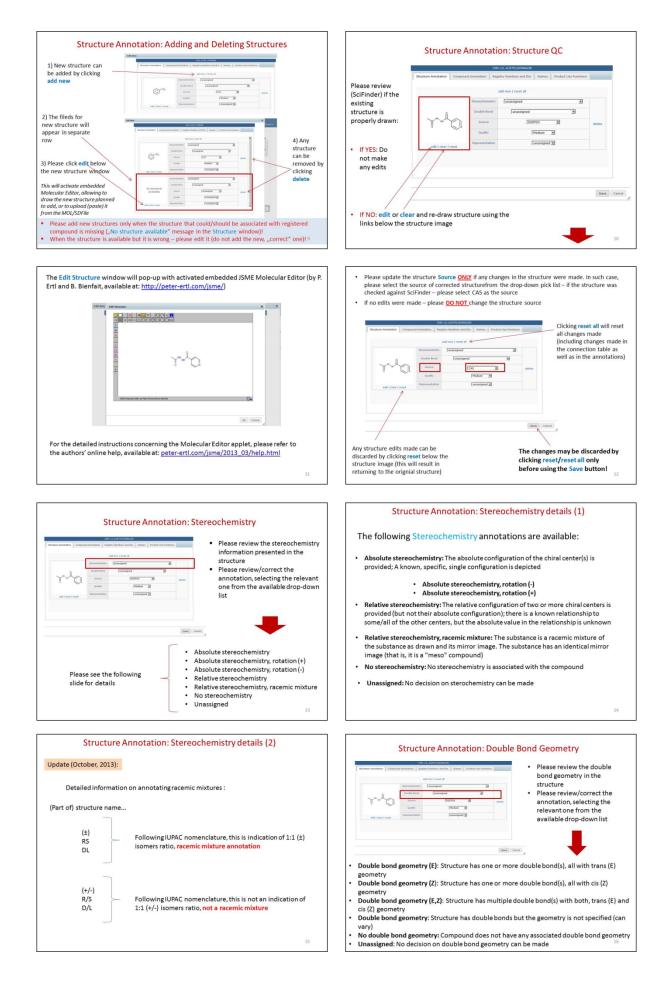
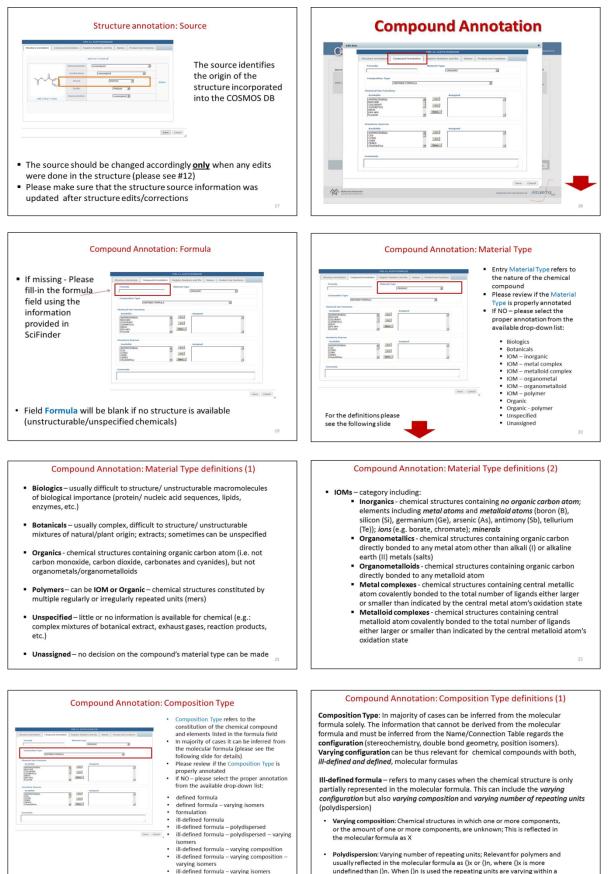
# Annexes

| Annex 1: | The detailed contribution of the author of present thesis              |
|----------|------------------------------------------------------------------------|
| Annex 2: | The final SOP used for the QC/QA of the COSMOS database chemical       |
|          | domain (chapter 2)                                                     |
| Annex 3: | Use functions of cosmetics ingredients from the EC COSING inventory    |
|          | (chapter 3)                                                            |
| Annex 4: | The final SOP used for skin permeability data harvesting (chapter 4)   |
| Annex 5: | Dataset used for skin permeability classification analysis (chapter 5) |
| Annex 6: | The values of calculated descriptors (Corina Symphony, Molecular       |
|          | Networks GmbH, Nüremberg, Germany) and 3 Principal Component's         |
|          | scores (JMP, SAS Inc.) used for the skin permeability classification   |
|          | analysis (chapter 5)                                                   |
| Annex 7: | Summary statistics calculated for particular properties within each    |
|          | category of skin permeability potential (chapter 5)                    |
| Annex 8: | Abstracts of conference presentations related to the present PhD       |
|          | programme                                                              |


| CHAPTER   | CHAPTER TITLE                                                                                                                                                       | AUTHOR'S CONTRIBUTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chapter 2 | Quality Control of the COSMOS Database<br>Chemical Domain                                                                                                           | <ul> <li>Co-design of the sets of controlled vocabularies for chemical compounds and structures' annotations, with a specific goal to address the problematic issues related to the representation and identification of cosmetics related substances during the collation of chemical part of the COSMOS database and COSMOS Cosmetics Inventory</li> <li>Curation of the chemical records from the U.S. EPA DSSTox inventory (approximately 12,000 records) for the purpose of populating them into the COSMOS database</li> <li>Preparing the Standard Operating Procedure (SOP) for conducting the Quality Control/Quality Assurance (QC/QA) process of the COSMOS database chemical domain</li> <li>Conducting a training session for the participating COSMOS partners: "COSMOS Data Entry System training for database structure curation"</li> <li>Performing the QC/QA for 38 compounds</li> </ul>                                                                                                                                               |
| Chapter 3 | Chemical Space Analysis of the COSMOS<br>Cosmetics Inventory                                                                                                        | <ul> <li>Analysis performed by the author</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Chapter 4 | The COSMOS Skin Permeability Database:<br>Harvesting, Curating and Quality Control<br>of the Data                                                                   | <ul> <li>Curation and QC of the Kent database for the purpose of merging it with the EDETOX content</li> <li>Preparation of the data entry tables for the new data harvesting and leading two cycles of pilot data harvesting</li> <li>Conducting a training session for the participating COSMOS partners: "COSMOS Skin Permeability/Absorption Data Harvesting"</li> <li>Preparing the SOP and final entry tables ("data harvesting package") for the data harvesting team</li> <li>Harvesting 100 skin permeability/absorption studies (47 <i>in vitro</i> and 53 <i>in vivo</i>) for 25 compounds</li> <li>Gathering the harvested data from all the harvesters, performing the format QC, integrating the results into one final file ready to be merged with EDETOX/Kent content</li> <li>Preparing data entry tables for the COSMOS/ILSI Expert Group QC</li> <li>Gathering QC comments from the Expert Group members and incorporating them into the database</li> <li>Analysis of the final COSMOS Skin Permeability Database content</li> </ul> |
| Chapter 5 | Classification of Skin Permeability<br>Potential Following Dermal Exposure to<br>Support the Prediction of Repeated Dose<br>Toxicity of Cosmetics-Related Compounds | <ul> <li>Analysis performed by the author</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |


| CHAPTER   | CHAPTER TITLE                                                                           | AUTHOR'S CONTRIBUTION                                                                                               |
|-----------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
|           | COSMOS Oral Repeated Dose                                                               | <ul> <li>Harvesting oral repeated dose toxicity studies for 43 compounds</li> </ul>                                 |
| Chapter 6 | Toxicity Database (oRepeatToxDB):                                                       | <ul> <li>Performing the database normalisation QC/QA of 2722 records (approximately 2%) sampled from</li> </ul>     |
| Chapter 6 | Harvesting, Curating and Quality Control                                                | the COSMOS oRepeatToxDB                                                                                             |
|           | of the Data                                                                             | <ul> <li>Analysis of the final COSMOS oRepeatToxDB content</li> </ul>                                               |
|           | Mechanistic, ontology-based liver toxicity<br>data mining in the COSMOS<br>oRepeatToxDB | <ul> <li>Participation in the validation of the liver toxicity ontology</li> </ul>                                  |
|           |                                                                                         | <ul> <li>Ontology-based mechanistic data mining (liver steatosis/steatohepatitis/fibrosis endpoints) and</li> </ul> |
| Chapter 7 |                                                                                         | identification of 59 hepatotoxicants                                                                                |
| Chapter 7 |                                                                                         | <ul> <li>Structural analysis (ToxPrint chemotypes) of identified hepatotoxicants and identification of</li> </ul>   |
|           |                                                                                         | potential PPAR γ agonists among them                                                                                |
|           |                                                                                         | <ul> <li>Interpretation of the results of molecular modelling delivered by COSMOS partners from BAS</li> </ul>      |

Annex 2: The final SOP used for the QC/QA of the COSMOS database chemical domain (chapter 2)

| Altamra <sub>LLC</sub><br>COSMOS Data Entry System<br>for database structure<br>curation and QC/QA process<br>The complete SOP                                     | <ul> <li>Using the following link and your personal access credentials, please login into the COSMOS DB:</li> <li>https://www.altamira-llc.com/cosmos.v1/</li> <li>Item access acce</li></ul>             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <complex-block></complex-block>                                                                                                                                    | <list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <list-item><list-item><list-item><complex-block><complex-block><complex-block></complex-block></complex-block></complex-block></list-item></list-item></list-item> | <ul> <li>The Edit data window will pop-up</li> <li>Image: Constraint of the expectation o</li></ul> |
|                                                                                                                                                                    | Structure Annotation: Structures in the COSMOS DB         • 2D MOL/SD Files, "tested" (not "computational") form         • The Structura window can be empty (meaning that no structure is available) only for non-structurable chemicals (i.e. chemicals for which no reasonable or representative 2D structure can be given, e.g.: complex macromolecules, usually biological or botanical, non-defined mixtures, etc.), for example:         68425-17-2, hydrogenated starch hydrolyzate, humectant         • According to the COSMOS DB data model, more than 1 structure is allowed for one COSMOS DB compound (e.g.: defined mixtures)         The following set of slides will explain how to:         • Add new structures to the registered compounds         • Delete structures available for the registered compounds         • QC the existing structures by verifying if:         • Each connection table is correct (is each structure properly drawn)         • Stereochemistry is properly annotated         • Double bond geometry is properly annotated         • The source of each structure is properly provided                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

## Annexes

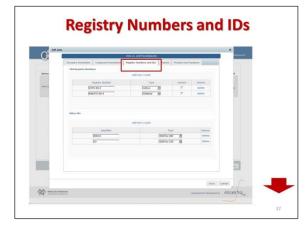




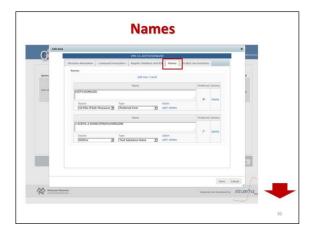
For the definitions pleas see the following slide

unspecified unassigned specified

usually reflected in the molecular formula as ()x or ()n, where ()x is more undefined than ()n. When ()n is used the repeating units are varying within a known range. Usually, polydispersion is also reflected in the name of the polymer (poly-)


## Compound Annotation: Composition Type definitions (2)

Defined formula: Chemical compound with the chemical structure fully represented in the molecular formula (except configuration, please see above)


Formulation: Well-defined (usually commercial, may be proprietary) composition of two or more substances

Unspecified: Little or nothing is known about the composition of the chemical (e.g.: comlex botanical extracts, reaction products) - no molecular formula

Unassigned: No decision on compound's composition type can be made



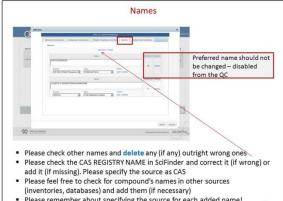
| OH-FLACTRUSTRUSTRUST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Cell legistry funders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                               |
| Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx.com<br>Approx |                                                                                                                               |
| Mine dia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Identifiers of the QC-ed compounds that are used                                                                              |
| Date         Date         Alter           [500]         [600m 10 - S]         Alter           [0]         [600m 10 - S]         Alter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | in other inventories/databases                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                               |
| [ See ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Greet                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Please feel free to check the IDs of the<br>COSMOS DB compounds in other sources<br>(inventories, databases) and add them, if |



# Compound Annotation: Chemical Use Functions, Inventory Sources and Comments Please check agains COSING/assign selecting from the available list Lists the inventories in which the 32 copound appears - not subjected to the QC (disabled) Free text – please feel free to put any important information on th compound

#### Registry Numbers and IDs: CAS Registry Numbers (CAS RNs)

One chemical compound can have more than one CAS Registry Number (active and several


One chemical compound can have more than one CAS Registry Number (active and several alternate or deleted CAS RNs can be also in use in different sources):

Active — the current one, most recently assigned to the chemical compound

Alternate — a second RN generated by CAS for a second structural representation of a substance; These records have a more preferred structure

Deleted — RN assigned to a substance but later changed to another (active) RN
Generic CAS RN refers to the CAS RN that covers the whole category of chemicals, including multiple individual compounds (usually having their own, individual CAS RNs as well). Please tick the proporties that in the context of the category of chemicals. tick the proper box, if appropriate





Please remember about specifying the source for each added name!

# Finalizing the QC process (1)

- After the QC please Save the results
  The Save button applies to all tabs: It can be used at any tab and all changes will be saved
  After using the Save button the changes made cannot be discarded/reset anymore and there is no possibility to come back to the original data status
- After using the Save button the updated DB content will be processed
- The comment confirming the successful DB update will appear
   Please click OK button



| ow, a | ts window<br>as the QC | N                 | emical    | l is finish                                  | content) will l<br>ned, the releva |                           |                        |
|-------|------------------------|-------------------|-----------|----------------------------------------------|------------------------------------|---------------------------|------------------------|
|       | C                      | SMOS              | Query Res | ulte                                         |                                    | Nore - Nord               | Logical (Antoine Stat) |
|       |                        |                   | -         | and retrieved 1.54, C                        | ick on a result for details.       |                           | _                      |
|       | Query<br>CHE-13        | Y~~~              | CINE-L2   | Registry Numbers<br>000475-09-4<br>1676-38-2 | ACETIVISIONIA230                   |                           | grad<br>print<br>grad  |
|       |                        |                   |           | (fet) (fee) -1                               | 41 (Net) (Set)                     |                           |                        |
|       |                        |                   |           |                                              |                                    |                           | - Summary -            |
|       |                        |                   |           |                                              |                                    |                           | 6                      |
|       |                        | terofia<br>Innery |           |                                              |                                    | Designed and Developed by | Altam'raue             |

# Annex 3: Use functions of cosmetics ingredients from the EC COSING inventory (chapter 3)

| Name                 | Description                                                                                                                                                                          |  |  |  |  |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| ABRASIVE             | Removes materials from various body surfaces or aids mechanical tooth cleaning or improves gloss                                                                                     |  |  |  |  |
| ABSORBENT            | Takes up water- and/or oil-soluble dissolved or finely dispersed substances                                                                                                          |  |  |  |  |
| ANTICAKING           | Allows free flow of solid particles and thus avoids agglomeration of powdered cosmetics into umps or hard masses                                                                     |  |  |  |  |
| ANTICORROSIVE        | Prevents corrosion of the packaging                                                                                                                                                  |  |  |  |  |
| ANTIDANDRUFF         | Helps control dandruff                                                                                                                                                               |  |  |  |  |
| ANTIFOAMING          | Suppresses foam during manufacturing or reduces the tendency of finished products to generate foam                                                                                   |  |  |  |  |
| ANTIMICROBIAL        | Helps control the growth of micro-organisms on the skin                                                                                                                              |  |  |  |  |
| ANTIOXIDANT          | Inhibits reactions promoted by oxygen, thus avoiding oxidation and rancidity                                                                                                         |  |  |  |  |
| ANTIPERSPIRANT       | Reduces perspiration                                                                                                                                                                 |  |  |  |  |
| ANTIPLAQUE           | Helps protect against plaque                                                                                                                                                         |  |  |  |  |
| ANTISEBORRHOEIC      | Helps control sebum production                                                                                                                                                       |  |  |  |  |
| ANTISTATIC           | Reduces static electricity by neutralising electrical charge on a surface                                                                                                            |  |  |  |  |
| ASTRINGENT           | Contracts the skin                                                                                                                                                                   |  |  |  |  |
| BINDING              | Provides cohesion in cosmetics                                                                                                                                                       |  |  |  |  |
| BLEACHING            | Lightens the shade of hair or skin                                                                                                                                                   |  |  |  |  |
| BUFFERING            | Stabilises the pH of cosmetics                                                                                                                                                       |  |  |  |  |
| BULKING              | Reduces bulk density of cosmetics                                                                                                                                                    |  |  |  |  |
| CHELATING            | Reacts and forms complexes with metal ions which could affect the stability and/or appearance of cosmetics                                                                           |  |  |  |  |
| CLEANSING            | Helps to keep the body surface clean                                                                                                                                                 |  |  |  |  |
| COSMETIC COLORANT    | Colours cosmetics and/or imparts colour to the skin and/or its appendages. All colours listed are substances on the positive list of colorants (Annex IV of the Cosmetics Directive) |  |  |  |  |
| DENATURANT           | Renders cosmetics unpalatable. Mostly added to cosmetics containing ethyl alcohol                                                                                                    |  |  |  |  |
| DEODORANT            | Reduces or masks unpleasant body odours                                                                                                                                              |  |  |  |  |
| DEPILATORY           | Removes unwanted body hair                                                                                                                                                           |  |  |  |  |
| DETANGLING           | Reduces or eliminates hair intertwining due to hair surface alteration or damage and, thus, helps combing                                                                            |  |  |  |  |
| EMOLLIENT            | Softens and smooths the skin                                                                                                                                                         |  |  |  |  |
| EMULSIFYING          | Promotes the formation of intimate mixtures of non-miscible liquids by altering the interfacial tension                                                                              |  |  |  |  |
| EMULSION STABILISING | Helps the process of emulsification and improves emulsion stability and shelf-life                                                                                                   |  |  |  |  |
| FILM FORMING         | Produces, upon application, a continuous film on skin, hair or nails                                                                                                                 |  |  |  |  |
| FLAVOURING           | Gives flavour to the cosmetic product                                                                                                                                                |  |  |  |  |
| FOAM BOOSTING        | Improves the quality of the foam produced by a system by increasing one or more of the following properties: volume, texture and/or stability                                        |  |  |  |  |
| FOAMING              | Traps numerous small bubbles of air or other gas within a small volume of liquid by modifying the surface tension of the liquid                                                      |  |  |  |  |
| GEL FORMING          | Gives the consistency of a gel (a semi-solid preparation with some elasticity) to a liquid preparation                                                                               |  |  |  |  |
| HAIR CONDITIONING    | Leaves the hair easy to comb, supple, soft and shiny and/or imparts volume, lightness, gloss, etc.                                                                                   |  |  |  |  |

| Name                  | Description                                                                                                                                                                                                         |  |  |  |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| HAIR DYEING           | Colours hair                                                                                                                                                                                                        |  |  |  |
| HAIR FIXING           | Permits physical control of hair style                                                                                                                                                                              |  |  |  |
| HAIR WAVING<br>OR     |                                                                                                                                                                                                                     |  |  |  |
| STRAIGHTENING         | Modifies the chemical structure of the hair, allowing it to be set in the style required                                                                                                                            |  |  |  |
| HUMECTANT             | Holds and retains moisture                                                                                                                                                                                          |  |  |  |
| HYDROTROPE            | Enhances the solubility of substance which is only slightly soluble in water                                                                                                                                        |  |  |  |
| KERATOLYTIC           | Helps eliminate the dead cells of the stratum corneum                                                                                                                                                               |  |  |  |
| MASKING               | Reduces or inhibits the basic odour or taste of the product                                                                                                                                                         |  |  |  |
| MOISTURISING          | Increases the water content of the skin and helps keep it soft and smooth                                                                                                                                           |  |  |  |
| NAIL CONDITIONING     | Improves the cosmetic characteristics of the nail                                                                                                                                                                   |  |  |  |
| NOT REPORTED          | NOT REPORTED                                                                                                                                                                                                        |  |  |  |
| OPACIFYING            | Reduces transparency or translucency of cosmetics                                                                                                                                                                   |  |  |  |
| ORAL CARE             | Provides cosmetic effects to the oral cavity, e.g. cleansing, deodorising, protecting                                                                                                                               |  |  |  |
| OXIDISING             | Changes the chemical nature of another substance by adding oxygen or removing hydrogen                                                                                                                              |  |  |  |
| PEARLESCENT           | Imparts a nacreous appearance to cosmetics                                                                                                                                                                          |  |  |  |
| PERFUMING             | Used for perfume and aromatic raw materials (Section II)                                                                                                                                                            |  |  |  |
| PLASTICISER           | Softens and makes supple another substance that otherwise could not be easily deformed, spread or worked out                                                                                                        |  |  |  |
| PRESERVATIVE          | Inhibits primarily the development of micro-organisms in cosmetics. All preservatives listed are substances on the positive list of preservatives (Annex VI of the Cosmetics Directive)                             |  |  |  |
| PROPELLANT            | Generates pressure in an aerosol pack, expelling contents when the valve is opened. Some liquefied propellants can act as solvents                                                                                  |  |  |  |
| REDUCING              | Changes the chemical nature of another substance by adding hydrogen or removing oxygen                                                                                                                              |  |  |  |
| REFATTING             | Replenishes the lipids of the hair or of the top layers of the skin                                                                                                                                                 |  |  |  |
| REFRESHING            | Imparts a pleasant freshness to the skin                                                                                                                                                                            |  |  |  |
| SKIN CONDITIONING     | Maintains the skin in good condition                                                                                                                                                                                |  |  |  |
| SKIN PROTECTING       | Helps to avoid harmful effects to the skin from external factors                                                                                                                                                    |  |  |  |
| SMOOTHING             | Seeks to achieve an even skin surface by decreasing roughness or irregularities                                                                                                                                     |  |  |  |
| SOLVENT               | Dissolves other substances                                                                                                                                                                                          |  |  |  |
| SOOTHING              | Helps lightening discomfort of the skin or of the scalp                                                                                                                                                             |  |  |  |
| STABILISING           | Improves ingredients or formulation stability and shelf-life                                                                                                                                                        |  |  |  |
| SURFACTANT            | Lowers the surface tension of cosmetics as well as aids the even distribution of the product when used                                                                                                              |  |  |  |
| TANNING               | Darkens the skin with or without exposure to UV                                                                                                                                                                     |  |  |  |
| TONIC                 | Produces a feeling of well-being on skin and hair                                                                                                                                                                   |  |  |  |
| UV ABSORBER           | Protects the cosmetic product from the effects of UV-light                                                                                                                                                          |  |  |  |
| UV FILTER             | Filters certain UV rays in order to protect the skin or the hair from harmful effects of these rays. All UV filters listed are substances on the positive list of UV filters (Annex VII of the Cosmetics Directive) |  |  |  |
| VISCOSITY CONTROLLING | Increases or decreases the viscosity of cosmetics                                                                                                                                                                   |  |  |  |

## Annex 4: The final SOP used for skin permeability data harvesting (chapter 4)



### **Dermal Absorption Data Harvesting Guidelines**

#### I. Data sources:

a) ECHA resources available at: http://echa.europa.eu/web/guest/information-on-chemicals/registered-substances

(Toxicological Information --> Toxicokinetics, metabolism and distribution --> Dermal absorption)

b) SCCS opinions available at: http://ec.europa.eu/health/scientific\_committees/consumer\_safety/index\_en.htm

If the original reference in ECHA or SCCS opinion is a report (unpublished) – then the information provided in ECHA or SCCS opinion should be harvested (as we usually do not have the access to original data).

If the original reference in ECHA or SCCS opinion is publication or book chapter – the original data source should be harvested. It is extremely important to harvest original papers – in ECHA many, many things are missing or not precisely reported.

#### II. Dermal absorption data entry tables:

Dermal absorption data harvesting will be carried out according to the 11 data entry tables, designed after pilot studies, and provided in the form of excel worksheets for each harvester.

Controlled vocabulary is provided in the form of drop-down pick lists (Table: Lists in excel file), which should be used during the data harvesting, and – in majority of cases – should not be modified by the harvesters without the prior consultation with ALTAMIRA (non-editable lists are marked in red). There are, however, several lists that may be extended *ad hoc* – these include, for e.g. units or strains, and are marked in green.

1



The detailed guidelines on how the data should be entered into particular tables are provided in the ANNEX 1: Dermal absorption data entry tables. Several general suggestions are listed below:

- Please do not try to fill-in each "cell" in the worksheets some of them can be left empty (while others will be always filled-in):
  - NULL (please refer to the ANNEX 1) attributes: can be left empty
  - NOT NULL (please refer to the ANNEX 1) attributes: cannot be left empty
- Please do not calculate any means just report the exact values from the investigateted studies (even if provided as an interval (range) – this is also a numerical type of data)
- Please do not make any units conversions add the units to the drop-down lists if necessary (lists with units are editable)

2



# ANNEX 1: Dermal absorption data entry tables

| Table 1: Chemistry (Attributes: 7)<br>All provided by ALTAMIRA |                            |                                          |                                     |  |  |
|----------------------------------------------------------------|----------------------------|------------------------------------------|-------------------------------------|--|--|
| Attribute                                                      | Data Type<br>NULL/NOT NULL | Description                              | Examples                            |  |  |
| Chemistry_Row#                                                 | Integer<br>NOT NULL        | Provided by ALTAMIRA                     | 13                                  |  |  |
| COSMOS ID                                                      | Formatted text<br>NOT NULL | Provided by ALTAMIRA                     | CMS-5507                            |  |  |
| CAS                                                            | Number<br>NOT NULL         | Provided by ALTAMIRA                     | 5064-31-3                           |  |  |
| INCI NAME                                                      | Text<br>NULL               | Provided by ALTAMIRA                     | TRISODIUM NTA                       |  |  |
| Other NAME                                                     | Text<br>NOT NULL           | Provided by ALTAMIRA                     | trisodium 2,2',2"-nitrilotriacetate |  |  |
| Data Entry Institution & Name                                  | Formatted text<br>NOT NULL | Provided by ALTAMIRA                     | CMBE-BAS, PA                        |  |  |
| Links/Comments                                                 | Free text<br>NULL          | Provided by ALTAMIRA<br>(where relevant) | LINK TO ECHA                        |  |  |



| Table 2: StudyINFO (Attributes: 8) |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |
|------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Attribute                          | Data Type<br>NULL/NOT NULL | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Examples                         |
| StudyInfo_Row#                     | Integer<br>NOT NULL        | Please number the rows consecutively (separately for each Table)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                |
| StudyID                            | Formatted text<br>NOT NULL | <ul> <li>Please assign using the format: YourInitials-Number (start with 1 and number consecutively)</li> <li>There will be multiple StudyIDs if Study_Substance, Test_Animals or Test_Skin conditions vary (e.g. occluded/unoccluded; differrent species; different pre-treatment of animals; different membrane), even if the experiment is described in one original publication or retrieved in one ECHA hit</li> <li>If only Test_DoseGroup conditions vary (e.g. dose level, vehicle, concentration of applied formulation, pH) and Study_Substance, Test_Animals, Test_Skin conditions are the same – one StudyID and multiple (2 or more) DoseGroupIDs should be assigned – please refer to Table 8</li> </ul> | AMS-1                            |
| COSMOS ID                          | Formatted text<br>NOT NULL | Please use COSMOS ID provided by ALTAMIRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CMS-1371                         |
| StudyType                          | Formatted text<br>NOT NULL | <ul> <li>Please pick from non-editable drop-down list</li> <li>If the study type is different than in the list – please do not harvest</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |
| StudyDescription                   | Text<br>NULL               | <ul> <li>Please report the description as provided in the harvested database</li> <li>If not provided – please leave empty</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Exp Key Dermal<br>absorption.001 |
| GLP_Compliance                     | Formatted text<br>NULL     | <ul> <li>Please pick from non-editable drop-down list</li> <li>If not provided – please leave empty</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |
| ECHA Klimish Score                 | Formatted text<br>NULL     | <ul> <li>Relevant only for ECHA resources</li> <li>Please report as provided in ECHA using the format from example</li> <li>Please leave empty for other harvested resources</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 (reliable with restrictions)   |
| StudyInformation_Comment           | Free text<br>NULL          | <ul> <li>Please insert any other important information</li> <li>Please do not repeat information</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |



| able 3: StudyREF (Attributes: 13)      |                            |                                                                                                                                                                                            |                                                                                                                                                          |  |  |
|----------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Attribute                              | Data Type<br>NULL/NOT NULL | Description                                                                                                                                                                                | Examples                                                                                                                                                 |  |  |
| StudyReference_Row#                    | Integer<br>NOT NULL        | Please number the rows consecutively (separately for each Table)                                                                                                                           | 1                                                                                                                                                        |  |  |
| StudyID                                | Formatted text<br>NOT NULL | Please use assigned StudyID (Table 2)                                                                                                                                                      | AMS-1                                                                                                                                                    |  |  |
| HarvestedStudySource_Type              | Formatted text<br>NOT NULL | Please pick from non-editable drop-down list                                                                                                                                               |                                                                                                                                                          |  |  |
| HarvestedStudySource_DatabaseN<br>ame  | Formatted text<br>NULL     | <ul> <li>Please pick from non-editable drop-down list</li> <li>Please leave empty if not relevant (e.g. if<br/>HarvestedStudySource_Type is Primary literature<br/>publication)</li> </ul> |                                                                                                                                                          |  |  |
| OriginalReference_Type                 | Formatted text<br>NULL     | <ul> <li>Please pick from non-editable drop-down list</li> <li>Please leave empty if not relevant</li> </ul>                                                                               |                                                                                                                                                          |  |  |
| OriginalReference_ Title               | Formatted text             | <ul> <li>Please use the formats from example</li> <li>If not provided or not relevant : please leave empty</li> </ul>                                                                      | The human stratum corneum layer: An<br>effective barrier against dermal uptake<br>of different forms of topically applied<br>micronised titanium dioxide |  |  |
| OriginalReference_JournalName          | NULL                       |                                                                                                                                                                                            | Skin Pharmacol Appl Skin Physiol                                                                                                                         |  |  |
| OriginalReference_<br>1stAuthorName    |                            |                                                                                                                                                                                            | Pflücker F<br>WHO                                                                                                                                        |  |  |
| OriginalReference_Volume(Issue)        |                            |                                                                                                                                                                                            | 14(1)                                                                                                                                                    |  |  |
| OriginalReference_ Page-Page           | Number<br>NULL             | <ul> <li>Please use the formats from example</li> <li>If not provided or not relevant: please leave empty</li> </ul>                                                                       | 92-97                                                                                                                                                    |  |  |
| OriginalReference_Year                 |                            |                                                                                                                                                                                            | 2001                                                                                                                                                     |  |  |
| OriginalReference_OtherInformati<br>on | Text<br>NULL               | <ul> <li>Please insert all other details that might be important for<br/>tracking the original data source, e.g. Document number,<br/>Report date, etc.</li> </ul>                         | Study Nr. 02073979/02073989<br>Report date: 2000-08-13                                                                                                   |  |  |
| StudyReference_Comment                 | Free text<br>NULL          | <ul> <li>Please insert any other important information</li> <li>Please do not repeat information</li> </ul>                                                                                |                                                                                                                                                          |  |  |



| Table 4: StudySubstance (Attribut |                            |                                                                                                                                                                                                                                                                                            |                                  |
|-----------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Attribute                         | Data Type<br>NULL/NOT NULL | Description                                                                                                                                                                                                                                                                                | Examples                         |
| StudySubstance_Row#               | Integer<br>NOT NULL        | Please number the rows consecutively (separately for each Table)                                                                                                                                                                                                                           | 1                                |
| StudyID                           | Formatted text<br>NOT NULL | Please use assigned StudyID (Table 2)                                                                                                                                                                                                                                                      | AMS-1                            |
| TestSubstance_Name                | Text<br>NOT NULL           | Please repord as provided in the harvested source                                                                                                                                                                                                                                          | Zinc Pyrithione                  |
| TestSubstance_TestedForm          | Formatted text<br>NOT NULL | <ul> <li>Please pick from non-editable drop-down list</li> <li>Please consult ALTAMIRA if you need to add vocabulary to the list</li> </ul>                                                                                                                                                | Parent-Neutral-<br>Radiolabelled |
| MetaboliteID                      | Formatted text<br>NULL     | <ul> <li>If necessary, please assign using the format: YourInitials-MB-Number</li> <li>Please start with 1 and number consecutively</li> <li>There might be multiple MetaboliteID(s) for one StudyID</li> <li>If information on metabolites is not provided: please leave empty</li> </ul> | AMS-MB-1                         |
| SpecificActivity_Value            | Number<br>NULL             | <ul> <li>Relevant only when radiolabelling was used</li> <li>Please leave empty if information is not provided or not relevant</li> </ul>                                                                                                                                                  | 19.19                            |
| SpecificActivity_Unit             | Formatted text<br>NULL     | <ul> <li>Relevant only when radiolabelling was used</li> <li>Please pick from the editable drop-down list</li> <li>Please feel free to add new unit(s) to the list if necessary</li> <li>Please leave empty if information is not provided or not relevant</li> </ul>                      | mCi/mmol                         |
| StudySubstance_Comment            | Free text<br>NULL          | <ul> <li>Please insert any other important information</li> <li>Please do not repeat information</li> </ul>                                                                                                                                                                                | No radiolabelling                |



| Attribute                                                                                                    | Data Type<br>NULL/NOT NULL | Description                                                                                                 | Example                   |
|--------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------|
| Metabolites_Row#                                                                                             | Integer<br>NOT NULL        | Please number the rows consecutively (separately for each Table)                                            | 1                         |
| StudyID                                                                                                      | Formatted text<br>NOT NULL | Please use assigned StudyID (Table 2)                                                                       | AMS-6                     |
| MetaboliteID                                                                                                 | Formatted text<br>NOT NULL | Please use assigned MetaboliteID (Table 3)                                                                  | AMS-MB-1                  |
| Metabolite_Name                                                                                              |                            |                                                                                                             | 2,2'-<br>pyridyldisulfide |
| Metabolite_SMILES<br>Metabolic_PathwayStep_Precursor_Name<br>Metabolic_PathwayStep_MetabolicPathway_<br>Name |                            |                                                                                                             |                           |
| Metabolic_PathwayStep_Biotransformation_P<br>hase                                                            | Text<br>NULL               | Please leave empty if information is not provided                                                           |                           |
| Metabolic_PathwayStep_ReactionType<br>Metabolic_PathwayStep_Enzyme_Name                                      |                            |                                                                                                             |                           |
| MetabolicPathway_Description<br>MetabolicPathway_Species                                                     |                            |                                                                                                             |                           |
| MetabolicPathway_OrganTissue                                                                                 |                            |                                                                                                             |                           |
| Metabolites_Comment                                                                                          | Free text<br>NULL          | <ul> <li>Please insert any other important information</li> <li>Please do not repeat information</li> </ul> |                           |



| Table 6: Test_Animal (/ | Table 6: Test_Animal (Attributes: 10) |                                                                                                                                                                                                  |                                                     |  |  |
|-------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--|--|
| Attribute               | Data Type<br>NULL/NOT NULL            | Description                                                                                                                                                                                      | Example                                             |  |  |
| TestAnimal_Row#         | Integer<br>NOT NULL                   | Please number the rows consecutively (separately for each Table)                                                                                                                                 | 1                                                   |  |  |
| StudyID                 | Formatted text<br>NOT NULL            | Please use assigned StudyID (Table 2)                                                                                                                                                            | AMS-1                                               |  |  |
| Species                 | Formatted text<br>NOT NULL            | <ul> <li>Please pick from non-editable drop-down list</li> <li>If the species is different than in the list – please do not harvest</li> </ul>                                                   |                                                     |  |  |
| Strain                  | Formatted text<br>NULL                | <ul> <li>Please pick from the editable drop-down list</li> <li>Please feel free to add new strain to the list if necessary</li> <li>Please leave empty if information is not provided</li> </ul> |                                                     |  |  |
| Sex                     | Formatted text<br>NULL                | <ul> <li>Please pick from non-editable drop-down list</li> <li>Please leave empty if information is not provided</li> </ul>                                                                      |                                                     |  |  |
| Initial Age             |                                       |                                                                                                                                                                                                  | 12-14 weeks                                         |  |  |
| Initial Weight          | Taut                                  | <ul> <li>Discourse report using the format from evenues</li> </ul>                                                                                                                               | 100-150 g                                           |  |  |
| Supplier                | Text<br>NULL                          | <ul> <li>Please report using the format from examples</li> <li>Please leave empty if information is not provided</li> </ul>                                                                      | NHS Lothian, St. John's<br>Hospital, Livingston, UK |  |  |
| Number of animals       |                                       |                                                                                                                                                                                                  | 5 per group                                         |  |  |
| TestAnimal_Comment      | Free text<br>NULL                     | <ul> <li>Please insert any other important information</li> <li>Please do not repeat information</li> </ul>                                                                                      |                                                     |  |  |

| Table 7: Test_Skin (Attributes: 12) |                            |                                                                                                                                                                                                                                                                                                                                            |                |  |
|-------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|
| Attribute                           | Data Type<br>NULL/NOT NULL | Description                                                                                                                                                                                                                                                                                                                                | Example        |  |
| TestSkin_Row#                       | Integer<br>NOT NULL        | Please number the rows consecutively (separately for each Table)                                                                                                                                                                                                                                                                           | 1              |  |
| StudyID                             | Formatted text<br>NOT NULL | Please use assigned StudyID (Table 2)                                                                                                                                                                                                                                                                                                      | AMS-1          |  |
| SkinMembrane_Type                   | Formatted text<br>NULL     | <ul> <li>Relevant for both, in vivo and in vitro studies</li> <li>Please pick from non-editable drop-down list</li> <li>Please consult ALTAMIRA if you need to add vocabulary to the list</li> <li>Please leave empty if information is not provided</li> </ul>                                                                            |                |  |
| SkinMembrane_Thickness<br>_Value    | Number<br>NULL             | <ul> <li>Relevant for in vitro studies (skin thickness in vivo can be deducted from the information on the site of application)</li> <li>Please leave empty if information is not provided</li> </ul>                                                                                                                                      | 0.2<br>0.2-0.4 |  |
| SkinMembrane_Thickness<br>_Unit     | Formatted text<br>NULL     | <ul> <li>Relevant for in vitro studies</li> <li>Please pick from the editable drop-down list</li> <li>Please feel free to add new unit(s) to the list if necessary</li> <li>Please leave empty if information is not provided</li> </ul>                                                                                                   |                |  |
| SkinMembrane_DiskSize_<br>Value     | Number<br>NULL             | <ul> <li>Relevant for in vitro studies</li> <li>Please leave empty if information is not provided</li> </ul>                                                                                                                                                                                                                               | 0.2<br>0.2-0.4 |  |
| SkinMembrane_DiskSize_<br>Unit      | Formatted text<br>NULL     | <ul> <li>Relevant for in vitro studies</li> <li>Please pick from the editable drop-down list</li> <li>Please feel free to add new unit(s) to the list if necessary</li> <li>Please leave empty if information is not provided</li> <li>Relevant for in vitro studies and for overlead skip from in vitro studies if not enabled</li> </ul> |                |  |
| SkinMembrane_Storage                | Text<br>NULL               | <ul> <li>Relevant for in vitro studies and for excised skin from in vivo studies, if not analyzed immediately/fresh/frozen skin, etc.</li> <li>Please leave empty if information is not provided</li> </ul>                                                                                                                                | -20 degC       |  |

Table 7, continued



| Table 7: Test_Skin (Attributes: 12), CONTINUED |                            |                                                                                                                                                                                                                                                                 |                |  |  |
|------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|
| Attribute                                      | Data Type<br>NULL/NOT NULL | Description                                                                                                                                                                                                                                                     | Example        |  |  |
| Skin_Site                                      | Formatted text<br>NULL     | <ul> <li>Relevant for both, in vivo and in vitro studies</li> <li>Please pick from non-editable drop-down list</li> <li>Please consult ALTAMIRA if you need to add vocabulary to the list</li> <li>Please leave empty if information is not provided</li> </ul> |                |  |  |
| Site_Area_Value                                | Number<br>NULL             | <ul> <li>Relevant for in vivo studies</li> <li>Please leave empty if information is not provided</li> </ul>                                                                                                                                                     | 0.2<br>0.2-0.4 |  |  |
| Site_Area_Unit                                 | Formatted text<br>NULL     | <ul> <li>Relevant for in vivo studies</li> <li>Please pick from the editable drop-down list</li> <li>Please feel free to add new unit(s) to the list if necessary</li> <li>Please leave empty if information is not provided</li> </ul>                         |                |  |  |
| TestSkin_Comment                               | Free text<br>NULL          | <ul> <li>Please insert any other important information</li> <li>Please do not repeat information</li> </ul>                                                                                                                                                     |                |  |  |



| Table 8: Test_DoseGroup (Attributes: 19) |                            |                                                                                                                                                                                                                                                                                                                                                                                         |          |
|------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Attribute                                | Data Type<br>NULL/NOT NULL | Description                                                                                                                                                                                                                                                                                                                                                                             | Example  |
| TestDose_Row#                            | Integer<br>NOT NULL        | Please number the rows consecutively (separately for each Table)                                                                                                                                                                                                                                                                                                                        | 1        |
| StudyID                                  | Formatted text<br>NOT NULL | Please use assigned StudyID (Table 2)                                                                                                                                                                                                                                                                                                                                                   | AMS-1    |
| DoseGroupID                              | Formatted text<br>NOT NULL | <ul> <li>Please assign using the format: YourInitials-DG-Number</li> <li>Please start with 1 and number consecutively</li> <li>Please note that for one StudyID multiple DoseGroupIDs might be assigned! (please refer to Table 2 description)</li> </ul>                                                                                                                               | AMS-DG-1 |
| DoseDeliveryType                         | Formatted text<br>NULL     | <ul> <li>Please pick from non-editable drop-down list</li> <li>Please leave empty if information is not provided</li> </ul>                                                                                                                                                                                                                                                             |          |
| SolventVehicle                           | Formatted text<br>NULL     | <ul> <li>Please pick from editable drop-down list</li> <li>Please add vocabulary to the list if necessary</li> <li>Please leave empty if information is not provided</li> <li>If there is no vehicle (unchanged): please use Neat from the list. Please remenmber that in this case the concentration is 100 % and the volume applied is equal to the test substance applied</li> </ul> |          |
| SolubilityComments                       | Text<br>NULL               | Please leave empty if information is not provided                                                                                                                                                                                                                                                                                                                                       |          |
| ReceptorSolution                         | Text<br>NULL               | Please leave empty if information is not provided                                                                                                                                                                                                                                                                                                                                       | PBS      |
| AssayTechnique                           | Formatted text<br>NULL     | <ul> <li>Please pick from the editable drop-down list</li> <li>Please feel free to add new assay technique(s) to the list if necessary</li> <li>Please leave empty if information is not provided</li> </ul>                                                                                                                                                                            |          |

Table 8, continued

# 

| Table 8: Test_DoseGroup (Attributes: 19), CONTINUED |                            |                                                                                                                                                                                                                                                                                                                                                             |             |
|-----------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Attribute                                           | Data Type<br>NULL/NOT NULL | Description                                                                                                                                                                                                                                                                                                                                                 | Example     |
| DoseVolume                                          | Text<br>NULL               | <ul> <li>Please report dose volume (only in VOLUME UNITS) – if provided</li> <li>If applied dose is reported in other units (eg. volume/area) – please report<br/>it in the attributes DoseApplication_Solution(Formulation)_Value and<br/>DoseApplication_Solution(Formulation)_Unit</li> <li>Please leave empty if information is not provided</li> </ul> | 6.4 micro-l |
| DoseConcentration_Value                             | Number<br>NULL             | <ul> <li>Please provide the concentration of applied formulation/solution – if provided</li> <li>For Neat (no vehicle) – the concentration is 100%</li> <li>Please leave empty if information is not provided</li> </ul>                                                                                                                                    | 67          |
| DoseConcentration_Unit                              | Formatted text<br>NULL     | <ul> <li>Please pick from the editable drop-down list</li> <li>Please feel free to add new CONCENTRATION unit(s) to the list if necessary<br/>(do not add mass or volume/area!)</li> <li>Please leave empty if information is not provided</li> </ul>                                                                                                       | %           |
| DoseApplication_Solution(Formulati<br>on)_Value     | Number<br>NULL             | <ul> <li>Please report the amount of applied SOLUTION (FORMULATION) reported<br/>in units other than VOLUME units</li> <li>Here mass/volume per area values can be reported – if provided</li> <li>Please leave empty if information is not provided</li> </ul>                                                                                             | 14          |
| DoseApplication_Solution(Formulati<br>on)_Unit      | Formatted text<br>NULL     | <ul> <li>Please pick from the editable drop-down list</li> <li>Please feel free to add new unit(s) to the list if necessary (mass or volume/area can be added)</li> <li>Please leave empty if information is not provided</li> </ul>                                                                                                                        | mg/cm2      |
| DoseApplication_TestSubstance_Val<br>ue             | Number<br>NULL             | <ul> <li>Please report the amount of applied TEST SUBSTANCE if provided</li> <li>It can be reported as mass (volume)/area, mass (volume)/animal/day (for repeated dose), only as mass, etc.</li> <li>Please leave empty if information is not provided</li> </ul>                                                                                           | 14          |

Table 8, continued



| C | 20  | nnc |
|---|-----|-----|
|   | DIV | 105 |

| Table 8: Test_DoseGroup (Attributes: 19), CONTINUED |                            |                                                                                                                                                                                                                                                                                   |                      |  |
|-----------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|
| Attribute                                           | Data Type<br>NULL/NOT NULL | Description                                                                                                                                                                                                                                                                       | Example              |  |
| DoseApplication_TestSubstance_Un<br>it              | Formatted text<br>NULL     | <ul> <li>Please pick from the editable drop-down list</li> <li>Please feel free to add new unit(s) to the list if necessary (mass or volume/area can be added)</li> <li>Please leave empty if information is not provided</li> </ul>                                              | mg/cm2               |  |
| ScoringTechnique                                    | Formatted text<br>NULL     | <ul> <li>Usually: Liquid Scintillation Counting (if radiolabelled)</li> <li>Please pick from the editable drop-down list</li> <li>Please feel free to add new scoring technique(s) to the list if necessary</li> <li>Please leave empty if information is not provided</li> </ul> |                      |  |
| Exposure_Duration                                   | Formatted text<br>NULL     | <ul> <li>Report following the format from example</li> <li>Please leave empty if information is not provided</li> </ul>                                                                                                                                                           | 2 hours<br>2-4 hours |  |
| Length_of_Study                                     | Formatted text<br>NULL     | <ul> <li>Report following the format from example</li> <li>Please leave empty if information is not provided</li> </ul>                                                                                                                                                           | 2 hours<br>2-4 hours |  |
| TestConditions_Comment                              | Free text<br>NULL          | <ul> <li>Please insert any other important information</li> <li>Please do not repeat information</li> </ul>                                                                                                                                                                       |                      |  |



| Table 9: Test_Diffusion (Attributes: 15) |                            |                                                                                                                                                                                                                                                                                                     |          |  |
|------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|
| Attribute                                | Data Type<br>NULL/NOT NULL | Description                                                                                                                                                                                                                                                                                         | Example  |  |
| TestDiff_Row#                            | Integer<br>NOT NULL        | Please number the rows consecutively (separately for each Table)                                                                                                                                                                                                                                    | 1        |  |
| StudyID                                  | Formatted text<br>NOT NULL | Please use assigned StudyID (Table 2)                                                                                                                                                                                                                                                               | AMS-1    |  |
| DoseGroupID                              | Formatted text<br>NOT NULL | Please use assigned DoseGroupID (Table 8)                                                                                                                                                                                                                                                           | AMS-DG-1 |  |
| Diffusion_Cell_Type                      | Formatted text<br>NULL     | <ul> <li>Please pick from non-editable drop-down list</li> <li>Please leave empty if information is not provided</li> </ul>                                                                                                                                                                         |          |  |
| Diffusion_Cell_DosedArea_V<br>alue       | Number<br>NULL             | <ul> <li>Relevant for in vitro studies (in vivo: Table: Test_Skin, Attribute:<br/>Site_Area_Unit)</li> <li>Please leave empty if information is not provided</li> </ul>                                                                                                                             | 0.65     |  |
| Diffusion_Cell_DosedArea_U<br>nit        | Formatted text<br>NULL     | <ul> <li>Relevant for in vitro studies (in vivo: Table: Test_Skin, Attribute:<br/>Site_Area_Unit)</li> <li>Please pick from the editable drop-down list</li> <li>Please feel free to add new unit(s) to the list if necessary</li> <li>Please leave empty if information is not provided</li> </ul> |          |  |
| Diffusion_Cell_ApertureSize_<br>Value    | Number<br>NULL             | <ul> <li>Relevant for in vitro studies</li> <li>Please leave empty if information is not provided</li> </ul>                                                                                                                                                                                        | 0.65     |  |
| Diffusion_Cell_ApertureSize_<br>Unit     | Formatted text<br>NULL     | <ul> <li>Relevant for in vitro studies</li> <li>Please pick from the editable drop-down list</li> <li>Please feel free to add new unit(s) to the list if necessary</li> <li>Please leave empty if information is not provided</li> </ul>                                                            |          |  |

Table 9, continued



| Table 9: Test_Diffusion (Attributes: 15), CONTINUED                      |                            |                                                                                                                                                                                                   |                          |  |
|--------------------------------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--|
| Attribute                                                                | Data Type<br>NULL/NOT NULL | Description                                                                                                                                                                                       | Example                  |  |
| Equilibration_Bath_Temp<br>erature<br>Equilibration_Skin_Temp<br>erature | Number<br>NULL             | Please leave empty if information is not provided                                                                                                                                                 | 37.0 +/- 0.5<br>32 +/- 1 |  |
| Equilibration_Temperatur<br>eUnit                                        | Formatted text<br>NULL     | <ul> <li>Please pick from the editable drop-down list</li> <li>Please feel free to add new unit(s) to the list if necessary</li> <li>Please leave empty if information is not provided</li> </ul> |                          |  |
| Equilibration_FlowRate_V<br>alue                                         | Number<br>NULL             | <ul> <li>Relevant mostly for flow-through cells (in vitro) and receptor fluid flow rate (in vivo)</li> <li>Please leave empty if information is not provided</li> </ul>                           | 10                       |  |
| Equilibration_FlowRate_<br>Unit                                          | Formatted text<br>NULL     | <ul> <li>Please pick from the editable drop-down list</li> <li>Please feel free to add new unit(s) to the list if necessary</li> <li>Please leave empty if information is not provided</li> </ul> |                          |  |
| Equilibration_Duration                                                   | Formatted text<br>NULL     | <ul> <li>Please report using the format from example</li> <li>Please leave empty if information is not provided</li> </ul>                                                                        | 2 hours                  |  |
| Diffusion_Comment                                                        | Free text<br>NULL          | <ul><li>Please insert any other important information</li><li>Please do not repeat information</li></ul>                                                                                          |                          |  |



| Table 10: TestResults (Attributes: 23 | )                          |                                                                                                                                                                                                   |          |
|---------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Attribute                             | Data Type<br>NULL/NOT NULL | Description                                                                                                                                                                                       | Example  |
| TestRes_Row#                          | Integer<br>NOT NULL        | Please number the rows consecutively (separately for each Table)                                                                                                                                  | 1        |
| StudyID                               | Formatted text<br>NOT NULL | Please use assigned StudyID (Table 2)                                                                                                                                                             | AMS-1    |
| DoseGroupID                           | Formatted text<br>NOT NULL | Please use assigned DoseGroupID (Table 8)                                                                                                                                                         | AMS-DG-1 |
| LagTime_Value                         | Number<br>NULL             | Please leave empty if information is not provided                                                                                                                                                 |          |
| LagTime_Unit                          | Formatted text<br>NULL     | <ul> <li>Please pick from the editable drop-down list</li> <li>Please feel free to add new unit(s) to the list if necessary</li> <li>Please leave empty if information is not provided</li> </ul> |          |
| Flux_Value                            | Number<br>NULL             | Please leave empty if information is not provided                                                                                                                                                 |          |
| Flux_Unit                             | Formatted text<br>NULL     | <ul> <li>Please pick from the editable drop-down list</li> <li>Please feel free to add new unit(s) to the list if necessary</li> <li>Please leave empty if information is not provided</li> </ul> |          |
| Flux_Maximal_Value                    | Number<br>NULL             | Please leave empty if information is not provided                                                                                                                                                 |          |
| Flux_Maximal_Unit                     | Formatted text<br>NULL     | <ul> <li>Please pick from the editable drop-down list</li> <li>Please feel free to add new unit(s) to the list if necessary</li> <li>Please leave empty if information is not provided</li> </ul> |          |
| Flux_Npoints                          | Number<br>NULL             | Please leave empty if information is not provided                                                                                                                                                 |          |
| TotalPercentAbsorbed                  | Number<br>NULL             | Please leave empty if information is not provided                                                                                                                                                 |          |

Table 10, continued



| Table 10: TestResults (Attributes: 23   | , CONTINUED                |                                                                                                                                                                                                   |                             |
|-----------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Attribute                               | Data Type<br>NULL/NOT NULL | Description                                                                                                                                                                                       | Example                     |
| TotalAmountAbsorbed_Value               | Number<br>NULL             | Please leave empty if information is not provided                                                                                                                                                 |                             |
| TotalAmountAbsorbed_Unit                | Formatted text<br>NULL     | <ul> <li>Please pick from the editable drop-down list</li> <li>Please feel free to add new unit(s) to the list if necessary</li> <li>Please leave empty if information is not provided</li> </ul> |                             |
| AbsorptionPenetration_Score             | Number<br>NULL             | Please leave empty if information is not provided                                                                                                                                                 |                             |
| AbsorbtionPenetration_Comments          | Free text<br>NULL          | <ul> <li>Please insert any other important information</li> <li>Please do not repeat information</li> </ul>                                                                                       |                             |
| kp_Value                                | Number<br>NULL             | Please leave empty if information is not provided                                                                                                                                                 |                             |
| kp_Unit                                 | Formatted text<br>NULL     | <ul> <li>Please pick from the editable drop-down list</li> <li>Please feel free to add new unit(s) to the list if necessary</li> <li>Please leave empty if information is not provided</li> </ul> |                             |
| Histology_Status                        | Text<br>NULL               | <ul> <li>This attribute informs wheather histology studies were conducted</li> <li>Please leave empty if information is not provided</li> </ul>                                                   |                             |
| Microautoradiography_Status             | Text<br>NULL               | Please leave empty if information is not provided                                                                                                                                                 |                             |
| TimePoints_Information                  | Formatted text<br>NOT NULL | <ul> <li>This attribute flags the studies with timepoints data available</li> <li>Please pick from non-editable drop-down list</li> </ul>                                                         | provided                    |
| Distribution_OtherMedia_Informati<br>on | Text<br>NULL               | <ul> <li>Please specify if the information on test substance distribution in other media or organs is provided</li> <li>Please leave empty if information is not provided</li> </ul>              | Blood;<br>Carcass;<br>Liver |

Table 10, continued



| Table 10: TestResults (Attributes: 23 | ), CONTINUED               |                                                                                                                                                        |                                                           |
|---------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Attribute                             | Data Type<br>NULL/NOT NULL | Description                                                                                                                                            | Example                                                   |
| Elimination_Information               | Text<br>NULL               | <ul> <li>Please specify if information on test substance elimination is provided</li> <li>Please leave empty if information is not provided</li> </ul> | Exhaled<br>air; Urine;<br>Faeces;<br>Expired<br>volatiles |
| Results_Comment                       | Free text<br>NULL          | <ul><li>Please insert any other important information</li><li>Please do not repeat information</li></ul>                                               |                                                           |



| Table 11: TestResults_Recovery (Attribute | s: 16)                     |                                                                                                                                                                                                                                                                                                               |                   |
|-------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Attribute                                 | Data Type<br>NULL/NOT NULL | Description                                                                                                                                                                                                                                                                                                   | Example           |
| TestRes_Rec_Row#                          | Integer<br>NOT NULL        | Please number the rows consecutively (separately for each Table)                                                                                                                                                                                                                                              | 1                 |
| StudyID                                   | Formatted text<br>NOT NULL | Please use assigned StudyID (Table 2)                                                                                                                                                                                                                                                                         | AMS-1             |
| DoseGroup_ID                              | Formatted text<br>NOT NULL | Please use assigned DoseGroupID (Table 8)                                                                                                                                                                                                                                                                     | AMS-DG-1          |
| TotalPercentRecovery                      | Number<br>NULL             | Please leave empty if information is not provided                                                                                                                                                                                                                                                             | 43                |
| TotalRecovery_Value                       | Number<br>NULL             | Please leave empty if information is not provided                                                                                                                                                                                                                                                             | 65.3              |
| TotalRecovery_Unit                        | Formatted text<br>NULL     | <ul> <li>Please pick from the editable drop-down list</li> <li>Please feel free to add new unit(s) to the list if necessary</li> <li>Please leave empty if information is not provided</li> </ul>                                                                                                             | micro-g/cm2       |
| Recovery_MeasureUnit                      | Formatted text<br>NULL     | <ul> <li>This unit refers to the following 8 numerical attributes (please report it here and do not repeat)</li> <li>Please pick from the editable drop-down list</li> <li>Please feel free to add new unit(s) to the list if necessary</li> <li>Please leave empty if information is not provided</li> </ul> | % of applied dose |
| Recovery_SurfaceWashUnabsorbed            |                            |                                                                                                                                                                                                                                                                                                               | 11.05             |
| Recovery_StratumCorneumTapeStripping      |                            |                                                                                                                                                                                                                                                                                                               | 2.76              |
| Recovery_Epidermis                        |                            | <ul> <li>Please leave empty if information is not provided</li> </ul>                                                                                                                                                                                                                                         |                   |
| Recovery_UpperDermis                      | Number                     | <ul> <li>Please report only value (these are attributes for numerical data)</li> </ul>                                                                                                                                                                                                                        |                   |
| Recovery_Epidermis&Dermis                 | NULL                       | <ul> <li>Please report the unit in the Recovery MeasureUnit attribute</li> </ul>                                                                                                                                                                                                                              |                   |
| Recovery_TotalSkin                        | -                          | incose report the unit in the neovery_incost conit attribute                                                                                                                                                                                                                                                  | 1.2               |
| Recovery_ReceptorFluid                    | -                          |                                                                                                                                                                                                                                                                                                               | 3.63              |
| Recovery_Material-On-Cell                 |                            |                                                                                                                                                                                                                                                                                                               | 0.08              |
| Recovery_Comment                          | Free text                  | <ul> <li>Please insert any other important information</li> </ul>                                                                                                                                                                                                                                             |                   |
| 1                                         | NULL                       | <ul> <li>Please do not repeat information</li> </ul>                                                                                                                                                                                                                                                          |                   |

# Annex 5: Dataset used for skin permeability classification analysis (chapter 5)

| CMS ID    | COSMOS DB PREFERRED NAME                 | # Studies with JMAX<br>data | JMAX RANGE (micro<br>g/cm2/h) | - MIN JMAX (micro-<br>g/cm2/h) | MAX JMAX (micro-<br>g/cm2/h) | MEAN JMAX (micro-<br>g/cm2/h) | Log MEAN (micro-<br>g/cm2/h) | SKIN PERMEABILITY<br>POTENTIAL<br>CATEGORY |
|-----------|------------------------------------------|-----------------------------|-------------------------------|--------------------------------|------------------------------|-------------------------------|------------------------------|--------------------------------------------|
| CMS-2331  | ALDOSTERONE                              | 1                           | 0                             | 0.00000793                     | 0.00000793                   | 0.00000793                    | -6.10                        | LOW                                        |
| CMS-2703  | CORTISONE                                | 1                           | 0                             | 0.000035                       | 0.0000035                    | 0.0000035                     | -5.46                        | LOW                                        |
| CMS-2367  | CORTICOSTERONE                           | 1                           | 0                             | 0.000036                       | 0.000036                     | 0.000036                      | -4.44                        | LOW                                        |
| CMS-18896 | CORTODOXONE                              | 1                           | 0                             | 0.000259                       | 0.000259                     | 0.000259                      | -3.59                        | LOW                                        |
| CMS-2292  | PROGESTERONE                             | 1                           | 0                             | 0.000943                       | 0.000943                     | 0.000943                      | -3.03                        | LOW                                        |
| CMS-7461  | PREGNENOLONE                             | 1                           | 0                             | 0.001623                       | 0.001623                     | 0.001623                      | -2.79                        | LOW                                        |
| CMS-7930  | ARBUTIN                                  | 6                           | 0.0016                        | 0.0009                         | 0.0025                       | 0.0018                        | -2.74                        | LOW                                        |
| CMS-8285  | 17ALPHA-HYDROXYPROGESTERONE              | 1                           | 0                             | 0.00198                        | 0.00198                      | 0.00198                       | -2.70                        | LOW                                        |
| CMS-33483 | CLIMBAZOLE                               | 1                           | 0                             | 0.004                          | 0.004                        | 0.004                         | -2.40                        | LOW                                        |
| CMS-3122  | MORPHINE                                 | 1                           | 0                             | 0.006                          | 0.006                        | 0.006                         | -2.22                        | LOW                                        |
| CMS-3386  | TERBINAFINE                              | 1                           | 0                             | 0.01                           | 0.01                         | 0.01                          | -2.00                        | LOW                                        |
| CMS-691   | GRISEOFULVIN                             | 2                           | 0.0051                        | 0.0104                         | 0.0155                       | 0.01295                       | -1.89                        | LOW                                        |
| CMS-143   | BENZO(A)PYRENE                           | 2                           | 0                             | 0.015                          | 0.015                        | 0.015                         | -1.82                        | LOW                                        |
| CMS-1315  | T-2 TOXIN                                | 6                           | 0.08182                       | 0.00038                        | 0.0822                       | 0.017428333                   | -1.76                        | LOW                                        |
| CMS-26935 | 2-NITRO-5-GLYCERYL METHANOLANILINE       | 1                           | 0                             | 0.0183                         | 0.0183                       | 0.0183                        | -1.74                        | LOW                                        |
| CMS-6532  | CLOTRIMAZOLE                             | 1                           | 0                             | 0.02                           | 0.02                         | 0.02                          | -1.70                        | LOW                                        |
| CMS-874   | PARATHION-METHYL                         | 2                           | 0.0316                        | 0.0105                         | 0.0421                       | 0.0263                        | -1.58                        | LOW                                        |
| CMS-2940  | HYDROMORPHONE                            | 1                           | 0                             | 0.032                          | 0.032                        | 0.032                         | -1.49                        | LOW                                        |
| CMS-4402  | LINOLEIC ACID                            | 1                           | 0                             | 0.036                          | 0.036                        | 0.036                         | -1.44                        | LOW                                        |
| CMS-72028 | TRANS-RETINYL ASCORBATE                  | 2                           | 0.0855                        | 0.0125                         | 0.098                        | 0.05525                       | -1.26                        | LOW                                        |
| CMS-3741  | PROCHLORAZ                               | 2                           | 0.038563                      | 0.041437                       | 0.08                         | 0.0607185                     | -1.22                        | LOW                                        |
| CMS-345   | CODEINE                                  | 1                           | 0                             | 0.09                           | 0.09                         | 0.09                          | -1.05                        | LOW                                        |
| CMS-8923  | ASCORBYL PALMITATE                       | 2                           | 0.0681                        | 0.071                          | 0.1391                       | 0.10505                       | -0.98                        | LOW                                        |
| CMS-729   | HYDROCORTISONE                           | 8                           | 0.189998                      | 0.000002                       | 0.19                         | 0.11287525                    | -0.95                        | LOW                                        |
| CMS-7046  | D&C BLUE NO. 4                           | 6                           | 0.124                         | 0.068                          | 0.192                        | 0.142166667                   | -0.85                        | LOW                                        |
| CMS-7741  | AMMONIUM PERFLUOROOCTANOATE              | 1                           | 0                             | 0.19                           | 0.19                         | 0.19                          | -0.72                        | LOW                                        |
| CMS-2865  | FENTANYL                                 | 1                           | 0                             | 0.26                           | 0.26                         | 0.26                          | -0.59                        | LOW                                        |
| CMS-1777  | DIBUTYL PHTHALATE                        | 2                           | 0.52                          | 0.07                           | 0.59                         | 0.33                          | -0.48                        | LOW                                        |
| CMS-72019 | 3-O-ISOVALERYL NALTREXONE                | 1                           | 0                             | 0.36125                        | 0.36125                      | 0.36125                       | -0.44                        | LOW                                        |
| CMS-1256  | VITAMIN A PALMITATE                      | 2                           | 0.238                         | 0.262                          | 0.5                          | 0.381                         | -0.42                        | LOW                                        |
| CMS-3355  | SUFENTANIL                               | 1                           | 0                             | 0.4                            | 0.4                          | 0.4                           | -0.40                        | LOW                                        |
| CMS-72003 | DIBUTYL SQUARATE                         | 1                           | 0                             | 0.4                            | 0.4                          | 0.4                           | -0.40                        | LOW                                        |
| CMS-72025 | 3-O-ISOPROPYLOXYCARBONYL NALTREXONE      | 1                           | 0                             | 0.5124                         | 0.5124                       | 0.5124                        | -0.29                        | LOW                                        |
| CMS-72026 | 3-O-PIVALYL NALTREXONE                   | 1                           | 0                             | 0.544                          | 0.544                        | 0.544                         | -0.26                        | LOW                                        |
| CMS-3049  | MEPERIDINE                               | 1                           | 0                             | 0.6                            | 0.6                          | 0.6                           | -0.22                        | LOW                                        |
| CMS-72031 | N.N-DIISOPROPYL NALTREXONE-3-O-CARBAMATE | 1                           | 0                             | 0.70668                        | 0.70668                      | 0.70668                       | -0.15                        | LOW                                        |

| CMS ID    | COSMOS DB PREFERRED NAME                | # Studies with JMAX<br>data | JMAX RANGE (micro<br>g/cm2/h) | MIN JMAX (micro-<br>g/cm2/h) | MAX JMAX (micro-<br>g/cm2/h) | MEAN JMAX (micro-<br>g/cm2/h) | Log MEAN (micro-<br>g/cm2/h) | SKIN PERMEABILITY<br>POTENTIAL<br>CATEGORY |
|-----------|-----------------------------------------|-----------------------------|-------------------------------|------------------------------|------------------------------|-------------------------------|------------------------------|--------------------------------------------|
| CMS-9533  | OCTYL SALICYLATE                        | 2                           | 0.100132                      | 0.700924                     | 0.801056                     | 0.75099                       | -0.12                        | MED                                        |
| CMS-72020 | 3-O-(2-ETHYLBUTYRYL) NALTREXONE         | 1                           | 0                             | 0.86483                      | 0.86483                      | 0.86483                       | -0.06                        | MED                                        |
| CMS-72021 | 3-O-ISOBUTYRYL NALTREXONE               | 1                           | 0                             | 0.92064                      | 0.92064                      | 0.92064                       | -0.04                        | MED                                        |
| CMS-72752 | N,N-DIETHYL NALTREXONE-3-O-CARBAMATE    | 1                           | 0                             | 0.9812                       | 0.9812                       | 0.9812                        | -0.01                        | MED                                        |
| CMS-620   | DI(2-ETHYLHEXYL) PHTHALATE              | 1                           | 0                             | 1.06                         | 1.06                         | 1.06                          | 0.03                         | MED                                        |
| CMS-922   | MONOCHLOROACETIC ACIDPROHIBITED         | 1                           | 0                             | 1.1                          | 1.1                          | 1.1                           | 0.04                         | MED                                        |
| CMS-17099 | NALTREXONE                              | 2                           | 0.21142                       | 1.04346                      | 1.25488                      | 1.14917                       | 0.06                         | MED                                        |
| CMS-72032 | N,N-DIMETHYL NALTREXONE-3-O-CARBAMATE   | 1                           | 0                             | 1.21128                      | 1.21128                      | 1.21128                       | 0.08                         | MED                                        |
| CMS-1776  | DIETHYL PHTHALATE                       | 1                           | 0                             | 1.27                         | 1.27                         | 1.27                          | 0.10                         | MED                                        |
| CMS-1517  | BROMOACETIC ACID                        | 1                           | 0                             | 1.4                          | 1.4                          | 1.4                           | 0.15                         | MED                                        |
| CMS-311   | CHLOROFORM                              | 1                           | 0                             | 1.6                          | 1.6                          | 1.6                           | 0.20                         | MED                                        |
| CMS-3937  | BROMOCHLOROACETIC ACID                  | 1                           | 0                             | 1.6                          | 1.6                          | 1.6                           | 0.20                         | MED                                        |
| CMS-72027 | 3-O-TERTIARYBUTYLOXYCARBONYL NALTREXONE | 1                           | 0                             | 1.64493                      | 1.64493                      | 1.64493                       | 0.22                         | MED                                        |
| CMS-72018 | PROPRANOLOL BENZOATE                    | 2                           | 0.1                           | 1.6                          | 1.7                          | 1.65                          | 0.22                         | MED                                        |
| CMS-466   | CHLORPYRIFOS                            | 1                           | 0                             | 1.7                          | 1.7                          | 1.7                           | 0.23                         | MED                                        |
| CMS-263   | CATECHOL                                | 2                           | 0.17                          | 1.71                         | 1.88                         | 1.795                         | 0.25                         | MED                                        |
| CMS-205   | BROMODICHLOROMETHANE                    | 1                           | 0                             | 1.8                          | 1.8                          | 1.8                           | 0.26                         | MED                                        |
| CMS-72005 | DIETHYL SQUARATE                        | 1                           | 0                             | 1.8                          | 1.8                          | 1.8                           | 0.26                         | MED                                        |
| CMS-431   | DICHLOROACETIC ACID                     | 1                           | 0                             | 1.9                          | 1.9                          | 1.9                           | 0.28                         | MED                                        |
| CMS-1398  | TCA                                     | 1                           | 0                             | 1.9                          | 1.9                          | 1.9                           | 0.28                         | MED                                        |
| CMS-304   | DIBROMOCHLOROMETHANE                    | 1                           | 0                             | 2                            | 2                            | 2                             | 0.30                         | MED                                        |
| CMS-1394  | BROMOFORM                               | 1                           | 0                             | 2.1                          | 2.1                          | 2.1                           | 0.32                         | MED                                        |
| CMS-72033 | PENTYL NALTREXONE-3-O-CARBAMATE         | 1                           | 0                             | 2.33748                      | 2.33748                      | 2.33748                       | 0.37                         | MED                                        |
| CMS-3511  | DIBROMOACETIC ACID                      | 1                           | 0                             | 2.6                          | 2.6                          | 2.6                           | 0.41                         | MED                                        |
| CMS-72029 | BUTYL NALTREXONE-3-O-CARBAMATE          | 1                           | 0                             | 3.5156                       | 3.5156                       | 3.5156                        | 0.55                         | MED                                        |
| CMS-2352  | DIMETHYL PHTHALATE                      | 1                           | 0                             | 3.95                         | 3.95                         | 3.95                          | 0.60                         | MED                                        |
| CMS-1046  | N-NITROSODIETHANOLAMINE                 | 1                           | 0                             | 4.1                          | 4.1                          | 4.1                           | 0.61                         | MED                                        |
| CMS-1091  | BENZOYL PEROXIDE                        | 1                           | 0                             | 5.1                          | 5.1                          | 5.1                           | 0.71                         | MED                                        |
| CMS-3147  | NICARDIPINE                             | 9                           | 11.56                         | 0.74                         | 12.3                         | 6.086666667                   | 0.78                         | MED                                        |
| CMS-72030 | ETHYL NALTREXONE-3-O-CARBAMATE          | 1                           | 0                             | 6.39836                      | 6.39836                      | 6.39836                       | 0.81                         | MED                                        |
| CMS-777   | ISOPHORONE                              | 2                           | 11.29                         | 0.91                         | 12.2                         | 6.555                         | 0.82                         | MED                                        |
| CMS-1163  | O-PHENYLPHENOL                          | 10                          | 11.69                         | 1.11                         | 12.8                         | 6.955                         | 0.84                         | MED                                        |
| CMS-72017 | PROPRANOLOL OLEATE                      | 2                           | 0.3                           | 7                            | 7.3                          | 7.15                          | 0.85                         | MED                                        |
| CMS-72034 | PROPYL NALTREXONE-3-O-CARBAMATE         | 1                           | 0                             | 7.412                        | 7.412                        | 7.412                         | 0.87                         | MED                                        |
| CMS-49099 | HEXYL NICOTINATE                        | 2                           | 8.62                          | 3.58                         | 12.2                         | 7.89                          | 0.90                         | MED                                        |
| CMS-4058  | 2,4-D, DIMETHYLAMINE SALT               | 2                           | 1.3                           | 7.9                          | 9.2                          | 8.55                          | 0.93                         | MED                                        |
| CMS-1706  | 1,1,1-TRICHLOROACETONE                  | 1                           | 0                             | 9.6                          | 9.6                          | 9.6                           | 0.98                         | MED                                        |
| CMS-31782 | DDT                                     | 1                           | 0                             | 10                           | 10                           | 10                            | 1.00                         | MED                                        |

| CMS ID    | COSMOS DB PREFERRED NAME                  | # Studies with JMAX<br>data | JMAX RANGE (micro<br>g/cm2/h) | MIN JMAX (micro-<br>g/cm2/h) | MAX JMAX (micro-<br>g/cm2/h) | MEAN JMAX (micro-<br>g/cm2/h) | Log MEAN (micro-<br>g/cm2/h) | SKIN PERMEABILITY<br>POTENTIAL<br>CATEGORY |
|-----------|-------------------------------------------|-----------------------------|-------------------------------|------------------------------|------------------------------|-------------------------------|------------------------------|--------------------------------------------|
| CMS-3963  | 4-TERT-BUTYLCATECHOL                      | 2                           | 4.28                          | 8.52                         | 12.8                         | 10.66                         | 1.03                         | HIGH                                       |
| CMS-61741 | BENZYL NICOTINATE                         | 2                           | 6.5                           | 13.9                         | 20.4                         | 17.15                         | 1.23                         | HIGH                                       |
| CMS-1597  | 1,1-DICHLOROPROPANONE                     | 1                           | 0                             | 17.2                         | 17.2                         | 17.2                          | 1.24                         | HIGH                                       |
| CMS-5235  | N,N-DIMETHYLETHYLAMINE                    | 3                           | 15                            | 11                           | 26                           | 17.66666667                   | 1.25                         | HIGH                                       |
| CMS-435   | P-DICHLOROBENZENE                         | 2                           | 21.6                          | 15.3                         | 36.9                         | 26.1                          | 1.42                         | HIGH                                       |
| CMS-1541  | DIETHYLENE GLYCOL MONOBUTYL ETHER         | 1                           | 0                             | 35                           | 35                           | 35                            | 1.54                         | HIGH                                       |
| CMS-4068  | DIACETONE ALCOHOL                         | 2                           | 19.3                          | 37.3                         | 56.6                         | 46.95                         | 1.67                         | HIGH                                       |
| CMS-3660  | HEPTANE                                   | 3                           | 91.2                          | 22.1                         | 113.3                        | 66.2                          | 1.82                         | HIGH                                       |
| CMS-4603  | PENTANE                                   | 3                           | 155.5                         | 13.5                         | 169                          | 69.03333333                   | 1.84                         | HIGH                                       |
| CMS-58536 | BUTYL NICOTINATE                          | 2                           | 16.9                          | 62.1                         | 79                           | 70.55                         | 1.85                         | HIGH                                       |
| CMS-934   | NAPHTHALENE                               | 2                           | 117.6                         | 25                           | 142.6                        | 83.8                          | 1.92                         | HIGH                                       |
| CMS-5106  | DIETHYLENE GLYCOL MONOBUTYL ETHER ACETATE | 2                           | 103                           | 59                           | 162                          | 110.5                         | 2.04                         | HIGH                                       |
| CMS-1908  | DIETHYLENE GLYCOL MONOETHYL ETHER         | 1                           | 0                             | 125                          | 125                          | 125                           | 2.10                         | HIGH                                       |
| CMS-1000  | 2-NITROPROPANE                            | 3                           | 219.1                         | 66.8                         | 285.9                        | 157.2333333                   | 2.20                         | HIGH                                       |
| CMS-167   | BIPHENYL                                  | 2                           | 199.2                         | 59.1                         | 258.3                        | 158.7                         | 2.20                         | HIGH                                       |
| CMS-9     | ACETONITRILE                              | 3                           | 309.6                         | 66                           | 375.6                        | 194.8666667                   | 2.29                         | HIGH                                       |
| CMS-950   | NICOTINE                                  | 1                           | 0                             | 206                          | 206                          | 206                           | 2.31                         | HIGH                                       |
| CMS-4141  | DIETHYLENE GLYCOL MONOMETHYL ETHER        | 1                           | 0                             | 206                          | 206                          | 206                           | 2.31                         | HIGH                                       |
| CMS-10507 | METHYL NICOTINATE                         | 2                           | 139                           | 170                          | 309                          | 239.5                         | 2.38                         | HIGH                                       |
| CMS-11753 | ETHYLENE GLYCOL ISOPROPYL ETHER           | 2                           | 6                             | 240                          | 246                          | 243                           | 2.39                         | HIGH                                       |
| CMS-845   | 4-METHOXYPHENOL                           | 2                           | 60                            | 223                          | 283                          | 253                           | 2.40                         | HIGH                                       |
| CMS-158   | BENZYL CHLORIDE                           | 2                           | 290.7                         | 156.8                        | 447.5                        | 302.15                        | 2.48                         | HIGH                                       |
| CMS-2413  | METHYL P-HYDROXYBENZOATE                  | 16                          | 950.93                        | 76.51                        | 1027.44                      | 319.944375                    | 2.51                         | HIGH                                       |
| CMS-5434  | ETHYLENE GLYCOL MONOPROPYL ETHER          | 2                           | 171                           | 394                          | 565                          | 479.5                         | 2.68                         | HIGH                                       |
| CMS-999   | 1-NITROPROPANE                            | 3                           | 1040.1                        | 178.9                        | 1219                         | 525.9666667                   | 2.72                         | HIGH                                       |
| CMS-1765  | METHYL ACETATE                            | 3                           | 977                           | 250                          | 1227                         | 577.6                         | 2.76                         | HIGH                                       |
| CMS-455   | 1,2-DICHLOROPROPANE                       | 3                           | 177                           | 501                          | 678                          | 614.9333333                   | 2.79                         | HIGH                                       |
| CMS-1847  | 1,4-XYLENE                                | 2                           | 1016.6                        | 192.4                        | 1209                         | 700.7                         | 2.85                         | HIGH                                       |
| CMS-1895  | ETHYLENE GLYCOL MONOETHYL ETHER ACETATE   | 1                           | 0                             | 800                          | 800                          | 800                           | 2.90                         | HIGH                                       |
| CMS-302   | CHLOROBENZENE                             | 3                           | 387.4                         | 614.6                        | 1002                         | 824.4666667                   | 2.92                         | HIGH                                       |
| CMS-4428  | ETHYLENE GLYCOL MONOMETHYL ETHER ACETATE  | 2                           | 71                            | 831                          | 902                          | 866.5                         | 2.94                         | HIGH                                       |
| CMS-595   | ETHYL ALCOHOL                             | 4                           | 1269                          | 584                          | 1853                         | 1037.25                       | 3.02                         | HIGH                                       |
| CMS-1459  | VINYLIDENE CHLORIDE                       | 3                           | 2028.3                        | 144.7                        | 2173                         | 1039.466667                   | 3.02                         | HIGH                                       |
| CMS-443   | ETHYLENE DICHLORIDE                       | 3                           | 1325.4                        | 329.6                        | 1655                         | 1060.533333                   | 3.03                         | HIGH                                       |
| CMS-509   | N,N-DIMETHYLACETAMIDE                     | 3                           | 1505                          | 1069                         | 2574                         | 1914.333333                   | 3.28                         | HIGH                                       |
| CMS-3690  | ETHYLENE GLYCOL MONOMETHYL ETHER          | 1                           | 0                             | 2820                         | 2820                         | 2820                          | 3.45                         | HIGH                                       |
| CMS-527   | N,N-DIMETHYLFORMAMIDE                     | 1                           | 0                             | 8400                         | 8400                         | 8400                          | 3.92                         | HIGH                                       |
| CMS-1346  | TETRAHYDROFURAN                           | 2                           | 13900                         | 6100                         | 20000                        | 13050                         | 4.12                         | HIGH                                       |

Annex 6: The values of calculated descriptors (Corina Symphony, Molecular Networks GmbH, Nüremberg, Germany) and 3 Principal Component's scores (JMP, SAS Inc.) used for the skin permeability classification analysis (chapter 5)

|           |                                          | Skin        |       |       | [     | 1        |      |      |        |        |         |       |             |        | 1       |       | [     | 1        |      |       |
|-----------|------------------------------------------|-------------|-------|-------|-------|----------|------|------|--------|--------|---------|-------|-------------|--------|---------|-------|-------|----------|------|-------|
| CMS ID    | NAME                                     | pereability | PC 1  | PC 2  | PC 3  | BondsRot | HAcc | HDon | Stereo | Weight | Complex | Ring  | McGowa<br>n | TPSA   | Polariz | LogS  | XlogP | Diameter | Rgyr | Span  |
|           |                                          | category    |       |       |       |          |      |      |        |        |         | 14115 |             |        |         |       |       |          |      |       |
| CMS-2331  | ALDOSTERONE                              | LOW         | 2.33  | 3.06  | -0.69 | 3        | 5    | 2    | 7      | 360.44 | 681.89  | 1.35  | 275.46      | 91.67  | 37.55   | -1.74 | 0.00  | 12.26    | 3.58 | 6.55  |
| CMS-2703  | CORTISONE                                | LOW         | 2.42  | 2.90  | -0.53 | 2        | 5    | 2    | 6      | 360.44 | 723.91  | 1.35  | 275.46      | 91.67  | 37.55   | -1.68 | -0.09 | 13.69    | 3.82 | 7.37  |
| CMS-2367  | CORTICOSTERONE                           | LOW         | 2.16  | 2.40  | -1.13 | 2        | 4    | 2    | 7      | 346.46 | 637.81  | 1.35  | 273.89      | 74.60  | 37.47   | -2.47 | 1.21  | 12.32    | 3.61 | 6.60  |
| CMS-18896 | CORTODOXONE                              | LOW         | 2.27  | 1.98  | -1.04 | 2        | 4    | 2    | 6      | 346.46 | 652.28  | 1.35  | 273.89      | 74.60  | 37.47   | -2.96 | 1.93  | 12.45    | 3.72 | 6.86  |
| CMS-2292  | PROGESTERONE                             | LOW         | 1.36  | -0.04 | -2.54 | 1        | 2    | 0    | 6      | 314.46 | 588.65  | 1.35  | 262.15      | 34.14  | 36.19   | -4.37 | 3.89  | 11.36    | 3.52 | 5.99  |
| CMS-7461  | PREGNENOLONE                             | LOW         | 1.63  | 0.55  | -2.30 | 1        | 2    | 1    | 7      | 316.48 | 550.05  | 1.35  | 266.45      | 37.30  | 36.74   | -4.11 | 3.93  | 11.93    | 3.51 | 6.27  |
| CMS-7930  | ARBUTIN                                  | LOW         | 1.42  | 4.55  | 1.67  | 3        | 7    | 5    | 5      | 272.25 | 279.25  | 1.00  | 186.41      | 119.61 | 25.13   | -0.89 | -0.48 | 10.07    | 3.15 | 5.71  |
| CMS-8285  | 17ALPHA-HYDROXYPROGESTERONE              | LOW         | 1.71  | 1.15  | -1.80 | 1        | 3    | 1    | 6      | 330.46 | 635.00  | 1.35  | 268.02      | 54.37  | 36.83   | -3.30 | 2.54  | 12.13    | 3.57 | 6.22  |
| CMS-33483 | CLIMBAZOLE                               | LOW         | 0.70  | -0.75 | -0.48 | 5        | 4    | 0    | 1      | 292.76 | 335.26  | 1.00  | 218.63      | 44.12  | 31.05   | -3.96 | 3.31  | 11.07    | 3.56 | 5.80  |
| CMS-3122  | MORPHINE                                 | LOW         | 0.66  | 2.34  | -1.35 | 0        | 4    | 2    | 5      | 285.34 | 494.43  | 1.61  | 206.48      | 52.93  | 30.59   | -1.99 | 0.78  | 9.02     | 2.73 | 5.00  |
| CMS-3386  | TERBINAFINE                              | LOW         | 1.39  | -2.71 | -1.13 | 6        | 1    | 0    | 0      | 291.43 | 427.80  | 1.20  | 260.61      | 3.24   | 37.94   | -5.40 | 5.70  | 13.95    | 4.48 | 7.91  |
| CMS-691   | GRISEOFULVIN                             | LOW         | 1.55  | 0.57  | -0.65 | 3        | 6    | 0    | 2      | 352.77 | 575.43  | 1.21  | 239.47      | 71.06  | 33.53   | -3.40 | 2.01  | 11.95    | 3.51 | 6.52  |
| CMS-143   | BENZO(A)PYRENE                           | LOW         | 0.29  | -2.57 | -2.51 | 0        | 0    | 0    | 0      | 252.31 | 372.24  | 1.50  | 195.36      | 0.00   | 36.04   | -6.74 | 6.41  | 11.32    | 3.16 | 5.80  |
| CMS-1315  | T-2 TOXIN                                | LOW         | 4.47  | 2.84  | -0.42 | 9        | 9    | 1    | 8      | 466.52 | 881.16  | 1.43  | 341.21      | 120.89 | 45.61   | -2.74 | 1.51  | 13.54    | 3.88 | 7.90  |
| CMS-26935 | 2-NITRO-5-GLYCERYL METHANOLANILINE       | LOW         | 1.20  | 2.25  | 2.03  | 6        | 7    | 3    | 1      | 242.23 | 245.34  | 1.00  | 173.01      | 107.54 | 23.14   | -1.63 | 0.54  | 11.73    | 3.72 | 7.10  |
| CMS-6532  | CLOTRIMAZOLE                             | LOW         | 0.99  | -2.33 | -1.67 | 4        | 2    | 0    | 0      | 344.84 | 396.25  | 1.00  | 262.30      | 17.82  | 40.47   | -6.98 | 6.20  | 9.30     | 3.08 | 5.24  |
| CMS-874   | PARATHION-METHYL                         | LOW         | 0.44  | -0.21 | 0.25  | 5        | 6    | 0    | 0      | 263.21 | 278.64  | 1.00  | 171.66      | 73.51  | 22.92   | -3.53 | 3.06  | 10.66    | 3.20 | 5.63  |
| CMS-2940  | HYDROMORPHONE                            | LOW         | 0.42  | 1.70  | -1.52 | 0        | 4    | 1    | 4      | 285.34 | 494.43  | 1.61  | 206.48      | 49.77  | 30.23   | -2.05 | 0.90  | 8.85     | 2.81 | 5.08  |
| CMS-4402  | LINOLEIC ACID                            | LOW         | 2.53  | -3.15 | 2.00  | 14       | 2    | 1    | 0      | 280.45 | 266.59  | 0.00  | 263.32      | 37.30  | 34.14   | -4.93 | 6.46  | 19.57    | 6.28 | 10.36 |
| CMS-72028 | TRANS-RETINYL ASCORBATE                  | LOW         | 5.83  | 0.42  | 1.27  | 9        | 7    | 3    | 2      | 458.54 | 957.13  | 1.00  | 362.17      | 113.29 | 49.14   | -5.71 | 5.00  | 20.30    | 6.55 | 10.44 |
| CMS-3741  | PROCHLORAZ                               | LOW         | 1.47  | -0.99 | -0.28 | 6        | 5    | 0    | 0      | 376.67 | 376.98  | 1.00  | 253.09      | 47.36  | 36.38   | -4.68 | 3.44  | 11.68    | 3.92 | 6.28  |
| CMS-345   | CODEINE                                  | LOW         | 0.82  | 1.61  | -1.62 | 1        | 4    | 1    | 5      | 299.36 | 508.56  | 1.61  | 220.57      | 41.93  | 32.43   | -2.14 | 1.09  | 10.29    | 2.89 | 5.81  |
| CMS-8923  | ASCORBYL PALMITATE                       | LOW         | 7.13  | -1.33 | 3.22  | 18       | 7    | 3    | 2      | 414.53 | 515.29  | 1.00  | 338.17      | 113.29 | 43.54   | -5.80 | 6.49  | 27.90    | 8.41 | 16.61 |
| CMS-729   | HYDROCORTISONE                           | LOW         | 2.59  | 3.42  | -0.48 | 2        | 5    | 3    | 7      | 362.46 | 683.89  | 1.35  | 279.76      | 94.83  | 38.10   | -1.93 | 0.29  | 12.62    | 3.76 | 6.64  |
| CMS-7046  | D&C BLUE NO. 4                           | LOW         | 9.37  | 1.06  | 1.51  | 12       | 11   | 3    | 0      | 749.89 | 1548.31 | 1.00  | 533.08      | 169.36 | 81.69   | -8.48 | 4.00  | 21.24    | 6.48 | 11.83 |
| CMS-7741  | AMMONIUM PERFLUOROOCTANOATE              | LOW         | 0.45  | -1.41 | 0.70  | 7        | 2    | 1    | 0      | 414.07 | 530.14  | 0.00  | 157.42      | 37.30  | 14.81   | -4.38 | 4.70  | 11.80    | 3.39 | 6.58  |
| CMS-2865  | FENTANYL                                 | LOW         | 1.79  | -1.87 | -0.40 | 6        | 3    | 0    | 0      | 336.47 | 390.83  | 1.00  | 283.99      | 23.55  | 41.13   | -4.66 | 3.94  | 15.12    | 4.54 | 8.71  |
| CMS-1777  | DIBUTYL PHTHALATE                        | LOW         | 1.49  | -1.64 | 0.51  | 10       | 4    | 0    | 0      | 278.34 | 270.85  | 1.00  | 227.42      | 52.60  | 30.23   | -4.09 | 4.33  | 14.62    | 4.12 | 8.08  |
| CMS-72019 | 3-O-ISOVALERYL NALTREXONE                | LOW         | 3.39  | 1.17  | -0.69 | 6        | 6    | 1    | 4      | 425.52 | 779.87  | 1.52  | 315.78      | 76.07  | 45.04   | -3.32 | 2.03  | 14.73    | 4.10 | 8.15  |
| CMS-1256  | VITAMIN A PALMITATE                      | LOW         | 8.57  | -6.48 | 0.96  | 21       | 2    | 0    | 0      | 524.86 | 803.20  | 1.00  | 493.18      | 26.30  | 65.82   | -9.58 | 11.38 | 32.62    | 9.74 | 19.64 |
| CMS-3355  | SUFENTANIL                               | LOW         | 1.99  | -1.25 | -0.17 | 8        | 4    | 0    | 0      | 386.55 | 459.23  | 1.00  | 310.51      | 32.78  | 44.66   | -4.03 | 2.82  | 13.96    | 4.07 | 7.91  |
| CMS-72003 | DIBUTYL SQUARATE                         | LOW         | 0.18  | -0.61 | 0.51  | 8        | 4    | 0    | 0      | 226.27 | 274.14  | 1.00  | 179.66      | 52.60  | 23.27   | -2.39 | 2.38  | 10.77    | 3.55 | 6.52  |
| CMS-72025 | 3-O-ISOPROPYLOXYCARBONYL NALTREXONE      | LOW         | 3.49  | 1.41  | -0.53 | 6        | 7    | 1    | 4      | 427.49 | 782.03  | 1.52  | 307.56      | 85.30  | 43.85   | -3.37 | 1.99  | 14.70    | 4.10 | 7.89  |
| CMS-72026 | 3-O-PIVALYL NALTREXONE                   | LOW         | 3.22  | 1.39  | -0.79 | 5        | 6    | 1    | 4      | 425.52 | 802.22  | 1.52  | 315.78      | 76.07  | 45.04   | -3.06 | 1.66  | 14.43    | 4.00 | 7.79  |
| CMS-3049  | MEPERIDINE                               | LOW         | -0.28 | -0.74 | -0.48 | 4        | 3    | 0    | 0      | 247.33 | 276.22  | 1.00  | 205.01      | 29.54  | 28.25   | -2.90 | 2.61  | 9.88     | 3.00 | 5.36  |
| CMS-72031 | N,N-DIISOPROPYL NALTREXONE-3-O-CARBAMATE | LOW         | 4.06  | 1.14  | -0.77 | 6        | 7    | 1    | 4      | 468.59 | 849.96  | 1.52  | 353.94      | 79.31  | 50.19   | -3.85 | 2.49  | 15.43    | 4.29 | 8.23  |

|           |                                         | Skin        |       |       |       |          |      |      |        |        |         | Comulau |             |        |         |       |       | 1        | [    |       |
|-----------|-----------------------------------------|-------------|-------|-------|-------|----------|------|------|--------|--------|---------|---------|-------------|--------|---------|-------|-------|----------|------|-------|
| CMS ID    | NAME                                    | pereability | PC 1  | PC 2  | PC 3  | BondsRot | HAcc | HDon | Stereo | Weight | Complex | Ring    | McGowa<br>n | TPSA   | Polariz | LogS  | XlogP | Diameter | Rgyr | Span  |
|           |                                         | category    |       |       |       |          |      |      |        |        |         |         |             |        |         |       |       |          |      |       |
|           | OCTYL SALICYLATE                        | MED         |       | -2.06 |       | -        | 3    | 1    | 0      | 250.33 | 227.78  |         | 211.76      | 46.53  | 28.31   | -4.84 | 5.84  | 16.75    | 4.87 | 9.79  |
| CMS-72020 | 3-O-(2-ETHYLBUTYRYL) NALTREXONE         | MED         | 3.75  | 0.95  | -0.61 | 7        | 6    | 1    | 4      | 439.54 | 793.09  | 1.52    | 329.87      | 76.07  | 46.88   | -3.56 | 2.34  | 16.31    | 4.26 | 8.34  |
| CMS-72021 | 3-O-ISOBUTYRYL NALTREXONE               |             |       | 1.44  | -0.68 | -        | 0    | 1    | 4      | 411.49 | 764.70  | 1.52    | 301.69      | 76.07  | 43.21   |       | 1.45  | 15.20    | 3.96 | 7.70  |
| CMS-72752 | N,N-DIETHYL NALTREXONE-3-O-CARBAMATE    | MED         | 3.54  | 1.48  | -0.58 | 6        | 7    | 1    | 4      | 440.53 | 797.20  | 1.52    | 325.76      | 79.31  | 46.52   | -3.13 | 1.55  | 14.66    | 4.13 | 7.96  |
| CMS-620   | DI(2-ETHYLHEXYL) PHTHALATE              | MED         | 4.20  | -3.08 | 0.26  | 16       | 4    | 0    | 2      | 390.56 | 394.32  | 1.00    | 340.14      | 52.60  | 44.91   | -6.79 | 7.85  | 18.91    | 5.23 | 10.35 |
| CMS-922   | MONOCHLOROACETIC ACIDPROHIBITED         | MED         | -3.38 | 0.79  | 0.94  | 1        | 2    | 1    | 0      | 94.50  | 42.91   | 0.00    | 58.72       | 37.30  | 7.10    | -0.12 | 0.16  | 4.68     | 1.66 | 2.97  |
| CMS-17099 | NALTREXONE                              | MED         | 1.74  | 2.21  | -0.67 | 2        | 5    | 2    | 4      | 341.40 | 620.82  | 1.52    | 243.76      | 70.00  | 35.60   | -2.18 | 0.71  | 11.00    | 3.32 | 6.89  |
| CMS-72032 | N,N-DIMETHYL NALTREXONE-3-O-CARBAMATE   | MED         | 2.96  | 1.91  | -0.61 | 4        | 7    | 1    | 4      | 412.48 | 768.69  | 1.52    | 297.58      | 79.31  | 42.85   | -2.47 | 0.69  | 14.38    | 3.89 | 7.64  |
| CMS-1776  | DIETHYL PHTHALATE                       | MED         | -0.10 | -0.59 | 0.17  | 6        | 4    | 0    | 0      | 222.24 | 223.40  | 1.00    | 171.06      | 52.60  | 22.89   | -2.86 | 2.76  | 10.55    | 3.08 | 5.90  |
| CMS-1517  | BROMOACETIC ACID                        | MED         | -3.14 | 0.66  | 0.89  | 1        | 2    | 1    | 0      | 138.95 | 42.91   | 0.00    | 63.98       | 37.30  | 7.79    | -0.37 | 0.51  | 4.82     | 1.65 | 3.59  |
| CMS-311   | CHLOROFORM                              | MED         | -3.85 | -0.82 | -0.41 | 0        | 0    | 0    | 0      | 119.38 | 8.00    | 0.00    | 61.67       | 0.00   | 8.39    | -2.06 | 2.07  | 2.94     | 1.62 | 1.70  |
| CMS-3937  | BROMOCHLOROACETIC ACID                  | MED         | -2.78 | 0.67  | 0.59  | 1        | 2    | 1    | 1      | 173.39 | 64.57   | 0.00    | 76.22       | 37.30  | 9.72    | -0.84 | 0.92  | 4.82     | 1.79 | 3.53  |
| CMS-72018 | PROPRANOLOL BENZOATE                    | MED         | 2.62  | -1.41 | -0.28 | 9        | 4    | 1    | 1      | 363.45 | 446.90  | 1.13    | 291.24      | 47.56  | 42.92   | -5.81 | 5.52  | 13.46    | 4.28 | 7.07  |
| CMS-72027 | 3-O-TERTIARYBUTYLOXYCARBONYL NALTREXONE | MED         | 3.72  | 1.28  | -0.65 | 6        | 7    | 1    | 4      | 441.52 | 819.74  | 1.52    | 321.65      | 85.30  | 45.68   | -3.70 | 2.41  | 14.68    | 4.15 | 7.97  |
| CMS-466   | CHLORPYRIFOS                            | MED         | 1.12  | -1.75 | -0.54 | 6        | 4    | 0    | 0      | 350.59 | 302.78  | 1.00    | 215.03      | 40.58  | 29.69   | -5.54 | 5.44  | 11.32    | 3.38 | 6.65  |
| CMS-263   | CATECHOL                                | MED         | -2.30 | 0.91  | 0.04  | 0        | 2    | 2    | 0      | 110.11 | 62.93   | 1.00    | 83.38       | 40.46  | 11.71   | -1.48 | 1.63  | 5.67     | 1.84 | 3.09  |
| CMS-205   | BROMODICHLOROMETHANE                    | MED         | -3.63 | -0.94 | -0.48 | 0        | 0    | 0    | 0      | 163.83 | 13.51   | 0.00    | 66.93       | 0.00   | 9.09    | -2.30 | 2.42  | 3.08     | 1.64 | 2.02  |
| CMS-72005 | DIETHYL SQUARATE                        | MED         | -1.30 | 0.37  | 0.23  | 4        | 4    | 0    | 0      | 170.16 | 225.78  | 1.00    | 123.30      | 52.60  | 15.93   | -1.19 | 0.81  | 7.76     | 2.63 | 4.69  |
| CMS-431   | DICHLOROACETIC ACID                     | MED         | -3.09 | 0.62  | 0.82  | 1        | 2    | 1    | 0      | 128.94 | 60.57   | 0.00    | 70.96       | 37.30  | 9.02    | -0.59 | 0.57  | 4.68     | 1.79 | 3.09  |
| CMS-1398  | TCA                                     | MED         | -2.80 | 0.44  | 0.67  | 1        | 2    | 1    | 0      | 163.39 | 83.43   | 0.00    | 83.20       | 37.30  | 10.95   | -1.15 | 1.03  | 4.68     | 1.86 | 3.18  |
| CMS-304   | DIBROMOCHLOROMETHANE                    | MED         | -3.41 | -1.07 | -0.56 | 0        | 0    | 0    | 0      | 208.28 | 13.51   | 0.00    | 72.19       | 0.00   | 9.79    | -2.55 | 2.77  | 3.21     | 1.73 | 2.12  |
| CMS-1394  | BROMOFORM                               | MED         | -3.24 | -1.17 | -0.66 | 0        | 0    | 0    | 0      | 252.73 | 8.00    | 0.00    | 77.45       | 0.00   | 10.49   | -2.80 | 3.13  | 3.21     | 1.81 | 1.85  |
| CMS-72033 | PENTYL NALTREXONE-3-O-CARBAMATE         | MED         | 4.89  | 1.24  | 0.29  | 8        | 7    | 2    | 4      | 454.56 | 801.55  | 1.52    | 339.85      | 88.10  | 48.36   | -3.75 | 2.21  | 20.04    | 4.93 | 11.51 |
| CMS-3511  | DIBROMOACETIC ACID                      | MED         | -2.67 | 0.38  | 0.66  | 1        | 2    | 1    | 0      | 217.84 | 60.57   | 0.00    | 81.48       | 37.30  | 10.42   | -1.09 | 1.27  | 4.82     | 1.85 | 3.55  |
| CMS-72029 | BUTYL NALTREXONE-3-O-CARBAMATE          | MED         | 4.44  | 1.51  | 0.17  | 7        | 7    | 2    | 4      | 440.53 | 786.29  | 1.52    | 325.76      | 88.10  | 46.52   | -3.48 | 1.88  | 18.79    | 4.62 | 10.57 |
| CMS-2352  | DIMETHYL PHTHALATE                      | MED         | -0.89 | -0.06 | 0.03  | 4        | 4    | 0    | 0      | 194.18 | 200.16  | 1.00    | 142.88      | 52.60  | 19.22   | -2.18 | 1.91  | 8.54     | 2.64 | 4.83  |
| CMS-1046  | N-NITROSODIETHANOLAMINE                 | MED         | -2.02 | 2.12  | 2.47  | 5        | 5    | 2    | 0      | 134.13 | 72.21   | 0.00    | 100.49      | 73.13  | 12.02   | 0.79  | -1.69 | 7.54     | 2.19 | 3.85  |
| CMS-1091  | BENZOYL PEROXIDE                        | MED         | 0.54  | -1.03 | 0.06  | 5        | 4    | 0    | 0      | 242.23 | 258.17  | 1.00    | 175.48      | 52.60  | 25.21   | -4.00 | 3.43  | 13.45    | 3.81 | 6.72  |
| CMS-3147  | NICARDIPINE                             | MED         | 4.71  | 0.37  | 0.83  | 11       | 9    | 1    | 1      | 479.53 | 855.64  | 1.00    | 362.48      | 113.69 | 50.88   | -5.48 | 3.54  | 15.02    | 4.49 | 8.30  |
| CMS-72030 | ETHYL NALTREXONE-3-O-CARBAMATE          | MED         | 3.39  | 2.17  | -0.12 | 5        | 7    | 2    | 4      | 412.48 | 755.88  | 1.52    | 297.58      | 88.10  | 42.85   | -2.80 | 0.98  | 14.74    | 3.99 | 8.43  |
| CMS-777   | SOPHORONE                               | MED         | -2.28 | -0.35 | -0.95 | 0        | 1    | 0    | 0      | 138.21 | 186.91  | 1.00    | 124.08      | 17.07  | 16.41   | -1.82 | 1.75  | 6.65     | 2.14 | 3.60  |
| CMS-1163  | O-PHENYLPHENOL                          | MED         | -1.22 | -0.79 | -0.69 | 1        | 1    | 1    | 0      | 170.21 | 149.20  | 1.00    | 138.29      | 20.23  | 21.82   | -3.34 | 3.55  | 9.18     | 2.60 | 4.67  |
| CMS-72017 | PROPRANOLOL OLEATE                      | MED         | 8.87  | -5.35 | 1.56  | 24       | 4    | 1    | 1      | 537.82 | 619.01  | 1.20    | 479.78      | 47.56  | 66.10   | -9.43 | 10.79 | 31.24    | 9.33 | 18.22 |
| CMS-72034 | PROPYL NALTREXONE-3-O-CARBAMATE         | MED         | 3.83  | 1.91  | 0.00  | 6        | 7    | 2    | 4      | 426.51 | 771.07  | 1.52    | 311.67      | 88.10  | 44.69   | -3.07 | 1.32  | 15.85    | 4.23 | 9.41  |
| CMS-49099 | HEXYL NICOTINATE                        | MED         | 0.30  | -1.27 | 0.46  | 7        | 3    | 0    | 0      | 207.27 | 182.46  | 1.00    | 173.60      | 39.19  | 23.29   | -2.79 | 2.92  | 14.21    | 4.05 | 8.08  |
| CMS-4058  | 2,4-D, DIMETHYLAMINE SALT               | MED         | -0.52 | -0.16 | 0.13  | 3        | 3    | 1    | 0      | 221.04 | 186.23  | 1.00    | 137.61      | 46.53  | 19.32   | -2.74 | 2.56  | 9.97     | 3.16 | 5.79  |
|           | 1,1,1-TRICHLOROACETONE                  | MED         | -3.07 | -0.42 | 0.08  | 1        | 1    | 0    | 0      | 161.41 | 82.67   | 0.00    | 91.42       | 17.07  | 12.15   | -1.48 | 1.32  | 4.83     | 1.88 | 3.37  |
| CMS-31782 |                                         | MED         | 0.42  | -2.96 | -1.85 | 3        | 0    | 0    | 0      | 354.49 | 250.05  |         | 221.80      | 0.00   | 33.40   | -6.99 | 6.65  | 9.81     | 3.56 | 5.52  |

|           |                                           | Skin        |       |       |       |          |      |      |        |        |         | <b>a</b> |             |       |         |       |       | 1        |      |      |
|-----------|-------------------------------------------|-------------|-------|-------|-------|----------|------|------|--------|--------|---------|----------|-------------|-------|---------|-------|-------|----------|------|------|
| CMS ID    | NAME                                      | pereability | PC 1  | PC 2  | PC 3  | BondsRot | HAcc | HDon | Stereo | Weight | Complex | Ring     | McGowa<br>n | TPSA  | Polariz | LogS  | XlogP | Diameter | Rgyr | Span |
|           |                                           | category    |       |       |       |          |      |      |        |        |         | Ning     |             |       |         |       |       |          |      |      |
| CMS-3963  | 4-TERT-BUTYLCATECHOL                      | HIGH        | -1.10 | 0.16  | -0.12 | 1        | 2    | 2    | 0      | 166.22 | 148.41  | 1.00     | 139.74      | 40.46 | 19.05   | -2.82 | 3.25  | 7.96     | 2.53 | 4.12 |
| CMS-61741 | BENZYL NICOTINATE                         | HIGH        | -0.31 | -0.76 | -0.12 | 4        | 3    | 0    | 0      | 213.23 | 223.97  | 1.00     | 163.93      | 39.19 | 23.78   | -2.88 | 2.43  | 11.61    | 3.46 | 5.96 |
| CMS-1597  | 1,1-DICHLOROPROPANONE                     | HIGH        | -3.37 | -0.24 | 0.22  | 1        | 1    | 0    | 0      | 126.97 | 59.81   | 0.00     | 79.18       | 17.07 | 10.22   | -0.92 | 0.85  | 4.78     | 1.81 | 3.21 |
| CMS-5235  | N,N-DIMETHYLETHYLAMINE                    | HIGH        | -3.77 | -0.23 | 0.25  | 1        | 1    | 0    | 0      | 73.14  | 17.61   | 0.00     | 77.20       | 3.24  | 9.47    | -0.36 | 0.49  | 5.44     | 1.61 | 2.92 |
| CMS-435   | P-DICHLOROBENZENE                         | HIGH        | -2.46 | -1.28 | -1.33 | 0        | 0    | 0    | 0      | 147.00 | 54.93   | 1.00     | 96.12       | 0.00  | 14.29   | -3.24 | 3.26  | 6.24     | 2.41 | 3.12 |
| CMS-1541  | DIETHYLENE GLYCOL MONOBUTYL ETHER         | HIGH        | -1.23 | -0.01 | 2.07  | 8        | 3    | 1    | 0      | 162.23 | 66.36   | 0.00     | 141.19      | 38.69 | 17.37   | -0.16 | 0.44  | 11.05    | 3.42 | 6.39 |
| CMS-4068  | DIACETONE ALCOHOL                         | HIGH        | -2.78 | 0.65  | 1.03  | 2        | 2    | 1    | 0      | 116.16 | 94.70   | 0.00     | 102.84      | 37.30 | 12.51   | -0.11 | 0.21  | 6.61     | 1.97 | 3.48 |
| CMS-3660  | HEPTANE                                   | HIGH        | -2.37 | -1.96 | 0.18  | 4        | 0    | 0    | 0      | 100.20 | 19.22   | 0.00     | 109.49      | 0.00  | 13.62   | -2.86 | 3.81  | 9.28     | 2.64 | 4.64 |
| CMS-4603  | PENTANE                                   | HIGH        | -3.25 | -1.36 | -0.02 | 2        | 0    | 0    | 0      | 72.15  | 7.51    | 0.00     | 81.31       | 0.00  | 9.95    | -2.18 | 2.92  | 6.78     | 1.94 | 3.40 |
| CMS-58536 | BUTYL NICOTINATE                          | HIGH        | -0.61 | -0.65 | 0.24  | 5        | 3    | 0    | 0      | 179.22 | 159.00  | 1.00     | 145.42      | 39.19 | 19.62   | -2.09 | 2.03  | 11.77    | 3.30 | 6.63 |
| CMS-934   | NAPHTHALENE                               | HIGH        | -2.28 | -1.23 | -1.52 | 0        | 0    | 0    | 0      | 128.17 | 80.61   | 1.20     | 108.54      | 0.00  | 17.70   | -3.20 | 3.29  | 7.10     | 2.09 | 3.55 |
| CMS-5106  | DIETHYLENE GLYCOL MONOBUTYL ETHER ACETATE | HIGH        | -0.42 | -0.70 | 1.98  | 10       | 4    | 0    | 0      | 204.26 | 136.08  | 0.00     | 170.94      | 44.76 | 21.12   | -0.98 | 1.18  | 12.27    | 3.90 | 7.26 |
| CMS-1908  | DIETHYLENE GLYCOL MONOETHYL ETHER         | HIGH        | -2.09 | 0.57  | 1.88  | 6        | 3    | 1    | 0      | 134.17 | 47.57   | 0.00     | 113.01      | 38.69 | 13.70   | 0.51  | -0.45 | 8.88     | 2.77 | 5.03 |
| CMS-167   | BIPHENYL                                  | HIGH        | -1.64 | -1.73 | -1.28 | 1        | 0    | 0    | 0      | 154.21 | 100.00  | 1.00     | 132.42      | 0.00  | 21.18   | -3.89 | 3.96  | 9.18     | 2.62 | 4.59 |
| CMS-1000  | 2-NITROPROPANE                            | HIGH        | -3.20 | 0.28  | 0.58  | 1        | 3    | 0    | 0      | 89.09  | 54.30   | 0.00     | 70.55       | 45.82 | 8.13    | -1.07 | 1.11  | 4.28     | 1.60 | 2.74 |
| CMS-9     | ACETONITRILE                              | HIGH        | -4.31 | 0.33  | 0.29  | 0        | 1    | 0    | 0      | 41.05  | 29.30   | 0.00     | 40.42       | 23.79 | 4.46    | -0.13 | 0.04  | 3.14     | 1.17 | 1.95 |
| CMS-950   | NICOTINE                                  | HIGH        | -1.78 | -0.09 | -0.78 | 1        | 2    | 0    | 1      | 162.23 | 146.77  | 1.00     | 137.10      | 16.13 | 19.48   | -1.67 | 1.11  | 8.15     | 2.48 | 4.38 |
| CMS-4141  | DIETHYLENE GLYCOL MONOMETHYL ETHER        | HIGH        | -2.50 | 0.85  | 1.80  | 5        | 3    | 1    | 0      | 120.15 | 38.66   | 0.00     | 98.92       | 38.69 | 11.86   | 0.85  | -0.88 | 8.08     | 2.52 | 4.30 |
| CMS-10507 | METHYL NICOTINATE                         | HIGH        | -1.97 | 0.25  | -0.07 | 2        | 3    | 0    | 0      | 137.14 | 124.78  | 1.00     | 103.15      | 39.19 | 14.12   | -1.04 | 0.71  | 8.06     | 2.33 | 4.27 |
| CMS-11753 | ETHYLENE GLYCOL ISOPROPYL ETHER           | HIGH        | -2.86 | 0.47  | 1.19  | 3        | 2    | 1    | 0      | 104.15 | 35.06   | 0.00     | 93.05       | 29.46 | 11.22   | 0.05  | 0.20  | 7.09     | 2.15 | 3.67 |
| CMS-845   | 4-METHOXYPHENOL                           | HIGH        | -2.09 | 0.25  | -0.10 | 1        | 2    | 1    | 0      | 124.14 | 74.99   | 1.00     | 97.47       | 29.46 | 13.54   | -1.34 | 1.51  | 7.74     | 2.20 | 4.20 |
| CMS-158   | BENZYL CHLORIDE                           | HIGH        | -2.59 | -1.03 | -1.06 | 1        | 0    | 0    | 0      | 126.58 | 55.41   | 1.00     | 97.97       | 0.00  | 14.20   | -2.40 | 2.49  | 6.19     | 2.16 | 3.78 |
| CMS-2413  | METHYL P-HYDROXYBENZOATE                  | HIGH        | -1.40 | 0.39  | 0.21  | 2        | 3    | 1    | 0      | 152.15 | 136.27  | 1.00     | 113.13      | 46.53 | 15.46   | -1.60 | 1.55  | 8.83     | 2.60 | 4.69 |
| CMS-5434  | ETHYLENE GLYCOL MONOPROPYL ETHER          | HIGH        | -2.65 | 0.37  | 1.42  | 4        | 2    | 1    | 0      | 104.15 | 29.26   | 0.00     | 93.05       | 29.46 | 11.22   | 0.15  | 0.07  | 8.00     | 2.40 | 4.44 |
| CMS-999   | 1-NITROPROPANE                            | HIGH        | -2.99 | 0.19  | 0.82  | 2        | 3    | 0    | 0      | 89.09  | 47.25   | 0.00     | 70.55       | 45.82 | 8.13    | -0.93 | 0.93  | 5.56     | 1.83 | 3.56 |
| CMS-1765  | METHYL ACETATE                            | HIGH        | -3.65 | 0.26  | 0.56  | 1        | 2    | 0    | 0      | 74.08  | 40.16   | 0.00     | 60.57       | 26.30 | 7.00    | -0.17 | 0.23  | 5.35     | 1.52 | 2.83 |
| CMS-455   | 1,2-DICHLOROPROPANE                       | HIGH        | -3.41 | -0.79 | -0.32 | 1        | 0    | 0    | 1      | 112.99 | 20.85   | 0.00     | 77.61       | 0.00  | 10.14   | -1.85 | 2.02  | 4.88     | 1.77 | 3.03 |
| CMS-1847  | 1,4-XYLENE                                | HIGH        | -2.71 | -1.01 | -1.17 | 0        | 0    | 0    | 0      | 106.17 | 48.44   | 1.00     | 99.82       | 0.00  | 14.10   | -2.42 | 2.68  | 6.82     | 2.02 | 3.41 |
| CMS-1895  | ETHYLENE GLYCOL MONOETHYL ETHER ACETATE   | HIGH        | -2.17 | -0.12 | 1.28  | 5        | 3    | 0    | 0      | 132.16 | 80.37   | 0.00     | 108.71      | 35.53 | 13.14   | -0.40 | 0.47  | 8.97     | 2.67 | 5.00 |
| CMS-302   | CHLOROBENZENE                             | HIGH        | -2.85 | -0.98 | -1.20 | 0        | 0    | 0    | 0      | 112.56 | 46.14   | 1.00     | 83.88       | 0.00  | 12.36   | -2.52 | 2.64  | 5.58     | 1.91 | 3.42 |
| CMS-4428  | ETHYLENE GLYCOL MONOMETHYL ETHER ACETATE  | HIGH        | -2.59 | 0.16  | 1.18  | 4        | 3    | 0    | 0      | 118.13 | 70.07   | 0.00     | 94.62       | 35.53 | 11.31   | -0.07 | 0.04  | 8.11     | 2.39 | 4.20 |
| CMS-595   | ETHYL ALCOHOL                             | HIGH        | -4.14 | 0.74  | 0.66  | 0        | 1    | 1    | 0      | 46.07  | 2.75    | 0.00     | 44.91       | 20.23 | 5.08    | 0.30  | -0.09 | 4.14     | 1.20 | 2.18 |
| CMS-1459  | VINYLIDENE CHLORIDE                       | HIGH        | -3.83 | -0.81 | -0.32 | 0        | 0    | 0    | 0      | 96.94  | 27.02   | 0.00     | 59.22       | 0.00  | 8.11    | -1.94 | 1.92  | 3.65     | 1.52 | 2.47 |
| CMS-443   | ETHYLENE DICHLORIDE                       | HIGH        | -3.74 | -0.82 | -0.11 | 1        | 0    | 0    | 0      | 98.96  | 6.00    | 0.00     | 63.52       | 0.00  | 8.30    | -1.59 | 1.71  | 4.36     | 1.91 | 2.18 |
| CMS-509   | N,N-DIMETHYLACETAMIDE                     | HIGH        | -3.63 | 0.36  | 0.41  | 0        | 2    | 0    | 0      | 87.12  | 58.57   | 0.00     | 78.77       | 20.31 | 9.68    | -0.01 | -0.18 | 5.38     | 1.67 | 2.74 |
| CMS-3690  | ETHYLENE GLYCOL MONOMETHYL ETHER          | HIGH        | -3.51 | 0.92  | 1.20  | 2        | 2    | 1    | 0      | 76.09  | 14.36   | 0.00     | 64.87       | 29.46 | 7.55    | 0.75  | -0.70 | 5.72     | 1.72 | 3.06 |
| CMS-527   | N,N-DIMETHYLFORMAMIDE                     | HIGH        | -3.91 | 0.48  | 0.44  | 0        | 2    | 0    | 0      | 73.09  | 33.87   | 0.00     | 64.68       | 20.31 | 7.84    | 0.20  | -0.40 | 4.28     | 1.53 | 2.51 |
| CMS-1346  | TETRAHYDROFURAN                           | HIGH        | -3.64 | 0.16  | -0.75 | 0        | 1    | 0    | 0      | 72.11  | 22.83   | 1.00     | 62.23       | 9.23  | 7.98    | -0.51 | 0.50  | 4.14     | 1.38 | 2.23 |

# Annex 7: Summary statistics calculated for particular properties within each category of skin permeability potential (chapter 5)

| Skin permeability |      | BondsRo       | t (the number o | of rotational bon | ds in a molecule) | )      | Skin permeability | McGowan (McGowan volume) |                    |                |              |              |        |  |  |  |
|-------------------|------|---------------|-----------------|-------------------|-------------------|--------|-------------------|--------------------------|--------------------|----------------|--------------|--------------|--------|--|--|--|
| category          | n    | Minimum       | Maximum         | Range             | Mean              | Median | category          | n                        | Minimum            | Maximum        | Range        | Mean         | Median |  |  |  |
| HIGH              | 38   | 0             | 10              | 10                | 2.13              | 1      | HIGH              | 38                       | 40.42              | 170.94         | 130.52       | 95.79        | 95.37  |  |  |  |
| LOW               | 36   | 0             | 21              | 21                | 5.61              | 5      | LOW               | 36                       | 157.42             | 533.08         | 375.66       | 271.04       | 264.89 |  |  |  |
| MED               | 38   | 0             | 24              | 24                | 4.63              | 4      | MED               | 38                       | 58.72              | 479.78         | 421.06       | 194.52       | 172.33 |  |  |  |
|                   |      |               |                 |                   |                   |        |                   |                          |                    |                |              |              |        |  |  |  |
| Skin permeability |      | H-Acc (the    | number of hydr  | ogen bond acce    | otors in a molecu | ıle)   | Skin permeability |                          | TPSA (topo         | logical polar  | surface ar   | ea)          |        |  |  |  |
| category          | n    | Minimum       | Maximum         | Range             | Mean              | Median | category          | n                        | Minimum            | Maximum        | Range        | Mean         | Median |  |  |  |
| HIGH              | 38   | 0             | 4               | 4                 | 1.63              | 2      | HIGH              | 38                       | 0.00               | 46.53          | 46.53        | 22.10        | 25.05  |  |  |  |
| LOW               | 36   | 0             | 11              | 11                | 4.56              | 4      | LOW               | 36                       | 0.00               | 169.36         | 169.36       | 64.10        | 53.65  |  |  |  |
| MED               | 38   | 0             | 9               | 9                 | 3.63              | 4      | MED               | 38                       | 0.00               | 113.69         | 113.69       | 48.81        | 47.05  |  |  |  |
| ==                |      | -             | -               | •                 |                   |        |                   |                          |                    |                |              |              |        |  |  |  |
| Skin permeability |      | H-Don (th     | e number of hy  | drogen bond dor   | ors in a molecul  | e)     | Skin permeability |                          | Polariz (mean mol  | ecular polaris | ability of a | molecule     | )      |  |  |  |
| category          | n    | Minimum       | Maximum         | Range             | Mean              | Median | category          | n                        | Minimum            | Maximum        | Range        | Mean         | Median |  |  |  |
| HIGH              | 38   | 0             | 2               | 2                 | 0.32              | 0      | HIGH              | 38                       | 4.46               | 23.78          | 19.32        | 12.58        | 12.11  |  |  |  |
| LOW               | 36   | 0             | 5               | 5                 | 1.14              | 1      | LOW               | 36                       | 14.81              | 81.69          | 66.87        | 37.89        | 37.15  |  |  |  |
| MED               | 38   | 0             | 2               | 2                 | 0.82              | 1      | MED               | 38                       | 7.10               | 66.10          | 59.00        | 27.16        | 23.09  |  |  |  |
| IVIED             | 50   | Ŭ             | 2               | 2                 | 0.02              | -      | IVIED             | 50                       | 7.10               | 00.10          | 55.00        | 27.10        | 23.05  |  |  |  |
| Skin permeability |      | Stereo (the r | umber of tetra  | hedral stereo- c  | enters in a molec | rule)  | Skin permeability | 1                        | Log S (solub       | ility of a mol | ecule in wa  | ater)        |        |  |  |  |
| category          | n    | Minimum       | Maximum         | Range             | Mean              | Median | category          | n                        | Minimum            | Maximum        | Range        | Mean         | Median |  |  |  |
| HIGH              | 38   | 0             | 1               | 1                 | 0.05              | 0      | HIGH              | 38                       | -3.89              | 0.85           | 4.74         | -1.17        | -1.01  |  |  |  |
| LOW               | 36   | 0             | 8               | 8                 | 2.86              | 2      | LOW               | 36                       | -9.58              | -0.89          | 8.69         | -3.87        | -3.47  |  |  |  |
| MED               | 38   | 0             | 8               | 8                 | 1.21              | 0      | MED               | 38                       | -9.43              | 0.79           | 10.22        | -2.97        | -2.79  |  |  |  |
| IVIED             | 30   | U             | 4               | 4                 | 1.21              | U      | IVIED             | - 30                     | -9.45              | 0.79           | 10.22        | -2.97        | -2.79  |  |  |  |
| Skin permeability |      |               | MW (m           | olecular weight)  | 1                 |        | Skin permeability |                          | og P (octanl/water | nartition cor  | efficient of | a molecul    |        |  |  |  |
| category          | n    | Minimum       | Maximum         | Range             | Mean              | Median | category          | n                        | Minimum            | Maximum        | Range        | Mean         | Median |  |  |  |
| HIGH              | 38   | 41.05         | 213.23          | 172.18            | 116.68            | 114.57 | HIGH              | 38                       | -0.88              | 3.96           | 4.84         | 1.25         | 1.02   |  |  |  |
| LOW               | 36   | 226.27        | 749.89          | 523.62            | 356.31            | 345.65 | LOW               | 36                       | -0.88              | 11.38          | 11.86        | 3.07         | 2.57   |  |  |  |
| MED               | 38   | 94.50         | 537.82          | 443.32            | 278.43            |        | MED               | 38                       | -0.48              | 10.79          | 12.48        | 2.55         |        |  |  |  |
| IVIED             | 30   | 94.50         | 557.62          | 443.32            | 278.43            | 232.23 | IVIED             | 30                       | -1.69              | 10.79          | 12.46        | 2.55         | 1.99   |  |  |  |
| Skin permeability |      |               | Complex (cor    | nplexity of a mo  | lecule)           |        | Skin permeability |                          | Diamet             | er (molecular  | diameter)    |              |        |  |  |  |
| category          | n    | Minimum       | Maximum         | Range             | Mean              | Median | category          | n                        | Minimum            | Maximum        | Range        | Mean         | Median |  |  |  |
| HIGH              | 38   | 2.75          | 223.97          | 221.22            | 64.72             | 51.37  | HIGH              | 38                       | 3.14               | 12.27          | 9.13         | 6.99         | 6.80   |  |  |  |
| LOW               | 36   | 245.34        | 1548.31         | 1302.97           | 564.59            | 522.72 | LOW               | 36                       | 8.85               | 32.62          | 23.77        | 13.87        | 12.29  |  |  |  |
| MED               | 38   | 8.00          | 855.64          | 847.64            | 342.20            | 224.59 | MED               | 38                       | 2.94               | 31.24          | 28.30        | 10.83        | 10.26  |  |  |  |
| IVIED             | - 30 | 8.00          | 855.04          | 047.04            | 342.20            | 224.33 | IVILD             | - 30                     | 2.34               | 51.24          | 20.30        | 10.85        | 10.20  |  |  |  |
| Skin permeability |      | Co            | mplexRing (ring | complexity of a   | molecule)         |        | Skin permeability |                          | Rgyr (mol          | ecular radius  | of gyratio   | n)           |        |  |  |  |
| category          | n    | Minimum       | Maximum         | Range             | Mean              | Median | category          | n                        | Minimum            | Maximum        | Range        | Mean         | Median |  |  |  |
| HIGH              | 38   | 0.00          | 1.20            | 1.20              | 0.37              | 0.00   | HIGH              | 38                       | 1.17               | 3.90           | 2.73         | 2.19         | 2.12   |  |  |  |
| LOW               | 36   | 0.00          | 1.61            | 1.61              | 1.17              | 1.21   | LOW               | 36                       | 2.73               | 9.74           | 7.01         | 4.16         | 3.72   |  |  |  |
| MED               | 38   | 0.00          | 1.52            | 1.52              | 0.83              | 1.00   | MED               | 38                       | 1.62               | 9.33           | 7.71         | 3.26         | 3.24   |  |  |  |
|                   | 50   | 0.00          | 1.52            | 1.52              | 0.05              | 1.00   | NILD.             | - 30                     | 1.02               | 5.55           | ,./1         | 5.20         | 5.24   |  |  |  |
|                   |      |               |                 |                   |                   |        | Skin permeability |                          | Sna                | an (molecular  | snan)        |              |        |  |  |  |
|                   |      |               |                 |                   |                   |        | category          | n                        | Minimum            | Maximum        | Range        | Mean         | Median |  |  |  |
|                   |      |               |                 |                   |                   |        | HIGH              | 38                       | 1.95               | 7.26           | 5.31         | 3.83         | 3.55   |  |  |  |
|                   |      |               |                 |                   |                   |        | LOW               | 38                       | 5.00               | 19.64          | 14.64        | 3.83<br>7.68 | 6.62   |  |  |  |
|                   |      |               |                 |                   |                   |        | MED               | 36                       | 1.70               | 19.64          | 16.52        | 6.17         | 5.85   |  |  |  |
|                   |      |               |                 |                   |                   |        | IVIED             | 38                       | 1.70               | 18.22          | 16.52        | 6.17         | 5.85   |  |  |  |

## Annex 8: Abstracts of conference presentations related to the present PhD programme

## Profiling Data-Rich Areas of Cosmetics Inventories to Increase Confidence in Read-Across

M. T. D. Cronin, C. Yang, A. Bassan, E. Fioravanzo, J. Liu, J. C. Madden, <u>A. S. Mostrag-Szlichtyng</u>, J. F. Rathman, C. H. Schwab, A. Tarkhov

# Poster Presentation at the Society of Toxicolgy (SOT) 56th Annual Meeting and ToxExpo, Baltimore, Maryland, USA, 13-16 March 2017

## The Toxicologist: Late-Breaking Supplement, Abstract #3390

Chemoinformatics tools allow for the investigation and mining of chemical inventories linked to toxicological data and effects. This study has characterized inventories of cosmetics ingredients associated with repeat-dose toxicity data. The purpose was to identify overlaps and areas of unique chemical space between inventories to determine toxicologically data-rich areas to facilitate data mining and read-across. Three cosmetics inventories available through COSMOS DataShare Point were characterized, namely the US Cosmetics Ingredient Review (CIR), CosIng (European Union) and Korean Cosmetics Industry Institute (KCII). After removing botanicals and polymers, over 7,000 unique chemical structures were analyzed for chemical and biological activity space based on physico-chemical properties and ToxPrint chemotypes. Data-rich regulatory inventories of foodrelated chemicals from the European Food Safety Authority (EFSA), US FDA's Priority-based Assessment of Food Additives (PAFA) and the Registered Substance Database of European Chemicals Agency (ECHA), in addition to the toxicity data from COSMOS DB v2, were projected onto the chemical space of the three cosmetics inventories. Chemical space was analyzed with Principal Component Analysis (PCA) and 2-D clustering for grouping and visualization. Analyses identified areas of overlap between the cosmetics and the data-rich inventories. Although the cosmetics inventories showed significant overlap, only 10% of the structures appeared in all three inventories. Therefore, the geographical dependence of chemical space could be leveraged to expand the general data profile. Data-rich, with regard to repeat-dose toxicity data, chemical space increases confidence in techniques such as read-across, as common drivers to organ-level toxicity may be observed. There are clear advantages in bringing together inventories of cosmetics ingredients, especially when the underlying toxicity data are available, as they increase the number and quality of data points. The analysis also demonstrated the need to include information on bioavailability in a more comprehensive manner to support read-across predictions.

In Vivo Data Mining and In Silico Metabolic Profiling to Predict Diverse Hepatotoxic Phenotypes: Case study of Piperonyl Butoxide

V. Vitcheva, <u>A. Mostrag-Szlichtyng</u>, O. Sacher, B. Bienfait, C. H. Schwab, A. Richarz, I. Tsakovska, M. Al Sharif, I. Pajeva, C. Yang

Poster presentation at 51st Congress of the European Societies of Toxicology, EUROTOX 2015, Porto, Portugal, September 13-16, 2015

### Toxicology Letters 238(2), Supplement, 2015, S173

#### http://dx.doi.org.proxy.lib.ohio-state.edu/10.1016/j.toxlet.2015.08.586

Piperonyl butoxide (PBO) is a synergist used in a wide variety of insecticides. Its toxicity was extensively investigated in animal studies and liver was identified as the main target organ. The dependence of severity and type of hepatotoxic effects on the duration of exposure to PBO was confirmed in the scientific literature: the short-term exposure leads to the mild changes (liver steatosis and enlargement associated with hepatocyte hypertrophy), whereas the long-term exposure (or higher dosage) yields more severe effects, including necrosis and liver cancer. The potential of PBO for binding to the peroxisome proliferator-activated receptor gamma (PPARgamma), involved in the liver steatosis adverse outcome pathway, was suggested in our previous research, involving mechanistic mining of the in vivo data from COSMOS oral repeated dose toxicity database (oRepeatToxDB) and molecular modelling methods (pharmacophore modeling and docking), and was confirmed by the extensive literature search. In the current study we investigate the role of different metabolic pathways in diverse hepatotoxic effects elicited by PBO. Two compounds were used as reference: safrole - weak hepatocarcinogen structurally similar to PBO, and ethyleneglycol – supposedly associated with liver steatosis. MetaboGen (Molecular Networks GmbH) software tool was used to predict the formation of PBO metabolites, and showed that PBO undergoes two major metabolic pathways: opening of the methylenedioxyphenol ring and oxidation on the glycol side chains. Hepatocarcinogenicity observed in long-term studies (but not steatogenic activity) associated with the conversion of the ring methylenedioxy group to a carbene forming ligand complexes with the haem moiety of cytochromes P-450 was proposed for PBO, due to its structural similarity to safrole, acting through this pathway. On the contrary, the glycol side chain of PBO is proposed to be responsible for the prosteatogenic mode of action upon short-term exposure. The present case study demonstrates how metabolic profiling can be applied for investigating chemically induced liver toxicity, underlying mechanisms and modes of action, as well as for providing rationales and basis for further discovery of chemotypes associated with the liver toxicity.

Supported by EU FP7 COSMOS Project (266835).

## COSMOS DB as an International Share Point for Exchanging Regulatory and Toxicity Data of Cosmetics Ingredients and Related Substances

C. Yang, D. P. Hristozov, A. Tarkhov, T. Kleinoeder, I. Boyer, M. T. D. Cronin, E. Fioravanzo, H. J. Kim, B. Heldreth, <u>A. Mostrag-Szlichtyng</u>, J. F. Rathman, A. N. Richarz, C. H. Schwab, V. Vitcheva, A. P. Worth

## Poster presentation at 51st Congress of the European Societies of Toxicology, EUROTOX 2015, Porto, Portugal, September 13-16, 2015

### Toxicology Letters 238(2), Supplement, S382

#### http://dx.doi.org.proxy.lib.ohio-state.edu/10.1016/j.toxlet.2015.08.1090

Since the public release of the COSMOS database v1.0 in December 2013, there has been much interest in connecting the database with other external sites to incorporate regulatory content as well as to enhance the repeated dose toxicity data. The ultimate consortium goal of SEURAT is to develop methods for the eventual replacement of animal testing of cosmetic products for repeateddose toxicity and biokinetics. To this end, the legacy data and opinions housed at the Scientific Committee of Consumer Safety (SCCS) are important resources. Currently in Europe, the regulatory opinions related to chemicals used as cosmetics ingredients or in formulations are only available from the Scientific Committee. The COSMOS team has remodeled the data model in order to accommodate regulatory data such that document-centered regulatory needs can be compatible with the chemical-centered COSMOS DB. During the assessment workflow, it is essential to easily identify the critical NOAEL values from key studies leading to risk assessment decisions, whilst intuitively linking to the underlying toxicity data that support the decision. This database also houses the critical point of departure data identified by the COSMOS TTC project in collaboration with ILSI Europe as well as other TTC datasets such as Munro (non-cancer) and CPDB (cancer). These TTC datasets can be exported from the database as relevant tables. In summary, this poster will demonstrate the power of the COSMOS DB as an international share point in a variety of regulatory use cases. This abstract does not reflect the policy of CIR, JRC, EC, or KCII (Korea).

Supported by the EU FP7 and Cosmetics Europe.

In Silico Approaches to Support Liver Toxicity Screening of Chemicals: Case Study on Molecular Modelling of Ligands - Nuclear Receptors Interactions to Predict Potential Steatogenic Effects

I. Tsakovska, M. Al Sharif, E. Fioravanzo, A. Bassan, S. Kovarich, V. Vitcheva, <u>A. Mostrag-Szlichtyng</u>, C. Yang, F. Steinmetz, M. Cronin

Poster presentation at 51st Congress of the European Societies of Toxicology, EUROTOX 2015, Porto, Portugal, September 13-16, 2015

## Toxicology Letters 238(2): S173

## http://dx.doi.org.proxy.lib.ohio-state.edu/10.1016/j.toxlet.2015.08.585

In the Mode of Action/Adverse Outcome Pathway (MoA/AOP) framework addressing repeated dose toxicity, liver steatosis has been recognised as one of the initial manifestations of liver toxicity. The interaction of exogenous chemicals with nuclear receptors (NRs) involved in lipid homeostasis is one of the molecular initiating events (MIEs) triggering the development of liver steatosis. Within the EU COSMOS project different in silico methodologies, including (Q)SAR and molecular modelling, have been employed and integrated for the evaluation of potential binding to NRs involved in the development of liver steatosis, namely LXR (liver X receptor), and PPARy (peroxisome proliferatoractivated receptor y). The present study further tests and exploits the use of molecular modelling approaches in the AOP framework. It is based on: (i) theoretically described AOPs leading to liver steatosis whose molecular initiating event is a ligand interaction with LXR and PPARy; (ii) the knowledge about PPARy as positive transcriptional regulator of LXR expression. Exploring binding to both LXR and PPARy is the main objective of the study since dual PPARy/LXR binders could be of higher concern in relation to potential prosteatotic effects. Pharmacophore models were first built on the knowledge of interactions with NRs and validated by means of datasets including known LXR and PPARy binders. A dataset of chemicals with liver phenotypic effects was then extracted from the COSMOS repeated dose toxicity database (http://cosmosdb.cosmostox.eu), and it was screened with the developed approach hitting some potential dual PPARy/LXR ligands. This study confirms the utility of molecular modelling approaches to assist in the screening of chemicals to prioritise potential liver toxicants according to given MIEs.

Supported by the EU FP7 COSMOS Project.

Chemical and mechanistic similarity based assessment of the cosmetics space supporting the evaluation of cosmetics-related substances

A-N. Richarz, S. J. Enoch, E. Fioravanzo, S. Kovarich, J. C. Madden, C. Mellor, <u>A. Mostrag-Szlichtyng</u>, A. Palczewska, K. Przybylak, F. Steinmetz, I. Tsakovska, C. Yang, M. T. Cronin

Poster presentation at 51st Congress of the European Societies of Toxicology, EUROTOX 2015, Porto, Portugal, September 13-16, 2015

Toxicology Letters 238(2), Supplement, 2015, S170

### http://dx.doi.org.proxy.lib.ohio-state.edu/10.1016/j.toxlet.2015.08.578

The evaluation of cosmetics-related substances by alternative methods is encouraged with the full cosmetics testing ban of the Cosmetics Regulation entering into force in March 2013. Furthermore, the support provided by computational approaches contributes to guide the assessment process from an early stage. In order to support this process, a practical workflow has been developed and implemented in a user-friendly online tool using the KNIME technology. The aim of the workflow is to help the user assess a new compound with regard to its position within "cosmetics space" relative to known cosmetics-related substances as well as similar chemicals in a user-defined sub-group. The cosmetics space was defined by the compilation of cosmetics-related substances in the COSMOS Cosmetics Inventory, which includes over 19000 unique substances, of which more than 5500 have defined structures. The user is able to choose sub-spaces based on cosmetics use classes according to Cosing or on functional groups. The most similar compounds to the target chemical within these sub-spaces are identified and evaluated in the chemical space taking into consideration physicochemical properties, general molecular fragments of concern, specific structural features or in silico profilers flagging, e.g., potential binding to nuclear receptors, proteins or liver toxicity. The target chemical can be assessed compared to the categorised similar substances or within overall cosmetics space and thus support the evaluation in view of further safety assessment. The workflow also has the flexibility to be extended further, for example to include assessment related to metabolism and bioavailability or to take route of exposure into account.

The funding from the European Community's 7th Framework Program (FP7/2007–2013) COSMOS Project (Grant Agreement N° 266835) and Cosmetics Europe is gratefully acknowledged.

# From PPARy ligand dependent dysregulation to liver steatosis; MoA description and molecular modelling study

## M. Al Sharif, I. Tsakovska, I. Pajeva, P. Alov, E. Fioravanzo, A. Bassan, S. Kovarich, <u>A. Mostrag-</u> <u>Szlichtyng</u>, V. Vitcheva, C. Yang

## Poster presentation at 8th International Symposium on Computational Methods in Toxicology and Pharmacology Integrating Internet Resources (CMPTI), 2015, 21-25 June 2015, Chios, Greece

Mode of Action and Adverse Outcome Pathway (MoA/AOP) are key elements in the toxicological knowledge framework that are being built to support chemical risk assessment based on mechanistic reasoning. Peroxisome Proliferator-Activated Receptor gamma (PPARy) is a nuclear receptor with wide tissue expression. In adipocytes it regulates insulin sensitivity and lipid synthesis and storage. PPARy activation in hepatocytes has been recently proposed as one of the molecular initiating events (MIE) involved in liver steatosis/steatohepatitis [1]. This presentation summarises the application of different methodologies to investigate the involvement of PPARy in the pathogenesis of fatty liver disease. As a first step MoA is proposed starting with MIE PPARy ligand activation, passing through a number of intermediate events, and ending with liver steatosis [2]. Further a combination of different molecular modelling methodologies (docking, pharmacophore modelling, 3D QSAR) are applied in order to screen chemicals based on their potential to interact with and activate PPARy. The results provide the basis for both prioritizing compounds potentially of major concern (for liver toxicity) and / or grouping chemicals potentially sharing the specific AOP [3, 4].

Acknowledgment: Funding from the European Community's 7th Framework Program COSMOS Project (grant n°266835) and from Cosmetics Europe, and from the Ministry of Education, Youth and Science, Bulgaria (grant n°D01-169/14.07.2014) is gratefully acknowledged.

## References

[1] B. Landesmann, M. Goumenou, S. Munn, M. Whelan, Reference Report by the Joint Research Centre of the European Commission, Institute for Health and Consumer Protection, 2012, EUR 25631 EN 40 Pages.

[2] M. Al Sharif, P. Alov, V. Vitcheva, I. Pajeva, I.Tsakovska, PPAR Res. 2014(2014) 1-13.

[3] I. Tsakovska, M. Al Sharif, P. Alov, A. Diukendjieva, E. Fioravanzo, MTD Cronin, I. Pajeva, Int. J. Mol. Sci. 15(2014) 7651-7666.

[4] A. S. Mostrag-Szlichtyng, V. Vitcheva, M.D. Nelms, P. Alov, I. Tsakovska, S.J. Enoch , A. P. Worth, M.T.D. Cronin, C. Yang, SOT 53rd Annual Meeting, 24–27 March 2014, Phoenix, Arizona, USA.

# Classification of skin permeability potential following dermal exposure to chemicals to support safety assessment

<u>A. Mostrag-Szlichtyng</u>, J. Rathman, B. Hobocienski, F. Steinmetz, J. Madden, M. Cronin, C. Schwab, D. Hristozov, C. Yang

Poster Presentation at the Society of Toxicolgy (SOT) 54th Annual Meeting and ToxExpo, San Diego, California, USA, 23-26 March 2015

### The Toxicologist: Late-Breaking Supplement 144(1), Abstract #2643

Degree of dermal absorption/permeation of chemical has impact on its bioavailability and potential toxicity after topical exposure. We present a set of rules to categorize a query molecule based on skin permeability potential (low/med/high). Skin Permeability Database (developed in the EU COSMOS Project) contains >450 chemicals with data rigorously curated from existing databases and by harvesting literature/ regulatory sources. Systematic quality control was used to minimize concerns about data accuracy and reliability. For the rules formulation and validation we used 280 compounds (split into training/test sets) with data on 2 parameters key to understanding skin permeability: in vitro steady-state flux, J and permeability coefficient, Kp. Computational methods for classifying compounds as low/med/high with respect to J and Kp were developed; the descriptors used were structural fragments encoded with electronic properties (ToxPrint chemotypes) and selected physicochemical properties. Principle component (PC) analysis was used to identify differentiating descriptors and compensate for descriptors intercorrelations. The chemotype frequencies and mean values and ranges of properties were determined and used to develop profile for each category. For instance, chemotype-based PC projection plots reveal the chemotypes useful for assigning the molecules to low J category (cyclic alkane/alkene ketones, cyclic alkanes, fused rings, alicyclic amines), while the physicochemical property-space plots indicated the usefulness of Hbond donors/acceptors number, polar surface area, McGowan volume, molecular weight, and logP for identification of high J category compounds. This research supports further modeling of dermal absorption/permeation and skin sensitization to assess safety of dermal exposure to chemicals.

# Description of the MoA/AOP linked with PPAR gamma receptor dysregulation leading to liver fibrosis

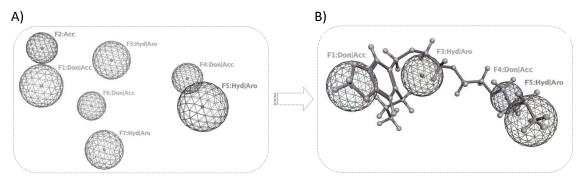
V. Vitcheva, M. Al Sharif, I. Tsakovska, P. Alov, <u>A. Mostrag-Szlichtyng</u>, M. T. D. Cronin, C. Yang, I. Pajeva

Poster Presentation at 50th Congress of the European Societies of Toxicology, EUROTOX 2014, 7-10 September 2014, Edinburgh, Scotland, UK

### Toxicology Letters, 229, Supplement, S49, P-1.32

### http://dx.doi.org/10.1016/j.toxlet.2014.06.211

Modes of Action and Adverse Outcome Pathways (MoAs/AOPs) are key elements in the toxicological knowledge framework that are being built to support chemical risk assessment based on mechanistic reasoning. Peroxisome Proliferator-Activated Receptor gamma (PPARgamma) is a nuclear receptor that regulates adipocyte differentiation, insulin sensitivity and lipid synthesis and storage in adipocytes. PPARgamma activation in hepatocytes is regarded as one of the molecular initiating events (MIE) involved in liver steatosis/stetatohepatitis. However its inhibition in the hepatic stellate cells (HSCs) results in their activation that is essential for the pathogenesis of liver fibrosis. In the current study a systematic literature search has been performed and a MoA scheme based on the PPARgamma dysregulation in stellate cells and resulting in hepatic fibrosis is proposed. Literature data revealing the role of PPARgamma in HSCs are consistent and associate its depletion with HSC activation and fibrosis, whereas increasing PPARgamma expression results in HSC quiescence. A large body of literature confirms that PPARgamma agonists have anti-proliferative and anti-fibrotic effects on activated HSCs. Two applications have been defined from the AOP for fibrosis from PPARgamma dysfunction in stellate cells: (i) the description of possible MIEs triggering PPARgamma inhibition/downregulation that result in fibrosis and allowing for the development of structural alerts; (ii) the identification of key events downstream from PPARgamma dysregulation leading to fibrosis that would be suitable for assay development.


*Acknowledgement*: The funding from the European Community's 7th Framework Program (FP7/2007-2013) COSMOS Project under grant agreement no. 266835 and from Cosmetics Europe is gratefully acknowledged.

### In silico ligand screening based on a pharmacophore model of PPARy full agonists

## I. Tsakovska, M. Al Sharif, P. Alov, V. Vitcheva, E. Fioravanzo, <u>A. Mostrag-Szlichtyng</u>, C. Yang, M. T. D. Cronin, I. Pajeva

## Poster Presentation at 16th International Workshop on Quantitative Structure-Activity Relationships in Environmental and Health Sciences, 16-20 June 2014, Milan, Italy

Description of the toxicological modes of action (MoAs) from ligand dependent dysregulation of transcriptional regulators to liver toxicity is among the important concepts in the predictive toxicology. The activation of the hepatic peroxisome proliferator-activated receptor gamma (PPARy) has been outlined as one of the probable molecular initiating events leading to liver steatosis [1, 2]. Thus, modelling of interactions between PPARy and its full agonists could facilitate understanding of the molecular mechanisms that further trigger downstream events and promote development of liver toxicity. To this aim a pharmacophore model of the PPARy full agonists has been recently developed based on X-ray complexes of the receptor in the Protein Data Bank (http://www.rcsb.org/) [3]. In this study the model is externally evaluated on a PPARy ligand database. The database has been created by analysing and systemising literature data. The model is further applied for the *in silico* screening of toxicity databases, including COSMOS Database (http://cosmosdb.cosmostox.eu/). A pharmacophore search is performed for ligands with liver adverse effects (Figure 1). Potential PPARy full agonists are outlined. The approach could be used for the *in silico* screening of agonists of hepatic PPARy that can function as steatosis inducers facilitating in this way the process of MoA development.



**Figure 1**: Screening of COSMOS DB: A) The pharmacophore model of PPAR full agonists; B) Pharmacophore search on piperonyl butoxide

The funding from the European Community's 7th Framework Program (FP7/2007-2013) COSMOS Project under grant agreement n°266835 and from Cosmetics Europe is gratefully acknowledged.

1. Landesmann, B.; Goumeou, M.; Munn, S.; Whelan, M. JRC *Scientific and Policy Reports, Office of the European Union*. **2012**.

2. Al Sharif, M.; Alov, P.; Vitcheva, V.; Pajeva, I.; Tsakovska, I. *PPAR Research, 2014*, **2014**, Article ID 432647.

3. MOE v.2013 .08, Chemical Computing Group Inc., 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, **2013**.

## Data Mining Approach to Formulate Alerting Chemotypes for Liver Steatosis / Steatohepatitis / Fibrosis

<u>A. Mostrag-Szlichtyng</u>, V. Vitcheva, M. D. Nelms, P. Alov, I. Tsakovska, S. J. Enoch, A. P. Worth, M. T. D. Cronin, C. Yang

Poster Presentation at the Society of Toxicology (SOT) 53nd Annual Meeting and ToxExpo, Phoenix, Arizona, USA, 24-27 March 2014

#### The Toxicologist 138(1): Abstract #2254

COSMOS oRepeatToxDB, oral repeat-dose toxicity database, is designed with an ontology describing toxicological effects at each dose level using controlled vocabulary, thus enabling mechanistic data mining. Observations are also coupled to organism-level sites and more specific effects at lower levels are formulated within hierarchical framework: organs/systems -> segments/tissues -> cells/organelles. The majority of biological/chemical processes occur at the cell/organelle level, and so interactions between chemicals and proteins/genes are investigated in order to associate chemical structures with phenotypic effects resulting from related toxicity mechanisms. Furthermore, common structural fragments are extracted and refined into mechanistic chemotypes representing underlying molecular initiating events. We present a data mining case for liver steatosis, steatohepatitis and fibrosis. Over 20% of cosmetics-related chemicals in this database were associated with lipid deposition, fatty changes, cytoplasmic vacuolization, cellular infiltration and inflammation in various hepatocytes, ultimately leading to fibrosis. Combined phenotypic effects and morphological changes at various sites were mapped onto chemical compounds. Applying the ToxPrint chemotypes to these compounds, the set of alerting chemotypes for liver steatosis/steatohepatitis/fibrosis was identified. They include alcohols, diols, glycol ethers, aminophenols, tertiary amines, aromatic amines, polychlorinated short alkanes, halogenated amines, and Michael acceptors. Identification of these alerting chemotypes can be considered as the initial step in developing the categories used in safety/risk assessment. This approach also provides a way to investigate molecular pathways relevant to toxicological mechanisms.

Supported by EU FP7 COSMOS Project.

## Alerting Chemotypes for Liver Steatosis, Steatohepatitis and Fibrosis Identified by Mining COSMOS DB

# A. Mostrag-Szlichtyng, V. Vitcheva, M. D. Nelms, P. Alov, I. Tsakovska, S. J. Enoch, A. P. Worth, M. T. D. Cronin, C. Yang

## Poster Presentation at the SEURAT-1 Fourth Annual Meeting, Barcelona, Spain, 5-6 February 2014

The COSMOS oral repeated dose toxicity database (oRepeatToxDB) includes an ontology for phenotypic effects at each dose level using controlled vocabulary. Toxicity effects observed at target organ sites have been organised hierarchically to relate organs to tissues to cells. The majority of biological/chemical processes occur at the cell/organelle level. Therefore interactions between chemicals and proteins/genes are investigated in order to associate chemical structures with phenotypic effects initiated by related toxicity mechanisms. Common structural fragments are extracted and refined into mechanistic chemotypes representing underlying molecular initiating events (MIE). Liver steatosis, steatohepatitis and fibrosis were chosen as a case sudy for data mining. Over 20% of cosmetics-related chemicals in oRepeatToxDB were associated with lipid deposition, fatty changes, cytoplasmic vacuolisation, cellular infiltration and inflammation in various hepatocytes, ultimately leading to fibrosis. Combinations of phenotypic effects and morphological changes at various sites were mapped onto chemical classes. A set of alerting chemotypes for liver steatosis, steatohepatitis, fibrosis was identified by application of the ToxPrint chemotypes and will be further used for developing chemical categories to be used in safety assessment. This approach also provides a way to elucidate the underlying molecular pathways and mechanisms for hepatotoxicity.

# Molecular modelling studies of LXR and PPAR gamma receptors in relation to the MoA/AOP framework for liver steatosis

## S. Kovarich, M. Al Sharif, P. Alov, A. Bassan, M.T.D. Cronin, E. Fioravanzo, <u>A. Mostrag-Szlichtyng</u>, I. Pajeva, I. Tsakovska, V. Vitcheva, A. Worth, C. Yang (2014)

## Poster presentation at the SEURAT-1 Fourth Annual Meeting, Barcelona, Spain, 5-6 February 2014

The SEURAT-1 cluster adopted the Mode-of-Action/Adverse Outcome Pathway (MoA/AOP) framework to understand human adverse health effects caused by repeated exposure to chemicals, that initiate the sequence of events from the molecular (molecular initiating event, MIE) through higher levels (organelles/cells/tissues/organs) and lead to the perturbations observed at the whole organism level. Within the COSMOS Project innovative in silico approaches are being explored to study the MIEs involved in liver steatosis. This implies the investigation of applicability of molecular modelling (MM) methods to predict the binding of small molecules to two nuclear receptors involved in the liver steatosis MoA, namely the liver X receptor (LXR) and peroxisome proliferator-activated receptor gamma (PPAR<sub>Y</sub>) and to study the ligand-dependent activation of them. The poster presents the MM results of the binding of selected ligands to LXR and PPAR<sub>Y</sub>, including the characterisation of the ligand-binding pocket of the receptors, the identification of ligand-receptor interactions and essential structural features involved in LXR/PPAR<sub>Y</sub> binding. The challenging objective of these studies is to lay the foundations for the application of MM in predictive toxicology as a part of an integrated strategy which combines multiple methods and approaches (e.g., in silico, in vitro, mechanistic information) to support toxicity prediction in the MoA/AOP framework.

Data mining toxicity effects through an ontology approach to investigate toxicity mode of action

V. Vitcheva, A. Mostrag-Szlichtyng, M. Nelms, P. Alov, S. Enoch, I. Tsakovka, J. Rathman, M. Cronin

Poster Presentation at 49th Congress of the European Societies of Toxicology, EUROTOX 2013, Interlaken, Switzerland, 1-4 September 2013

Toxicology Letters 221S (2013) S59-S256, P05-5

http://dx.doi.org/10.1016/j.toxlet.2013.05.081

Toxicological modeling and structure knowledge development begin by connecting biological effects and chemicals involved in pathways. A systematic data mining method has been established to link biological observations of cellular events to chemical reactivity. This method is based on an in vivo oral repeated dose toxicity database equipped with a controlled vocabulary for describing phenotypic effects at the cellular level. For example, hepatocytes, Kupffer cells, sinusoids, and stellate cells are associated with fatty/lipid storage (accumulation, deposits, etc.), Toxicity effects observed at target organ sites have been organized hierarchically to relate organs to tissues to cells, while also mapping biological processes to phenotypic effects. Data mining to elucidate site/effect combinations can suggest causal relationships in toxicity pathways, and plausible hypotheses can then be generated by mapping these combinations onto chemical classes relevant to the compounds responsible for the phenotypic effects. Groupings of chemicals with biologically similar functions can then be generated. As a case study, liver steatosis and fibrosis have been chosen and the relationship between these phenotypic effects and the underlying morphological changes caused by, for example, analogs of vitamin A/retinoids as well as aromatic amines are discussed from mechanistic perspective. This methodology provides a systematic approach for investigating chemically-induced toxicity and elucidating the underlying mechanism, and may further guide studies to determine the mode of action for hepatotoxicity.

Development of new COSMOS oRepeatDose and non-cancer Threshold of Toxicological Concern (TTC) databases to support alternative testing methods for cosmetics related chemicals

C. Yang, M. Ambrosio, K. Arvidson, S. Barlow, A. Boobis, M. Checheva, M. Cronin, S. Felter, E. Fioravanzo, H. Hollnagel, D. Hristozov, K. Jacobs, D. Keller, <u>A. Mostrag-Szlichtyng</u>, M. Nelms, J. Rathman, A. Richarz, I. Tsakovska, S. Vidry, V. Vitcheva, A. Worth A

## Poster Presentation at 49th Congress of the European Societies of Toxicology, EUROTOX 2013, Interlaken, Switzerland, 1-4 September 2013

#### Toxicology Letters 221S (2013) S59-S256, P05-6

http://dx.doi.org/10.1016/j.toxlet.2013.05.082

The Seventh Amendment of the Cosmetics Directive requires replacement of animal testing of cosmetic products for repeated dose/reproductive toxicity and toxicokinetics. To this end, the COSMOS consortium within SEURAT, a cluster of research jointly funded by the European Commission and Cosmetics Europe, has been engaged in development of computational methods and tools. COSMOS has prepared a new Cosmetics Inventory based on the chemical records from the EU COSING database and the list from the US Personal Care Products Council. COSMOS has also developed a new toxicity database enriched with oral repeated dose studies for cosmetics-related chemicals. The sources for toxicity data include US Food and Drug Administration, US Environmental Protection Agency, EU Scientific Committee on Consumer Safety, European Chemical Agency, US National Toxicology Program, and literature publications. A new non-cancer TTC database for cosmetics-related chemicals has been compiled by augmenting the COSMOS database with substances from the Munro dataset found in the Cosmetics Inventory. The resulting TTC database contains over 580 chemical structures with no-observed-adverse-effect levels (NOAELs); the toxicity data for the chemicals in the lowest 10th percentile of the distribution of NOAELs have been further subjected to detailed quality control. The inclusion and selection criteria of the NOAEL decisions have been documented. The chemical space of the new TTC database has been compared with existing TTC databases to demonstrate that the coverage is suitable for the assessment of cosmetics products. The TTC database will be made public and serve as a resource for alternative methods.