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Abstract—As a new revolution of the Internet, Internet of Things 

(IoT) is rapidly gaining ground as a new research topic in many 

academic and industrial disciplines, especially in healthcare. 

Remarkably, due to the rapid proliferation of wearable devices 

and smartphone, the Internet of Things enabled technology is 

evolving healthcare from conventional hub based system to more 

personalised healthcare system (PHS). However, empowering the 

utility of advanced IoT technology in PHS is still significantly 

challenging in the area considering many issues, like shortage of 

cost-effective and accurate smart medical sensors, unstandardized 

IoT system architectures, heterogeneity of connected wearable 

devices, multi-dimensionality of data generated and high demand 

for interoperability. In an effect to understand advance of IoT 

technologies in PHS, this paper will give a systematic review on 

advanced IoT enabled PHS. It will review the current research of 

IoT enabled PHS, and key enabling technologies, major IoT 

enabled applications and successful case studies in healthcare, and 

finally point out future research trends and challenges.  

 
Index Terms— Internet of Things, Personalised Healthcare, 

Lifelogging.  

 

I. INTRODUCTION 

ecently, Internet of Things (IoT) is emerging as a new 

paradigm in information technology aimed at building up 

a dynamic global network infrastructure by connecting a 

variety of physical and virtual ‘things’ with the growing mobile 

and sensors. IoT was initially proposed to refer to uniquely 

identifiable objects (things) and their virtual representations in 

an internet-like structure, by mean of using radio-frequency 

identification (RFID) technology. Later on, the concept of IoT 

has been extended to cover more type of ‘things’ with a variety 

of sensors, such as actuators, global positioning system (GPS) 

devices and mobile devices. The seamless integration and 

effective harness of these sensors in a platform associated to the 

Internet have raised up a lot of research issues, from system 

architecture, data processing to applications. Nowadays, IoT 

technology has been rapidly gaining ground as a priority 

multidisciplinary research topic in many academic and 

industrial disciplines, especially in healthcare. 

    Traditionally, the motivation of utilizing modern Information 

and communication technologies (ICT) in healthcare system is 

to offer promising solutions for efficiently delivering all kinds 

of medical healthcare services to patients, named as E-health, 

such as electronic record systems, telemedicine systems, 

personalised devices for diagnosis, etc. But, driven by a 

sustained increase in longevity, many developed countries in 

are now facing the fact that their fast-growing demographics is 

the over-80s. This trend brings with some key concerns about 

the economic viability of traditional healthcare systems, and 

thus it needs to design and develop more coherent and 

ubiquitous ICT enabled solutions for delivering high quality 

patient-centred healthcare services. Fortunately, due to the 

rapid proliferation of wearable devices and smartphone, IoT 

enabled technology is evolving healthcare from conventional 

hub based system to more personalised healthcare system. 

Successful utilization of IoT enabled technology in PHS will 

enable faster and safer preventive care, lower overall cost, 

improved patient-centered practice and enhanced 

sustainability[1]. Future IoT enabled PHS will be realized by 

providing highly customized access to rich medical information 

and efficient clinical decision making to each individual with 

unobtrusive and successive sensing and monitoring.       

    But empowering the utility of IoT enabled technology in PHS 

is still significantly challenging in the area considering shortage 

of cost-effective and accurate smart medical sensors, 

unstandardized IoT system architectures, heterogeneity of 

connected wearable devices, multi-dimensionality and high 

volume of data generated, and high demand for interoperability. 

From user-centered perspective, the successful use of IoT in 

PHS will also need an interoperable IoT environment for care 

delivery and research, tightly-coupled health data mining 

applications, adequate data and knowledge standards of self-

empowerment and sound clinical decision-making foundation. 

These above challenges and needs grant a lot of opportunities 

to explore and investigate new concepts, algorithms and 

applications in IoT enabled PHS field.      

    In an effect to understand advance of IoT technologies in 

PHS, this paper conducts a survey on recent advanced IoT 

enabled PHS. We undertook an extensive literature review by 

examining relevant articles from major academic databases 

(IEEE Xplore, ACM digital library and Science-Direct). Key 

search terms include the key words ‘Internet of Things’, 

‘Healthcare’, ‘Pervasive Healthcare’ and ‘Mobile Healthcare’ 

and a wide range of other technologies. We also reviewed the 

research projects related to IoT, e-health, smart healthcare, etc. 

The initial review shows that some recent survey papers [2] 

[201] have reported and analyzed some IoT related techniques 

for healthcare applications, like wearable sensing technologies 

for healthcare [2], mobile phone sensing technologies [201], or 

ambient intelligence for healthcare [202]. But these surveys 

most concentrate on examining individual layer of IoT enabled 

systems like sensing or data analysis, and lack of a systematic 

perspective review from the entire IoT eco-systems. So many  
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Fig.1. Four-Layers SoA in IoT enabled PHS. 

 

research issues and factors related to the system level are 

ignored, for instance, the involvement of human factors in IoT 

systems, the security and privacy concerns of IoT architecture. 

Also, they rarely notice that IoT enabled healthcare is gradually 

transferring traditional clinic-centred health systems into more 

personalised and mobile-centred healthcare systems (PHS).  

Therefore, the key novelty of our review will focus on a first 

attempt on systematically categorize PHS technologies from an 

classic 4-layer IoT system perspective, focusing on identifying 

the breadth and diversity of existing research in IoT enabled 

PHS, including key enabling technologies, related applications, 

and successful case studies in IoT enabled PHS. It explores 

some new potential research issues, and highlights the future 

research trends and challenges for researchers regarding the use 

of IoT in PHS.  

The rest of the paper is organized as follows. Section II 

presents the background and current research of IoT enabled 

PHS. Section III reviews key enabling technologies of 

developing IoT enabled PHS. Section IV describes key 

applications and case studies related to IoT enabled PHS. 

Section VI discusses research challenges and future trends. 

Conclusion is given in Section VII.  

II. CURRENT RESEARCH FOR IOT ENABLED PHS 

The initial vision of IoT was to extend the term “Internet” into 

the real world embracing everyday physical objects by means of 

Radio Frequency Identification (RFID) technology [2-3]. Soon, 

as rapid advances in sensing technologies, more heterogeneous 

sensors – such as accelerometers, gyroscopes, altimeters and 

other portable low-cost devices are capable of being connected 

in an IoT environment. Driven by the exponential growth of 

commercial wearable devices and mobile apps, the concept of 

IoT based PHS [5] is established and become increasingly 

popular. These healthcare systems [25-28] use a set of 

interconnected devices to create an IoT network for performing 

healthcare activities, such as diagnosis, monitoring and remote 

surgeries. In terms of a well-known definition of four layers IoT 

system architecture, as shown in Fig.1. A number of typical of 

studies in a IoT enabled PHS will be categorized by sensing, 

networking, processing and application, as shown in Table.1. 
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Table .1. Typical Studies in IoT enabled PHS Table (ACC-accelerometer; EEG-electroencephalogram; ECG-

electrocardiogram; gyro-gyroscope; DT-decision tree; SVM-support vector machine; HMM-hidden Markov model)  

Sensing layer Network 

layer 

Processing layer Application Assessment 

Device 

specificatio

n 

Placed 

position 

Network Methods Users Subjects Accuracy Advantages Limitations 

1 ACC Back Chipcom 
CC2430 

transceiver 

Self-defined 
thresholds 

Young 
healthy 

people 

Walk, fast 
walk, 

ascend 

stairs, etc. 

91.5%-
100% 

Recognition 
and 

monitoring 

elder people 
at home. 

[10] 

Low-cost 
simple 

algorithms; 

adaptive 

Short time 
monitoring; 

uncontrolled 

environment 

ACOR+ 
kinematic 

system 

day: belt; 
night: chest 

Bluetooth DT Patients, 
healthy 

people 

Postures, 
walk, read, 

exercises 

77%-94% COPD 
patients 

monitoring.[

11] 

Simple 
device and 

algorithm 

The model 
only useful 

for COPD 

patients. 

Multi-

channel 

sensor 

module 

(EEG, 

respiration) 

Head Bluetooth SVM Twenty 

mentally 

healthy 

people 

 

Awake, 

drowsy, etc 

98.5% ± 

1.4%. 

Lifelogging 

mental 

fatigue 

monitoring[

12] 

Real-time 

feedback on 

mobile 

device. 

Mulitple 

sensors may 

incerease 

the cost and 

simplicity. 

ACC and 
pressure 

sensors; 

Feet Bluetooth SVM Young, mid-
aged healthy 

people 

Postures, 
walk, step, 

sweep, 

cycle, jog 

92%-98% Reduce 
Energy and 

memory on 

smart 
phone[13] 

Energy 
efficient; 

real-time 

feedback 

Smart shoes 
are non-

universal; 

no mention 
of 

feasibility. 

Wearable 
device 

Wrist Not 
mentioned 

Multivariate 
analysis 

 

16 elder 
people 

Sleep, wake Not 
mentioned 

Monitoring 
elderly 

health and 

sleep 
patterns[14] 

Real-life 
environment

; high 

targetedsubj
ects 

No obvious 
disadvantag

es 

SHIM- 

MER's ECG 

and GSR 

Wrist Bluetooth DT, 

Bayesian 

Network, 
SVM, K-

Means 

20 people Baseline, 

stressed 

92.4% Continous 

human 

stress 
monitoring 

for 
intervention

s[15] 

Inclusive of 

PA impact 

on the 
stress; long-

term 
monitoring. 

Patients are 

not 

considered 
and tested. 

1 3D ACC, 

1 wearable 
camera 

ACC on the  

belly; 
Camera 

hung over 

neck 

ZigBee, Wi-

Fi, 
Bluetooth 

SVM Not 

mentioned 

Run, go 

downstairs, 
go upstairs, 

take an 

elevator, 
walk, etc. 

90%-99% lifelogging 

health 
monitoring 

in context-

aware 
enviornment

[16] 

The 

approach 
could  

recognize 

movement 
directions. 

Lack of 

privacy; 
inconvenien

ce in daily 

lives; 
limited 

subject 

categories. 

Mobile 

phone 

No strict 

position 

Bluetooth, 

GSM, Wi-Fi 

HMM, DT 16 healthy 

people (8 F, 

8 M, ages 
20-45) 

Still, walk, 

run, cycle, 

motor 

87.9%-

96.2% 

lifelogging 

healthecare 

monitoring, 
personal 

transporatio

n[17] 

No needs 

for phone’s 

6DOF; fine 
grained 

activity 

categories. 

Not 

mentioned 

whether the 
model is 

useful for 

elderly or 
patients. 

1 gyro on 

shoe 

Feet, knee Not 

mentioned 

Knowledge-

based 

10 people, 6 

people with 

impaired 
gait 

Walk on 

level 

ground, 
walk up and 

down a 

steep, etc 

>96% A system of 

controlling 

the gait 
cycle of a 

neuroprosth

esis for 
walking in 

real time 
[18] 

Identify 

transitions 

in gait 
phase; 

present 

walking and 
non-walking 

activities 

No obvious 

disadvantag

es 

1 3D ACC, 

1 3D gyro, 1 

3D 
magnetic 

sensor. 

Upper and 

lower limb 

Bluetooth Kinematic 

modelling 

8 healthy 

male people 

(24–40 
years old) 

circular, 

rectangular 

motion, 
reach, 

elevation, 

etc 

95%-98% home-based 

stroke 

rehabilitatio
n [19] 

 

low-cost, 

real-time 

robust in 
different 

motion 

circumstanc
es 

No obvious 

disadvantag

es 
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The sensing layer for PHS aims to design and develop novel 

sensors or sensing technologies for effectively and efficiently 

collecting a variety of types of personalised health and medical 

information in an IoT environment. Existing sensors and 

wearable devices, such as inertial sensors [19], GPS (Global 

Positioning System) [24] , ECG [26] , EEG [29] are capable of 

observing and recording multiple type health data, including 

weight, location, heart rate, blood pressure and user-context 

information. Also, many studies[32]–[35]begin to use 

smartphone to collect human emotion and behavior data by 

specific mobile applications. So far, these sensory techniques are 

relatively technically and functionally sophisticated in manually 

controlled environments. But designing cost-effective and non-

invasive wearable devices is demanding and challenging. Many 

researches[36]–[38]focus on developing some novel accurate, 

reliable cost-effective and non-invasive sensing techniques for 

an automatic collection of human health data in IoT based 

uncontrolled environments 

    The networking layer for PHS is responsible to connect all 

devices in sensory layer together and allow personalised health 

data to be collected, stored, transmitted, shared and aggregated 

under IoT infrastructures. Also, it provides interoperability and 

security needed in the context of IoT for healthcare. Riazul Islam 

et.al [39] has reviewed a state-of-the art of IoT healthcare 

network with three issues: topology, architecture and platform. 

Each issue has become one of the vital research sub-stream in 

the IoT enabled PHS. Traditional IoT topology for PHS refers to 

the representation, configuration and deployment of different 

health sensor elements in an IoT healthcare network, such as P2P 

[40], Star [41] and Mesh [42]. As the growth of connected 

devices and sub-networks, one key research issue of IoT 

topology for PHS is how to transfer the heterogeneous static and 

mobile devices into hybrid computing grids. Regarding IoT 

architectures for PHS, many previous studies have used IPv6 

[43] or 6LoWPAN [43] systems as a basis IoT structure, which 

can enhance the quality of data [46] transmission and extend the 

range of healthcare services with mobility and scalability [47]. 

Now, in order to support more standards for interoperation, the 

service-oriented architecture (SOA) [46] has been proposed and 

validated by many researchers as a promising solution in IoT 

enabled PHS. Under SOA, a number of standards have been 

built to support the needs of interoperability, like Extensible 

Markup Language (XML), Simple Object Access Protocol 

(SOAP), etc. Some studies [43], [48] investigate the issues of 

cost, risk and profit in implementing SOA for large-scale IoT 

enabled healthcare systems. Apart from above two issues in 

networking layers, designers also need to address factors such 

as network management technologies for heterogonous 

networks (such as fixed, wireless, mobile, etc.), energy 

efficiency in networks, QoS requirements, service discovery 

and retrieval, data and signal processing, security, and privacy. 

Particularly, since personalised health information is relatively 

sensitive for users, any inappropriate disclosure may violate 

user privacy. The work in studying security and privacy for IoT 

enabled PHS has triggered many solutions, like reliable routing 

[49], cryptographic scheme [50], privacy-preserving health data 

aggregation [48], 

The processing layer of IoT enabled PHS targets at designing 

useful computational methodologies for processing a variety of 

complex health related data with aiming quality. The early work 

in mobile health focuses on developing specific algorithms for 

some diseases related data rather than general methods handling 

both health and medical data. For instance, Acampora et. al[39] 

reviewed a number of ambient intelligence algorithms in 

healthcare regarding five applications: activity recognition, 

behavioral pattern discovery, anomaly detection, and decision 

support. But now in the IoT enabled PHS, the key role of specific 

application is mostly categorized into the application layer, the 

study focus of data processing layer here has transferred to 

generic algorithms to improve the accuracy and validity of 

health data and or new data analytic tools to facilitate scalable, 

assessable and sustainable data structure. So this paper will 

summarize data processing algorithms for IoT enabled PHS into 

three key parts: data driven approaches, knowledge-based 

approaches and hybrid approaches. More specifically, data 

driven approaches mainly contain supervised learning, semi-

supervised learning and un-supervised learning methods; 

knowledge-based methods cover modelling and semantic 

reasoning approaches; hybrid approaches are a combination of 

above two types of approaches by integrating machine learning 

into knowledge reasoning. The section III.C will provide a 

detailed description of utilisation of these data processing 

approaches into IoT enabled healthcare data analytic. 

    The role of application layer in IoT enabled PHS is mainly to 

provide high quality services and easy-to-use interfaces to end 

users. As mentioned before, previous mobile health researches 

do not consider application as an individual layer in healthcare, 

and combine the interface or usability into algorithm layer. So 

their research focuses on evaluating if entire system or new 

algorithms have practical effect or help on medical care. In the 

IoT environment, PHSs are used by a large-scale population so 

that the scope of research in application layer has expanded into 

more wide areas, including healthcare service discovery, 

healthcare service composition, healthcare platform API, 

human-computer-interaction in healthcare, etc. Moreover, 

studies of application layer in IoT enabled PHS also covers 

different kinds of healthcare applications in academia and 

industry, like continuous monitoring, assisted living, therapy 

and rehabilitation, persuasive wellbeing, Emotional Wellbeing 

and Smart Hospitals, etc.  

    Mobile technologies nowadays play essential roles in 

healthcare monitoring and services. These technologies include 

mobile phones, personal digital assistants (PDAs), mobile 

cameras (e.g., SenseCam), smart watches, etc.  As most of 

mobile devices are embedded a variety of inertial sensors (e.g., 

accelerometer, gyroscopes, etc.) and biomedical sensors (skin 

temperature, heart rate, etc.), they are designed for providing 

personalised and continuous cares for users. For example, many 

mobile products (e.g., Fitbit) and applications (e.g., Moves) have 

been released for the long term record and collection of personal 

lifelogging physical activity [51]. Some devices involve in 

patient’s self-management and interventions [1]. Other 

applications that make use of inertial sensors are capable of 

falling detections and thus avoid undesirable consequences [59]  
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III. KEY ENABLING TECHNOLOGIES IN IOT ENABLED PHS 

A. Sensing and Identification Technologies 

Sensing and identification technologies target at recognizing 

physical objects and gathering human health information from 

sensors, tags, etc. The prominent development of low-cost and 

small-in-size wearable sensor such as inertial sensors (e.g., 

accelerator, gyroscope or barometric pressure sensors) and 

physiological sensors (e.g., spirometer, skin temperature sensor 

or blood pressure cuff), as well as wearable devices (e.g., fitness 

band or mobile phone) has facilities the process of measuring 

attributes related to individuals and their soundings. As a major 

risk measure for chronic diseases, a number of wearable sensors 

are studied by researchers for monitoring daily healthcare. Table 

2 shows a list of wearable and ambient sensor categories. 

    Inertial sensors are small-scale MEMS devices, which 

usually fit for measuring human physical activity. They are 

placed on different parts of body [24]. Accelerometers can 

measure degree of position changes of human motion; 

Gyroscopes are generally combined with accelerometers for 

measuring rotational movements in keen joint rehabilitations 

[74]. Applying both inertial sensors also enable accurately 

detecting a specific type of human motion and behaviors, such 

as bend knees, descend stairs [18], ascend stairs or turning [57]. 

Their applications cover gait rehabilitation, joint pathology 

[5],stork [10], Parkinson’s disease [57] and fall detection 

[53].Similarly, pressure sensors, along with accelerometers are 

also useful in monitoring stairs behaviors[62] and fall detection 

[63] owning to their relationship between sensory readings and 

altitude. Magnetic field sensor is another type of inertial sensor 

that can be abled to be placed close to measurement location for 

achieving high spatial resolution to detect human’s direction. 

For instance, in order to recognize a activity of “watching TV”, 

a study [64] presents that a magnetometer based system with 

combining accelerometers and indoor localization can tell that a 

person is facing to a television.    

    Physiological sensors are mainly designed for measurement 

of specific health related personal data, like heart rate, 

temperature. In order to ensure high accuracy of measurements, 

physiological sensors used to be relatively expensive and are 

mostly used in clinics. Now, advance sensory techniques boost 

the design and development of a large amount of cost-effective 

physiological sensors. For instance, Electrocardiogram (ECG) 

for heart rate monitoring has been broadly contributed to 

physical activity recognition and monitoring [65] and daily 

patients [61] health monitoring. More importantly, these 

physiological devices are feasible to be used in out-of-hospital 

conditions, can enable a health data transmission through 

Internet. 

    Image sensor in IoT enabled PHS usually indicate a camera 

that is utilised for recording and understanding human activities, 

emotions or other contexts by using image or video processing 

techniques. Typical image sensor related IoT enabled PHS 

cases[100] include SenseCam, Sony Xperia eye, etc. Their 

developers use a low cost wearable camera as visual life-logger 

for recording user daily activity related image sequences. With 

support of location data and image annotation, these tools can 

effectively recognize users’ daily activity and behavior, further 

results in improved and innovative home care solution for older 

people. But compared with other sensor technologies, image 

sensor technology for healthcare requires a much higher level of 

privacy protection. Especially in a lifelogging mode of IoT 

enabled PHS, how to store and protect high volume of image 

data is a big challenge. 

    Another key trend in IoT related sensing technology is that the 

appearance of many commercial wearable products and mobile 

applications enables a possibility of collecting multi-types of 

personal health data with hybrid sensors. The most famous 

mobile apps, such as Moves [68], are based on smartphone 3D 

accelerometer data and GPS information. It allows tracking user 

movement activities including location, distance and speed. The 

wearable products, such as Fitbit Flex [69], Nike+ Fuelband 

[70], Withings [71], are all wristband devices that 

Table .2. Typical sensing and identification technologies 

 

record steps count, distance, and calories burnt. These health 

related data are synchronized to mobile phone via blue-tooth, 

and further used in relevant mobile applications. 

    Apart from above wearable sensor technology, ambient 

sensor technology is also an important stream for IoT enabled 

PHS, as shown in Table.2. Typical ambient sensors include 

environment sensors, binary sensors, location sensors, etc. Their 

appliances focus on smart-home or smart-hospitals. Considering 

Sensor 

category 

Sensor 

subcategories 

Sensor 

examples 

Measured 

parameters 

 

 

Wearabl
e sensors 

 

 

Inertial 
sensors 

Accelerometer [72] Linear acceleration 

of movement 

Gyroscopes [55] Angular rotational 

velocity 

Pressure sensors [62] Object’s altitude 

Magnetic field 

sensors [73] 

Location of higher 

spatial resolution 

Location 
sensors 

GPS [74] Outdoor locations 

 

 
Physiological 

sensors 

Blood pressure cuff 

[75] 

Systolic and diastolic 

blood pressure 

Electrocardiogram 
(ECG) [27] 

Rhythm and 
electrical activity of 

the heart 

Spirometer [76] Expiration, flow rate 
and lung volume 

Electrooculography 

(EOG) [77] 

Eye movement 

galvanic skin 
response (GSR) [15] 

Skin  surface   
temperature 

Image sensors SenseCam [66] Photographs of daily 

living 

Ambient 
sensors 

Environment 
sensors 

Thermometer [78] Indoor/outdoor 
temperature 

Hygrometer [79] Indoor/outdoor 

humidity 

 
 

Binary 

sensors 

Window contact [80] Window open/close 
state 

Door contact [80] Door open/close 

state 

Light switch [80] light on/off state 

Remote control 

switch [80] 

Remote control 

on/off state 

 

Location 

sensors 

Infra-red [81] Indoor localization 

Zigbee [82] Indoor localization 

Active RFID [3] Indoor localization 

Tags RFID tags [83] Objects individual 

interact with 

NFC tags [84] Objects individual 
interact with 
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that the attention of this paper is to review technologies for 

personalised healthcare system, we mainly summarize key 

wearable sensing technologies for IoT enabled PHS in this 

paper. 

B. Networking Techniques 

Typically, networking layer in IoT applications contains a wide 

field of concepts and techniques, such as communication and 

location technologies, topologies, architecture, security and 

privacy, etc. However, for IoT enabled healthcare applications, 

a significant obstacle is that the majority of existing IoT enabled 

PHS system has limited permission on accessing and connecting 

hospital systems due to severe considerations on patients record 

and data. Thus, existing end-points of networking layer in IoT 

enabled PHS mostly rely on a third party server from companies 

or organizations with similar protocols. Thus, we will mainly 

concern three research issues mentioned in Section II: topology, 

architecture, security and privacy.    

     From classic networking standards perspective, IoT 

topologies can be categorized into three basic network 

topologies: p2p[40], star[41] and mesh[42]. Their 

characteristics, capabilities and behaviors are reflected by five 

key factors: latency, throughput, fault resiliency, scalability, 

hops and range. But for IoT enabled PHS, the topology needs to 

be a heterogeneous computing grids for collecting enormous 

amount of vital signs and health data, such as blood sugar, 

physical activity, blood pressure, oxygen saturation, etc. 

Viswanathan et.al [85] presents a new mobile grid computing 

topology ‘hybrid static/mobile computing grid’ for data- and 

patient-centric IoT enabled healthcare systems. It transfers the 

heterogeneous computing and storage capability of static and 

mobile electronic devices into hybrid computing grids by 

employing self-optimization and self-healing. Yang et.al [51] 

also introduces an IoT topology that supports the streaming of 

ultrasound videos through an interconnected network with 

worldwide interoperability for microwave access (WiMAX), an 

internet protocol (IP) network, and a global system for a mobile 

(GSM) network as well as usual gateways and access service 

networks. Jara et.al [52] also introduces a topology that 

considers an intelligent medicine box as a gateway to connect 

various wearable sensors, health-IoT cloud and heterogeneous 

network for supporting clinical diagnosis and analysis. The role 

of gateway in this IoT topology can examine, store and display 

all collected health data.  

    Regarding IoT architecture, SoA has been considered as a 

key technology in integrating heterogeneous systems or devices. 

In IoT enabled PHS, the design of architecture needs to treat a 

lot of issues, including architecture style, communication, 

sensors, web services and health applications, health data 

processing and protection, etc. Many researchers have explored 

the role of SoA in e-healthcare systems. For instance, Kart et al. 

[86] has applied SOA as a foundation to design, implement, 

deploy and manage health services in a distributed network 

system. Omar and Teleb-Bendiab [53] developed an 

experimental e-health monitoring system thatuses an SOA as a 

model for deploying, integrating, implementing and managing 

e-health services. The above studies show that SOA is an 

effective approach for IoT enabled PHS to reach 

interoperability between heterogeneous devices and deliver 

cost-effective healthcare services.    

    Lastly, after collecting diverse health data, security and 

privacy issues are critically important to IoT enabled PHS. 

Zhang et al [107] reviews these two issues for mobile healthcare 

networks from a quality of protection perspective: privacy 

leakage, secure data access and processing, malicious attacks 

and misbehavior. In order to solve these issues, a number of 

researches have been carried out. Zhang et al [55] proposed a 

priority based health data aggregation method for cloud assisted 

WBANs. It can aggregate different types of health data within 

tunable delay requirements, and also protects data and identity 

privacy during transmission. Zhou and Ren [87] suggest a 

scheme to securely and efficiently outsource the 

computationally intensive access control operations of ABE 

(Attribute Based Encryption) to the shared cloud, thus further 

providing a fine-grained access control to users’ important data. 

With this scheme, in a high level view, data owners only need 

to specify access policies on the encrypted data; and their access 

control can be done automatically by the cloud. For preventing 

misbehavior detection in IoT enabled PHS, Zhang et al [89] also 

developed a social-based mobile Sybil detection scheme for 

exploring mobile user’s pseudonym changing behaviors and 

contact statistics to differentiate Sybil attackers from normal 

users.  

C. Data Processing Techniques 

Data processing techniques for healthcare contains a quite wide 

scope regarding different types and format of data, different size 

of data, different purpose of applications. So here we only give 

a brief introduction of computational methodologies for health 

related data processing mentioned in section II, with a 

classification of data-driven approaches, knowledge base 

approaches and hybrid approaches, as shown in Table.3.  

Table .3. Data processing techniques in IoT enabled PHS 

Category Sub-Categories Algorithms References 

Data-driven 

approaches 

Supervised 

learning 

ANNs [23],[90], [150] 

HMMs [93]–[100] 

SVM [34], [96], [42], [111], 

[123], [124]   

Decision 
tree 

[36], [126]–[130] 

Semi-

supervised 
learning 

Co-training [133], [38], [109], [110] 

Unsupervised 

learning  

Expectation 

maximum 

[111], [112], [95] 

K-means  [161], [165] 

Knowledge-

based 

approaches 

 Semantic 

modeling 

andreasonin
g 

[114]–[116][117]  

Hybrid 

approaches 

Data-

driven+Knowle

dge-based 

 [118],[119] 

1. Data-driven approaches 

In IoT enabled healthcare field are based on a mechanism that 

makes use of a large volume of health related data from different 

subjects for training general models. Regarding the types of 

training or learning, it can be classified into supervised, semi-

supervised and unsupervised algorithms. A number of 

mainstream of algorithms are reviewed below:  

1) Supervised learning methods 
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Dataset is often divided into training sets and testing set in the 

procedure of conducting supervised learning algorithms. 

Training dataset, also called labelled data samples is made use 

for building the prediction model, whilst a testing dataset is for 

validating the model. For most occasions, larger datasets are 

used to train models, while smaller ones are for validating the 

prediction results. Supervised learning are widely and 

effectively applied in computer-aided systems for activity 

recognition, clinical decision making and symptom 

rehabilitations.  Typical supervised learning approaches are 

artificial neural networks (ANN), Bayes networks (BNs), 

decision tree (DT), support vector machine (SVM), K-near 

neighbor (KNN), etc. For example, ANNs have been used by 

many researchers for identifying and classifying different types 

of human physical activities and diseases diagnostic systems. 

Gyllensten and Bonomi [64] proposed a feed-forward neural 

network with 5-fold cross validation to train the data of free-

living subjects in daily life from a single accelerator. Nii et al 

[47] proposed a fuzzified neural network to train ECG data for 

estimating human physical activity. R. Das et al. [120] build 

heart disease diagnosis model with multi-layer feedforward 

neural networks achieving 89.01% accuracy classification. DT 

also is also a typical algorithm widely used in healthcare 

applications, especially for physical activity monitoring related 

disease diagnosis and treatments [108]. Likewise, SVM is 

capable to address the issue of either wearable sensors for 

precisely observing abnormal activities [121], or static postures 

detection for healthcare measurement [102], as well as in clinical 

outcome classification and prediction (e.g., disease diagnosis) 

[31]. In recent years, deep learning has gradually became a 

popular method in medical diagnosis and health state 

classifications due to its high efficiency and accuracy. Though 

deep learning techniques are traditional used in medical image 

analysis, a few works also operate them in terms of sensor 

signals. Tamilselvan P. et al. [122] applied deep belief network 

(DBN) constructing a hierarchical layer model with deep 

network for health  diagnosis method. The experiment results 

outperform traditional machine learning methods like SVM 

especially in high dimensional data inputs. 

    To achieve more satisfactory and practical performance, 

many researches combine different classifiers for the same 

purpose as standalone classifier, which are efficient to process 

data from both a single accelerometer [107] and from multiply 

wearable sensors [25]. For instance, DT and ANN are combined 

in the study [25] for unconditional physical activity detections, 

and the results was prominently improved by being replaced 

every node in DT models with ANN.  In the same manner, naïve 

Bayes classifier was fused into each node of Hidden Markov 

model (HMM) proposed by [123] for AAL in a context-

awareness environment. HMM was incorporated into Gaussian 

Discriminant Analysis (GDA) classifier presented in [124], 

achieved a considerably satisfactory result to naïve Bayes and 

single GDA classifier in accuracy.  On the other hand, it is the 

combination of several algorithms that causes high 

accumulation of complexity of each classifier. Hence, such 

hybrid classifier would weaken system performance on capacity 

and time. 

2) Semi-supervised learning methods 

Above supervised learning methods have their advantages on 

processing data in healthcare or clinical applications. But in 

practice, labelling every sample in supervised learning methods 

is quite expensive and requiring lots of human efforts. Some 

health datasets provided by unknown third party may exclude 

user annotations. So in these practical cases, semi-supervised or 

unsupervised learning methods are more popular. Some IoT 

enabled healthcare studies investigated the performance of 

applying semi-supervised methods in practical healthcare 

applications is to only train a small amount of labelled data, and 

leave a large amount of unlabeled data for an improved 

feasibility and reduce cost. Co-training is a classic semi-

supervised setting that takes advantage of two classifiers 

independently to train and update data from multi-view using 

unlabeled samples with high degree of confidence [125]. Stikic 

et al. [109] made use of accelerometer and infra-red, compared 

different semi-supervised techniques, found that co-training and 

self-training methods are the most adaptive methods for physical 

activity models. Furthermore, En-Co-training is an improved 

version proposed by  Guan et al. [126] which is more flexible 

for physical activity measurements, since compared to Co-

training with two separately strong classifiers, En-Co-training 

trains data as a whole without requirement for confidence of the 

labelling of each classifier. The study showed with 40 wearable 

sensors on the individual’s legs, results of static postures and 

ambulation obtained better performance than supervised 

methods when 90% samples are unlabeled.  [127] 

3) Unsupervised learning methods 

A few studies investigated typical unsupervised clustering 

methods like K-means cluster [111] and Gaussian mixture 

model (GMM) [128]. For example, Maekawa et al. [128] 

proposed a probabilistic model employing GMM to calculate the 

similarity of physical characteristics between a new user and 

source users and hence find the closest activity pattern. On the 

other hand, Alshurafa et al. [111] pointed out that GMM is the 

better algorithm compared to K-means clustering in different 

levels of activity intensity which would benefit intersubject 

variability. In addition to these, minority unsupervised learning 

methods have the aid of Intermediary to analyse abundant data 

resources from the web rather than directly labelling raw signals 

collected by the researchers.  For instance, the “bag-of-words” 

model [129] is a text processing technique, while  Huỳnh et al. 

[130] employed in activity observation where a series of sensor 

data were converted into documentation for inference of 

different types of activity. As such, sensor-based activity data 

are regarded as stream of natural language terms to match 

objects for mining models from the web [131]. 

2. Knowledge-based approaches 

Knowledge-based approaches represent and transfer knowledge 

from human expert (e.g., healthcare personnel and medical 

experts) into computer algorithms to establish computer-aided 

decision support system. For example, a knowledge-based 

system can deliver tailored information and advice to patients, 

carers and family members of the patient, taking decisions that 

are described in the treatment plan. Equally it can recommend 

diagnosis and clinical decisions to health personnel who will 

make changes in medication, and thus significantly improve the 

quality of live (QoL) for patients of chronic disease and elderly 
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people living independently [1]. Organizational knowledge 

model construction and rule-based inference are two main stages 

for carrying out knowledge-based methods. The structure of 

models is built in a way that allow systems to automatically 

process reasoning, whilst the inference is made of a set of IF 

(premise) THEN (action) rules from domain expert. 

    The knowledge model is expressed in some knowledge 

representation language or data structure that enable computer 

to execute the semantic rules. Knowledge-based approaches 

mainly consist of syntax-based, logic-based and ontology-based 

approaches. Syntax-based approach makes use of grammar that 

express the structure based on language modelling. It follows 

hierarchical structure containing two layers which are HMMs 

(Hidden Markov Models) and BNs (Bayes Networks) on the 

bottom and CFGs (Context Free Grammars) on the top. Logic-

based method such as description logic describes entities and 

then make logical rules for high-level reasoning. Among 

knowledge-based approaches, ontology is the most flexible and 

used approach in IoT enabled healthcare filed due to its 

reusability, computational completeness, decidability and 

practical reasoning algorithms. Its organizational structure for 

knowledge not only define concepts, properties, and 

relationships among them, but also supports instance-based 

reasoning. Some ontology based open resources of AAL 

systems that can share and reuse domain knowledge are already 

available such as SOUPA [114], SOPRANO [115], and GAIA 

[116].  

    Rules are defined in the form of an implication between an 

antecedent and consequent based on the structured model. The 

conditions are specified in the antecedent, and the results of the 

reasoning are declared in the consequent. Many researches have 

been conducted detecting ADLs in IoT environment for assisted 

living using knowledge reasoning. Also, knowledge-based 

decision support systems have been studied and deployed in 

various scenarios of remote health monitoring, reminding 

patients to visit physicians when their conditions are under 

severe situations. For example, Abidi et al. [132] developed 

clinical practice guidelines and a decision support system to 

support family care for breast cancer patients in terms of 

semantic and logic inference. Riaño et al. [28] used an ontology 

based approach to develop two personalized procedures for 

chronical patient healthcare, including anomaly detection, 

missing data and preventive actions. Another example is shown 

by Paganelli and Giuli [133] which provided the context 

semantic reasoning as monitoring system for chronic patients. 

Thomas et al. [134] made use of asthma treatment guidelines to 

provide the physician with disease assessment and 

recommendations on the basis of objective functional patient 

testing and case based treatment. Martínez-García et al. [135] 

discussed a knowledge inference engine to support healthcare 

personnel to help patients manage depression.  

3. Hybrid Approaches  

Since the training data samples and labels in nature environment 

are very difficult to obtain. Although unsupervised and semi-

supervised learning methods have their advantages in reducing 

the requirement of data sample, the immature foundations often 

lead to erroneous predictions. While ontological methods are 

incompetent in handling a variety of uncertainties in real 

healthcare environment. So the combination of both the data-

driven and knowledge-based approaches has the potential to 

make up the respective shortcomings of each other and thus 

taking advantage of advances in semantic reasoning with 

probabilistic models. COASR [118] is the typical case of 

combining two approaches in ADL detection for self-

management of elder people at their own homes. Collecting tens 

of thousands of training data for a large amount ADL 

classification is almost an impossible task in such environment, 

but based on mature techniques of classifying a few physical 

activities, with high level ontological reasoning, allows the issue 

well studied and application simply conducted. The same 

principle is also adopted by  R. Helaoui et al. [119] for 

interleaved and concurrent activity recognition (one of the AAL 

researches) with Markov logic framework and a set of 

contextual information acquired from ambient sensory data. 

IV. IOT APPLICATIONS AND CASE STUDIES IN PHS 

While the technologies applied in IoT enabled PHS are still in 

its early stage, the potential use in industry is rapidly evolving 

and growing. A lot of research projects and industrial cases 

related to IoT enabled PHS has been developed and deployed. 

In this section, we review some successful platforms and 

applications including European projects, individually national 

projects and research approaches.  

A. Physical activity platforms and applications 

MSP (Mobile sensing platform) [136] designed a lightweight 

wearable device placed on the waist to recognize a variety of 

physical activities and ADLs through connecting to the mobile 

phone. The standalone device presented in the work was one of 

the most state-of-the-art techniques in early stage of activity 

monitoring investigation using wearable sensors. The platform 

comprises of sensing model, feature processing model and 

classification model within the version 1.0, 2.0 and 3.0. 

Accelerometer and microphone are the two distinct sensors for 

measure different type of activities. The platform version 2.0 

resolves some practical issues such as storage, processor and 

battery life compared with version 1.0.  MSP 1.0 and 2.0 

implemented supervised training approach and achieve accuracy 

rate of activity recognition to 83.6% and 93.8%, respectively, 

while labelled training data is reduced in the version 3.0, and 

semi-supervised training method is taken to automatically 

cluster activity patterns. The result of recognition accuracy is 

also up to 87.4%. The system trains data offline, but provides 

real-time feedback.  

    WISDM (Wireless Sensor Data Mining) [137] is a typical 

platform that detects human physical activity based on Android 

phone sensors placed in one’s pocket. Data is from the 

accelerometer, features are extracted according to the 

identification of time between signal peaks, and activities of 

walking, jogging, ascending stairs, descending stairs, sitting and 

standing are selected in this work due to their repetitive 

characteristics. Supervised training algorithms are investigated 

and compared in the system using J48, logical regression, 

multilayer perceptron and straw man. The result exhibits that 

ascending and descending stairs are the most difficultly 

recognized PA. Besides, the work plans to involve more 

activities and users, as well as carrying the phone in different 



9 

 

part of one’s body as the results may diverse from phone putting 

from tops to trousers.  

    mHealthDroid (Mobile Health Android) [138] is an open 

source framework  designed to facilitate the rapid and easy 

development of biomedical android application which is 

available on Google Play [139]. The platform is able to collect 

data from connecting heterogeneous commercial devices (e.g., 

smart watch, belt and mobile device) for both ambulation and 

biomedical signals. The system contains communication 

manager, data storage manager, data processing manager, 

visualization manager and system manager. Especially, data 

preprocessing, segmentation, feature extraction and 

classification using Weka [140] are operated in the data 

processing manager.  It also provides healthcare interventions 

such as alerts and guidelines. The most important aspect is its 

extensibility, which supports diverse modes and ways to 

facilitate new system implementation for time and cost saving. 

For instance, mDurance[141], a mobile healthcare support 

system for assessment of trunk endurance, is implemented in 

terms of the core functionalities of mHealthDroid.  

    WearIT@Work [142]is an European project to investigate 

wearable computing technology in different areas. In healthcare, 

it studied gesture determination, including open/close hood, 

doors and trunk, checking steering wheel, etc. to assist doctors’ 

diagnosis [123]. Multiple small and cost-effective acceleration 

sensors are distributed on patient’s arms for gesture 

classification. Data dimensionality are reduced by using 

supervised learning method dynamic time warping (DTW), and 

hybrid supervised learning is selected as a recognizer. For each 

accelerometer axis, HMM is exploited for metaclassifier, while 

its outcomes are sent to a Naïve Bayes model in order to improve 

the ultimate result. The experiments proved that using fusion of 

classifiers achieved high accuracy in the condition of extension 

of sensor network life time.  

    Apart from some typical projects above, there are also many 

other successful IoT enabled healthcare applications, like 

rehabilitation, persuasive wellbeing, emotional wellbeing and 

smart hospital.  For example, Jarochowski et al. [184] propose 

the implementation of a system, the ubiquitous rehabilitation 

center, which integrates a Zigbee-based wireless network with 

sensors that monitor patients and rehabilitation machines. 

Etiobe [185] is another project devoted to treat child obesity. Its 

architecture merges ubiquitous, intelligent, and persuasive 

features for implementing a cyber therapy approach. It is based 

on virtual and augmented reality, and attempts to persuade 

children to avoid poor eating habits. The system uses a 

collection of environmental sensors for capturing important 

information such as contextual, physiological, and 

psychological data. McNaney et al. [186] have designed a 

wearable acoustic monitor (WAM) device, which provides 

support in various aspects of social and emotional wellbeing by 

inferring levels of social interaction and vocal features of 

emotionality. Rodriguez et al. [187] describe development of 

SALSA, an agent-based middleware to facilitate responding to 

the particular demands of patients and hospital’s personnel. 

B. Healthcare service with human interaction 

In recent years, self-management services in tele monitoring and 

AAL settings have been becoming a heated research and 

application facial point designed for satisfying user’s specific 

requirements to improve the efficiency and success of a therapy 

(e.g., changing patient’s dosage). The systems provide an 

alternative approach to improving the quality of live (QoL) of 

the patients through interaction among patients, physicians and 

caregivers. Such systems are able to deal with a variety of patient 

conditions using sensor technologies, objective and subjective 

assessment methods, treatment plans and guidelines, with 

tailored information and advice being delivered to patients based 

on their feedbacks. While the procedure of the service is to 

collect and storage of relevant health data and then send 

feedback to the patient, which designated the “Closed Loop 

Principle” [143]. 

    EMERGE (Emergency Monitoring and Prevention) [144] 

targeted on emergency medical services (EMS) system to assist 

elderly living independently through automatic detection of 

ADLs in an IoT environment. Data from wrist devices with 

embedded-in wearable sensors and ambient sensors at home 

were collected for activity detection as well as vital data 

measurement. The proposed framework made attempt to 

classify different types of activities such as short-term 

emergencies (e.g., fall, helplessness) and long-term clinical 

assessment (e.g., toilet usage, sleep) with the knowledge-based 

approach, and highlighted weight as a characteristic to carry out 

the fuzzy reasoning. Furthermore, relationships between facts 

are described orderly for the temporal inference. Knowledge-

based model is used as an inference agent describes objects and 

relationships in the sensing layer and hierarchically constructed. 

The approach was tested by a few elderly people and caregivers 

in Europe following the close loop principle. 

    MOSKUS (Mobile Musculoskeletal User Self-management) 

[1], [145]is a  to develop a smart ICT solution to support self-

management for patients suffering from arthritis, a prevalent 

and debilitating chronic disease, and thus, saving costs in the 

health care sector and improving the clinical outcome. A 

personalized chronic patient’s self-management system 

(CPSMS) proposed in MOSKUS is a knowledge-based 

decision support and evidential reasoning system that makes 

use of a set of reasoning rules, providing non-pharmacological 

treatment plans to assist patients keep better control on the 

chronic disease and reduce the frequency of hospital visits. The 

states of self-report (questionnaires) measurements are divided 

into four categories: High, Medium, Low and None. Due to the 

imprecise concepts, fuzzy rule reasoning mechanism are 

defined for the multiple assessment fusion [145] in CPSMS. 

This platform delivers patient’s conditions, medical and 

behavioural assessments and inference mechanisms for 

decision recommendations. 

    SMART (Self-Management supported by Assistive, 

Rehabilitation and Telecare Technologies) [146] is a 

personalized self-management and monitoring platform for 

some health conditions namely chronic heart failure, chronic 

pain and stroke using wearable sensing technologies. The aim of 

the project is to assist patients maintain their health condition at 

home through setting life goals based on a number of physical 

activity tracking outcomes, also to provide a series of feedbacks 

according to the process of the therapy plan. In order to monitor 

patients’ physical activities, it made use of accelerometers, vital 

signs like weighing scales and a blood pressure monitor, as well 

as ambient sensors (i.e., bed sensor, door sensor, etc.) to monitor 

patient’s activities and sleeping pattern, TV usage and food 
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preparation. Data-driven and knowledge-based methods are 

both adopted in the SMART.  

    PIA (Personal IADL Assistant) [84] is an AAL JP (Ambient 

Assisted Living Joint Programme) project aiming at assisting 

elderly people to live independently in their homes and perform 

daily activities without external help. It uses simple approach 

that the elderly people can watch instructional videos of how to 

use modern household equipment through interacting with Near 

Field Communication (NFC) tags attached on the equipment 

with their smart devices. There are two main categories of end-

users: elderly people and caregivers. Caregivers are healthcare 

personnel, family or friends, whose responsibility is to record 

and upload the instructional video and link it to the NFC tags via 

PIA app. The end-user then use the smart devices (e.g., smart 

phone or tablet) with the app installed to tap the equipment with 

the NFC tag attached and then the same video automatically 

plays. The ontology-based top-down, goal-driven model is 

developed in PIA that the goals are set as recognition of elder 

people’s ADLs [147]. 

C. CDSS automated prediction and diagnosis 

PredictAD  (Predict Alzheimer's Disease) [148] is an European 

research project for developing a standardised and objective 

solution that would enable an earlier diagnosis of Alzheimer’s 

disease, improved monitoring of treatment efficacy and 

enhanced cost-effectiveness of diagnostic protocols. The project 

develops a generic decision support software library and 

platform with different classification methods behind with a 

CDSS model composed by data tier for data collection and 

storage, logic tier for data processing and presentation tier for 

user interaction and interface. The special point of this CDSS 

tool is the proposed disease state index (DSI) function and has 

been tested for efficiently assessing and predicting different 

diseases.  

    METEOR (Methodist environment for translational 

enhancement and outcomes research) [149] is an integrated 

clinical informatics framework that contains a data and logic 

storage EDW (enterprise data warehouse) and a clinical outcome 

prediction tool SIA (software intelligence and analytics) for 

physicians, caregivers and other clinical staff. The system is also 

designed to remotely monitor and control the patient’s physical 

state from data collection of blood pressure, spirometry, pulse 

oximetry, temperature, etc. in the way of communications media 

like web browser and thus provide medical interventions and 

reminders. The whole engine integrates many key techniques 

like service-oriented architecture (SOA) and JBoss application 

server (JBoss AS) where manage reasoning rules extracted from 

electronic health record (EHR). Also, the framework is also 

applied in COPD patient remote monitoring, showing its 

feasibilities and universalities.  

V. RESEARCH CHALLENGES AND FUTURE TRENDS 

While empowering the utility of IoT enabled technologies in 

personalised healthcare has huge potential benefits, it is still 

broadly agreed that the IoT technologies are in their infancy and 

face many challenges due to the need of cost-effective sensing 

technologies, advanced algorithms of processing life-logging 

data, methods of coping with uncontrolled environment, high 

volume of data set, security and privacy, etc. Future efforts are 

required to address these challenges and examine of availability 

of existing PARM technologies to ensure a good fit in the IoT 

environment.  

A. Technical Challenges  

Cost effective and non-obtrusive wearable sensing: While 

existing sensing technologies have made a great progress in the 

last decade, it still limits to long-term healthcare monitoring in 

the free living environment, as even only a small single sensor 

attached on a certain part of the body is still uncomfortable for 

permanent monitoring. While wearable devices have been 

proven its popularity among general users, their majority usages 

are limited in the fitness fields. The products simply provide 

processed measurements (e.g., steps, distance or calories) so that 

suffer from further data processing. Raw sensor data can be 

directly acquired from mobile phone, but because of diversity of 

life pattern and environmental impacts, personal data from 

individual wearable device exhibits remarkable uncertainty in 

the natural environment such as battery, capacity issues and 

placed positions. The results are widely divergent when the 

mobile phone is put in the pants pocket from handbags. 

Particularly that inertial sensors are sensitive to any changes in 

position and orientation. Thus, so far, existing wearable sensing 

technologies are limited in terms of their size, fast response, 

continuous monitoring capability, wireless data transmission, 

and non-obstructive user experience. Moreover, there is usually 

a tradeoff between high quality and low cost of developing 

sensing technologies. The idea candidate of future sensing 

technologies for IoT enabled PHS should be a tiny sensor into 

personal daily use items, including but not limited to clothing, 

watches, glasses, shoes, belts, and so on. Moreover, for many 

chronic disease monitoring, non-obstructive sensing devices are 

key to success of IoT enabled PHS, and will potentially bring a 

lot of convenience to patients.  

    Secured and Trustful mobile health platform: Any 

healthcare related applications must consider various security 

and privacy issues. In many IoT enabled PHS applications, 

since health information (e.g., phenomena, health condition, 

emergency) is relatively sensitive for users, any inappropriate 

disclosure may violate user privacy and even result in property 

loss. Users may also concern about their critical health data 

being tampered with when their health data are stored in 

untrusted servers or places. Also some malicious attackers 

misbehave in IoT based health systems to disrupt the 

effectiveness or mislead other users’ preferences. Thus, how to 

provide appropriate security and privacy protections in IoT 

enabled PHS platform is still a challenging issue. Without good 

schemes to protect user’s privacy, users may not accept IoT 

enabled healthcare applications. Another important issue is that 

the costs of security protections vary with users’ diverse 

demands, and may impact users’ experiences of mobile health 

applications. For example, complicated encryption techniques 

may offer users more security guarantees but with higher 

computational overheads and latency than lightweight ones. To 

satisfy users’ diverse security requirements and balance the 

trade-off between the performance and security protections, 

quality of protection has become a newly emerging security 

concept that allows applications to seamlessly integrate 

adjustable security protection.  

    Effective data validation in healthcare: In a IoT enabled 

PHS environment, as we mentioned before, personal health data 
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from individual wearable device exhibits remarkable uncertainty 

in the natural environment. How to validate these data in 

longitudinal healthcare cases is very challenging. As the 

exponential growth of mobile healthcare market, numerous 

similar wearable products have been developed, which will 

significantly increase the heterogeneity and diversity of devices 

connected in IoT based personalized healthcare systems. 

Effective validating these health data from heterogeneous 

devices in IoT enabled personalized healthcare environment is 

difficult, and needs more advanced intelligent algorithms.  

    Intelligent data processing and analytic in healthcare: In 

terms of traditionally adaptive models for different people with 

different physical states, all data-based approaches require large 

number of samples for model training, in which supervised 

learning methods need to be set appropriate categories ahead of 

time, and each sample needs to be labelled. In addition, in the 

cases of abnormal behavior alerts for the elderly (e.g., falling or 

faint), the systems must enable prompt interaction with users 

and caregivers. Considering limitations of existing sensing 

devices which algorithms are normally implemented on the 

remote server, choosing lower complexity of algorithm may 

suffice to the circumstances. Also, for the life-logging physical 

activity monitoring environments like symptom analysis from 

long-term daily activity record, precise offline algorithms tend 

to be more functional. Lastly, only a few attentions are devoted 

to training healthcare model from the sensor signals in 

naturalistic or semi-naturalistic environment. Semi-supervised 

and unsupervised approaches are more eligible in real life with 

many uncertainties, and thereby to resolve the complexity and 

accuracy of the algorithms is a challenging topic can be further 

investigated. 

Monitoring and changing individual human behaviour in 

healthcare: In traditional model of healthcare, a reactive system 

that treats acute illnesses after the fact is recently evolving with 

IoT technologies to one more centred on patients, prevention, 

and the ongoing management of chronic conditions. Thus, it is 

highly important to effectively monitor and change individual 

behaviour with IoT enabled personalised healthcare systems, 

which requires a close collaboration between technical experts 

and clinicians. This need poses a variety of new research issues. 

Firstly, how to integrate behaviour change into new healthcare 

delivery models with IoT enabled PHS is a big issue. Many old 

health systems are putting increased emphasis on primary care, 

especially through the use of integrated care delivery models 

designed to improve the health of the population. To succeed, 

these new models must extend their reach outside of the four 

walls of a clinician’s office so that they can support patient 

behavior change beyond traditional clinician-patient 

interactions. This requires new capabilities, including clinical 

workflow tools to support patient targeting, care alerts sent to 

both clinicians and patients, enhanced communication and care 

management support for patients, and remote monitoring. 

Clinicians must adopt a patient-centered approach when they 

interact with patients, one that focuses on understanding the 

whole person and their barriers to change. Secondly, it is 

worthy to study of utilizing remote and self-care-oriented 

technologies to enhance the communication between patients 

and clinicians. Frequent, real-time communication and 

feedback are important in supporting change efforts. 

Traditional models of care delivery have, at their core, face-to-

face interactions between clinicians and patients. New 

technologies, however, are augmenting this interaction model 

and fundamentally transforming the ways in which clinicians 

deliver and individuals and their friends and family consume 

care. Mobile apps, for example, can facilitate tracking and 

monitoring. 

B. Future Research Trends 

Sensing interoperability: multiple sensors with different 

features often coexist in a single biometric system. While sensor 

interoperability refers to the ability of the system to merge and 

adapt data from different types of sensor and device. In IoT-

based PHS, such interoperability is especially distributed in 

network layer and processing layer. Firstly, the battery life and 

bandwidth overhead for low power sensor nodes is a still 

challenge. Second, due to different types of sensors have diverse 

characteristics such as frequency, as such, many approaches and 

biomedical platforms have been proposed for sensing 

interoperability. However, almost every biomedical sensor has 

its interoperability issues, few systems so far are able to handling 

with raw sensor data and feature extractions in pre-processing 

level in real, and thus expected to provided more practical and 

feasible approaches.  

    Lifelogging Mode: One key feature of IoT environment is 

that the collection of life-logging data becomes possible. It 

means that daily health data are monitored and accessed 

continuously and constantly in a life-long term. Due to limited 

memory and power resource in affordable wearable devices, 

life-logging physical activity data will not be milliseconds-based 

raw sensory signal, but minutes/hours-based segmented set. The 

changed typed of raw data leads to different features in a simple 

unchanged subject of physical activities. Existing researches 

cannot apply the same machine learning algorithms into these 

new features for equivalently high accuracy. Thus, how to 

effectively transfer these available machine learning algorithms 

into these new features in life-logging health related data, how 

to explore new feasible algorithms for training these life-logging 

data set, what kind of features in these life-logging data 

potentially leads to the best accuracy, etc. are all valuable 

research topics in this area. 

    Uncontrolled environment: Another feature of IoT enabled 

PHS is to face to completely uncontrolled environment. It 

follows a global trend of population aging, which requires the 

transformation of traditional hospital based healthcare services 

to patient empowered home based healthcare services. In this 

case, the future trend of using IoT technologies in PHS will 

focus on completely real life or namely uncontrolled 

environments. However, existing health related data analyzing 

methods were mostly set up and verified in lab or experimental 

scenarios for the purpose of improving recognition accuracy, 

and suffer from application in unconditional environments (i.e., 

outdoor, real home). The reason for that is lying on the two 

crucial but inevitable issues: short-battery or poor capacity of 

devices and time-consuming of running machine learning 

algorithms. Moreover, the diverse life pattern of individual 

person will cause huge uncertainty on personal health data in 

uncontrolled environment. People performs physical activities 

in varied manners owning to different age, gender, weight, etc. 

Hence, a specific recognition model fits one group of people 

may not fit another one. Thus, how to achieve high accuracy 
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and stability of health data processing using IoT technologies 

in uncontrolled environment is of interest to many researchers 

in future. 

    High volume of data: The heterogeneous devices connected 

in IoT environments and life-logging collection of physical 

activity data will be driving major expansion in big data of 

personal health information. These data contain not only a sheer 

volume of long-term personal lifestyle information, but also 

complex, diverse and rich context of other health information. 

The uncertainty of these data will be much higher than physical 

activity data training by classic machine learning methods in 

healthcare fields. Effectively and efficiently improving validity 

of these health related data and exploring useful knowledge 

becomes a difficult task. Therefore, research work on how to 

explore these big health related data under IoT environments for 

bringing intelligence for more solid clinical decision-making 

and policy formulation will be significance.  

    Security and Privacy: The architecture of IoT environment 

is supposed to be a very complicated heterogeneous network. 

IoT enabled PHS may be a specific application or service in the 

entire IoT environments. But, the personalised health data will 

be stored and managed into the server of IoT systems. The 

typical issues of security and privacy in IoT networking 

architecture will be naturally inherited to IoT enabled PHS 

applications. Compared to existing commercial wearable 

devices with data protection scheme on their standalone server 

like Fitbit, etc. protecting privacy and security in the IoT 

environments is more serious and difficult since the number of 

potential attack vectors on IoT entities is obviously much larger. 

So more research work on how to protect security and privacy 

needs to be carried out in healthcare using IoT technologies.  

VI. CONCLUSIONS 

Internet of Things paradigm represents the vision of the next 

wave of ICT revolution. IoT enabled technology in PHS will 

enable faster and safer preventive care, lower overall cost, 

improved patient-centered practice and enhanced sustainability. 

IoT enabled PHS have the potential to enhance our everyday 

life in many different aspects and, in particular. In this survey, 

we explored the application of IoT in healthcare from various 

perspectives. We reviewed the existing state-of-the-art 

technologies for IoT enabled healthcare applications. From a 

different perspective, we discussed current technology and 

infrastructure, such as sensing, networking and data processing 

technologies. More importantly, we provided a high level 

description of various IoT enabled healthcare applications. But, 

we are aware that the goals set up for IoT in healthcare are not 

easily reachable, and there are still many challenges to be faced 

and, consequently, this research field is getting more and more 

impetus. Researchers with different backgrounds are enhancing 

the current state of the art of IoT in healthcare by addressing 

fundamental problems related to human factors, intelligence 

design and implementation, and security, social, and ethical 

issues. Asa result, we are confident that this synergic approach 

will materialize the complete vision of IoT and its full 

application in healthcare and human wellbeing. 
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