Accepted Manuscript

Determination of salt content in hot takeaway meals in the United Kingdom

Agnieszka Jaworowska, Toni Blackham, Leonard Stevenson, Ian G. Davies

PII: S0195-6663(12)00222-X

DOI: http://dx.doi.org/10.1016/j.appet.2012.06.018

Reference: APPET 1574

To appear in: Appetite

Received Date: 10 November 2011

Revised Date: 7 May 2012 Accepted Date: 27 June 2012

Please cite this article as: Jaworowska, A., Blackham, T., Stevenson, L., Davies, I.G., Determination of salt content in hot takeaway meals in the United Kingdom, *Appetite* (2012), doi: http://dx.doi.org/10.1016/j.appet.2012.06.018

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

- 1 Determination of salt content in hot takeaway meals in the United Kingdom
- 2 Agnieszka Jaworowska*, Toni Blackham, Leonard Stevenson, and Ian G. Davies*
- 3 Faculty of Education, Community and Leisure, Centre for Tourism, Events & Food Studies,
- 4 Liverpool John Moores University, Liverpool, United Kingdom
- 5 Postal address for all authors:
- 6 Liverpool John Moores University, I.M. Marsh Campus, Barkhill Road,
- 7 L17 6BD Liverpool, United Kingdom
- 8 *Corresponding author
- 9 Dr Agnieszka Jaworowska, Msc, Phd
- 10 Faculty of Education, Community and Leisure, Centre for Tourism, Events & Food Studies,
- 11 Liverpool John Moores University, I.M. Marsh Campus, Barkhill Road,
- 12 L17 6BD Liverpool, United Kingdom
- 13 Phone: 0044 151 231 4639 Email: agnieszkajaworowska@o2.pl
- 14 Dr Ian G. Davies PhD, MPhil, BSc, RNutr, PGcert
- 15 Faculty of Education, Community and Leisure, Centre for Tourism, Events & Food Studies,
- Liverpool John Moores University, I.M. Marsh Campus, Barkhill Road,
- 17 L17 6BD Liverpool, United Kingdom
- 18 Phone: 0044 151 231 5290 Email: I.G.Davies@ljmu.ac.uk

19

20

21

22

23

24

26 Determination of salt content in hot takeaway meals in the United Kingo
--

27	Highlights
28 29	▶ high sodium intake is associated with negative health outcomes ▶ pizzas had the highest salt content per portion, followed by Chinese meals ▶ significant differences in salt content between
30 31	meals in the same category were found ▶ results show salt content in takeaway food is alarmingly high
32	Abstract
33	High sodium intake is associated with negative health outcomes, including an independent
34	correlation with high blood pressure which increases the risk of cardiovascular disease. A high
35	proportion of sodium intake in the UK is from processed and out of the home food; this includes
36	takeaway food which is increasing in popularity. The aim of the present study was to evaluate
37	salt levels in popular hot takeaway meals. A total of 411 samples of 23 different types of
38	takeaway meals were analysed. Obtained results show the salt content in these kinds of foods is
39	alarmingly high. Comparing medians (interquartile range) for different meal categories, Pizzas
40	contained the highest salt content per portion (9.45 g (6.97-12.83), followed by Chinese meals
41	(8.07 g (5.47-10.99g)), Kebabs (6.21 g (4.01-8.35)) and Indian meals (4.73 g (3.61-6.10)). In
42	addition, significant differences in the salt content between meals within the same category were
43	reported. To enable the consumer to meet the UK's target salt intake, a significant reduction in the
44	salt content of hot takeaway meals should be considered.
45	
46	Key words: takeaways; salt content; hot meals;
47	
48	Introduction
49	High sodium intake, which is mostly consumed as sodium chloride, has been reported to
50	be associated with increased blood pressure in many epidemiological studies (Mohan &

51	Campbell, 2009). In addition, excessive sodium consumption has been shown to be an
52	independent risk factor of coronary heart disease and stroke (Nagata, Takatsuka, Shimizu, &
53	Shimizu, 2004; Tuomilehto et al., 2001). Furthermore, high salt intake may also be associated
54	with other adverse health conditions, including kidney stones, gastric cancer, asthma and
55	osteoporosis (He & MacGregor, 2010a).
56	In the United Kingdom (UK), the Reference Nutrient Intake for sodium in adults is 1600
57	mg per day; this is the salt equivalent of 4 g per day (Scientific Advisory Committee on Nutrition
58	2003). However, UK current targets are a reduction in average salt intake across the population to
59	6 g per day per adult (Food Standards Agency, UK, 2009). This target of 6 g per day by 2015 is
60	deemed to be achievable, rather than ideal and further reduction targets have been set to 3 g per
61	day by 2025 (National Institute for Health and Clinical Excellence, 2010).
62	Following the 2003 report published by the Scientific Advisory Committee on Nutrition
63	(SACN) on Salt and Health, the UK Food Standards Agency initiated a major salt campaign
64	targeting the food industry (Food Standards Agency, UK, 2009). Recent evaluations of this
65	campaign show a reduction of average salt intake from 9.5 g/day to 8.6 g/day, an approximate
66	10% reduction (Wyness et al, 2011; Shankar et al, 2012). While the UK has made progress and
67	raised consumer awareness, further reductions to reach the UK target of 6 g/day are warranted
68	(National Institute for Health and Clinical Excellence, 2010).
69	It seems that a crucial factor for development of a proper strategy to reduce the salt intake
70	in the UK population is identification of dietary sodium sources. It has been estimated that in UK
71	diets about 80% of daily sodium intake comes from processed food and the catering industry,
72	including takeaway foods (Henderson et al, 2003; Gilbert & Heiser, 2005; He & MacGregor,
73	2010b). Eating out of home statistics show 42% of surveyed British consumers ate takeaway
74	foods once a month or less and 32% two or three times a month (Nielson, 2005). Similarly, the

Food Standards Agency, UK, (2007) reported that 22% of Britons purchase foods from takeaway outlets at least once a week and 58% a few times a month.

Foods prepared outside the home are generally considered to be higher in salt than meals cooked at home, and it has been estimated that approximately 15% of the UK's salt intake is from foods eaten outside the home (Guthrie, Lin, & Frazao, 2002; He et al, 2010). However, the majority of previous studies have focused on fast or processed food (products bought from fast food chain outlets or supermarkets) only, not taking into account other out of home meal options such as takeaway food (Webster et al, 2010; Ni Mhurchu et al, 2011). It has been reported that ethnic cuisine, especially Chinese and Indian, is one of the most popular types of takeaway foods in the UK (Mintel Report, 2009). Furthermore, sodium intake in Northeast Asia is extremely high and ranges from 4651 mg to 6267 mg per day (11.6 – 15.7 g salt per day) depending upon region, which reflects the traditional cooking practices such as using monosodium glutamate, pickles, soy sauce and other sauces which contain sodium (Anderson et al., 2010; Brown et al, 2009). It may be expected that meals prepared in oriental takeaway outlets in the UK also contain a high level of sodium.

Taking into account the high prevalence of takeaway food consumption and a lack of information regarding nutritional quality of takeaway meals, there is an urgent need to determine the nutritional content of takeaway dishes. Therefore, the aim of the present study was to evaluate salt levels in popular hot takeaway meals from small, independent outlets in the Merseyside and Wirral region, UK.

Materials and methods

Collection and analyses of takeaway meals

For the purpose of this study, a takeaway meal was defined as food purchased from out of home food outlets or ordered for home delivery, which was ready for immediate consumption and not eaten in outlets. Takeaway meal samples were collected between December 2005 and January

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

2006 from small, independent takeaway establishments (Indian, Chinese, Kebab Shop, Pizza Shops and Fish & Chips Shops) within the Liverpool boundary by Liverpool City Council, Trading Standards and between July and September 2008 in Wirral Borough by Wirral Metropolitan Borough Council, Trading Standards Division. As part of the Trading Standards. ongoing project work to investigate the nutritional quality of foods in their area, samples of takeaway food were collected from 215 outlets (140 and 75 from Wirral and Liverpool City Councils respectively). This is an approximate 50 and 20% representation of takeaway outlets from Wirral and Liverpool respectively (Evans, 2011; Liverpool City Council, 2011 – spoken data). A total of 411 samples of 23 different types of takeaway meals were purchased, with permission recently granted to the authors to use the data for publication. All meals were purchased once from each selected outlet. All samples were frozen immediately after collection and stored frozen at – 18°C until analysis. Sodium concentration was determined by microwave acid (HNO₃) digestion followed by inductively coupled plasma optical emission spectrometry (ICP-OES) (Kira, Maio, & Maihara, 2004). Salt content was calculated from sodium concentration by multiplying by 2.542. The analysis was performed at Eurofins Laboratories ltd, Chester, UK and Eurofins Laboratories ltd, Birkenhead, Wirral, UK for Wirral and Liverpool Trading Standards respectively. Statistical analyses The data were analysed using SPSS version 17.0 (SPSS Inc., Chicago, IL, USA) and p < 0.05 was considered statistically significant. The adjusted significance level of 0.004 was used when multiple comparisons were made. The normality of distribution of analyzed variables was checked with histograms, Kolmogorov-Smirnov and Shapiro-Wilk tests. Due to non-normal distributions, data are expressed as medians with interquartile range (25th and 75th percentiles). The takeaway meals were classified into five groups according to their origin: 1. Chinese meals, 2. Indian meals, 3. English meals, 4. Pizzas, 5. Kebabs. Differences in salt levels between meal

categories and between different kinds of meals in the same category were tested with the use of the Kruskal-Wallis test and the Mann Whitney U-Test. Salt levels in takeaway meals were compared with the UK target of 6 g (Food Standards agency, UK, 2009).

Results

The median salt content in takeaway meal categories is shown in Table 1. Pizzas were characterised by the highest salt content per portion (9.45 g (6.97-12.83), followed by Chinese meals (8.07 g (5.47-10.99g)), Kebabs (6.21 g (4.01-8.35)) and Indian meals (4.73 g (3.61-6.10)).

Chinese meals had the highest salt density (7.4 g / 1000 kcal (5.49-10.76)) amongst all analysed takeaway meal categories (p<0.001). The salt content in English takeaway foods was significantly lower (p<0.001) than the salt content in the other categories, and this was observed for comparisons made per 100 g, per portion and per 1000 kcal.

In addition, significant differences in the salt content between meals in the same category were reported (Table 2) emphasising the difference between the lowest and highest salt content between meals. Results showed, an overall significant difference within Chinese, Indian, English and Kebab meals with amount of salt per meal, salt per 1000 kcal and comparison with Food Standards Agency, UK, (2006) target (p < 0.05); Chinese, Indian and English meals also showed significant differences between meals with salt per 100 g (p < 0.05), Chinese, Indian and Kebab meals showed significant differences between portion sizes (p < 0.05). Mann Whitney U tests revealed remarked differences in Chinese meals; sweet and sour chicken with boiled rice contained almost four times less salt than a meal of beef, green peppers and blackbean sauce with fried rice or chicken satay with fried rice (p < 0.005). Furthermore, some Chinese meals contained more than three times the UK salt target, e.g. a single portion of beef and black bean with fried rice contained 27 g of salt and a single portion of prawn chow mein contained 21 g of salt per portion (Figure 1). This pattern was similar for Indian takeaway meals, where a portion of chicken tikka massalla with keema rice had a salt concentration approximately 50% higher in comparison

150	with the other Indian meals (p $<$ 0.005); however, the salt level did not vary significantly between
151	pizzas (regardless of the different toppings). It is important to note that the median portion size
152	for Chinese meals was significantly higher, than English, pizza and kebab meals (p < 0.001)
153	(Table 1, Figure 2) which could account for the higher levels of salt in the above mentioned
154	Chinese meals.
155	None of the 23 analysed takeaway meal types contained less than one third of the UK salt
156	target of 6 g per day (Food Standards Agency, UK, 2009), and the average meals provided from
157	37 to 216% of this target (Table 2). The median salt content per 100 g of different kinds of pizzas
158	and kebabs substantially exceeded the 2010 Food Standards Agency targets for recommended salt
159	level of 1.2 g per 100 g for pizzas and 1 g per 100 g for kebabs (Food Standards Agency, UK,
160	2006). Similarly, the median salt content of only one of the Chinese meals contained less than 0.6
161	g of salt per 100 g, the UK target for meat based takeaways (Food Standards Agency, UK, 2006),
162	but at the same time four other Chinese meals had a salt level almost 200% higher than this target.
163	The median salt content per 100 g met the Food Standards Agency (UK, 2006) criteria for English
164	takeaway meals only (0.5 g per 100 g); however, due to extremely large portion sizes (748 g (653-
165	837)) (Table 2; Figure 2) meals supplied an excess amount of salt, for example chicken and chips
166	contained 2.20 g (1.79-3.18); fish and chips 3.0 g (2.41-4.77); and mushroom omelette and chips
167	3.77 g (2.16-5.55)).
168	Discussion
169	The results of the present study indicate a very high level of salt in hot takeaway meals in
170	the UK. It was observed that a single portion of an average takeaway meal contained more than
171	half of the Food Standards Agency, UK, (2009) target of 6 g per day of salt, with some meals
172	providing more than 200%. In addition, 60% of the analysed meals were characterised by
173	extremely high salt density, and provided about 6 g of salt per 1000 kcal. It should also be noted
174	that chips were analysed without added salt, therefore it can be expected that the salt

concentration in English meals may be higher, as many people add salt to chips (North & Neale, 1995).

Although no current data exist regarding salt content in takeaway foods purchased from small independent outlets in the UK, a high salt level in other popular out of home meals seems to be common in other countries. Lachat et al. (2009) reported in Belgium that a typical lunch purchased from various catering establishments or from university canteens contained about 3.1 g of salt. Similarly, a recent Denmark study of canteen and fast food meals found salt content ranged from 8.2 to 11.3 g per portion of pizza, and an average hot meal eaten out of home provided 4.3 g of salt (Rasmussen et al., 2010). These findings were also in agreement with the results of Johnson et al. (2010) who, based on information posted on company web sites, analysed a nutritional profile of lunchtime fast food from major US fast food chains. The average pizza contained more than 6 g of salt per portion with a mean salt density of 5 g per 1000 kcal.

Salt and other sodium containing seasonings are ubiquitous components of diets around the world and many people believe that salt enhances the palatability of foods (Mattes, 1997). Some studies indicated that salt may possess addictive properties, and it has been reported that salt taste preferences are highly dependent on the salt level in the diet (Tekol, 2006). It can be suggested that continuous exposure to salty foods may alter the salt taste preferences and lead to the overconsumption of sodium. Kim et al. (2009) observed that Korean adolescents who were more likely to visit fast food establishments had a significantly higher preference for salt taste.

Due to both high sodium concentration and high sodium density, takeaway foods may significantly contribute to daily sodium intake from just a single meal. The results of a study by Clemens et al. (1999) showed that women who reported eating out of home more than six times during the week had significantly higher sodium intake than individuals who ate away from the home less frequently. Findings were similar among US adults and children where fast food

consumption was associated with significantly higher sodium intake ((Paeratakul, Ferdinand, Champagne, Ryan, & Bray, 2003; Haines, Hungerford, Popkin, & Guilkey, 1992).

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

It has been reported that lowering of salt intakes by only 10% has resulted in an approximated reduction of 6000 CVD related deaths in the UK, which has had a substantial impact on the UK economy with a saving of approximately £1.5 billion per annum (NICE, 2010). However, considering that about 80% of daily salt intake comes from processed foods and food eaten away from the home (Gilbert & Heiser, 2005; He et al., 2010), personal effort to reduce the sodium level in the diet may be disrupted by high salt concentration in commercial food (Brown et al. 2009). Therefore, only limited progress in the reduction of salt intake in populations can be made without changes in the salt level in commercially produced foods. Reduction of salt content in many food products in the order of 20 - 30% can be made without affecting the sensory acceptability and can remain unnoticed by the consumer (Dötsch et al., 2009). Therefore, a strategy of repetition of small reductions may be one effective tool for reducing salt intakes. In 2003, the UK Food Standards Agency began a programme to reduce the average salt intake of adults to 6 g per day by encouraging all sectors of the food industry to carry out reformulation work to reduce the salt content in their food products (Food Standards Agency, UK, 2010). The Food Standards Agency has developed targets for salt levels of various categories of food (Food Standards Agency, UK, 2006) and the revision of programme progress has shown that retailers, manufacturers, trade associations, caterers and suppliers to the catering industry have undertaken a significant amount of work to reduce the amount of salt added to foods during processing (Wyness et al, 2011; Shankar et al, 2012). While the UK's major catering chains see advantages of salt reduction and have declared collaboration, unfortunately there is no interest from small, independent catering outlets and none of them have joined the project (Food Standard Agency, UK, 2007). However, the current study showed that takeaway meals from small establishments were characterised by extremely high salt content. In addition, it seems that there are no standard

procedures of food preparation in the small outlets as variability in the salt level across the same
kind of meals have been found to be very high. As takeaway meals from these types of outlets are
increasing in popularity (Mintel, 2009) and may be an important contributor to daily sodium
intake for a substantial percentage of the population, a different government programme to
encourage the reduction of salt levels in food prepared in the private catering sector is needed. As
voluntary guidelines regarding salt reduction do not result in adequate changes, some statutory
regulation to lower salt concentration in takeaway foods should be considered. The fact that salt is
a cheap ingredient which can make food palatable at a very small cost may be one of reasons why
the private catering sector are reluctant to cooperate (Food Standard Agency, UK, 2010). It also
seems to be a fundamental issue in that small takeaway outlets should be provided training to
improve food preparation procedures and nutritional knowledge of staff. Additionally, a possible
strategy is the introduction of convenient and clear labels indicating salt content in takeaway
meals. However, labelling the food products or menu with only the amount of nutrients and
without any explanation leaves the responsibility of choosing the proper food products with the
consumer and relies on their nutritional knowledge. Therefore, nutritional labelling may not
always be associated with desirable dietary changes. For example, Hoefkens et al. (2011) found
that posting of nutrition information in university canteens did not effectively improve the
nutritional quality of chosen meals. Similarly, the EATWELL project (Interventions to Promote
Healthy Eating Habits: Evaluation and Recommendations) reported that posting point of purchase
nutrition information had no effect on food choice (Brambila-Macias et al., 2011; Bhavani et al.,
2012).
A different approach of labelling has been issued in Finland (Pietinen, Valsta, Hirvonen, &
Sinkko, 2007). Food products must contain a 'high salt product' warning if salt content exceeds a
maximum limit. If the salt level meets a set low salt limit, products may be voluntary marked as
'low salt product'. This approach makes it easier for the consumer to make proper choices even if

249	they are not sure about recommended daily salt intake, as they may use only 'low salt product' or
250	'high salt product' information.
251	The most effective strategy to reduce salt intake in populations should involve changes in
252	the food environment, recipe reformulations, altering the food preparation process and consumer
253	education. Recent studies from Australia (Grimes, Riddell, & Nowson, 2009) and UK (Food
254	Standard Agency, UK, 2007) indicated that less than 50% of participants were concerned about
255	the amount of salt in their diet and only 5% of them were able to correctly identify the current
256	recommended daily salt intake (Grimes, Riddell, & Nowson, 2009).
257	Conclusion
258	The present study is one of the first designed to evaluate the salt content in hot takeaway
259	meals from small independent outlets in the UK, and obtained results show that salt concentration
260	in these kinds of food is alarmingly high. To enable the UK population to meet the recommended
261	daily salt intake a significant reduction in the salt content of hot takeaway meals should be
262	considered.
263	Acknowledge
264	We acknowledge Rachel Long, Liverpool City Council, Trading Standards and Jane Rawling
265	Wirral Metropolitan Borough Council, Trading Standards Division for meal samples collection
266	and analysing.
267	
268	References
269	Anderson, C. A., Appel L. J., Pkuda N, Brown I. J., Chan Q., Zhao L., et al. (2010). Dietary
270	sources of sodium in China, Japan, the United Kingdom, and the United States, women and men
271	aged 40 to 59 years: the INTERMAP study. Journal of the American Dietetic Association, 110(5)
272	736–745.

- Bhavani, V., W., Pérez-Cueto, F., Kozioł-Kozakowska, A., Piorecka, Beata., Niedzwiedzka, B.,
- D'Addesa, D., et al. (2012). Policies to promote healthy eating in Europe: A structured review of
- instruments and their effectiveness. *Nutrition Reviews*, 70(3), 188-200.
- Brambila-Macias, J., Shankar, B., Capacci, S., Mazzocchi, A., Perez-Cueto, A., Verbeke W., et al.
- 277 (2011). Policy interventions to promote healthy eating: A review of what works, what does not,
- and what is promising. *Food and Nutrition Bulletin.* 32(4), 365-375.
- Brown, I. J., Tzoulaki, I., Candeias, V., & Elliott, P. (2009). Salt intakes around the world:
- implications for public health. *International Journal of Epidemiology*, 38(3), 791-813.
- Clemens, L. H., Slawson, D. L., & Klesges, R. C. (1999). The effect of eating out on quality of
- diet in premenopausal women. Journal of the American Dietetic Association, 99(4), 442-444.
- Dötsch, M., Busch, J., Batenburg, M., Liem, G., Tareilus, E., Mueller, R., et al. (2009). Strategies
- 284 to reduce sodium consumption: a food industry perspective. Critical reviews in food science and
- 285 nutrition, 49(10), 841-851.
- Evans, E. (2011) Takeaway food a briefing paper. Heart of Mersey, UK.
- Food Standard Agency. (2006). Salt reduction Targets. Accessed 27 July 2011. Available at
- 288 http://www.food.gov.uk/multimedia/pdfs/salttargetsapril06.pdf
- Food Standard Agency. (2007). Consumer attitudes to food standards. Accessed 27 July 2011.
- 290 Available at http://www.food.gov.uk/science/socsci/surveys/foodsafety-nutrition-diet/eighthcas
- Food Standards Agency. (2009). Agency publishes 2012 salt reduction targets. Accessed 27 July
- 292 2011. Available at http://www.food.gov.uk/news/newsarchive/2009/may/salttargets
- 293 Food Standard Agency. (2010) UK salt reduction initiatives. Accessed 27 July 2011. Available at
- 294 http://www.food.gov.uk/multimedia/pdfs/saltreductioninitiatives.pdf
- 295 Gilbert, P. A, & Heiser, G. (2005) Salt and health: the CASH and BPA perspective. *Nutrition*
- 296 Bulletin.30, 62-69.

- Grimes, C. A., Riddell, L. J., & Nowson, C. A. (2009). Consumer knowledge and attitudes to salt
- intake and labelled salt information. *Appetite*, 53(2), 189-194.
- Guthrie, J., F., Lin, B., H., & Frazao, E. (2002) Role of food prepared away from home in the
- American diet, 1977-78 versus 1994-96: changes and consequences. *Journal of Nutrition*
- 301 Education Behaviour, 34(3), 140-150.
- Haines, P. S., Hungerford, D. W., Popkin, B. M., & Guilkey, D. K. (1992). Eating patterns and
- energy and nutrient intakes of US women. Journal of the American Dietetic Association, 92(6),
- 304 698–704.
- Henderson, L., Irving, K., Gregory, J., Bates, Ch. J., Prentice, A., Perks, J. et al. (2003) *National*
- 306 Diet and Nutrition Survey: Adults Aged 19 to 64 Years. Volume 3: Vitamin and Mineral Intake
- 307 and Urinary Analytes. The Stationery Office, London.
- 308 He, F. J., & MacGregor, G. A. (2010a) Reducing population salt intake worldwide: from evidence
- to implementation. *Progress in Cardiovascular Diseases*, 52(5), 363-382.
- He, F. J., & MacGregor, G. A. (2010b) WASH-world action on salt and health. *Kidney*
- 311 *International*, 78(8), 745-753.
- Hoefkens, C, Lachat, C., Kolsteren, P., Van Camp, J., & Verbeke, W. Posting point-of-purchase
- 313 nutrition information in university canteens does not influence meal choice and nutrient intake.
- 314 American Journal of Clinical Nutrition, 94(2), 562-70.
- Johnson, C. M., Angell, S. Y., Lederer, A., Dumanovsky, T., Huang, C., Bassett, M. T. et al.
- 316 (2010) Sodium content of lunchtime fast food purchases at major US chains. Archives of Internal
- 317 *Medicine*, 170(8), 732-734.
- 318 Kim, G. H., & Lee, H. M. (2009) Frequent consumption of certain fast foods may be associated
- with an enhanced preference for salt taste. *Journal of Human Nutrition and Dietetics*, 22(5),
- 320 475—480.

- 321 Kira, C., S., Maio, F., D., & Maihara, V., A. (2004). Comparison of partial digestion procedures
- for determination of Ca, Cr, Cu, Fe, K, Mg, Mn, Na, P, and Zn in milk by inductively coupled
- plasma-optical emission spectrometry. *Journal of AOAC International*, 87(1), 151-156.
- Lachat, C. K., Huybregts, L. F., Roberfroid, D. A., Van Camp, J., Remaut-De Winter, A. M.,
- Debruyne, P., et al. (2009). Nutritional profile of foods offered and consumed in a Belgian
- 326 university canteen. *Public Health Nutrition*, 12(1), 122-128.
- Mattes, R. D. (1997). The taste for salt in humans. American Journal of Clinical Nutrition, 65(2)
- 328 Suppl), 692S-697S.
- 329 Mintel Report. (2009). Ethnic Cuisine UK. Accessed 27 July 2011. Available at
- 330 http://academic.mintel.com/sinatra/oxygen academic/search results/show&/display/id=393883
- 331 Mohan, S., & Campbell, N. R. (2009). Salt and high blood pressure. Clinical Science (London,
- 332 England:1979,) 117(1), 111.
- Nagata, C., Takatsuka, N., Shimizu, N., & Shimizu, H. (2004). Sodium intake and risk of death
- from stroke in Japanese men and women. *Stroke*, 35(7), 1543-1547.
- National Centre for Social Research and Medical Research Council. (2008). An assessment of
- 336 dietary sodium levels among adults (19-64) in the U.K. General Population in 2008 Based on
- 337 Analysis of 24 hour Urine Samples. London: TSO.
- National Institute for Health and Clinical Excellence (2010) Prevention of Cardiovascular Disease
- at Population Level. NICE Public Health Guidance 25. Accessed 20 April 2012. Available at
- 340 http://guidance.nice.org.uk/PH25
- 341 Ni Mhurchu, C., Capelin, C., Dunford, E. K., Webster, J. L., Neal, B. C., & Jebb, S. A. (2011).
- 342 Sodium content of processed foods in the United Kingdom: analysis of 44,000 foods purchased
- by 21,000 households. American Journal of Clinical Nutrition 93(3), 594-600

- Nielsen AC (2005) Consumers in Europe Our Fast Food / Takeaway Consumption Habits, 2nd
- Half, October 2004. AC Nielsen Online Consumer Survey, AC Nielson. Available at:
- 346 http://ie.nielsen.com/pubs/documents/EuroFastFoodDec04.pdf
- North, S. L., & Neale, R. J. (1995). Knowledge, attitudes and eating habits of teenagers with
- respect to salt in their diet. *British Food Journal*, 97(5), 3-11.
- Paeratakul, S., Ferdinand, D. P., Champagne, C. M., Ryan, D. H., & Bray, G. A. (2003) Fast-food
- 350 consumption among US adults and children: dietary and nutrient intake profile. Journal of the
- 351 *American Dietetic Association, 103*(10), 1332–1338.
- Pietinen, P., Valsta, L.M., Hirvonen, T., & Sinkko, H. (2007). Labelling the salt content in foods:
- 353 a useful tool in reducing sodium intake in Finland. *Public Health Nutrition*, 11(4), 335–340.
- Rasmussen, L. B., Lassen, A. D., Hansen, K., Knuthsen, P., Saxholt, E., & Fagt S. (2010). Salt
- 355 content in canteen and fast food meals in Denmark. Food and Nutrition Research, 54, doi:
- 356 10.3402/fnr.v54i0.2100.
- 357 Scientific Advisory Committee on Nutrition. (2003). Salt and health. London: TSO
- 358 Tekol, Y. (2006) Salt addiction: a different kind of drug addiction. *Medical Hypotheses*. 67(5),
- 359 1233-1244.
- 360 Shankar B, Brambila-Macias J, Traill B, Mazzocchi M, Capacci S (2012). An evaluation of the
- 361 UK Food Standard Agency's salt campaign. *Health Economy*. doi: 10.1002/hec.2772. [Epub
- 362 ahead of print]
- Tuomilehto, J., Jousilahti, P., Rastenyte, D., Moltchanov, V., Tanskanen, A., Pietinen, P., et al.
- 364 (2001) Urinary sodium excretion and cardiovascular mortality in Finland: a prospective study.
- 365 *Lancet*, 357(9259), 848-851.
- Webster, J. L., Dunford, E. K., Neal, B. C. (2010). A systematic survey of the sodium contents of
- processed foods. *American Journal of Clinical Nutrition*, 91(2), 413-420.

Wyness, L. A., Butriss, J. L., Stanner, S. A. (2011). Reducing the population's sodium intake: the UK Food Standards Agency's salt reduction programme. Public Health Nutrition, 15(2), 254-261.

370

368

369

371

372

373

Table 1 Salt content in analyzed take away meals by meal category

Meal Category*	Weight [†]	Salt [†]	Salt [†]	Salt [†]	Salt [†]
	g per meal	g per 100g	g per meal	g per 1000 kcal	%FSA [↑]
Chinese (n=92)	852 (728-947) ^{c,d,e}	0.99 (0.70-1.37) ^{b,c,d}	8.07 (5.47-10.99) ^{b,c}	7.40 (5.49-10.76) ^{b,c,d}	134 (91-183) ^{b,c}
Indian (<i>n</i> =95)	803 (731-864) ^{d,e}	0.61 (0.46-0.79) ^{a,c,d,e}	4.73 (3.61-6.10) ^{a,c,d}	3.61 (2.59-4.85) ^{a,c,d,e}	79 (60-102) ^{a,c,d}
English (n=95)	748 (653-837) ^{a,e}	0.41 (0.30-0.59) ^{a,b,d,e}	3.01 (2.23-4.48) ^{a,b,d,e}	1.86 (1.33-2.79) ^{a,b,d,e}	50 (37-75) ^{a,b,d,e}
Pizzas (n=54)	676 (559-781) ^{a,b,e}	1.47 (1.17-1.70) ^{a,b,c,e}	9.45 (6.97-12.83) ^{b,c,e}	5.28 (4.04-6.08) ^{a,b,c}	157 (116-214) ^{b,c}
Kebabs (n=75)	505 (436-711) ^{a,b,c,d}	1.09 (0.89-1.40) ^{b,c,d}	6.21 (4.01-8.35) ^{c,d}	5.08 (3.98-7.99) ^{a,b,c}	103 (67-139) ^{c,d}

 $n = \text{total number of meals;}^*$ data presented as median (interquartile range).

379

380

378

Figure 1 Variation in salt content in different meal categories

³⁷⁴ 375 † Significant difference between all meal categories (p < 0.001; Kruskal-Wallis test).

³⁷⁶ Significant difference (p < 0.001; Mann-Whitney's test) of paired comparison of meal categories a Chinese; b Indian; c English; d

³⁷⁷ Pizzas; e Kebabs.

[†] FSA target, 6 g salt per day (Food Standards Agency, UK, 2009)

Figure 2 Variation in portion size for different meal categories

Table 2 Salt content in different types of takeaway meals

Meal type*	n	Weight	Salt	Salt	Salt	Salt
		g per meal	g per 100g	g per meal	g per 1000 kcal	%FSA [↑]
Chinese ^{i,ii,iii, iv, v}						
Beef green peppers and blackbean sauce with fried rice	31	915 (871-1013) ^a	$1.19 (0.91-1.50)^{a,b}$	10.72 (8.13-13.88) ^{a,b}	$7.88 (6.04-10.8)^{a,b}$	179 (136-231) ^{a,b}
Prawn chow mein	21	679 (584-834)	$1.12 (0.80-1.51)^{a,b}$	$7.88 (5.58-9.99)^a$	$11.97 (7.65-14.99)^{a,b}$	131 (93-167) ^a
Sweet and sour chicken with boiled rice	10	766 (744-868)	0.37 (0.27-0.49)	3.13 (1.83-3.76)	$2.19(1.65-2.52)^{b}$	52 (31-63)
Char siu chow mein	10	716 (680-848)	$1.05(0.97-1.25)^{a}$	$8.07(7.18-8.46)^{a}$	$8.29 (6.37-10.37)^{a}$	$134(120-141)^a$
Chicken satay with fried rice	10	891 (781-1063)	$1.04 (0.81-1.51)^{a,b}$	10.3 (7.53-13.38) ^{a,b}	$7.12 (6.04-10.39)^a$	$172(125-223)^{a,b}$
Kung po king prawns with boiled rice	10	882 (794-931)	0.62 (0.39-0.85)	5.45 (3.51-7.37)	$5.42 (3.14-6.63)^{a}$	91 (59-123)
Indian ^{i,ii,iii,iv,v}						
Lamb bhuna with chips	22	745 (714-830)	$0.51 (0.38 - 0.65)^{c}$	4.12 (3.10-5.14) ^c	2.53 (1.84-3.37) ^{c,d}	69 (52-86) ^c
King prawn rogan josh with pilau rice	22	772 (701-828)	$0.59 (0.48 - 0.74)^{c}$	4.20 (3.44-6.08) ^c	4.93 (3.57-5.97)	$70 (57-101)^{c}$
Chicken tikka massalla with keema rice	21	808 (746-872)	0.81 (0.70-0.97)	6.68 (5.64-8.18)	4.22 (3.75-5.68)	111 (94-136)
Lamb rogan josh with pilau rice	10	758 (719-857)	$0.46 (0.37 - 0.57)^{c}$	$3.49(2.78-5.23)^{c}$	2.81 (2.05-3.16) ^{c,d}	58 (46-87) ^c
Chicken korma with pilau rice	10	869 (819-923)	$0.45 (0.37 - 0.54)^{c,d}$	3.81 (3.18-4.35) ^{c,d}	$2.54 (1.98-2.95)^{c,d}$	64 (53-72) ^{c,d}
Vegetable biryani	10	834 (747-910)	0.69 (0.55-0.78)	5.63 (4.77-6.47)	4.11 (3.55-5.62)	94 (79-108)
English ^{ii,iii, iv, v}						
Chicken and chips	22	714 (641-847)	0.35 (0.22-0.44)	2.20 (1.79-3.18)	1.47 (0.98-1.99)	37 (30-53)
Fish and chips	52	745 (654-793)	0.43 (0.33-0.63)	3.00 (2.41-4.77)	1.90 (1.51-2.86)	50 (40-80)
Mushroom omelette and chips	21	783 (662-917)	0.48 (0.31-0.66)	3.77 (2.16-5.55)	2.51 (1.53-3.16)	63 (36-92)
Pizzas ⁱ						
Pepperoni pizza	11	770 (646-864)	1.65 (1.14-1.88)	12.94 (7.26-13.82)	5.79 (3.85-6.20)	216 (121-230)
Seafood pizza	11	765 (690-971)	1.32 (0.99-1.83)	11.09 (8.66-13.62)	5.28 (3.87-7.29)	185 (144-227)
Margherita pizza	12	674 (575-740)	1.40 (1.06-1.70)	8.83 (6.63-10.81)	4.75 (3.43-5.58)	147 (110-180)
Ham and pineapple pizza	10	558 (497-605)	1.44 (1.21-1.57)	7.72 (5.37-9.75)	5.39 (4.48-6.15)	129 (89-163)
Meat pizza	10	641 (554-767)	1.46 (1.26-1.57)	8.59 (7.44-10.57)	5.14 (4.41-5.55)	143 (124-176)
Kebabs ^{i,iii,iv,v}						
Donner kebab and chips	32	751 (561-979)	1.07 (0.84-1.22)	7.50 (5.90-9.71)	4.02 (3.48-4.75)	125 (98-162)
Chicken kebab	22	481 (436-539) ^e	1.15 (0.91-1.42)	5.94 (3.95-7.27)	7.55 (5.19-9.31) ^e	99 (66-121)
Shish kebab	21	386 (334-478) ^e	1.17 (0.91-1.51)	$4.27(3.47-5.99)^{e}$	$7.12(5.61-8.95)^{e}$	71 (58-100) ^e

n = number of meals; *data presented as median (interquartile range). Significant difference within meal categories (p < 0.05; Kruskal Wallis test):

ⁱWeight (g per meal); ⁱⁱsalt (g per 100 g); ⁱⁱⁱsalt (g per meal); ^{iv}salt (g per 1000 kcal); ^vsalt %FSA.

Significant difference between meal types within the same meal category (p < 0.004; Mann-Whitney's test):

Chinese: ^aSweet and sour chicken with boiled rice; ^bKung po king prawns with boiled rice; Indian; ^cChicken tikka massalla with keema rice; ^dVegetable biryani; Kebabs: ^e Donner kebab and chips (only statistically significant results were marked)

[†] target, 6 g salt per day (Food Standards Agency, UK, 2009)

Determination of salt content in hot takeaway meals in the United Kingdom

Highlights

▶ high sodium intake is associated with numbers of negative health outcomes ▶ pizzas had the highest salt concentration per portion, followed by Chinese meals ▶ significant differences in salt content between meals in the same category were found ▶ results show that salt concentration in takeaway food is alarmingly high