1	Functional properties, structural studies and chemo-enzymatic synthesis of				
2	oligosaccharides				
3	Chao Zhao ^{1,2} , Yijing Wu ¹ , Xiaoyan Liu ¹ , Bin Liu ¹ , Hui Cao ³ , Hua Yu ³ , Satyajit D. Sarker ⁴ , Lutfun				
4	Nahar ⁴ , Jianbo Xiao ³ *				
5	¹ College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China				
6	² Department of Chemistry, University of California, Davis 95616, USA				
7	³ Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine,				
8	University of Macau, Macau				
9	⁴ Medicinal Chemistry and Natural Products Research Group, School of Pharmacy and Biomolecular				
10	Sciences, Faculty of Science, Liverpool John Moores University, James Parsons Building, Byrom Street,				
11	Liverpool L3 3AF, UK				
12	*To whom correspondence should be addressed: Prof. Jianbo Xiao, Institute of Chinese Medical				
13	Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau,				
14	E-mail: jianboxiao@yahoo.com				
15 16	The authors declare that there is no conflict of interest regarding the publication of this article.				
17	The duthors declare that there is no commet of interest regarding the publication of this directed				
18	Abstract: Oligosaccharides offer beneficial effects on immune system and gut health, such				
19	as anticancer activity, immunomodulatory activity, and complement activation. Functional				
20	oligosaccharides are widely found in plants, algae, bacteria and higher fungi. Milk				
21	oligosaccharides, especially human milk oligosaccharides, have considerable health				
22	benefits, such as the growth-promotion of the beneficial bacterial flora in the intestines, and				
23	developing resistance to bactertial and viral infections. Recent developments in high				
24	performance liquid chromatography, mass spectrometry, nuclear magnetic resonance and				
25	capillary electrophoresis techniques contribute to the analysis of the oligosaccharide				
26	identification and mixture quantification. Synthesis of oligosaccharides is becoming				
27	increasingly important to pharmaceutical industries, in which chemo-enzymatic synthesis				
28	is considered as an effective method. This article gives a brief summary of structures,				
29	accessible sources, physiological and chemical characteristics, and potential health benefits				
30	of functional oligosaccharides.				
31					
32	Keywords: Oligosaccharides; Functional properties; Structural analysis; Milk				
33	oligosaccharides; Chemo-enzymatic synthesis				
34					
35					

1. Introduction

36

37 Personal health has become an ever-increasing important issue for consumers. Identification 38 and characterization of functional food components have advanced nutrition science. 39 Non-digestible dietary fibers and functional oligosaccharides are functional carbohydrates 40 with various benefits (Bland, Keshavarz, & Bucke, 2004). According to the IUPAC-IUBMB 41 Joint Commission on Biochemical Nomenclature, naturally occurring carbohydrates that 42 consist of 3-10 monosaccharide units, linear or branched, connected by α- and/or 43 β-glycosidic linkages, are defined as oligosaccharides (or glycans). However, the 44 physiological or rational chemical reasons for setting these limits remains unclear. 45 Carbohydrates, whose monosaccharide units are fructose, galactose, glucose and/or xylose, 46 are recognized as the main classes of functional oligosaccharides available at present or 47 under development (Mussatto & Mancilha, 2007) (Fig. 1). These molecules are well-known 48 as prebiotics, because they promote the growth of beneficial bacteria, particularly 49 Bifidobacteria species. These functional oligosaccharides have shown advantageous 50 physicochemical and physiological properties that contribute to the improvement of 51 consumer health. Thus, application of oligosaccharides as ingredients in functional foods has 52 great potential for improving the quality of foods in relation to consumers' health.

5354

2. Health benefit of functional oligosaccharides

55 Functional oligosaccharides have been applied for many purposes, such as nutrients, 56 pharmaceuticals, feeds, cosmetics, immunostimulating agents and prebiotic compounds 57 (Patel & Goyal, 2011; Sako, Matsumoto, & Tanaka, 1999), which incorporate 13 classes of 58 commercially produced non-digestible oligosaccharides showing bifidogenic functions. In 59 addition, known functional oligosaccharides also include arabino-oligosaccharides, 60 arabinogalacto-oligosaccharides, arabinoxylo-oligosaccharides, 61 oligosaccharides, rhamnogalacturonoligosaccharides, and human milk oligosaccharides 62 (HMOs) (Table 1). In particular, cyclodextrins produced from starch through enzymatic 63 conversion in nature is a family of macrocyclic oligosaccharides (Astray, Gonzalezbarreiro, 64 Mejuto, Rial-Otero, & Simal-Gandara, 2009; Radu, Parteni, & Ochiuz, 2016). Cyclodextrins 65 $(\alpha, \beta, \text{ and } \gamma)$ are cyclic α - $(1\rightarrow 4)$ -glucans with degrees of polymerization of 6, 7, and 8 66 monosacharide units, respectively. Macrocyclic carbohydrates have been widely applied as 67 building-blocks in supramolecular chemistry, drug carriers, molecular reactors, and artificial 68 receptors (Muthana, Yu, Cao, Cheng, & Chen, 2009). The use of functional oligosaccharides 69 improves the balance of the intestinal microflora and greatly decreases the gastrointestinal

infections (Xu, Chao, & Wan, 2009). Additionally, the consumption of functional oligosaccharides can reduce the risk of lifestyle-related diseases, such as cardiovascular disease, cancer, obesity and type 2 diabetes, which are related to obesity (Mussatto & Mancilha, 2007) (Table 2). Thus, functional oligosaccharides are widely cited to be important dietary fibers in nutritional advice for metabolic syndromes induced specific

76

75

77

disorders.

3. Sources of functional oligosaccharides

78 Plants and algae are the richest sources of functional oligosaccharides (Van Laere, 79 Hartemink, Bosveld, Schols, & Voragen, 2000) (Table 2). Depolymerization of suitable raw 80 materials or partial enzymatic hydrolysis of purified pectins can produce the pectic 81 oligosaccharides (Gullón, Gómez, Martínez-Sabajanes, Yáñez, Parajó, & Alonso, 2013). 82 Some typical feruloylated oligosaccharides could be prepared from plant sources, e.g., 83 wheat, maize bran, sugarcane bagasse and rice (Qu & Sun, 2014). Particularly, marine 84 oligosaccharides have attracted attention in drug development (Zhao, Wu, Yang, Liu, & 85 Huang, 2015). Carrageenans, extracted from marine red algae, belong to an anion polymers 86 family and share a common backbone of alternating $(1\rightarrow 3)$ -linked β -D-galactopyranose and 87 $(1\rightarrow 4)$ -linked α -D-galactopyranose (Yao, Wu, Zhang, & Du, 2014). Carrageenans are 88 well-known for their valuable biological activities, mainly attributed to the presence of 89 sulphates (Kim & Rajapakse, 2005). Chitosan and its derivatives show potential in various 90 fields such as food, cosmetics, biomedicine and agriculture. Chitosan oligosaccharides have 91 low viscosity and high solubility in water, particularly at neutral pH. Recent studies have 92 focused on the health benefits of chitosan oligosaccharides, such as decreasing blood 93 cholesterol, controlling of high blood pressure, protecting from infections, and improving the 94 antitumor properties (Zou et al. 2015).

9596

4. Milk oligosaccharides

Milk has evolved as a complete food for mammalian nourishment during infancy. Milk oligosaccharides are the most relevant prebiotic components (Mills, Ross, Hill, & Stanton, 2011; Boehm & Stahl, 2007). The concentration of total oligosaccharides in the milk of most mammals is much too low. Moreover, the major type of oligosaccharides in human milk, fucosylated oligosaccharides, was not detected in mammalian milk (Mehra & Kelly, 2006). The concentration of human milk oligosaccharides (HMOs) in mature human milk is 10–15 g/L, which is 100- to 1000-fold higher than that in bovine milk, and the content of HMOs

104 often exceeds the total amount of protein in mature human milk (Table 3). Complex 105 oligosaccharides, particularly unconjugated complex glycans, HMOs, make up a high 106 percentage of the total solids in human milk. Nearly 200 HMOs have been identified, among 107 which more than 80 have been fully characterized from a structural perspective. The 108 biological functions of HMOs are closely associated with their structural conformation 109 (Bode, 2015). Galactose, glucose, fucose, N-acetylglucosamine, and the sialic acid 110 derivative, N-acetyl-neuraminic acid are the five monosaccharide building blocks that can 111 constitute HMOs (Kobata, 2010). These glycans can be fucosylated and/or sialylated (Fig. 112 2). All HMOs carry lactose (Galβ1-4Glc) at the reducing end, which can be elongated in a 113 β -1,3 or β -1,6-linkage by two different disaccharides, either type 1 carbohydrate structures 114 (containing Galβ1–3GlcNAc units) or type 2 structures (containing Galβ1–4GlcNAc units). 115 HMOs with more than 15 disaccharide units can form complex structural backbones and be 116 further modified by adding fructose and/or sialic acid. Studies have demonstrated that HMOs 117 can induce increased levels of bifidobacteria in the colonic flora of breast-fed infants, 118 accompanied by a great reduction in pathogenic potential bacteria, by the bifidogenic 119 activity of HMOs (Jin, Joo, Li, Choi, & Han, 2016). HMOs were shown to greatly affect the 120 composition of the gut microflora. The HMOs lacto-N-fucopentaose I could be selectively 121 utilized by Bifidobacterium longum subsp. infantis, but not B. animalis subsp. lactis, making 122 it a promising potential prebiotic (Zhao et al., 2016). HMOs protect from viral, bacterial, or 123 protozoan pathogens and affect fungal-host interactions (Hong, Ninonuevo, Lee, Lebrilla, 124 & Bode, 2009; Shoaf-Sweeney & Hutkins, 2009).

125126

127

128

129

130

131

132

133

134

135

136

137

5. Structural analysis of glycan oligosaccharides

Because of the complexity and heterogeneity of oligosaccharides, characterization technologies for oligosaccharides are not as advanced as the technologies for characterizing nucleic acids and proteins. Moreover, oligosaccharides are particularly difficult to separate, analyze and obtain detail structural information due to the coexisting isomeric structures and multiple connectivity sites. Many techniques have been developed to elucidate oligosaccharide structural characterization in order to understand their specific functions, however there is no legal method for analyzing and quantifying oligosaccharides (Table 4). The sensitive method of high-resolution mass spectrometry (HR-MS), which can provide a good breadth of information, has become a main tool for oligosaccharide analysis (Bao, Chen, & Newburg, 2013). Oligosaccharides fractionation attained by gel permeation chromatography (GPC) followed by analysis of high-molecular mass fractions by

138	matrix-assisted laser desorption/ionization time-of-flight mass spectrometry
139	(MALDI-TOF/MS) and electrospray ionization ion trap mass spectrometry (ESI-ITMS)
140	indicated that complex oligosaccharides have a larger mass range compared to previous
141	techniques (Hsu, Chang, & Franz, 2006). Although MALDI-MS has been used successfully
142	to characterize underivatised oligosaccharides, MALDI-TOF/MS and MALDI post-source
143	decay TOF/MS analysis are ten-fold more sensitive than MALDI-MS (Park, Yang, Kim, &
144	Kim, 2012). Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS)
145	can be used to analyze oligosaccharides directly or with analytical derivatization (Wang,
146	Chu, Zhao, He, & Guo, 2011). A combination of negative-ion electrospray tandem mass
147	spectrometry (ES-MS/MS), methylation analysis, and ¹ H nuclear magnetic resonance
148	spectroscopy (¹ H-NMR) has been applied to identify new oligosaccharides. ¹³ C- and
149	¹ H-NMR, together with ES-MS, have been applied to determine the structures of complex
150	sulfated oligosaccharides isolated from human milk (Balogh, Szarka, & Béni, 2015).
151	FT-ICR has been used to detect oligosaccharides recently (Lee, An, Lerno, German, &
152	Lebrilla, 2011). Additionally, the efficient method of nano-electrospray ionization mass
153	spectroscopy (nESI-MS) with quadruple ion trap has been used to identify the position of
154	fucose, types of linkages, and differentiation of linear and branched structures of isomeric
155	oligosaccharides from a complex mixture of native underivatised neutral oligosaccharides
156	(Pfenninger, Karas, Finke, & Stahl, 2002). Detect interactions of proteins with glycans or
157	glycoconjugates by nESI-MS. The development of additional techniques may result in
158	structural characterization of isolated oligosaccharides. The structures of HMOs are quite
159	complex and novel techniques such as porous graphitic carbon (PGC) LC-MS are now
160	available to perform the separation and identification of most isomers (Ruhaak, Lebrilla,
161	Weimer, & Slupsky, 2013). Oligosaccharides studies will benefit from the application of the
162	most advanced analytical methods, such as high performance anion exchange
163	chromatography (HPAEC) with pulsed amperometric detection (PAD) or capillary
164	electrophoresis (CE), which can be used to measure samples at picomole and femtomole
165	levels, respectively (Monti, Cattaneo, Orlandi, & Curadi, 2015; Morales, Corzo, & Sanz,
166	2008).

6. Chemo-enzymatic synthesis of bioactive oligosaccharides

Since the nature cannot always provide enough amounts of such functional carbohydrates for scientific research or clinical applications, development of new techniques to improve the production of such carbohydrates has become a new challenge in glycoscience. The

172 development of automated methods can meet the demand for molecular tools for rapid 173 analysis of glycobiology. A few major advances in carbohydrate synthesis have been 174 observed in recent years (Bartolozzi & Seeberger, 2001). Current methods for obtaining 175 synthetic oligosaccharides are chemical synthesis or chemo-enzymatic synthesis (Muthana, 176 Yu, Cao, Cheng, & Chen, 2009). The chemical synthetic pathway is challenging due to the 177 numerous protection and deprotection steps; the large amounts of reagents and organic 178 solvents that are often toxic; and carrying out the reactions under harsh conditions. The 179 laborious chemical synthetic pathway frequently results in low yields. The chemo-enzymatic 180 method involves glycosyltransferases (GT) and glycosidases (GH), which are the enzymes 181 naturally involved in oligosaccharide synthesis in prokaryotes and eukaryotes (Yu & Chen, 182 2016). By exploiting these enzymes in the laboratory for the synthesis of oligosaccharides, 183 many of the challenges faced when using chemical synthesis could be overcome. Some 184 diferent complex oligosaccharides and derivatives with 3-11 monosaccharides units have 185 been reported by preparative-scale and improved large-scale productions (Table 5). 186 Chemo-enzymatic methods can be applied in the synthesis of virtually any complex 187 oligosaccharide (Hanson, Best, Bryan, & Wong, 2004). Enzymatic coupling has some 188 advantages over its chemical counterpart. The use of enzymes in the synthesis of 189 oligosaccharides has attracted growing interest as an alternative to chemical synthesis 190 (Koeller & Wong, 2001). Glycosyltransferase-catalyzed enzymatic and chemo-enzymatic 191 syntheses are widely considered to be effective ways for oligosaccharides production (Fig. 192 3). Enzymatic glycosylation occurs stereo- and regioselectively under mild conditions 193 without protecting group manipulation. Functional enzymes enable the large-scale synthesis 194 of difficult-to-produce saccharide linkages and complex molecules. An efficient one-pot 195 multienzyme fucosylation system used for the gram-scale synthesis of lacto-*N*-fucopentaose 196 I has been reported recently (Zhao et al., 2016). The development of one-pot 197 multienzyme-catalysed syntheses reduces the substrate costs for in vitro production of 198 fucosylated carbohydrates (Yu & Chen, 2016). Additionally, cost-effective large-scale 199 production of HMOs may be conducted using whole cell systems; thus in vitro synthesis 200 offers the unique advantage of flexibility. Moreover, small-scale enzymatic synthesis of 201 structurally complex HMOs, which cannot currently be produced in engineered cells, is an 202 invaluable tool for supporting studies on biological function and possible applications of 203 these oligosaccharide structures.

GT's and GH's are stereo- and regioselective, therefore circumventing the tedious protection/deprotection steps. The reaction conditions are generally mild and can be carried

out in physiological buffers and temperatures eliminating the use of harsh conditions and toxic chemicals. In addition, enzymes are highly efficient and have flexibility on the substrates, which often result in great yields of oligosaccharide products. A disadvantage to the chemo-enzymatic method is identifying active GT and GH using recombinant expression systems and determining the enzyme's preferred substrate. Obtaining good expression levels in recombinant expression systems can be challenging. For example, proteins expressed in *Escherichia coli* systems may aggregate due to misfolding and many eukaryotic proteins require post-translational modifications for activities. With the advent of whole genomic sequences across species, putative GT's and GH's have been inferred by sequence homology studies.

7. Conclusions

In summary, the functional oligosaccharides are associated with a variety of biological processes such as resistance against the infection of bacteria and virus, antioxidant, antimutagenicity, cancer metastasis inhibition, blood-clotting cascade and many other pharmacological activities. However, the synergistic effect of a mixture of more structurally oligosaccharides from the nature sources should also be investigated as, most likely, one single will not provide the desired function. More efforts need to be applied for the production of more complex oligosaccharides, especially the ones that are branched. The large-scale production of oligosaccharides using multiple OPME systems or engineered *E. coli* living-cell fermentation approaches would promote a new era for oligosaccharides synthesis. The development of universal sequencing tools for oligosaccharides with comparable speed and throughput still remains a challenge, and the most advanced analytical techniques are promising to be useful tools. The identification, production and commercialization of new functional oligosaccharides with enhanced bioactive properties offer new research and business opportunities. They are good candidates for various applications in food and pharmacological industry.

Abbreviations

IUPAC International Union of Pure and Applied Chemistry

IUBMB International Union of Biochemistry and Molecular Biology

CDs Cyclodextrins

HMOs Human milk oligosaccharides

GlcNAc *N*-acetyl-glucosamine

	Neu5Ac	N-acetyl-neuraminic aicd
	MS	Mass spectrometry
	MALDI-TOF	Matrix-assisted laser desorption/ionization time-of-flight
	GT	Glycosyltransferases
	GH	Glycosidases
235		
236	Acknowledgm	nents: This work was financially supported by National Natural Science
237	Foundation o	f China (2016J06009) and Science and Technology Major Project
238	(2014NZ0002-	1) of Fujian Province, China. The project was also supported by FAFU grants
239	KXb16011A a	nd 612014042.
240		
241	References	
242	Albermann, C.,	Piepersberg, W., & Wehmeier, U.F. (2001). Synthesis of the milkoligosaccharide
243	2'-fucosyllad	ctose using recombinant bacterial enzymes. Carbohydrate Research, 334, 97–103.
244	Anastyuk, S.D., S	hevchenko, N.M., Nazarenko, E.L., Dmitrenok, P.S., & Zvyagintseva, T.N. (2009). Structural
245	analysis of a	fucoidan from the brown alga Fucus evanescens by MALDI-TOF and tandem ESI mass
246	spectrometry	c. Carbohydrate Research, 344, 779–787.
247	Antoine, T., Prier	n, B., Heyraud, A., Greffe, L., Gilbert, M., Wakarchuk, W.W., et al. (2003). Large-scale in
248	vivo synthes	is of the carbohydrate moieties of gangliosides GM1 and GM2 by metabolically engineered
249	Escherichia	coli. ChemBioChem, 4, 406–412.
250	Apolinario, A.C.,	Damasceno, B.P., Beltrao, N.E., Pessoa, A., Converti, A., & da Silva, J.A. (2014). Inulin-type
251	fructans: a r	eview on different aspects of biochemical and pharmaceutical technology. Carbohydrate
252	Polymers, 10	01, 368–378.
253	Arfelli, G. & Sart	ini, E. (2014). Characterisation of brewpub beer carbohydrates using high performance anion
254	exchange ch	romatography coupled with pulsed amperometric detection. Food Chemistry, 142, 152–158.
255	Astray, G., Gonza	lezbarreiro, C., Mejuto, J.C., Rial-Otero, R., & Simal-Gandara, J. (2009). A review on the use
256	of cyclodext	rins in foods. Food Hydrocolloids, 23, 1631–1640.
257	Balogh, R., Szar	ka, S., & Béni, S. (2015). Determination and quantification of 2'-O-fucosyllactose and
258	3-O-fucosyll	actose in human milk by GC-MS as O-trimethylsilyl-oxime derivatives. Journal of
259	Pharmaceuti	ical and Biomedical Analysis, 115, 450–456.

- Bao, Y., Chen, C., & Newburg, D.S. (2013). Quantification of neutral human milk oligosaccharides by graphitic
- 261 carbon high-performance liquid chromatography with tandem mass spectrometry. Analytical
- 262 *Biochemistry*, 433, 28–35.
- 263 Bartolozzi, A., & Seeberger, P.H. (2001). New approaches to the chemical synthesis of bioactive
- oligosaccharides. Current Opinion in Structural Biology, 11, 587–592.
- Basu, A., Mutturi, S., & Prapulla, S.G. (2016). Production of isomaltooligosaccharides (IMO) using
- simultaneous saccharification and transglucosylation from starch and sustainable sources. *Process*
- 267 *Biochemistry*, *51*, 1464–1471.
- Baumgärtner, F., Jurzitza, L., Conrad, J., Beifuss, U., Sprenger, G.A., & Albermann, C. (2015). Synthesis of
- fucosylated lacto-N-tetraose using whole-cell biotransformation. Bioorganic and Medicinal Chemistry,
- 270 23, 6799-6806.
- 271 Bharti, S.K., Krishnan, S., Kumar, A., Gupta, A.K., Ghosh, A.K., & Kumar, A. (2015). Mechanism-based
- antidiabetic activity of Fructo- and isomalto-oligosaccharides: Validation by in vivo, in silico, and in vitro,
- interaction potential. *Process Biochemistry*, 50, 317–327.
- Bland, E.J., Keshavarz, T., & Bucke, C. (2004). The influence of small oligosaccharides on the immune system.
- 275 *Carbohydrate Research*, *339*, 1673–1678.
- Bode, L. (2015). The functional biology of human milk oligosaccharides. Early Human Development, 91,
- 277 619–622.
- Boehm, G., & Stahl, B. (2003). Oligosaccharides. In Functional dairy products. Mattila-Sandholm, T., Saarela,
- 279 M. Eds. Woodhead Publishing Ltd., Cambridge, UK and CRC Press, Boca Raton, US, pp. 203–243.
- Boehm, G., & Stahl, B. (2007). Oligosaccharides from milk. *Journal of Nutrition*, 137, 847S–849S.
- 281 Cataldi, T.R.I., Campa, C., & De Benedetto, G.E. (2000). Carbohydrate analysis by high-performance
- anion-exchange chromatography with pulsed amperometric detection: the potential is still growing.
- 283 Fresenius Journal of Analytical Chemistry, 368, 739–758.
- 284 Cederkvist, F.H., Mormann, M., Froesch, M., Eijsink, V.G.H., Sørlie, M., & Peter-Katalinić, J. (2011).
- 285 Concurrent enzyme reactions and binding events for chitinases interacting with chitosan oligosaccharides
- monitored by high resolution mass spectrometry. *International Journal of Mass Spectrometry*, 305,
- 287 178–184.

- 288 Chen, C., Zhang, Y., Xue, M., Liu, X., Li, Y., Chen, X., et al. (2015). Sequential one-pot multienzyme
- 289 (OPME) synthesis of lacto-N-neotetraose and its sialyl and fucosyl derivatives. Chemical
- 290 *Communications*, *51*, 7689–7692.
- 291 Chen, M., Zhu, X., Li, Z., Guo, X., & Ling, P. (2010). Application of matrix-assisted laser desorption/ionization
- time-of-flight mass spectrometry (MALDI-TOF-MS) in preparation of chitosan oligosaccharides (COS)
- with degree of polymerization (DP) 5–12 containing well-distributed acetyl groups. *International Journal*
- 294 *of Mass Spectrometry*, 290, 94–99.
- 295 Choi, Y.H., Kim, J.H., Park, B.S., & Kim, B.G. (2016). Solubilization and iterative saturation mutagenesis of
- 296 a1,3-fucosyltransferase from Helicobacter pylori toenhance its catalytic efficiency. Biotechnology and
- 297 *Bioengineering*, 113, 1666–1675.
- 298 Concha Olmosa, J., & Zúñiga Hansen, M.E. (2012). Enzymatic depolymerization of sugar beet pulp:
- Production and characterization of pectin and pectic-oligosaccharides as a potential source for functional
- 300 carbohydrates. Chemical Engineering Journal, 192, 29–36.
- 301 Côté, G.L. (2009). Acceptor products of alternansucrase with gentiobiose. Production of novel oligosaccharides
- for food and feed and elimination of bitterness. *Carbohydrate Research*, 344, 187–190.
- 303 Crittenden, R.G., & Playne, M.J. (1996). Production, properties and applications of food-grade
- oligosaccharides. *Trends in Food Science and Technology*, 71, 353–361.
- Dumon, C., Bosso, C., Utille, J.P., Heyraud, A., & Samain, E. (2006). Production of LewisX tetrasaccharides
- by metabolically engineered *Escherichia coli*. *ChemBioChem*, 7, 359–365.
- Dumon, C., Priem, B., Martin, S.L., Heyraud, A., Bosso, C., & Samain, E. (2001). In vivo fucosylation of
- Lacto-N-neotetraose and Lacto-N-neohexaose by heterologous expression of Helicobacter pylori
- 309 α1,3-fucosyltransferase in engineered *Escherichia coli. Glycoconjugate Journal*, 18, 465–474.
- 310 Dumon, C., Samain, E., & Priem, B. (2004). Assessment of the two Helicobacter pylori α-1,3-
- fucosyltransferase ortholog genes for the large-scale synthesis of Lewis^x human milk oligosaccharides by
- metabolically engineered *Escherichia coli*. *Biotechnology Progress*, 20, 412–419.
- Endo, T., Koizumi, S., Tabata, K., & Ozaki, A. (2000). Large-scale production of CMP-NeuAc and sialylated
- 314 oligosaccharides through bacterial coupling. Applied Microbiology and Biotechnology, 53, 257–261.

- Fei, B.B., Ling, L., Hua, C., & Ren, S.Y. (2014). Effects of soybean oligosaccharides on antioxidant enzyme
- activities and insulin resistance in pregnant women with gestational diabetes mellitus. *Food Chemistry*,
- 317 *158*, 429–432.
- Fu, Y., Cheng, L., Meng, Y., Li, S., Zhao, X., Du, Y., et al. (2015). Cellulosimicrobium cellulans strain E4-5
- enzymatic hydrolysis of curdlan for production of $(1\rightarrow 3)$ -linked β-D-glucan oligosaccharides.
- 320 *Carbohydrate Polymers*, *134*, 740–744.
- 321 Fujimoto, Y., Hattori, T., Uno, S., Murata, T., & Usui, T. (2009). Enzymatic synthesis of
- gentiooligosaccharides by transglycosylation with beta-glycosidases from Penicillium multicolour.
- 323 *Carbohydrate Research*, *344*: 972–978.
- Gómez, B., Gullón, B., Yáñez, R., Schols, H., & Alonso, J.L. (2016). Prebiotic potential of pectins and pectic
- oligosaccharides derived from lemon peel wastes and sugar beet pulp: A comparative evaluation. *Journal*
- *of Functional Foods*, 20, 108–121.
- Gopal, P.K., & Gill, H.S. (2000). Oligosaccharides and glycoconjugates in bovine milk and colostrum. *British*
- 328 *Journal of Nutrition*, 84, S69–S74.
- Goulas, A., Tzortzis, G., & Gibson, G.R. (2007). Development of a process for the production and purification
- of a- and b-galactooligosaccharides from Bifidobacterium bifidum NCIMB 41171. International Dairy
- 331 *Journal*, 17, 648–656.
- Gullón, B., Gómez, B., Martínez-Sabajanes, M., Yáñez, R., Parajó, J.C., & Alonso, J.L. (2013). Pectic
- 333 oligosaccharides: Manufacture and functional properties. Trends in Food Science and Technology, 30,
- 334 153–161.
- Gwendolyn, G.R., Philip, N.R., Li, X., & Anita, M. (2013). Short-chain milk oligosaccharide levels in human
- milk and infant plasma. *The FASEB Journal*, 27, 629.16.
- Hanson, S., Best, M., Bryan, M.C., & Wong, C.H. (2004). Chemoenzymatic Synthesis of Oligosaccharides and
- Glycoproteins. *Trends in Biochemical Sciences*, 29, 656–663.
- He, Y., Liu, S., Kling, D.E., Lawlor, N.T., Huang, Y., Feinberg, S.B., et al. (2016). The human milk
- oligosaccharide 2'-fucosyllactose modulates CD14 expression in human enterocytes, thereby attenuating
- 341 LPS-induced inflammation. *Gut*, 65, 33–46.

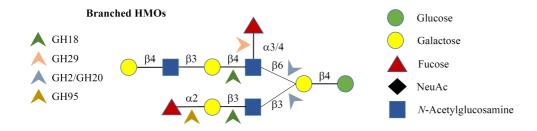
- Hong, P., Ninonuevo, M.R., Lee, B., Lebrilla, C., & Bode, L. (2009). Human milk oligosaccharides reduce
- 343 HIV-1-gp120 binding to dendritic cell-specific ICAM3-grabbing non-integrin (DC-SIGN). British
- 344 *Journal of Nutrition*, 101, 482–486.
- Hsu, J., Chang, S.J., & Franz, A.H. (2006). MALDI-TOF and ESI-MS analysis of oligosaccharides labeled with
- a new multifunctional oligosaccharide tag. Journal of the American Society for Mass Spectrometry, 17,
- 347 194–204.
- 348 Iliev, I., Vassileva, T., Ignatova, C., Ivanova, I., Haertlé, T., Monsan, P., et al. (2008). Gluco-oligosaccharides
- 349 synthesized by glucosyltransferases from constitutive mutants of *Leuconostoc mesenteroides* strain Lm
- 350 28. *Journal of Applied Microbiology*, 104, 243–250.
- Jänis, J., Hakanpää, J., Hakulinen, N., Ibatullin, F.M., Hoxha, A., Derrick, P.J., et al. (2005). Determination of
- 352 thioxylo-oligosaccharide binding to family 11 xylanases using electrospray ionization Fourier transform
- ion cyclotron resonance mass spectrometry and X-ray crystallography. Febs Journal, 272, 2317–2333
- Jin, S.M., Joo, W., Li, L., Choi, H.S., & Han, N.S. (2016). *In vitro*, digestion and fermentation of sialyllactoses
- by infant gut microflora. *Journal of Functional Foods*, 21, 497–506.
- Johnson, K.F. (1999). Synthesis of oligosaccharides by bacterial enzymes. Glycoconjugate Journal, 16,
- 357 141–146.
- Kim, K.J., Kim, Y.W., Park, H.G., Hwang, C.H., Park, I.Y., Choi, K.Y., et al (2017). A MALDI-MS-based
- quantitative glycoprofiling method on a 96-well plate platform. Journal of Industrial and Engineering
- 360 *Chemistry*, 46, 150–156.
- 361 Kim, S. K., & Rajapakse, N. (2005). Enzymatic production and biological activities of chitosan
- oligosaccharides (COS): A review. *Carbohydrate Polymers*, 62, 357–368.
- Kim, Y.S., Park, C.S., & Oh, D.K. (2006). Lactulose production from lactose and fructose by a thermostable
- 364 β-galactosidase from Sulfolobus solfataricus. Enzyme and Microbial Technology, 39, 903–908.
- Kobata, A. (2010). Structures and application of oligosaccharides in human milk. *Proceedings of the Japan*
- 366 Academy, Ser. B, Physical and Biological Sciences, 86, 731–749.
- Koeller, K.M., & Wong, C.H. (2001). Enzymes for chemical synthesis. *Nature*, 409, 232–239.
- Koizumi, S., Endo, T., Tabata, K., Nagano, H., Ohnishi, J., & Ozaki, A. (2000). Large-scale production of
- GDP-fucose and LewisX by bacterial coupling. Journal of Industrial Microbiology and Biotechnology,
- *25*, 213–217.

- Kolida, S., & Gibson, G.R. (2007). Inulin and oligofructose: health benefits and claims-a critical review.
- 372 *Journal of Nutrition*, *137*, 2489S–2597S.
- Kulinich, A., & Li, L. (2016). Human milk oligosaccharides: The role in the fine-tuning of innate immune
- responses. *Carbohydrate Research*, 432, 62-70.
- Kumagai, Y., Okuyama, M., & Kimura, A. (2016). Heat treatment of curdlan enhances the enzymatic
- production of biologically active β -(1,3)-glucan oligosaccharides. *Carbohydrate Polymers*, 146, 396–401.
- Kumar, V.P., Prashanth, K.V.H., & Venkatesh, Y.P. (2014). Structural analyses and immunomodulatory
- properties of fructo-oligosaccharides from onion (*Allium cepa*). Carbohydrate Polymers, 117, 115–122.
- Kunz, C., & Rudloff, S. (2002). Health benefit of milk-derived carbohydrates. Bulletin of the International
- 380 *Dairy Federation*, *375*, 72–79.
- Kunz, C., Rudloff, S., Baier, W., Klein, N., & Strobel, S. (2000). Oligosaccharides in human milk: structural,
- functional, and metabolic aspects. *Annual Review of Nutrition*, 20, 699–722.
- Lau, K., Thon, V., Yu, H., Ding, L., Chen, Y., Muthana, M.M., et al. (2010). Highly efficient chemoenzymatic
- 384 synthesis of β1–4-linked galactosides with promiscuous bacterial β1–4-galactosyltransferases. *Chemical*
- 385 *Communications*, 46, 6066–6068.
- Lee, H., An, H.J., Lerno, L.A., German, J.B., & Lebrilla, C.B. (2011). Rapid profiling of bovine and human
- milk gangliosides by matrix-assisted laser desorption/ionization fourier transform ion cyclotron resonance
- mass spectrometry. *International Journal of Mass Spectrometry*, 305, 138–150.
- Leijdekkers, A.G., Sanders, M.G., Schols, H.A., & Gruppen, H. (2011). Characterizing plant cell wall derived
- 390 oligosaccharides using hydrophilic interaction chromatography with mass spectrometry detection. *Journal*
- 391 *of Chromatography A, 1218,* 9227–9235.
- 392 Li, M., Liu, X.W., Shao, J., Shen, J., Jia, Q., Yi, W., et al. (2008a). Characterization of a novel
- 393 α1,2-fucosyltransferase of *Escherichia coli* O128:B12 and functional investigation of its common motif.
- 394 *Biochemistry*, 47, 378–387.
- Li, M., Shen, J., Liu, X.W., Shao, J., Yi, W., Chow, C.S., et al. (2008b). Identification of a new alpha 1,
- 396 2-fucosyltransferase involved in O-antigen biosynthesis of Escherichia coli O86:B7 and formation of
- 397 H-type 3 blood groupantigen. *Biochemistry*, 47, 11590–11597.

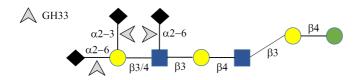
- 398 Li, T., Li, S., Du, L., Wang, N., & Guo, M. (2010). Effects of haw pectic oligosaccharide on lipid metabolism
- and oxidative stress in experimental hyperlipidemia mice induced by high-fat diet. Food Chemistry, 121,
- 400 1010–1013.
- 401 Li, W., Wang, K., Sun, Y., Ye, H., Hu, B., & Zeng, X. (2015). Lactosucrose and its analogues derived from
- lactose and sucrose: Influence of structure on human intestinal microbiota in vitro. Journal of Functional
- 403 *Food*, 17, 73–82.
- Liu, H.T., He, J.L., Li, W.M., Zhu, Y., Wang, Y.X., Bai X.F., et al.. (2010). Chitosan oligosaccharides protect
- 405 human umbilical vein endothelial cells from hydrogen peroxide-induced apoptosis. Carbohydrate
- 406 *Polymers*, 80, 1062–1071.
- 407 Liu, X.M., Maziarz, E.P., Heiler, D.J., & Grobe, G.L. (2003). Comparative studies of poly(dimethyl siloxanes)
- 408 using automated GPC-MALDI-TOF MS and on-line GPC-ESI-TOF MS. Journal of the American Society
- 409 *for Mass Spectrometry*, 14, 195–202.
- 410 Ma, B., Audette, G.F., Lin, S., Palcic, M.M., Hazes, B., & Taylor, D.E. (2006). Purification, kinetic
- 411 characterization, and mapping of the minimal catalytic domain and thekey polar groups of *Helicobacter*
- 412 *pylori* alpha-(1,3/1,4)-fucosyltransferases. *The Journal of Biological Chemistry*, 281, 6385–6394.
- 413 Ma, B., Simala-Grant, J.L., & Taylor, D.E. (2006). Fucosylation in prokaryotes and eukaryotes. *Glycobiology*,
- 414 *16*, 158R–184R.
- 415 Ma, C., Sun, Z., Chen, C., Zhang, L., & Zhu, S. (2014). Simultaneous separation and determination of fructose
- sorbitol, glucose and sucrose in fruits by HPLC-ELSD. *Food Chemistry*, 145, 784–788.
- 417 Maier M, Reusch D, Bruggink C, Bulau, P., Wuhrer, M., & Mølhøj, M. (2016). Applying mini-bore
- 418 HPAEC-MS/MS for the characterization and quantification of Fc N-glycans from heterogeneously
- 419 glycosylated IgGs. Journal of Chromatography B Analytical Technologies in the Biomedical & Life
- 420 *Sciences*, 342, 1033–1034.
- 421 Manas, N.H.A., Jonet, M.A., Murad, A.M.A., Mahadi, N.M., & Illias, M. (2015). Modulation of
- 422 transglycosylation and improved malto-oligosaccharide synthesis by protein engineering of maltogenic
- 423 amylase from *Bacillus lehensis* G1. *Process Biochemistry*, 50, 1572–1580.
- 424 Mehra, R., & Kelly, P. (2006). Milk oligosaccharides: Structural and technological aspects. *International Dairy*
- 425 *Journal*, 16, 1334–1340.

- 426 Mills, S., Ross, R.P., Hill, C., & Stanton, C. (2011). Milk intelligence: Mining milk for bioactive substances
- 427 associated with human health. *International Dairy Journal*, 21, 377–401.
- 428 Miyazaki, T., Sato, T., Furukawa, K., & Ajisaka, K. (2010). Enzymatic synthesis of lacto-N-difucohexaose I
- which binds to *Helicobacter pylori*. *Methods in Enzymology*, 480, 511–524.
- 430 Monti, L., Cattaneo, T.M., Orlandi, M., & Curadi, M.C. (2015). Capillary electrophoresis of sialylated
- oligosaccharides in milk from different species. *Journal of Chromatography A*, 1409, 288–291.
- 432 Morales, V., Corzo, N., & Sanz, M.L. (2008). HPAEC-PAD oligosaccharide analysis to detect adulterations of
- honey with sugar syrups. *Food Chemistry*, 107, 922–928.
- Moure, A., Gullón, P., Domínguez, H., & Parajó, J.C. (2006). Advances in the manufacture, purification and
- applications of xylo-oligosaccharides as food additives and nutraceuticals. Process Biochemistry, 41,
- 436 1913–1923.
- Murata, T., Inukai, T., Suzuki, M., Yamagishi, M., & Usui, A.T. (1999). Facile Enzymatic Conversion of
- Lactose into Lacto-N-tetraose and Lacto-N-neotetraose. *Glycoconjugate Journal*, 16, 189–195.
- 439 Mussatto, S.I., & Mancilha, I.M. (2007). Non-digestible oligosaccharides: A review. Carbohydrate Polymers,
- 440 68, 587–597.
- 441 Muthana, S., Yu, H., Cao, H.Z., Cheng, J.S., & Chen, X. (2009). Chemoenzymatic Synthesis of a New Class of
- 442 Macrocyclic Oligosaccharides. *ChemInform*, 74, 2928–2936.
- Na, L., Mao, W., Xue, L., Shuyao, W., Zheng, X., Sujian, C., et al. (2016). Sequence analysis of the pyruvylated
- galactan sulfate-derived oligosaccharides by negative-ion electrospray tandem mass spectrometry.
- 445 Carbohydrate Research, 433, 80–88.
- Neu, U., Maginnis, M.S., Palma, A.S., Ströh, L.J., Nelson, C.D., Feizi, T., et al. (2010). Structure-function
- 447 analysis of the human JC polyomavirus establishes the LSTc pentasaccharide as a functional receptor
- 448 motif. Cell Host and Microbe, 8, 309–319.
- Okada, H., Fukushi, E., Yamamori, A., Kawazoe, N., Onodera, S., Kawabata, J., et al. (2010). Novel
- fructopyranose oligosaccharides isolated from fermented beverage of plant extract. Carbohydrate
- 451 Research, 345, 414–418.
- Park, E., Yang, H., Kim, Y., & Kim, J. (2012). Analysis of oligosaccharides in beer using MALDI-TOF-MS.
- 453 Food Chemistry, 134, 1658–1664.

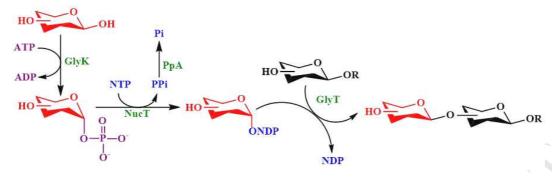
- Patel, S., & Goyal, A. (2011). Functional oligosaccharides: production, properties and applications. World
- 455 *Journal of Microbiology and Biotechnology*, 27, 1119–1128.
- 456 Perret, S., Sabin, C., Dumon, C., Pokorná, M., Gautier, C., Galanina, O., et al. (2005). Structural basis for the
- 457 interaction between human milk oligosaccharides and the bacterial lectin PA-IIL of *Pseudomonas*
- 458 aeruginosa. Biochemical Journal, 389, 325–332.
- 459 Pettit, N., Styslinger, T., Mei, Z., Han, W., Zhao, G., & Wang, P.G. (2010). Characterization of WbiQ: An α
- 460 1,2-fucosyltransferase from Escherichia coli O127:K63(B8), andsynthesis of H-type 3 blood group
- antigen. Biochemical and Biophysical Research Communications, 402, 190–195
- 462 Pfenninger, A., Karas, M., Finke, B., & Stahl, B. (2002). Structural analysis of underivatized neutral human
- milk oligosaccharides in the negative ion mode by nano-electrospray MS(n) (part 1: methodology).
- Journal of the American Society for Mass Spectrometry, 13, 1331–1340.
- Priem, B., Gilbert, M., Wakarchuk, W.W., Heyraud, A., & Samain, E.A. (2002). New fermentation process
- allows large-scale production of human milk oligosaccharides by metabolically engineered bacteria.
- 467 *Glycobiology*, *12*, 235–240.
- Qu, J., & Sun, Z. (2014). Feruloylated oligosaccharides: Structure, metabolism and function. Journal of
- 469 *Functional Foods*, 7, 90–100.
- 470 Radu, C.D., Parteni, O., & Ochiuz, L. (2016). Applications of cyclodextrins in medical textiles review.
- 471 *Journal of Controlled Release*, 224, 146–157.
- Reis, A., Coimbra, M. A., Domingues, P., Ferrer-Correia, A. J., & Domingues, M. R. M. (2002). Structural
- characterisation of underivatised olive pulp xylo-oligosaccharides by mass spectrometry using
- 474 matrix-assisted laser desorption/ionisation and electrospray ionisation. Rapid Communications in Mass
- 475 *Spectrometry Rcm*, 16, 2124.
- 476 Rentschler, E., Schuh, K., Krewinkel, M., Baur, C., Claaßen, W., Meyer, S., et al. (2015). Enzymatic production
- of lactulose and epilactose in milk. *Journal of Dairy Science*, 98, 6767–6775.
- 478 Ruhaak, L.R., Lebrilla, C.B., Weimer, B.C., & Slupsky, C. (2013). Current methods for the analysis of human
- milk oligosaccharides (HMOs) and their novel applications. Metabolomics in Food and Nutrition, 2013,
- 480 124–147.
- Sako, T., Matsumoto, K., & Tanaka, R. (1999). Recent progress on research and applications of non-digestible
- galacto-oligosaccharides. *International Dairy Journal*, 9, 69–80.


483	Samanta, A.K., Jayapal, N., Jayaram, C., Roy, S., Kolte, A.P., Senani, S., et al. (2015). Xylooligosaccharides as
484	prebiotics from agricultural by-products: Production and applications. Bioactive Carbohydrates and
485	Dietary Fibre, 5, 62–71.
486	Sanches Lopes, S.M., Francisco, M.G., Higashi, B., de Almeida, R.T., Krausová, G., Pilau, E.J., et al. (2016).
487	Chemical characterization and prebiotic activity of fructo-oligosaccharides from Stevia rebaudiana
488	(Bertoni) roots and in vitro adventitious root cultures. Carbohydrate Polymers, 152, 718–725.
489	Sastre, F., Ferreira, F., & Pedreschi, F. (2016). MALDI-TOF mass spectrometry and reversed-phase
490	HPLC-ELSD chromatography for structural and quantitative studies of major steroid saponins in
491	commercial extracts of Yucca schidigera Roezl, Journal of Pharmaceutical and Biomedical Analysis, 120,
492	270–282.
493	Schmolzer, K., Czabany, T., Luley-Goedl, C., Pavkov-Keller, T., Ribitsch, D., Schwab, H., et al. (2015).
494	Complete switch from α-2,3- to α-2,6-regioselectivity in <i>Pasteurella dagmatis</i> β-D-galactoside
495	sialyltransferase by active-site redesign. Chemical Communications, 51, 3083–3086.
496	Shoaf-Sweeney, K.D., & Hutkins, R.W. (2009). Adherence, anti-adherence, and oligosaccharides preventing
497	pathogens from sticking to the host. Advances in Food and Nutrition Research, 55, 101–161.
498	Shoaib, M., Shehzad, A., Omar, M., Rakha, A., Raza, H., Sharif, H.R., et al. (2016). Inulin: Properties, health
499	benefits and food applications. Carbohydrate Polymers, 147, 444-454.
500	Silvério, S.C., Macedo, E.A., Teixeira, J.A., & Rodrigues, L.R. (2015). Perspectives on the biotechnological
501	production and potential applications of lactosucrose: A review. Journal of Functional Food, 19, 74–90.
502	Singh, R.D., Banerjee, J., & Arora, A. (2015). Prebiotic potential of oligosaccharides: A focus on xylan derived
503	oligosaccharides. Bioactive Carbohydrates and Dietary Fibre, 5, 19–30.
504	Sørensen, H.R., Pedersen, S., & Meyer, A.S. (2007). Characterization of solubilized
505	arabinoxylo-oligosaccharides by MALDI-TOF MS analysis to unravel and direct enzyme catalyzed
506	hydrolysis of insoluble wheat arabinoxylan. Enzyme and Microbial Technology, 41, 103–110.
507	Soriano del Amo, D., Wang, W., Besanceney, C., Zheng, T., He, Y., Gerwe, B., et al. 2010. Chemoenzymatic
508	synthesis of the sialyl Lewis X glycan andits derivatives. Carbohydrate Research, 345, 1107-1113
509	Stein, D.B., Lin, Y.N., & Lin, C.H. (2008). Characterization of <i>Helicobacter pylori</i> α1,2-fucosyltransferase
510	for enzymatic synthesis of tumor-associated antigens. Advanced Synthesis and Catalysis, 350,
511	2313–2321

512	Sumiyoshi, W., Urashima, T., Nakamura, T., Arai, I., Saito, T., Tsumura, N., et al. (2003). Determination of
513	each neutral oligosaccharide in the milk of Japanese women during the course of lactation. British Journal
514	of Nutrition, 89, 61–69.
515	Suzuki, T., Maeda, S., Nomura, S., Suzuki, M., Grant, G., & Sporns, P.(2011). Rapid analysis of fructans and
516	comparison offructan profiles in several different types of asparagus storage roots using MALDI-TOF
517	MS. Journal of Horticultural Science & Biotechnology, 86, 210–216.
518	Oursel, S., Cholet, S., Junot, C., & Fenaille, F. (2017). Comparative analysis of native and permethylated
519	human milk oligosaccharides by liquid chromatography coupled to high resolution mass spectrometry.
520	Journal of Chromatography B Analytical Technologies in the Biomedical & Life Sciences, DOI:
521	10.1016/j.jchromb.2017.03.028
522	Tarr, A.J., Galley, J.D., Fisher, S., Chichlowski, M., Berg, B.M., & Bailey, M.T. (2015). The prebiotics
523	3'-sialyllactose and 6'-sialyllactose diminish stressor-induced anxiety-like behavior and colonic
524	microbiota alterations: evidence for effects on the gut-brain axis. Brain, Behavior and Immunity, 50,
525	166–177.
526	Tesić, M., Wicki, J., Poon, D.K., Withers, S.G., & Douglas, D.J. (2007). Gas phase noncovalent protein
527	complexes that retain solution binding properties: Binding of xylobiose inhibitors to the beta-1, 4
528	exoglucanase from cellulomonas fimi. Journal of the American Society for Mass Spectrometry, 18, 64-73.
529	Tokuoka, M., Honda, C., Totsuka, A., Shindo, H, & Hosaka, M. (2017). Analysis of the oligosaccharides in
530	Japanese rice wine, sake, by hydrophilic interaction liquid chromatographyetime-of-flight/mass
531	spectrometry. Journal of Bioscience and Bioengineering, https://doi.org/10.1016/j.jbiosc.2017.03.010
532	Van Laere, K.M., Hartemink, R., Bosveld, M., Schols, H.A., & Voragen, A.G.J. (2000). Fermentation of plant
533	cell wall derived polysaccharides and their corresponding oligosaccharides by intestinal bacteria. Journal
534	of Agricultural and Food Chemistry, 48, 1644–1652.
535	van Leeuwen, S.S., Kuipers, B.J., Dijkhuizen, L., & Kamerling, J.P. (2014). Development of a (1)H NMR
536	structural-reporter-group concept for the analysis of prebiotic galacto-oligosaccharides of the
537	[β-d-Galp-(1 \rightarrow x)]n-d-Glcp type. Carbohydrate Research, 400, 54–58.
538	Veros, C.T., & Oldham, N.J. (2007). Quantitative determination of lysozyme-ligand binding in the solution and
539	gas phases by electrospray ionisation mass spectrometry. Rapid Communications in Mass Spectrometry,
540	<i>21</i> , 3505–3510.


- Wang, B. (2009). Sialic acid is an essential nutrient for brain development and cognition. Annual Review of
- 542 *Nutrition*, 29, 177–222.
- Wang, D., Li, F.L., & Wang, S.A. (2016). A one-step bioprocess for production of high-content
- fructo-oligosaccharides from inulin by yeast. Carbohydrate Polymers, 151, 1220–1226.
- Wang, H.Y., Chu, X., Zhao, Z.X., He, X.S., & Guo, Y.L. (2011). Analysis of low molecular weight compounds
- by MALDI-FTICR-MS. *Journal of Chromatography B*, 879, 1166–1179.
- Wang, Y., Zeng, T., Wang, S.E., Wang, W., Wang, Q., & Yu, H.X. (2010). Fructo-oligosaccharides enhance the
- mineral absorption and counteract the adverse effects of phytic acid in mice. *Journal of Nutrition*, 26,
- 549 305–311.
- Westphal, Y., Kühnel, S., De Waard, P., Hinz, S.W., Schols, H.A., Voragen, A.G., et al. (2010). Branched
- arabino-oligosaccharides isolated from sugar beet arabinan. *Carbohydrate Research*, 345, 1180–1189.
- Wu, S., Tao, N., German, J.B., Grimm, R., & Lebrilla, C.B. (2010). Development of an annotated library of
- neutral human milk oligosaccharides. *Journal of Proteome Research*, 9, 4138–4151.
- Xu, Q., Chao, Y.L., & Wan, Q.B. (2009). Health benefit application of functional oligosaccharides.
- 555 *Carbohydrate Polymers*, 77, 435–441.
- Yang, H. J., Lee, A., Lee, M. K., Kim, W., & Kim, J. (2010). Detection of small neutral carbohydrates using
- various supporting materials in laser desorption/ionization mass spectrometry. Bulletin of the Korean
- 558 *Chemical Society*, *31*, 35–40.
- Yang, Z.Y., Wu, D.T., Chen, C.W., Cheong, K.L., Deng, Y., Chen, L.X., et al. (2016). Preparation of
- xylooligosaccharides from xylan by controlled acid hydrolysis and fast protein liquid chromatography
- 561 coupled with refractive index detection. *Separation and Purification Technology*, 171, 151–156.
- 562 Yao, Z., Wu, H., Zhang, S., & Du, Y. (2014). Enzymatic preparation of κ-carrageenan oligosaccharides and
- their anti-angiogenic activity. *Carbohydrate Polymers*, 101, 359–367.
- Yi, W., Liu, X., Li, Y., Li, J., Xia, C., Zhou, G., et al. (2009). Remodeling bacterial polysaccharides by
- metabolic pathway engineering. Proceedings of the National Academy of Sciences of the United States of
- 566 *America*, 106, 4207–4212.
- 567 Yu, H., & Chen, X. (2016). One-pot multienzyme (OPME) systems for chemoenzymatic synthesis of
- carbohydrates. Organic and Biomolecular Chemistry, 14, 2809–2818.

569	Yu, H., Lau, K., Thon, V., Autran, C.A., Jantscher-Krenn, E., Xue, M., et al. (2014). Synthetic disialy
570	hexasaccharides protect neonatal rats from necrotizing enterocolitis. Angewandte Chemie International
571	Edition, 53, 6687–6691.
572	Yun, J.W., Choi, Y.J., Song, C.H., & Song, S.K. (1999). Microbial production of inulo-oligosaccharides by an
573	endoinulinase from Pseudomonas sp. expressed in Escherichia coli. Journal of Bioscience and
574	Bioengineering, 87, 291–295.
575	Zhang, H.T., Zhu, L., Zhang, S., Zhan, X. B., & Lin, C.C. (2014). A new, quick, highly sensitive
576	ultramicro-analysis method for the identification of fructose removed from fructofuranosyl-containing
577	gluco-oligosaccharides by ESI-CID-MS/MS. Carbohydrate Research, 398, 1–7.
578	Zhang, L., Lau, K., Cheng, J., Yu, H., Li, Y., Sugiarto, G., et al. (2010). Helicobacter hepaticus Hh0072 general
579	encodes a novel 1-3-fucosyltransferase belonging to CAZy GT11 family. Glycobiology, 20, 1077-1088.
580	Zhang, M., Cai, S.L., & Ma, J.W. (2015). Evaluation of cardio-protective effect of soybean oligosaccharides
581	Gene, 555, 329–334.
582	Zhao, C., Wu, Y.J., Yang, C.F., Liu, B., & Huang, Y.F. (2015). Hypotensive, hypoglycemic and hypolipidemic
583	effects of bioactive compounds from microalgae and marine microorganisms. International Journal of
584	Food Science and Technology, 50, 1705–1717.
585	Zhao, C., Wu, Y.J., Yu, H., Shah, I.M., Li, Y.H., Zeng, J., et al. (2016). One-pot multienzyme (OPME
586	synthesis of human blood group H antigens and a human milk oligosaccharide (HMOS) with highly active
587	Thermosynechococcus elongatus α1–2-fucosyltransferase. Chemical Communications, 52, 3899–3902.
588	Zou, P., Yang, X., Wang, J., Li, Y., Yu, H., Zhang, Y., et al. (2015). Advances in characterisation and biological
589	activities of chitosan and chitosan oligosaccharides. Food Chemistry, 190, 1174-1181.
590	
591	
592	
U > L	
593	
594	
595	
596	


Fig. 1 Common monosaccharides components of the functional oligosaccharides.

Linear HMOs

Fig. 2 Schematic of HMOs structures and putative HMOs active glycoside hydrolase families (GH) based on the work of Wu, Tao, German, Grimm, & Lebrilla (2010). GH2, α -galactosidase; GH18, endo-β-N-acetylglycosaminidase; GH20, β-hexosaminidase; GH29, α -1,3/4-fucosidase; GH33, sialidase; GH95, α -1,2-fucosidase.

Fig. 3 The simplest routes for glycosyltransferase-catalyzed enzymatic synthesis of mammalian glycans with in situ generation of sugar nucleotides from a monosaccharide. Enzyme abbreviations: GlyK, glycokinase (Yi et al., 2009); NucT, nucleotidyltransferase; GlyT, glycosyltransferase (Zhao et al., 2016); PpA, inorganic pyrophosphatase (Lau et al., 2010).

 $\textbf{Table 1} \ \text{Natural functional oligosaccharides and their glycosidic linkages}.$

Туре	Monosaccharides	Number of monosaccharides	Bonds indicative of
			functions
Arabino-oligosaccharides	Arabinose	2-8	α-1,5
Arabinogalacto-oligosaccharides	Arabinose, galactose	2-9	β-1,4
Arabinoxylo-oligosaccharides	Xylose, arabinose	5-10	α-1,2, α-1,3, β-1,4
Clycosylsucrose	Glucose, fructose	3	α-1,2, β-1,4
Cyclodextrins (CDs)	D-glucopyranose	6 (α-CD),7 (β-CD),8 (γ-CD)	α-1,4
Fructo-oligosaccharides	Sucrose, fructose	2–5	β-1,2
Galacto-oligosaccharides	Galactose	2–5	β-1,2, α-1,4
Galacturono-oligosaccharides	Galactosamine	2-9	α-1,4
Gentio-oligosaccharides	Glucose	2–10	β-1,6
Glucose-oligosaccharides	Glucose	2–10	α-1,2, β-1,3, β-1,6
Human milk oligosaccharides	Glucose, galactose, GlcNAc	2-8	α-1,2, α-1,3, α-1,4, α-2,3,
			β-2,6, β-1,3, β-1,4
Isomalto-oligosaccharides	Glucose	2–5	α-1,4
Lactosucrose	Galactose, fructose	2–3	β-1,4
Lactulose	Galactose, fructose	2	β-1,4
Malto-oligosaccharides	Mannitose, glucose	2–10	α-1,2, α-1,4
Palatinose	Glucose, fructose 2		β-1,6
Raffinose	Galactose, fructose, glucose 3		β-1,2, α-1,4
Rhamnogalacturon-oligosaccharides	Rhamnose, galactose	4-8	α-1,2, α-1,4, β-1,4
Soybean oligosaccharides	Fructose, galactose, glucose 2–4		α-1,6
Stachyose	Galactose, fructose, glucose	4	α-1,4
Xylo-oligosaccharides	Xylose	2–7	α-1,4

Table 2 Sources and applications of natural and glycan oligosaccharides based on the work of Patel & Goyal (2011).

Oligosaccharides	Natural occurrence	Applications	References
Isomalto-oligosaccharide	Starch from wheat, barley, potato, rice, cassava,	Antidiabetic, prevent dental caries, stimulate the growth of colonic Bifidobacterium and	Basu, Mutturi, & Prapulla, 2016; Bharti et al.,
	honey, maltose, sucrose, dextran	Lactobacilli	2015
Soybean oligosaccharides	Soybean seed	Competitive exclusion against potential pathogenic bacteria, reduction of oxidative	Fei, Ling, Hua, & Ren, 2014; Zhang, Cai, &
		stress, cardio-protective, chronic diseases prevention, amelioration insulin resistance	Ma, 2015
Fructo-oligosaccharides	Antichoke, garlic, onion, asparagus, chicory,	Prebiotic activity, prevent urogenital infections, sweetener in beverages, acariogenic	Kumar, Prashanth, & Venkatesh, 2014; Okada
	fermented beverage of plant extract,	quality, effect on lipid metabolism, reduce risk of colon cancer, immunomodulatory	et al., 2010; Sanches Lopes et al., 2016; Wang
	Aspergillus, Fusarium, Arthrobacter,	property, antidiabetic activity	et al., 2010; Wang, Li, & Wang, 2016
	Aureobasidum, Gluconacetobacter, Bacillus,		
	Saccharomyces		
Lactulose	Cow milk	Used in treatment of hyperammonemia and portosystemic encephalopathy	Mussatto & Mancilha, 2007; Rentschler et al.,
			2015
Inulin	Chicory roots, onion, asparagus, antichoke	Function as dietary fiber, effect on lipid metabolism, reduction in risk of gastrointestinal	Apolinario et al., 2014; Shoaib et al., 2016;
		diseases; absorption of calcium, magnesium and iron increased, stimulation of immune system	Yun, Choi, Song, & Song, 1999
Galacto-oligosaccharides	Bifidobacterium bifidum, Kluyveromyces lactis,	Prebiotic	Goulas, Tzortzis, & Gibson, 2007; Kim, Park,
	Sulfolobus solfataricus; Human milk, cow milk		& Oh, 2006
Gluco-oligosaccharides	Leuconostoc mesenteroides NRRL B-1299	Promote beneficial cutaneous flora	Iliev et al., 2008
Lactosucrose	Pseudomonas aurantiaca	Increase in Bifidobacteria population	Crittenden, & Playne, 1996; Kolida, & Gibson,
			2007; Li et al., 2015; Silvério, Macedo,
			Teixeira, & Rodrigues, 2015
Malto-oligosaccharides	From starch by the action of pullulanase,	Reduce the levels of Clostridium perfringens and family Enterobacteriaceae	Manas, Jonet, Murad, Mahadi, & Illias, 2015
	isoamylase and amylases		
Xylooligosaccharides	Aspergillus, Trichoderma, Penicillium,	Prebiotic, antioxidant, gelling agent, treatment of diabetes, arteriosclerosis and colon	Moure, Gullón, Domínguez, & Parajó, 2006;
	Bacillus, Streptomyces, hardwood, corncob,	cancer	Samanta et al., 2015; Singh, Banerjee, & Arora,

	wheat straw, rice hull, barley straw		2015; Yang, 2016
Chitosan oligosaccharides	Depolymerised products of chitosan or chitin	Antioxidant, anti-tumor, anti-hypertensive, anti-microbial, fat-binding and hypocholesterolemic effects	Liu et al., 2010; Zou et al., 2015
Human milk	Human milk	Facilitate preferential growth of Bifidobacteria and Lactobacilli, inhibition of	He et al., 2016; Wang, 2009
oligosaccharides		lippolysaccharide-mediated inflammation, enhancement of brain development	
β-glucan oligosaccharide	Curdlan	Induction of monocytes to produce tumor necrosis factor alpha, stimulation of the	Fu et al., 2015; Kumagai, Okuyama, & Kimura,
		secretion of interleukin 1b	2016
Gentio-oligosaccharides	By digestion of starch; gentiobiose; Penicillium	Prebiotic	Côté, 2009; Fujimoto et al., 2009
	multicolor		
Pectin-derived	Higher plants; Sugar beet pulp	Prebiotic properties, amelioration diarrhoea, adsorption of calcium ions increased,	Concha Olmosa & Zúñiga Hansen, 2012;
oligosaccharides		antibacterial, antihyperlipidemic and antioxidant effects	Gómez, Gullón, Yáñez, Schols, & Alonso, 2016
Cyclodextrins	Transformation of starch by certain bacteria	Stabilization of deliquescent or volatile compounds in foods and chemicals,	Astray, 2009; Li et al., 2010; Radu, Parteni, &
	such as Bacillus macerans	improvement poor aqueous solubility of drug compounds	Ochiuz, 2016
Arabino-oligosaccharides	Sugar beet arabinan	Prebiotic	Westphal et al., 2010

Table 3 Distribution of oligosaccharides in human milk and bovine milk.

Abbreviation	Trivial name	Human milk (g L ⁻¹)*	Bovine milk (g L ⁻¹)*	Structure	Reference(s)	
Neutral oligosaccharides						
2'-FL	2'-Fucosyllactose	0-3.8	-	Fucα1–2Galβ1–4Glc	Baumgärtner et	
3'-FL	3'-Fucosyllactose	0.04-1.1	-	Galβ1–4(Fucα1–3)Glc	al., 2015;	
DF-L	Difucosyllactose			Fucα1–2Galβ1–4(Fucα1–3)Glc	Boehm &	
LNT	Lacto-N-tetraose	0.5-1.5	Trace	Galβ1–3GlcNAcβ1–3Galβ1–4Glc	Stahl, 2003;	
LNnT	Lacto-N-neotetraose			Galβ1–4GlcNAcβ1–3Galβ1–4Glc	Kulinich & Li,	
LNFP I	Lacto-N-fucopentaose I	1.2-1.7	-	Fucα1–2Galβ1–3GlcNAcβ1–3Galβ1–4Glc	2016; Kunz,	
LNFP-II	Lacto-N-fucopentaose II	0.3-1.0	-	Galβ1–3(Fucα1–4)GlcNAcβ1–3 Galβ1–4Glc	Rudloff, Baier,	
LNFP-III	Lacto-N-fucopentaose III	0.01-0.2	-	Galβ1–4(Fucα1–3)GlcNAcβ1–3 Galβ1–4Glc	Klein, &	
LNFP-V	Lacto-N-fucopentaose V			Galβ1–3GlcNAcβ1–3 Galβ1–4(Fucα1–3)Glc	Strobel, 2000;	
LNFP-VI	Lacto-N-fucopentaose VI		Galβ1–4GlcNAcβ1–3 Galβ1–4(Fucα1–3)Glc		Miyazaki,	
LNDFH-I	Lacto-N-difucohexaose I	0.1-0.2	- Fucα1–2Galβ1–3(Fucα1–4)GlcNAcβ1–3Galβ1–4Glc		Sato,	
LNDFH-II	Lacto-N-difucohexaose II		Galβ1–3(Fucα1–4)GlcNAcβ1–3Galβ1–4(Fucα1–3)Glc		Furukawa, &	
LNnDFH	Lacto-N-neodifucohexaose		Galβ1–4(Fucα1–3)GlcNAcβ1–3Galβ1–4(Fucα1–3)Glc		Ajisaka, 2010;	
Para-LNnH	Para-Lacto-N-neohexaose		Galβ1–4GlcNAcβ1–3Galβ1–4GlcNAcβ1–3Galβ1–4Glc		Perret et al.,	
LNnO	Lacto-N-neooctaose		Galβ1–4GlcNAcβ1–3Galβ1–4GlcNAcβ1–3Galβ1–4GlcNAcβ1–3Galβ1–4		2005	
LNnFP V	Lacto-N-neofucopentaose V		\'	$Gal\beta 1-4GlcNAc\beta 1-3Gal\beta 1-4(Fuc\alpha 1-3)Glc$		
LNH	Lacto-N-neohexaose			$Gal(\beta 1,3)GlcNAc(\beta 1,3)[Gal(\beta 1,4)GlcNAc(\beta 1,6)]Gal(\beta 1,4)Glc$		
Acidic oligosaccharides						
F-SL	3'Sialyl-3fucosyllactose			$Neu5Ac\alpha 2-3Gal\beta 1-4(Fuc\alpha 1-3)Glc$	Boehm &	
6'-SL	6'Sialyllactose	0.3-0.5	0.03-0.06 Neu5Ac α 2-6Gal β 1-4Glc		Stahl, 2003;	
3'-SL	3'Sialyllactose	0.1-0.3	Neu5Acα2–3Galβ1–4Glc		Jin, Joo, Li,	
LSTa	LS-Tetrasaccharide a	0.03-0.2	Trace Neu5Ac α 2–3Gal β 1–3GlcNAc β 1–3Gal β 1–4Glc			

	LSTc	LS-Tetrasaccharide c	0.1-0.6	Trace	$Neu5Ac\alpha2-6Gal\beta1-4GlcNAc\beta1-3Gal\beta1-4Glc$	2016; Neu et
						al., 2010; Tarr
						et al., 2015
	Minor human milk oli	gosaccharides				
	PI	BGA tetraose type 5			$GalNAc\alpha 1 - 3(Fuc\alpha 1 - 2)Gal\beta 1 - 4Glc$	Kobata, 2010
	PII	BGA hexaose type 1			$GalNAc\alpha 1-3 (Fuc\alpha 1-2)Gal\beta 1-3GlcNAc\beta 1-3Gal\beta 1-4Glc$	
645	BGA: Blood group A antige	n; * The concentrations were compiled	l from previous studies	(Bao, Chen, & Newburg,	2013; Gopal & Gill, 2000; Gwendolyn, Philip, Li, & Anita, 2013; Kunz & R	udloff, 2002; Sumiyoshi et al.,
646	2002)					
040	2003).					
647						
648					(X)	
- 10						
649						
650						
050				X		
651						
652						
653						
654			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
034						

Table 4 The main properties and applications with different methods for oligosaccharide analysis.

Technique	Main Properties	Applications	References
HR-MS	Eelucidate molecular species without standard samples; Multiple stages of isolation and dissociation (MS ⁿ); Limited ionization capacity and low sensitivity for oligosaccharide analysis.	Chitosan oligosaccharides; Native and permethylated human milk oligosaccharides	Cederkvist et al., 2011; Oursel, Cholet, Junot, & Fenaille, 2017
ESI-MS-MS or MS ⁿ	Obtain information about the sequence, branching pattern and localization of modifications on oligosaccharides;	Fructofuranosyl-containing gluco-oligosaccharides	Leijdekkers, Sanders, Schols, & Gruppen, 2011; Na et al,
	Be valuable in the evaluation of isomeric oligosaccharides; Characterization of sulfated oligosaccharides ES-CID-MS/MS in the negative-ion mode.		2016; Tesić, Wicki, Poon, Withers, & Douglas, 2007; Veros,
			& Oldham, 2007; Zhang, Zhu, Zhang, Zhan, & Lin, 2014
NMR-ES-MS	Primary method for structural analysis of sulfated polysaccharide and derived oligosaccharides by NMR; Gain information about possible non-ionizable constituents;	Galactooligosaccharides	van Leeuwen, Kuipers, Dijkhuizen, & Kamerling, 2014
	Large amounts of sample at milligram scale, quite time consuming, and a high level of expertise for NMR data interpretation.		
FT-ICR-MS	Ultra-high mass resolution and mass accuracy, non-destructive detection, high sensitivity and multistage MS ⁿ ;	Thioxylo-oligosaccharide	Cederkvist et al., 2011; Jänis et al, 2005
	Identification at molecular-level analyses of organic mixtures without prior extraction or separation steps.	7	
MALDI-MS	Short analysis time, low fragmentation, wide mass range, salt and impurity tolerance of oligosaccharide analysis; Be difficult in sulfated oligosaccharides analysis due to the labile nature of the sulfate group.	Olive xylo-oligosaccharides	Reis, Coimbra, Domingues, Ferrer-Correia, & Domingues, 2002;, Kim et al, 2016
MALDI-TOF-MS	Determination of the molecular masses of neutral and acidic oligosaccharides; Process of soft-ionization causes little or no fragmentation of analytes; A qualitative profile of the solubilized oligosaccharides; Not directly distinguish anomerity or branching configuration of oligosaccharides.	Arabinoxylo-oligosaccharides; Fructans; Chitosan oligosaccharides	Yang, Lee, Lee, Kim, & Kim, 2010; Sørensen, Pedersen, & Anastyuk, Shevchenko, Nazarenko, Dmitrenok, & Zvyagintseva, 2009; Chen, Zhu, Li, Guo, & Ling, 2010; Meyer, 2007; Park, Yang, Kim, & Kim, 2012; Suzuki et al., 2011
GPC-MALDI-TO F-MS	Determining the molecular weight of polymers by GPC; Less accurate molecular weight results for cationic polymers due to aggregation and ion exclusion.	High molecular weight oligomers	Liu, Maziarz, Heiler, & Grobe, 2003
GPC-ESI-ITMS	Detection of mono-disperse oligomers; Higher chromatographic resolution compared to GPC-MALDI-TOF-MS.	Low molecular weight oligomers	Liu, Maziarz, Heiler, & Grobe, 2003
HILIC-ELSD-MS	Suitable for separation of highly polar carbohydrates; Detection of optical properties or functional groups of the analytes and compounds lacking chromophores.	Maltooligosaccharides; Labelled xyloglucans and xylan-derived oligosaccharides;	Leijdekkers, Sanders, Schols, & Gruppen, 2011
HILIC-TOF-MS	Faster separations with high fraction of organic solvent used in HILIC mobile phases, and higher desolvation within the MS source.		Ma, Sun, Chen, Zhang, & Zhu, 2014; Sastre, Ferreira, & Pedreschi, 2016; Tokuoka, Honda, Totsuka, Shindo, & Hosaka, 2017
HPAEC-PAD	Hydroxyl groups deprotonated to oxyanions under high pH for normal phase separation of oligosaccharides;	N-linked oligosaccharides	Arfelli, & Sartini, 2014; Cataldi, Campa, & De Benedetto, 2000; Maier et al., 2016
HPSEC-RI	Compatibility with gradient elution and picomolar sensitivity for oligosaccharide detection. Characterize the physicochemical properties of the interacting biopolymer fractions in detail; Be unapplied in gradient elution and sensitive to temperature by RI detector.	Xylo-oligosaccharide	

HPAEC-CE	Obtain the high resolution under physiological conditions; Minute quantities of samples with short analysis time; Require simple preparation and fluorescent derivatization of sample.	Sialylated oligosaccharides; Glycoprotein-derived oligosaccharides	Monti, Cattaneo, Orlandi, & Curadi, 2011
HR-MS, high-reso	lution mass spectrometry; ES-MS-MS, electrospray tandem mass spectrometry; NMR, nuc	lear magnetic resonance spectroscopy; FT-ICR	-MS, fourier transform-ion cyclotron resonance-mass spectrometry;
GPC, gel permeat	ion chromatography; MALDI-TOF-MS, matrix-assisted laser desorption/ionization time	e-of-flight mass spectrometry; nESI-MS nano-	-electrospray ionization mass spectroscopy; ITMS, ion trap mass
spectrometry; HPA	AEC, high performance anion exchange chromatography; PAD, pulsed amperometric detec	tion; CE, capillary electrophoresis,	
HILIC, hydrophilic	c interaction liquid chromatography; HPSEC, high performance size exclusion chromatogr	aph.	

 Table 5 Chemoenzymatic synthesis of oligosaccharides.

Product	Enzyme(s)	Yield (mg)	Yield (%)	Reference
One-pot chemoenzymatic synthesis of a1-2-linked fucosides				
$Fuc\alpha 1 - 2Gal\beta 1 - 3GlcNAc\beta ProN_3$	α1–2Te2FT, Fkp, PmPpA	50.5	96	Zhao et al., 2016
$Fuc\alpha 1 - 2Gal\beta 1 - 3GlcNAc\alpha ProN_3$	α1–2Te2FT, Fkp, PmPpA	51.3	95	Zhao et al., 2016
$Fuc\alpha 1 - 2Gal\beta 1 - 3GalNAc\alpha ProN_3$	α1-2Te2FT, Fkp, PmPpA	35.7	95	Zhao et al., 2016
$Fuc\alpha 1 - 2Gal\beta 1 - 3GalNAc\beta ProN_3$	α1-2Te2FT, Fkp, PmPpA	43.8	98	Zhao et al., 2016
LNFP I, Fucα1–2LNT	α1–2Te2FT, Fkp, PmPpA	1146	95	Zhao et al., 2016
2'-Fucosyllactose, Fucα1–2Galβ1–4Glc	GST-a1-2-HpFucT	18	65	Albermann, Piepersberg, &
				Wehmeier, 2010
2'-Fucosyllactose-N ₃	GST-WbsJ	5.2	78	Li et al., 2008a,b
Fucα1–2Galβ-OMe	GST-WbsJ	4.4	71	Li et al., 2008a,b
T-antigen-OMe, β -D-Gal- $(1-3)$ - α -D-GalNAc-OMe	GST-WbiQ	19	100	Pettit et al., 2010
Lewis ^y -tetrasaccharide	α 1–2-HpFucT, α 1–3-HpFucT $^{1-433}$	4	45	Stein, Lin, & Lin, 2008
One-pot chemoenzymatic synthesis of a1-3/4-linked fucosides				
$Lewis^a\text{-O-}(CH_2)_8CO_2CH_3 \ or \ Lewis^x\text{-O-}(CH_2)_8CO_2CH_3$	$\alpha 1-3/4$ -HpFUCT ¹⁻⁴²⁸ , $\alpha 1-3$ -FucT ¹⁻⁴⁴¹	-	87–94	Ma et al., 2006; Ma,
				Simala-Grant, & Taylor, 2006
Lewis ^x	α1–3-HpFucT Δ52 FutA	-	95	Choi, Kim, Park, & Kim, 2016
3'-Fucosyllactose, Galβ1–4-(Fucα1–3-)Glc	α1–3-HpFucT Δ52 FutA	-	96	Choi, Kim, Park, & Kim, 2016
Lewis ^x -ProN ₃	HhFT1, Fkp	25	63	Zhang et al., 2010
Sialyl Lewis ^x -ProN ₃	α1–3-HpFucT ^{1–433} , Fkp, iPPase	18.6	83	Soriano del Amo et al., 2010
LNFPIII-ProN ₃	α1-3-HpFucT Δ52 FutA, FKP	109	92	Chen et al., 2015
LNDFH I, lacto-N-difuco-hexoase I	Commercial fucosyltransferase III (FUT3)	1.7	85	Miyazaki, Sato, Furukawa,
	Y			Ajisaka, 2010
One-pot chemoenzymatic synthesis of carbohydrates				
LNT, Galβ1–3GlcNAcβ1–3Galβ1–4Glc	Aureobacterium sp. L-101 lacto-N-biosidase	7.1	19-26	Murata, Inukai, Suzuki,

				Yamagishi, & Usui, 1999
LNT2, GlcNAcβ1–3Galβ1–4Glc	NmLgtA, NmLgtB	1360	95%	Johnson, 1999
LNnT, Galβ1–4GlcNAcβ1–3Galβ1–4Glc	NmLgtA, NmLgtB	1190	92	Johnson, 1999
LSTd, Neu5Acα2-3LNnT	Trypanosoma cruzi α2–3-trans-sialidase	138	98	Yu et al, 2014
3'-SL, Neu5Acα2–3Galβ1–4Glc	EcNanA, NmCSS, PmST1	68	68	Schmolzer, et al, 2015
DSLNnT	NmCSS, Pd2,6ST	236	99	Yu, et al, 2014
DSLac, Neu5Ac α 2–3(Neu5Ac α 2–6)Gal β 1–4Glc	NmCSS, Pd2,6ST	112	93	Yu, et al, 2014
DS'LNT, Neu5Ac α 2–6Gal β 1–3GlcNAc β 1–3(Neu5Ac α 2–6)Gal β 1–4Glc	NmCSS, Pd2,6ST	268	98	Yu, et al, 2014
Gb3 trisaccharide, Neu5Ac α 2–8Neu5Ac α 2–3Gal β 1–4Glc	NgLgtC	5000	75	Johnson, 1999
Gb4 tetrasaccharide	NgLgtD	1500	60	Johnson, 1999
A whole-cell approach or engineered E. coli living-strategy				
3'-SL, Neu5Acα2–3Galβ1–4Glc	Corynebacterium ammoniagenes DN510 cells, E. Coli K12 CTP	72,000	44	Endo, Koizumi, Tabata, & Ozaki,
	synthetase, E. coli K1 CMP-Neu5Ac synthetase, N. gonorrhoeae			2000
	$\alpha 2$ –3-sialyltransferase			
LNT-2, GlcNAcβ1–3Galβ1–4Glc	E. coli JM109 (lacY+ lacZ-) with lgtA gene	6000	73	Priem, Gilbert, Wakarchuk, Heyraud, & Samain, 2002
LNnDFH, lacto-N-neodifucohexaose	NmLgtA, NmLgtB, H. pylori 26695 α1–3-fucosyltransferase	1700	70	Dumon, Priem, Martin, Heyraud,
	FutA and RcsA			Bosso, & Samain, 2001
LNFP II, lacto-N-neofucopentaose II	NmLgtA, NmLgtB, H. pylori 26695 α1–3-fucosyltransferase futB	260	-	Dumon, Samain, & Priem, 2004
	gene			
LNnFP V, Lacto-N-neofucopentaose V	NmLgtA, NmLgtB, H. pylori 26695 α1–3-fucosyltransferase futB	280	_	Dumon, Samain, & Priem, 2004
$Gal-(\beta 1-4)GlcNAc(\beta 1-3)Gal(\beta 1-4)[Fuc(\alpha 1-3)]Glc$				
Lewis ^x trisaccharide	Helicobacter pylori α1–3-fucosyltransferase	2100	32	Koizumi, Endo, Tabata, Nagano,
,				Ohnishi, & Ozaki, 2000
GM2, GalNAcβ1–4(NeuAcα1–3)Galβ1–4Glc	CMP-NeuAc synthase, α2–3-sialyltransferase, UDP-GlcNAc C4	1250	_	Antoine, et al, 2003

	epimerase, β1–4-GalNAc transferase			
GM1, Gal β 1–3GalNAc β 1–4(NeuAc α 1–3)Gal β 1–4Glc	$\beta 1$ –3-galactosyltransferase	890	-	Antoine, et al, 2003
Galβ1–4(Fucα1–3)GlcNAcβ1–4GlcNAc	Rhizobium leguminosarum chitin-synt	hase NodC and Bacillus 620	-	Dumon, Bosso, Utille, Heyraud,
	circulans chitinase A1			& Samain, 2006
Galβ1–4(Fucα1–3)GlcNAcβ1–3Gal	NmLgtA	1840	-	Dumon, Bosso, Utille, Heyraud,
				& Samain, 2006

EcNanA, *E. coli* sialic acid aldolase; FucT, fucosyltransferase; NmCSS, *Neisseria meningitidis* CMP-sialic acid synthetase; Pd2,6ST, *Photobacterium damselae* α2–6-sialyltransferase; PmPpA, *Pasteurella multocida* inorganic pyrophosphatase; PmST, *Pasteurella multocida* α2–3-sialyltransferase; PmST1, *Pasteurella multocida* α2–3-sialyltransferase; PmST1, *Pasteurella multocida* α2–3-sialyltransferase; NmLgtA, *Neisseria meningitidis* β1–3-N-acetylglucosaminyltransferase; NmLgtB, Neisseria meningitidis β1–4GalT; NgLgtC, *Neisseria gonorrhoeae* α1–4-galactosyltransferase; NgLgtD, *Neisseria gonorrhoeae* β1–3-Nacetylgalactosaminyltransferase; Pd2,6ST, *Photobacterium damselae* α2–6-sialyltransferase; HhFT1, Helicobacter hepaticus α1-3-fucosyltransferase.

- 1. The biological functions of milk oligosaccharides, especially human milk oligosaccharides.
- 2. Developments in techniques for analysis of the oligosaccharide.
- 3. Advances in the oligosaccharides synthesis.

