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Abstract: With the increment for LNG (liquefied natural gas) demand, LNG carriers 

are becoming larger in size. The operational safety of the carriers and the associated 

terminals is increasingly attracting attention. This is particularly true when a large 

LNG vessel approaches a terminal, requiring a detailed investigation of ship 

handling in port waters, especially in certain unusual cases. A full mission simulator 

provides an effective tool for research and training in operations of both port 

terminals and ships. This paper presents an experimental design methodology of the 

full mission simulation. The details as to how the simulation is achieved are 

described, and the simulation strategies applicable to LNG ships are specified. A 

typical case study is used to demonstrate and verify the proposed design 

methodology. The proposed methodology of the full mission simulation provides 

guidance for port safety research, risk evaluation and seafarer training. 

 

Key Words: Liquefied Nature Gas (LNG) Carrier, Full Mission Simulation, Simulation Strategy, 

Ship Handling, Port Safety. 

1. Introduction 

With the increasing demand for clean energy (e.g. liquefied natural gas (LNG)), 

many LNG terminals have come into operation in recent years all over the world (Lin 

et al., 2010). Large LNG carriers require high reliability and operational security in 

ports. For a new port that has no previous history of LNG operations, a complete risk 

assessment, a clear guidance for ship arrival and a comprehensive emergency plan 

should be developed. Simulation is the main research method for investigating these 
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requirements, and the full mission simulator is the most powerful tool for these 

studies and for the training of the pilots and tug masters. 

Generally, from the viewpoint of ship movement and control, there are two types 

of simulation methods for LNG ship handling in ports: autonomous and 

non-autonomous. The fast-time simulation is a typical autonomous simulation, which 

can simulate the ship arrival operation. It is relatively inexpensive, and a large number 

of repetitions of simulation runs can be carried out in a short period of time. However, 

there are a few disadvantages of this method: a lack of a full behavioural model of the 

navigators, a difficult verification and a limited set of scenarios. Because the LNG 

ship handling simulation involves a complex mathematical model of the behaviour of 

LNG ships, the non-autonomous simulation and the full mission simulation may 

better be employed. 

The full mission simulation is a typical man-in-loop control system. In this type of 

research, a full mission simulator is very important because the fast-time simulation is 

impractical and the ship operates under the influence of a number of modelled 

parameters reflecting the environment in which it operates. These modelled 

parameters include the sea state, weather conditions, bathymetry and any other 

external influences that may affect the behaviour of the vessel (SIGTTO, 2010). 

With the rapid development of information and modelling technology, the full 

mission simulator has become quite realistic; in particular, shipborne integrated 

navigation systems have been installed in some simulators. The precise mathematical 

model generates the ship motion, and the environmental data drives the integrated 

navigation system by simulating the sensor; the ship motion can be represented in 2D 

ECDIS (Electrical Chart Display and Information System), radar images and 3D 

virtual scenes. These visualizations give the navigator a vivid virtual world as if they 

are actually on board a ship. 

For the safety of an LNG terminal, it is necessary to consider all elements that 

influence safety. Only the complex full mission simulation is capable of considering 

human (navigator) behavioural models, ship dynamics models, real traffic stream 

parameters and external conditions such as winds, wave, currents and visibility. 

How to develop and carry out the simulation of LNG carriers operating in a port is 

a systematic process involving interdependent facilities and personnel. This research 

provides a general method for instigating how LNG ship operations are simulated in 

port areas. This paper is organized as follows. Section 2 reviews recent literature on 

full mission simulation and LNG ship handling. Section 3 demonstrates the general 

design framework for the experiment on LNG ship handling in port in the full mission 

simulation. Section 4 presents a typical case in Meizhou Bay, China. Section 5 

concludes the paper and highlights the future research directions. 

2. Literature Review 

In the early 1960s, people tried to develop the first ship handling simulator in 

Sweden and the Netherland. At first, ship handling simulators were only used for 

scientific research. Their applications became increasingly important in maritime 
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research and training in the 1990s (Board et al., 1992; Hensen, 1999). 

With the implementation of the International Convention on Standards of Training, 

Certification and Watch-keeping for Seafarers (STCW1978/2010) (Mejia, 2010), the 

full mission simulator has been widely used for seafarer training and certification 

since the early 1990s (Salam, 2014). 

There were further developments in ship handling simulators at the end of the 

1990s. These included a more precise mathematical model, a more vivid scene and 

the addition of hydrodynamic effects, emergency response training and manned 

models (Muirhead, 2003). With the improvement of ship simulation techniques, ship 

handling simulators became more complicated and evolved into full mission 

simulators, with more applications developed. Full mission simulators have been the 

dominant tool for maritime simulation and application research, used for conducting 

operational training (e.g. emergency procedures and manoeuvring), analysing marine 

casualties, evaluating vessel designs for manoeuvrability, evaluating bridge equipment, 

evaluating navigational aids, and assessing the suitability of a particular vessel for a 

new port or transit situation (Board et al., 1992). 

Most of these studies involve seafarer training (Salam, 2014). The STCW Manila 

amendments highlight the importance of structured ship-bridge simulation training in 

enhancing the competency of the masters and watch officers (Mejia, 2010). In recent 

years, there are many relevant studies in the maritime safety fields. Gucma & Gucma 

(2007) investigated the simulation methods used for the optimization of LNG 

terminals and navigational safety assessment in restricted sea areas. Regarding safe 

navigation and waterway design, Zhang et al., (2003) simulated the process of ships 

moving from anchorage to quay using a ship handling simulator. The results from the 

simulator can be evaluated, and the design or modification of narrow channels can be 

validated. The simulator can be used to produce recommendations for improving 

navigational safety. 

Barsan (2006) attempted to simulate the expansion of the Port of Constantza by 

the Constantza Port Master Plan. A simulation and several test case studies were 

undertaken, involving manoeuvring actions of large container ships, without tug 

assistance until approaching the berth. Gucma (2011) described the basic 

requirements for the process of designing LNG terminals, discussed the various 

possible applications of computer simulation models and presented a case for 

designing the LNG terminal in Świnoujście. 

Despite the attractiveness of the above studies, LNG ship handling in ports 

through full mission simulation has not been systematically investigated. It is 

therefore crucial to carry out this study to fulfil the research gap, particularly given 

the fact that many new LNG port terminals are designed and built. 

3. Methodology for LNG ship handling in port by full 

mission simulation 

 It is necessary to have an experimental system in full mission simulation and the 
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methodology of carrying out LNG ship handling in port by full mission simulation. 

Fig. 1 shows the multistage process in the development of the full mission simulation. 

The approach shown in Fig. 1 consists of the following steps. 

3.1. Formulation of the Research Objective 

 To successfully carry out the simulation, a detailed formulation must be proposed. 

Normally, the accuracy of the outcome of the simulation depends on how the research 

objective is formulated. The complex and volatile navigational environment should be 

taken into account. The relevant variables include  

(1) The geographic features and waterway infrastructure (e.g. fairway, turn area 

and jetty) of the concerned area. 

(2) The type of research ship (e.g. ship type, DWT). 

(3) The hydro-meteorological conditions (e.g. winds, waves, currents and tides) 

under which operations in the examined area will be undertaken (e.g. manoeuvres and 

types and number of tugs in manoeuvres). 

(4) The traffic stream of the concerned area. 

 Meanwhile, the unique features of LNG ships are also important in such 

simulation, especially their handling in ports, including 

(1) Acceleration and stopping. 

 (2) Turning ability. 

(3) Course-keeping stability. 

(4) Turning ability with thrusters. 

3.2. Modelling 

 It is important to develop quantitative models for the ships (ownships, target ships 

and tugs), the waterway, the related environment and the traffic flow of the concerned 

port before the simulation is developed. All of these models should be formulated 

accurately. The accuracy of the simulation outcome primarily depends on these 

models. Each of those computer-based models is described as follows. 

3.2.1. Ship model design 

A complete computer-based ship model pack consists of the following two types 

of information: 

(1) A set of numerical constants of ship kinematic information. 

(2) A structure (or framework) associated with the data. 

Generally speaking, the numerical model includes all kinds of forces in the basic 

ship model, which can be expressed and calculated by the ship motion’s mathematical 

model. The model of ship motion has 6 degrees of freedom (DoFs) (heaving, swaying, 

surging, pitching, yawing, and rolling). These DoFs best represent the real motion, but 

at the cost of computer processing power. Therefore, it is usually the case that the ship 

(i.e. ownship) has 6 DoFs, and the other models (e.g. target ship) have 3 or 4 DoFs 

(Lo et al., 2014). The general equations of ship movement in 6 DoFs can be written in 

the form of six differential equations. To formulate the ship motion’s mathematical 

model, the following Cartesian systems are used for the description of the ownship’s 

motion (Fig. 2.a and Fig. 2.b): 
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X0Y0Z0 earth-fixed reference frame with the O0 origin: 

1. The X0-axis is directed towards the north and lies in the plane parallel to the 

undisturbed water surface; 

2. The Y0-axis is directed towards the east and lies in the plane parallel to the 

undisturbed water surface; 

3. The Z0-axis is directed downward at a right angle to the undisturbed water 

surface. 

XYZ body-fixed frame with the O origin at the vessel's centre of gravity (CG): 

1. The X-axis is directed from aft to fore, lies in the central lateral plane and is 

parallel to the water plane (longitudinal axis); 

2. The Y-axis is directed starboard, is perpendicular to the central lateral plane 

and parallel to the water plane (transverse axis); 

3. The Z-axis is directed from top to bottom at a right angle to the water plane 

(normal axis); 

X1Y1Z1 local frame with the O origin at the vessel's CG, is obtained by mapping 

the X0Y0Z0 earth-fixed coordinate system onto the body-fixed coordinate system with 

their origins coinciding: 

1. The X1-axis is directed towards the north and lies in the plane parallel to the 

undisturbed water surface; 

2. The Y1-axis is directed towards the east and lies in the plane parallel to the 

undisturbed water surface; 

3. The Z1-axis is directed downward at a right angle to the undisturbed water 

surface. 

In the above Cartesian systems, the general ship motion can be formulated from 

the following aspects. 

(1) Ship Motion Equations 

In the body-fixed reference frame, the equations of the vessel's spatial (6 DoFs) 

motion will have the following form (Xue et al., 2011). 

{
  
 

  
 
𝑚(�̇�0 − 𝑣0𝑟 + 𝜔0𝑞) = 𝑋

𝑚(�̇�0 + 𝑢0𝑟 − 𝜔0𝑝) = 𝑌

𝑚(�̇�0 − 𝑢0𝑞 + 𝑣0𝑝) = 𝑍

𝐼𝑥𝑐�̇� + (𝐼𝑧𝑐 − 𝐼𝑦𝑐)𝑞𝑟 = 𝐾

𝐼𝑦𝑐�̇� + (𝐼𝑥𝑐 − 𝐼𝑧𝑐)𝑟𝑝 = 𝑀

𝐼𝑧𝑐�̇� + (𝐼𝑦𝑐 − 𝐼𝑥𝑐)𝑝𝑞 = 𝑁

                     (1) 

To determine the vessel's position, its centre of gravity coordinates in the earth 

frame are 𝑥0,  𝑦0 and 𝑧0. 

To determine the vessel's hull orientation, the ship's roll angle 𝜙, pitch angle  𝜃 

and heading angles 𝜓 are used. 

Forces and moments are recorded in the body-fixed frame. 

By integrating the motion equations, the components 𝑢, 𝑣, 𝜔, 𝑝, 𝑞, and 𝑟 of the 

velocity and rate-of-turn vectors in the body-fixed frame are obtained. 

The moments of inertias are expressed by 𝐼𝑥𝑐 , 𝐼𝑦𝑐 , and 𝐼𝑧𝑐. 
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Kinematic equations are used to determine the derivatives of the gravity centre 

coordinates and vessel angles: �̇�0, �̇�0, �̇�0, �̇�, �̇�, �̇�. 

By integrating the kinematic equations, the gravity centre coordinates and vessel 

angles at the following moment of time are obtained. 

The summarized forces in the equations (1) are presented in the following form 

(Marine & Pro, 2011). 

{
 
 

 
 
𝑋 = 𝑋𝐼 + 𝑋𝐻 + 𝑋𝑃 + 𝑋𝑅 + 𝑋𝑇 + 𝑋𝐶 + 𝑋𝐴 + 𝑋𝑊 + 𝑋𝐸𝑋𝑇
𝑌 = 𝑌𝐼 + 𝑌𝐻 + 𝑌𝑃 + 𝑌𝑅 + 𝑌𝑇 + 𝑌𝐶 + 𝑌𝐴 + 𝑌𝑊 + 𝑌𝐸𝑋𝑇   

𝑍 = 𝑍𝐼 + 𝑍𝐻 + 𝑍𝑊 + 𝑍𝐸𝑋𝑇                        
𝐾 = 𝐾𝐼 + 𝐾𝐻 + 𝐾𝑃 + 𝐾𝑅 + 𝐾𝑇 + 𝐾𝐶 + 𝐾𝐴 + 𝐾𝑊 + 𝐾𝐸𝑋𝑇

𝑀 = 𝑀𝐼 +𝑀𝐻 +𝑀𝑃 +𝑀𝑊 +𝑀𝐸𝑋𝑇                 
𝑁 = 𝑁𝐼 + 𝑁𝐻 + 𝑁𝑃 + 𝑁𝑅 + 𝑁𝑇 + 𝑁𝐶 + 𝑁𝐴 + 𝑁𝑊 + 𝑁𝐸𝑋𝑇

                (2) 

where: 

 𝑋𝐼;  𝑌𝐼;  𝑍𝐼;  𝐾𝐼;  𝑀𝐼;  𝑁𝐼  -- inertial forces and moments; 

 𝑋𝐻; 𝑌𝐻;  𝑍𝐻;  𝐾𝐻;  𝑀𝐻;  𝑁𝐻  -- hydrodynamic forces and moments; 

 𝑋𝐴; 𝑌𝐴;  𝐾𝐴;  𝑁𝐴    -- aerodynamic forces and moments; 

 𝑋𝐶; 𝑌𝐶;  𝐾𝐶 ;  𝑁𝐶    -- current forces and moments; 

 𝑋𝑅; 𝑌𝑅;  𝐾𝑅;  𝑁𝑅    -- rudder forces and moments; 

 𝑋𝑇; 𝑌𝑇;  𝐾𝑇;  𝑁𝑇    -- thruster forces and moments; 

 𝑋𝑃; 𝑌𝑃;  𝐾𝑃;  𝑀𝑃;  𝑁𝑃   -- propeller forces and moments; 

 𝑋𝑊; 𝑌𝑊;  𝑍𝑊;  𝐾𝑊;  𝑀𝑊;  𝑁𝑊 -- wave forces and moments; 

 𝑋𝐸𝑋𝑇; 𝑌𝐸𝑋𝑇;  𝑍𝐸𝑋𝑇;  𝐾𝐸𝑋𝑇;  𝑀𝐸𝑋𝑇;  𝑁𝐸𝑋𝑇  -- external forces and moments, 

which include the forces of interaction with other vessels, anchor forces, mooring 

lines, etc. 

(2) Inertial Forces and Moments (associated with “ideal fluid” effects) 

The additional hull forces in equation (1) are calculated with regard to the hull's 

shape. In the problem of modelling the vessel's spatial motion by the simulator, the 

cross members of the additional liquid forces matrix can be disregarded due to their 

relative small magnitude. Accordingly, the forces and moments associated with “ideal 

fluid” effects have the following form. 

{
  
 

  
 

𝑋𝐼 = 𝑋�̇��̇� − 𝑌�̇�𝑣𝑟 + 𝑍�̇�𝜔𝑞                             
𝑌𝐼 = 𝑌�̇��̇� − 𝑍�̇�𝜔𝑝 + 𝑋�̇�𝑢𝑟                             
𝑍𝐼 = 𝑍�̇��̇� − 𝑋�̇�𝑢𝑞 + 𝑌�̇�𝑣𝑝                             

𝐾𝐼 = 𝐾�̇��̇� + (𝑁�̇� −𝑀�̇�)𝑞𝑟 + (𝑍�̇� − 𝑌�̇�)𝑣𝜔                

𝑀𝐼 = 𝑀�̇��̇� + (𝐾�̇� − 𝑁�̇�)𝑟𝑝 + (𝑋�̇� − 𝑍�̇�)𝜔𝑢                

𝑁𝐼 = 𝑁�̇��̇� + (𝑀�̇� − 𝐾�̇�)𝑝𝑞 + (𝑌�̇� − 𝑌�̇�)𝑢𝑣                 

          (3) 

where: 

 𝑋𝐼;  𝑌𝐼;  𝑍𝐼;  𝐾𝐼;  𝑀𝐼;  𝑁𝐼  -- inertial forces and moments; 

𝑢;  𝑣;  𝜔;  𝑝;  𝑞;  𝑟    -- the velocity and rate-of-turn vectors in the 

body-fixed frame 

(3) External Forces in the Motion Equations 

The external forces 𝐹𝐸𝑋𝑇 = [𝑋𝐸𝑋𝑇 , 𝑌𝐸𝑋𝑇 , 𝑍𝐸𝑋𝑇]
𝑇 and moments 𝑀𝐸𝑋𝑇 =

[𝐾𝐸𝑋𝑇 , 𝑀𝐸𝑋𝑇 , 𝑁𝐸𝑋𝑇]
𝑇 (e.g. forces from interactions with other vessels) are calculated as 
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follows: 

𝐹𝐸𝑋𝑇 =
∑𝑃𝐸𝑋𝑇
Δ𝑡

; 𝑀𝐸𝑋𝑇 =
∑𝐿𝐸𝑋𝑇
Δ𝑡

 

where Δ𝑡 is a step in the vessel's motion model integration,  

∑𝑃𝐸𝑋𝑇 = ∑ ∫ 𝐹𝐸𝑋𝑇 𝑖(𝑡)𝑑𝑡
𝑡+Δ𝑡

𝑡𝑖  is the sum of external moments acting 

on the vessel over the integration step, and 

∑𝐿𝐸𝑋𝑇 = ∑ ∫ 𝑀𝐸𝑋𝑇 𝑖(𝑡)𝑑𝑡
𝑡+Δ𝑡

𝑡𝑖  is the sum of external angular moments 

acting on the vessel over the integration step. 

 This method of considering the external forces allows momentarily acting and 

rapidly changing external forces to be taken into account.  

 As a complete ship model package, the numerical model calculates the ship’s 

motion in real time. To represent a ship in a 3D scene, the 3D model of the ship is also 

important. The 3D ship model can be created by 3D max or Creator software, which 

only creates a skeleton pattern and representation on screen; however, the skeleton 

parameters of these 3D models should be accurate so as to create a visual image of the 

navigator. The 3D ship model is therefore expressed in the OpenFlight format, which 

is in the form of the de facto standard real-time 3D database file. 

LNG ships are of either Moss-type or membrane-type. Typical LNG carriers are 

classified as an oversized Q-Flex type or a Q-Max type. The Q-Flex vessels have a 

cargo capacity ranging from 210,000 m3 to 217,000 m3, and the Q-Max ships can 

carry LNGs between 263,000 m3 to 266,000 m3. 

Membrane-typed systems continue to dominate the new-build orders as the 

preferred containment option. Within the existing fleet, the share of vessels with 

alternative Moss-typed systems decreased from 31% in 2012 to 27% in 2013. Table 1 

lists the main parameters of LNG carriers. 

For tug models, modelling is provided for vector force tugs and for a complete 

interactive towing simulation between ownships. In the vector force tug model, each 

tug is treated as a vector force that acts at a specified location on the ownship and in a 

specified direction relative to the ownship. These forces are manipulated with respect 

to the rate of change, maximum force ahead, maximum force astern and "tug like" 

characteristics. 

3.2.2. Port and Terminal Geographical Model 

Creating a port model involves virtual reality technology, 3D geographical 

information systems, remote sensing and multi-dimensional visualization (Zhang et 

al., 2011). Simulation is time-consuming if the concerned area is a new port; it will 

take much time to create the port model. Typical criteria and data include  

(1) Detailed bathymetry, no more than 5m grid, ASCII format. 

(2) Detailed imagery, orthophoto mosaic, 40cm resolution. 

(3) Detailed terrain model (DTM), no more than 5m resolution. 

(4) Light detection and ranging (LIDAR) data. 

(5) Electronic nautical charts (ENCs) over the area of interest. 
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(6) Pilots/navigators willing to participate in the evaluation. 

(7) Simulator interface. 

The port modelling process consists of several steps. For different suppliers of the 

simulation, there may be different software used in the modelling process although 

the method and process are the same or similar. The port modelling process is shown 

in Fig. 3 where the main steps include the following: 

(1) DTM integration (bathymetry and terrain). 

(2) 3D building extraction from LIDAR data. 

(3) ENC feature selection and conversion to mode format. 

(4) Integrate all data types of the DTM, 3D buildings, ENC features, orthophotos, 

and digital photos in the final model. 

(5) Develop a software interface with the port model for the simulation. 

(6) Evaluation and correction by the navigator and the local pilots. 

3.2.3. Environment and Parameter Models 

 The comprehensive environment in the full mission simulation should include the 

elements of winds, waves, currents, visibility, tides and the atmosphere. Most of the 

environmental data can be acquired in several ways for a specific port, and it is 

inputted into the simulator directly. 

For an existing terminal or waterway, a field survey can be conducted to obtain 

the needed data. Hydraulic scaled models can also be used for existing terminals. 

These models are better used for determining the flow in terminals or ports that have 

not yet been built. These models are usually used to predict the gross characteristics 

of the environment (mainly for currents and waves). Computational fluid dynamics 

(CFD) may be the best way to obtain environmental data. It is less expensive than the 

physical models, and results in a wealth of predictions of the flow velocity, 

temperature, density, and chemical concentrations in any region where flows occur. 

3.2.4. Model Validation 

The accuracy of the models used in simulation is important. If the related models 

do not reflect the reality, the outcome of the simulation may be misleading. 

Unfortunately, there are no industry-wide standards for validation of simulators, 

simulations or standard ship models. Often, when the models are imported into a 

simulator, the simulator operator will test the preliminary models and determine 

which of them can run correctly. Then, navigators and pilots who are familiar with 

those models (including real ships, real ports and real environments) are invited to 

participate in the model validation. Generally, the following elements will require 

validation: 

(1) Image portrayal including the content, quality, field, distance and depth of 

view, and movement of the visual scene. 

(2) The predicted ship trajectories based on hydrodynamic and aerodynamic 

modelling. 

(3) Ownship (ship model) characteristics, including acceleration, stopping ability, 

turning ability and course-keeping stability. 

(4) The operational scenarios. 

Impartial validation panels need careful selection of people from multiple 
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disciplines, including, for example: 

(1) A simulation instructor or assessor. 

(2) A representative from the licensing authority. 

(3) A subject-matter expert. 

(4) A pilot or master to test the ship-model behaviour. 

3.3. Simulation Strategy (Organization) 

Simulation in a project is systematic and needs a careful and well-thought-out 

plan. The facilities and the personnel form the base of the simulation in terms of what 

type of simulator will be chosen and who will participate in the activity. In the plan, 

another important procedure is how to design the simulation in order to achieve the 

goal of the simulation. 

3.3.1 Simulation Facilities 

 A full mission simulator is the most powerful facility for simulation. Due to the 

rapid development of information technology and modelling technology, there are 

many kinds of comprehensive full mission simulators. Typical full mission simulators 

include the Kongsberg Polaris, Force SimFlex, and the Transas NTPro 5000, etc. The 

following standards should be obeyed when choosing a suitable simulator out of the 

many available brands: 

(1) At least one bridge with a 270° visual projection and shipborne equipment (in 

agreement with the DNV class A code). 

(2) At least task navigation bridges with 120° visual projection or mock up with 

more than 3 large LCD screens and shipborne equipment including more than one 

Voith-Schneider or Z-Drive tug console (in agreement with the DNV class B code) 

(Veritas, 2011). 

(3) Multiple desktop PC simulators with one monitor for visual projection and 

one monitoring screen for showing the movements of more than two tugs. 

(4) An instructor station that can monitor the operation of the whole system and 

configure simulation runs. 

(5) Secondary simulator development software kits to create and import the port 

model and ship models. 

(6) A project that can synchronously play back the simulation log for debriefing 

and analysing the simulation results. 

3.3.2. Qualified Personnel 

The advantage of the full mission simulation is involving the typical 

man-in-the-loop function. The participants in the simulation are also important for the 

simulation’s outcome. Qualified navigators include pilots, shipmasters and other ship 

officers; tug masters are preferred if available. The navigator must integrate the 

diverse information acquired via all aspects of the ownship, the operating 

environment, and vessel traffic, as well as navigational conventions and other factors. 

The navigator should have extensive knowledge of the operating vessels, local 

conditions, and tug assistance. In any emergency case during the simulation, the 

navigator should make a decision immediately and try to predict what to do next. 

Apart from the navigator, the instructor should instruct the navigator operating 
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the facilities at first and address the facility emergencies during the entire simulation 

process. To improve the performance of the terminal and the port, the harbour 

authorities should understand some of the navigator’s operations on the spot. The jetty 

site supervisor should also be involved in the process for better simulation. 

3.3.3. Design of Experimental System (Simulation Run Design) 

The experimental design of the simulation is important. The main principle of the 

design is objective-oriented and based on reality. First, the instructor should have a 

good understanding of the objectives of the simulation activity and the goals for 

navigator training, taking into account the waterway’s characteristics. Then, the 

external environment, and traffic stream and other associated issues are taken into 

account. For example, simulation runs under winds of the E direction are meaningless 

if a port exhibits prevailing south and north monsoons based on the meteorological 

statistics. 

To achieve the goal of the simulation, a range of arrival and departure simulation 

runs should be designed. A good simulation design can take into account the potential 

risk of the LNG terminal and establish the operational limits of winds, currents, tides 

and visibility if the pilots, tug masters and shipmasters carry out the simulation runs 

effectively. 

Moreover, the experimental design should provide the navigators and tug masters 

with the opportunity to practise handling LNG carriers under weather and tidal 

conditions that are close to the limits of operability. These scenarios may be difficult 

to handle in reality, such as departure during a typhoon while avoiding enormous 

destruction of port facilities. In fact, simulation runs of abnormal situations can truly 

give the navigator an opportunity to practise dealing with emergency situations and 

ensure that all manoeuvres are carried out safely while in full control of the LNG 

vessel at all times. These emergency situations include (but are not limited to) a loss 

of steering capability, a loss of propulsion, black-out, weather changes from 

favourable to unfavourable conditions, telemetry failure, vital systems, automation, 

tug breakdown and emergency berth evacuation (Training, 1996). 

In general, it is challenging to design simulation runs. The simulation instructor, 

navigator and local pilot should participate in the simulation design activity. For LNG 

ship handling in port, simulation of the entire arrival and departure process is 

necessary, but special simulation runs are designed for the key sections/segments of 

the waterway and certain abnormal conditions. To address this problem, the entire 

ship arrival and departure process can be divided into the following three segments. 

(1) Up-line segment: this segment extends from the open sea or anchorage to the 

artificial channel of the port of destination. LNG carriers speed up to their normal 

speed onward from the anchorage in this segment. The navigator should quickly 

determine the appropriate crab angle in the operation. There may be no strict planning 

or recommended route; small vessels and fishing boats may cross the bow, with a 

prevailing risk of a collision between an LNG tanker and another vessel. Because 

many factors that influence safety are random, Monte Carlo methods may provide a 

useful alternative way to address these related issues (Gucma, 2013) although this 

aspect is not covered in this work. 
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 (2) Coastal waterway segment: this segment includes the entire artificial channel 

for port entry extending to the edge of basin water. There may be some narrow 

sections where there are large angle turning, gustiness and rapid current changes due 

to various underwater terrains. Determining the course, speed and crab angle at each 

key point and decreasing speed at the end of the channel is vitally important. The 

main risk of LNG handling is grounding in shallow waters or on a slope of the 

fairway channel. Normally, the artificial channels for LNG carriers are one-way 

channels, and they cannot meet vessels coming from an opposite direction. Therefore, 

apart from the normal operation simulation runs, it is also necessary to design critical 

simulation runs in this segment. 

(3) Basin segment: this segment is located at the end of the channel and includes 

the basin water. The speed of the LNG carriers in this segment is very slow, and 

assisting tugs should be safely fastened prior to entering the basin water. The vessel’s 

operations include entering the port, approaching the terminal, turning and mooring. 

Determining how to control the speed when approaching the jetty and giving the 

appropriate command to the assisting tugs are critical. The main risk in this segment 

is the collision of the LNG carriers with a marine port structure or the assisting tugs 

together with possible grounding. In some special cases of emergency operation in 

this segment, the LNG carriers may have to be manoeuvred in a situation of strong 

winds if a typhoon is forecasted, and need to move to an appropriate position for 

cargo handling. 

3.4. Implementation of the Simulation Runs 

 Each participant in the simulation should have a clear mission; the mission 

allocation and job description of each participant are shown in Table 2. 

 First, a kick-off meeting is important and obligatory prior to the simulation. 

Every member involved in the simulation should take part in the meeting, which is 

face-to-face or via video conference. During the kick-off meeting, the following 

issues should be discussed and agreed upon. 

 (1) Information of the ships under investigation, environmental conditions, berths 

and areas to be tested is produced. 

 (2) All meteorological and environmental data is made available by the client, as 

well as data describing the layout of the terminal area. 

(3) A simulation program and assessment method are agreed upon. 

During the simulation, the LNG carrier will be controlled from a full-mission 

bridge, which will be equipped with all of the usual instrumentation available on a 

vessel bridge. Free-sailing interactive tugs will be included in the simulation. 

A pilot or shipmaster will control the vessels from the full-mission bridge, and tug 

masters will control the tugs from the other bridges under the pilot’s orders. Any 

additional tugs will be controlled from the vector tug console under the pilot orders. 

For the free-sailing interactive tugs, all instrumentation normally found on 

Azimuth Stern Drive (ASD) tugs will be made available on the bridge. The tugs will 

be controlled with the typical handles used on ASD tugs. Additional controls will be 

made available for the bow winch and readouts for actual towing line length and 
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tension. 

In a typical simulation session, 6 simulation runs can be executed, depending on 

the length of arrival/departure and the type of vessel. Based on the local weather, the 

simulation runs will be produced under different combinations of winds and currents. 

After each run, the results will be recorded with the advanced debriefing tools. 

Thereafter, the participants will be able to benchmark their performance so as to make 

improvements in their operations. 

As part of the delivery, each participant will receive the necessary information 

about the objectives, training plan and comprehensive summary on ship handling. 

The instructors involved in the simulation programs are given the time for 

familiarizing themselves with the client’s requirements prior to the first use of the 

program in order to effectively conduct the simulation and assessment. 

3.5. Analysis and Application of the Simulation Results 

After completion of the simulation, a report covering the completed work can be 

submitted electronically, and the study results can be compiled. 

A typical report will include the following: 

(1) Summary. 

(2) Description of the jetty, port and navigational environmental conditions. 

(3) List of simulation runs carried out. 

(4) Documentation of simulator runs by track plots and time series of logged 

parameters. 

(5) Manoeuvring considerations including an assessment of the safety level. 

(6) Description of the simulated ships including the standard manoeuvres. 

(7) Results, conclusions, recommendations and documentation of operational 

limits for the defined cases based on the defined criteria.  

The training courses will be developed in full compliance with the authority's 

guidelines for the Quality Management of Maritime Training and Education and the 

STCW 95 (Cross, 2011). Furthermore, simulation facilities should be certified by an 

internationally recognized organization that complies with the international rules for 

simulators providing advanced training (Veritas, 2011). 

The results of the study are an important reference for port authorities to formulate 

their port guidance, operating instructions for the pilot, and blueprints for the port or 

terminal design. Recommendations can be drawn from the simulation, and a review 

meeting is held to evaluate the simulation content for possible improvement and draw 

conclusions. 

4. A Typical Case: LNG ship handling in the Meizhou Bay 

terminal 

4.1. Case Study Description 

 China’s second LNG terminal was built in Putian in the Fujian province. In 
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November 2013 at the request of China National Offshore Oil Corporation (CNOOC) 

Fujian LNG Co., Ltd (CNOOC Fujian), the researchers of this work conducted a 

detailed simulation study and evaluation to determine the feasibility of safely 

navigating a 210,000 m³ capacity Q-Flex LNG carrier from the pilot boarding area 

(PBA) in the vicinity of the entrance of the main channel of Meizhou Bay (see Fig. 4 

near the anchorage) to the Fujian LNG (FJLNG) terminal at Xiuyu Port. 

 The approach to the Xiuyu LNG terminal has its own remarkable characteristics 

in terms of navigation. The total pilotage length is approximately 14 nm with narrow 

channels, strong currents (approximately 4 kts in some cases) and a large volume of 

traffic. Meizhou Bay has 44,000 vessel movements per year, but still has no Vessel 

Traffic Service (VTS), and not all vessels are equipped with Very High Frequency 

(VHF). 

 The detailed model of the terminal is shown in Fig. 4 where the bearing of the 

ship is 127°/307° parallel to the depth contours and consistent with the direction of 

the tidal current. The distance between the bow of the LNG carrier and the Longhu 

Reef in Fig. 5 is slightly larger than 200m. The berth is arranged as a “T” shape with 2 

- 20m of natural water depth at the edge and 2 - 24m of natural water depth in the 

dock pool. The central platform of the berth is connected to the receiving station by a 

345.5m long trestle bridge. The turning area of the LNG berth and the dock for the 

service ship are arranged in front of the berth (see Fig. 5) (Lin, 2008). 

 Because of limited experience in handling the Q-Flex LNG carrier, the pilots and 

the tug masters participated in the simulation study and training. The primary 

objectives of this simulation are given as follows. 

(1) Assess the safety aspects of navigating and docking a 210,000 m3 capacity 

membrane-typed LNG carrier from the PBA to the terminal. 

(2) Define the tidal current windows for entering the port and docking at the 

terminal. 

(3) Define the wind direction and velocity limits for entering the port and 

mooring at the terminal. 

(4) Recommend any improvement on navigational aids that would enhance 

operational safety when the vessel enters the port. 

(5) Assess the appropriate speed of the vessel entering the port. 

(6) Identify other factors that would influence safe operations of the vessel. 

4.2. Simulation Model 

4.2.1. Ship models 

During this phase of study and evaluation of the manoeuvring of the Q-Flex 

carrier, the ownship (Q-Flex) has 6 DoFs in the hydrodynamic models. In the 

simulation, the non-linear, coupled differential equations that describe the motions of 

the ownship (described in Section 3.2.1), the hydrodynamic forces represented in 

these differential equations and the external forces (some of which are hydrodynamic 

in origin time) yield the 6-DoF position of the ownship. 

 The hydrodynamic models used in many simulators are provided by the 

manufacturers; typically, the manufacturers provide a range of ownship model 
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databases and a further development software kit to the customer or the researcher. In 

this study, Visual Ship Yard II provided by Transas (UK) Ltd was used to create a new 

ship model. Based on all of the manoeuvring data provided by the CNOOC Fujian, 

Q-Flex models in both a fully loaded condition and a ballasted condition were created; 

the principal parameters and skeleton are presented in Table 3 and Fig. 6, respectively. 

A validation test was performed by the pilot from the Putian pilot station, and the 

parameters and tracks of the test are shown in Fig. 7. 

 The assisting tugs in this simulation are the same as those from the CNOOC 

Fujian. They are of the vector type with the adequate bollard pull ratings. They are 

typical tugs in terms of propulsion and speed, operating under conditions of currents 

and waves. The detailed information of the tug models is shown in Table 4. Two 

simulated 5,000 horsepower Z-Drive tugs and two simulated 4,000 horsepower 

Z-Drive tugs were used in this study. 

4.2.2. Port and Terminal Model 

 A simulator geographic database of Meizhou Bay was created according to the 

described methodology in Section 3.2.2. The database includes an out-of-windows 

view and a bird’s eye view (see Fig. 8), including the nautical charts and radar images 

used in the simulator. The geographic database range of this study extends from the 

anchorage near buoy No.8 in the Meizhou Bay main channel to the FJLNG terminal. 

The LOD (level of detail) of the database includes the landmark and navigational aids 

along the entryway of the LNG carriers, especially near the terminal. 

4.2.3. Environmental Data 

 The port area is influenced by a subtropical and ocean monsoon climate with 

rains. The elements greatly influencing the LNG handling are the winds, waves, 

currents and tides, the details of which are described as follows (Lin, 2008). 

(1) Winds 

According to the statistics of the Xiuyu observatory from 1985 to 2001, the 

direction of the prevailing wind in the area is NE with an average frequency of 28.9%, 

and the directions of the sub-prevailing winds are ENE and NNE with average 

frequencies of 12.1% and 10.1%, respectively. The direction of the strongest winds is 

SSW with a maximum speed of 22 m/s, and the direction of sub-strong winds is NNE 

and NE with a maximum speed of 18 m/s. 

It is obvious that the frequency of the wind direction in the area changes 

seasonally. Based on the data from the Xiuyu Meteorological Bureau of Putian, the 

direction of NNE～ENE winds prevails from September to May next year, whereas 

there are mainly SW～S winds from June to August. The most frequent or strongest 

winds were taken into account during the simulation design. 

(2) Currents 

There were five tidal current observations carried out in June 1984, August 1990, 

January 25-26, 1997 (spring tides), January 30-31, 1997 (neap tides), and March 2003. 

After the terminal was put into use, the latest observation was from 11 a.m. on August 

21, 2009 to 1 p.m. August 22, 2009. In general, the tide current in the bay is mainly a 

reversing current as a result of topographic control. The fluctuation trend complies 

with the flow direction in a deep groove. The current near the shoal scatters slightly. 
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The current velocity in spring tides is greater than that in neap tides. The current 

velocity at the surface is greater than that at the bottom. 

From the measured flow velocity data, the maximum flow velocity area is from 

Linchijiao to Dasheng Island, and its maximum flow velocity is 1.78 m/s. The flow 

velocity from Huanggan Island to Jianyu is also large, and the largest flood tide 

velocity reaches 1.12 m/s meanwhile the largest ebb tide velocity reaches 1.01 m/s. 

Both the largest flood tide velocity and the largest ebb tide velocity are close to 1.25 

m/s near the entrance of Jianyu. Douwei, located in the Dazhu deep groove, has an 

advantageous high tide flow, while its flood tide velocity reaches 2.4 m/s and its ebb 

tide velocity is close to 1.75 m/s. Fengwei-Dongwu and Xiaocuo, located in the Xiuyu 

deep groove, have their measured flow velocities 2.00 m/s and 1.85 m/s respectively. 

(3) Waves 

Meizhou Bay is long and narrow, 35 km from north to south and 15 km from the 

E direction to the W direction. There are many islands in the bay. The width of the 

bay’s mouth facing the Taiwan Strait is approximately 10 km, near which Meizhou 

Island, Dazhu Island and other islands form a natural barrier. Based on Meizhou Bay’s 

terrain, the predominant waves are a superposition of waves formed in gentle hilly 

regions with weak winds around Koumen in the northern area of Dazhu Island and the 

Qinglanshan Peninsula in the bay. The mouth of the bay is from the southern area of 

Dazhu Island and the Qinglanshan Peninsula to the waters around Jianyu. This area is 

mainly affected by external waves. 

Three wave observations in Xiuyu port were conducted from 1978 to 1980 at 

25°13’N, 118°59’E. The direction of the prevailing waves in the port area is NE with 

a frequency of 26%; the direction of the sub-prevailing waves is ENE with a 

frequency of 17.1%. The direction of the strongest waves is NE, and the direction of 

the sub-strong waves is ENE. The measured maximum wave height is 1.4m with the 

NE direction. 90.47% of the waves are with their heights equal to or smaller than 

0.4m in H1/10 (1 in 10). 99.69% of the waves are with their heights equal to or smaller 

than 0.9m in H1/10. Wave heights equal to or larger than 1m in H1/10 occurred only 4 

times with the maximum of 1.4m. 

 (4) Tides 

The tides in Meizhou Bay are regular semi-diurnal tides, where the high and low 

tides in and out of the bay appear almost simultaneously. A tidal wave is a standing 

wave. The rapid rising or falling of the tides occurs near the middle tide level, 

whereas the turn of tidal currents occur near the high or low tide levels. 

Because LNG carriers need not take advantage of the tides, the high tide is not 

the main influential factor, and LNG carriers are more concerned with the speed and 

direction of the tidal current. 

4.3. Simulation Design and Implementation 

The length of the Meizhou Bay channel is 31.6 km. It was constructed to meet the 

standard of navigating 100,000 DWT vessels at a time. The effective width of the 

fairway is 300m, in which the width of section A-B (shown in Fig. 4 is 500m and the 

width of section F-G is 400m. The entire fairway is 18.3m in depth (points A-G in Fig. 
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4). 

A series of simulation runs were designed and conducted under various 

conditions of winds, waves and tides, different tug configurations, different pilots and 

various approaching and departure scenarios, requiring pilots to manoeuvre the vessel 

when approaching or leaving the berth. 

The environmental conditions were generally chosen to establish the limits for 

each vessel for both arrival and departure. In some cases, this was achieved by 

increasing the environmental forces and selecting the next scenario after considering 

the results of the previous run. 

To achieve the objective of the study, these simulation runs can be divided into 

two broad categories: operation in normal circumstances and operation in abnormal 

circumstances. The goal of the first category of simulation runs is to verify the 

adaptability between the terminal and the Q-Flex carrier. Emergency situations are 

evaluated in the second category of simulation runs. 

4.3.1 Adaptability research on waterways and terminal facilities under normal 

conditions 

The FJLNG pilots have limited experience in handling the Q-Flex in Meizhou 

Bay. The first stage of the simulation study aims at investigating the ability of the 

Q-Flex carriers to enter the port safely, the adaptability of the navigational layout and 

aids, channel widths, channel depths, basin dimensions, berth location and depths. 

The normal simulation runs in this study were designed as shown in Table 5. In 

the initial run, a moderate wind speed was used to allow the pilots to assess the ship’s 

handling performance without large wind forces. An average high tidal velocity was 

used. Four tugs were used to reflect practical operations (two tugs each had the power 

of 5,000 HP while the other two each had the power of 4,000 HP). Two FJLNG pilots 

and three Putian port tug masters participated in the simulation runs for two days. All 

eight simulation runs were operated successfully, and the Q-Flex was safely 

manoeuvred into basin (tides) and berthed with the portside bow on the outside. 

According to the statistics, calculations and simulator outputs, the following 3 

types of parameters can be evaluated quantitatively: 

(1) The width of the fairway 

According to the regulations of the Design Code of General Layout for Sea Port (Gu, 

2013), a fairway width W consists of a width of track A and an additional width b in 

each side of the track. When the fairway is longer, the natural conditions are relatively 

poor and the vessel positioning is difficult, it can be appropriately widened. In the 

segments in which natural conditions are favourable, the width of the fairway, W can 

be appropriately obtained based on the following (Gu, 2013). 

One-way fairway:       W=A+2c   

Two-way track:         W=2A+b+2c 

where: the width of track (m), A = n × (L × sinγ + B), 

n is the number of multiple drifting ships, 

γ is crab angle, 

b is additional width between ships,  

c is additional width between the ship and the edge of the fairway, 
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L is ship length (m), and  

B is ship width (m). 

The waterway for this project was designed as one-way. After several simulation 

tests with the ship, the width of track A can be obtained. Then, the necessary width of 

the fairway can be calculated on the basis of the test results (see Table 6). 

(2) The depth of the fairway 

To assess the adaptability of the depth of the fairway, two echo-sounding sensors 

in the Q-Flex carrier model were added. From these sensors, the dynamic UKC (under 

keel clearance) can be measured and calculated in real time. 

The UKC is the minimum clearance available between the deepest point on the 

vessel and the bottom of the waterway and is calculated as follows. 

UKC = (charted depth of the water + height of the tide) – (deep draft) 

When calculating the depth of the water, the following factors were taken into 

account (Delefortrie et al., 2007): 

a. Vessel's trim and list characteristics. 

b. Depth of the transit area. 

c. Tide and current conditions. 

d. Weather impact on the water depth. 

From the above factors, the low-tide condition simulation runs can be designed to 

obtain the dynamic UKC data, and the curve in Fig. 9 is the dynamic UKC of the 

Q-Flex carrier when entering the port in conditions of NE winds at 25 kts, 1.2m 

waves and ebb tides. From the statistics and data calculations, the minimum UKC in 

the curve is 1.47m, which meets the safety requirements of the Q-Flex (in most port 

regulations, the UKC should be no less than 10% of the ship’s draft). 

(3) The dimensions of the basin 

When the ship is berthing, the influence on the ship’s manoeuvrability caused by 

currents and winds, the size of the turning area at the wharf apron and the available 

water depth, etc., should be considered. When the ship is leaving the berth, the 

influence on the ship’s manoeuvrability in ballast caused by the increased wind area 

and the available water areas in the terminal from upstream to downstream should all 

be considered. 

According to the general practices of large ships, it is necessary to berth or to 

leave berth at a time of no currents or slow currents, taking into account the ship’s 

large displacement, large size and course stability as well as the poor rudder control 

over the ship's course. 

According to the Design Code of General Layout for Sea Port (Gu, 2013), the 

size of turning water for the port, which is heavily influenced by currents, is at least 

1.5L to 2.0L transverse to the current direction and 2.5L to 3.0L along the current 

direction. In the analysis of the scale of the turning water, several simulation runs of 

berthing and leaving berth were carried out under different operating conditions to 

determine the size of water required to stop the ship or make a turn. 

When the Q-Flex LNG carrier is berthing or leaving berth, it must be assisted by 

tugs (Hensen, 2003). In this study, the vessel should be assisted by at least three tugs 

when berthing. In the simulation process, the requirements for tugs were given as 
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follows: 

- at least 18,000 HP ((5,000 HP × 2) + (4,000 HP × 2)) of tugs when the wind 

force is less than Beaufort Scale 6; 

- at least 20,000 HP (5,000 HP × 4) of tugs when the wind force is greater than  

Beaufort Scale 7. 

In the simulation, the required size of turning water for the Q-Flex LNG carrier 

safely berthing is shown in Table 5. 

4.3.2 Emergency maneuvering 

It is necessary to take the worse conditions and emergency circumstances into 

account in every simulation, which can give the navigators and tug masters an 

opportunity to practise operations that they may not often experience in reality. The 

channel of Meizhou Bay is approximately 15.4 nm long, has no VTS cover and has an 

intensive traffic flow. There are over 50 large berths in Meizhou Bay, including those 

capable of hosting oil tankers of 300,000 DWT, general cargo ships of 100,000 DWT 

and containerships of 100,000 DWT. In such a complex waterway, LNG carriers may 

be at risk unexpected under severe conditions. Therefore, the following simulation 

scenarios were developed for training the pilots and the tug masters. 

 (1) Application of the Williamson Turn for Q-Flex Evacuation in Channels 

When Q-Flex carriers depart from anchorage and enter the channel, an abnormal 

situation may occur in the fairway ahead. For example, an emergency may happen in 

the terminal where the Q-Flex LNG carrier has to make a turn and evacuate when it 

enters the key section B-C in Fig. 4. 

 Because the heading of section B-C is 136°19′, when the LNG carrier turns from 

point B to section B-C, the winds are on the beam if the wind direction is NE. The 

tide current reaches the maximum of almost 4 kts. The LNG carrier may have to turn 

starboard and reverse course because there is a 300,000 DWT oil jetty on her portside. 

Because the available water area is limited, the Williamson turning operation is 

the best choice. Several simulation runs under such severe circumstances showed the 

following: 

 When the winds are at Beaufort Scale 7 or lower and the wind direction is 

NE, the Q-Flex LNG carrier should turn to the north where the water is 

relatively open. Moreover, this turning operation is relatively easier (see Fig. 

10, left) due to the wind deflection. 

 When the wind direction is SW and influenced by the Linchi Reef, the 

Q-Flex LNG carrier can only turn around towards the north. When the turn is 

close to 90o, the Q-Flex LNG carrier will be influenced by the winds more 

strongly. In these conditions, assistance from tugs with large power is 

necessary. The simulation runs indicate that at least two 4,000 HP tugs were 

used to assist the ship turning at bow (see the right side of Fig. 10). 

(2) Response to equipment failure  

Assuming the same bad conditions (the maximum current velocity of 3.5 kts in 

ebb tides, and winds at Beaufort Scale 7) when the ship is passing by section B-C, if 

its steering gear breaks down and cannot control the course of the ship in a normal 

way, then tug assistance is necessary. The simulation run shows that two 4,000 HP 
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tugs and one 5,000 HP tug are required. A description of the towing process is shown 

in Fig. 11 (the 5,000 HP tug operating aft to control the ship’s speed and the direction 

of the stern, and the two 4,000 HP tugs operating along the ship’s side near the bow to 

control the turning of the ship). By operating this way, the ship can avoid the Linchi 

Reef and pass through section B-C slowly. 

Under the same conditions, if its main engine breaks down, the towing procedure 

is shown in Fig. 12 (one 5,000 HP tug towing aft to control the ship’s speed and the 

direction of the stern, and the other two 4,000 HP tugs towing along the ship’s side 

near the bow to control the turning of the ship and provide the power). 

(3) Avoiding collision in an emergency in sections C-D and D-F 

The Meizhou Bay channel is a very long one-way channel, and there is no VTS 

monitoring vessels’ movements. Therefore, if an emergency occurs in the channel, the 

vessel could anchor alongside the channel, blocking the traffic. If the port authority 

gives a wrong schedule, the inbound vessel and outbound vessel may encounter one 

another. 

In such a long one-way channel, it is necessary to establish an emergency area for 

such emergency situations. In the Meizhou Bay channel, an emergency area of 300m 

× 2500m is established along the side-line of the fairway in sections C-D and D-F (see 

Fig. 4) so that a ship can enter the emergency area to avoid collision with the 

assistance of tugs. 

In the simulation run in the C-D section (in the left half of Fig. 13), the Q-Flex 

carrier entered the emergency area to avoid collision with a 100,000 DWT container 

ship. The transverse distance between the two ships ranged from 318m to 322m 

(about the length of the Q-Flex carrier), as shown in the left half of Fig. 13. 

In the simulation run in the D-F section, the Q-Flex carrier entered the emergency 

area to avoid collision with a 100,000 DWT bulk carrier with the transverse distance 

between the two ships ranging from 317m to 339m (about the length of the Q-Flex 

carrier), as shown in the right half of Fig. 13. 

(4) Evacuation from the terminal under emergency conditions 

Emergency situations in ports are related to explosions, fires or gales in terminals, 

especially those storing oil, gas or chemical products. In these cases, the moored ships 

must leave the port as quickly as possible (Paulauskas et al., 2012).   

In the event of an emergency situation, there may be limited time to make a 

complete plan for unberthing. It is necessary to design simulation runs of unberthing 

under emergency and provide experience to the masters and the pilots. It is dangerous 

to berth or unberth with winds of Beaufort Scale 9 or higher. It is necessary to have 

enough tugs because the large size of the LNG carrier is clearly influenced by winds 

when berthing or unberthing at low speed. With on-shore winds, it is necessary to use 

at least six 5,000 HP tugs to assist the unberthing operation (see Fig. 14). 

4.4. Discussions 

In this simulation, apart from two local pilots and three tug masters participated 

in the exercise, officers from Maritime Safety Administration (MSA) and those 

involved from the CNOOC were also overseeing the simulation. There were eight 
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simulation runs under normal conditions and eight simulation runs under emergency 

conditions. The simulations were successful, but some simulation runs were difficult 

when the operational conditions were extreme. 

From the results obtained from the simulation, the followings are obtained. 

4.4.1 Adaptability between the Q-Flex carrier and the terminal facilities 

(1) Condition of the fairway 

According to the simulation, the Q-Flex carrier was tested under conditions of the 

prevailing wind direction at Beaufort Scale 7 or lower with high or ebb tides. The 

track width and the required width of the fairway in different sections are obtained as 

shown in Table 6. 

 (2) Basin area of the terminal 

The layout of the basin area is oval, where the major axis (parallel to the current 

direction) is 870m long and the minor axis (perpendicular to the current direction) is 

630m long after optimization. The simulation data indicates that the minor axis is 

relatively small with winds of Beaufort Scale 7 and spring tides. In the simulation, the 

maximum size of the basin area was 812m × 698m under winds of Beaufort Scale 7, 

whereas it was 777m × 598m under winds of Beaufort Scale 6. Therefore, the 

designed basin area can satisfy the berthing and unberthing requirements of the 

Q-Flex carrier under winds of Beaufort Scale 6 or lower, but not under winds of 

Beaufort Scale 7 or higher. 

(3) Tug configuration 

According to the simulation data, the Q-Flex carrier needs at least 18,000 HP of 

tugs ((5,000 HP × 2) + (4,000 HP × 2)) when entering the port under normal 

conditions. When encountering a gale, more tug power is needed. The emergency test 

with winds of Beaufort Scale 9 showed that at least 5,000 HP × 6 of tugs would be 

required to assist the Q-Flex carrier with a full load when unberthing. 

(4) Limitation of natural conditions 

According to the simulation test and the Liquefied Natural Gas Terminal Design 

Procedures, the Q-Flex carrier should enter or leave the port only in the daytime and 

under conditions of no less than 2,000m of visibility, wave heights of 3.0m or lower 

and winds of Beaufort Scale 6 or lower. When the wind force is Beaufort Scale 7 and 

higher, the ships should not be allowed to enter or leave the port. 

4.4.2 Suggestions for Q-Flex carriers 

(1) The pilot experienced significantly better rudder effectiveness at 8 kts 

compared to 6 kts. 

(2) Flood tide arrivals should be avoided due to the lack of rudder effectiveness 

and the large crab angle required to keep the ship on track (i.e. steering at angels from 

287o to 311o). Such large crab angles increase the effective beam width by a factor of 

three or more. 

(3) Much large rudder efforts were required to maintain the ship’s heading when 

the winds and currents came from the same direction. 

(4) Docking operations with the current tug capabilities should be avoided when 

winds with a speed of 20 kts or higher are expected. The current tugs are effective 

with an adequate margin of safety for winds with a speed of less than 20 kts. 
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(5) Dockings portside to the jetty should be undertaken at the beginning of the 

flood tide. 

(6) Dockings starboard side to the jetty are preferred when the ship arrives during 

an ebb tide. 

(7) Inbound transits during the ebb tide were successfully conducted with a high 

level of comfort and control. 

(8) The following navigational aids could be better positioned: 

 Relocate buoy “21” to the far western edge of the 8m deep area. 

 Relocate buoy “24” to the far eastern edge of the 9m deep area. 

 Relocate buoy “20” 0.3 nautical miles SSE of its present location to a 

position near the far eastern edge of the 9m deep area.  

5. Summary 

The full mission simulator is a vitally important platform for marine research and 

training. This paper presents an experimental methodology for LNG ship handling in 

ports using the full mission simulator and describes the implementation of the 

proposed procedure in simulation development. For the methodology of conducting a 

fruitful simulation, this paper provides the detailed experimental procedure 

systematically. Using the described procedures, one can organize a complete study for 

LNG ship handling in a port using the simulator, which can provide preliminary 

adaptability research for the design of an LNG terminal as well as training of local 

pilots and other navigators. 

To demonstrate the methodology, a detailed simulation case study in the Meizhou 

Bay terminal in China was conducted. Two types of manoeuvring experiments were 

designed for the Q-Flex carrier: adaptability handling and emergency handling. By 

analysing the statistics and simulation data, several conclusions and suggestions were 

obtained for LNG ship handling, providing the local pilots and tug masters with 

empirical operational guidance. 

The high cost of the full mission simulation is controversial, and it may be a 

disadvantage to this method. However, its fruitful outcomes make it worthwhile, and 

the cost will decrease with the development of information and modelling techniques. 
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Figures 
 

 
Fig. 1. Process of Full Mission Simulation 

  

Fig. 2.a Coordinate Systems      Fig. 2.b Coordinate Systems (Horizontal) 
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Fig. 3 the Process of Port Modelling 

 

Fig. 4 the Site and Layout of the Terminal 

 

Fig. 5 Aerial View of the Terminal 
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Fig. 6 3D Visual and Skeleton of the Q-Flex LNG carrier 

 

Fig. 7 Test Tracks for the Q-Flex Carrier 

  
Fig. 8 Nautical Chart and 3D Model of the Fujian Terminal 
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Fig. 9 Dynamic UKC of the Q-Flex Entering Port 

 
Fig. 10 Track of a Williamson Turn in the Channel 
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Fig. 11 Track of a Steering Gear Failure Emergency 

 

Fig. 12 Track of a Main Engine Failure Emergency 
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Fig. 13 Collision Avoidance with a 100,000 DWT Container in Sections C-D and D-F 

(Ebb tides with a wind direction of SW and a velocity of 17 m/s) 

 

Fig. 14 Unberth in a Gale Emergency 

(The beginning of a flood tide with a wind direction of SW and a velocity of 24 m/s, 

assisted by 6×5,000 HP of tugs) 
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Tables 

Table 1 Parameters of Typical LNG carriers 

Ship Name 

Type of 

Tanks 

Tank 

Capacity 

Gross 

Tonnage 

Length 

Overall 
Beam Draft 

 ×10³[m³] ×10³[t] Loa [m] B [m] T [m] 

Surya Aki Spherical 19 20.5 151 28.0 7.6 

LNG Lerici Membrane 36 40 216 33.0 9.5 

Polar Alaska Membrane 87 66 239 40.0 11.0 

Northwest Seaeagle Spherical 125 80 272 47.0 10.5 

Inigo Tapias Golar Membrane 132 90 270 42.0 11.0 

Maran Gas Asclepius Membrane 145 97.5 285 43.5 12.5 

Muscat LNG Spherical 145 118 289 49.0 11.9 

Q-Flex Membrane 216 136 315 50.0 12.0 

Q-Max Membrane 266 162 340 53.8 12.0 

 

Table 2 Personnel Allocation in Simulations 

Participant Job Content Prescription Remark 

Simulation Instructor 
In charge of executing the simulation program and 

undertaking the assessment 
Director 

Navigator 

Handling the LNG carrier and giving the orders to 

the tugs in accordance with the designed 

simulation runs 

Actor 

Port Supervisor 
Observer who verifies the simulation in 

accordance with the port’s operational practices 
 

Port Authority 
Observer who should understand the entire 

simulation program to guide the port 
 

Simulation 

Maintainer 

Standby for the breakdown or failure of the 

simulator 
 

 

Table 3 Principle Parameters of the Q-Flex LNG carrier 

Parameters Q-Flex 

Length overall (Loa) (m) 315 

Length Between Perpendiculars (LBP) (m) 303.0 

Breadth Moulded (m) 50.0 

Draught (m) 
Ballast 9.7 

Full 12.0 

Displacement (m3) 
Ballast 108988.0 

Full 143400 

Number of Rudders 2.0 

Rudder Type SEMI-SUSPENDED 

Rudder area (m2) 55.885 

Number of Propellers 2.0 

Propeller type Fixed-Pitch 

Propeller diameter (m) 7.7 
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Engine Type Slow speed diesel engine 

Engine internal power (kW) 2×16,650 

 

Table 4 Details of the Tug Models 

Tug Name 
Bollard 

Pull (T) 

Dimensions 

L×W×D (m) 

Propulsion Shaft 

Power 

Fire Fighting 

Capability 

(m3/H) 

HANHAI 

SHIYOU 501 
60 37.7×10.4×4.8 

“Z” DRIVE 

1838kW(2500 HP)×2 
2400 

HANHAI 

SHIYOU 502 
60 37.7×10.4×4.8 

“Z” DRIVE 

1838kW(2500 HP)×2 
2400 

XINGANG 

TUO 01 
50 36×9.6×4.4 

“Z” DRIVE 

1471kW(2000 HP)×2 
NA 

XINGANG 

TUO 02 
50 36×9.6×4.4 

“Z” DRIVE 

1471kW(2000 HP)×2 
475 

FUXIN 

TUO 01 
50 35.5×9.8×4.3 

“Z” DRIVE 

1471kW(2000 HP)×2 
360 

FULIAN 801 40 32.8×9.5×4.3 “Z” DRIVE 360 

 

Table 5 Simulation Runs for the Q-Flex under Normal Conditions 

Run  
Arr./

Dep. 

Wind 

[kts] 

Wave 

[m] 

Tide 

[kts] 
Operation Tug 

Turning Area 

Rating 
Major 

Axis 

[m] 

Minor 

Axis 

[m] 

N01 Arr. 
20-25 

NE 

0.8-1.2 

Outside 

1.5-2.5 

Flood 

Bow Outside 

Portside Berth 

2×5000 HP 

2×4000 HP 
583 499 5 

N02 Arr. 
20-25 

SW 

0.8-1.2 

Outside 

1.5-2.5 

Flood 

Bow Outside 

Portside Berth 

2×5000 HP 

2×4000 HP 
622 508 4 

N03 Dep. 
20-25 

NE 

0.8-1.2 

Outside 

1.5-2.5 

Flood 

Bow Outside 

Portside Berth 

2×5000 HP 

2×4000 HP 
669 541 5 

N04 Dep. 
20-25 

SW 

0.8-1.2 

Outside 

1.5-2.5 

Flood 

Bow Outside 

Portside Berth 

2×5000 HP 

2×4000 HP 
607 522 5 

N05 Arr. 
20-25 

NE 

0.8-1.2 

Outside 

1.0-2.0 

Ebb 

Bow Outside 

Portside Berth 

2×5000 HP 

2×4000 HP 
712 598 4 

N06 Arr. 
20-25 

SW 

0.8-1.2 

Outside 

1.0-2.0 

Ebb 

Bow Outside 

Portside Berth 

2×5000 HP 

2×4000 HP 
756 582 3 

N07 Dep. 
20-25 

NE 

0.8-1.2 

Outside 

1.0-2.0 

Ebb 

Bow Outside 

Portside Berth 

2×5000 HP 

2×4000 HP 
684 539 4 

N08 Dep. 
20-25 

SW 

0.8-1.2 

Outside 

1.0-2.0 

Ebb 

Bow Outside 

Portside Berth 

2×5000 HP 

2×4000 HP 
744 548 3 

Notes: The rating is the degree of safety of the approach, seaway, basin and berthing evaluated 

by the operator; the value is 1 to 5; the degree of safety is low if the value is low. 
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Table 6 Width of the Channel of the Q-Flex LNG carrier 

Run  
Arr. 

Speed 

Arr. Drift 

Angle 

[°] 

Track 

Width 

A-B [m] 

Channel 

Width 

A-B [m] 

Track 

Width 

B-F [m] 

Channel 

Width 

B-F [m] 

Track 

Width 

F-G [m] 

Channel 

Width 

F-G [m] 

N01 7.65 6.8 69 219 63 213 68 168 

N02 7.82 7.7 65 215 62 212 69 169 

N03 7.12 6.5 68 218 65 215 72 172 

N04 6.93 6.3 82 232 79 229 85 185 

N05 7.11 7.9 77 227 74 224 79 179 

N06 7.32 8.7 84 234 83 233 93 193 

N07 8.12 7.9 68 218 70 220 75 175 

N08 7.94 9.3 70 220 72 222 81 181 

 

Table 7 Width of the Channel in the Different Sections 

 A-B B-C C-D D-F 

Width of Track [m] 88 147 96 148 

Required Width of Channel [m] 238 297 246 298 

 

 


