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ABSTRACT 

Pure alexia arises from damage to the left posterior fusiform gyrus (pFG) and the striking 

reading disorder that defines this condition has meant that such patients are often cited as 

evidence for the specialisation of this region to processing of written words.  There is, 

however, an alternative view that suggests this region is devoted to processing of high acuity 

foveal input, which is particularly salient for complex visual stimuli like letter strings.  

Previous reports have highlighted disrupted processing of non-linguistic visual stimuli after 

damage to the left pFG, both for familiar and unfamiliar objects and also for novel faces.  

This study explored the nature of face processing deficits in patients with left pFG damage.  

Identification of famous faces was found to be compromised in both expressive and receptive 

tasks.  Discrimination of novel faces was also impaired, particularly for those that varied in 

terms of second-order spacing information, and this deficit was most apparent for the patients 

with the more severe reading deficits.  Interestingly, discrimination of faces that varied in 

terms of feature identity was considerably better in these patients and it was performance in 

this condition that was related to the size of the length effects shown in reading.  This finding 

complements functional imaging studies showing left pFG activation for faces varying only 

in spacing and frontal activation for faces varying only on features.  These results suggest that 

the sequential part-based processing strategy that promotes the length effect in the reading of 

these patients also allows them to discriminate between faces on the basis of feature identity, 

but processing of second-order configural information is most compromised due to their left 

pFG lesion.  This study supports a view in which the left pFG is specialised for processing of 

high acuity foveal visual information that supports processing of both words and faces.  

KEYWORDS:  posterior fusiform gyrus, ventral occipito-temporal cortex, word recognition, 

pure alexia, face recognition.  
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1. Introduction 

 

Humans are highly skilled at visual processing, capable of rapid and accurate identification of 

a wide range of objects over variations in lighting and viewpoint.  Two types of stimuli with 

which we have considerable experience and expertise are faces and words.  Reading is a 

relatively late-acquired process both in evolutionary and developmental terms (Patterson & 

Lambon Ralph, 1999), yet it is an essential and highly practised skill in modern literate 

societies.  The observation of a striking disorder of reading called pure alexia (PA) after 

damage to a region of left ventral occipito-temporal cortex, corresponding to the posterior 

fusiform gyrus (pFG), suggests that this region comes to specialise in rapid parallel 

processing of the familiar letter patterns that make up words (e.g., Vinckier et al., 2007).  

Others have instead focussed on the particular visual demands posed by reading (e.g., 

Behrmann & Plaut, 2013b), suggesting that left pFG is involved in processing items that 

require high acuity foveal vision, consistent with neuroimaging studies showing this region to 

be active not only for words but other complex visual stimuli such as faces.  The goal of this 

paper was to provide a detailed examination of face processing abilities in a large sample of 

patients with damage to the left pFG and associated reading deficits of varying severity.  

PA refers to a reading deficit that is apparent in the context of intact writing, normal spelling 

and no aphasia (Benson & Geschwind, 1969; Capitani et al., 2009).  The reading performance 

is defined as pathologically slow, inefficient processing of letter strings across various 

transformations (e.g., font, size and case) with an exaggerated effect of word length on speed 

and/or accuracy of reading performance (Bub, Arguin, & Lecours, 1993; Déjerine, 1892; 

Shallice & Saffran, 1986; Warrington & Shallice, 1980). In addition to effortful reading, 

these patients routinely use a sequential and sometimes explicit part-based (i.e., letter-by-

letter) reading strategy to circumvent their inability to recognise whole words by boosting 

letter level activation.  This contrasts with normal skilled adult reading, where letters are 

recognised in parallel with a negligible effect of word length on performance (Weekes, 

1997).  As these patients do not present with a frank visual object agnosia (at least when 

measured in terms of reduced accuracy: cf. Roberts et al., 2013), PA has been viewed by 

some as a reading-specific deficit (Arguin & Bub, 1993; Bub & Arguin, 1995; Howard, 1991; 

Saffran & Coslett, 1998; Warrington & Shallice, 1980; Yong, Warren, Warrington, & Crutch, 

2013). This is consistent with the purported specialisation of the left pFG region, sometimes 
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called the “visual word form area” (VWFA: Cohen & Dehaene, 2004; Cohen et al., 2000; 

Cohen et al., 2004; Cohen et al., 2002; Dehaene & Cohen, 2011), for orthographic 

processing.  

An alternative perspective on PA assumes that the inefficient reading is symptomatic of a 

visual processing deficit which reveals itself most readily with orthographic stimuli due to the 

intrinsically high demands they place on the visual system (Behrmann, Nelson, & Sekuler, 

1998a; Behrmann & Plaut, 2013b; Behrmann, Plaut, & Nelson, 1998b; Behrmann & Shallice, 

1995; Farah & McClelland, 1991; Friedman & Alexander, 1984; Mycroft, Behrmann, & Kay, 

2009; Nestor, Behrmann, & Plaut, 2013; Roberts, Lambon Ralph, & Woollams, 2010; 

Roberts et al., 2013; Starrfelt & Behrmann, 2011; Starrfelt & Gerlach, 2007; Starrfelt, 

Habekost, & Gerlach, 2010; Starrfelt, Habekost, & Leff, 2009).  Efficient reading relies not 

only on the identification of component letters but also heavily on the accurate encoding of 

letter position and relative letter order.  Neuroimaging results indicate that the VWFA is 

sensitive to the familiarity of subword letter combinations like bigrams and trigrams 

(Vinckier et al., 2007; Binder et al., 2006).  Visual processing deficits in PA could therefore 

undermine the rapid and accurate perception of the configuration of letter combinations that 

allow for identification of specific words.   

It has been proposed that higher order visual processing areas are retinotopically organised, 

with a medial to lateral gradation of peripheral to foveal information across the ventral 

occipito-temporal cortex in both hemispheres (vOT; Hasson, Harel, Levy, & Malach, 2003; 

Hasson, Levy, Behrmann, Hendler, & Malach, 2002; Levy, Hasson, Avidan, Hendler, & 

Malach, 2001; Malach, Levy, & Hasson, 2002).  Visual acuity (sensitivity to high spatial 

frequencies) is highest in the fovea and drops toward the periphery (Fiset, Gosselin, Blais, & 

Arguin, 2006a; Fiset, Arguin, & Fiset, 2006b; Starrfelt et al., 2009; Tadros, Dupuis-Roy, 

Fiset, Arguin, & Gosselin, 2010, 2013).  Foveal vision is projected to the pFG and this region 

is maximally active for stimuli that require fine visual discrimination.  This is in keeping with 

work demonstrating that (1) skilled readers show enhanced length effects when  words are 

filtered to include only low spatial frequency information (Fiset et al., 2006a; Tadros, Fiset, 

Gosselin, & Arguin, 2009), (2) patients with left pFG lesions show reduced sensitivity to 

medium to high spatial frequencies (Roberts et al., 2013;  but see also: Starrfelt, Nielsen, 

Habekost, & Andersen, 2013) and (3) the left hemisphere becomes biased for high spatial 

frequency input over the course of development (Ossowski & Behrmann, 2015). 
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In line with evidence that non-language visual stimuli elicit activation in the VWFA 

(Behrmann & Plaut, 2013a, 2013b; Price & Devlin, 2011; Price et al., 2006; Price, 

Winterburn, Giraud, Moore, & Noppeney, 2003; Vogel, Petersen, & Schlaggar, 2012), the 

retinotopic account predicts that patients with left pFG damage should show processing 

deficits for all stimuli that require high acuity vision by virtue of their visual complexity and 

potential confusability.  There is now a body of evidence demonstrating that PA patients are 

also impaired for visually complex non-linguistic stimuli when reaction times are considered 

as a measure of processing efficiency.  An initial demonstration showed a group of five PA 

patients to be impaired in naming line drawings of familiar objects rated high in visual 

complexity (Behrmann et al., 1998a).  Deficits in both object naming and object name-to-

picture matching in patients with left pFG damage have more recently been found to be 

linked to the severity of the reading impairment as measured by the size of the length effect 

(Roberts et al., 2013). Processing unfamiliar non-linguistic symbols and checkerboard 

patterns has also been found to be impaired in letter-by-letter readers (Mycroft et al., 2009).  

Matching performance of patients with left pFG lesions on checkerboard stimuli and 

logographic characters is particularly impaired when these are both complex and presented 

with visually similar foils, and it is under these conditions that the strongest correlations with 

reading performance in terms of the size of the length effects emerge (Roberts et al., 2013). 

Face recognition involves both feature identification and configural processing of various 

types (first-order feature arrangement, second-order feature spacing and gestalt holistic 

processing: Maurer, Grand, & Mondloch, 2002). Fluent reading is similar to face recognition 

in that it also involves both letter identification and various types of configural processing 

(letter position, relative letter order and global word shape processing).   Indeed, a number of 

functional neuroimaging studies have found overlapping activations in left pFG for words 

and faces (Hasson et al., 2002; Kveraga, Boshyan, & Bar, 2007; Mei et al., 2010; Vogel et al., 

2012; Woodhead, Wise, Sereno, & Leech, 2011), with some even revealing overlap at the 

voxel level (Nestor et al., 2013).  In addition, although face identification deficits are 

commonly associated with damage to the right pFG, including the fusiform face area (FFA), 

these are worse in cases of bilateral damage (Barton, 2008), indicating a contribution of left 

pFG as well (Mestry, Donnelly, Menneer, & McCarthy, 2012).  We would therefore expect to 

see evidence of face processing deficits in patients with left pFG damage, despite the 

functional preservation of right hemisphere occipito-temporal regions implicated in face 

processing.   
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Indeed, a number of studies to date have reported cases in which patients with damage to the 

left fusiform have shown evidence of face processing deficits (Behrmann & Plaut, 2013a; 

Bub, 2006; Farah, 1991; Liu, Wang, & Yen, 2011; Mestry et al., 2012). Behrmann and Plaut 

(2013a) used a discrimination task that involved different trials where the distractor had been 

morphed to the target to differing degrees, which affects feature-based and configural 

processing, and their four PA patients showed similar deficits to those of their three 

prosopagnosic patients with damage to the right pFG.  In matching tasks involving changes 

over depth rotation and orientation, both thought to disrupt configural processing, both the 

PA and prosopagnosic patients were impaired.  It is possible the impairment for PA patients 

arose due to disruption of basic featural processing, given this information is carried by the 

higher spatial frequencies (de Heering & Maurer, 2013; Hayes, Morrone, & Burr, 1986).  At 

the same time, although it has been suggested that configural information is relatively 

preserved at lower spatial frequencies (Goffaux et al., 2005), it is also the case that skilled 

adults are sensitive to very subtle second-order variations that are close to the limits of acuity 

(Haig, 1984; Maurer et al., 2002) and hence configural processing may well be disrupted in 

PA.  Support for this notion is provided by functional imaging studies showing left pFG 

activation when processing faces that differ only in terms of second-order feature spacing 

(Rhodes, Michie, Hughes, & Byatt, 2009).   

The mechanisms underpinning the face identification deficits in PA therefore remain unclear.  

This work aimed to examine face processing in a large sample of patients with left pFG 

damage and associated reading deficits of varying severity.  We first explored whether nine 

patients showed deficits in familiar face identification in both expressive and receptive tasks.  

Although these patients do not present with prosopagnosia, they may well be impaired in 

their speed of identification, even for familiar faces that offer the opportunity for top-down 

support.  We then assessed performance for 16 patients on a discrimination task involving 

novel faces that varied on feature identity, second-order spacing (by manipulation of internal 

distribution or external contour), or both.  To the extent that letter identification can be 

preserved in PA (Behrmann and Plaut, 2013a), but that problems in the perception of  the 

configuration of letters undermines fluent reading, we expected our patients with left pFG 

damage will show particular deficits for the second-order spacing conditions but relatively 

good performance for the feature identity condition.  This prediction agrees with the finding 

that, in normal participants, more activation is seen for the spacing than featural condition in 

both right and left pFG, while higher activation for the featural than spacing condition is 
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observed mainly in frontal regions (see Figure 3 and Table 2, Maurer et al., 2007).   If 

damage to left pFG undermines the configural processing both for words and faces, then we 

would further expect that novel face processing deficits would be linked to the severity of the 

reading disorder, both categorically and correlationally.  

 

2. Method 

2.1 Patients 

The cohort comprised of nine patients recruited from local NHS speech and language therapy 

services in the United Kingdom (UK) and a further 10 patients through collaboration with the 

University of Arizona (AZ).  The study was approved by the local NRES committee in the 

UK and Institutional Review Board of the University of Arizona, and informed consent was 

obtained in all cases.  To explore the impact of severity upon performance, it was necessary 

to recruit a broad range of patients using both behavioural and lesion criteria.  Therefore, 

inclusion was based on neuroradiological evidence of damage to left ventral occipito-

temporal cortex and/or a reading deficit characterised by an abnormally strong effect of 

length on reading speed.  There was a range of severity among the recruited patients as 

measured by reading speed on a subset of the 3, 4, 5, and 6 letter word lists developed by 

Weekes (1997).  For measuring correct RTs in tasks requiring a spoken response (e.g., 

reading, face identification), RTs were measured in the AZ patients using a voice key.  For 

the (typically more severe) UK patients, RTs were established offline via a digital recording 

of each experimental trial using WavePad software (NCH, Swiftsound: www.nch.com. 

au/wavepad).  The reading of a number of these UK patients was characterised by overt 

letter-by-letter identification of some letters in the string, and hence a voicekey would have 

produced inaccurate reaction times corresponding to identification of first letter.  The 

waveforms of the sound files for each patient were inspected to derive a latency from the 

onset of stimulus presentation (indicated by a short 50ms beep) to the onset of the correct 

reading response for that word.  Given that pure alexia is characterised by the abnormal 

length effect as well as slow reading times, we stratified our patients with left pFG damage 

according to the slope of their length effect, as computed over their average correct reaction 

times for 3, 4, 5 and 6 letter  words (after Roberts et al., 2013).  The results are shown in 

Figure 1a (raw individual patient RT and accuracy data are provided in Supplementary 

Materials).  The sample was split into two severity-based subgroups on the basis of the slope 

http://www.nch.com/
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of their length effect in RT:  a mild-moderate group of 10 patients and a severe group of nine 

patients.  The average reading speed as a function of word length for each group is 

summarised in Figure 1b.  

 

2.2 Lesion Mapping 

Lesions were reconstructed based on high-resolution research MRI or clinical MRI/computed 

tomography (CT) scans that were available for 17 of 19 participants (scans were unavailable 

for two UK patients, FW, KW). A lesion region of interest (ROI) was created for each patient 

using MRIcron software (http://www.cabiatl.com/mricro/mricron/). For research MRI scans, 

lesions were manually drawn directly on the patients’ T1-weighted structural brain images at 

1 mm intervals and then normalized to the standard MNI template brain using the lesion 

volume as a mask during the normalization process (Brett, Leff, Rorden, & Ashburner, 

2001); (Andersen, Rapcsak, & Beeson, 2010). For the clinical CT and MRI scans, lesions 

were manually drawn onto the standard MNI template brain oriented to match the alignment 

of the scans (see Andersen et al. 2010, and Roberts et al., 2013 for additional details of our 

lesion mapping methods). Individual ROIs were subsequently combined to generate the 

lesion overlap maps. As can be seen in Figure 2, most patients had damage to left pFG 

regions that show activation in normal subjects during a reading task. In two cases, imaging 

revealed additional damage to right medial occipital cortex, but in no cases did the lesions 

extend to right hemisphere ventral occipito-temporal regions implicated in face processing 

(i.e., the OFA/FFA).  As can be seen in comparison of the lesion overlap maps in Rows 3 and 

4 of Figure 2, damage to the left pFG was more pronounced and consistent for the severe than 

the mild-moderate groups.  Although lesions did extend beyond this region in some patients 

in both groups, this was not universally the case, and the bottom row of Figure 2 presents the 

lesion map for patient 125, who had a relatively small lesion confined to the left fusiform 

gyrus/occipito-temporal sulcus in the presence of a severe reading impairment (see Figure 1). 

 

2.3 Background Neuropsychological Assessment 

Each patient completed a battery of neuropsychological assessments to give a profile of their 

cognitive abilities.  UK and AZ patients completed slightly different background tests (Tables 

1 and 2, respectively).  For UK patients, who comprised most of the severe subgroup, the 

Visual Object and Space Perception battery (VOSP; Warrington & James, 1991) was used to 

test a range of visual and visuospatial skills such as identifying incomplete letters and naming 
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progressively more difficult silhouettes of common objects (for a detailed description of each 

task, see Warrington & James, 1991). A further battery of assessments explored semantic and 

phonological processing (see Roberts et al., 2013 for full details of these tests). 

Semantic tasks were taken from the Cambridge Semantic Memory test battery (CSM; Adlam, 

Patterson, Bozeat, & Hodges, 2010; Bozeat, Lambon Ralph, Patterson, Garrard, & Hodges, 

2000).  The battery contains 64 items representing 3 subcategories of living things (animals, 

birds, and fruit) and 3 subcategories of artefacts (household items, tools, and vehicles) 

matched for psycholinguistic variables such as familiarity and age of acquisition.  Knowledge 

of all items is assessed in verbal and non-verbal modalities of stimulus and/or response.  The 

semantic memory tests administered include simple oral picture naming, word 

comprehension, and associative picture matching.  For spoken word–picture matching 

(WPM), the participant is presented a spoken name and a picture array consisting of 10 items 

from the same category (e.g., birds); the task is to point to the item named by the examiner.  

Non-verbal associative knowledge is assessed by the Camel and Cactus Test (CCT), designed 

along the principles of the Pyramids and Palm Trees test (PPT; Howard & Patterson, 1992).  

Participants are required to choose one of four alternatives that has an associative relationship 

with the target item.  An additional measure of verbal semantic knowledge, the synonym 

judgment test (Jefferies, Patterson, Jones, & Lambon Ralph, 2009) was also administered, 

which involved deciding which of three words was closest to a target word. 

Phonological tasks included same–different phonological discrimination (PALPA 2; Kay, 

Lesser, & Coltheart, 1992), rhyme judgment (PALPA 15; Kay et al., 1992), and phonological 

segmentation and blending (Patterson & Marcel, 1992).  

On the more visually challenging Silhouettes and Progressive Silhouettes tests of the VOSP, 

the majority of UK patients showed evidence of general visual processing deficits. Most 

patients were impaired in picture naming which is consistent with a visual deficit, although 

this could also reflect additional word finding difficulties. The more severe patients also 

showed mild but measureable impairments on some receptive semantic tests involving only a 

choice response.  All patients had preserved working memory and were in the normal range 

on the minimal pairs test (PALPA 2) and the rhyme judgment test (PALPA 15).  Performance 

was also excellent on the more demanding tests of phonological segmentation and blending, 

with the exception of patient RK (who suffered from significant age-related hearing loss). 
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Table 2 presents background neuropsychological data for the AZ patients who comprised 

most of the mild-moderate subgroup.  Comparable tests were used between UK and AZ 

patients whenever possible (e.g., CCT UK = PPT AZ; CSM Naming UK = BNT AZ; 

analogous phonological processing tasks, etc.).  Some patients showed mild impairments on 

orthographic letter matching and lexical decision tasks from the PALPA battery (Kay et al., 

1992). Most patients were also impaired picture naming and/or semantic matching tasks, and 

indeed a picture naming impairment was the only abnormality seen for patient 125.  All 

patients were in the normal range on rhyme judgment (bar patient 177), phoneme 

segmentation (although patient 169 scored 2 points below the normal cut-off), and minimal 

pair discrimination.   

Inherent in large neuropsychological studies, not all patients could complete the full set of 

experimental tasks.  This was due to further neurological events, demise, or medical illness.  

Nine patients completed the famous faces tasks, while 16 patients completed the Jane Faces 

task.  

 

2.4 Spatial Frequency Sensitivity:   

The retinotopic eccentricity account predicts that sensitivity to moderate-to-high spatial 

frequency should be impaired in patients with damage to the left pFG. To assess this we 

administered the functional acuity contrast test (http://www.stereooptical.com/) to eight of the 

nine UK patients (as reported in Roberts et al., 2013). The test evaluates sensitivity across a 

range of spatial frequencies and contrast.  The test comprises a progression of high-quality, 

sine-wave gratings that probe sensitivity to 1.5, 3, 6, 12, and 18 cycles per degree. The 

contrast step between each grating patch is 0.15 log units. The contrast range spans the 

variation of contrast sensitivity found in the normal population. Following the standard 

instructions, the patients were asked to decide whether each grating was tilted right, vertical, 

or left. Figure 3 displays average results from the patients.  Contrast sensitivity would fall 

between the grey lines in 90% of the normal population, hence a functional impairment is 

indicated if the curve is below the normal range for either eye. All patients demonstrated 

abnormal contrast sensitivity profiles at the medium and high frequencies (at or below the 

control minimum at 12 to 18 cycles per degree, some at even 6 cycles per degree: see 

Supplementary Materials for individual data), which is a key frequency range for recognition 

http://www.stereooptical.com/
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of letters (Fiset et al., 2006b), as well as objects (Roberts et al., 2013) and faces (Goffaux et 

al., 2011). 

 

3. Identification of famous faces 

Firstly, we explored whether these patients with left pFG lesions exhibited deficits in the 

speed or accuracy of identification of familiar faces, a characteristic of acquired 

prosopagnosia arising from lesions involving the right pFG (Damasio, Damasio, & Van 

Hoesen, 1982; Meadows, 1974).  Both expressive (picture naming) and receptive (name-to-

face matching) abilities were assessed in all the UK patients (EI, FW, KW, JWF, RK, TS, 

JW, JM, MS).  AZ patients did not complete this task because the faces were specific to a 

British audience.  Nine controls comparable to patients with respect to age and years of 

education also completed the task.  All control participants had no previous history of 

neurological problems.  

3.1 Materials 

Images of famous faces were selected for this test if a high proportion of individuals rated the 

faces as “iconic” or “very famous”.  Raters were participating in control testing at The 

University of Manchester, UK and were comparable to the patients with respect to age and 

years of education. Stimuli consisted of 40 greyscale photographs with an average width and 

height of 180x250 pixels, a horizontal and vertical resolution of 96dpi and a colour pitch 

depth of 8. 

3.2 Procedure 

In this and subsequent tasks, stimulus presentation was controlled using E-prime software 

(Schneider, Eschman, & Zuccolotto, 2002). Face identification was probed with two tasks – 

naming and cross-modal (word-face) matching.  The administration of each set of materials 

began with 16 practice trials, followed by the 40 experimental trials.  For naming, stimuli 

were presented centrally following a fixation cross and the participants were asked to name 

them (e.g., “Marilyn Monroe”).  In the matching task, participants were presented with a 

target name in both spoken (by the experimenter) and written (for an unlimited duration) 

form.  When the participant was ready, this was followed by a backward pattern mask (in the 

same position of the stimuli, to avoid any visual persistence of the text) and a display of four 

face choices, one in each quadrant of the screen.  For example, the name “Richard Branson” 
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followed by a series of four faces: Donald Trump, Noel Edmonds, Richard Branson, Alexi 

Lalas.  Targets were counterbalanced and distributed equally across the four positions across 

the trials.  Stimuli remained on the screen until a response was given. Participants indicated 

their choice by means of a key press.  RT and accuracy data were recorded.  The order in 

which trials were presented in naming and matching tasks was identical for all participants.  

Participants completed the naming task first and then the matching task, at least 2 weeks 

apart.  To determine if hemianopia had any effect on performance in these and subsequent 

experiments, left and right hemifield word reading and object naming was probed in a subset 

of five patients (FW, EI, JW, JM, MS).  No significant difference between performance in 

accuracy or RT in each hemifield was present for reading or naming (see Supplementary 

Materials in Roberts et al., 2013 for details). We therefore do not expect visual field defects 

to exert a marked impact on face processing, at least with a single centrally presented 

stimulus. 

3.3 Results 

Figure 4 displays results for patient and control groups on naming (A) and word-face 

matching (B).  Performance of the two groups (controls vs. patients) was compared with 

independent samples t-tests.  Relative to controls, patients had slower RTs (t(16) = -3.82, 

p<.001) and were less accurate (t(16) = -2.42, p<.05) for naming. Comparable t-tests for 

word-face matching revealed this was also the case in RT (t(16) = 3.63, p<.005) but not 

accuracy (t(16) = .85, p=.409). Crawford’s T statistic (Crawford, Garthwaite, & Porter, 2010) 

was used to determine which individual patients differed from controls for each task. These 

analyses revealed that the majority of patients (bar FW, JM for naming and EI, JM, TS for 

WPM) were impaired in relation to controls in accuracy, speed or both (see Supplementary 

Materials). Those patients who were unimpaired were mildest (EI, FW) and/or approaching 

significance on the Crawford statistic (p<=.10). These results are striking as the low accuracy 

of face naming in these cases is reminiscent (albeit milder in form) of that seen in 

prosopagnosic patients with right pFG lesions (Behrmann & Plaut, 2013a).  The persistence 

of deficits in the matching tasks indicates that these face identification deficits were not the 

result of more general word finding difficulties.  

 

4. Discrimination of novel faces 
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As predicted, the patients as a group were clearly impaired at identification of familiar 

famous faces.  This would not have been so apparent if accuracy measures alone had been 

used.  Instead, the deficit is primarily reflected in speed, particularly in the receptive task.  

However, the degree of impairment may be underestimated using familiar faces because 

intact top-down semantic information might boost impaired early processing, as has been 

suggested in the case of word processing (e.g., Roberts et al., 2010). We therefore sought to 

extend these findings using novel faces that have no intrinsic meaning or familiarity. In 

addition, the use of novel faces has the advantage that stimuli can designed to assess the use 

of feature identity versus second-order spacing information (both of internal features and also 

relative to the external contour).  In this experiment, therefore, we used the Jane Faces task 

(Maurer et al., 2007; Mondloch, Le Grand, & Maurer, 2002) to explore the mechanisms for 

deficits in novel face processing in patients with a left pFG lesion.  We tested 16 patients on 

this task and to assess the impact of severity, they were divided into two equal groups on the 

basis of their length effect in reading aloud, with the mild-moderate group consisting of 130, 

171, 174, 170, 169, 128, KW, 177 and the severe group consisting of 153, JWF, RK, 125, 

JW, JM, MS, 140.  We also explored the extent to which severity of the reading deficit 

predicted face discrimination performance using a correlational approach. The task was also 

completed by a control group (N=15) who were comparable to the patients with respect to 

age and years of education.  All control participants had no previous history of neurological 

problems.   

4.1 Materials 

The stimuli used have been reported elsewhere (Mondloch et al., 2002).  To summarise, a 

grayscale photograph of a single face (called “Jane”) was modified and three sets of face 

stimuli (feature identity, feature spacing and contour spacing – see Figure 5) were created to 

create twelve new versions (“Jane’s sisters”).  To tap featural processing, four modified faces 

in the feature-identity set were created by replacing either Jane’s eyes, mouth, or both with 

the features of the same length from different females.  Such modifications have insignificant 

effects on second-order processing because the size and location of individual features remain 

constant.  To tap second-order processing, four modified faces in the feature-spacing set were 

created by adjusting the spacing between the eyes up or down from the original, the eyes 

closer together or farther apart, and the mouth up or down.  This modification covered 

variations in spacing among adult female faces in the population, without being so large that 

the faces appeared malformed or unnatural (Farkas, 1981). The four modified faces in the 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

14 
 

contour-spacing set were created by adjusting the external contour, pasting the internal 

portion of the original face within the outer contour of four different females.  This 

modification changes the frame of the face and hence necessarily also the spacing between 

features and the external contour (e.g., spacing from the bottom of the mouth to the chin 

contour).  Both the feature-spacing and contour-spacing modifications have negligible effects 

on information about local features.  The control “cousin” stimuli consisted of Jane and three 

different female faces, hence varied on all dimensions.  All stimuli were 10.2cm wide and 

15.2cm high (5.7deg X 9.1deg from the testing distance of 100cm).  

4.2 Procedure 

Participants were asked to make visual discriminations between two faces presented 

simultaneously side by side centred on the screen (see Figure 5 for examples).  Each 

participant was instructed to press a key to indicate if the faces looked the same or different.  

The experimenter initiated the experiment by saying: “This is Jane (the original model was 

presented on the screen), Jane has 12 sisters that look a lot like her (the twelve modified 

versions of Jane were shown).  See how they all look alike, like twins?  Well, now we are 

going to play a game to see if you can tell apart these sisters.  You will see two faces.  They 

may be different sisters, or it may be the same sister twice.  Your job is to indicate whether 

the two faces are the same or different.  Press “f” for same and “j” for different.  Try to be as 

accurate but as quick as possible.”  The instructions for the key press were then repeated and 

participants were asked to demonstrate what they should do if they saw pairs of the same or 

different faces. 

Each trial was initiated automatically after the participant indicated his or her readiness to 

start the experiment.  A fixation cross was presented for 500ms before being replaced by the 

target face pairs.  Stimuli remained on the screen until a response was given.  All participants 

were tested on 90 trials divided into three 30-trial blocks: feature identity, feature spacing, 

and contour spacing.  In each block, 15 trials involved presentation of the same face and 15 

trials involved the presentation of different faces.  Trials were blocked to encourage 

participants to use specific processing strategies (Yovel & Duchaine, 2006). Prior to the 

experimental blocks the participant was given six practice trials, one same and one different 

trial from each stimulus set with words of encouragement provided as feedback.  

The order in which blocks were presented was the same for all participants (feature spacing, 

feature identity, contour spacing, cousins) (Mondloch et al., 2002).  Within each block, each 
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face was presented half of the time on a “same” trial and half of the time on a “different” 

trial.  All participants saw the same random order of trials in each block.  After the third 

block, a block of trials with Jane’s cousins were presented.  The experimenter initiated this 

block by saying “Great job!  Now we’re going to play a game with Jane and her cousins.  

This time, none of her sisters will show up.  It’s just Jane and her cousins.  Just like before, 

you’ll see two faces in a row, and your job is to press “f” if you think the faces were of the 

same person, and “j” if you think they were different.  Are you ready?”  This cousins block 

consisted of 32 trials with either the same face twice (16 trials) or two completely different 

faces the necessarily differed on features, spacing and contour (16 trials).  The task lasted for 

around 30 minutes.  See Figure 5 for examples of the stimuli used for each of the conditions. 

4.3 Results 

The average RT and accuracy of patients and controls are provided in Tables 3 and 4 

respectively (see Supplementary Materials for individual  data). Repeated-measures ANOVA 

was conducted on RT and accuracy with severity (controls/mild-moderate/severe) as a 

between-subject factor and condition (feature identity/feature spacing/contour spacing/cousin 

control) as within-subject factors.  Greenhouse-Geisser corrected values are  provided in 

order to compensate for any violations of sphericity.   The results for RT revealed a 

significant main effect of severity (F(2, 28) = 13.94, p=<.0001), condition (F(2.37, 66.32) = 

33.73, p<.0001), but no interaction between the two (F(4.74, 66.32) = 1.39, p=.24).  The 

results for accuracy revealed no effect of severity (F(2, 28) = 1.97, p=.16), a significant main 

effect of condition (F(2.21, 61.82) = 50.67, p<.0001), but no interaction between the two 

(F(4.42, 61.82) = 0.52, p=.74). 

Considering RT performance for patient 125, with a severe reading impairment and a small 

lesion constrained to the left pFG, the feature identity condition was significantly slower than 

that of the control group (z=7.29, p<.0001, one-tailed), as was the feature spacing (z=5.75, 

p<.0001, one-tailed), contour spacing (z=3.51, p-.006, one-tailed), and cousins (z=-2.71, 

p=.003) conditions.  Patient 125 was less accurate than controls in the feature identity (z=-

1.86, p=.03, one-tailed) and cousins (z=-2.11, p=.02) conditions but accuracy on the feature 

spacing (z=-.88, p=.20, one-tailed) and contour spacing (z=-.31, p=.38, one-tailed) conditions 

fell within the normal range. 

Inspection of Tables 3 and 4 indicates that there appear to be some trade-off between speed 

and accuracy that differ across severity groups. In order to more effectively compare the 
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results over groups, we computed an inverse efficiency measure (Roberts et al., 2010; Roder, 

Kusmierek, Spence, & Schicke, 2007).  This is derived by dividing the mean correct RT for 

each condition by the proportion correct, producing a measure comparable to reaction time 

but corrected for variations in accuracy (see Supplementary Materials for individual data). 

Repeated-measures ANOVA (Greenhouse-Geisser corrected) on inverse efficiency values 

revealed significant main effects of severity (F(2, 28) = 15.17, p<.0001), condition (F(2.46, 

68.76) = 41.21, p<.0001), and an interaction between the two (F(4.91, 68.76) = 3.27, p=.01). 

The form of the interaction can be seen in Figure 6, which shows that poor patient 

performance is most pronounced for the second-order configural conditions involving 

changes in feature spacing or contour spacing, and somewhat more so for the more severe 

patients.   The difference between the cousins and feature-identity condition was equivalent 

across all groups (t(21) = .06;   t(14) = .36;  ps>.115).  The difference between the cousins 

and feature-spacing condition was marginally significantly larger for the mild-moderate 

patients than controls (t(21) = 1.81 p=.085),  but did not differ for the mild-moderate and 

severe patients (t(14) = 1.20;  p=.252).  Similarly, the difference between the cousins and 

contour-spacing condition was significantly larger for the mild-moderate patients than 

controls (t(21) = 2.87 p=.0009) but did not differ for the mild-moderate and severe patients 

(t(14) = 624;  p=.543).  Hence, these patients with left pFG damage and reading deficits 

seemed to show a more marked impairment for the spacing conditions requiring second-order 

processing relative to the feature-identity condition requiring first-order processing in this 

task.   

Returning to the performance of patient 125, we can see the same form of interaction in 

inverse efficiency scores.  The non-parametric Crawford Revised Standardized Difference 

Test (RSDT: Crawford & Garthwaite, 2005) revealed that the difference between the cousins 

and feature-identity condition for patient 125 was similar to that of controls (t(14)=0.11, 

p=.45).  The difference between the cousins and feature-spacing condition was significantly 

larger for patient 125 than controls (t(14)=2.03, p<.05, one-tailed), as was the difference 

between the cousins and contour-spacing condition (t(14)=3.50, p<.002, one-tailed).   These 

results demonstrate a stronger impairment of processing in the spacing conditions than the 

feature-identity condition in a patient with a small lesion confined to the left pFG and a 

severe reading deficit. 
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To explore the relationship between reading behaviour and face discrimination, correlations 

were computed between the slope of the length effect in reading RT (as shown in Figure 1a) 

and the inverse efficiency scores on each condition of the discrimination task.  Spearman’s 

correlations are presented in order to account for the possibility of nonlinear relationships.  

The slope of the length effect was significantly related to performance in the feature-identity 

condition (r=.45, p=.04), but not to performance in any other condition (rs<.31, ps >.23).  This 

result suggests that the part-based processing strategy used by the patients to support their 

reading was useful in maintaining good performance in the conditions where faces differed 

only in the identity of component features, but did not help when it came to conditions that 

varied in terms of their second-order spacing relations.  

Lastly, we considered whether variations in lesion size contributed to our results.  Lesion 

volume was not significantly correlated with the slope of the length effect (r=.22, p=.21, one 

tailed).  Lesion volume showed a significant negative correlation with the feature-spacing 

condition (r=-.49, p=.03), such that patients with larger lesions actually performed better.  

Lesion volume was not correlated with performance in any other condition of the face 

discrimination task (rs>-.36; ps >.10).  This pattern of correlations indicates that the stronger 

reading and face processing deficits we observed for the more severe patients are not simply 

a consequence of variation in lesion extent. 

 

5. Discussion 

This research has demonstrated striking deficits in processing both familiar and novel faces in 

large sample of patients with damage to the left pFG, an area traditionally associated with 

written word recognition.  Nine patients were clearly impaired in the identification of famous 

faces in both receptive and expressive tasks.  Sixteen patients showed impairments in novel 

face discrimination that were particularly pronounced when this required sensitivity to 

second-order configural relations.  These results are consistent with a retinotopic perspective 

on ventral occipito-temporal cortex such that the pFG regions of either hemisphere specialise 

in processing high acuity foveal input that is particularly important when processing complex 

and highly-confusable visual stimuli.  Letter strings are heavily reliant on such processing, 

and indeed, these patients show deficits in terms of slowed reading and exaggerated length 

effects.  A number of investigations have also revealed deficits in the processing of complex 

familiar and novel objects, and the extent of these impairments is linked to the severity of the 
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reading disorder (e.g., Behrmann et al., 1998a; Cumming, Patterson, Verfaellie, & Graham, 

2006; Mycroft et al., 2009).  This work extends initial observations of face processing deficits 

in patients with left pFG lesions (e.g., Behrmann & Plaut, 2013a; Mestry et al., 2012; Roberts 

et al., 2013) by establishing that these deficits extend across familiar and novel stimuli, and 

relate to the visual processing requirements of the novel faces in terms of the involvement of 

featural and configural processing. 

In keeping with a retinotopic account, all eight of the UK patients in this study that were 

tested on the Functional Acuity Contrast Test showed diminished sensitivity to higher spatial 

frequencies (Roberts et al., 2013) in the context of damage to the pFG and reading problems.  

This is consistent with peak overlap of the patients’ lesions in the left pFG region shown to 

be more active for processing gratings of high relative to low spatial frequency (Iidaka, 

Yamashita, Kashikura, & Yonekura, 2004; Vuilleumier, Richardson, Armony, Driver, & 

Dolan, 2004; Woodhead et al., 2011). In terms of the basis for the patients’ problems 

discriminating between novel faces, we might have expected to observe stronger deficits in 

feature-identity processing, which has been suggested to be carried by the higher spatial 

frequencies, than second-order configural processing, for which lower spatial frequencies 

have been implicated as being crucial (e.g., Goffaux, Hault, Michel, Vuong, & Rossion, 

2005).  In fact, we found the opposite pattern: relatively good discrimination on the basis of 

feature identity and relatively poor performance in the feature-spacing and contour-spacing 

conditions.  The results for patient 125, with a severe reading deficit and marked impairment 

in the feature-spacing condition in the presence of a small lesion centered on the left pFG 

confirm the importance of this specific area in both reading and face processing, in line with 

functional imaging studies showing overlapping activations for words and faces in this region 

(Hasson et al., 2002; Kveraga et al., 2007; Mei et al., 2010; Vogel et al., 2012; Woodhead et 

al., 2011).   

Given the lesion overlap methodology used here, we cannot be certain that deficits seen in 

other patients arose from damage to the same region as that implicated in patient 125.  

Lesions for many patients also encompassed primary visual processing areas (V1), and this is 

apparent in the prevalence of hemianopia across patients.  We would argue, however, that 

these lower level visual problems did not underpin the patients reading and face processing 

deficits, as hemianopia was actually less prevalent in the severe (two patients with intact 

visual fields) than the mild-moderate group (one patient with intact visual fields).  Moreover, 

it has been shown that the behavioural profile associated with hemianopic alexia does not 
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entail he significant increase in length effects that characterised the reading of patients in our 

severe group (Leff, Spitsyna, Plant, & Wise, 2006).  An additional caveat to the lesion 

overlap approach is that we cannot rule out the possibility that the lesion has resulted in 

cortical thinning of connected areas (Duering et al., 2012).  Yet damage to the left pFG has 

consistently been associated with pure alexia, and more recently with face processing deficits 

(e.g., Behrmann et al., 2013a), and the same region is active in normal participants during 

reading and face processing tasks (e.g., Woodhead et al., 2011).  It therefore seems unlikely 

that damage to areas remote from the lesion made a significant contribution to the 

behavioural deficits we observed in our patients.  

As the feature-spacing and contour spacing conditions of the face discrimination task also 

proved to be the most difficult for healthy controls, it might be argued that the deficits seen in 

these conditions amongst the patients reflect a more general cognitive impairment that is only 

manifest under more demanding task conditions.  Yet the deficits we observed for patients in 

familiar face identification tasks, which are minimally demanding for healthy control 

participants, imply that the patients were impaired specifically in face processing, most 

notably when this requires sensitivity to the relationships between component features.  We 

therefore suggest that the deficits we observed for second-order conditions indicate a role for 

higher spatial frequencies in configural face processing. Indeed high acuity foveal vision is 

likely to be needed in order to detect subtle variations in spacing like those used in the 

present study.  This proposal is supported by the results of functional imaging studies that 

have considered performance when processing faces differing only in second-order spacing 

and have found activation in both the right and the left pFG (Maurer et al., 2007; Rhodes et 

al., 2009), and studies that have observed higher activation in the left pFG when viewing 

faces composed of higher spatial frequency information (Iidaka et al., 2004; Vuilleumier et 

al., 2004). 

 

While reduced sensitivity to higher spatial frequencies may well have undermined face 

identification and discrimination by impinging upon configural processing, this does not 

account for the surprisingly good performance seen in the patients when only featural 

processing was required.  One possibility is that this was supported by coarser visual 

differences between faces in the feature-identity condition, such as contrast (Yovel & 

Duchaine, 2006).  This interpretation seems unlikely, however, given that it was specifically 
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performance in the feature-identity condition that correlated with the severity of the reading 

deficit.  Instead, this correlation suggests that patients could efficiently discriminate based on 

changes in feature identity using a sequential feature analysis strategy analogous to the letter-

by-letter behaviour seen when reading.  The observation that the feature-identity condition 

did not elicit more activation than the feature-spacing condition in the left pFG of normal 

participants (Maurer et al., 2007), but did in regions like the left middle frontal gyrus (MFG), 

suggests that feature-identity discrimination as measured in this task may be a strategic 

process.  This is consistent with functional imaging indicating a role for these frontal regions 

in sequential working memory tasks (Braver, Gray, & Burgess, 2007) and executively 

demanding processes (Duncan, 2010).  As our patients had intact left frontal structures and 

working memory, it is possible that these systems allowed them to adopt an effective part-

based strategy to compensate for diminished high spatial frequency sensitivity due to left 

pFG damage.  This strategy can partially support reading of letter strings and permit face 

discrimination when it can be based purely on feature identity.  This interpretation would 

require further investigation using functional imaging of patients with left pFG damage but it 

is consistent with the observation that activation of left MFG increased in a PA patient as 

their proficiency in application of the letter-by-letter reading strategy improved over time 

(Henry et al., 2005).  

Our interpretation of preserved performance in the feature-identity condition by our patients 

with left pFG lesions does not imply that they have entirely intact and efficient feature-based 

processing of words or faces.  Indeed, many patients with PA are impaired in speeded letter 

matching and letter identification tasks and some also misidentify letters when reading aloud 

(Cumming et al., 2006; Starrfelt et al., 2009; 2010).  Hence it is not that these patients adopt a 

part-based strategy because their feature processing is normal, but rather, this approach helps 

to offset the impact of diminished sensitivity to high spatial frequency on parallel/configural 

processing (Fiset et al., 2006a; Tadros et al., 2010, 2013).  In the context of the novel faces 

task used here, with simultaneous presentation of choices and unlimited exposure duration, 

the part-based strategy was sufficient to support normal performance.  This result, when 

combined with neuroimaging data showing left MFG activation for the feature-identity 

condition, suggests that normal participants also adopt a similar part-based strategy in this 

task.  The presentation technique used here was adopted as pilot testing revealed the AZ 

patients with left pFG damage to be at chance with the brief exposure durations and 

sequential presentation originally used in this task (Mondloch et al., 2002).  We are therefore 
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of the view that configural and feature-based processing are both impaired following left pFG 

damage, presumably as a result of inefficient coding of high spatial frequency information, 

but the deficit is more pronounced for the former than the latter. 

The results of the novel face discrimination task therefore suggest that high spatial frequency 

information is more critical for configural processing of complex visual objects (both faces 

and words) than for part-based processing of these same stimuli (i.e., letter-by-letter reading 

for words and feature-by-feature discrimination for faces).  The disproportionate impairment 

of parallel/configural visual processing for both words and faces following damage to left 

pFG leads to compensatory reliance on a relatively preserved part-based strategy.  

Prosopagnosic patients with right pFG damage also seem to process faces by relying on a 

piecemeal or feature-based strategy (Van Belle et al., 2010), similar to our patients with left 

pFG lesions.  It would seem that efficient parallel/configural processing of complex visual 

stimuli requires the functional integrity of both left and right pFG, whereas part-based 

processing can be supported by either hemisphere.  Yet despite the similarities between PA 

and prosopagnosic patients in processing of words and faces, their performance is not 

identical.  Behrmann and Plaut (2013a) found the length effects in word recognition to be 

more pronounced in PA than prosopagnosia, and conversely, the face processing deficits 

were more pronounced in prosopagnosia than PA.  In addition, it was only the prosopagnosic 

cases who showed a reversal of the standard superiority of upright over inverted faces, with 

the PA patients showing an exaggeration of the normal pattern.  These differences between 

PA and prosopagnosic patients indicate some degree of graded specialisation across the left 

and right pFG. 

Although the retinotopic view does propose a broadly mirror symmetric organisation of the 

fusiform gyri (Malach et al., 2002), this is not to that deny some relative differences 

according to laterality do exist (Behrmann & Plaut, 2013b).  These differences may stem 

from at least two factors.  The first is the nature of frequency sensitivity.  While there is 

evidence for the use of both low and high spatial frequency information over time across left 

and right pFG (Goffaux et al., 2011), there is nevertheless a degree to which the left pFG is 

relatively more sensitive to higher spatial frequency information while the right pFG is 

relatively more activated by lower spatial frequencies (Ossowski & Behrmann, 2015; 

Woodhead et al., 2011).  The second difference between the left and right pFG relates to their 

connectivity, as their location means that they are likely to be more strongly linked to areas 

involved in linguistic versus person knowledge, respectively (Epelbaum et al., 2008; Lambon 
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Ralph, McClelland, Patterson, Galton, & Hodges, 2001; Nestor, Plaut, & Behrmann, 2011; 

Pyles, Verstynen, Schneider, & Tarr; Wang, Yang, Shu, & Zevin). Future comparative case 

series will be required to determine whether differences between word and face processing 

impairments in PA and prosopagnosia arise from variations in spatial frequency sensitivity 

and/or connectivity across the left and right pFG.    
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Figure 1.  Summary reading data for the 19 patients included in the study for (A) the reading regression slope 

and (B) the mean reading speed as a function of word length.  Error bars indicate +/- standard error.  Dashed 

line in (A) is control mean plus 2 standard deviations. 
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Figure 2.  Row 1:  fMRI activation during a reading task in 15 normal subjects (words - checkerboards, P<0.05;  

FDR)  Row 2:  lesion overlap maps for all 17 patients included in the study with scans;  Row 3:  lesion overlap 

maps for the eight patients with the mildest reading impairment;  Row 4:  lesion overlap maps for the nine 

patients with the most severe impairment;  and Row 5:  Lesion map for patient 125, with a severe reading 

impairment, showing a small lesion confined  to the left fusiform gyrus/occipito-temporal sulcus.   .The axial 

slices of the MNI template brain in MRIcron have been rotated  -15 degrees from  the AC-PC line  in order to 

display the entire posterior-anterior course of the fusiform gyrus.  
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Figure 3.  Functional Acuity Contrast Test results for eight of the  nine UK patients in the current study.  Grey lines 

represent normal range. 
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Figure 4.  Means reaction times and accuracy for nine patients and nine matched controls for the famous face 

(A) naming (patient accuracy range =15-93%) and (B) matching (patient accuracy range =63-100%).  Error bars 

indicate +/- standard error. 
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Figure 5.  Examples for same and different stimuli for each condition of the Jane Faces task. 
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Figure 6.  Performance for conditions of the face discrimination task for the patient subgroups split by severity 

(slope of the length effect in RT) and controls.  Error bars represent standard error.  
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Table 1.  Demographic and background neuropsychological assessment for the 9 UK patients ordered, left to right, according to the severity of 

the reading impairment (slope of the length effect). 

 

 Max. Normal 

cut-off  

EI FW KW JWF RK TS JW JM MS 

Demographics             

Age - -  40 80 44 54 63 57 59 67 70 

Sex - -  F M M F M M M M F 

Handedness    RH RH RH LH RH RH RH RH LH 

Years of education - -  13 11 10 10 10 10 11 10 10 

Lesion aetiology     Stroke Stroke Stroke Stroke Stroke 
Tumour 

resection 
Stroke 

Tumour 

 resection 
Stroke 

Lesion volume (cc)    12.11 No scan No scan 92.89 39.93 162.69 93.27 14.34 99.34 

Visual field loss    RUQ RHH RHH RHH RHH RHH RHH RUQ RHH 

Working memory             

Digit span             

Forward(12) - 5  9 8 8 6 NT 8 7 12 10 

Backward(12) - 2  5 4 7 5 NT 4 4 7 6 

Visual processing             

VOSP             

      Incomplete letters 20 16  20 17 20 17 20 19 19 20 16 

      Silhouettes 30 15  21  21 19 24 20 22 25 18 19 

      Object decision 20 14  19 17 20 19 15 18 17 17 16 

Progressive silhouettes 20 15  11 14 16 8 20 5 8 11 9 

      Dot counting 10 8  10 7 9 10 10 10 10 10 9 

     position discrimination 20 18  20 19 20 16 20 18 20 20 19 

      Number location 10 7  9 10 10 8 9 10 10 10 10 

     Cube analysis 10 6  10 9 4 10 6 10 9 10 7 

Semantic processing             

Naming1 64 62  62 62 58 56 56 41 59 61 45 

Camel and Cactus 64 52  61 59 44 61 52 24 52 61 47 
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(pictures)1 

Word-picture matching1 64 62  64 64 NT NT NT 63 64 63 62 

96 Synonyms2  96 90  91 96 74 94 90 83 93 93 81 

Phonological processing             

PALPA 2: Phonological 

judgement 
            

Total 72 64  68 71 71 72 72 68 71 72 71 

Same 36 34  32 35 35 36 36 36 36 36 36 

Different 36 30  36 36 36 36 36 32 35 36 35 

PALPA 15: Rhyme 

judgement 
60 43  47 57 59 58 57 56 57 56 53 

Phoneme segmentation3             

Total 96 76  94 96 87 96 73 87 96 94 91 

Addition 48 39  46 48 40 48 36 48 48 46 45 

Subtraction 48 37   48 48 47 48 37 39 48 48 46 

Note.  Bold denotes abnormal performance.  VOSP: Visual Object and Space Perception battery. pALPA: Psycholinguistic Assessment of Language Processing in Aphasia 

(Kay et al., 1992). NT: Not tested;   RHH: right homonymous hemianopia;   RUQ: right upper quadrantanopia;   NFD: no field deficit.  
1
Bozeat et al. (2000).  

2 
Jefferies et al. 

(2009).  
3
Patterson and Marcel (1992). 
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Table 2.  Demographic and background neuropsychological assessment for the 10 AZ patients ordered left to right, according to the severity of 

the reading impairment (slope of the length effect). 

 

Max. 

Normal 

cut-off 130 171 174 170 169 128 177 153 125 140 

Demographics             

Agee - - 80 78 63 60 72 54 62 69 65 67 

Sex - - M M M M M M M M M F 

Handedness - - R R R R R R L R R R 

Years of education - - 18 14 18 14 14 18 10 11 12 10 

Lesion aetiology - - Stroke  Stroke  Stroke Stroke Stroke Stroke  Stroke Stroke Stroke Stroke 

Lesion volume (cc)   37.23 38.33 5.15 56.82 74.42 97.69 51.91 42.11 2.19 50.96 

Visual field loss   NFD RUQ RHH RUQ     RHH# RUQ      RUQ NFD NFD RHH 

Working memory             

Digit span forward 12 5 9 10 10 11 6 10 5 9 7 NT 

Visual/orthographic processing             

Letter case matching  

(PALPA 19, 20) 
52 51 52 51 52 52 50 52 52 52 52 See1 

Letter discrimination in 

words/nonwords (PALPA 21) 
30 27 30 30 28 29 28 28 25 28 29 100%2 

Visual lexical decision  

(PALPA 25) 
60 58 58 59 60 58 48 59 38 37 51 47 

Semantic processing             

BNT 60 53 32 58 58 46 42 57 39 55 43 30 

PPT (pictures) 52 49 48 51 52 52 51 52 47 50 51 44 

Word-picture matching  

(PALPA 48) 
40 39 40 40 39 39 39 40 39 40 40 100%3 

Auditory synonym judgment 

(PALPA 49) 
20 19 20 19 20 20 17 20 19 20 20 NT 

Phonological processing             

Rhyme judgment 40 36 39 39 40 40 37 39 33 38 39 1004 
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Phoneme segmentation 80 71 71 78 79 79 69 80 56 77 79 See above 

Minimal pair discrimination 40 38 39 40 38 40 40 40 36 39 40 See above 

Note.  Bold denotes abnormal performance. pALPA: Psycholinguistic Assessment of Language Processing in Aphasia (Kay et al., 1992);   BNT: Boston Naming Test (Kaplan, 

Goodglass, & Weintraub, 1983);  pPT: Pyramids and Palm Trees test (Howard & Patterson, 1992). NT: not tested;   RHH: right homonymous hemianopia;   RUQ: right upper 

quadrantanopia;   NFD: no field deficit.  # In addition to extensive left occipito-temporal damage, CT scan in this patient also indicated a right dorsomedial occipital lesion that was 

associated with a left inferior quadrant visual field defect.   
1
PALPA 18 (correct/reversed letter identification): 34/36, PALPA 22 (letter naming): 25/26 (lower), 26/26 (upper), 

upper-lower case conversion: 22/26;   Western Aphasia Battery (Kertesz, 2006) Supplemental Subtests: 
2
letter discrimination, 

3
written word-picture/object matching, 

4
repetition 

(words of increasing length, phrases, and sentences). 
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Table 3.  Reaction times (and standard deviations) for the Jane faces task used in Experiment 

2 according to condition and participant type.  Patient 125 has a lesion constrained to left 

pFG and a severe reading deficit. 

 

  Feature Identity Feature Spacing Contour Spacing Cousins (Control) 

Controls 1766 (519) 2246 (816) 2419 (978) 1477 (333) 

Mild-Moderate 3306 (1093) 4062 (1375) 4384 (1369) 3140 (1424) 

Severe 4621 (1951) 5528 (2563) 5688 (2616) 3952 (1905) 

Patient 125  5550 6936 5860 4330 
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Table 4.  Percentage accuracy (and standard deviations) for the Jane faces task used in 

Experiment 2 according to condition and participant type. 

 

 Feature Identity Feature Spacing Contour Spacing Cousins (Control) 

Controls 93.11 (6.95) 74.89 (16.52) 76.67 (12.79) 93.96 (9.18) 

Mild-Moderate 87.5 (16.31) 67.5 (16.11) 65 (13.8) 85.32 (14.15) 

Severe 92.5 (6.61) 67.08 (12.01) 70.42 (10.61) 90.11 (9.9) 

Patient 125  80 

 

60 

 

73.33 75 
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Highlights for “Processing deficits for familiar and novel faces in patients with left 

posterior fusiform lesions”: 

 

 Pure alexia is associated with damage to the left posterior fusiform gyrus 

(pFG) 

 

 This research explored face processing abilities of patients with left pFG 

damage 

 

 Deficits in identification of familiar faces were seen in naming and matching 

tasks 

 

 Deficits in matching novel faces also emerged, especially for configural 

processing 

 

 The results suggest face processing draws on bilateral ventral visual streams 
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Participant Length

3 4 5 6

130 97 97 100 97

171 100 100 100 100

174 100 94 97 100

EI 100 100 100 100

FW 97 97 94 97

170 97 100 91 91

169 88 88 80 91

128 97 88 85 83

KW 100 100 100 100

177 64.5 44 21 21

153 64.5 80 62 59

JWF 97 97 100 100

RK 100 88 100 100

125 91 82 77 85

TS 100 100 94 91

JW 94 88 82 85

JM 91 94 80 91

MS 91 82 68 77

140 62.5 63 43 35
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Left eye

Spatial Frequency JM EI FW MS JW TS

1.5 (A) 36 100 25 100 50 100

3 (B) 80 114 15 80 57 160

6 (C) 64 90 16 64 12 128

12 (D) 22 8 11 22 8 30

18 (E) 6 4 0 12 4 6

Right eye

Spatial Frequency JM EI FW MS JW TS

1.5 (A) 36 100 36 36 36 100

3 (B) 57 114 40 40 57 114

6 (C) 33 64 15 12 16 64

12 (D) 15 8 0 8 8 22

18 (E) 6 4 0 4 4 8
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JWF KW Average Normal

36 50 62.13 36

57 80 80.38 57

33 90 62.13 64

11 30 17.75 22

0 4 4.50 6

JWF KW Average Normal

36 36 52.00 36

57 59 67.25 57

33 64 37.63 64

0 15 9.50 22

0 4 3.75 6
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Participant Naming WPM

FW      4549 2457

JW      6797 3536

TS      15018 2497

MS      13666 5864

EI      5434 2106

JM      4550 3691

JWF     16259 5724

KW      8442 8156

RK      6504 6898

Controls

C1      2892 1711

C2      1793 1270

C3      1667 1795

C4      1758 1343

C5      2506 3139

C6      5309 1957

C7      3637 1791

C8      2716 2031

C9      3681 1341
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Participant Naming WPM

FW      65 100

JW      52.5 100

TS      35 95

MS      15 82.5

EI      92.5 100

JM      82.5 90

JWF     42.5 93

KW      57.5 90

RK      65 100

Controls

C1      55 93

C2      93 98

C3      90 100

C4      93 98

C5      65 93

C6      65 95

C7      75 93

C8      78 98

C9      100 100
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ParticipantGroup Severity JaneSpacingRT JaneFeatureRT JaneContourRT JaneCousinsRT

130 1 2 3951 2261 4644 3214

171 1 2 4669 3551 4147 3071

174 1 2 5501 4168 5908 3447

128 1 2 1511 1355 1689 1610

169 1 2 5039 4022 4925 4997

170 1 2 3521 2651 4594 1782

177 1 2 2927 4373 3359 1736

KW 1 2 5378 4070 5804 5260

125 1 3 6936 5550 5860 4330

153 1 3 1847 2628 1921 1715

JW 1 3 2059 1899 2050 1505

MS 1 3 6358 6318 7954 4867

JWF 1 3 4028 2672 4398 2350

JM 1 3 6648 4744 7177 4315

RK 1 3 8493 6736 7893 6185

140 1 3 7857 6418 8249 6346

Controls

226C 0 0 4001 3384 4632 2063

232C 0 0 1737 1585 2092 1227

B0001 0 0 1286 1592 1279 1463

B0003 0 0 1452 1580 1658 1613

B0015 0 0 2161 1562 2426 1374

B0023 0 0 3462 1828 4301 1788

B0024 0 0 1649 1851 1981 1580

B0025 0 0 2368 1720 3252 1698

B0027 0 0 2689 1987 2378 1872

B0029 0 0 1742 1573 1684 1346

B0030 0 0 3122 2275 2522 1792

B0032 0 0 1353 1194 1558 892

B0034 0 0 1627 1326 1963 1172

B0036 0 0 2419 1609 2806 1031

B0037 0 0 2626 1424 1760 1249

2246 1766 2419 1477

816 519 978 333
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ParticipantGroup Severity JaneSpacingACC JaneFeatureACC JaneContourACC JaneCousinsACC

130 1 2 63 97 47 97

171 1 2 63 90 63 91

174 1 2 67 100 67 94

128 1 2 73 87 63 91

169 1 2 57 83 50 70

170 1 2 90 100 90 100

177 1 2 40 50 63 59

KW 1 2 87 93 77 81

125 1 3 60 80 73 75

153 1 3 57 93 57 78

JW 1 3 63 87 80 94

MS 1 3 83 97 73 94

JWF 1 3 60 97 73 97

JM 1 3 80 100 87 100

RK 1 3 53 97 60 100

140 1 3 80 90 60 83

Controls

226C 0 0 93 100 93 97

232C 0 0 83 93 77 97

B0001 0 0 50 97 50 100

B0003 0 0 57 77 67 75

B0015 0 0 93 97 67 100

B0023 0 0 77 97 90 100

B0024 0 0 47 80 60 72

B0025 0 0 87 90 87 97

B0027 0 0 53 90 80 88

B0029 0 0 70 90 63 100

B0030 0 0 67 97 87 91

B0032 0 0 87 93 87 94

B0034 0 0 90 97 87 100

B0036 0 0 80 100 73 100

B0037 0 0 90 100 83 100

75 93 77 94

17 7 13 9



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 
 
 
 

Participant Group Severity JaneSpacingIEJaneFeatureIEJaneContourIEJaneCousinsIE

130 1 2 6239.39681 2338.42971 9951.63917 3317.01073

171 1 2 7372.41434 3946.08889 6548.93415 3388.29306

174 1 2 8250.60747 4168.03 8861.24194 3676.94933

128 1 2 2060.73912 1563.78216 2666.57192 1776.74059

169 1 2 8891.49462 4826.29305 9850.72 7139.04286

170 1 2 3912.48889 2651.29 5103.91111 1781.63

177 1 2 7316.375 8746 5303.17385 2924.09902

KW 1 2 6205.14596 4361.07361 7569.8187 6473.37846

125 1 3 11559.9 6937.9375 7991.61326 5772.81333

153 1 3 3260.04941 2815.77199 3390.06529 2195.00832

JW 1 3 3251.12901 2191.02342 2562.7875 1605.44

MS 1 3 7630.39722 6535.29533 10846.4067 5190.95467

JWF 1 3 6713.61667 2764.34261 5997.02714 2425.36127

JM 1 3 8310.1625 4743.57 8280.7892 4315.27

RK 1 3 15925.3703 6967.88042 13154.2167 6185.06

140 1 3 9821.2 7131.35556 13749.0667 7616.03264

Controls
226C 0 0 4286.57969 3383.7931 4962.81748 2129.75484

232C 0 0 2084.25001 1697.93651 2729.14933 1266.95914

B0001 0 0 2571.85714 1646.4532 2557.14286 1462.83333

B0003 0 0 2561.58087 2060.86956 2486.69999 2150.02899

B0015 0 0 2314.90385 1615.62334 3638.84209 1374.09677

B0023 0 0 4516.21116 1890.88122 4778.71795 1787.90323

B0024 0 0 3534.23074 2314.23913 3302.05882 2198.92339

B0025 0 0 2731.9846 1911.28889 3752.44614 1752.8086

B0027 0 0 5041.37503 2207.22222 2972.3913 2139.20879

B0029 0 0 2488.85714 1747.86667 2658.94738 1345.58621

B0030 0 0 4683.23682 2353.44827 2909.85576 1977.18227

B0032 0 0 1561.39422 1279.6566 1797.36922 951.09885

B0034 0 0 1807.4359 1372.10727 2265.36922 1171.65625

B0036 0 0 3023.90625 1609.37931 3826.8182 1030.76667

B0037 0 0 2917.77778 1424 2111.55001 1248.5
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