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Abstract 

Skin, being the largest organ of the body, represents an important route of exposure, not only for the 

abundance of chemicals present in the environment, but also for products designed for topical application 

such as drugs and personal care products. Determining whether such incidental or intentional exposure 

poses a risk to human health requires consideration of temporal concentration, both externally and 

internally, in addition to assessing the chemical’s intrinsic hazard. In order to elicit a toxic response in vivo 

the chemical must reach its site of action in sufficient concentration, as determined by its absorption, 

distribution, metabolism and elimination (ADME) profile. Whilst absorption and distribution into and 

through skin layers have been studied for decades, only more recently has skin metabolism become a 

subject of intense research, now recognised as playing a key role in both toxification and detoxification 

processes. The majority of information on metabolic processes, however, has generally been acquired via 
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studies performed on the liver. This paper outlines strategies that may be used to leverage current 

knowledge, gained from liver metabolism studies, to inform predictions for skin metabolism through 

understanding the differences in the enzymatic landscapes between skin and liver. The strategies outlined 

demonstrate how an array of in silico tools may be used in concert to resolve a significant challenge in 

predicting toxicity following dermal exposure. The use of in vitro methods for determining skin metabolism, 

both to provide further experimental data for modelling and to verify predictions is also discussed. Herein, 

information on skin metabolism is placed within the context of toxicity prediction for risk assessment, 

which requires consideration of both exposure and hazard of parent chemicals and their metabolites. 

Keywords 

In silico, in vitro, skin metabolism, toxicity prediction 
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Introduction 

Human skin is continually exposed to an abundance of diverse chemicals present in the environment, 

home, workplace or in products directly applied to the skin surface. Chemicals responsible for incidental 

exposure include industrial chemicals, pollutants, household or industrial cleaning and fragrancing 

products. Intentional exposure via skin occurs as a result of the application of personal care products, 

cosmetics or topical drug formulations. The ability of a chemical to elicit toxicity in humans, or indeed in 

any organism, is governed by three factors: (i) the intrinsic hazard of the chemical (or transformation 

product thereof); (ii) the potential for external exposure i.e. the presence of the chemical in the 

environment or in a topically applied product; and (iii) the ability of the chemical (or its transformation 

products) to reach its site of action in the body at adequate concentration. Knowledge of these three 

factors is essential in performing risk assessment, however, to obtain such information for all chemicals of 

interest via empirical testing would not be economically or practicably feasible nor would it be ethically 

responsible in terms of animal use. The application of alternative methods in evaluation of chemicals, or in 

risk assessment, is therefore essential. Whilst predictive toxicology has been used to address these issues 

for many years, metabolism has often proved to be a confounding factor that requires specific or inherent 

incorporation into the modelling process. Complications can arise in model building where it is the 

transformation product, rather than the parent molecule, that is responsible for the activity. Problems 

arising from metabolic activation and the presence of reactive metabolites, particularly following oral drug 

administration, are now well recognised and this has led to greater interest in predicting the identity of 

metabolites and their rate and extent of formation. Although it is known that the majority of organs 

possess metabolic capability, metabolism studies have predominantly focused on the liver - the main organ 

of metabolism and of key importance following oral exposure. As the skin is one of the most important 

routes of exposure, it is now recognised that predicting metabolism in skin is essential to obtaining 

accurate predictions of potential toxicity or activity (e.g. in the case of topical drug administration). There 

are several differences to consider between oral and dermal routes and incidental versus intentional 

exposure to chemicals. These factors include: frequency and duration of application or ingestion; 

concentration of the chemical; enzyme expression at the site of exposure or site of distribution; and the 
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ease of uptake or distribution from the site. Notably, skin has evolved to provide a barrier function whereas 

the gastro-intestinal tract is designed for the uptake of essential nutrients. Also, toxicity testing has 

traditionally involved (relatively) high concentration, acute, oral dosing, whereas use of personal care 

products is generally a low dose, long term application. A wealth of information now exists relating to oral 

absorption and liver metabolism, this includes information on uptake, rate and extent of metabolite 

formation, metabolite identity, enzymes responsible and their expression. It is now possible to leverage this 

important data and apply it to predictions of skin uptake and metabolism, providing appropriate 

adjustments are made. Such adjustments need to take account of differences in exposure scenarios, uptake 

potential and enzyme expression / activity levels. This paper identifies various sources of information and in 

silico tools that may be applied to predicting skin metabolism and potential toxicity following dermal 

exposure. How the knowledge acquired from the application of these in silico tools can be put together in 

an overall predictive strategy is discussed, as well as the importance of incorporating further data from in 

vitro studies for modelling and verification purposes.  

 

Skin metabolism in the context of toxicity prediction 

Many factors determine the likelihood of a chemical eliciting local or systemic toxicity following dermal 

exposure. The significance of skin metabolism has increasingly been recognised and whilst this forms the 

focus of this paper, other aspects must also be considered in order to place the role of metabolism in 

context. Figure 1 shows the numerous elements governing the potential to elicit toxicity and where skin 

metabolism fits within this overall scheme. 

Figure 1 HERE 

As illustrated in Figure 1, a wide range of data types are required in order to reach an informed decision. 

Fortunately, there are many in silico tools, and other data sources, that may be leveraged to fill the gaps in 

knowledge relating to uptake, metabolism and potential toxicity of chemicals following dermal exposure. 

Leveraging such information can also lead to the development of more robust models, particularly where 

experimental data can be used to develop improved models and verify predictions in an iterative process.  
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Historically, data have predominantly been accumulated following oral administration to test subjects or 

obtained from in vitro liver assays. This has led to a wealth of information being generated, albeit for an 

alternative exposure scenario. Table 1 lists the potential data sources that could be used to fill gaps in 

knowledge relating to skin metabolism, provided that appropriate adjustments are made to account for the 

differences between the oral and dermal routes. 

Table 1 HERE 

As alluded to above, it is not only skin metabolism per se that determines the potential for toxicity, it is also 

influenced by a plethora of additional, inter-related factors that require consideration. Table 2 (and 

references provided therein) provides useful sources of data for these additional factors, relevant to overall 

risk assessment.  

Table 2 HERE 

Tables 1 and 2 indicate the diverse resources available that can be utilised to make predictions for 

individual components within the process of assessing toxicity. The individual elements can then be 

rationally combined within an encompassing predictive model. In this manner, deconstructing the problem 

into individual components, allows greater use of different data types and more flexible adjustment of the 

individual factors that are relevant to the overall prediction. Each of the individual components, sources of 

information and adjustments necessary for the development of predictive models, as given in Tables 1 and 

2, are discussed individually below. 

 

1. The role of skin metabolism  

Skin metabolism is an area that has attracted much recent interest due to its role in toxification or 

detoxification processes following dermal exposure. Improvements in analytical techniques have led to 

many metabolising enzymes being detected in skin. Although enzyme expression and activity levels are 

generally much lower than liver, cumulatively, given the large area of the skin, the net capacity for 

metabolism may be significant. It is recognised that many skin sensitisers require metabolic activation to 
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elicit their toxicity, conversely, minoxidil (a therapeutic agent used in treatment of hair loss) requires 

metabolic activation in skin in order to be effective [10]. Thus skin metabolism may be involved in 

toxification, detoxification or pro-drug activation processes. Identification and, where possible, quantitative 

estimation of metabolic capacity, is essential to determining the potential for chemicals to be activated or 

deactivated in the skin - a key factor in toxicity prediction and prioritisation of chemicals for further testing. 

Factors relevant to skin metabolism may be subdivided into distinct categories, each of these is 

summarised and discussed in more detail below (see sections 1.1 – 1.7). In silico tools that are available to 

assist in the prediction of these individual factors, associated with skin metabolism, are presented in Table 

3. Note that many of these tools have been based on liver metabolism studies, however, knowledge 

obtained from these can be usefully applied to the issue of skin metabolism provided appropriate 

adjustments are made. The information provided in Table 3 (and references therein) is indicative of the 

types of resources available and is not an exhaustive list. Tables 3 and 5, both pertaining to relevant 

software for metabolism prediction, incorporate information from the excellent overview provided by 

Kirchmair [12]. The “Click2Drug” website of the Swiss Institute of Bioinformatics 

(https://www.click2drug.org/index.html; accessed May 2017) is also noteworthy as it provides an updated 

and comprehensive listing, with brief description, of software, databases and webservices useful in drug 

design including a range of tools for ADME and toxicity prediction. 

Table 3 HERE 

 

1.1 Identification of the biotransformation pathway and enzyme(s) responsible 

An initial step in predicting metabolism of a given chemical is identifying the relevant reaction pathway and 

which enzyme(s) may be involved in catalysing the process. Knowledge of the metabolic reactions of the 

parent chemical, or similar chemicals, may be available from the literature. For example, comprehensive 

reviews of biotransformation and bioactivation pathways have been published [13, 14]. As manual 

investigation of such literature sources may be time consuming in silico tools based on such acquired 
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knowledge are useful in providing more rapid predictions of potential interactions between a given 

substrate and a putative enzyme. Models have also been derived to classify which substrates are more 

likely to be metabolised by a particular cytochrome P450 (CYP) enzyme, such as the decision tree model of 

Zhang et al. [15]. Particular enzymes may have broad or narrow substrate specificity and more than one 

enzyme may catalyse the same metabolic process. Software is available to predict binding to enzymes (e.g. 

docking interactions / binding affinities), sites of metabolism, metabolic stability of parent chemicals and 

potential metabolic routes. Software for identifying potential interactions between chemicals of interest 

and putative enzyme(s) are given in Table 3.  

1.2 Expression of enzymes in skin (and comparison to liver)  

If the enzyme(s) relevant to the metabolic route identified above is known to be present in the skin then 

metabolism via that route is a realistic possibility following dermal exposure. True confirmation of the 

presence of a given enzyme requires experimental verification using skin-based experimental systems. 

Much of our understanding of the metabolic capability of skin has been based on ex vivo experiments using 

rodent and porcine skin. However, recent ethical and legislative changes have driven researchers to explore 

non-animal and more human-relevant in vitro models. Excised human skin usually obtained from 

abdominal or breast reduction surgery is an attractive ex vivo tool that offers a native tissue structure and 

mixed cell populations but has limitations as an experimental model due to availability, individual variability 

and the limited time for which the tissue can be used after excision. To overcome these limitations, the last 

decade has seen a dramatic increase in the use of tissue engineered, reconstructed skin equivalents, with 

researchers looking for control over tissue supply and experimental reproducibility. First developed in the 

early 1980s three-dimensional skin equivalents are produced by culturing primary dermal keratinocytes on 

top of a dermal fibroblast-containing matrix at an air-to-liquid interface [16, 17]. Morphologically, the 

models display a stratified squamous epithelium that is highly keratinised and so closely mimics the native 

structure and organisation of human skin. These skin equivalents offer an advantage over ex vivo tissue as 

they can be cultured on demand and for longer periods of time, allowing detailed studies on the molecular 

mechanisms of skin homeostatic and disease processes as well as xenobiotic metabolism.  Their viability 
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over prolonged periods in culture enables enzyme kinetic assays to be performed either with freshly 

isolated tissue extracts or whole tissue. Skin equivalent models have been validated against native human 

tissue in terms of gene (microarray, qPCR) and protein (proteomic and immunoblot) expression. 

Furthermore, skin equivalent models are amenable to immunohistological examination to provide evidence 

of the specific expression of metabolising enzymes within the epidermis or dermis, as well as spectral 

analysis (Raman spectroscopy or mass spectrometry) to identify the distribution of metabolites within the 

tissue (see section 1.7). Such improvements in analytical methodology have led to more accurate 

identification and quantification of enzymes in skin. Van Eijl et al. reported a range of enzymes detected in 

human skin and skin models using proteomic analysis [18]. Enzymes detected in liver, but not in skin, and 

skin:liver expression ratios were also reported, enabling comparisons between the two organ systems: 36 

enzymes were detected in both skin and liver; 46 enzymes, including 13 cytochrome P450 proteins were 

detected only in liver. Protein levels of enzymes involved in conjugation, hydrolysis, dehydrogenation, 

carbonyl reduction, oxidoreduction and oxidation were detected in skin at levels 4-10 fold lower than in 

liver, but levels of cytochrome P450 were reported as being 300-fold lower. This confirms the earlier 

suggestion that phase II metabolism predominates in skin with phase I reactions having a lesser role, 

although experimental processes (such as freezing and thawing) may affect quantification. Certain 

enzymes, such as alcohol dehydrogenase 1, epoxide hydrolases 1 and 2, hydroxyacyl-coenzyme A 

dehydrogenase and aldo-keto reductase 1C1 and 1C2 are expressed at higher levels in skin than in liver 

[19]. The review of available in silico and in vitro methods for assessing dermal bioavailability by Dumont et 

al. provides an excellent overview of the state-of-the-art in skin metabolism research, collated from an 

extensive range of literature studies [19]. The paper provides tables for enzyme detection in skin using 

protein expression and mRNA studies and provides skin:liver expression ratios where available. Further 

details such as experimental procedures, subsections of skin analysed, use of fresh or frozen samples (all of 

which may influence the outcome of the investigations) are available within the references provided. 

Discrepancies in results concerning presence or absence of specific enzymes may result from differences in 

analytical methods such as: anatomical differences in skin section used; freezing of samples (affecting 

integrity of the enzyme system), limits of detection etc. Variability inherent in such test systems was 
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highlighted by Manevski et al. [20]. These authors reported a proof-of-principle study using human skin 

explants to investigate the metabolism of 11 substrates via phase II reactions. The study confirmed 

formation of metabolites following glucuronidation, sulfation, N-acetylation, catechol methylation, or 

glutathione conjugation processes; inter-individual variability was reported at a level of 1.4 – 13 fold in the 

analysis. Activity of a given enzyme in skin can only be confirmed by experimental methods. Once the 

presence of a given enzyme has been confirmed, there are a number of software packages that can predict 

whether or not a given chemical is a likely substrate for that enzyme (as discussed in section 1.1 above). 

Developments in this area are heavily reliant on continued experimental verification of enzyme activity and 

improvement in in silico methods to predict enzyme:substrate interactions. 

 

1.3 Reaction kinetics: predicting Vmax / Km / Kcat / CLint 

The rate at which metabolites are formed is another important factor in determining the time course of 

parent and metabolites in the skin and their potential to elicit toxicity. Rate of metabolite formation may be 

limited by the rate at which the parent molecule is presented to the metabolising enzymes (i.e. perfusion 

rate-limited for drugs that are readily metabolised) or may be limited by the capacity of the enzymes for 

poorly metabolised chemicals (i.e. low intrinsic clearance (Clint)). For many chemicals, particularly drugs, 

intrinsic clearance of the compound by liver enzymes has been measured. Using these data quantitative 

structure-activity relationship (QSAR) models have been developed for the prediction of intrinsic clearance, 

as measured in hepatocytes or microsomes [21, 22, 23, 24] and for total clearance of drugs [25, 26]. The 

publication of Pirovano et al. reports QSARs developed for intrinsic clearance covering both drugs and 

environmental pollutants [27].  

Clearance values can be used as an indication of the overall stability of the parent or conversely as the 

efficiency of metabolism by a specific enzyme. Adjustments are required when considering potential 

metabolism in skin versus liver as differences in enzyme expression and activity levels, as well as 

differences in perfusion between skin and liver, need to be taken into account. Inherent metabolic 

capability can be characterised in terms of Vmax (the maximum rate at which an enzyme catalyses a 
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reaction), Km (the substrate concentration at which half maximum rate of reaction is reached (i.e. 

indicating the affinity between enzyme and substrate) and Kcat (the number of substrate molecules each 

enzyme site converts to product per unit time, for a given enzyme concentration, when the enzyme is 

working at maximum efficiency). Measurements for Vmax and Km are intrinsically highly variable which 

complicates model development, however, it may be possible to develop local QSAR models for narrowly 

defined categories of chemicals. Resources such as the enzyme information system “Brenda” 

(http://www.brenda-enzymes.org/; accessed May 2017) provide an extensive database of Vmax, Km, Kcat 

and other values relating to enzyme kinetics from which further models may be developed, although it 

should be noted that there is very high variability in Km and Vmax values recorded, hence careful curation 

is required prior to selecting values for modelling. For certain enzymes there is a plethora of data but for 

other enzymes data are sparse. There are examples within the literature where QSAR models have been 

developed to predict relevant kinetic parameters using such data collations. For example, Pirovano et al. 

[28]  provide models for prediction of Vmax and Km for compounds metabolised by four enzyme classes 

(alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), flavin-containing monooxygenase (FMO), 

and cytochrome P450, using data obtained from Brenda, from the review of QSARs for P450 enzymes 

published by Hansch et al. [29] as well as other resources. Hybrid quantum mechanics / molecular 

mechanics (QM/MM) methods are now being applied to understanding the specific mechanisms involved 

in catalysis by enzymes such as cytochrome P450. Such advances in mechanistic understanding of enzyme-

substrate interactions will provide further insight and more accurate computational models for predicting 

xenobiotic metabolism [30]. 

As data variability is high, one possibility is to predict a plausible range for the kinetic values rather finite 

values. Such an approach is analogous to that of Poulin and Krishnan who derived “theoretically plausible 

envelopes” of concentration in blood based on setting intrinsic clearance at theoretically possible minimum 

and maximum values [31]. This enables estimations to be made within a defined level of uncertainty. 

Software that may be used to predict Vmax, Km and intrinsic clearance are given in Table 3, although data 

on which such models are built are generally based on data from liver assays. In vitro verification of 
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predicted enzyme kinetics is invaluable for further model development and extension of the chemical space 

to which such models could be applied. 

 

1.4 Stability / reactivity of metabolite 

Once formed a metabolite itself may elicit desirable or toxicological effects, locally or remotely (following 

entry into the circulatory system) prior to further metabolism and/or its ultimate excretion from the body 

via renal, hepatic or other routes of elimination. Whilst metabolic activation is useful for administering pro-

drugs, adverse effects of reactive metabolites are of significant concern in toxicology. Reactive metabolites 

may interact with a range of biological macromolecules (such as proteins or DNA), resulting in an array of 

effects including skin or respiratory sensitisation, mitochondrial toxicity or damage to DNA.  The extent of 

damage elicited by a metabolite is a function of both the nature and the longevity of the metabolite i.e. 

whether the metabolite persists for sufficient time to cause a toxicological response or whether 

biochemical defences, or rapid clearance of the metabolite, obviate the response. Within drug discovery, 

drug candidates are routinely screened for potential reactive metabolite formation, using known structural 

alerts. Alerts for compounds with the potential to form reactive metabolites, in the context of drug 

discovery, have been reviewed by Stepan et al. [32]. Such alerts can be used to identify compounds 

associated with potential reactive metabolite formation following dermal exposure.  

 

1.5 The likelihood of a given reaction occurring 

Many potential reaction pathways to the formation of metabolites may be predicted from knowledge of 

organic reaction chemistry. However, the likelihood of any individual reaction occurring and leading to a 

given metabolite can be considered as a statistical question i.e. how often is the reaction actually observed 

in comparison to the number of instances it could be predicted to occur? Two sources of information are 

useful in predicting the overall likelihood of a reaction occurring. Firstly the overall extent of metabolism 

may be known as its converse (the fraction excreted unchanged in urine following oral administration) is 

often measured, particularly for drugs. Manga et al. developed a model to predict whether a drug would be 



12 
 

poorly or extensively metabolised following oral administration based on simple physico-chemical 

properties [33]. Secondly - assuming the chemical is subject to metabolism - then the more likely pathways 

can be predicted by statistical analysis of experimental databases of reactions. There are several empirical 

methods for ranking the most likely pathway for metabolism. PASS-BioTransfo gives the likelihood of a 

particular class of reactions occurring [34]; SPORCalc [35] and MetaPrint 2D (http://www-

metaprint2d.ch.cam.ac.uk/; accessed May 2017) ranks the most likely sites for metabolism in a molecule; 

TIMES (http://oasis-lmc.org/products/software/times.aspx; accessed May 2017) and Metadrug  

(https://lsresearch.thomsonreuters.com/pages/solutions/18/metadrug; accessed May 2017) give a 

probability for formation of a given metabolite; SyGMa (Systematic Generation of potential Metabolites) 

ranks predicted metabolites according to an empirically derived probability score[36]. Meteor Nexus 

(metabolite predictor software from Lhasa Ltd; https://www.lhasalimited.org/products/meteor-nexus.htm; 

accessed May 2017) uses a static scoring methodology to order predict metabolites according to a pre-

computed score of how predictive a particular biotransformation is, based on experimental data. A site of 

metabolism scoring function is also derived based on the static score but adapted appropriately using 

known data from similar compounds. Marchant et al. demonstrated that over-prediction of metabolites in 

Meteor Nexus could be reduced by incorporating a measure of the structural similarity of the query 

chemical to substrates with known experimental data [37]. As numerous metabolites are theoretically 

possible for any given chemical, it is important to rationalise those that are truly likely to be formed if a 

realistic safety assessment is to be performed. TIMES (TIssue MEtabolism Simulator ) generates a metabolic 

tree where propagation of metabolites is constrained to those more likely to be formed using a defined 

mathematical formalism as described by Dimitrov et al. 2011 and Mekenyan et al 2012. [38, 39]. 

As with other information for metabolism the majority of data are derived from liver studies. Translating 

this to the probability of the reaction occurring in skin requires several other factors to be taken into 

consideration, for example are the same enzymes present in liver and skin or are there alternative enzymes 

that may also catalyse the same biotransformation? The ratios of different enzymes have been shown to be 

significantly different in skin and liver, hence consideration needs to be given as to how that would 

influence the metabolism of a specific chemical. Deciding on the most probable metabolites in skin, needs 
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to be informed by the aforementioned experimental studies to determine the actual levels of enzyme 

expression and activity in skin. Whilst predictions of the most likely metabolites are useful, in vitro or in vivo 

experimental verification as confirmation or disproval of metabolite formation would aid refinement of 

such statistical algorithms (refer to section 1.7 below). 

 

1.6 Potential for induction / inhibition 

Induction or inhibition of liver enzymes has been recognised as a significant factor in altering the amounts 

of parent or metabolite(s) present within the body, occasionally with serious or unpredicted consequences. 

For example the increase in unplanned pregnancies in women using hormonal contraceptives and co-

medicating with St John’s wort has been attributed to the induction of cytochrome P450 enzymes by St 

John’s wort and the consequent increase in metabolism (hence reduction in circulating levels) of the 

hormonal contraceptive. Conversely, furanocoumarins in grapefruit juice have been shown to inhibit 

cytochrome P450s responsible for the metabolism of a wide variety of therapeutic agents (including anti-

arrhythmic agents, anti-histamines, statins etc) leading to highly elevated levels of these drugs and 

resultant, significant toxicity. Hence determining the potential for induction or inhibition of enzymes is 

extremely important for the pharmaceutical industry and has led to a significant amount of research into 

possible induction or inhibition of enzymes by drugs, food and herbal products. For dermal exposure (e.g 

application of personal care products) a chemical may be applied every day over many years, for leave-on 

products in particular this leads to long term exposure with potential for induction of enzymes. Although 

cytochrome P450 enzymes have been shown to have low basal levels of activity in the skin these have been 

shown to be highly inducible, with potential consequences for repeated exposure [40, 41]. Information on 

substrates, inducers and inhibitors are available in the literature, some of which has been compiled into 

useful on-line resources for example: 

https://static.medicine.iupui.edu/divisions/clinpharm/content/p450_Table_Oct_11_2009.pdf (accessed 

May 2017) provides a list of substrates, inhibitors and inducers of specific CYP1A2, 2B6, 2C8, 2C9, 2C19, 
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2D6, 2E1, 3A4, 3A5, and 3A7. Software for predicting the potential of a compound to act as an inhibitor of 

specific enzymes is given in Table 3. 

 

 1.7 The identity of the metabolites formed 

Identifying the structure of metabolites that may be formed from a given parent structure has been a 

subject of intense research over many years, particularly following oral exposure. There are many 

literature-based sources providing details of metabolites of specific compounds [14] and on-line resources 

such as Drugbank (www.drugbank.ca; accessed May 2017) which lists key metabolites for drugs. The 

Drugbank database contains records for over 8,000 drugs including marketed pharmaceuticals, 

experimental compounds and drugs withdrawn from the market. The information having been collated for 

pharmaceuticals has a clear emphasis on the oral route and liver metabolism. In recent years, however, 

there have been an increasing number of publications relating to identification of metabolites in skin. 

Unlike data following oral exposure there is no single comprehensive, collation detailing all metabolites in 

skin, therefore data of this nature is highly variable and incomplete. Data are available within literature 

reports for either individual compounds or for a small number of compounds; these data often require 

extraction from text, rather than being in tabular format. The current literature provides a limited amount 

of skin-specific metabolism data and in some cases a comparison between skin and liver metabolism, 

although the data are not readily accessible. Table 4 (and references therein) provides examples of the 

types of data available for chemicals (drugs and non-drugs) and their metabolites that have been found in 

skin. The table also indicates where differences have been detected between liver and skin metabolism i.e. 

different enzymes involved and differences in metabolites, where these are known. Note that the table 

provides representative examples of the types of information available and is not intended to be an 

exhaustive list of available skin metabolism data.  

Table 4 HERE   
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There are several software platforms available that enable users to predict potential metabolites, such as 

those listed in Table 3. Most data (and hence predictions) are focussed on liver, however, knowledge of 

relevant enzyme expression in skin enables appropriate adjustments to be made when comparing liver and 

skin metabolism. Note that many of the predictive software developed, being based on liver, has a 

significant focus on cytochrome P450 activity, within skin however, phase II metabolism is more 

predominant than phase I. The Organisation for Economic Co-operation and Development (OECD) QSAR 

Toolbox (http://www.oecd.org/chemicalsafety/risk-assessment/oecd-qsar-toolbox.htm; accessed May 

2017) is useful as it possesses two metabolism simulators; one based on liver metabolism and the other 

based specifically on skin metabolism. This enables differential predictions to be made automatically for 

skin versus liver. The Toolbox simulates 203 transformations in skin compared to 345 in liver, based on 

existing knowledge. Meteor Nexus software (Lhasa Ltd) also possesses functionality that enables phase I 

and phase II metabolites to be generated individually.  

Recent development in in vitro skin models linked to improvements in analytical methodology allows for 

more rapid identification of metabolites formed in skin that will help to refine existing predictive models. 

With the increased sensitivity and improved resolution of mass spectrometry analysers [48] the scope for 

detecting parent drugs and metabolites has greatly increased.  A multitude of analytic techniques have 

been used to detect compounds from homogenates made from excised skin or human skin models 

including liquid chromatography coupled to atmospheric pressure chemical ionisation mass spectrometry 

(APCI-LC-MS/MS) [49], ultra-performance liquid chromatography-quadrupole time-of-flight (TOF) mass 

spectrometry (MS) and gas chromatography (TOF–MS) [50]. The growing development of mass 

spectrometry imaging (MSI) techniques has further introduced an additional dimension that not only allows 

metabolite detection but further informs on the spatial temporal localisation of a compound within the skin 

layers [51]. MSI has allowed the detection of drugs and metabolites from freshly frozen tissue sections [52, 

53] and from formalin fixed tissue sections [54]. This information is being used to refine models for 

predicting skin metabolism, enabling comparison of predicted metabolites to those determined 

experimentally. 
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1.8 Development of skin metabolism simulators 

Table 1 and sections 1.1 – 1.7 have identified key elements associated with metabolism. It has been 

established that the majority of data available are derived from liver metabolism studies, hence prediction 

of skin metabolism requires appropriate adjustments to be made. However, it is also recognised that due to 

developments in tissue engineering and analytical methodology more in vitro data are becoming available 

that have been directly measured in skin or skin equivalents (e.g. identity and rate of formation of 

metabolites). This presents an opportunity to develop in silico simulators of skin metabolism directly rather 

than relying on information derived from liver studies. As more information becomes available this can be 

used iteratively to improve such skin metabolism simulators, for example by confining predicted 

metabolites in skin to those derived from the most likely metabolic routes, as identified by analytical 

observations. 

 

2. External exposure 

Whilst the above has focussed on predicting skin metabolism, clearly there are other key factors to 

consider in an overall risk assessment for dermal exposure of chemicals. Although significant, these 

ancillary factors are not the focus of the current paper, hence are only briefly introduced - the reader is 

referred to the corresponding references and software resources presented in Table 5 for further 

information.  

Table 5 HERE 

In the case of incidental dermal exposure, predicted environmental concentrations, workplace exposure 

limits or typical use-case situations may be used to determine realistic or worst case scenario estimations of 

exposure. Typically separate exposure models are derived for workers or consumers [56]. For intentional, 

dermal application, levels of exposure are more closely controlled. For drugs, the specified dosing regimen 

determines the amount applied, the area and frequency of application and whether or not the site is 
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occluded. Similarly, for personal care products, standardised exposure scenarios have been published that 

take account of the intended use of the product, site and frequency of application, wash-off or leave-on 

scenarios etc, [2]. A discussion of models relating to exposure is beyond the scope of the current paper, 

however, indicative models and sources of information are given in Table 5.  

 

3. Uptake and distribution within skin 

Other significant factors relate to the rate and extent of uptake (absorption) and distribution of the 

chemical through the various skin layers and skin cells. Dermal absorption data are available from the 

reports of the Scientific Committee on Consumer Safety (SCCS) for cosmetic ingredients and skin 

permeability data are available for 470 test substances from COSMOS DB version 2 

(https://cosmosdb.eu/cosmosdb.v2; accessed May 2017). Additionally, many models have been devised to 

predict dermal absorption or skin permeability. These models range from simple to complex including: 

simple discriminant functions (i.e. above particular cut-off values for molecular weight and/or lipophilicity, 

dermal absorption is less likely [57]; quantitative structure-property relationships that give a quantitative 

prediction of permeability based on correlation with physico-chemical descriptors [58, 59]; and more 

complex, complete kinetic models accounting for the rate and extent of diffusion into individual skin layers 

requiring more detailed input parameters [3, 6]. A full review of predictive models for skin uptake is beyond 

the scope of the work presented here, however, a detailed review of such models has been published by 

Mitragotri et al. [60]. Example software for the prediction of skin uptake is given in Table 5. 

In terms of uptake via skin there are many sources of variability, the influences of which are poorly defined; 

these include ethnicity, the hydration status of the skin, presence of skin microflora, factors relating to 

mixture effects and choice of formulation or vehicle. Models have been developed to predict the influence 

of some of these factors e.g. vehicle, mixture and formulation effects [7-9], however, much more work is 

required in this area. Predictive models with defined levels of uncertainty (e.g. providing estimations of 

maximum/minimum uptake) that reflect the level of variability in the in vivo system may offer a more 

realistic solution than attempts to predict finite values for uptake.  
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4. Potential to elicit toxicity  

The potential of a chemical to elicit a toxic effect in vivo is a consequence of both intrinsic hazard and the 

concentration-time profile of the chemical in the relevant organ or system. There is a vast amount of 

toxicity data currently available, much of which has been collated and curated into global repositories such 

as the OECD QSAR Toolbox (http://www.oecd.org/chemicalsafety/risk-

assessment/theoecdqsartoolbox.htm; accessed May 2017), DSSTox (https://www.epa.gov/chemical-

research/distributed-structure-searchable-toxicity-dsstox-database; accessed May 2017), AcTOR 

(https://actor.epa.gov/actor/home.xhtml; accessed May 2017), and eCHEMPortal 

(http://www.echemportal.org/echemportal/index?pageID=0&request_locale=en; accessed May 2017). 

Access to data for over 700, 000 chemicals is available via the interactive Chemical Safety for Sustainability 

(iCSS) CompTox dashboard (https://comptox.epa.gov/dashboard/; accessed May 2017) developed by the 

United States Environment Protection Agency (US EPA). This resource includes millions of predicted 

physico-chemical properties associated with the chemicals in the database. Where data are lacking, 

prediction of toxicity using both in vitro and in silico methods are well-established scientific tools. There are 

many software platforms available to predict a wide range of toxicities (or to identify structural features 

associated with toxicity i.e. structural alerts) as given in Table 5; prediction of skin sensitisation being of 

particular importance in terms of dermal exposure. Prediction of intrinsic hazard can be carried out for 

both the parent and metabolite(s); it is an inherent property determined by chemical structure. Whilst 

toxicity is an inherent property, overall predictions for toxicity may need to be adjusted to take account of 

local toxicity and differences in metabolites that may be produced when comparing oral versus dermal 

exposure. Physiologically-based pharmacokinetic (PBPK) models play an increasing role in toxicity 

prediction as they can be used to predict the concentration-time profiles of a chemical at any specific site 

within the body and are designed to be readily adapted for different routes of exposure. 

A PBPK model is a mechanistic, multi-compartment mathematical model that describes the time-course 

dynamics and overall kinetics of a xenobiotic throughout the body. This is achieved by describing the 
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different physico-chemical properties of the xenobiotic and the specific physiology of the organism, such 

that the evolution of the ADME processes can be accurately simulated in silico. Xenobiotic properties 

include tissue affinity, membrane permeability, enzymatic stability etc., while the organism/system 

component includes such properties as organ mass/volume and blood flow [63]. The structure of PBPK 

models typically revolves around the anatomical structure of the organism with different organs and tissues 

of varying perfusion rates being separated into distinct compartments. In the simplest case, these tissue 

compartments are treated as being well mixed, which is based on the idea that there is a rapid 

equilibration of the xenobiotic once it enters the tissue [61].  

Clearly, however, local tissue architecture could create spatially heterogeneous xenobiotic profiles within 

the tissue and, to enable capture of such spatial profiles, these local tissue features therefore should be 

incorporated into the PBPK framework. Mathematical modelling of these features in relation to 

transdermal drug transport has been a major area of research [62]. Seminal work by Higuchi (1960) [63], 

based on Fick’s law for transport processes, laid the foundation of current theories of skin penetration. 

Since then, a large number of modelling papers have been written attempting to describe various aspects 

of transdermal permeation (for reviews see [64] and [65]). These models range in complexity but are 

typically based on simple assumptions, such as a single layer of skin or a two layer composite. The norm is 

to treat each skin layer as a homogeneous medium with no distinct intra- and extra-cellular compartments 

[67, 68] and xenobiotic modification via metabolising enzymes has received little attention to date. 

Exceptions are the ‘bricks and mortar’ mechanistic models (e.g., [65] and [67]) which do account for 

multiple pathways (intercellular and transcellular) and metabolism has been included in several models [68-

71]. These approaches provide useful qualitative information but still suffer from a number of over-

simplifications of the skin structure, cellular xenobiotic transport and enzyme effects and are therefore 

limited in their quantitative predictive potential. To be able to move this work forward to a more predictive 

framework and one which can accurately predict spatial xenobiotic and metabolite skin profiles, ingredients 

such as cellular geometries, paracellular transport, transport of the xenobiotic across the cellular 

membrane as well as accurate enzyme kinetic information need to be properly measured and incorporated. 
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Training and validation of such a framework against spatial enzyme kinetic and metabolite data obtained 

from in vitro data will drive the generation of a software platform that will then have the ability to predict 

metabolite production and their rates of elimination for xenobiotic compounds in skin, which, when 

coupled to PBPK frameworks, will also then allow the exploration of systemic penetration and subsequent 

systemic effects. This is, of course, a significant task, but current advances in the in vitro and in silico work, 

such as that described above, is making great steps towards making such model development possible. 

Resources, such as the oCHEM database (https://ochem.eu/home/show.do; accessed May 2017) provide a 

range of experimental data serving as useful inputs for such PBPK models; note that data sharing in oCHEM 

is based on the wiki principle. 

The combination of information concerning external exposure, internal exposure (concentration-time 

profiles) and intrinsic toxicity, as outlined above, is essential in order for risk assessment to be performed. 

This enables identification of substances of concern or of no concern in terms of human health. Such 

information can be used to prioritise chemicals for further testing, inform decisions on control measures to 

be introduced or identify where alternatives need to be sought. 

 

Using the information in risk assessment 

Grouping and read-across approaches are now well-recognised as methods to aid the prediction of toxicity. 

Recent publications have provided guidance on the use of Integrated Testing Strategies (ITS) or Integrated 

Approaches to Testing and Assessment (IATA) and the importance of incorporating metabolic information 

into such predictions. As the use of grouping and read-across has become more prevalent, justification of 

analogue selection is essential to ensuring confidence in the prediction. Wu et al. provide a framework for 

evaluating the suitability of analogues for read-across which explicitly assess factors relating to the 

potential metabolism of the analogue and target [72]. These factors include: the strength of evidence 

supporting the occurrence of the reaction (e.g. in vivo human/animal data); influence of the route of 

exposure and relevance of metabolism to the endpoint. Recently there have been several publications 

promoting the use of read-across and establishing a framework to support broader acceptance of the 
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methods. For example Patlewicz et al. present factors to be considered to improve consistency and 

acceptability of read across predictions [73]. Within the framework, specific reference is made to potential 

metabolism i.e. are differences expected between metabolic pathways (and/or rate) for the target and the 

analogue bearing in mind the route of exposure. Tollefsen et al. discuss Adverse Outcome Pathways (AOPs) 

and how they can support IATA again identifying where metabolic information can be incorporated when 

performing risk assessment [74]. These recent publications provide a useful framework for how information 

relating to different aspects of metabolism (likelihood of reaction occurrence, route of exposure etc) can be 

usefully integrated into toxicity assessment. 

 

Conclusions  

The skin is an important route for both incidental and intentional exposure to a wide range of chemicals 

including pollutants, drugs and personal care products. In terms of risk assessment, to ascertain whether a 

chemical is likely to be of concern or no concern following dermal exposure requires many factors to be 

considered in concert, particularly the influence of skin metabolism. Traditionally, metabolism studies have 

focussed on the liver as the main organ of metabolism, hence there are more data available concerning 

liver metabolism and the oral route of exposure. Research into skin metabolism has been a more recent 

endeavour driven, in part, by the advances in analytical methodology which enables detection and 

quantification of ever lower concentrations of enzymes and metabolites. There is an increasing body of 

evidence concerning which enzymes are expressed in skin and how enzyme activity varies between liver 

and skin. Additionally, existing data, based on liver metabolism studies, can be leveraged and applied to the 

question of skin metabolism, providing appropriate adjustments are made for differences in uptake, 

distribution and enzyme expression / activity levels. The re-purposing of data derived from liver, using 

appropriate adjustments and the battery of in silico tools that are available enables the prediction of many 

key factors relating to skin metabolism. Further data, currently being generated from in vitro skin / skin 

models will be invaluable in aiding in silico model development and refinement as well as verification of 

model suitability and the coverage of the models in terms of chemical space. Combining all of this 
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knowledge will enable more robust models to be developed and will engender greater confidence in risk 

assessments of chemicals following dermal exposure. 
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Table  1. Summary of the information requirements for predicting skin metabolism and potential sources for leveraging data from existing studies  

Information Required Potential Sources of Information* Applicability to dermal route or adjustments  

required 

Enzyme(s) responsible 

- consider affinity, selectivity and competing 

pathways 

Existing data on biotransformations of parent or “similar” compounds 

available in literature or on-line databases. 

Software available to identify whether compounds are potential 

substrates for individual enzymes and to predict enzyme-substrate 

interactions (e.g. binding affinity / docking calculations). 

Existing data largely derived from liver studies; 

differences in enzymes present in skin versus liver 

need to be accounted for. 

Regional enzyme expression level Increasing availability of qualitative and quantitative experimental 

data for regional enzyme expression and activity levels (e.g. detection 

in native skin or skin models, mRNA and protein analysis; liver:skin 

expression ratios). 

- NB high variability in measurements between individuals and 

between anatomical sites of the same individual; significant inter-

species differences. 

Many data generated for liver historically, 

however, recently, more focus on dermally 

expressed enzymes; comparison of expression 

ratios enables adjustments to be made 

comparing liver:skin activity. 

Rate of reaction 

- Vmax; Km; Kcat 

 

Data available in literature and on-line compilations (e.g 

http://www.brenda-enzymes.info/; accessed May 2017); limited 

number of QSAR models currently available (curation of existing data 

may enable more models to be developed); software packages 

available to predict Vmax and Km. 

Relate to intrinsic properties of a given enzyme 

and substrate; differences in rate at which parent 

is presented to metabolisng enzymes via the 

different routes needs to be considered. 

Likelihood of reaction  

- Overall potential to be metabolised 

 

 

- Reaction occurence ratio 

Literature data available for overall likelihood of metabolism (i.e. 

fraction excreted unchanged / total clearance (mostly for drugs); 

QSAR models available for clearance and fraction excreted 

unchanged. 

 

Occurrence ratios can be statistically derived from known reactions 

and applied within predicitive software to rank more likely metabolic 

routes. 

Most data and models generated using liver 

studies; differences between skin and liver need 

to be accounted for (e.g. the likelihood of a given 

metabolic route given differences in expression 

ratios between the two organs). 
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Potential induction / inhibition Known for some enzymes (e.g. potential for induction / inhibition of 

enzymes following co-administration of drugs well documented); 

computer packages available that predict potential for enzyme 

inhibition. 

Current data mostly dervied from liver studies; 

consider differences in exposure scenarios – e.g. 

application of personal care products may be at 

low dose over many years with potential to 

induce enzyme activity. 

Identity of metabolite(s) Considerable amount of data available from literature and on-line 

resources providing known metabolites of many chemicals 

(predominantly drugs). 

Wide range of software packages available to predict potential 

metabolites from a given chemical structure. 

Majority of packages developed using data from 

liver studies; consider applicability to skin where 

expression of the relevant enzyme is reduced or 

absent.  

Note: OECD QSAR Toolbox has a specific skin 

metabolism simulator; Meteor Nexus (Lhasa 

Limited, Leeds) enables metabolites derived from 

phase I or phase II  enzymes to be generated 

separately. 

Stability of metabolite 

- potential for further metabolism 

- potential to form reactive metabolites 

Complete metabolic trees may be predicted for compounds including 

phase I and phase II metabolism. 

Structural alerts developed to identify potential reactive metabolites. 

Software to predict metabolic trees largely 

developed using data from liver – requires  

consideration of differential enzyme expression 

between skin and liver. 

Structural alerts are based on intrinsic structural 

features, however, potential toxicity is also 

dependent on site of metabolite formation (e.g. 

liver toxicity versus skin sensitisation). 

*Details of software are given in Table 3; literature resources, databases and existing (Q)SARs are detailed in Section 1
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Table 2. Summary of the additional information requirements relevant to risk assessment and potential sources of data 

Information Required Potential Sources of Information* Applicability to dermal route or adjustments 

required 

External Exposure Scenarios 

Extent of incidental exposure: 

Overall exposure in the workplace, home or 

public areas relating to amount, duration, 

frequency of exposure and control measures. 

Several methods are available to measure or model dermal exposure at 

work, in the home or in public areas. A wide range of methodologies 

and tools (including DREAM, DERM, EASE, MEASE, Riskof Derm, 

ECOTOC TRA, BEAT, ConsExpo, Spray Expo and a range of pesticide-

specific models) were reviewed in detail by an expert working group of 

the World Health Organisation [1]. 

 Derived for dermal exposure 

Extent of intentional exposure: 

Exposure as a result of intentional  

application of pharmaceuticals or personal 

care products, relating to amount, duration, 

frequency of exposure, wash-off/leave-on 

scenarios and/or use of occlusion. 

Data for application of pharmaceuticals are available from the relevant 

prescribing information / dosing regimen.  

The Notes of Guidance from the Scientific Committee on Consumer 

Safety [2] provide details for estimating systemic exposure following 

dermal application of personal care products based on in-use scenarios.  

Includes tables for estimating areas of exposure and frequency of 

application based on use cases (e.g. hand wash, body lotion, hair dyes 

etc).  

 Derived for dermal exposure 

Distrbution Within Skin 

Dermal absorption 

Skin permeability 

Exisiting collations within the literature; reports of the Scientific 

Committee in Consumer Safety (SCCS); databases (e.g. COSMOS db, 

http://www.cosmostox.eu; accessed May 2017); (Quantitative) 

Structure-Activity Relationship ((Q)SAR) models; computer packages. 

Derived for dermal exposure 
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Rate and extent of uptake in skin layers Spreadsheet-based compuational algorithms using simple physico-

chemical properties that may be measured or predicted using freely 

available software [3, 4]; mathematical models for drug transport in 

skin [5-6]. 

Physiologically-based pharmacokinetic (PBPK) models; computer 

packages. 

Derived for dermal exposure or, in the case of 

PBPK modelling, readily adapted to dermal 

route. 

Effect of formulation, solvent, vehicle, 

mixture components, occlusion, etc 

Limited number of QSAR models available relating to how the effect of 

formulation, choice of solvent or vehicle may affect dermal uptake [7-

9]. 

Derived for dermal exposure 

Potential to Elicit Toxicity 

Prediction of intrinisc hazard 

(for both parent and metabolite) 

Wide range of software available to predict toxicity or to identify 

presence of strucutral features associated with toxicity (structural 

alerts). 

Inherent property of parent or metabolite, 

determined by its structure; intrinsic hazard is 

not dependent on route of administration, 

although resulting toxicity may be dependent 

on route of administration. 

Distribution with organism; subsequent 

location of parent or metabolite 

PBPK models can be used to predict the time-course of parents and 

metabolites in individual organs of the body. 

PBPK models are designed to be flexible 

concerning route of administration, therefore 

are readily adjustable for dermal exposure. 

*Details of computer packages given in Table 5; literature resources, databases and existing (Q)SARs are detailed in Section 1 
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Table 3. In silico tools (predominantly based on liver metabolism) to assist in the prediction of skin metabolism 

Software Capability / Methodology  Availability Key Reference or Website 

Tools to identify biotransformation pathways, sites of metabolism and the enzyme(s) responsible 

ACD/Percepta Platform 
(Regioselectivity of 
metabolism module) 

Uses probabilistic models to predict likely sites of metabolism for the 
main metabolic reactions mediated by human liver microsomes and 
five key individual CYPs (CYP3A4, CYP2D6, CYP2C9, CYP2C19 and 
CYP1A2). Provides a reliability score for predictions based on 
similarity to training set.  

Commercial http://www.acdlabs.com/products/pe
rcepta/predictors.php; accessed May 
2017 

ADMET Predictor 
(metabolism module) from 
Simulations Plus 

Identifies likely sites of metabolic oxidation by CYP P450 enzymes: 
1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 3A4. 
Classifies whether a molecule is likely to be a substrate for these CYP 
isoforms. 
Uses a curated and updated version of the Accelrys Metabolite 
database, including additional literature datasets, to train models.  

Commercial http://www.simulations-
plus.com/Default.aspx; accessed May 
2017 

ChemTunes BioPath - 
Metabolism Database 

Provides liver metabolism information for nearly 500 xenobiotics 
(drugs) over 2000 enzymatic reactions. Also houses over 4,000 
enzymatic reactions for nearly 3,000 molecules involved in 
endogenous metabolism. Searchable for reaction centres, types and 
pathways.  

Commercial; Free evaluation 
possible upon request  

https://www.mn-
am.com/php/profile.php; accessed 
May 2017 

CypScore Predicts likely sites of metabolism for CYP 450-mediated 
metabolism; uses six models for key oxidation reactions. Models 
based on reactivity descriptors from surface-based properties (using 
Parasurf based on AM1 semi-empirical molecular orbital theory); 
trained using Bayer Schering in-house MajorMetabolite database. 

CypScore Pipeline Pilot 
Components freely available 
(differential licensing 
/support for academia, 
government, industry) 

http://www.cacheresearch.com/cepos
.html; accessed May 2017 

FAst MEtaboliser (FAME) Predicts sites of metabolism – Phase I and ll metabolism can be 
predicted, both global and species-specific (human, rat and dog) 
models are available; uses random forest methodology, based on 
seven chemical descriptors; trained on over 20,000 diverse 
molecules. 

Freely available from authors 
for academia and non-profit 
organisations 

[11] 

IMPACTS 

 

Predicts sites of metabolism for CYP mediated reactions using 
docking, transition state modelling and substrate reactivity 
prediction. 

Commercial http://www.molecularforecaster.com/
products.html; accessed May 2017 
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MetaPred web server Predicts CYP isoform responsible for metabolising drug molecules 
using a Support Vector Machine approach (considers substrates of 
CYP3A4, CYP2D6, CYP1A2, CYP2C9 and CYP2C19). 

Freely available http://crdd.osdd.net/raghava/metapr
ed/; accessed May 2017 

MetaPrint2D Predicts sites of metabolism in human, rat and or dog based on 
knowledge derived from data mining and statistical analysis. 

Freely available http://www-
metaprint2d.ch.cam.ac.uk/metaprint2
d; accessed May 2017 

MetaSite Predicts metabolic transformations for CYP and flavin-containing 
monooxygenase mediated phase I reactions; takes account of 
enzyme substrate recognition and chemical transformations. 
Identifies likely sites of metabolism and potential metabolites 
(ranked based on site of metabolism). 

Commercial http://www.moldiscovery.com/softwa
re/metasite/; accessed May 2017 

MEXAlert A screening tool to predict sites on a molecule where phase II 
metabolism (i.e. conjugation reactions) may occur indicating high 
probability of first pass elimination from the body. 

Commercial http://www.compudrug.com/mexaler
t; accessed May 2017 

SMARTCyp Predicts site of metabolism for CYP mediated reactions (CYP1A2, CYP 
CYP1A2, CYP 2A6, CYP2B6, CYP2C8, CYP2C19, CYP2E1, CYP3A4) by 
matching fragments with those in a fragment library for which 
reactivities have been pre-computed using density functional theory, 
transition state calculations and solvent accessible surface area. 

Freely available http://www.farma.ku.dk/smartcyp/in
dex.php; accessed May 2017 

StarDrop P450 
Metabolism Prediction 
module130  

Predicts sites of metabolism and relative vulnerability of that site for  
CYP3A4, CYP2D6, CYP2C9, CYP1A2, CYP2C19, CYP2C8 and CYP2E1 
mediated reactions, using quantum mechanical simulations of 
chemical reactions. 

Commercial http://www.optibrium.com/stardrop/
stardrop-p450-models.php; accessed 
May 2017 

VirtualToxLab Models binding of small molecules to CYP1A2, CYP2D6, CYP2C9 and 
CYP3A4. 

Freely available for 
universities, government 
agencies, regulatory bodies 
and non-profit organisations 

http://www.biograf.ch/index.php?id=
projects&subid=virtualtoxlab; 
accessed May 2017 

WhichCyp Predicts which CYP isoform may bind query drug-like molecules 
(considers CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP3A4). 

Freely available http://130.225.252.198/whichcyp/ind
ex.php; accessed May 2017 

Tools to predict reaction kinetics (Vmax, Km, CLint) 

ADMET Predictor 
(metabolism module) from 
Simulations Plus 

Predicts Km and Vmax values for hydroxylation catalysed by CYP 
P450 enzymes: 1A2, 2C9, 2C19, 2D6, 3A4; predicts CLint values 
resulting from metabolic activity of these five enzymes. 
Uses artificial neural network ensembles and 2D molecular 
descriptors; trained using experimental literature data. 

Commercial http://www.simulations-
plus.com/Default.aspx; accessed May 
2017 
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Tools to predict potential for enzyme inhibition 

Biovia Pipeline pilot 
ADME-Tox  

Predicts CYP 2D6 enzyme inhibition. Commercial http://accelrys.com/products/datashe
ets/qsar-admet-and-predictive-
toxicology-with-ds.pdf; accessed May 
2017 

oCHEM (online chemical 
database with modelling 
environment) 

Predicts potential of a compound to inhibit CYP3A4, CYP2D6, 
CYPC19, CYP2C9 and CYP1A2. 

Freely available https://ochem.eu/home/show.do 

Tools to predict the identity of the metabolites formed (likelihood of a particular reaction occurring or metabolite forming) 

ChemTunes/ToxGPS Liver 
BioPath workflow 

Generates metabolites based on the reaction rules learned from the 
ChemTunes BioPath Database using reaction chemotype rules  to 
identify reactive sites; gives prioritised metabolites 

Commercial https://www.mn-
am.com/products/toxgps; accessed 
May 2017 

META Ultra Uses a database of 15, 000 to predict sites of metabolism and 
metabolite trees for query chemicals human metabolite 
transformations. 

Commercial http://www.multicase.com/meta-
ultra; accessed May 2017 

Metabolexpert A rule-based system for predicting potential metabolites in humans, 
animals or plants; presents results as a metabolic tree. 

Commercial http://www.compudrug.com/metabol
expert; accessed May 2017 

MetaSite Predicts structures of the most likely metabolites of a compound, 
ranking is derived from the site of metabolism prediction (see 
above). 

Commercial http://www.moldiscovery.com/soft_
metasite.php; accessed May 2017 

Meteor Nexus Uses expert knowledge-based rules to predict metabolites; results 
are presented as an interactive tree with supporting data. Scoring 
can be applied to ascertain the relative likelihood of a metabolite 
being observed.  

Lhasa is a “not-for-profit” 
organisation 

https://www.lhasalimited.org/meteor
/; accessed May 2017 

MetaPrint 2D-react 
 

Highlights potential sites of metabolism and indicates relative 
likelihood of metabolism occurring at these sites; identifies potential 
reactions and depicts metabolites. Uses data mining of Metabolite 
database and probabilistic scoring. 

Freely available http://www-
metaprint2d.ch.cam.ac.uk/metaprint2
d-react; accessed May 2017 

OECD QSAR Application 
Toolbox 

Predicts metabolites following skin or liver metabolism of a 
compound of interest; contains a database of known 
biotransformations. 

Freely available https://www.qsartoolbox.org; 
accessed May 2017 
 

TIMES Predicts metabolic maps using a library of biotransformations and 
abiotic reactions; transformations can be prioritised based on 
probability of occurrence. 

Commercial http://oasis-
lmc.org/products/software/times.asp; 
accessed May 2017 
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Table 4. Representative examples of the types of data available relating to skin (versus liver) metabolism 

Parent compounds Information available relating to skin / liver metabolism Reference 

2-butoxyethanol; ethanol Rat skin demonstrated to metabolise 2-butoxyethanol and ethanol in presence of NAD+ suggesting 
aldehyde dehydrogenase (ALDH) and alcohol dehydrogenase (ADH) activity; relative expressions of 
isoforms of ADH between skin and liver influence capacity to metabolise alcohols of differing chain length. 
Rat skin predominantly expresses ADH4 whereas in liver cytosol ADH1 predominates. 

[42] 

Methylsalicylate; PABA  
(p-aminobenzoic acid); 
dapsone; 
sulfamethoxazole; 
minoxidil; betamethasone 
17-valerate; propranolol; 
capsaicin 

Provides evidence for expression of a range cytochromes P450, flavin monooxygenases, glutathione S-
transferases, N-acetyl transferases and sulfotransferases (at mRNA and / or protein level of expression) in 
skin. 
The following biotransformations are reported for skin: methylsalicylate metabolised to salicylate; PABA, 
dapsone and sulfamethoxazole metabolised to N-acetyl metabolites. Dapsone and sulfamethoxazole 
undergo N-hydroxylation - in skin flavin containing monooxygenase 3 (FMO3) and peroxidases are likely to 
be responsible for this transformation, although in liver this is accomplished by CYP2C9 (lacking in skin); 
minoxidil is metabolised to minoxidil sulphate; betamethasone 17-valerate metabolised to active 
betamethasone; oxidative metabolites of propranolol observed; capsaicin shown to undergo hydrolysis 
and oxidation. 

[10] 

4-amino-2-hydroxytoluene 
(AHT) 

N-acetyl AHT; AHT sulphate and AHT glucuronide detected; differential metabolism reported depending 
on route of administration (intravenous, oral or dermal). 

[43] 

PABA, benzocaine, azo 
colour reduction products; 
testosterone; estradiol 

Compounds containing primary amino group were substrates for N-acetyltransferase activity in skin; 
reference provides evidence for differential expression of a range of enzymes between skin and liver; 
metabolism detected by loss of parent in some cases where metabolites could not be identified; skin 

preferentially forms 5-hydroxy metabolites of testosterone whereas liver forms both  and  isomers; 
also formed metabolites that co-chromatographed with 5x-androstane-3,17-diol; 4-androstane- 3,17-

dione; and 5-dihydrotestosterone. 

[44] 

Benzoic acid, benzocaine, 
PABA; methylsalicylate; 
benzyl alcohol 

Approximately 7% of the absorbed dose of benzoic acid formed hippuric acid (glycine conjugate of benzoic 
acid); 80% of absorbed benzocaine underwent N-acetylation with <10% undergoing ester hydrolysis; PABA 
also metabolised to N-acetyl derivative; methylsalicylate hydrolysed by esterases to salicylic acid and 21% 
further metabolised via glycine conjugation to salicyluric acid; benzyl alcohol oxidised to benzoic acid; aryl 
hydrocarbon hydroxylase detected at >10:1 ratio between liver:skin. 

[44] 

Benzo[a]pyrene; 
trinitrobenzene; 
phenanthrene 

Benzo[a]pyrene hydrolysed to benzo[a]pyrene 7,8,9,10-tetrahydrobenzo[a]pyrene, nitro groups on 
trinitrobenzene reduced to amino groups which may be further acetylated to acetamide derivative – 1,3,5-
benzene triacetamide and 3,5-dinitroaniline detected; phenanthrene metabolised to 9,10-dihydrodiol, 3,4-
dihydrodiol, 1,2-dihydrodiol and traces of hydroxyl phenanthrenes. 

[45] 

Butylated hydroxytoluene 
(BHT) 

4-hydroxy derivative of BHT detected in skin. [46] 
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Trans cinnamic alcohol; 
trans-cinnamaldehyde; 

Formation of trans-cinnamic acid and cinnamic alcohol via alcohol dehydrogenase and aldehyde 
dehydrogenases. 

[47] 
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Table 5. In silico tools to assist in the prediction of additional factors relevant to risk assessment 

Software Capability / Methodology Availability Key Reference or Website 

Tools to predict dermal exposure 

ConsExpo Web A mathematical model used to assess exposure to chemicals from 
everyday consumer products (e.g. household cleaning products and 
personal care products (provided by the National Institute for Public 
Health and the Environment, Netherlands), considers inhalational, 
oral and dermal exposure. 

Freely available (after 
registration) 

http://www.rivm.nl/en/Topics/C/Cons
Expo; accessed May 2017 

ECETOC TRA  A tool for Targeted Risk Assessment (TRA) provided by the European 
Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC). 
Calculates risk of exposure from chemicals to workers, consumers 
and the environment. 

Freely available (after 
registration) 

http://www.ecetoc.org/tools/targeted
-risk-assessment-tra/; accessed May 
2017 

RISKOFDERM The outcome of a 5th Framework Programme of the European 
Community, providing a Toolkit for predicting dermal exposure. 

Freely available (after 
registration) 

http://www.eurofins.com/consumer-
product-testing/services/research-
development/projects-on-skin-
exposure-and-protection/riskofderm-
skin-exposure-and-risk-assessment/; 
accessed May 2017 

Stoffenmanager 
(substance manager) 

Web-based quantitative exposure modelling tool for both 
respiratory and dermal exposure. 

Freely available (after 
registration) 

https://stoffenmanager.nl/; accessed 
May 2017 

Tools to predict uptake in skin 

DermWin Predicts dermal permeability coefficient (Kp); part of the Estimation 
Programs Interface (EPI) Suite software, developed by the US 
Environment Protection Agency. 

Free http://www.epa.gov/tsca-screening-
tools/download-epi-suitetm-
estimation-program-interface; 
accessed May 2017 

Excel spreadsheet-based 
model 

A spreadsheet-based model to estimate bioavailability following 
dermal exposure, predicts transient skin absorption through stratum 
corneum, viable epidermis and dermis. 

Free [3] 

Skin-in-Silico Predicts absorption and permeation of chemicals and formulations 
into and through skin.  

Commercial https://www.xemet.com/en/products
/#skin; accessed 2017 

Tools to predict toxicity or to identify structural features associated with toxicity 
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Biovia Discovery Studio 
(incorporating TOxicity 
Prediction by Komputer 
Assisted Technology -
TOPKAT) 

Predicts a range of ADMET properties including hepatotoxicity and 
identifies undesirable features using published SMARTS. 
TOPKAT predicts many toxicity endpoints (such as mutagenicity, 
carcinogenicity, developmental toxicity, LC50 (rat, fish, daphnia), skin 
and eye irritancy. 

Commercial http://accelrys.com/products/collabor
ative-science/biovia-discovery-
studio/qsar-admet-and-predictive-
toxicology.html; accessed May 2017 

Case Ultra Models Provides a collection of toxicity model bundles for endpoints 
including hepatotoxicity, renal toxicity, developmental and 
reproductive toxicity, skin and eye toxicity etc. 

Commercial http://www.multicase.com/case-
ultra-models; accessed May 2017 

ChemTunes ToxGPS A knowledgebase for toxicity predictions to support safety 
evaluation and risk assessment of chemicals. Provides toxicity 
outcomes by using both QSAR and rule-based approaches. Statistical 
QSAR models are stratified across the mechanism of action pathways 
and the structure rules, developed by domain experts are enhanced 
by chemoinformatics approaches. Both QSAR and rule-based 
outcomes are then combined to reflect the weight of evidence of all 
information. The predictions are linked directly to large/high quality 
ChemTunes toxicity database through nearest neighbours. 

Commercial https://www.mn-am.com/products; 
accessed May 2017 

Chemotyper Identifies chemical chemotypes (substructures or subgraphs) within 
a dataset of chemicals that may be used to search for structural 
alerts for toxicity. 

Freely available https:chemotyper.org; accessed May 
2017 

DEREK Nexus Uses rules derived from expert knowledge to predict toxicity 
endpoints including carcinogenicity, mutagenicity, genotoxicty, skin 
sensitisation, teratogenicity, irritation respiratory sensitisation and 
reproductive toxicity; provides a reasoned prediction of the 
likelihood of the toxicity. 

Lhasa is a “not-for-profit” 
organisation 

https://www.lhasalimited.org/product
s/derek-nexus.htm; accessed May 
2017 

HazardExpert Pro Uses a rule-based system to predict oncogenicity, mutagenicity, 
teratogenicity, membrane irritation, sensitivity, immunotoxicity and 
neurotoxicity. 

Commercial http://www.compudrug.com/hazarde
xpertpro; accessed May 2017 

Leadscope QSAR Models Provides a series of QSAR models to predict endpoints including 
(non-human) developmental, genetic, reproductive and 
neurotoxicity and human cardiac, hepatobiliary and urinary tract 
toxicity. Also offers a rule-based system for genetic toxicity alerts 
based on publically-available alerts and a toxicity database of over 
180,000 chemical records. 

Commercial http://www.leadscope.com/model_ap
pliers/; accessed May 2017 
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oCHEM (online chemical 
database with modelling 
environment) 

Possesses a range of predictive models (including AhR activation, 
AMES mutagenicity etc) and structural alerts that can be used to 
screen chemicals for molecular features associated with toxicity. 

Freely available https://ochem.eu/home/show.do; 
accessed May 2017 

OECD QSAR Toolbox The Toolbox uses existing data to fill gaps in knowledge for a range 
of (eco)toxicity endpoints. It identifies relevant structural features 
for a “target” compound that may be associated with a particular 
mechanism of toxicity (for example structural alerts associated with 
skin sensitisation, mutagenicity, carcinogenicity etc). Other 
compounds within its databases possessing the same characteristics 
as the “target” are identified enabling a read-across prediction. The 
Toolbox includes biotic and abiotic metabolism simulators enabling 
information regarding metabolites to be incorporated in read-across 
predictions. 

Freely available http://www.oecd.org/chemicalsafety/
risk-
assessment/theoecdqsartoolbox.htm; 
accessed May 2017 
[55] 

(Prediction of Activity 
Spectra for Substances) 
PASS online 

Predicts over 3,500 types of biological activity (including 
pharmacology, toxicity and interaction with enzymes or 
transporters) using chemical structure alone. Prediction is based on 
analysis of structure activity relationships for >250,000 substances. 

Freely available (after 
registration) 

http://www.way2drug.com/passonlin
e/; accessed May 2017 

ToxPredict Estimates hazard from chemical structure, provides 16 models for 14 
toxicity endpoints. 

Freely available https://apps.ideaconsult.net/ToxPredi
ct; accessed May 2017 

Toxtree Estimates toxic hazard for a range of endpoints (human health and 
environmental) based on a decision tree approach; encodes 
structural alerts for skin sensitisation, activity in micronucleus assay, 
predicts skin and eye irritation, biodegradation etc. 

Freely available http://toxtree.sourceforge.net/; 
accessed May 2017 

VEGA  Virtual models for property Evaluation of chemicals within a Global 
Architecture (VEGA) provides a platform for in silico models to 
support safety evaluation of chemicals. VEGA is a combination of 
QSAR and read-across providing models for toxicity endpoints 
(including skin sensitisation, carcinogenicity, mutagenicity etc) and a 
tool enables evaluation of the result by consideration of the 
applicability domain of the model. 

Freely available http://www.vega-qsar.eu/; accessed 
May 2017 

VirtualToxLab Simulates and quantifies the interaction between a chemical of 
interest and biological target proteins known to trigger adverse 
effects (androgen, aryl hydrocarbon, estrogen α, estrogen β, 
glucocorticoid, hERG, liver X, mineralocorticoid, progesterone, 
thyroid α, thyroid β and peroxisome proliferator-activated 
receptors), uses docking combined with QSAR approaches. 

Freely available for 
universities, government 
agencies, regulatory bodies 
and non-profit organisations 

http://www.biograf.ch/index.php?id=
projects&subid=virtualtoxlab; 
accessed May 2017 
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Figure 1. Factors that govern the potential for a parent or metabolite to 

elicit toxicity and types of data required to aid prediction 


