Lessons Learned from Read-Across Case Studies for Repeated-Dose Toxicity

Terry W. Schultz¹ and Mark T.D. Cronin²*

¹ The University of Tennessee, College of Veterinary Medicine, 2407 River Drive, Knoxville, TN 37996-4543 USA; ² School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, L3 3AF Liverpool, England

* Corresponding author.

E-mail addresses: tschultz@utk.edu (T.W. Schultz), m.t.cronin@ljmu.ac.uk (M.T.D. Cronin).

Disclaimer: The views expressed in this document are those of the authors and do not necessarily represent the official views of Cosmetics Europe or its Members.

Word Count for Abstract: 198 words

Word Count for Text: 4,727 words

Word Count for References: 1,555 words
ABSTRACT

A series of case studies designed to further acceptance of read-across predictions, especially for chronic health-related endpoints, have been evaluated with regard to the knowledge and insight they provide. A common aim of these case studies was to examine sources of uncertainty associated with read-across. While uncertainty is related to the quality and quantity of the read across endpoint data, uncertainty also includes a variety of other factors, the foremost of which is uncertainty associated with the justification of similarity and quantity and quality of data for the source chemical(s). This investigation has demonstrated that the assessment of uncertainty associated with a similarity justification includes consideration of the information supporting the scientific arguments and the data associated with the chemical, toxicokinetic and toxicodynamic similarity. Similarity in chemistry is often not enough to justify fully a read-across prediction, thus, for chronic health endpoints, toxicokinetic and/or toxicodynamic similarity is essential. Data from New Approach Methodology(ies) including high throughput screening, *in vitro* and *in chemico* assay and *in silico* tools, may provide critical information needed to strengthen the toxicodynamic similarity rationale. In addition, it was shown that toxicokinetic (i.e., ADME) similarity, especially metabolism, is often the driver of the overall uncertainty.

Keywords: read-across; similarity; uncertainty; case studies; repeated-dose toxicity; regulatory acceptance.
Highlights:

• Read-across case studies for repeated-dose toxicity were evaluated

• Identification and definition of uncertainties in read-across is crucial

• The logic and data leading to a read-across prediction must be documented

• The similarity rationale of a read-across should be described transparently

• The roles of any endpoint specific and/or non-specific factors should be clarified
1. Introduction

Legislative requirements for the registration and safety assessment of chemicals, along with the need to obtain toxicological information without resorting to animal testing, have stimulated a more critical examination of read-across (RA). The concept of category formation, chemical grouping and RA is used to support chemical safety assessment by filling data gaps without the need for further in vivo testing (ECHA, 2014; OECD, 2014a; Stanton and Kruszewski, 2016). Historically, the fundamental assumptions of RA are that chemicals, which are similar in their structure, will have similar chemical properties and, thereby, have similar toxicokinetic and toxicodynamic properties (Cronin et al., 2013). A group of substances with similar toxicokinetic and toxicodynamic properties can be considered a toxicological meaningful category or a group of chemicals whose human health and/or environmental toxicological properties are likely to be similar or follow a regular pattern for a particular hazard. RA of toxic potencies based on such a category is a valuable approach to data gap filling, thus having a number of regulatory applications. Briefly, experimentally-derived toxicological properties from one or more source chemicals may be read across to fill the data gap for a target chemical, which is “similar” and for which an experimentally derived toxicological value is wanting and such prediction can be used for screening, priority setting, hazard assessment or risk assessment (Patlewicz and Fitzpatrick, 2016).

1.1. Background

Since the review of Cronin et al (2013), a number of papers have appeared that focus on modern-day RA. Many of these, including Blackburn and Stuard (2014), European Chemicals Agency (ECHA) (2015), Organisation for Economic Co-operation and Development (OECD) (2015) and Schultz et al. (2015), have put forward efforts to improve RA arguments and improve and innovate approaches (Batke et al., 2016; de Abrew et al.,
summarised the state-of-the-art surrounding read-across, along with reasons relating to regulatory non-acceptance, and compiled relevant guidance under the heading of “Good Read-Across Practice”; Hartung (2016) described the concept of linking different types of data and tools under the umbrella of good read-across practices.

It is acknowledged RA is not a new concept (cf. Hanway and Evans, 2000), despite this, a number of challenges continue to impede its wider use. When applying RA to fill a toxicological data gap, a number of fundamental questions repeatedly arise (Schultz et al., 2014), including:

- Is it possible to form a robust group of chemicals (often referred to as a chemical category) which includes the target chemical?
- Is the category relevant to fill a data gap considering the toxicology of the endpoint under assessment?
- Are there appropriate toxicology studies of sufficiently high quality for the source chemical(s) to allow a meaningful RA?
- Are the uncertainties defined and are they acceptable in order to use the read across prediction(s) to fill the data gap(s) for a specific regulatory purpose?

To address these questions and others, a flexible strategy for developing and reporting a repeated-dose RA prediction was devised and applied in the case studies (Schultz et al., 2015). Briefly, this strategy focuses on the two main elements of a RA, namely:

- assessment of the similarity between source and target substance(s) and,
- assessment of the uncertainties in the RA process and ultimate prediction.

It is worth noting the publication of this strategy predates ECHA’s Read-Across Assessment Framework (RAAF) (ECHA, 2015). Regardless of process, the standards for accepting a RA
prediction are likely to vary little, as the aim of a RA is to provide a prediction(s) that is
(more or less) equivalent to that which would be obtained from the standard animal study.
In order to address at least some of the above questions, and to determine the suitability of RA to fill data gaps for repeated-dose toxicity (focussing on the oral route of exposure to the rat), Berggren et al. (2015) recommended that a series of case studies be conducted for the most likely RA scenarios. An additional recommendation was that each case study be evaluated in a two-step process. The initial step was to be a “traditional” RA using established in vivo data supplemented, as applicable, with conventional in vitro and classic structure-activity relationship information. The second iteration was to be a RA with the initial information and data supplemented with “New Approach Methodology” (NAM) data from high-throughput screening (HTS), novel in vitro methods and/or toxicogenomic assays.

Following an external review process, the findings of four case studies for the filling of data gaps for repeated-dose toxicity using RA have been published, covering a variety of RA scenarios. The RA case studies were all for 90 day rat repeated-dose toxicity and explored:

i) The suitability of 2-propen-1-ol as a read-across analogue for other short chain primary and secondary β-olefinic alcohols on the basis of similarity in metabolic transformation (Przybylak et al., 2017).

ii) The use of data for short-chain mono-alkylphenols to fill data gaps for other mono-alkylphenols on the basis of similarity in toxicokinetics and toxicodynamics (Mellor et al., 2017).

iii) An investigation of saturated 1-alkanols presumed to be of low toxicity and varying in toxicokinetics as a results of alkyl chain (assuming no branching on the alkyl chain) (Schultz et al., 2017a).

iv) Consideration of 2-alkyl-1-alkanols where branching of the alkyl chain may affect RA for low toxicity chemicals (Schultz et al., 2017b).
Whilst the reader is encouraged to examine the case studies (Przybylak et al., 2017; Mellor et al., 2017; Schultz et al., 2017a; Schultz et al., 2017b), a summary of the findings is presented in Table 1. As summarised in Table 1, the four RA case studies were evaluated in terms of the robustness of arguments and the uncertainty associated with the different elements of the category formation. It is important to note that these case studies were not performed for the purpose of regulatory submission, but to investigate the process of RA and how it could be improved. As such they provide a rich source of potential knowledge and learning for the development and direction of future RA studies. It is also acknowledged that various other RA case studies have been published (Blackburn et al., 2011; de Abrew et al., 2016; van Ravenzwaay et al., 2016) and, whilst they have not been evaluated explicitly in this investigation as they are based on different endpoints and approaches, there has been implicit learning from these.
Table 1. Summary of the main findings of the read-across case studies for repeated dose chronic toxicity

<table>
<thead>
<tr>
<th>Chemical Category and Reference</th>
<th>Key Features of Similarity Amongst All Compounds in the Category in Terms of Structure, ADME and Toxicity</th>
<th>Summary of Weight(s) of Evidence To Support Read-Across for the Category</th>
<th>Conclusion Regarding Uncertainty</th>
</tr>
</thead>
</table>
| n-alkanols; C5-C13 (Schultz et al 2017a) | • Single OH group; C5-C13 chain length, straight-chain hydrocarbon scaffolding.
• Absorbed from the gut; distributed in the blood in solution; first pass metabolism leads mainly to the corresponding carboxylic acid; subsequent mitochondrial β-oxidation to CO₂
• No systemic toxicity; no chemical reactivity or receptor-mediated interactions; nonpolar narcosis is a probable mode-of-action. | Chemistry: High
Toxicokinetics: Medium
Toxicodynamics:
 * In vivo: High
 * In vitro: High
Overall: High | Same as performing an OECD TG 408 test |
<table>
<thead>
<tr>
<th>Compound Type</th>
<th>Chemistry</th>
<th>Toxicokinetics</th>
<th>Toxicodynamics</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-alkyl-1-alkanols; C5-C13 (Schultz et al 2017b)</td>
<td>Single OH, C5-C13 chain length with a 2-position C1-C3 hydrocarbon scaffolding.</td>
<td>Medium</td>
<td>In vivo: High
Overall: High</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Absorbed from the gut; distributed in the blood in solution; first past metabolism leads mainly to glucuronidation; subsequent elimination in the urine.</td>
<td></td>
<td>In vitro: High</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No systemic toxicity; no chemical reactivity or receptor-mediated interactions; probable mode of action is nonpolar narcosis.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-olefinic alcohols; C3 to C6 (Przybylak et al 2017)</td>
<td>Single OH group; C3-C6 hydrocarbon scaffolding with β-vinylic moiety.</td>
<td>Medium</td>
<td>In vivo: Medium
Overall: High</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>Absorbed from the gut; distributed in the blood in solution; first past metabolism leads to the corresponding α, β-unsaturated aldehyde or α, β-unsaturated ketone.</td>
<td></td>
<td>In vitro: High</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemistry: High
Toxicokinetics: Medium
Toxicodynamics: In vivo: High
Overall: High</td>
<td>Straight-chain β-olefinic alcohols: same as performing an OECD TG 408 test;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure</td>
<td>Chemistry</td>
<td>Toxicokinetics</td>
<td>Toxicodynamics</td>
<td>Overall</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>----------------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>mono-alkyl phenols; ≤ C4 substituent</td>
<td>High</td>
<td>Medium</td>
<td>in vivo: High</td>
<td>High</td>
</tr>
<tr>
<td>Absorbed from gut, distributed in the blood in solution, first past metabolism leads mainly to Phase II conjugation to glucuronides and sulphates; excreted in the urine.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No systemic toxicity; no chemical reactivity; no relevant receptor-mediated interactions; probable mode-of action is polar narcosis.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Straight-chain β-olefinic alcohols: high</td>
<td>Branched-chain β-olefinic alcohols: medium</td>
<td>branched-chain β-olefinic alcohols: 2-propen-1-ol is the worst case scenario</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemistry: High</td>
<td>Toxicokinetics: Medium</td>
<td>Toxicodynamics:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>In vivo: High</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Overall: High</td>
<td></td>
</tr>
</tbody>
</table>

(Mellor et al 2017)
1.2. The aim

The present paper recapitulates with examples the lessons learned from the recent series of case studies which illustrate specific issues associated with modern-day toxicological RA of repeated dose toxicity. The case studies cited have the advantage of having undergone external review prior to publication. We believe this summary of lessons has the potential of furthering the acceptance of RA predictions, especially for predictions of NOAELs from repeated-dose toxicity studies.

2. Methods and Materials

The findings reported here build on previous analyses, starting with guidance (ECETOC, 2012; ECHA, 2009, 2011; OECD, 2007, 2011, 2014a, 2015) on grouping of chemicals and RA as well as other publications in this area (Ball et al., 2014, 2016; Cronin et al. (2013); Blackburn and Stuard, 2014; Patlewicz et al., 2013a, 2013b, 2014, 2015; Patlewicz and Fitzpatrick, 2016).

As stated in the introduction, the case studies from which the findings in this paper were arrived at were Przybylak et al. (2017), Mellor et al. (2017) and Schultz et al. (2017a, 2017b). Each case study is consistent with RA principles previously described (e.g., ECHA, 2013a, 2013b; OECD, 2015; Schultz et al., 2015). These four case studies, while developed by an iterative effort of their authors, were extensively reviewed by various independent experts.

3. Lessons Learned

RA case studies have crucial evidentiary value in regulatory toxicology. Amongst other things, they provide a means of illustrating how it may be possible to move from chemical-
by-chemical assessments based on animal testing to assessments by interpolation within a toxicologically-relevant and mechanistically plausible chemical category. In the context of this paper, case studies provided an opportunity to benchmark some of the lessons learned or confirmed to use RA in a regulatory context.

3.1. Today’s read-across

Early approaches to RA, e.g. identification of analogues with varying chain lengths (Hanway and Evans, 2000; Patlewicz and Fitzpatrick, 2016) are increasingly being seen as simplistic and trivial, especially for regulatory use. Today “chemical similarity” means more than proving similarity in chemistry; it requires the category formation and RA process to be transparent, reproducible and clearly documented. Specifically, key principles of biological, as well as chemical, similarity need to be supported, where possible, by data and scientific evidence. To improve the acceptability of any RA estimate, there is a need to justify the prediction by explaining in a scientifically defensible manner how it was derived and why it is justifiable for the intended purpose (e.g., priority setting, risk assessment).

Analysis of the four RA case studies confirmed that transparency should take the form of reporting, in appropriate detail, all relevant data used both to establish similarity arguments and the read across value. Such transparency can be accomplished in either a narrative presentation or in tabular form – with advantages and disadvantages to both. The latter, while leading to a shorter document, often requires the assessors to identify key information and/or data from the tables. The former often leads to a longer document where, however, the same information may be repeated.

In order to accept a RA prediction(s), the assessor needs to have confidence in the accuracy of the prediction. This confidence can be attained in several ways. One method is to provide sufficient information and data in the RA documentation such that the prediction can be
reproduced. To meet these requirements for transparency and reproducibility, clear
documentation, especially by following a template or strategy (e.g., OECD 2015; Schultz et
al., 2015, ECHA, 2015), is extremely helpful. Such methodologies provide “check lists” of
the types of information critical to establishing confidence. As part of the “New Approach
Methodologies” workshop one of the four cases studies on which this article is based was
assessed, independently, within the context of the ECHA RAAF (ECHA, 2015), it was clear
that the RAAF provided a structured means of determining the confidence in a RA. Further,
this leads to the possibility of developing a template for developing RA arguments for
regulatory use from the criteria detailed in the RAAF.

3.2. Uncertainties in RA

Sources of uncertainty in RA must be identified and addressed. Uncertainty includes a variety
of elements which can be separated into:

- the uncertainty associated with the concept and completeness of the RA argument
 and,
- the uncertainty associated with the similarity justification (Schultz et al., 2015).

There are uncertainties associated with the basic tenet of the RA (i.e., the results of in vivo
study/ies of the source substance(s) which are to be read across to the target analogue). The
case studies confirmed that a key issue in any RA argument is to lower the overall uncertainty
to an acceptable level; without high quality data for at least one source substance, it is not
possible to conduct RA. With regard to risk assessment, the required level of uncertainty in
the RA prediction should be similar to that associated with an appropriate in vivo test (e.g.,
OECD TG 408) and was assessed in the context of the template provided by Schultz et al.
(2015). For other regulatory applications (e.g., screening and priority setting), higher levels of
uncertainty may be acceptable. Thus, the first source of uncertainty that must be addressed is
related to the quality of the read across data (e.g., 90-day oral repeated-dose no observable adverse effect level (NOAEL)). Analysis of the data considered in the case studies indicated that such uncertainty may be best addressed using data from well-designed studies where the phenotypic expressions at the lowest observable adverse effect level (LOAEL) are reported e.g. for repeated-dose toxicity, a study which followed OECD TG 408. The quantity of in vivo data also affects uncertainty. It is intuitive that reading across from multiple source substances (i.e., a category approach), as in the 1-alkanol case study (Schultz et al., 2017a), has less uncertainty than reading across from one source substance (i.e., an analogue approach), as in the β-olefinic alcohol case study (Przybylak et al., 2017). Uncertainty within a RA is reduced by interpolation within a category bracketed by experimental in vivo data, as illustrated in the alkyl-phenol case study (Mellor et al., 2017), as opposed to extrapolation from data for one structural extreme of a category to another, as described in the 2-alkyl-1-alkanol case study (Schultz et al., 2017b).

Uncertainty associated with the similarity arguments is based on two interrelated rationales. Firstly, that the target and source substances are “sufficiently similar” to be toxicologically relevant. Secondly, “differences in similarity” are not relevant to the endpoint under consideration (Schultz et al., 2015). Confirming the latter was found to be a problematic task in the case studies. For example, in the 2-alkyl-1-alkanol case study (Schultz et al., 2017b), the authors believe the 2-methy-derivatives are “sufficiently similar” to the 2-ethyl- and 2-propyl-derivatives; however, the lack of in vivo repeated-dose toxicity data for a 2-methyl-derivative made it difficult to say with confidence that the structural difference does not preclude the inclusion of the methyl-substituted derivatives in a category defined with experimental data for 2-ethyl- and 2-propyl-substituted primary alcohols.
The assessment of uncertainty associated with a similarity justification is shown to include consideration of all information supporting the similarity argument. For example, for repeated-dose toxicity, the four case studies all revealed that not only are similarities in structure and chemical properties required, but also similarities associated with toxicokinetic and toxicodynamic properties. As such, data from in vitro assays, including new-methods (e.g., HTS) and in silico tools, often provide critical information needed to strengthen mechanistic and toxicodynamic similarity rationales. Establishing toxicokinetic similarity (i.e., ADME properties), especially for metabolism and metabolic rates, is often the driver of the overall uncertainty (Ball et al., 2014; Hand et al., 2017) and was shown to be a key factor in the separation of the saturated aliphatic primary alcohols into two categories for RA (see Schultz et al., 2017a, 2017b).

3.3. Toxicological meaningful categories for repeated-dose toxicity

Forming a toxicological meaningful category for longer-term hazards such as repeated-dose toxicity becomes a daunting task (Berggren et al., 2015). Data reported for repeated-dose hazards are elaborate, typically based on a defined vocabulary list of possible symptoms. For example, ToxRefDB (US EPA, 2008) includes in vivo data for 309 structures and lists more than 22,000 vocabulary items; whilst some are quantitative, most are qualitative (e.g., positive versus negative; increase versus decrease). Symptoms reported include clinical chemistry, haematological and urinalysis, as well as gross and microscopic pathological findings. It is intuitive that these symptoms cannot all be related to the same in vivo effect. Since exposure for chronic effects is over a longer duration (e.g., 28 days or longer in the case of repeat-dose toxicity), the in vivo damage is likely to be cumulative. Thus, the reported values such as a NOAEL or LOAEL vary as to incidence, target organ, severity etc. (Martin et al., 2009). Whilst limitations to forming a toxicologically meaningful category for quantitative RA include the availability of suitable in vivo data to be read across and the lack
of toxicologically-relevant *in vitro* or NAM data to support mechanistic plausibility, the
major limitation to using RA for repeated dose endpoints is often the lack of toxicokinetics
understanding and data.

3.4. Mechanistic plausibility

While not always possible, stating and documenting mechanistic plausibility improves the
likelihood of a RA prediction being accepted. This is especially true if mechanistic
plausibility can be linked to a mode of toxic action or an adverse outcome pathway (AOP)
(Ellison et al., 2016). An adverse outcome pathway is a description of plausible causal
linkages, illustrating how a molecular initiating event may lead to the key biochemical,
cellular, physiological behavioural etc. responses resulting in an apical effect; it thus
distinguishes mechanistic understanding across the different levels of biological organisation
(OECD, 2013; OECD 2014b).

As seen with the case studies for n-alkanols and 2-alkyl-1-alkanols (Schultz et al., 2017a;
2017b), even incomplete mechanistic understanding in the form of presumptive AOPs has
value in establishing toxicological meaningful categories. Moreover, presumptive AOPs
provide a means of linking *ex vivo, in vitro and in chemico* effects to the apical *in vivo*
endpoint of interest. As demonstrated in the β-olefinic case study (Przybylak et al., 2017),
confidence in mechanistic plausibility can be increased by the use of toxicologically-relevant
alternative methods data. In the latter case, the *in vivo* data for a single source substance are
supported by *ex vivo* data for five category members, including the source substance, as well
as *in chemico* data for 16 category members, again including the source substance. In this
way, NAM data have contributed to mechanistic understanding and hence supported the
hypothesis of category membership.

3.5. Endpoint specificity
Predictions from RA are more likely to be acceptable when undertaken on an endpoint-by-endpoint basis. The case studies for 1-alkanols and 2-alkyl-1-alkanols (Schultz et al., 2017a, 2017b) demonstrated that for acute oral rat toxicity, measured as the LD50 (mg/kg), the two alkanols sub-classes form a single category. Specifically, there is a similar mode of toxic action, similar Toxicity Forecaster database (ToxCast) molecular fingerprints and similar experimental LD50 values of ≈3000 mg/kg bw. Thus, both sub-classes belonged to the same category for rat acute oral toxicity and experimental results (i.e., the LD50 value) can be read across to untested analogues with acceptable uncertainty. In contrast, for read-across of 90-day oral repeated-dose toxicity endpoint, expressed as the NOAEL values (mg/kg bw/d), the n-alkanols and the 2-alkyl-1-alkanols formed two separate categories. Specifically, whilst similar in mode of toxic action with similar ToxCast results, the NOAEL values (≈1000 and ≈125 mg/kg bw/d for n-alkanols and the 2-alkyl-1-alkanols, respectively) are dissimilar. In this case read across for rat oral repeated-dose toxicity can be achieved with acceptable uncertainty only after appropriate sub-categorisation into the different chemical sub-classes (see Schultz et al., 2017a, 2017b).

3.6. Rationale for grouping substances

RA approaches have been developed on an over-arching rationale for grouping substances based on molecular structure and chemical properties (Cronin et al., 2013). The case studies have, however, demonstrated that these similarities in chemistry alone are often not sufficient to justify a RA prediction. This is especially the case for sub-chronic and chronic health effects, where multiple dosing may lead to different toxicokinetic and toxicodynamic properties (Schultz et al., 2015). Further information that is often required typically includes that related to toxicokinetic and toxicodynamic properties e.g., metabolism, clearance, mechanistic plausibility etc. The case studies for the 1-alkanols and 2-alkyl-1-alkanols (Schultz et al., 2017a, 2017b) demonstrated that the over-arching rationale for grouping is the
same, i.e. highly similar chemistry and similar mechanistic plausibility in the form of an anaesthetic-like mode of toxic action. Despite this, key toxicokinetics parameters are different. Specifically, whilst absorption and distribution are highly similar for both groups of saturated alcohols, metabolism and elimination are different. 1-Alkanols, such as 1-octanol, are excreted mainly (>90%) as CO₂, and to a lesser extent as n-glucuronide in the urine (Schultz et al., 2017a). In contrast, experimental data reveal that the major pathways of metabolism of branched saturated alcohols, such as 2-alkyl-1-alkanols, lead to conjugation with glucuronic acid. In addition, there is often oxidation of the alcohol group, as well as side-chain oxidation (Schultz et al., 2017b). Thus, whilst there is structural similarity within the alkanols, sub-categorisation is required to facilitate efficient RA.

3.7. Weights-of-Evidence (WoE)

The consideration of all relevant information used to undertake and support a RA can be achieved through Weight(s)-of-Evidence (WoE). Clearly, increased WoE has the possibility to reduce uncertainties both in relation to similarity justifications and the completeness of the read-across argument. The increased WoE can take the form of using different types of in vivo information and data (Schultz et al., 2017a, 2017b) or using in vitro and/or in chemico information and data (Mellor et al., 2017; Przybylak et al., 2017) – as such it can be seen as an extension of the support that can be provided for mechanistic plausibility.

The case study for 1-alkanols (Schultz et al., 2017a) demonstrated that uncertainty associated with RA predictions was reduced by increasing WoE through the addition of information from in vivo data. Specifically, the uncertainty associated with the RA of a 90-day rat oral repeated-dose NOAEL may be reduced following the inclusion of in vivo information from derivatives tested with a related protocol (e.g., OECD TG 408 vs OECD TG 422 studies) where qualitative and quantitative similarity are established. In addition, the β-olefinic alcohols case study (Przybylak et al., 2017), demonstrated that non-animal test data increase
the WoE for the RA justification through the results from toxicologically-relevant alternative methods. This increase in WoE can be in the form of relevant data from both the source and target chemicals, as well as relevant data for other substances within the applicability domain. The overall WoE may also be improved by having information for chemicals that may, in terms of mechanistic plausibility, be considered to be outside the category. The β-olefinic alcohol case study (Przybylak et al., 2017), demonstrated that saturated alcohols, which were outside the domain of the RA, exhibited test results for ex vivo and in chemico endpoints markedly different from results for β-olefinic alcohols. Thus, the most likely mechanism of toxic action (i.e., alcohol dehydrogenase mediated metabolism leading to a Michael-acceptor electrophile) is limited to β-olefinic alcohols. These consistent differences also add to the WoE.

3.8. Using New Approach Methodology data

Relevant and reliable NAM data are useful in reducing the uncertainty in toxicodynamics and improve mechanistic understanding (ECHA, 2016). The use of data from NAMs will assist in the acceptance of a “low/no toxic” RA prediction where a higher level of certainty is likely to be required (Schultz et al., 2017a).

In silico methods are the easiest, most rapid and often the cheapest NAM and are appealing as a good alternative first approach. However, they are useful only when there is confidence that in silico models are of high quality and have been applied correctly. In all four case studies, in silico models were used to establish similarities in physico-chemical properties, as profilers for possible toxicophores, and to examine potential metabolic similarity.

Several of the case studies demonstrated that HTS (i.e., ToxCast results) can assist in establishing the most likely pathway leading to an in vivo adverse outcome. Typically, these
data were used to support a mode of toxic action developed from non-mammalian data or a presumptive AOP (see Schultz et al., 2017a; Mellor et al., 2017).

In vitro assays which express a particular pathway and associated pathologies were found to be useful to link relevant in vitro data to the apical endpoint predicted in the RA. In this way, mechanistically fit-for-purpose data can reduce uncertainty and increase the WoE. For example, in the β-olefinic alcohol case study (Przybylak et al., 2017), metabolism is presumed to lead to derivatives that cause oxidative stress thus leading to narcosis and apoptosis that, in principle, lead to in vivo fibrosis. The incorporation of NAMs data into RA arguments allowed for the addition of relatively rapid and inexpensive hypothesis-driven testing and evaluation. This has the advantage of performing targeted, rather than universal, tests.

In the near future, new in vitro systems based on multiple cell-to-cell interactions and fit-for-purpose based mechanistic reasoning are likely to add confidence to RA predictions. For example, 3D co-culture systems, such as those reported by Wink et al. (2014) and Ramaiahgari et al. (2014) consisting of a HepG2 BAC-GFP reporter system, or that of Leite and co-workers (2015) consisting of hepatic organoids (of human hepatocyte-like cells (HepaRG) and primary human hepatic stellate cells) were used to measure stress response activation and fibrosis as proposed in the β-olefinic alcohol case study (Przybylak et al., 2017).

3.9. Size of category

The development and evaluation of the case studies also highlighted the balance required between reducing uncertainty by restricting the size of a category i.e. its applicability domain and making it a meaningful size. At the extremes category definition may be very broad e.g. aliphatic alcohols, or highly specific restricting it to a very small number of members. The
case studies demonstrated that, in reality, neither is ideal for RA. Broad definitions of applicability domains often do sharply increase the uncertainty associated with RA predictions for some substances within the domain, whilst very narrow definitions make decrease the practical utility and make it more difficult to build up a body of evidence. For example, in the initial RA evaluation of the β-unsaturated alcohols (Przybylak et al., 2017), a broader category including the β-acetylenic alcohols (e.g., 1-propyn-3-ol) was considered. Subsequently, due to toxicokinetic uncertainty, these derivatives were eliminated from consideration which had the effect in decreasing uncertainty, but reduced the breadth of the applicability domain of the category. Furthermore, in the β-olefinic alcohol case study, the single source substance, allyl alcohol, is unique and is effectively a category on its own.

While all α,β-unsaturated carbonyl compounds derived from hepatic metabolism of primary and secondary β-olefinic alcohol readily react with glutathione (Przybylak et al., 2017), there is less uncertainty associated with straight-chain alcohols (e.g., 1-alken-3-ols and 2-alken-1-ols) than with branched alcohols (2-methyl-2-alken-1-ols, 3-methyl-2-alken-1-ols). Accordingly, as noted by Przybylak et al. (2017), uncertainty may be better addressed via sub-categorisation. In the 2-alkyl-1-alkanol study (Schultz et al., 2017b), there is greater uncertainty associated with the 2-methyl-substituted derivatives. Whilst they are considered within the domain of the RA, there are no in vivo experimental data supporting their inclusion; thus, greater uncertainty.

4. Discussion

A basic understanding of what a RA to fill data gaps for hazard and/or risk assessment should look like, to garner regulatory acceptance, is rapidly taking shape (Teubner and Landsiedel, 2015; Ball et al., 2016). As noted by OECD, the lessons learned from the
cooperative review of case studies on grouping methods (such as RA) have increased
experience in the application of these approaches (OECD, 2016). However, it has also been
recognised that more case studies are needed for developing general guidance (OECD, 2016).
The evaluation of the series of case studies on which this article is based has indicated that
the acceptability of a RA prediction is often dependent on the evaluator’s sense of confidence
in the documentation and evidence provided. High confidence is associated with RAs when
there is strong proof that the prediction is valid i.e., low uncertainty. The case studies have
shown that improvement in the acceptance of RA predictions is accomplished in several
ways. Firstly, high quality in vivo endpoint data are essential to anchor any RA; higher
confidence is linked to qualitative and quantitative consistency with more than a single
source substance. Secondly, it is essential to establish the adequacy and reliability associated
with the underlying hypothesis of chemical and / or biological similarity. Higher confidence
is linked to arguments built on toxicokinetics and toxicodynamics, support by an assessment
of similarities in chemistry rather than being driven by chemical similarity alone. Thirdly, the
depth and breadth of supporting information is important; higher confidence is linked to
studies with increased WoE which is typically provided by information form non-animal
methods. Fourthly, higher confidence is associated with strong evidence of mechanistic
plausibility. Finally, higher confidence is associated with supporting evidence provided by
hypothesis-based testing, especially with fit-for-purpose in vitro and in chemico assays. The
latter come with the caveat that these sources of information meet reliability issues (e.g.,
repeatability and reproducibility) often need for regulatory acceptance.

4.1. Summary

RA arguments are best established:

1. in a context-dependent manner (one size does not fit all),
2. on one-to-one (analogue) or many-to-one (category) basis rather than a one to many
or a many to many arguments, and

3. on the basis of a single well-defined endpoint (e.g., time, species, route of exposure,
etc.).

In conclusion, addressing uncertainty in a RA prediction is central to regulatory acceptance.
For some endpoints (e.g., ecotoxicity, skin sensitisation, genotoxicity), useful frameworks are
available, whilst for other endpoints, especially those related to chronic health, further work
is needed.

5. Acknowledgements

TWS was funded by a consultancy agreement with Cosmetics Europe, the Personal Care
Association. MTDC acknowledges funding from the COSMOS Project which was funded by
the European Community's Seventh Framework Programme (FP7/2007-2013) under grant
agreement number 266835 and Cosmetics Europe.

6. References

The challenge of using read-across within the EU REACH regulatory framework;
how much uncertainty is too much? Dipropylene glycol methyl ether acetate, an

Ball, N., Cronin, M.T., Shen, J., Adenuga, M.D., Blackburn, K., Booth, E.D., Bouhifd, M.,
Donley, E., Egnash, L., Freeman, J.J., Hastings, C., Juberg, D.R., Kleinsang, A.,
Kleinstreuer, N., Kroese, E.D., Luechtedfeld, T., Maertens, A., Marty, S., Naciff, J.M.,

European Chemicals Agency (ECHA), 2011. The Use of Alternatives to Testing on Animals for the REACH Regulation 2011, ECHA, Helsinki, ECHA-11-R-004.2-EN.

European Chemicals Agency (ECHA), 2013b. Read-Across Illustrative Example. Part 2. Example 1 – Analogue Approach: Similarity Based on Breakdown Products, ECHA, Helsinki, ECHA-13-R-03-EN.

European Chemicals Agency; Helsinki, Finland.

Hand, L.H., Richardson, K., Hadfield, S.T., Whalley, S., Rawlinson, P. and Booth, E.D.

organisation for economic co-operation and development (OECD) 2014c. Draft outline of future cooperative work on the hazard assessment of chemicals. 52nd joint
Meeting of the Chemicals Committee and the Working Party on Chemicals, Pesticides and Biotechnology. ENV/JM/MONO(2014)100.

