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Abstract 

Pile foundations are structural elements, highly recommended as a load transferring system from shallow inadequate soil layers 

into competent soil strata with high performance. There are several theoretical and numerical approaches available concerning the 

pile bearing capacity in cohessionless soil, however, there is a need for the development of an accurate and more robust predictive 

model. In this technical note, the details of experimental work to investigate the pile bearing capacity penetrated in dense sub 

rounded sand as confirmed by scanning electronic microscopy (SEM) tests with a Dr of 85% is discussed. A testing programme 

comprised of three types of model piles (steel open-end, steel closed-end and concrete pile). The piles slenderness’s ratios (lc/d) 

are varied from 12, 17 and 25 to simulate the behaviour of both flexible and rigid pile designs. In addition, a novel approach of 

multi-layered artificial neural networks (ANNs) based on the Levenberg-Marquardt approach (LM) was developed. Finally, the 

accuracy of the developed ANN model was evaluated using independent test data. The results indicated that the optimised model 

is highly suited for predicting of the pile-load capacity for the described soil with correlation coefficient, R and root mean square 

error (RMSE) of 0.97095 and 0.074025 respectively.   

© 2017 The Authors. Published by Elsevier Ltd. 
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1. Introduction 

    Pile foundations are slender structural elements underneath superstructures commonly used as load transferring 

systems at sites encountering inadequate sub-soil layers. Pile bearing capacity and associated settlement at certain 

applied loads play a key role on the pile foundation design process [1]. Bearing capacity is normally achieved by 

dividing the ultimate applied load by a certain factor of safety depending on the building serviceability requirements 
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[2]. However,  Murthy [3] stressed that if the above criterion is adopted for certain piles in specific soil conditions 

(e.g., large diameter pile penetrated in clay soil), then the measured settlement from the applied working load may be 

excessive.     

    Currently, in the absence of reliable pile-load test data, the on-site full-scale pile load-settlement test is normally 

conducted to precisely evaluate the pile bearing capacity and associated settlement [1, 2]. Being expensive, time 

consuming and due to the difficulty of obtaining undisturbed soil samples, alternative predictive approaches such as 

Standard Penetration Test (SPT), Pressure Metre Test (PMT) and Cone Penetration Test (CPT), are normally adopted 

to assess the pile bearing capacity [4, 5].  

    Moreover, Shahin [6] addressed the feasibility of the recurrent neural networks (RNN) by using cone penetration 

test data to model steel piles subjected to axial load. Six model input parameters were found to be the most important 

factors affecting the steel pile bearing capacity, these parameters comprised from the diameter of pile, the pile effective 

length, the weighted average cone point resistance over the pile tip zone of failure, the weighted average friction 

resistance over the pile effective depth, the weighted average cone point resistance over the penetrated depth and the 

weighted average friction ratio over the pile embedment depth.   

    The current technical note has been devoted to fill the gaps in literature and to differentiate from the previous studies 

in terms of the experimental tests and the ANN approach in three main aspects: 

 Conducting experimental works by using three types of model piles (steel open end, steel close end and 

concrete), having three slenderness’s ratios (12, 17 and 25) to develop the ANN database for model inputs 

and output parameters; 

 Relatively simple model input parameters are required to train the network without the need for in-situ tests 

such as pile-load test (PLT), cone penetration test (CPT) and standard penetration test (SPT); 

 Development of MATLAB code using the Levenberg-Marquardt approach (LM) to  the implementation of 

an ANN model as it is the most reliable method in comparison to all computational intelligence approaches 

[7]. 

Nomenclature 

LM Levenberg-Marquardt 

µ  combination coefficient 

I matrix identity 

lc/d         slenderness’ ratio 

SEM      scanning electronic microscopy 

SP         poorly graded sand 

wj            weight 

b j            biases 

RMSE   root mean square error 

USCS   unified soil classification system 

2. Experimental study 

    The sand used in this study is dense sand. As confirmed by the scanning electronic microscopy (SEM) observation, 

Fig. 1a and b at 500μm and 200μm respectively, the sand was composed of sub-rounded particles. Based on the 

Unified Soil Classification System (USCS), the sand is classified as a poorly graded (SP). Moreover, the sand 

coefficient of uniformity, Cu and the coefficient of curvature, Cc are 1.786 and 1.142 respectively. It should be 

mentioned that the dense sand was prepared in four layers placed at about 32cm thick in a calibration chamber with 

internal dimensions 90cm by 90cm and 125 cm in depth with each layer densified using a vibratory compactor. The 

test was run following the procedure as recommended by Akdag and Özden [8]. A repeatable process of compaction 

was utilized where the sand chamber was divided in 36 equal segments. Moreover, to maintain the influence of the 

grain size distribution on the combined pile-soil interaction, the ratio between the proposed pile diameter to the 

medium diameter (d50) of the sand specimen should be (45) [9]. To minimize the scale effect and to give precise 
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simulation of the sand-pile interaction, it has been proposed by Remaud [10] that the ratio must be at least (60) times 

pile diameter. Whereas, Taylor [11] stated that the ratio should be at least (100). In this research study, the ratio 

between pile diameters to minimum medium diameter (d/d50) is about (133) as shown in Fig. 2, matching the scaling 

law criteria. 

   

Fig. 1. (a) and (b). Scanning electronic microscopy, (SEM) test of the sand specimen. 

 

Fig. 2. Particle size gradation curve of the sand sample. 

3. Model piles 

    Three types of circular steel open end, circular steel close end and square concrete piles were used as models. Pile 

aspects ratios, (Lc/d) were varied from 12, 17 and 25 with 40 mm diameter/square section used in the current study to 
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simulate the behaviour of both rigid and flexible piles. A pile having a slenderness ratio more than 23 behaves as 

long/flexible pile, while, the model pile having a slenderness ratio less than 23 behaves as short/rigid pile [12]. The 

pile penetration depths are 480mm, 680mm and 1000mm respectively. It should be noted that an extra length of about 

50mm was employed to serve as the load support and to minimize the contact load with the soil surface with the model 

pile head. Furthermore, the pile wall thickness is 1.5mm giving d/t ratios of 26.67 within the range of (15-45) for the 

open end model pile as recommended by Jardine and Chow [13]. 

4. Construction of the (ANN) model 

    In this paper, multi-layered back-prorogation ANNs were used to develop a numerical solution for the model inputs 

and output by applying the Levenberg-Marquardt technique (LM). The adopted (LM) approach is a second order non-

linear optimization tool. In addition, the (LM) algorithm is employed in this study as it is more reliable and a faster 

approach than all other Artificial Neural approaches [7].  

    Furthermore, the typical ANN structure comprises of a series of processing elements, or nodes, that are usually 

assembled in different layers: an input layer, one or two hidden layers and one output layer. The connection weight 

wij is used to linear link the processing elements between each specific layer. Each of the model input parameters, xi 

form each processing element and is multiplied by a connection weight. The weighted value from each of the model 

input parameters and a threshold value, θi is either subtracted or added [14]. The combined model input is then passed 

to the next layer through a specific transfer function (i.e. liner, or non-linear) to generate the adjustable output passed 

as input to the other certain node for the next layer [15].  

    In the present study, the optimum number hidden layers and the output layer is 1 with 10 hidden nodes. In addition, 

the activation functions utilized in the hidden layer and the output layer are log-sigmoid and linear function as 

described in Equations (1 and 2).  

    The Levenberg-Marquardt (LM) algorithm has to be trained in order to get the best approximate values of the 

biases b j and the connections weights w i j. It should be noted that a bias is much like connection weights except that 

they have a value of 1, but they are not necessarily to be included in Equations 1 and 2. The main objective from the 

training of the ANN is to reduce the mean square error (MSE) between the measured (target) and the estimated (output) 

values, as described in Eq. 3 [16]. In this study, the optimum (MSE) is selected during the training process at the best 

validation performance of 0.0040617. 
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5. Pre-processing and data classification 

    The experimental database used comprises 374 recorded load-settlement curves obtained from 9 pile load-tests. To 

construct the ANN model and to eliminate the over-fitting, the database is randomly divided into three subcategories: 

training, testing and validation [15]. The training set objective is to create the network and fit the model, the testing 

set have no effect on training and so provide an independent check of network performance during and after the 

training process and the validation set is used to estimate the prediction error for the optimum ANN model as reported 
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by Shahin [15]. In total, 70% of the database (262) was used for the training and 15% (56) was taken for the testing 

and the remaining 15% (56) was utilized for the validation set respectively. 

6. Model inputs and output 

    Five factors were considered the most significant inputs parameters affecting the pile bearing capacity and the ANN 

model architecture. These factors were, applied load (P), pile slenderness’s ratios (lc/d), pile axial rigidity, (EA), pile 

effective length, (l), sand-pile friction angle, (δ), the model output was the pile settlement. A summary of the model 

inputs and output are illustrated in Tab. 1. 

Table 1: Input and output statistics for the ANN model 

 

 
Data Set 

 

Statistical 

Parameters 

Input   Variables Output 

 

Load 
(kN) 

 

Slenderness 
ratio Lc/d 

 

Pile length, (m) 

Pile axial 

rigidity, (EA), 
(MN) 

Sand-pile 

friction 
angle, δ 

 

Settlement, 
(mm) 

 

 
All data 

Maximum 6.533 25 1 251.2 30.2 14.243 

Minimum 0.031 12 0.48 47.2 24.6 0.002 

Mean 3.596 12.989 0.719 195.018 26.142 6.558 

Std. dev 1.796 5.376 0.215 91.252 2.504 4.376 

Range 6.502 13 0.52 204 5.6 14.241 

 

 

Training 
Set 

Maximum 6.533 25 1 251.2 30.2 14.2435 

Minimum 0.031 12 0.48 47.2 24.6 0.0025 

Mean 4.012 18.023 0.721 196.696 26.097 6.555 

Std. dev 1.97 5.3 0.212 90.44 2.4827 4.568 

Range 6.502 13 0.52 204 5.6 14.241 

 

 

Testing Set 

Maximum 6.521 25 1 251.2 30.2 13.76 

Minimum 0.087 12 0.48 47.2 24.6 0.0267 

Mean 4.11 1218.625 0.745 192.914 26.2 6.08 

Std. dev 1.96 5.535 0.2214 93 2.552 3.905 

Range 6.435 13 0.52 204 5.6 13.738 

 
 

Validat- 

ion Set        

Maximum 6.533 25 1 251.2 30.2 13.888 

Minimum 0.0652 12 0.48 47.2 24.6 0.0026 

Mean 3.8941 17.196 0.688 189.271 26.3 7.5121 

Std. dev 1.9 5.577 0.223 94.648 2.598 4.1365 

Range 6.4677 13 0.52 204 5.6 13.885 

7. Results and discussion 

    A compression between the experimental pile-load tests and the predicted ANN model results is discussed in this 

section. The ANN model used in this study is based on the Levenberg-Marquardt (LM) training function. As 

mentioned earlier, the database is divided in three subsets, training, testing and validation. However, for validation 

the accuracy of the ANN model has been independently checked using the testing database. The ANN model yielded 

good agreement between the observed and the predicted pile load carrying capacity, and the performance of the model 

in the training and validation are illustrated in Figs 3, 4and 5 respectively. The ANN output results reveal that there is 

excellent agreement between the observed and simulated results for all model piles (steel open-ended, precast concrete 

piles and the steel closed ended with aspect ratios varying between 12, 17 and 25. The results also prove that the 

adopted ANN approach has the ability to predict the high non-linear relationship of the pile-load settlement. 
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Fig. 3. Comparison between measured and predicted (ANNs) model for the concrete piles. 

 

Fig. 4. Comparison between measured and predicted (ANNs) model for the steel close-ended piles. 
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Fig. 5. Comparison between measured predicted ANN models for the steel open-end model piles. 

 

    Moreover, the generalisation ability and efficiently of the ANN that best matched of the measured pile-load 

settlement for the testing set is expressed in terms of the correlation coefficient, R and root mean square error, RMSE 

as shown in Fig 6 at a 5% level of significance. It can clearly be realized that the developed neural network model is 

successful in its ability to simulate the high nonlinear relationship between the target and the fitted value with R and 

RMSE values of 0.97095 and 0.074025 respectively. 

 
Fig. 6. Regression calibration curve between targets versus fitted values for the optimum ANN model at a 5% level of significance.  
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