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ABSTRACT: 

The sirtuins, silent mating-type information regulation 2 (SIRTs), are a family of nicotinamide adenine 

dinucleotide (NAD+)-dependent histone deacetylases with important roles in regulating energy 

metabolism and senescence. Activation of SIRTs appears to have beneficial effects on lipid metabolism 

and antioxidants, prompting investigation of the roles of these proteins in atherogenesis. Although clinical 

data are currently limited, the availability and safety of SIRT activators such as metformin and resveratrol 

provide an excellent opportunity to conduct research to better understand the role of SIRTs in human 

atherosclerosis. Encouraging observations from preclinical studies necessitate rigorous large, prospective, 

randomized clinical trials to determine the roles of SIRT activators on the progression of atherosclerosis 

and ultimately on cardiac outcomes, such as myocardial infarction and mortality. 

 

Keywords: Atherosclerosis, CVD, Sirtuin, SIRT1, SIRT3, SIRT6, Oxidative Stress, Lipid metabolism. 

 
Abbreviations: ABC, Adenosine triphosphate binding cassette; ABCG, ABC sub-family G member; ADP, 

Adenosine diphosphate; AMPK, Adenosine monophosphate-activated protein kinase; eNOS, Endothelial 

nitric oxide synthase; FOXO, Forkhead transcription factor subclass O; HDL-C , High-density lipoprotein 

cholesterol; HIF1A, Hypoxia-inducible factor 1A; HUVEC, Human umbilical vein endothelial cells; 

LDL-C, Low-density lipoprotein cholesterol; LDLR, Low-density lipoprotein receptor; LOX-1, Lectin-

like oxidized low-density lipoprotein receptor-1; LXR, Liver X receptor; MnSOD, Manganese-dependent 

superoxide dismutase; NAD, Nicotinamide adenine dinucleotide; NADPH, Nicotinamide adenine 

dinucleotide phosphate (reduced form) ; N-CoR, Nuclear receptor co-repressor; NF-κB, Nuclear factor 

κB; NFATc2, Nuclear factor of activated T cells 2; ox-LDL,Oxidized low-density lipoprotein; p53, Tumor 

protein 53; PCSK9, Proprotein convertase subtilisin/kexin 9; PGC-1α, Peroxisome proliferator-activated 

receptor-γ co-activator-1α; ROS, Reactive oxygen species; SIRT, Silent mating-type information 
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regulation; SOD2, Superoxide dismutase 2; SR-B1, Scavenger receptor class B type I; STAT3, Signal 

transducer and activator of transcription-3; VCAM-1, Vascular cell adhesion molecule-1, 
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1. Sirtuins family 

The sirtuins, silent mating-type information regulation 2 (SIRTs), are a family of nicotinamide adenine 

dinucleotide (NAD+)-dependent histone deacetylases. SIRTs are activated in response to low cellular 

energy stores and have been implicated in the control of many physiological processes including 

senescence (1). The life-prolonging effects of SIRTs were first described in Saccharomyces cerevisiae (2). 

The regulation of SIRTs by NAD+ dictates that the activity of these enzymes alters in response to changes 

in prevailing intracellular redox potential (1) and SIRTs have been found to have important roles in energy 

regulation (3). The main chemical reactions catalyzed by sirtuin enzymes are protein lysine 

deacetylations. Sirtuins couple the deacetylation of lysine to the hydrolysis of NAD+ by transferring the 

acetyl group to the adenosine diphosphate (ADP)-ribose moiety to form O-acetyl-ADP-ribose, releasing 

free nicotinamide (4). Seven closely-related SIRT family members have been identified and these are 

divided into four classes: class I (consisting of SIRT1, SIRT2, and SIRT3), class II (SIRT4), class III 

(SIRT5), and class IV (SIRT6 and SIRT7) (5, 6). The SIRTs have a conserved core catalytic domain, but 

they differ with respect to their distribution in tissues and their intracellular locations (7). SIRT1, SIRT6 

and SIRT7 are predominantly located in the nucleus, SIRT2 is unique in its cytoplasmic location, and 

SIRT3, SIRT4 and SIRT5 are mitochondrial SIRTs (8). Of the seven SIRT subtypes, SIRT1, SIRT3, and 

SIRT6 have been most extensively characterized and are the focus of this narrative review. 

 

1.1.1. SIRT1 

SIRT1 is a highly conserved NAD-dependent histone deacetylase (6) and is the best characterized member 

of the SIRT family. SIRT1 is highly expressed in human vascular endothelial cells (9), where it resides in 

the nucleus of the cell and is associated with euchromatin (10). SIRT1 regulates many cellular processes 

essential for cell survival, apoptosis, inflammation, stress resistance, cell growth, cell senescence and 

metabolism, by deacetylating histones and many non-histone proteins such as forkhead transcription 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
  

factors (FOXOs), nuclear factor κB (NF-κB), tumor protein 53 (p53), peroxisome proliferator-activated 

receptor-γ co-activator-1α (PGC-1α), and several DNA damage repair proteins including Ku70 (11-14). 

SIRT1 deficiency contributes to increased inflammation, oxidative stress, foam cell formation, impaired 

nitric oxide (NO) production and autophagy, thereby promoting vascular aging and atherosclerosis (11-

14).  

 

1.1.2. SIRT3 

SIRT3 regulates several mitochondrial functions and it has important roles in maintaining homeostasis, 

particularly under conditions of stress (15). However, SIRT3 does not appear to be a prerequisite for life, 

as demonstrated by knockout mice models which showed an almost normal phenotype at birth - although 

these animals displayed excessive acetylation of mitochondrial proteins (16). SIRT3 participates in the 

control of fatty-acid metabolism, and SIRT3 knockout mice demonstrate abnormal lipid metabolism 

which is associated with abnormal accumulation of acylcarnitines and triglycerides in the livers of these 

animals during fasting (17). Multiple cellular targets including manganese-dependent superoxide 

dismutase (MnSOD), NADH dehydrogenase sub-complex 9, and succinate dehydrogenase complex 

subunit A have been identified as being modulated by SIRT3 (18, 19). SIRT3 provides protection against 

oxidative stress by deacetylation and activation of superoxide dismutase 2 (20). Roos et al.  indicated that 

loss of SIRT3 does not change endothelial function in advanced atherosclerosis, but may lead to 

augmentation of osteogenic signaling and accelerated progression of vascular calcification (21). 

 

1.1.3. SIRT6 

The core domain of SIRT6 is flanked by a N-terminal which is necessary for histone deacetylation and 

chromatin association and a C-terminal which is required for the nuclear localization of this SIRT subtype 

(22). Primarily characterized as an NAD+-dependent histone deacetylase (23), SIRT6 targets the histones 

H3K9 (10) and H3K56 (24) and also directly deacetylases a variety of proteins (24, 25). SIRT6 expression 
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is decreased in atherosclerotic lesions from ApoE−/− mice (26) and human patients (27). However, the 

role of SIRT6 in regulating vascular endothelial function and atherosclerosis is not well understood. 

Recently Xu et al.  reported that SIRT6 reduces the formation of atherosclerotic lesions via the attenuation 

of endothelial dysfunction and vascular inflammation (28) . 

 

1.1.4. Putative therapeutic roles of SIRTs 

SIRTs regulate a variety of genes which encode proteins that regulate inflammation and endothelial cell 

function (10). The importance of SIRTs in many physiological processes has led to pathophysiological 

and therapeutic roles being investigated in a variety of conditions including cancer, diabetes mellitus, and 

cardiovascular disease (1), all leading causes of morbidity and mortality (29). Cardiac (3, 30, 31) and 

cardiovascular (1, 32) effects of SIRTs have been extensively reviewed elsewhere. SIRT1 has been 

implicated in protection against endothelial dysfunction, thrombosis, myocardial infarction and 

reperfusion injury. SIRT3 appears to have beneficial effects on the myocardium, ameliorating 

cardiomyopathy and left ventricular hypertrophy by preserving mitochondrial function (33). SIRT6 has 

similar effects and additionally may have beneficial effects on lipid profiles. Hepatic Sirt6 might suppress 

transcription of Pcsk9, which prevent hepatic low-density lipoprotein receptor (LDLR) degradation and 

subsequently reduce plasma LDL cholesterol (LDL-C) levels in mice (34). 

 

2. Atherosclerosis 

Atherosclerosis is a progressive disorder, which develops from foam cells and fatty streaks in arterial 

walls through several stages of development, ultimately resulting in atherosclerotic plaques. The plaques 

can obstruct blood flow. In the coronary circulation this can result in symptoms of angina pectoris. If the 

plaques rupture, they expose the platelets to pro-aggregatory stimuli leading to thrombogenesis and its 

sequelae: coronary thrombosis and myocardial infarction. A similar process in cerebral arteries results in 
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ischaemic stroke (35). Research in recent decades has increasingly highlighted the roles of oxidative 

stress, inflammation (36-38), macrophage infiltration and deposition of oxidized low-density lipoprotein 

(ox-LDL) cholesterol in the walls of blood vessels and endothelial dysfunction in the pathophysiology of 

atherosclerosis (35, 39). Results from preclinical studies suggest that SIRTs are involved in the regulation 

of many of these pathways. This review focuses on the vascular biology of SIRT1, SIRT3 and SIRT6, 

with a focus on the roles of these enzymes and their modulators on biological molecules and processes 

involved in atherogenesis, including lipid metabolism, inflammation and endothelial function. 

 

3. Potential for SIRTs to modulate factors involved in the development atherosclerosis 

3.1. Lipid modification 

The deposition of oxidized lipids in arterial walls is a characteristic of atherosclerosis (35, 39). 

Pharmacological modification of plasma lipid profiles, in particular the reduction of low-density 

lipoprotein cholesterol (LDL-C), has been shown to be effective in the primary (40) and secondary (41) 

prevention of cardiovascular events. Epidemiological studies have repeatedly demonstrated associations 

between HDL-C and reduced risk of cardiovascular disease, although the causal relationship of this 

relationship has been called into question by careful studies including a large, well-conducted Mendelian 

randomization investigation (42). Lipid-modifying effects of SIRTs have been described, and, therefore 

SIRTs may have the potential to alter the course of atherogenesis (43) (Figure 1).   

SIRT1 modulates cholesterol biosynthesis in the liver (44) resulting in reduction of serum lipid levels(45). 

These effects is associated with the fact that SIRT1 is a positive regulator of the liver X receptor (LXR) 

proteins, important regulators of the metabolism of fatty acids, cholesterol, and glucose. LXR regulates 

reverse cholesterol transport, a process that removes cholesterol from macrophages and prevents foam cell 

formation. SIRT1 may promote deacetylation of LXRs at lysine K432 (44). Deacetylation and subsequent 

activation of LXR increase the expression of ATP-binding cassette (ABC) sub-family A member (ABCA) 
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1 and ABC sub-family G member (ABCG) 1, which contribute to the reverse cholesterol transport and the 

suppression of foam cell formation and cholesterol loading in macrophages (44). Moreover, SIRT1 

interacts with transcription factors including peroxisome proliferator-activated receptor gamma (PPARγ), 

nuclear receptor co-repressor (N-CoR) (46), and peroxisome proliferator-activated receptor gamma co-

activator 1-alph (PGC-1a) (47), and may also contribute to activation of LXR in cells via the NF‑κB 

pathways (14). 

Of particular interest is the observation that pharmacological activation of SIRT1 can increase LDLR 

expression in mice through a reduction in secretion of proprotein convertase subtilisin/kexin 9  

(PCSK9) (48), which targets LDL receptors for internalization in hepatic cells and thereby reduces the 

capacity of the liver to take up circulating LDL (49, 50). Monoclonal antibodies directed against PCSK9 

have shown great efficacy in lowering circulating LDL-C concentrations and are very promising agents in 

the prevention of cardiovascular disease (CVD) (49, 50). Also, SIRT6 can reduce LDL-C levels through 

regulation of the PCSK9 gene (34). Deficiency of hepatic SIRT6 increased PCSK9 gene expression and 

LDL-C. SIRT6 can be recruited by forkhead transcription factor FOXO3 to the proximal promoter region 

of the PCSK9 gene and deacetylates histone H3 at lysines 9 and 56, which suppress the gene expression. 

Moreover, overexpression of SIRT6 in mice fed a high-fat diet lowers LDL-C (34). FOXO3 and SIRT6 

also suppress the Srebp2 gene expression, a major regulator of cholesterol biosynthesis in the liver. SIRT6 

and FOXO3, have an impact on total cholesterol levels in the circulation via regulation of the Srebp2 gene 

(51). 

 

3.2. Reduction of oxidative stress 

Anti-atherosclerotic actions of SIRTs may derive from their potential to reduce the severity of oxidative 

stress and stress-induced endothelial injury (52) (53). SIRT1 exerts antioxidant effects by modulating 

FOXO signaling (54). FOXO proteins have many functions, including cell cycle, metabolism, apoptosis, 
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stress resistance, DNA repair, and aging (55). Deacetylation and then activation of FOXO1, 3 and 4 

transcription factors by SIRT1 reduces oxidative stress by induction of anti-oxidative enzymes in 

endothelial cells (56). SIRT1 promotes the expression of FOXO target genes associated with stress 

resistance, and decreases the transcription of genes associated with apoptosis (57). Genetic variations at 

the SIRT1 and FOXO1 loci have been found to be associated with carotid atherosclerosis. A pronounced 

effect was found for two SNPs (rs10507486 and rs2297627) at FOXO1 and common carotid intima-media 

thickness (58). SIRT1 has been shown to promote the ubiquitination and degradation of FOXO3a, which 

protects endothelial progenitor cells against oxidative stress-induced apoptosis (59).  

SIRT3 reduces intracellular activity of reactive oxygen species (ROS) via deacetylation and stimulation of 

mitochondrial superoxide dismutase 2 (SOD2) (19), an enzyme responsible for the conversion of 

superoxide to molecular oxygen or hydrogen peroxide. (53). Correspondingly, it has been demonstrated 

that SIRT3 deficiency in murine and human pulmonary artery smooth muscle cells was associated with 

induction of the transcription factors involved in the pathogenesis of pulmonary artery hypertension 

hypoxia-inducible factor 1A (HIF1A), signal transducer and activator of transcription-3 (STAT3), and 

nuclear factor of activated T cells 2 (NFATc2) (60). Moreover, SIRT3 deficiency induces a mild, 

superoxide-dependent endothelial dysfunction in mice fed a high-cholesterol diet (61). 

 

3.3. Anti-inflammatory actions 

SIRTs have the potential to reduce the inflammatory component of atherosclerotic disease. In particular 

this may occur through regulation of nuclear factor-kB (NF-kB), which regulates the expression of 

cytokines, chemokines and other pro-inflammatory agents (62). 

SIRT6 is an important regulator of inflammation. In endothelial cells, the down regulation of SIRT6 is 

associated with enhanced expression of NF-kB, while overexpression of SIRT6 is associated with 

diminished NF-kB activity. SIRT6 thus appears to modulate the up-regulation of genes involved in 
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inflammation, vascular remodelling, oxidative stress and angiogenesis including interleukin1β (IL-1β)  

(7). 

 In a murine model, haploinsufficiency of SIRT6 results in more rapid atherosclerotic plaque formation 

and greater carotid plaque instability than in homozygous SIRT6 controls. The homozygote animals had 

greater expression of inflammatory cytokines (63). Interestingly, the study also found that expression of 

SIRT6 was lower in carotid arteries from patients with atherosclerotic disease, compared to normal 

controls (63) 

 

3.4. Macrophage migration and foam cell deposition  

Uptake of ox-LDL into endothelial cells, an important stage in the development of atherosclerosis, is 

achieved via several scavenger receptors, for example lectin-like oxidized low-density lipoprotein 

receptor-1 (Lox-1) and CD36 (64). Inhibition of Lox-1 expression would appear to be a potential 

therapeutic strategy against atherosclerosis (65). SIRT1 reduces the expression of the scavenger receptor 

Lox-1 in macrophages (66), and may thereby act to slow the development of foam cells. Reduction of 

Lox-1 expression by SIRT1 is associated with suppression of NF-signaling by deacetylation of RelA/p65 

(66). SIRT1 also exerts CD36 dependent and independent activities related to ox-LDL uptake (57). 

Moreover, it was also indicated that SIRT1 does not affect scavenger receptor class B type I (SR-B1) 

which mediates cellular HDL cholesterol uptake (44). In addition, SIRT1 may stabilize existing 

atherosclerotic plaques by enhancing the activity of tissue inhibitor of metalloproteinase 3 in vascular 

smooth muscle cells (67).  

 

3.5. Autophagy  

Autophagy is catabolic process through which damaged organelles and macromolecules are degraded and 

recycled within the cell. Macrophage autophagy plays a protective role in atherosclerosis by reducing 
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inflammation and promoting cholesterol efflux (68). SIRT1 can regulate autophagy by both epigenetic 

mechanisms through histone modification and by posttranslational mechanisms through the action of 

forkhead transcription factors (FOXO) (69). The primary deacetylation target of SIRT1 is lysine 16 on 

histone H4 (H4K16). H4K16 deacetylation inhibits the transcription of genes involved in the initial and 

late stages of autophagy (70). SIRT1 may directly interact with ATG5, ATG7, and Atg8/LC3 (71). 

Indirectly, SIRT1 might regulate autophagy by deacetylation of FOXO1 and FOXO3, which cause 

increased expression of molecules associated with autophagy. FOXO1 activation stimulates the expression 

of Rab7, which leads to the maturation of autophagosomes (72). Deacylation of FOXO3 increases the 

expression of Bnip3, which is critical for the induction of autophagy (73).  

SIRT6 also protects against atherosclerosis by reducing foam cell formation through an autophagy-

dependent pathway. He et al. indicated that SIRT6 overexpression lowers the level of miR-33, which not 

only increases autophagy flux but also upregulates ABCA1 and ABCG1 expression, promoting 

cholesterol efflux and preventing macrophage foam cell formation at the same time (74). 

 

3.6. Vascular function 

Two recent studies conducted in mouse models have investigated the effects of SIRT6 upon vascular 

function using similar methods (26, 28). Endothelial derived relaxation, provoked by an acetylcholine 

challenge, was impaired in haploinsufficient SIRT6+/- mice (28) and when the function of SIRT6 was 

attenuated by small hairpin RNAs. Haploinsufficiency SIRT6+/- mice had increased rates of atherogenesis 

associated with elevated vascular cell adhesion molecule-1 (VCAM-1), an inflammatory cytokine. 

Correspondingly, SIRT6 overexpression was associated with reduced expression of pro-atherosclerotic 

genes (including tumour necrosis factor (TNF) family members and reduced adhesion of monocytes to 

endothelial cells) (28) 
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4. SIRTs and cigarette smoke 

Cigarette smoke causes generalized endothelial dysfunction (75, 76), which is usually an indicator of an 

increased oxidative stress. In smokers and in subjects with diabetes, SIRT1 expression and/or activity may 

be decreased, despite the fact that the protective effects of SIRT1 against oxidative stress would be 

especially helpful in this situation. It was found that the SIRT1 activator SRT2104 is safe and well 

tolerated in otherwise healthy cigarette smokers and positively effects on lipid profiles through reducing 

LDL-cholesterol concentrations in serum by 11%, but did not indicate beneficial effects on vascular, 

endothelial, or platelet function compared with placebo (77). Resveratrol, probably via a SIRT1-

dependent mechanism, may prevent the adverse vascular effects of cigarette smoking by reducing 

cigarette smoke-induced oxidative stress and preventing pro-inflammatory phenotypic alterations in 

vascular tissues (78). Additionally, it was shown that SIRT1-PARP-1 axis plays a pivotal role in 

regulation of autophagy induced by cigarette smoke (79). 

 

5. SIRTs and statins 

In addition to their well-documented lipid-modifying effects, statins (3-hydroxy-3-methylglutaryl–

coenzyme A reductase inhibitors) have pleiotropic vascular protective effects associated with 

improvement or restoration of endothelial function, enhanced activity of endothelial nitric oxide synthase 

(eNOS), and reduction of oxidative stress (80). eNOS protects the cardiovascular system from 

atherosclerosis by regulating vascular relaxation (81). A positive correlation was found between eNOS 

and SIRT1 expression in subjects receiving statins. Ota et al. indicated that an increase in eNOS activation 

caused by statins could promote SIRT1 (82). Kilic et al. shown that SIRT1 expression is increased and 

eNOS expression is decreased in patients with atherosclerosis and statin, atorvastatin and rosuvastatin, 

therapy may reduce SIRT1 expression and increase eNOS expression, to the similar levels as in healthy 
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population, independent from the studied SIRT1 gene variants (rs7069102C>G and rs2273773C>T) (83). 

Therefore, statin treatment could exert its protective effect on cardiovascular disease through the 

inhibition of SIRT1 expression. Conversely, previous studies, demonstrated an increase in SIRT1 

expression with statin treatment (84, 85).  

 

6. Pharmacological modulators of SIRTs 

SIRTs present an interesting and attractive therapeutic target in the prevention of atherosclerotic 

cardiovascular disease. The wide-ranging anti-atherosclerotic effects of SIRT activation afford an 

opportunity simultaneously to influence multiple components of the development of atherosclerotic 

cardiovascular disease with a single drug target. Furthermore, a number of currently available drugs and 

nutraceuticals have been demonstrated to activate SIRTs directly or via allosteric activation (86, 87). 

Thus, the clinical manipulation of SIRTs may be achievable without the costly and time-consuming 

process of discovering new drug targets. Pharmacological modulators have been best characterized for 

SIRT1 and several of these are discussed below. In order to test the hypotheses that these agents may be 

beneficial in the treatment and prevention of cardiovascular disease, possibly long-term, outcomes-based 

placebo-controlled clinical trials would be necessary. However such studies are likely to be expensive and 

relatively difficult to conduct. The short-term studies, which simultaneously measure expression of SIRTs 

and different parameters of cardiovascular risk in patients taking SIRT modulators, may go some way to 

addressing the question. 

 

6.1. Metformin 

Metformin is a safe and widely used antidiabetic drug. In addition to its well-characterized reductions in 

plasma glucose, it has anti-inflammatory properties with the potential to modulate important components 

of the pathophysiology of atherosclerosis. (88, 89). Metformin increases SIRT1 expression and activity 
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and represses the expression of inflammatory markers such as I1-6 and TNF-alpha in patients with carotid 

artery atherosclerosis (90). Metformin has been shown to promote phosphorylation of 5' adenosine 

monophosphate-activated protein kinase (AMPK), which leads to protection against oxidative injuries 

(91). The signaling pathways of metformin-mediated anti-atherosclerotic effects involve inhibition of the 

nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and the ROS formation, which 

impair the LOX-1 up-regulation and AKT/eNOS deactivation. Importantly, these protective mechanisms 

are attenuated when SIRT1 and AMPK are repressed (92). 

 

6.2. Resveratrol 

Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a polyphenol found in natural products including grapes 

(93). Resveratrol is a strong activator of SIRT1 and it is potentially anti-atherosclerotic (2, 94, 95). 

Disappointingly, a well-conducted and extensive meta-analysis did not find any evidence of resveratrol 

supplementation impacting plasma lipids, or other risk factors (96). 

 

6.3. Genistein 

Genistein (4’,5,7-trihydroxyisoflavone) is an isoflavone which is present mainly in soybeans and red 

clover. It has anti-atherosclerotic activities (97-99).  Genistein increases the activity of endothelial nitric 

oxide synthase (eNOS) and the production of nitric oxide (NO) (100). NO is a vasodilator and reduced 

endothelial NO production is a hallmark of endothelial dysfunction and atherosclerosis. In human 

umbilical vein endothelial cells (HUVECs), genistein has been shown to reverse eNOS uncoupling 

induced by ox-LDL, a process modulated by a SIRT1-dependent pathway (100). This observation 

provides an important potential mechanism for the anti-atherosclerotic actions of genistein and SIRT 

activators in general. 
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6.4. Quercetin 

Quercetin is a flavonoid with anti-oxidative and anti-inflammatory activities. It is present in vegetables, 

fruits, herbs and red wine (101). Like genistein, quercetin suppresses ox-LDL-induced endothelial 

dysfunction by activating SIRT1 (102). 

 

6.5. Berberine 

Berberine is a botanical alkaloid mainly isolated from the Chinese herb Coptis chinensis which has been 

proposed as an anti-atherosclerotic agent (103). In a cell-culture model, berberine has been shown to 

reduce the formation of foam cell formation by activating the AMPK-Sirt1-PPAR-γ pathway and by 

reduction of the uptake of ox-LDL by monocytes (104). 

 

6.6. Curcumin 

Curcumin is a polyphenol extract of Curcuma longa. Curcumin enhances cholesterol efflux from 

macrophages, an important step in reverse cholesterol transport, whereby cholesterol is returned to the 

liver for metabolism. This effect of curcumin may result from an increase of ABCA1 expression through 

activation of AMPK-Sirt1-LXRα signaling in THP-1 macrophage-derived foam cells (105). Such effects 

may reduce the development of atherosclerosis and indeed curcumin has been proposed as an anti-

atherosclerotic agent (106). 

 

6.7. Delphinidin-3-glucoside 

Delphinidin-3-glucoside is a natural anthocyanin which is found in a variety of fruits, vegetables, and 

cereals (107). Several studies have demonstrated potentially beneficial effects of anthocyanins on 

atherosclerosis, but the mechanisms have not been fully elucidated (108). It has been shown that 
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delphinidin-3-glucoside protects against ox-LDL-induced injury in HUVECs (108).  This effect may be 

mediated via an adenosine monophosphate-activated protein kinase/Sirt1 signaling pathway (109).  

 

6.8. Ginkgolide B 

Ginkgolide B is an extract of the ginkgo leaf and is a natural inhibitor with potentially protective effects 

on endothelial cells (110) Ginkgolide B can protect against endothelial cell injury by reducing LOX-1 and 

increasing Sirt1 (111) and it has been suggested as a potential agent for the  prevention of atherosclerosis 

(111, 112). 

 

6.9 Evaluation of clinical effects of pharmacological modulators of SIRTs 

The compounds described above have shown promise in varying degrees in the modulation of SIRT 

function. More rigorous evaluation of these compounds is needed before any recommendations can be 

made with respect to their clinical use. Metformin is probably the most promising candidate in this 

respect, because its widespread availability as a pharmaceutical preparation would make a large 

randomised controlled trial realatively easy to facilitate (88-92). Such a trial could be used to measure the 

effect of the drug on SIRT function and clinical outcomes, to determine whether these effects were 

correlated with one another. Natural products such as resveratrol, genistein, quercetin, berberine, 

curcumin, delphinidin-3-glucoside and ginkgolide B may be harder to investigate robustly owing to 

difficulties in measuring dietary intake in observational studies and because of the difficulty in eliminating 

variability between batches of supplements used in controlled studies (94-112). Perhaps the most practical 

approach to further research would be to investigate metformin initially as a ‘proof of concept’ and then to 

investigate natural products if studies with metformin suggested a SIRT-mediated benefit of metformin. 
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7. Conclusions 

SIRTs appear to have a prominent role in vascular biology, and in preclinical models they promote a 

variety of physiological effects, which would be expected to oppose atherogenesis. Preclinical studies 

suggest roles for SIRTs in protecting vascular smooth muscle and endothelial cells from the deleterious 

effects associated with lipid deposition, oxidative stress, and inflammation. Although clinical data are 

currently limited, and caution must be applied when extrapolating from the results of preclinical studies, 

the availability and safety of SIRT activators such as metformin and resveratrol make possible the studies 

that will be necessary to better understand the role of SIRTs in human atherosclerosis. These encouraging 

observations necessitate rigorous large clinical trials to determine the roles of SIRT activators on cardiac 

outcomes such as incident myocardial infarction and mortality.  
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Figure 1: An overview of potential interactions of SIRTS with pathophysiological processes in atherosclerosis. 
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HIGHLIGHTS: 

• The sirtuins, silent mating-type information regulation 2 (SIRTs), are a family of 

nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylases  

• SIRTS have important roles in regulating energy metabolism and senescence.  

• Activation of SIRTs appears to have beneficial effects on lipid metabolism and 

antioxidants 

• The availability and safety of SIRT activators such as metformin and resveratrol 

provide an excellent opportunity to conduct research to better understand the role of 

SIRTs in human atherosclerosis.  

 


