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This paper reviews in silico models currently available for the prediction of skin permeability 

with the main focus on the quantitative structure-permeability relationship (QSPR) models. A 

comprehensive analysis of the main achievements in the field in the last decade is provided. In 

addition, the mechanistic models are discussed and comparative studies that analyse different 

models are discussed. (to be extended to 100--200 words) 

Keywords 

dermal absorption, mathematical modelling, QSPR, permeability, skin, stratum corneum (5 to 10 

keywords) 

 

1. Introduction  

Prediction of dermal absorption is an important research topic in the pharmaceutical and 

cosmetics sectors  and relates to the optimisation of the deposition and delivery of the active 

substances, as well as hazard and risk assessment. It is of particular interest in the light of the 

current EU regulations, such as REACH (Registration, Evaluation, Authorisation and Restriction of 

Chemicals) and Cosmetics Regulation  that strongly recommend or require use of alternatives to 

animal studies. The main benefits of theoretical predictions over experimental measurements 

include reduction of resources and resolving ethical issues. In addition, the models may assist in the 

better understanding of mechanisms of absorption. 

Prediction models are of particular interest in the light of the current EU regulations, such as 

REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals) and Cosmetics 

Regulation that strongly recommend or require use of alternatives to animal studies. The Cosmetics 

Regulation has completely banned marketing of animal tested cosmetics ingredients and products in 

Commented [AR1]: Moved down 
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the EU, requiring alternative methods for the safety assessment. Within the COSMOS project - part 

of the SEURAT-1 cluster co-funded by the European Commission and the Cosmetics Europe, the 

European cosmetics industry association – computational models to support the safety assessment 

of cosmetics-related substances were developed. For these substances the dermal exposure route is 

particularly important and therefore models for the prediction of skin permeation are needed to 

estimate the systemic availability via the dermal route. For example skin permeation models were 

used in the evaluation of the extension of the Thresholds of Toxicological Concern (TTC) approach 

to cosmetics and included in the decision tree developed to predict the systemic dose for 

comparison with the TTC derived from oral data (Williams et al 2016). 

There are two main types of predictive models for skin absorption: (i) quantitative structure-

permeability relationship (QSPR) models that relate skin permeability to chemical structure 

described by physico-chemical properties and other structural descriptors; these models rely on 

experimental data for skin permeability and build quantitative correlations using statistical 

approaches; and (ii) mechanistic models that take into account the heterogeneity of the skin 

structure in solute transport and are derived from first principles such as mass balance, relying on 

additional assumptions such as Fick’s laws of diffusion (Naegel et al., 2013). A number of the 

models reported are based on the general agreement that the rate-limiting step of permeation is 

often diffusion through the stratum corneum (SC), the outermost layer of the skin. Thus, an 

important challenge in modelling studies is to reflect the effect of the heterogeneous SC and the 

different possible absorption pathways, including transcellular absorption, intercellular absorption 

and appendageal absorption. Many studies regard passive diffusion through the lipid lamellae as the 

primary pathway. A smaller number of studies report the transcellular route to be important for 

passage of chemicals through the skin. Further challenges are how to model mixtures, transport 

from different vehicles, and the permeation of hydrophilic compounds. 
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This review provides a comprehensive analysis of the main achievements in modelling skin 

absorption with QSPR approaches during the last decade. In addition, the mechanistic models are 

discussed and comparative analyses of different models are provided. 

2. Skin structure and mechanisms of skin absorption 

In this section the main issues related to the structure and function of skin, as well as the 

mechanism of skin absorption, are briefly discussed in light of their role in the modelling of skin 

permeability. More detail on these topics can be found in several extensive reviews (e.g. Wiechers, 

1989; Singh & Singh, 1993; Schaefer & Redelmeier, 1996; Walters & Roberts, 2002; Madison, 

2003; Monteiro-Riviere, 2004, 2006). 

The skin is the primary barrier to systemic absorption of topically applied chemicals and a portal 

to the systemic delivery of transdermal medicaments (Monteiro-Riviere, 2006). Due to its large 

surface area and the cutaneous circulation, which comprises 5–10% of the total cardiac output, the 

skin is a major route of entry into the body for some exposure scenarios. As such, the skin provides 

a sturdy and flexible barrier to unwanted toxic substances and pathogenic microorganisms, to water 

and nutrients loss and responds to mechanical forces (elasticity and cushioning). Skin defence and 

repair includes touch, pain, and heat sensitivity, UV protection, cutaneous metabolism, 

immunological activity and inflammatory response to a foreign insult.  
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Fig. 1. Schematic representation of the skin structure: A – epidermis, B – dermis, C – hypodermis; 

1 – hair shaft, 2 – pore, 3 –hair erector muscle, 4 – sebaceous gland, 5 – sweat gland, 6 – hair 

follicle, 7 – blood vessel. 

 

The skin is a heterogeneous organ, containing a number of cellular layers, divided into distinct 

regions (Fig. 1). The epidermis is the outer region of embryonic ectodermal origin, which covers the 

connective tissue, while the dermis and the hypodermis are derived from the mesoderm (Kielhorn J 

et al. 2006). The epidermis has several layers with the following order from the external surface to 

inside: stratum corneum (SC, horny layer), stratum lucidum (clear layer), stratum granulosum 

(granular layer), stratum spinosum (spinous or prickle layer) and stratum germinativum (basal 

layer). The majority of cells in the epidermis are keratinocytes, formed by differentiation and 
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migration from the metabolically active basal layer. The cells of the adjacent layer, the stratum 

spinosum, are connected through desmosomes and other bridges and produce lamellar intracellular 

granules that, after fusion with the cell membrane, release neutral barrier lipids. The keratinocytes 

migrate to the outermost viable layer, the stratum granulosum, and are characterised by the presence 

of keratohyalin granules, polyribosomes, large Golgi bodies and rough endoplasmic reticulum.  

The top-most nonviable layer, the SC, is the major barrier to permeation within the skin (Fig. 2). 

It is 10–50 μm thick, metabolically inactive, with low water content (5-20%). It is composed of 

hexagonal cornified corneocytes that do not contain nuclei or cytoplasmic organelles. The majority 

of their cell content is keratin, a scleroprotein with chains linked by disulfide and hydrogen bonds. 

The corneocytes are connected by corneodesmosomes and their protein-rich cornified cell envelope, 

made up of highly cross-linked proteins (loricrin, involucrin, and filagrin) and provide covalent 

linkage sites for the surrounding non-polar barrier lipids (Madison, 2003, Norlen, 2008, Masters, 

So, 2001). The intercellular substance derived from the lamellar granules is present between the SC 

cells and forms the intercellular lipid component of a complex SC barrier, which prevents both the 

penetration of substances from the environment and the loss of body fluids (Monteiro-Riviere, 

2006). 
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Fig. 2. Schematic diagram of stratum corneum with the main transport routes (based on Barry, 

2001). 1 – cell cytoplasm, 2 – aqueous layer, 3 – lipid bilayers (ceramides, cholesterol, fatty acids),  

4 – plasma membrane, 5 – lipid, 6 – keratin 

 

The hydrophobic lipid composition of the intracellular spaces includes: 45–50% ceramides, 25% 

cholesterol, 15% long-chain free fatty acids, and 5% other lipids, the most important being 

cholesterol sulfate, cholesterol esters and glucosylceramides (Wertz et al., 1987; Law et al., 1995; 

Madison, 2003, de Jager et al., 2003; Ponec et al., 2003). The ceramides consist of a sphingosine or 

a phytosphingosine base to which a non-hydroxy, an -hydroxy, fatty acid is chemically linked. 

The length of the fatty acid chains is mostly between 24-26 methylene groups. Despite its low 

Commented [AW2]: Why is the plasma membrane distinguished 
from the lipid bilayer? 
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content, cholesterol sulfate has been shown to be involved in the regulation of the desquamation 

process. How the skin lipids are organised architecturally is still not fully understood – both a single 

gel phase (Norlen, 2001) and the coexistence of a liquid crystalline and a crystalline phase 

(Bouwstra, Ponec, 2006; Forslind, 1994; Kitson et al., 1994) were  initially assumed. Later, a model 

based on bilayers of fully extended ceramides with asymmetrically distributed cholesterol 

molecules associated with the ceramide sphingoid moiety was proposed (Iwai et al., 2012). The 

authors speculated that a SC lipid matrix, in which cholesterol and free fatty acid segregated into 

different bands, allows for crystalline-like hydrocarbon chain packing on the fatty acid sides of the 

stacked extended ceramide bilayer system. In addition to keratinocytes, the epidermis contains two 

dendritic cell types, melanin producing cells, adjacent to the basal layer (melanocytes) and cells 

participating in the immune recognition in metabolically active epidermal layers (Langerhans cells) 

(Ahmed, 1979; Romani et al., 2003).  

A thin basement membrane separates the epidermis from the dermis (Fig. 1), where blood 

vessels, sensory nerves (pressure, temperature, and pain) and lymphatics are located. Its main 

functions are to provide nutritional support for the avascular epidermis, being a barrier to infection 

and a water storage organ. Beneath the dermis is a layer of loose connective tissue commonly 

known as the hypodermis (subcutis); it consists of superficial fascia with elastic fibres and aids in 

binding the skin to the underlying fascia and skeletal muscle (Monteiro-Riviere, 2006). The skin 

appendages originate in this layer: eccrine sweat glands, apocrine sweat glands, sebaceous glands 

and hair follicles with their associated erector muscles (Fig. 1).  

The transport of chemicals through the skin is a complex process, mediated by the following 

mechanisms: transcellular absorption (through the keratin-packed corneocytes by partitioning into 

and out of the cell membrane); intercellular absorption (around the corneocytes in the lipid-rich 

extracellular regions) and appendageal absorption (through the shunts provided by the hair follicles, 
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sweat glands, and sebaceous glands). The routes mediated by intercellular and transcellular 

absorption are considered as the most important for skin permeation of chemicals (Fig. 2). The 

tortuous intercellular pathway around the corneocytes has been identified as the major route of 

penetration across SC due to the relative impermeability of the cornified envelope, implying that SC 

lipids play a key role in the skin barrier function (Michaels et al., 1975; Elias, 1981; Grubauer et al., 

1987; Mao-Qiang et al., 1993; Bouwstra et al., 2001, 2003a; Ponec et al., 2003). The route 

associated with appendageal absorption may be important at early time points following application 

of the penetrant and in areas with significant density and size of appendages which may act as a 

drug reservoir for some materials (Kielhorn et al. 2006). 

 

3. Skin absorption parameters estimated in QSPR studies 

Typically QSPR models for skin absorption are based on experimental data derived from in vitro 

assays where steady-state conditions are ensured. The solute (penetrant) transport through the skin 

under steady-state conditions can be described by Fick’s first law. It relates the amount of a solute 

Q, crossing the skin membrane of area A, over a time period T, with the constant concentration 

gradient across the two interior surfaces of the skin Cs, the diffusion coefficient in the skin 

membrane D, and the path length h, as follows: 

Q =D . A . T . Cs / h         (1) 

Here the assumption is that the SC behaves like a pseudo-homogenous membrane. Thus the 

steady-state skin flux Jss (mol/cm2/hour) can be defined as: 

Jss = Q / (A . T) = (D . Cs) / h        (2) 

Commonly, the concentration at path length h is zero or very small (sink conditions). Also, the 



10 

 

concentration of the chemical at path length 0 is in a local equilibrium with the vehicle, and can be 

given by: 

C = Km . Cv           (3) 

where Km is the pseudo-homogeneous partition coefficient between the SC and the vehicle and Cv is 

the vehicle concentration. 

Under these conditions, eq. 2 becomes: 

Jss = D . Km  Cv / h = Kp  . Cv         (4) 

where Kp (permeability coefficient, cm/h) is the steady-state flux of the substance normalised by the 

concentration (remaining constant over a range of concentration values) Cv, i.e.: 

Kp = Jss / Cv           (5) 

It can be defined from eq. 4 as follows (Crank, 1975): 

Kp = D  Km / h          (6) 

The permeability coefficient Kp is the preferred dependent variable in the QSPR models. Usually 

it is calculated for an aqueous vehicle. Over time, a substantial database of experimentally 

determined Kp values from aqueous vehicles has been compiled, which is useful for deriving 

models (Mitragorti et al., 2011). 

Typically, the steady-state flux Jss is assessed from an in vitro experiments in which the donor 

concentration of the penetrant is maintained constant (i.e. infinite dose conditions), while the 

receiver phase provides “sink” conditions. Over time, the flux approaches a steady-state value and 

the cumulative amount penetrating the skin increases linearly with time. Jss is determined from the 

slope of the linear portion of the graph of the cumulative amount penetrated over the time. Kp is the Commented [AW3]: Would be nice to illustrate this 
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ratio of Jss and the vehicle concentration Cv (see eq. 5). 

The maximum flux, Jmax, will be observed when maximum solubility Ss of a solute in the SC is 

achieved, so that eq. 2 can be written as: 

Jmax = D  Ss / h          (7) 

Based on Kp and the maximal solubility of the chemical in the vehicle (Sv), the maximum flux 

can be represented as follows: 

Jmax = Kp . Sv          (8) 

Despite the fact that only few studies predict Jmax, it is a very useful parameter as it does not 

depend on the formulation, providing the formulation is saturated. Jmax should be constant as long as 

the chemical is at its maximum thermodynamic activity in the vehicle (Kroes et al., 2007). It must 

be noted that when calculating Jmax (eq. 8) Kp and Sv must be determined in the same vehicle. 

 

4. Main data sources for modelling purposes 

A large number of skin absorption data have been generated, some of them published in non-

proprietary sources. However, due to the lack of an established standard experimental procedure, 

there is high variability in experimental skin permeability values. This is as a result of the influence 

of a number of factors such as subject variability (i.e. species, sex and age), application site, dosing 

regime, occlusion, as well as inter-laboratory variations. Conversely, the key points for the 

development of predictive QSPR models are consistency and reliability of the experimental 

permeability data. Variations in the factors that influence these data increase the error and decrease 

the statistical reliability of the developed models (Moss et al., 2002a). 

Commented [AR4]: The proprietary ones would be in-house data 
in industry? 
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The section below shortly discusses the main datasets that have been published in the scientific 

literature and used for QSPR modelling (summarised in Table 1). 

Flynn dataset (Flynn, 1990). This was the first significant dataset of experimental permeability 

properties compiled. Due to this fact it is considered as a milestone in the development of QSPRs 

for skin permeability. It includes 97 permeability coefficients for 94 compounds, tested in vitro 

through human skin and in vivo in humans for toluene, ethyl benzene, and styrene (Flynn, 1990). 

The compounds cover a broad range of molecular weights (18 to 765) and logarithm of the octanol-

water partition coefficient (log P) values (−3 to 6); however the lipophilicity distribution is uneven 

– there are only small numbers of either highly lipophilic or highly hydrophilic compounds (Russell 

and Guy, 2009). Being a compilation of 15 different literature sources, this dataset has a high 

degree of uncertainty due to inter-laboratory and intra-laboratory variability including use of skin 

obtained from different sources and body locations (Moss et al., 2002a). Some groups have 

reanalysed the data included in the dataset. Johnson et al., 1995 re-examined the results for steroids 

previously measured by Scheuplein et al., 1969 and included them in the Flynn dataset. Degim et 

al., 1998 reanalysed other compounds (naproxen, atropine, and nicotine), for which experimental 

values differed by one or two log units from those published by Flynn. 

Wilschut et al. dataset (Wilschut et al., 1995). The dataset consists of 123 permeability 

coefficients for 99 different compounds applied in vitro to human skin in an aqueous solution and is 

compiled from the literature. These chemicals represent various chemical classes, including 

monoaromatic hydrocarbons, volatile halogenated hydrocarbons, phenols and steroids. 

Kirchner et al. dataset (Kirchner et al., 1997). A larger database of 114 skin permeability values 

was prepared from the Flynn dataset (51 chemicals, Flynn, 1990), together with additional data 

from regulatory reports (Health Canada, years range). However, the database contained 

Commented [AR5]: Is it possible to comment on the variability/ 

intra-lab comparability for datasets compiled from different sources, 

i.e. are there specific differences for the datasets mentioned here 

(some are more or less variable and thus or generally better suitable 
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permeability coefficients for 63 compounds, which were not experimental values, but had been 

calculated using the “Potts and Guy” linear equation (Frasch and Landsittel, 2002, see below).  

Patel et al. dataset (Patel et al., 2002). Patel and co-authors compiled a comprehensive dataset 

containing 186 permeability coefficients for 158 structurally diverse compounds from human in 

vitro skin data of Flynn (1990) and Wilschut et al. (1995). They removed some compounds 

(atropine, diclofenac, naproxen, nicotine) that were considered as outliers. 

Vecchia et al. dataset (Vecchia et al., 2003). Vecchia and Bunge (2003a) collected a diverse 

data set of 170 permeability coefficients for 127 compounds covering molecular weights from 18 to 

584 and log P values from -3.1 to 4.6. 

Magnusson et al. dataset (Magnusson et al., 2004b). The complete dataset contains 278 Jmax 

values that are acquired or estimated from experimental data of various sources. The basic set 

includes Jmax values of 64 different solutes (87 records) from aqueous solution across a human skin. 

Additional records are available for: an aqueous vehicle with full- and split-thickness skin (56 

records); some pure solutes (34 records); an aqueous vehicle with ionisable solutes (54 records) and 

solutes from a propylene glycol vehicle (36 records). The data cover a wide range of 

physicochemical properties with log P values ranging from -5.7 to 8.7, molecular weight (MW) 

from 18 to 765 g/mol, melting point (Mpt) from 147 to 582 K and aqueous solubility (Saq) from 

6.9x10-7 mol/l to 8x10-6 mol/l. 

EDETOX database, 2004. It has been developed in the frame of multipartner EU project and is 

freely available from the University of Newcastle web page (http://research.ncl.ac.uk/edetox/). 

EDETOX contains over 4800 studies for 320 chemicals (Kielhorn et al. 2006). The database 

contains data from in vitro and in vivo percutaneous penetration studies using different species. 

EDETOX provides information about chemical name, vehicle used, origin of the skin sample, 

Commented [AR11]: From in vitro and/or in vivo data ?; 
completely new or overlaps with previous compilations listed? 
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membrane thickness, exposure time, length of study, percentage of dose absorbed, percentage 

recovery, flux, Kp, lag time, where available, and the source publications (Soyei and Williams, 

2004, Williams, 2006).  

Lian et al. dataset, 2008. The dataset is compiled from a number of publications (Wilschut et al., 

1995; Johnson, 1997; Patel et al., 2002; Mitragotri, 2003). Only human skin data are included. 

Altogether, there are 205 data points for 124 chemical compounds. MW values of the chemical 

compounds ranges from 18 to 765 and log P varies from -3.7 to 5.49. 

Oklahoma State University (OSU-KP) database, (Neely et al., 2009). It is based on published 

data in drug permeation enhancer studies and is developed to support modelling efforts. The criteria 

for inclusion are the following: (a) presence of well documented experimental conditions; (b) 

permeation coefficients measured under comparable circumstances; (c) structure of the included 

molecules generated and optimiSed using computational chemistry software; (d) Mpt and log P 

values of the molecules accurately calculated; (e) human or porcine skin is used. After applying 

these criteria, the OSU-KP database consisting of approximately 260 data points for 169 molecules 

was constructed for modelling studies. 

Lehman et al. dataset, 2011 (Lehman et al., 2011). The data are collected for compounds with 

absorption through human skin measured in vitro and in vivo. A total of 92 measured data were 

collected for 30 organic compounds; for some of these were from both in vitro and in vivo 

experiments conducted in the same laboratory. 

Samaras et al. dataset, 2012. The dataset is based on the EDETOX database extract and 

extended by data collected through an exhaustive literature search for human skin flux data. It 

contains 536 flux reports for 272 unique chemicals. The chemicals are either applied as neat 

(around 10% of the data) or formulated in simple mixtures with the majority of the vehicles 

Commented [AR13]: Is it still being extended (after 2009)? 
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containing water as a constituent. In many cases, finite or infinite dosing conditions were specified 

explicitly in the source. In other cases, if the application volume is above 100 µl it is taken as 

‘infinite’, if donor volume is between 50 and 100 µl then, provided that the percentage of 

absorption is less than 20%, it is considered as an ‘infinite’, otherwise a ‘finite’ application.  

Chen et al. dataset, 2013. It consists of human skin permeability of hydrophilic solutes with low 

hydrophobicity (log P < 0.5) compiled from various published sources. In total there are 71 data 

points for 23 hydrophilic and 12 low hydrophobic solutes. 

Alves et al. datasets, 2015. Two in vitro skin permeability datasets with skin permeability 

coefficients were compiled from the literature − human and rodent data − consisting of 186 and 96 

compounds, respectively. The activity range of the compounds in the datasets is from −5.52 to 

−0.69 and from −4.85 to −0.94, respectively. 

Brown et al. dataset, 2016. A new in vitro skin permeability database is compiled from the 

literature. It contains 392 data points for 245 organic chemicals derived from human skin only and 

using only water as a vehicle. The range of the data in the dataset is the following: log P values 

from − 6.8 to 7.6; MW from 18 to 765 and log Kp from 5.8 to 0.1. 

 

Table 1. Summary of the main datasets used in skin absorption modelling studies. 

Data set 

Skin  

permeability 

parameter 

Number of 

compounds 

Total number of 

data records 

Flynn, 1990 Kp 94 97 
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Wilschut et al, 1995 Kp 99 123 

Kirchner et al., 1997 Kp 114 114 

Patel et al., 2002 Kp 158 186 

Vecchia et al., 2003 Kp 127 170 

Magnusson et al., 2004b Jmax 64 278 

EDETOX database, 2004 flux, Kp 320 >4800  

Lian et al., 2008 Kp 124 205 

OSU-KP database Kp 169 260 

Lehman et al., 2011 % absorbed 30 92 

Samaras et al., 2012 flux 272 536 

Chen et al., 2013 Kp 35 71 

Alves et al., 2015 Kp 186/96 211 

Brown et al., 2016 Kp 245 392 

 

5. Review of existing quantitative structure-skin permeability predictive models  

Since the beginning of the 1990s the modelling of the skin absorption has been exploited 
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intensively. A number of review articles have periodically discussed and analysed the models 

published in the scientific literature (Moss et al., 2002a; Vecchia & Bunge, 2003a,b; Walker et al., 

2003; Fitzpatrick et al., 2004; Geinoz et al., 2004; Degim, 2006; Kielhorn et al., 2006; Mitragorti et 

al., 2011; Moss et al., 2012; Anissimov, 2014, Dumont et al., 2015). The latter one reviews in 

addition in silico tools for the prediction of skin metabolism that are behind the scope of this paper, 

but does take into account that the skin is a metabolically competent organ and some chemicals are 

absorbed across the skin and metabolised into active compounds.  

There is a special issue “Modelling the human skin barrier—towards a better understanding of 

dermal absorption” of the Advanced Drug Delivery Reviews (volume 65, 2013) that gives an 

overview of the state of the art in the computational tools development. QSPR models are also 

discussed among the others. In addition, a number of comparative studies have evaluated the 

models developed (Bouwman et al., 2008; Lian et al., 2008; Farahmand et al., 2009; Brown et al., 

2012). 

In this paper we focus on the published QSPRs for skin absorption. A broader scientific area is 

considered by additionally involving models that predict skin enhancers’ (compounds penetrating 

into skin to reversibly decrease the barrier resistance) effectiveness, models accounting for the 

experimental conditions, and mechanistic models. A list of the published QSPR models is 

summarised in Table 2. 

5.1. QSPR models based on molecular size and/or lipophilicity parameters  

Most of the published QSPR models for passive, diffusion-controlled skin absorption are linear 

regression equations involving two structural descriptors. They indicate that molecular size 

(molecular volume (MV) or MW) and hydrophobicity (expressed as log P) are the main 

determinants of the transdermal penetration. The models are described by the following general 
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equation: 

log Kp = a + b log P − c MW        (9) 

In fact, eq (9) encapsulates the main parameters that play a role in the membrane permeation.  

Compound diffusivity is, in general, size dependent (large molecules diffuse more slowly than 

small ones). Various studies have investigated  whether MW or MV is a more effective parameter 

to describe molecular size in the models (Barratt, 1995; Potts & Guy, 1995; Patel et al., 2002). 

However, it must be pointed out that for datasets with relatively similar values for the MV/MW 

ratio, MW could be used as it is easier to derive. Otherwise, the MV is considered to provide better 

estimates (Kielhorn et al., 2006). 

Lipophilicity is experimentally determined as a partition coefficient (log P) or as a distribution 

coefficient (log D, referring to a pH-dependent mixture of neutral and ionic forms of the 

compounds). As a ratio of two concentrations at equilibrium, the partition coefficient is the net 

result of all intermolecular forces between a solute and the two phases between which it partitions 

(Geinoz et al., 2004). 

Potts and Guy (1992) described a simple QSPR based on permeant size (expressed as MW) and 

hydrophobicity (log P) to model the permeability coefficients collected by Flynn, 1990. The 

following equation is reported after removal of one outlier: 

log Kp = 0.71 log P − 0.0061 MW − 6.3       (10) 

n = 93, r2 = 0.67 

The above model has been discussed in a number of later studies (Moss et al., 2002b; Geinoz et 

al., 2004). The weakest point of the model is the incomplete statistics. On the other hand, the model 

has a clear mechanistic interpretation: as the permeants become more lipophilic, their permeability 
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increases due to better partitioning into the skin but, as they become larger, their diffusion into the 

skin is reduced. 

In the later work of Moss and Cronin, 2002b an improved version of Potts and Guy model, using 

MW and log P as descriptors, was provided. It is based on 116 compounds and yields good 

correlation between Kp and selected descriptors with r2 = 0.82 (a complete statistical analysis was 

reported). 

Shen et al. [2014] adopted the Potts and Guy model to fragrance ingredients. Motivated by the 

limitation that assumes 100% skin absorption for chemicals which lack experimental data, the 

authors developed a practical and mechanistically reasonable skin absorption model (SAM) specific 

for fragrance chemicals. The model relies on the methodology of Kroes et al. [2007] that proposed 

three different default skin absorption ranges depending on the Jmax values: <10% (Jmax ≤ 0.1 

μg/cm2/h) for poorly-absorbed chemicals; < 40% (0.1 μg/cm2/h < Jmax ≤ 10 μg/cm2/h) for 

moderately-absorbed chemicals; and ≤ 80% (Jmax >10 μg/cm2/h) for highly-absorbed chemicals. 

For 105 compounds with experimentally determined Kp values, the Potts and Guy's QSPR model 

was updated for Kp calculation and subsequently corrected according to Cleek and Bunge [1993] 

for Jmax calculation. In the final model log P and S were averaged from several software packages. 

Based on the SAM, the authors proposed a practical workflow for to predict skin absorption for 

fragrances. Applying it they demonstrated that none of the 131 chemicals used in the study had skin 

absorption >80%. 

In the frame of the European Union COSMOS project (http://www.cosmostox.eu/), which 

developed computational models for predicting the chronic toxicity of cosmetic-related ingredients, 

the estimation of bioavailability after dermal administration was among the important tasks. To this 

end, Steinmetz et al. rebuilt Potts and Guy’s QSPR by incorporating a larger dataset to increase the 
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applicability domain (to cite the poster? Alov et al, SEURAT meeting, 2015?). A statistical tool to 

assess data quality (cf. confidence score, CS) was used to improve the model robustness. It is based 

on the number and variability of conflicting data (Steinmetz et al., 2014). The compilation of skin 

permeability coefficient values from the literature resulted in 343 different Kp values being 

compiled for 226 compounds. Fifty-five of these compounds have more than a single Kp value, 

hence the arithmetic means and the confidence scores were calculated. Physico-chemical properties, 

i.e. MV and lipophilicity (XLogP) were calculated with the Chemistry Development Kit (CDK) 

within KNIME or EPI Suite. The model was validated with 10-fold cross-validation, which led to 

CS-adjusted RMSE (Root Mean Square Error) of 0.79 ± 0.2. The model is freely available through 

the COSMOS KNIME WebPortal (http://knimewebportal.cosmostox.eu/). 

The non-linear dependence of skin transport on chemical properties, particularly when diverse 

structures with broad range of log P values are considered, is of great interest for researchers. 

Parabolic dependencies on log P have been incorporated in some models to account for the non-

linear characteristics of the structure-property relationships (e.g. Lien and Gao, 1995). A non-linear 

regression QSPR model (SKINPERM QSPR model) was also developed by ten Berge (2009) using 

the measured Kp through human skin in vitro as a dependent variable and log P and MW as 

independent variables. The training set consisted of substances with a wide range of lipophilicity 

(log P between - 4.49 and 6.13). In total 182 measured permeability coefficients were used. The 

model is based on the assumption for two pathways of permeation in the SC – the transcellular 

route through the corneocytes and the intercellular route through the extracellular lipids (Fig. 2). A 

test set of 27 structures was used for external validation. It is reported that the predicted values are 

mostly within one order of magnitude of the experimentally observed values (no quantitative 

estimation of the external prediction is given). The model slightly overpredicts hydrophilic 

substances as reported in the later study of monopropylene glycol and dipropylene glycol (Fasano et 
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al., 2011). The reason, according to the authors, is underrepresentation of hydrophilic substances in 

the training group of the model. It is suggested that highly hydrophilic compounds do not cross the 

SC through the intercellular lipid matrix and, essentially, the only pathway available to these 

molecules is through the corneocytes. In this case, Jss and Kp are related only to MW and log P has 

no influence. Otherwise, log P is a determinant of the relative importance for the lipid intercellular 

pathway and the aqueous transcellular pathway across the SC (Fasano et al., 2011). 

The maximum flux is a valuable parameter of a solute’s dermal permeation. The advantage of 

Jmax compared to Kp is that it does not depend on the formulation applied (Kroes et. al., 2007; Zhang 

et al., 2009). However relatively few studies have predicted Jmax as a dependent variable in QSPR 

models. Kasting et al. (1987) developed a predictive model of log Jmax for 35 diverse drugs based on 

octanol solubility (log Soc) and MV. Magnusson et al. (2004b) developed a regression model to 

predict Jmax values from aqueous solution across human skin with MW only as a significant 

parameter: 

logJmax = -0.019MW – 3.90        (11) 

n = 87, r2 = 0.847, p<0.001 

The model was validated on different sets of compounds and a final model included all 278 

entries (multiple entries per compound). The model has r2 = 0.688. The addition of other 

physicochemical parameters such as Mpt and hydrogen bond (HB) acceptor capability only slightly 

improved the regression. The later work of Zhang et al. (2009) outlined that Jmax for similar sized 

phenolic solutes showed a bilinear relationship with lipophilicity. The key conclusion was that for 

more lipophilic solutes, the dependence of Jmax on lipophilicity resulted from variations in SC 

solubility, and not from diffusional or partitioning barrier effects at the SC–viable epidermis 

interface. 
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5.2. Multiparameter models 

Lipid-water partition coefficients, solubility, melting point, molecular size and hydrogen bonding 

have been recognised as the main structural determinants of structure – skin penetration 

relationships. A number of multiparameter models have been proposed in the literature extending 

the approaches broadly referred to as QSPRs above. Such multiparameter models incorporate more 

descriptors and thus may result in improved fit. In addition, inclusion of more structural parameters 

in the QSPR equations could help for in a better mechanistic understanding (Mitragotri et al., 2011), 

but may be restrained by statistical criteria if techniques such as regression analysis are used. 

The transformed Potts & Guy and Roberts & Sloan equations correlate the maximum flux of 

solutes with their MW, as well as aqueous (Saq) and lipid (isopropyl myristate, Sipm)solubilities. . 

The basis for the dependence of the maximum flux on Saq as well as Sipm has been attributed to the 

existence of a high-capacity lipid-aqueous series pathway in addition to a parallel lower-capacity 

lipid-only pathway through the SC (Roberts and Sloan, 1999, 2000). 

Linear free-energy relationship (LFER) models are based on a number of physicochemical 

parameters relevant to solute solvation processes (Abraham et al., 1997; Abraham and Martins, 

2004; Zhang et al., 2012). The model uses the following descriptors of the penetrants: HB donor 

acidity, HB acceptor basicity, dipolarity/polarisability, excess molar refractivity (MR), and 

McGowan’s characteristic volume (the MV calculated by a 2-D fragment contribution method). As 

such, it attempts to reflect the importance of molecular size, i.e. in the MV term, and log P is 

represented indirectly in the form of MV, polarisability, MR and HB activity. 

The importance of hydrophobicity, molecular size and HB ability to model skin absorption was 

also mentioned by Patel at al. (2002). They developed a multiple linear regression (MLR) QSPR 

models for a training set of 158 compounds. The most significant parameters were logP, MW, 
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sssCH (the sum of E-state indices for all methyl groups) and ABSQon (the sum of absolute charges 

on oxygen and nitrogen atoms). 

The aim of the work of Magnusson et al. (2004a) was to develop simple rules for rapid screening 

of compounds with potentially high dermal absorption by predicting Jmax. The model was based on 

MW, Mpt, log P, log S and the number of atoms available for HB - subdivided into HB donor (HB-

d) and acceptor (HB-a) atoms. According to the authors, these properties reflect the fundamental 

determinants of flux - size, polarity, and HB capacity. Linear discriminant analysis was used for 

model derivation with the following boundary values reported:  

(i) Bad penetrants: MW > 213g/mol; Mpt ≥ 223K; HB-d ≥ 0; HB-a ≥ 3; log P > 1.2; log S < -1.6 

(ii) Good penetrants: MW ≤ 152g/mol; Mpt ≤ 432K; HB-d ≤ 2; HB-a ≤ 3; log P < 2.6; log S ≥ -

2.3 

The success of the predictor combinations was quantified with the most significant prediction from 

the combination of three descriptors MW/ HB/ log P or MW/ log S/ Mpt,  with a correct prediction 

rate of approximately 70%. 

Xu et al. (2013) further elaborated the discriminant rules and reduced them in number to two. 

Thus solutes with MW ≥ 400 or log P 1 or log P 4 were considered poor penetrants. Further 

these authors proposed an U-optimal distance-based design procedure for the selection of training 

and test sets that meet the conditions of having a wide coverage of the structural space, maximal 

diversity within training and test sets and maximal similarity between them. For that purpose they 

use a large candidate set of 4534 solutes. 

The study of Baert et al. (2007) on a set of 116 compounds from the literature using 1630 

parameters is interesting from a statistical point of view. The authors classified the compounds into 

Commented [CM31]: Is this correct? Do you mean from this 
study? 



24 

 

a distinct number of permeability classes using the CART (classification and regression trees) 

methodology and developed statistical models using a boosted CART, BRT approach and MLR 

analysis. The best models were based on lipophilicity/ hydrophobicity and molecular 

stereochemical complexity. 

Basac et al. (2007) developed multiparameter QSPR models using 101 compounds from the 

Patel et al. (2002) dataset. The models were based on topostructural, topochemical, shape or three-

dimensional (3D) descriptors and quantum chemical indices. The statistical methods applied were 

ridge regression (RR), principal components regression (PCR) and partial least squares regression 

(PLS). Full statistical analysis of the models has been reported. The cross-validated correlation 

coefficients for the full set and subsets were 0.67 – 0.87. The RR results were found to be superior 

to PLS and PCR regressions. The models indicated that HB descriptors, molecular size, branching 

and cyclicity can be highly significant in predicting dermal absorption and can be considered as 

general descriptors necessary for its modelling. 

An attempt to elucidate how skin permeability relates to the skin sensitisation potential of 

chemicals (skin permeability has been identified as a necessary step in the OECD AOP for skin 

sensitisation) was performed by Alves et al. (2015) who derived QSAR models to predict human 

skin permeability by applying the random forest method (RFM). The curated dataset included 186 

unique compounds with log Kp values in the range from -5.52 to -0.69, retrieved from the literature 

(Chauhan and Shakya, 2010; Flynn, 1990). A number of 2D structural descriptors were calculated 

by the DRAGON (Talete, SRL, Milan, Italy) and HitQSAR software (Kuz’min et al, 2008). The 

best RFM QSAR models were compared to those obtained by the DERMWIN module in the 

EPISuite package (US EPA, 2006); the latter estimated log Kp by the two parameter (log P and 

MW) MLR model. The best RFM model showed better external predictivity than the DERMWIN 

model (predictive q2 of 72% vs. 43%, respectively) considering the applicability domain restriction 
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(the coverage of the chemical space 77% vs. 100%, respectively). When compared to the same set 

of compounds (143 compounds, 100% coverage), the predictive accuracy of both models more 

similar (71% vs. 66%, respectively).  

In the more recent multiparameter studies there is a tendency toward considering the non-linear 

nature of the skin penetration in the models. Thus, some studies investigated the possible non-

linearity of the data and use further non-linear methods for modelling. Moss et al. (2009) revealed 

inherent non-linearity of the used skin permeability dataset by applying principal component 

analysis (PCA) and further explored the utility of Gaussian processes to develop a predictive model. 

The authors compared their model with previously published QSPR models and a single linear 

network model and concluded that the non-linear approach was more appropriate for the analysis of 

the dataset employed. Fatemi and Malekzadeh (2012) developed linear and nonlinear models based 

on MLR and artificial neural network (ANN) methods. The dependent variable was the 

experimental flux (in log scale). The CODESSA software was used to generate the molecular 

descriptors. No priority was given to any of the models in the study, however consideration of the 

statistical parameters indicated ANN were slightly better. The better performance of non-linear 

models was described by Neely at al. (2009) using ANN. 

In summary, the recent trend in the QSPR modelling using multiparameter models is to explore 

wider and more diverse datasets with structures described by a large number of descriptors and to 

combine various statistical methods to derive predictive models. Some of these studies have focused 

on the methodological aspects aiming at testing and comparing different statistical procedures, 

others attempted to obtain a more detailed insight into the mechanisms of absorption. Generally, 

careful attention should be paid to the physicochemical and biological meaning of a model, 

otherwise the interpretation of models can be quite complicated and not justified mechanistically. 
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5.3. QSPR models for transdermal enhancers 

Penetration enhancers are designed to facilitate the transport of compounds with limited 

percutaneous absorption and thus are of interest for delivery systems in the pharmaceutical and 

cosmetic industries. Their effectiveness is measured as an Enhancement Ratio (ER), which is the 

ratio of the flux in the presence of a fixed concentration of an enhancer to the delivery rate when the 

enhancer is missing in the formulation. Mechanisms of enhancement include interaction with 

intercellular lipids of the SC, interaction with intracellular proteins of the corneocytes or increasing 

partitioning of the solute into the SC due to the presence of the enhancer (Iyer et al., 2007). 

Modelling the effectiveness skin penetration enhancers is a relatively new field and classical QSPR 

models may help predict the ER ratio of enhancers. In more recent studies experimental and 

molecular modelling approaches have been applied to help in elucidating the mechanisms of action 

of the enhancers. 

Karande et al. (2005) investigated more than 100 enhancers representing several chemical 

functionalities. Using Fourier transform infrared spectroscopy they showed that, regardless of their 

chemical nature, the enhancers perturb the skin barrier via extraction or fluidisation of the lipid 

bilayers. They proposed two kinds of models, respectively, for extractors and fluidisers. The models 

correlated the ratio ER/IP (IP, irritation potential) with dominant molecular features that govern 

changes in the microscopic organisation of the SC (log P, HB capacity, polarity, and dispersion). 

These models point to the main constraints in optimising the balance between the potency and 

membrane safety of the enhancers. Based on the models, the authors designed more than 300 

potential enhancers that were screened in silico and subsequently tested in vitro for molecular 

delivery. Of them, 110 showed ER/IP > 3.8 thus confirming the usefulness of the models. 

A dataset of dermal enhancers was collated by Pugh et al. (2005) and classified using 
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discriminant analysis. The dataset has been further exploited using several machine learning 

methods, including the K-nearest-neighbour regression, single layer networks, radial basis function 

networks and the SVM classifier (Moss at al., 2012). The best classification results were obtained 

with the SVM method without dealing with imbalanced data. 

Iyer at al. (2007) reported QSPR models for four skin penetration enhancer datasets differing in 

the structures of the enhancers and penetrants. The models use classical and 4D-fingerprint 

descriptors. Based on the different descriptors in the best QSPR models for the different datasets, 

the authors conclude that there are different mechanisms of penetration that depend on the 

chemistry of the enhancer as well as that of the penetrant molecule. 

Zheng et al. (2008) used classical QSPR models and a model, denoted as MI-QSAR (Membrane-

Interaction QSAR), to investigate penetration enhancers. The data involved 103 transdermal 

penetration surfactant-like and nonpolar enhancers, of different chemical nature, collected from 

experimental studies. In total, 24 classical QSAR intramolecular (HOMO, LUMO, dipole moment, 

MV, MW, MR, polar surface area (PSA), number of HB acceptors and donors, Kier and Hall 

topological descriptors, partial atomic charges etc.) and intermolecular (aqueous and 1-octanol 

solvation free energies, log P, hypothetical phase transition temperatures, etc.) descriptors were 

used. QSPR models were built and optimised by MLR and the genetic function approximation 

(GFA). The MI-QSAR models featured descriptors determined from the trajectories of molecular 

dynamics (MD) simulation of a transport of an organic compound through a phospholipid 

monolayer or bilayer (dimyristoylphosphatidylcholine molecules, DMPC, used in MD). The most 

informative MD parameter was the integrated spatial difference which captured the time-average 

change in the structure of the monolayer molecular assembly due to the presence of an embedded 

molecule, in this case, a penetration enhancer. This descriptor dominated the MI-QSAR models and 

greatly reduced their size and complexity as compared to the QSAR models developed using classic 
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intramolecular descriptors derived solely from the structure of penetration enhancers of comparable 

statistical characteristics. The integrated spatial difference parameter is relatively straightforward to 

interpret: the bigger the “holes” created in the monolayer by the penetration enhancer, the greater 

the value of the ER. The next informative, but less significant descriptors, were the classical 

aqueous solvation free energy and dipole moment (in one model) and PSA and Kappa topological 

index (in another model). Overall, the MI-QSAR models indicated that good nonpolar penetration 

enhancers make larger “holes” in the monolayer and preferentially enter the monolayer. The study 

was a step forward to a better understanding of the mechanisms of enhanced transport through the 

skin and supports the evidence about interactions of the enhancers with intercellular lipids of the 

SC, which leads to a disorganisation of these highly ordered structures and, thus, enhances the 

intercellular diffusivity through the SC. Additionally, it can increase the partition of the compound 

into the SC. 

To explore the structure–activity relationship for terpenes as transdermal penetration enhancers, 

unsaturated menthol analogues were synthesised and evaluated in vitro by Chen et al.  (2013). 

Molecular modelling was applied to investigate the enhancer induced alteration in different skin 

lipid domains. The results suggested that polar head groups of the SC lipids are the main binding 

site for enhancer’s action. Thus, the authors concluded that the compounds studied enhanced drug 

transport by interacting with the polar domain of the skin lipids, instead of affecting the 

arrangement of the hydrophobic chains. According to the docking results the compound with the 

best enhancement activity had the greatest affinity to the polar groups of the ceramides. Therefore, 

its preferential interaction with the polar group of the lipids was offered as a reasonable explanation 

for its best enhancement activity.  

The opportunities of using MD methodology to predict the mechanism of action of skin 

enhancers were well reviewed by Notman and Anwar (2013). The limitations related to the long 
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time- and length-scale processes and the main challenges related to the lack of definitive 

experimental data about the organisation of the skin lipids were discussed. The MD case studies 

were reviewed including DMSO coarse grained and atomistic simulations, ethanol atomistic 

simulations and oleic acid coarse-grained simulations. 

5.4. Models accounting for the formulation and experimental conditions 

The models of Potts and Guy, and Abraham and Martins, together with their variations are based 

on measurements from an infinite dose in aqueous solution, which is not sufficient to predict 

absorption from a more complex multicomponent vehicle and under finite dose conditions, which is 

a more realistic exposure scenario. As a determinant of percutaneous absorption, it is well known 

that the delivery vehicle is as important as the penetrant itself. An increase in the complexity of the 

delivery vehicle (formulation) also increases the potential for interactions to occur between the 

chemical, vehicle and skin consequently affecting the absorption process. In vitro studies have 

shown that the interactions arising within the chemical–vehicle–skin system synergistically alter the 

chemical’s ability to partition into and diffuse through the skin barrier (Karadzovska and Riviere, 

2013). Therefore, in order to be useful for realistic risk assessment estimates, vehicle and mixture 

component effects should also be considered in the QSPR models. These facts motivated the 

development of the chemical mixture models (Riviere and Brooks, 2005, 2007, 2011). In addition to 

the descriptors involved in the models of Potts and Guy and Abraham and Martins, these models 

incorporate properties of the solvent or the mixture through the so-called “mixture factor” (MF) 

which account for mixture interactions by using physicochemical properties of the mixture 

components. The MF is calculated based on percentage composition of the vehicle/mixture 

components and physicochemical properties selected using PCA (Riviere and Brooks, 2005, 2007, 

2011). 
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Modelling the effect of mixture components on the permeation, Ghafourian et al. (2010a, b) 

found that compounds formulated in vehicles with small boiling and melting point gaps would be 

expected to have higher permeation through skin. The models developed by Samaras et al. (2012) 

incorporate the effects of the in vitro experimental conditions by using parameters such as skin 

thickness, exposure type, and states of pre-hydration or occlusion of the skin. In the linear models 

the most prominent factors influencing permeability were the donor concentration, lipophilicity, 

size and polarity of the penetrants and the difference between the melting and boiling points of the 

vehicles; in the non-linear models skin occlusion played the most significant role. 

Gutha et al. (2014) proposed an in silico prediction model that considered mixture-related 

effects. The authors adopted the MF approach of Riviere and Brooks (2005, 2007, 2011) to predict 

dermal absorption of new substances from specific formulations. The data set contained 56 test 

substances applied in more than 150 mixtures in in vitro experiments utilising human and rat skin. 

The compounds’ structures were described by the Abraham descriptors; the physicochemical 

parameters for the mixture ingredients were log P, the topological polar surface area (TPSA), HBA 

and HBD. In total, 87 MFs were calculated as descriptors for each mixture of a test substance. The 

MLR equation for the penetrant-predictive mixture model involved the five Abraham descriptors 

and MF; in addition, the species indicator and the receptor fluid indicator variables were set. The 

final valid model included R2, TPSA and the species indicator, however,  statistical analysis was 

relatively poor (r2 (goodness of fit) = 0.38, Q2
LOO (internal validation by leave-one-out procedure) = 

0.35, Q2
EXT (external predictivity) = 0.41). In addition, a ‘formulation-predictive mixture’ model 

was developed, in which the substance-specific descriptors were replaced by a class variable (a 

parameter that bundles the experimental outcome for one specific substance applied in several 

formulations). This model yielded a better fit (r2 = 0.75) and predictivity (Q2
EXT = 0.73) and could 

be applied during formulation development to assess the absorption effects. 
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As already discussed, most QSPRs are developed for infinite dose conditions. In practice, dermal 

exposure mostly occurs under finite dose conditions. A simple model to predict finite dose dermal 

absorption from infinite dose data (Kp and lag time) and the SC/water partition coefficient (KSC/W) 

was developed by Buist et al. (2010). For the predictions QSPRs were used to estimate the KSC/W. 

The predicted values were either similar to the measured in vitro values or overestimated them. 

Kasting and co-workers developed a model that takes into account the transient conditions or the 

time dependency of skin penetration (reviewed in Dancig et al., 2013). These are actually real-life 

exposure situations, such as a finite dose, short exposure times, multiple exposures and/or removals. 

In addition, the model takes into account the skin heterogeneity. The simulations require only the 

chemical structure. The partition and diffusion coefficients were estimated from physical properties 

which can be obtained exclusively from the molecular structures. The model is implemented in a 

web-based program (http://www.cdc.gov/niosh/topics/skin/finiteSkinPermCalc.html).  

 

5.5. Mechanistic models 

The majority of the QSPR models are developed with the assumption that the intercellular lipid 

pathway is the route of transdermal permeation and the corneocytes are impermeable. However, as 

mentioned above, it appeared that the lipid-pathway models are not suitable for to predict the skin 

permeability of hydrophilic solutes. Generally, statistical QSPR models underpredict the skin 

permeability of hydrophilic solutes by 2–6 orders of magnitude (for log P < -2) and thus they are 

limited to hydrophobic compounds (Chen et al., 2013).  

Mass-balance, or mechanistic, models attempt to predict skin permeability by taking into account 

the heterogeneous structure of the skin barrier rather than assuming it as a pseudo-homogenous 

membrane. Usually the skin is presented by the “brick-and-mortar” model – bricks represent the 
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corneocytes and mortar represents the lipid phase (Talreja et al., 2001). The transport of solutes 

through different routes of diffusion (pathways of transdermal permeation) is considered. 

The model of Mitragotri (Mitragotri, 2003) considered four routes of diffusion: (i) free-volume 

diffusion through lipid bilayers; (ii) lateral diffusion along lipid bilayers; (iii) diffusion through 

pores; and (iv) diffusion through shunts. The model relates the aqueous pores in the SC lipids and 

shunts to the aqueous pathway, while the corneocytes are considered impermeable. The contribution 

of the shunts to the skin permeability is estimated to be independent of molecular size and property. 

The model appears to predict the skin permeability of hydrophilic solutes well. 

The biphasic microtransport model (Wang et al., 2006, 2007) considers both the intercellular and 

transcellular pathways, but suggests that SC permeation for most compounds is dominated by the 

transcellular pathway regardless of their lipophilicity. It fails to give a satisfactory prediction of the 

skin permeability of hydrophilic solutes due to the fact that the solute transfer across the lipid phase 

is represented by a transfer coefficient, obtained by fitting to skin permeability data which include 

mostly hydrophobic solutes.  

The model of Chen et al. (Chen et al., 2010, 2013) described three types of mass transfer of 

solutes as follows: (i) in the lipid matrix; (ii) in the corneocyte phase, and (iii) across the lipid–

corneocyte interface. The solute transfer in the lipids contributes to both the intercellular pathway 

and the transcellular pathway due to its continuous nature, whereas the solute transfer in 

corneocytes and across the lipid–corneocyte interface is related only to the transcellular pathway. 

Hydrophilic solutes are still considered to be able to partition into the SC lipid according to log P, 

without separately lending to aqueous pores. The results indicate that the transcellular pathway is 

very important for the transdermal permeation of hydrophilic solutes and can contribute to more 

than 95% of the overall skin permeability.  
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6. Conclusions 

In recent years many efforts have been invested in developing predictive and reliable QSPR 

models for skin permeability. Some simple models have been derived that are quite useful for 

screening purposes. A good example is the Potts and Guy model, which provides adequate 

predictions based on a simple two-parameter regression equation and has been widely used for 

many years. However, the complex biological mechanisms regulating dermal absorption and the 

numerous factors involved in this process represent a challenge and set higher requirements to the 

theoretical predictive approaches, whose use is increasingly encouraged in both pharmaceutical and 

safety assessment area.  

In the present review, a comprehensive discussion on the currently available methods for the 

prediction of skin absorption is presented, focusing on quantitative structure-permeability 

relationships. Limitations and strengths of different approaches are highlighted together with the 

emergent issues and perspectives. One of the key limitations in the prediction of skin absorption 

stems from the data used to develop the QSPR models. Many of these models are developed from 

datasets with limited chemical heterogeneity, while others are compiled from various investigators 

and laboratories employing different experimental protocols resulting in a high variability of data. 

The experimental skin permeability datasets have mostly been collected for aqueous vehicles, using 

infinite conditions. This leads to an additional limitation of the models, since in the real-life 

situations finite doses are applied for short exposure times. 

Based on the analysis of the existing models and following the good practice for developing 

robust and predictive QSPR models several recommendations can be specified for the purposes of 

the skin permeability QSPRs:  
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(i) High-quality data are required. It is recommended that the data be adjusted for similar skin 

origin and experimental conditions. Additionally, an assessment of the chemical space of 

the current data is recommended. Different forms of the dependent variable (permeability 

parameter) can be experimentally derived, e.g. the maximum flux could be a more 

suitable parameter than the permeability coefficient to account for dermal absorption 

potential;  

(ii) Special attention is to be given to the outliers in the data including applicability domain 

outliers. The process of the outlier detection should also consider mechanistic reasoning;  

(iii) Special attention is also to be paid to variable scaling and descriptor significance, as models 

based on non-significant descriptors do not afford mechanistic insights and may lead to 

overfitting of the data. Selection of the most informative descriptors is to be performed 

on a rational base that is directly related to the mechanism of the skin permeability; 

(iv) A combination of linear and non-linear methods is to be considered in the modelling 

process. Such a combination could allow for a more adequate description of the 

behaviour of solutes of different physicochemical nature; 

(v) Experimental conditions are to be taken into consideration when the training and test sets are 

generated as they could have a significant impact on the prediction results. Especially, the 

effects of the non-aqueous solvents and formulations (including vehicles and skin 

enhancers) should be considered and some modelling efforts are to be put on simulation 

of finite dose conditions and on considering the heterogeneous skin structure.  

 

Table 2. Summary table of the QSPR models for skin permeability in chronological order (for the 

Commented [AW44]: Adjusted or aggregated? 

Commented [AW45]: On the other, wouldn’t infinite dose 
conditions lead to a more conservative (larger) assessment of 

absorption potential? 
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abbreviations see the list below the table) 

Model 

Parameter * 

----------------- 

data source 

No. of com- 

pounds 

Statistical 

method 

Significant 

descriptors 
Note 

Flynn 

(1990) 

Kp 
----------------- 
literature sources 
(Flynn data set) 

94 - MW, log P qualitative 

model 

El Tayar et al. 

(1991) 

Kp 
----------------- 
literature sources 

18 ÷ 22 LR ΔlogP(o-h), 

logP 

 

2-parameters 

 model of 

Potts & Guy 

(1992) 

Kp 
----------------- 

Flynn dataset 

(Flynn, 1990) 

93 LR MW, log P no outlier 

analysis 

3-parameters 

model of 

Potts & Guy 

(1995) 

Kp 
----------------- 

Flynn dataset 

 

37 LR MV, Hd, Ha  

Wilschut et al. 

(1995) 

Kp 
----------------- 

various literature 

sources 

99    

Barratt 

(1995) 

Kp 
----------------- 

Flynn dataset 

 

60 ÷ 91 LR MV, log P, mpt hydro-cortisones 

excluded from the 

data set 

Lien & Gao 

(1995) 

Kp 
----------------- 

Flynn dataset 

16 ÷ 23 LR, 

parabolic 

MW, log P, 

(log P)2, Hb 

in vivo data used for 

the lipophilic vehicle 

Commented [AR46]: Can no. of compounds in test and training 
sets be given? 
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Model 

Parameter * 

----------------- 

data source 

No. of com- 

pounds 

Statistical 

method 

Significant 

descriptors 
Note 

=========== 

R in vivo 

----------------- 

(Lee et al.1994) 

regression (ethanol and 

panasate 800) 

Abraham 

LFER models 

(Abraham et al, 

1995, 1997) 

Kp 
----------------- 

various literature 

sources 

46  (1995) 

53  (1997) 

LR Abraham solute 

descriptors: 
ΣαH

2, ΣβH
2, πH

2, 
R2, Vx 

  

Kirchner et al. 

(1997) 

Kp 
----------------- 

Flynn dataset  + 

regulatory  data 

(Health Canada) 

114 

(51 from 

Flynn data set) 

 

LR MV, log P Kp for 63 compounds 
calculated with the 

Potts & Guy model 

Cronin et al. 

(1999) 

Kp 
----------------- 

Flynn dataset; 

(Kirchner et al, 1997) 

107 ÷ 114 LR MR, log P, 
HLP,  4χv 
 

 

Pugh et al. 

(2000) 

log (D/h) 

----------------- 

(Wilschut et al. 

1995; Degim et al, 

1998) 

41  

 

PCA and LR Charge, MW 57 log Kp and  
log (D/h) values used 

Lim et al. 

(2002) 

Kp 
----------------- 

Flynn dataset 

92 LR, ANN QC descriptors: 
dipole, 

polarizability, 

sum(N,O), sum(H) 
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Model 

Parameter * 

----------------- 

data source 

No. of com- 

pounds 

Statistical 

method 

Significant 

descriptors 
Note 

Moss et al. 

(2002) 

Kp 
----------------- 

Flynn dataset; 

(Kirchner et al, 1997; 

Johnson et al, 1995; 

Degim et al, 1998) 

116 LR Log P, MW, 

 

steroid data replaced;  

data re-analysed 

Patel et al. 

(2002) 

Kp 
----------------- 

Flynn dataset & 

(Wilschut et al, 1995) 

143 ÷158 LR Log P, MW, 

SsssCH, ABSQon 

 

      

Estrada et al. 

(2003) 

flux  

----------------- 

(Ursin et al., 1995) 

12 commercial 

solvents 

 

LR Methyl groups 

bonded to 

heteroatoms or to 

CH2 groups 

 

in vivo  living skin,  

topological sub-

structural approach 

 in the modelling 

 

Moody & 

MacPherson 

(2003) 

Kp 
----------------- 

Flynn dataset; 

(Kirchner et al, 1997) 

39 ÷ 71 LR MW, log P, 

surface tension in 

water 

 

Pannier et al, 

(2003) 
Kp 
----------------- 

Flynn dataset;  

data from Abraham et 

al. (1997) 

37-94 Cluster 

analysis 

(ANFIS) 

MW, log P; 
Abraham solute 

descriptors: 
ΣαH

2, ΣβH
2, πH

2, 
R2, Vx 
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Model 

Parameter * 

----------------- 

data source 

No. of com- 

pounds 

Statistical 

method 

Significant 

descriptors 
Note 

Abraham 

LFER model 

(extended) 

(Abraham & 

Martins, 2004) 

Kp 
----------------- 

various literature 

sources 

 

119 LR Abraham solute 

descriptors: 
ΣαH

2, ΣβH
2, πH

2, 
R2, Vx 
 

Kp values adjusted 

for ionisation and 

temperature 

Magnusson et 

al. 

(2004) 

Jmax 

 

278 LR  Jmax values 

estimated from the 

product of the 

reported Kp and Saq) 

Geinoz et al. 
(2004) 

Kp 
----------------- 

Flynn dataset; 

(Kirchner et al, 1997); 

various literature 

sources 

20 ÷ 107 Stepwise LR MW, MR, 

log P,  Vw 

Abraham solute 

descriptors: πH
2, 

ΣαH
2, ΣβH

2 

 

Karande et al. 

(2005) 
ER / IR (enhancement 

ratio / irritation 

potential) 

----------------- 

own data  

102 

enhancers 

(extractors and 

fluidisers) 

Non-linear 

relations 

Log P, Hb, 

polarity, 

dispersion 

Different equations 

for extractors and 

fluidisers 

Chemical 

mixture model 

(Riviere & 

Brooks, 2005) 

Kp 
----------------- 

own data 

16 compounds 

 

288 treatment 

combinations 

LR Compounds: 
Abraham solute 

descriptors: 
ΣαH

2, ΣβH
2, πH

2, 
R2, Vx 
 
Vehicles:  MF 

Vehicle: 

water, 

ethanol, 

propylene glycol 
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Model 

Parameter * 

----------------- 

data source 

No. of com- 

pounds 

Statistical 

method 

Significant 

descriptors 
Note 

 

Pugh et al., 

2005 

ER 
----------------- 

literature sources 

73 skin 

enhancers 

Discriminant 

analysis 

carbon chain 

length, HB 

numbers, MW 

 

Katritzky et al. 

(2006) 

Kp 
various literature 

sources 

143  LR; ANN log Pexp, Kier & 

Hall index; 

rotational entropy; 

Zefirov Partial 

Charge, H-

acceptor FCPSA; 

molecular 

fragments 

CODESSA PRO and 

ISIDA software used 

Ding et al. 

(2006) 

CE=10 

(Chantasart et al. 

2004) 

16 skin 

enhancers  

Stepwise LR Log P, position of 

the hydroxyl group 
branched-chain 

alkanols used 

Majumdar et 

al. 

(2006) 

Jmax 

Flynn dataset 

62-76 LR MW, solubilities 

in octanol (Soct) 

and water (Saq) 

Roberts & Sloan  

(transformed Potts & 

Guy) model 

Neumann et al.  

(2006) 

Kp 

(Wilschut et al. data 

set; other sources 

110 RR and 

k-nearest-

neighbour 

SOLV, log P, MW  

Basak et al. 

(2007) 

Kp 
(Patel et al. 2002) 

22 ÷ 101 RR, PCR, 

PLS 
hydrogen bonding 

descriptors, 

molecular size, 

branching and 

cyclicity 

Kirchner at al., 1997 

dataset dropped from 

the data 

Iyer et al., 

(2007) 

ER 
various literature 

sources 

Four datasets: 

61, 44, 42, and 

MLR classic QSAR 

descriptors and 

4D-fingerprint 

descriptors developed 

Commented [M47]: Line stile? 

Commented [M48]: Line stile? 
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Model 

Parameter * 

----------------- 

data source 

No. of com- 

pounds 

Statistical 

method 

Significant 

descriptors 
Note 

17 compounds 4D-fingerprints by the 4D-QSAR 

paradigm. 

Stoick et al. 

(2007) 

Kp 
various literature 

sources 

CHEP +10 

structural 

analogues 

LR MW, log P DERMWIN™ model 

(US EPA, 2006) 

Baert et al. 

(2007) 

Kp 
literature sources 

(Magnusson et al, 

2004 ; Patel et al., 

2002 ; Buchwald et al, 

2001) 

116 PCA, 

CART, 

stepwise LR 

10 most 

significant: 

lipophilic, 2D 

topological, 

3D MoRSE, 

shape-related, etc. 

1630 descriptors 

generated 

Iontophoretic 

model 

(Mudry et al, 

2007) 

flux through pork skin 

characterized by to 

C+ 

own data 

16 cations LR & 

nonlinear 

regression 

MW, 

cation 

hydrodynamic 

radius, 

cationic mobility 

 

Luo et al. 

(2007) 

Kp 
literature and 

regulatory sources 

 

340 

 

 Log P, χ0,  SsssCH 

 

MDL’s QsarIS 

software for the other 

descriptors; 

306 compounds out 

of 340 used in the 

training set 

Chemical Kp 
 (in vitro PSFT 

10 ÷ 12 Stepwise LR Compounds: 
Abraham solute 

descriptors: 

24 mixtures 
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Model 

Parameter * 

----------------- 

data source 

No. of com- 

pounds 

Statistical 

method 

Significant 

descriptors 
Note 

mixture model 

(extended) 

(Riviere & 

Brooks, 2007) 

diffusion cells) 

 

AUC 

(IPPSF ex vivo model) 

own data 

compounds 

 

50 ÷ 288 

treatment 

combinations 

ΣαH
2, ΣβH

2, πH
2, 

R2, Vx 
 
Vehicles: MF 

  

(in vitro PSFT 

diffusion cells) 

 

5 mixtures 

(IPPSF ex vivo 

model) 

 

Yamaguchi et 

al. 

(2008) 

DSC and 

DVED  in vitro 

own data on rat skin 

10 LR, 

parabolic 

regression 

Log P, HBD  

MI-QSAR 

model 
(Zheng et al. 

2008) 

ER(J) 
skin penetration 

enhancement 
various literature 

sources 

103 

enhancers 

 

penetrants: 

hydrocortisone 

& 

hydrocortisone 

acetate 

LR integrated spatial 

difference (MD 

parameter), 
aqueous solvation 

free energy; dipole 

moment; PSA,  

Kappa topological 

index 

24 classical QSAR 

descriptors derived; 
 
MD parameter 

derived from MD 

trajectories of 

simulations in DPMC 

layers 

Liou et al. 
(2009) 

Kp 
own data 

13 non-

steroidal anti-

inflammatory 

drugs 

LR MW, solubility 

parameter , 

biological 

parameters of the 

skin (elasticity and 

hydration of the 

Model is workable 

for drugs with  
Log P < 2 Commented [M50]: ? 
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Model 

Parameter * 

----------------- 

data source 

No. of com- 

pounds 

Statistical 

method 

Significant 

descriptors 
Note 

skin) 

Neely et al. 

(2009) 

Kp 
Oklahoma state 

university database 

(OSU-KP) 

160 GA,  ANN, 

LR 

most significant: 

L3s, log P, 

nArCOOR, 

number of single 

bonds, polarity 

over 1500 descriptors 

generated with 

CODESSA and 

Dragon software 

ten Berge 

(2009) 

Kp 
(Vecchia & Bunge, 

2003)° 

+12 additional 

compounds 

182 Nonlinear 

regression 

MW, log P  

Zhang et al. 

(2009) 

Jmax 

own data 

10 nonlinear 

regression 

Log P Similar size 

of the structures 

Buist et al. 

(2010) 

finite dose absorption, 

(%) 

own data 

 Equations 

based on  Kp 

and lag time 

(infinite 

dose 

experiments 

 Used QSARs to 

estimate the KSC,W 

 

Chauhan & 

Shakya 

(2010) 

Kp 
various literature 

sources 

150-153/58 

training 

set/test set 

GA, iPLS log P, Snar and 

hydrogen bond 

acceptors 

e-DRAGON and 

ADME Pharma 

Algorithms-

Abrahams descriptors 

Commented [M51]: ? 

Commented [M52]: ? 
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Model 

Parameter * 

----------------- 

data source 

No. of com- 

pounds 

Statistical 

method 

Significant 

descriptors 
Note 

 

Ghafourian et 

al. (2010a) 

Kp 
own data 

12 

compounds; 

24 solvent 

mixtures 

Stepwise LR log P,  9χp, 

SolBP–SolMP 

 

TSAR 3D software 

 

Ghafourian et 

al. (2010b) 

Kp 

own data 

96 new Kp 

values + 288 

Kp values 

from (Riviere 

et al., 2005) 

Stepwise LR log P,  9χp, 

SolBP–SolMP 

 

TSAR 3D software 

 

Lee at al. 

(2010) 

Pe 

own data 

61 

 

MLR PISA, donorHB,  

accptHB, glob; EA 

 

44 non-proprietary 

structures provided in 

the table;  

PEG 400 used as the 

organic 

co-solvent 

 

Chemical 

mixture model 

(extended) 

(Riviere & 

Brooks, 2011) 

Kp 
 (in vitro PSFT 

diffusion cells) 

 

AUC 

(IPPSF ex vivo model) 

16 ÷ 20   

compounds 

 

119 ÷ 384 

treatment 

combi-nations 

Stepwise LR Compounds: 
Abraham solute 

descriptors: 
ΣαH

2, ΣβH
2, πH

2, 
R2, Vx 
 
Vehicles: MF 
(the best MF 

descriptors 
HBA, 1/Mp) 

Vehicle: 

water, 

ethyl alcohol, 

propylene glycol, 

sodium lauryl sulfate, 

methyl-nicotinic acid 
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Model 

Parameter * 

----------------- 

data source 

No. of com- 

pounds 

Statistical 

method 

Significant 

descriptors 
Note 

own data 

Fatemi & 

Malekzadeh 

(2012) 

flux  

(Fiserova-Bergerova 

et al, 1990) 

132 LR; ANN 7 electronic, 

quantum-

chemical, 

topological 

parameters 

Flux measured in 

mg/cm2.h; 

CODESSA software 

used for descriptors 

LFER 

model of 

Abraham 

(united) 

(Zhang et al, 

2012) 

 

Kp 
(Abraham and 

Martins, 2004; 

Singh et al, 1994); 

measurements of 18 

ionized solutes 

118 LR Abraham solute 

descriptors: 
ΣαH

2, ΣβH
2, πH

2, 
R2, Vx 
 
Extra terms for 

ionic solutes: 
J+, J- 

Neutral and ionic 

solutes 

simultaneously 

included in the model 

Moss et al., 

2012 

ER 
---------------- 

From Pugh et al., 

2005 

71 skin 

enhancers 

Various 

machine 

learning 

methods 

log P, log S, MW, 

carbon chain 

length, HB 

numbers 

 

Sun et al. 

(2012) 

Kp 
---------------- 

literature sources 

19-140 PCA, GP MW, solubility 
parameter, log P, 

counts of the 

number of 

hydrogen bonding 

acceptor (HA) and 

donor groups (HD) 

 

Human, pig, 

rodent, and synthetic 

membrane 

permeability data 

used 
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Model 

Parameter * 

----------------- 

data source 

No. of com- 

pounds 

Statistical 

method 

Significant 

descriptors 
Note 

Samaras et al. 

(2012) 

flux 

----------------- 

various literature 

sources and EDETOX 

database 

272 

compounds 

(neat or in 

mixtures) 

 

Stepwise 

LR, RT 

Compounds: 

(donor), MW, 

vsurf G, 

SlogPVSA4, 
fiAB, VAdjMa 
 

Vehicles: 

BP−Mp(mix) 

Models incorporate: 

membrane thickness 

and finite/infinite 

dosing; 

Vehicle: 

water, 

polyethy-lene-

glycols, petro-latum, 

mineral 

oil 

Chemical 

mixture model 
(artificial 

membranes) 
(Karadzovska & 

Riviere, 2013) 

absorption 

through 

3 artificial membranes 

 

---------------- 

own data 

6 compounds 

 

32 treatment 

combinations 

Stepwise 

LR 

Compounds: 
Abraham  

descriptors: 
ΣαH

2, ΣβH
2, πH

2, 
R2, Vx 
 
Vehicles: MF 
 
Indicator variables 

for: 
- vehicles 
- saturation 
 

Vehicle: 

propylene glycol, 

water, ethanol 

Chen et al., 

2013 
ER 

---------------- 

own data 

Four 

penetration 

enhancers 

 

docking  Docking calculations 

performed using 

AutoDock software 

Gutha et al., 

2014 
Kp 

---------------------- 

56 compounds 

 

MLR 

Stepwise 

Compounds: 
Abraham 

descriptors: 
ΣαH

2, ΣβH
2, πH

2, 
R2, Vx 

Two models 

proposed: 



46 

 

Model 

Parameter * 

----------------- 

data source 

No. of com- 

pounds 

Statistical 

method 

Significant 

descriptors 
Note 

own data more than 

150 mixtures 

MLR 

PCR 

Mixtures: MF  
(log P, TPSA, 

HBA, HBD) 
Indicator variables 

for species and 

receptor fluid 
Class variable 

“penetrant-predictive 

mixture” model  

(moderate statistics) 

“formulation-

predictive mixture” 

model  

Shen et al., 2014 Kp 

---------------------- 

Flyn data set 

EDETOX database 

 

105 

compounds 

MLR MW, log P Model used for 

calculation of Jmax 

and percent 

absorption values of 

fragrance chemicals  

Steinmetz et al., 

2015 
Kp 
---------------- 

literature sources 

226 

compounds 

MLR Log P, MW Confidence Scoring 

used to improve 

robustness of the 

model 

Alves et al., 

2015 
Kp 
--------------- 
Chauhan and Shakyia 
Flynn data set 

186  

compounds 

RFM 2D DRAGON 

and SiRMS 

descriptors; 

DRAGON and 

HitQSAR software 

used for calculation 

of the descriptors 

* Log-form used as a dependent variable in the models with Kp, R, flux, D, AUC, Pe, CE=10 and absorption. 

 

List of abbreviations used in Table: 

3D MoRSE: 3D-MoRSE (3D-Molecule Representation of Structures based on Electron diffraction) 

Commented [AR53]: Publication from 2014 or 2015? 

Commented [AR54]: Based on Potts &Guy? 
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descriptors 

ABSQon: Sum of absolute charges on oxygen and nitrogen atoms 

accptHB: Number of hydrogen bonds that would be accepted by the solute in solution 

ANN: Artificial Neural Network 

ANFIS: Adaptive Neural Fuzzy Inference System 

AUC: Area under the curve 

BP: Boiling point 

BP−Mp(mix): Difference between the boiling and melting points of the mixture (donor phase) 

CE=10: Aqueous solution concentration of an enhancer that could yield 10-fold permeant transport 

enhancement to the control (no enhancer present)  

CART: Classification and regression trees 

CHP: Hydroxyethylpiperazine, a commercial mixture of 1,4-piperazinediethanol, piperazine, 

hydroxyethylpiperazine, and water 

D: Diffusion coefficient in the skin membrane  

DSC, DVED: Diffusion coefficients in stratum corneum (SC) and viable epidermis and dermis (VED) 

DMPC: Dimyristoylphosphatidylcholine 

(donor): Donor concentration (g/ml) 

donorHB: Number of HB that would be donated in solution 

EA (eV): Quantum mechanically calculated electron affinity 

ER(J): Skin penetration enhancement: the ratio of hydrocortisone (HC) or hydrocortisone acetate 

(HCA) penetration with, and without, a common fixed concentration of the test enhance 

fiAB: Fraction of molecules ionized as anion and cation at pH 7.4 
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FCPSA: Fractional charged partial surface area 

GA: Genetic algorithm 

glob: Globularity descriptor (molecular shape descriptor) 

GP: Gaussian processes 

H: Path length in the skin (see Eq. 1) 

Ha:  Hydrogen bond acceptor activity 

Hb: Hydrogen bond forming ability (donor hydrogens + acceptor electron lone pairs) 

Hd:  Hydrogen bond donor activity 

HLP: Total number of lone pairs that can accept hydrogen bonds on the molecule 

HBA: Hydrogen bond acceptor number 

HBD: Hydrogen bond donor number 

iPLS: Interval partial least-squares algorithm 

IPPSF: Isolated perfused porcine skin flap model,  an ex vivo biologically intact perfused tissue 

preparation shown to correlate to in vivo human dermal absorption 

J+, J-: Extra terms for ionic solutes ( J+ = 0 for anions,  J− = 0 for cations; J+= J- = 0 for neutral 

compounds) 

Jmax: Maximum skin flux, mg/cm2.h 

Kp Permeability coefficient 

KSC,W: Stratum corneum/water partition coefficient 

L3s: 3rd component size directional WHIM index / weighted by atomic electrotopological states 

(WHIM: weighted-holistic-invariant molecular) (Todeschini et al., 1997), 

http://www.vcclab.org/lab/indexhlp/whimdes.html 
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Log P:  logarithm of the octanol/water partition coefficient 

ΔlogP(o-h): log P(octanol) – log P(heptane) 

LR: Linear regression 

MD: Molecular dynamics 

MF: Mixture factor (accounts for physicochemical properties of the vehicle/mixture components) 

MLR Multiple linear regression 

Mpt: Melting point 

MR:  Molecular refractivity 

MV:  Molecular volume 

MW:  Molecular weight 

nArCOOR: Number of esters 

PCR: Principal components regression 

Pe: Normalised permeability 

PISA: pi (carbon and attached hydrogen) component of solvent-accessible surface area 

PLS: Partial least squares regression 

PSA: Polar surface area 

PSFT: in vitro porcine skin flow-through diffusion cells 

R: Rat skin permeability= log(%permeation/(100-%permeation) 

R2:  Excess molar refractivity, cm3 mol−1 )/10 (Abraham solute descriptor) 

RFM Random forest method 

RR: Ridge regression 
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RT: Regression tree 

Saq: Aqueous solubility 

SiRMS 2D simplex representation of molecular structure 

SlogPVSA4: Sum of van der Waals surface area of atoms with log P contributions in the range of (0.1–

0.15) (MOE, 2011) 

Snar: Narumi simple topological index (related to molecular branching) 

SolBP–SolMP: Difference between melting and boiling points of the solvent mixtures 

SOLV: Solvation free energy in water computed with MOPAC2002 using the COSMO continuum 

solvation model 

SsssCH: Sum of E-state indices for all methyl groups 

sum (H): sum of charges of hydrogen atoms bonding to nitrogen or oxygen atoms 

sum(N,O): sum of charges of nitrogen and oxygen atoms 

toC+: Cation transport number in the skin  

TPSA: Topological polar surface area 

VAdjMa: Vertex adjacency information which depends on the number of heavy-heavy bonds (MOE, 

2011) 

Vx:  McGowan characteristic volume of the solute in (cm3  mol−1)/100 (Abraham solute 

descriptor) 

Vw: van der Waals volume 

vsurfG: Molecular globularity–how spherical a molecule is, where values above 1 is non-perfect 

spheres (Cruciani, 2000) 

πH
2:  Dipolarity/polarisability (Abraham solute descriptor) 

ΣαH
2:  Hydrogen bond donor acidity (Abraham solute descriptor) 
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ΣβH
2:  Hydrogen bond acceptor basicity (Abraham solute descriptor) 

4χv: Fourth order valence-corrected molecular connectivity 

χ0: Zero order molecular connectivity chi index (quantification of both the molecular size and 

the degree of skeletal branching) 

9χp: 9th order path molecular connectivity index 
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