 0.68 0.37 F?
G31.934-0.16 31.936 0.172 2.4 0.23 0.08 F?
G32.22—-0.21 32.220 —0.210 3.1 0.63 0.16 F
G32.37—-0.51 32.370  —0.510 12.0 cee s S
G32.7340.15 32.730 0.150 2.6 0.17 0.08 F?
G33.62—-0.23 33.620 —0.230 2.7 0.26 0.05 F?
G33.854-0.06 33.848 0.061 0.6 0.02 0.01 7
G34.93—-0.24 34.933  —0.244 8.1 0.77 237 S
G36.66—0.50 36.660  —0.500 8.2 1.29 1.20 S
G36.68—0.14 36.680 —0.140 10.0 2.16 0.58 S
G36.904-0.49 36.902 0.488 3.8 0.50 0.08 F?
G37.62—0.22 37.616  —0.223 1.9 0.41 0.12 F
G37.884-0.32 37.880 0.320 11.4 3.05 4.74 S
G38.174-0.09 38.170 0.090 14.7 cee s S?
G38.62—-0.24 38.620  —0.240 2.5 0.10 0.03 F?
G38.68—0.43 38.680 —0.430 4.3 0.44 0.12 F
G38.72—0.87 38.720  —0.870 8.5 0.70 080 F
G38.83—0.01 38.833 —0.014 0.6 0.01 0.00 7
G39.194-0.52 39.190 0.520 5.5 0.17 0.21 S?
G39.56—0.32 39.560 —0.320 8.5 1.19 1.64 S
G41.95—-0.18 41.950 —0.180 7.0 1.19 0.50 S
G42.624-0.14 42.620 0.140 2.2 0.50 0.05 F
G45.35—0.37 45.350  —0.370 6.3 0.91 0.43 F?
G45.51—-0.03 45.510  —0.030 4.1 1.63 042 F?
G46.18—0.02 46.180  —0.020 5.5 0.47 044 C?
G46.54—0.03 46.540  —0.026 6.2 0.85 0.51 S
G47.154-0.73 47.150 0.730 0.8 0.01 0.00 7
G47.36—0.09 47.360  —0.090 24.6 3.58 283 S
G51.2140.11 51.209 0.113 14.9 24.35 2.10 ?
G52.37-0.70 52.370  —0.700 17.7 5.24 1.75 S
G53.074-0.49 53.070 0.490 1.0 0.06 0.00 7
G53.414-0.03 53.412 0.035 4.6 1.21 0.21 S?
G53.84—0.75 53.840 —0.750 18.7 1.31 3.43 S?
G54.114-0.25 54.110 0.250 7.2 1.46 0.28 C
G56.56—0.75 56.560  —0.750 11.6 0.94 0.61 F
G57.124-0.35 57.120 0.350 14.1 0.60 0.22 C7
G58.70—0.31 58.700  —0.310 4.4 0.16 0.11 F
G59.464-0.83 59.460 0.830 4.5 0.16 0.03 F
G59.68+1.25 59.680 1.250 5.7 0.25 0.09 F?
G67.25—0.36 67.250 —0.360 2.7 0.03 0.01 F?

“The radius of a circle necessary to contain the radio flux from the region. For partial shells, it follows the curvature of the shell.
437 for shell-type, “F” for filled-center, “C” for composite. Question marks (“?”) indicate uncertainty in the classification.
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Fig.1 (Top) Two-color images with GLIMPSE 8.0 um data in cyan and THOR+VGPS 21 cm continuum data in red.
HII regions have 8.0 um emission surrounding the 21 cm emission. Although not shown, MIPSGAL 24 um emission has
a similar morphology as the radio continuum for HII regions, and is essentially absent for SNRs. The candidate SNRs
are enclosed by green circles, known SNRs by red circles, and known or candidate H1II regions by white circles. Dotted
boxes enclose the areas displayed as insets below. These insets show a known HII region that has bright 8.0 um emission
(left; G028.022—00.043), a known SNR (middle; G27.440.0), and an example SNR candidate (right; G26.7540.73). The
HTI region has strong 8.0 um emission surrounding the radio continuum, but the known and candidate SNRs are devoid

of 8.0 pm emission.

Six G14 SNRs appear to be confused with HII regions:
G20.440.1, G21.5-0.1, G23.640.3, G54.1+0.3, G59.8+1.2
and G065.8—0.5. We show THOR+VGPS data, as well as
GLIMPSE 8.0 yum or WISE 12 ym data, for these regions
in Fig. [l These two infrared data sets exhibit the same
morphology for HII regions (Anderson et al) [2012). We
use the WISE data only if the GLIMPSE coverage is not
sufficient. We discuss the individual regions below.

G20.440.1 : The spectral index for G20.440.1 was found
by B06 to be —0.4, but a value of —0.08 4+ 0.09 was de-

rived by |Sun et al.| (2011). Additionally, Pinheiro Gongalves|
et al.[ (2011) measured a high MIR to radio flux ratio con-
sistent with that of HII regions. It is spatially coincident
with WISE HTI region (G020.482+00.167, which has mea-
sured RRL emission from (1989)), providing fur-
ther evidence that the radio emission is thermal. The radio
continuum emission extends to the west of the identified
HII region enclosed by 8.0 um emission. Based on its asso-
ciation with MIR emission, this western extension appears
to also be thermal, possibly resulting from photons leaking
from the HII region (see [Luisi et al, 2016).
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Fig. 2 Example images for select SNR candidates, showing the range of surface brightnesses and morphologies. The left
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THOR+VGPS data alone. Circles in both panels are the same as in Fig. [I, with candidate SNRs are enclosed by green
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Fig. 3 The Galactic distribution of the new candidate (green) and known (red) SNRs. The circles approximate the SNR
sizes, but due to the aspect ratio of the plot, the sizes are only valid along the Galactic longitude axis. The background
is a two-dimensional histogram of the HII region density, with higher densities indicated by darker colors.

G21.5—-0.1 : The radio emission of G21.5—0.1 is en-
tirely spatially coincident with the WISE HII region
G021.560—00.108, and is bordered by GLIMPSE 8.0 ym
emission. The HII region has measured RRL emission
(Anderson et al.l [2015)), which suggests that the radio con-
tinuum emission is thermal. Its morphology and the high
MIR flux further point to this being an HII region. Using

G23.6+0.3 : This source has radio emission along a bright
linear feature. This feature is inside the GLIMPSE 8.0 um
emission, again indicating that the region is an HII region.
This defines a portion of the shell of the WISE HII re-
gion G23.689+00.377, which has measured RRL emission
(Lockman et al) [1996)). Similar to G21.5—0.1,
|Goncalves et al.| (2011) found a high MIR to radio ratio

MIPSGAL 24 ym data, Pinheiro Gongalves et al.| (2011)
also found a high MIR to radio flux ratio for this region
consistent with that of HII regions.

for G21.5—0.1. On this basis they suggested that is an HII
region.
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Table 2 G14 Known SNRs % T T ]
Name GLong GLat Radius® S?, a® 514 051.4 Type® 2 @ Rellable 1 GHz Flux Density e

deg. deg. arcmin.  Jy Jy Jy E 100.0 | o Uncertain 1 GHz Flux Density f
GI7.4-0.1 1750 —0.12 38 04 —07 - -8 a % ]
G18.1-0.1 18.15 —0.17 46 4.6 —05 3.82 0.398 x 1,:; ]
G18.6—0.2 18.62 —0.28 34 14 —04 1.36 0.078 2 % R
G18.8+0.3 (Kes 67) 18.77 0.39 10.3 33 —0.46 23.57 4.26S Ny 10.0F o 3
G18.9—1.1 18.95 —1.07  19.0 37 —0.39 22.75 7.66 C? 5 3 o %8 ]
G19.1+40.2 19.24 026 202 10 —0.5 12.80 13.06 S < . *
G20.0-0.2 19.99 —0.19 73 10 —0.1 10.21 1.41F - } . %
G20.4+40.1¢ S 97 —017 .- S? 2 1o 6 % + <
G21.0-0.4 21.03 —0.47 56 1.1 —06 0.84 0.368S o
G21.5-0.9 21.50 —0.89 1.5 7 varies 6.36 0.03C ! ;
G21.5-0.1¢ - 04 =05 .- oo S & b
G21.6—0.8 21.64 —0.82 8.1 1.4 —0.5? 1.18 0.84S = 0.1L 1 1
G21.8—0.6 (Kes 69) 21.83 -0.53 155 65 —0.56 55.96 7.26S 0.1 1.0 10.0 100.0
G22.7-0.2 22.71 —0.20 16.9 33 —0.6 43.32 7.03S? G14 1 GHz Flux Density (Jy)
G23.3-0.3 (W41) 23.25 —0.34  17.2 70 —0.5 44.04 14.74 8
G23.6+0.34 8? —0.3 .- ... 7
ggi;*gg gigg *ggg }2; 20§ *00;; 2323 3;1 g; Fig.4 THOR+VGPS 1.4 GHz flux densities compared with
G27.440.0 (AC—04.71) 27.39 —0.01 21 6 —068 nss 0a1s G141 GHz flux den51t1e§. Filled circles denote SNRs that
G27.840.6 27.70 0.63 234 30 varies 33.6514.71F have more secure values in the G14 catalog, whereas open
G28.6-0.1 28.61 —0.11 53 37 ? 539 0588  circles are more uncertain (values that have a question mark
(G29.640.1 29.56 0.11 3.3 1.57 —0.57 0.87 0.17S G . i .
G29.7—0.3 (Kes 75) 29.71 —0.24 27 10 —063 676 o0o4c in the G14 catalog). The dotted line shows a 1:1 relation-
G30.7+1.0 30.60 1.00 100 6 —0.4 3.41 1.69S? ship.
G31.5-0.6 31.54 —0.66  10.7 27 7 1.4 3.438S?
G31.9+40.0 (3C391) 31.87 0.02 4.5 25 varies 16.47 1.408
G32.1-0.9 32,13 -0.96  21.5 --- ?  1.96 8.46 C?
G32.440.1 32.42 0.11 4.40.25? ? 094 0268
G32.8-0.1 (Kes 78) 3279 -004 115 117 —0.27 12.09 1.605? he thermal emission. We support the latter interpretation,
G33.2-0.6 33.18 —0.57 9.2 3.5 varies 3.47 1.548 . . ; L .
(G33.6+0.1 (Kes 79) 33.67 0.03 6.7 20 —0.51 11.05 1.90S and associate the radio continuum emission with the WISE
G34.7-0.4 (W44) 34.66 —0.40  19.2 250 —0.37201.8919.12C HII region G053.935+00.228. On its western edge there is
G35.6—0.4 35.59 —0.44 86 9 —05 924 0.17S? o : it
G36.6—0.7 36,59 —0.81 70 1 —077 210 10787 strong.8.0 i GLIMPSE emission, and the radio emission is
G38.7-1.3° 38.70 —1.30  14.3 - 2 ... ... s found interior to this MIR emission. Lockman| (1989) mea-
G39.2-0.3 39.22 —0.32 4.5 18 -0.34 11.54 0.68C  gyred RRL emission from a position on the western edge.
G40.5—0.5 40.52 =051 125 11 —04 803 3.02S o T qol S dicate that the rad .
G41.1-0.3 (3C397) 41.12 —0.31 29 25 -0.5 11.73 0.505 +08eLher; these data indicate that the radio emussion pre-
G41.5+40.4 41.45 0.41 85 17 ? 515 1.23s? viously suggested as being a possible SNR remnant associ-
8332;8; i;'gi _8 g§ 2'3 ng o 5Z 0.96 0.36 g? ated with the G54.1+0.3 pulsar wind nebula (PWN) actu-

. . . 5] . ! —U.0! st A .
G43.3-0.2 (W49B) 4327 -0.19 32 380467 26.64 0.655 ally represents a thermal HII region. Importantly, however,
G45.7-0.4 ( : 45.61 —0.39  10.0 4.2?7 —0.4? 4.28 1.28S  there is diffuse, extended radio emission that has a different
G46.8—0.3 (HC30 46.77 —0.28  10.0 17 —0.54 14.07 0.838 : : i e £t
G49.2—07 (W51) 1917 —0.54 199 1607 —0.97 11541 150057 Mmorphology frorr} the ring structure. This emission is faint,
G54.140.3% .05 —01 .. c? centered approximately on the compact PWN, and has a
G54.4-0.3 (HC40) 54.50 —0.28  25.0 28 —0.5 21.06 5.99S radius of 5. We include it as a candidate SNR.
G55.0+0.3 54.81 —0.09  36.5 0.57 —0.57 14.20 6.13S
G57.24+0.8 (4C21.53)  57.24 0.82 6.7 1.8 —0.62 1.34 0.07S?
G59.540.1 59.59 0.11 9.0 3?7 ? 1.79 0.84S . )
G59.8+1.2¢ . 15 0 ... ... 2 Gb9.8+1.2 : Although G59.841.2 is almost certainly an
G63.741.1 63.78 1.15 48 1.8 —0.24 1.60 0.03F HII region, there is a nearby patch of radio emission that,
? — ? . . .

ggg'ﬁg'g gg'?g 8'3(15 32'41* 0'1555 7006? g'?g g'?g g based on its lack of MIR emission, does appear to be non-
G65.7+1.2 (DA495) 65.72 1.20 9.9 5.1 varies 2.86 0.30F thermal. We identify this non-thermal emission as SNR can-
G65.8-0.5¢ ? .- .- 8 didate G59.6841.25. These two regions are perhaps con-
G66.0+0.0° ? ... ... 8

“The radius of a circle necessary to contain the radio flux from
the region. For partial shells, it follows the curvature of the shell.

Question marks (“?”) indicate that the value in the G14 catalog
is uncertain.

€“S” for shell-type, “F” for filled-center, “C” for composite.
Question marks (“?”) indicate uncertainty in the classification.

9HII region (see text).

¢Not detected in THOR+VGPS continuum data.

G54.1+0.3 : [Lang et al. (2010) noted that the extended
radio emission in the field of G54.14-0.3 is ambiguous: it
could be non-thermal emission associated with the pulsar
wind nebula G54.140.3 (the compact object at the center
of the image shown in Fig. [5)) or could be thermal emission.
They further note that 24 ym MIPSGAL emission has a
similar morphology as the radio loop, hinting that it may

fused in the literature. We suggest that the G59.841.2 ob-
ject is actually the WISE HII region (G059.803+01.228,
which has measured RRL emission (L. Anderson et al.,
2017, in prep.). The region was also listed as having a flat
spectral index by [Sun et al| (2011), who additionally note
that more observations are required to establish its classifi-
cation, in support of it being confused with the nearby HII
regions.

G65.8—0.5 : The case of G65.8—0.5 is especially confusing.
Much of the H-« emission mentioned in [Sabin et al.| (2013)
is associated with the compact WISE H1II region candidate
G065.887—00.605. This region is a candidate because al-
though it has the characteristic MIR and radio continuum
morphology of HII regions, it has not been measured in
RRL or H-a spectroscopic observations. [Sabin et al.| (2013)
show low-frequency radio data with a slightly extended
morphology not present in the THOR+VGPS data. Given
that the low-frequency radio data peak intensity is spatially
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coincident with the HII region, it seems likely that all the
radio emission is thermal.

4.3. HO6 and B06 Mis-identifications

Many SNR candidates identified in the MAGPIS survey
of HO6 are actually HII regions. Additionally, we suggest
that one B06 SNR candidate (G19.13+0.90) is a thermally-
emitting filament. We show the mis-identified MAGPIS re-
gions, as well as G19.1340.90, in Fig. [0}

The 17 mis-identified MAGPIS SNR candidates are:
(G18.2536—0.3083, G19.4611+0.1444, G19.5800—0.2400,
(G19.5917+40.0250, G19.6100—0.1200, G19.6600—0.2200,
G21.641740.0000, G22.7583—0.49171, G22.9917—0.3583,
(G23.5667—0.0333, G24.1803+0.2167, (G25.2222+0.2917,
G29.0667—0.6750, G30.8486+0.1333, (G31.0583+0.4833,
G31.6097+40.3347, and G31.8208—0.1222. All are spatially
coincident with a known HII region from the WISE cata-
log. Of these, G18.254-0.308 was previously mentioned in
Bihr et al. (2016) as being an HII region. One additional
MAGPIS SNR (G29.07784-0.4542) is a known planetary
nebula (PN A66 48).

The source G19.134+0.90 from B06 does not appear to
be a true SNR. B06 classify this object as “class III,” their
lowest certainty of actually being a SNR. It has associated
MIR emission, and its radio morphology is that of a long
filament. Although it does have a spectral index of —0.5
reported in B06, the morphology and MIR emission from
this feature makes its classification as a SNR uncertain.

4.4. Comparison with known SNRs and HII regions

The Galactic longitude distribution of the SNR candidates
shown in the left panel of Fig. [7]is similar to that of the pre-
viously known sample. There are, however, larger numbers
of candidate SNRs near ¢ ~ 30° compared with the G14
population. The long bar ends at £ ~ 30° (Benjamin et al.,
2005), and the giant HII region W43 is at this longitude.
There is also a greater number of star formation regions
at £ ~ 30°, as seen in the WISE HII region distribution in
Figs.[3land[7] The increased number of SNRs here is consis-
tent with the large star formation rate of the W43 region.
Kolmogorov-Smirnov (K-S) tests show that the candidate
SNR, G14 SNR, and HTII region populations are consistent
with originating from the same parent distribution. We use
a K-S probability threshold of 0.01 for this and all subse-
quent calculations.

The discrepancy between the number of SNRs and the
number of HII regions may give some clues about the re-
cent star formation rate. While HII regions primarily trace
younger O-stars, SNRs arise from both O and B-stars. Since
B-stars are on average older than O-stars, SNRs trace an
older stellar population than HII regions. Young massive
star formation regions are thus more likely to have a higher
ratio of HII regions to SNRs. For example, the W49 region
near ¢ = 43° is known to have an age of ~ 1.5Myr (Wu
et all 2016), which is less than the lifetime of the most
massive O-stars. The large number of HII regions here rel-
ative to the SNR population is consistent with this inter-
pretation. There are similar discrepancies near ¢ = 49°,
associated with W51, and ¢ = 25°. It is worth noting that
W51 does host a large, luminous SNR G49.2—0.7, imply-
ing that there were multiple generations of star formation

in the region. In contrast, there is no single large HII region
complex near [ = 25°.

The Galactic latitude distributions in the right panel of
Fig. [7] are similar for the known and candidate SNRs. Both
distributions are peaked near b = 0°, but the candidates
are skewed more toward positive latitudes compared with
the G14 regions. K-S tests show that these differences are
not significant, and the latitude distributions of the two
populations are not statistically different from that of HII
regions from the WISE catalog. Based on the similarity of
the HII region and SNR latitude distributions, there is no
indication that the SNR distribution is missing a significant
number of sources near b = 0° where confusion is greatest.

Our distribution of morphological types is heavily
skewed toward filled-center morphologies compared with
the G14 sample. Of the 52 G14 SNRs in the survey zone,
over 75% (41 of 52) are classified as having a shell morphol-
ogy (including uncertain designations of “S?”; see Table.
About 15% are classified as having composite morphologies
(7 of 52) and ~ 10% are classified as having filled-center
morphologies (4 of 52). About half of the SNR candidates
with morphological classifications (34 of 69) have shell mor-
phologies, whereas about 40% have filled center morpholo-
gies (29 of 69) and about 10% have composite morphologies
(6 of 69). The comparatively high percentage of filled-shell
SNR candidates may be due to our detection method, which
is less biased against a particular morphological type.

As shown in Fig. [§] the candidate SNR angular radius
distribution skews toward lower values compared with the
distribution for known SNRs. This is expected given the
higher resolution THOR+VGPS data compared with pre-
vious radio surveys. The average and standard deviation
of the candidate and known SNR radii are 6.4’ + 4.7’ and
11.0" + 7.8, respectively. The two radius distributions are
however consistent with originating from a single parent
distribution, according to a K-S test. Many of the larger
known and candidate SNRs are at higher Galactic longi-
tudes (Fig. . Although this may be due to selection effects
arising from confusion at lower longitudes, it may also be
explained by the fact that the mean heliocentric distance is
smaller at higher longitudes.

The angular sizes of the candidate SNRs are on average
larger at higher Galactic longitudes. For example the aver-
age radius for SNR candidates with £ > 35° is 7.6/, whereas
it is 5.6’ for candidates with £ < 35°. The effect may be real,
or may be caused by selection effects. For example, this
may indicate that we are unable to identify larger regions
in more confused regions at lower Galactic longitudes, or
that the angular sizes increase at higher longitudes because
the mean heliocentric distance decreases.

The distribution of flux densities derived from
THOR+VGPS data for the new SNR candidates is shifted
toward significantly lower values compared with the SNRs
in the G14 catalog (Fig. E[) The average and standard de-
viation of the base-ten logarithm of the G14 sources is
0.82 £ 0.61, while it is —0.23 £ 0.65 for the candidates.
A K-S test shows that these differences are statistically sig-
nificant. The lowest flux G14 sources have flux densities
near 1 Jy, although 71% of the candidates have flux densi-
ties less than 1 Jy. This result is unsurprising, given that
a main advantage of the THOR+VGPS data is that they
are more sensitive than previous data. Future surveys, for
example with MeerKat, ASKAP, MWA, and LOFAR, will
undoubtedly discover additional regions.
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Fig.5 G14 SNRs confused with HII regions. Shown for each region are two-color images with GLIMPSE 8.0 um (for
G20.44-0.1, G21.5—0.1, G23.64+0.3, and G54.1+0.3) or WISE 12 um data (for G59.8+1.2 and G65.8—0.5) in cyan and
THORA+VGPS 21 cm continuum data in red. The central positions are taken from the G14 catalog, and the image
dimensions are three times the G14 SNR diameters. As in Fig. [I} the candidate SNRs are enclosed by green circles and
known or candidate HII regions by white circles. Red dotted circles show the expected position and size of the G14 SNRs

that are confused with HII regions.

To investigate whether the detection of the new SNR
candidates is due to higher sensitivity or better angular
resolution, we examine the flux density versus radius for
the G14 and candidate SNRs in Fig. This figure shows
that the two populations separate primarily by intensity
(see also Fig. [9), but also by radius (see also Fig. [).
Furthermore, all the low-intensity, small radius data points
are from THOR SNR candidates.

Surface brightness decreases in Fig. [I0] toward the bot-
tom right. There are fractionally more SNR candidates that
have lower average surface brightness values compared with
the known SNRs. For example, almost half of the candi-
dates fall between the 1072! and 1072 Wm 2 Hz 'sr—!
lines whereas only ~ 10% of the known SNRs do. There
are nevertheless many G14 SNRs with low surface bright-
ness values similar to those of the THOR candidates. The
main advantage of THOR over previous radio continuum
data for the present inner-Galaxy study is its improved an-
gular resolution, which allows us to better identify small
sources and the thin shells of large sources in complicated
fields.

4.5. Implications for the Galactic SNR population

If confirmed, the 76 new SNR candidates would more than
double the known SNR population in the survey zone (52
to 128, not counting the six objects in G14 confused with
HII regions), and will have increased the total Galactic
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SNR population by 27% (288 to 364, again not counting
the six regions). Outside of the Galactic zone surveyed in
B06, we identified 67 SNR candidates, two and a half times
the 45 known SNRs. The surface brightness limit of the
THOR+VGPS data is ~ 10722 Wm™2Hz 'sr~!, which
given an expected spectral index for SNRs of ~ —0.5 is
roughly equivalent to that of BO6. The THOR+VGPS data
are, however, sensitive to a wider range of size scales than
the data of B06.

The increase in SNRs suggested by our study is in rough
agreement with the prediction of B06. Based on the as-
sumption that future surveys with a similar surface bright-
ness sensitivity would also triple the number of SNRs, B06
predicted there would be ~ 500 SNRs detected in the
Galaxy. Even this estimate of ~ 500 is about a factor of
two less than expected (see Section . We agree with B06
that future, more sensitive surveys may resolve the tension,
although confusion in the inner Galaxy may limit new de-
tections. Our analysis of Fig. suggests that any future
inner-Galaxy survey should prioritize high-angular resolu-
tion to reduce confusion.

5. Summary

Using 1.4 GHz continuum data from The HI, OH, and
RRL (THOR) VLA survey of the first quadrant of the
Galactic plane, combined with continuum data from the
VLA Galactic Plane Survey (VGPS), we cataloged 76 new



Anderson et al.: THOR SNR Candidates

G18.2536-0.3083 G19.1+0.9 G19.4611+0.1444 (G19.5800-0.2400
g g 0% g
=2 =i =
Q @ @
ko) k=] k=]
2 20 2
w s o
- - -
L L L
i3] iz} 1]
e S0 K]
<] [ [
[} 0] 0]
f OO ) : ; 005 . .- ¢ X
18.30 18.25 18.20 19.4 19.2 19.0 18.8 1965 1950 1945 19.40 19.65 19.60 19.55 19.5C
Galactic Longitude (deg.) Galactic Longitude (deg.) Galactic Longitude (deg.) Galactic Longitude (deg.)
G19.5917+0.0250 G19.6100-0.1200 G19.6600-0.2200 G21.6417+0.0000
- ey — -0.15 -
g g g il
z k=2 = k=
g 8 8 020 8
™ T T T
— - — -
L Lo L E
© k3] 3] 025 %
L] o 8 o
<] [ ] -]
6] 9] ] [}
-0.05
19.61 19.60 19.59 19.58 19.70 19.65 19.60 19.55 19.50 19.75 19.70 19.65 19.60 19.55 21.70 21.65 21.60
Galactic Longitude (deg.) Galactic Longitude (deg.) Galactic Longitude (deg.) Galactic Longitude (deg.)
G22.7583-0.4917 G22.9917-0.3583 G23.5667-0.0333 G24.1803+0.2167
] , - J
—_ —_ - —_ — 0.30
n - = 0.1 n
g g & g
= k= ) =i
[}) @ () )]
E E z 00 2
© o ® T
— - - -
2 2 2 4 2]
3] k3] g k3]
& ol ol ol
] [ © <]
U] 9] 0] 6]
0.2
2285 2280 2275 2270 2305 23.00 2295 2290 237 236 235 234 24.30 24.25 24.20 24.15 24.10
Galactic Longitude (deg.) Galactic Longitude (deg.) Galactic Longitude (deg.) Galactic Longitude (deg.)
G25.2222+0.2917 G29.0667-0.6750 G29.0778+0.4542 (G30.8486+0.1333
#; 0.5 | T " : e
g g g g
h=h 3 06 ho2 A
)] [} @ )]
k-] bl k-] ko)
2 2 2 2
g 5 o7l 5 5
L Q ] L
© T ° T
& a & ol
o o ] o
o O 08 o o]
2526 25.24 25.22 2520 25.18 29.2 29.1 20.0 28.9 29.09 29.08  29.07 . 30.90 30.88 30.86 30.84 30.82 30.80
Galactic Longitude (deg.) Galactic Longitude (deg.) Galactic Longitude (deg.) Galactic Longitude (deg.)
G31.8208-0.1222

G31.0583+0.4833 G31.6097+0.3347

0.40
g g A
= = =
8 € 0358 3
T T o
— — —
2 2 2
5 8 8
5 7 0.30 o
6] 6] 9]
3115 31.10 31.05 31.00 30.95 31.65 31.60 31.55 31.86 31.84 3182 3180 31.78
Galactic Longitude (deg.) Galactic Longitude (deg.) Galactic Longitude (deg.)

Fig. 6 Mis-identified SNR candidates from HO6 and B06. The format for these images is the same as that of Fig. [1} with
GLIMPSE 8.0 um data in cyan and THOR+VGPS 21 cm continuum data in red. As in Fig. [I} the candidate SNRs are
enclosed by green circles, known SNRs by red circles, and known or candidate HII regions by white circles. Red dotted
circles show the expected position and size of the SNR candidates. All except for G19.14-0.9, which appears to be a radio
continuum filament, and G29.0778+0.4542, which is a planetary nebula, are confused with HII regions.
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Fig.8 Angular radius distributions for candidate (green)
and known (red) SNRs. The candidate SNRs are on average
smaller than the known SNRs.

Galactic supernova remnants (SNRs). Our method identi-
fies diffuse radio continuum emission regions lacking mid-
infrared counterparts seen for HII regions and planetary
nebulae. All candidates lack MIR emission from known H 11
regions, as cataloged in the WISE Catalog of Galactic HII
Regions. The detected candidates follow a similar spatial
distribution compared to the previously known sample, al-
beit with a larger concentration near ¢ = 30°. The low
number of known and candidate SNRs near ¢ ~ 49° (as-
sociated with W51), 43° (associated with W49), and 25°
relative to the number of HII regions indicates the rela-
tive youth of these star formation regions. The sizes of the
new SNR candidates are on average smaller than those of
the known regions and the candidate fluxes are on average
lower than those of previously known SNRs.

We also detect radio continuum emission from 52 known
SNRs from , but fail to detect one SNRs in
the surveyed region that has a previous radio continuum
detection. We note that six known SNRs are confused with
HII regions, and that a further 17 SNR candidates from
B06 and HO6 are confused with HII regions. These results
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Fig.9 The flux density distribution of new candidate
(green) and known (red) SNRs, as measured in the
THOR+VGPS data. The distribution of flux densities for
the new candidates is shifted toward significantly lower val-
ues compared with that of the known sample.

show that our method is useful for classifying SNRs mis-
identified previously.

If our candidates prove to be true SNRs, they would
more than double the Galactic SNR population in the sur-
veyed region. Even with this large number of new candi-
dates, there is still a factor of two disagreement between
the number of SNRs detected and the number expected.
Similar studies in other parts of the Galaxy using data as
sensitive as THOR could further reduce the discrepancy,
although confusion in the inner Galaxy is likely to make
subsequent detections increasingly difficult. To maximize
SNR detections, such future surveys of the inner Galaxy
should also have high angular resolution.
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Appendix A: SNR Images

Here we provide THOR+VGPS 1.4 GHz images for the individual
candidate SNRs.
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