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Sliding contact problems involving inhomogeneous materials
comprising a coating-transition layer-substrate and a rigid punch

S. J. Chidlow∗1, M. Teodorescu†

∗Department of Mechanical Engineering and Mathematical Sciences, Oxford Brookes University, Oxford OX33 1HX,
UK

†Baskin School of Engineering, University of California Santa Cruz 95064, CA USA

Abstract

This paper is concerned with a two-dimensional analysis of the contact problem involving a multi-

layered elastic solid and a rigid punch. The solid is comprised of a homogeneous coating and

substrate joined together by a graded elastic transition layer whose material properties exhibit

an exponential dependence on the vertical coordinate. By applying the Fourier Transform to the

governing boundary value problem, we formulate expressions for the stresses and displacements

induced by the application of point forces acting both normally and tangentially at the origin. The

superposition principle is then used to generalise these expressions to the case of distributed normal

and tangential tractions acting on the solid surface. A pair of coupled integral equations are further

derived for the parabolic stamp problem which are easily solved using collocation methods.

The primary aim of this paper is to provide insight into the likely behaviour of graded materials

under pressure. To this end, the assumption of Coulomb friction is invoked within this work and the

effects of different coating/interlayer thickness, material gradation and friction coefficient upon the

contact footprint and sub-surface stress field are investigated in great detail. The results we obtain

1Corresponding author’s email address : sj.chidlow@brookes.ac.uk
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suggest that the thickness of the transition layer as well as the combined thickness of the coating

and transition layer have a significant effect on the maximum sub-surface stress attained through

contact. This indicates that small changes in the composition of the coating can lead to significant

differences in material behaviour. We additionally find that an increase in the amount of friction

present in the contact can cause dramatic changes in the pattern of the stress field and can give rise

to a much larger maximum stress.

1. Introduction

Contact problems involving functionally graded materials (FGMs) have received much atten-

tion in recent times as such materials are widely used as protective coatings in load transfer prob-

lems, typically involving friction. In particular, the gradual variation in material properties helps

alleviate some of the problems associated with perfectly bonded, homogeneous layers such as

cracking. The potential benefits of using functionally graded materials in such applications are

covered in more detail in Suresh (2001) and Suresh et al. (1999).

The majority of proposed models that seek to describe the solution of the contact problem in-

volving FGMs assume that the material is in a state of plane strain and are thus two-dimensional.

Ma and Korsunsky (2004) and independently Çömez and Erdöl (2012) model the coating-substrate

system as two distinct yet homogeneous perfectly bonded layers. Both authors applied the Fourier

transform to the governing two-dimensional boundary value problem (BVP) to derive a pair of

singular integral equations from which the normal and tangential pressures resulting from contact

by a rigid punch can be determined. In both cases, the tangential pressure resulting from contact is

assumed to be a multiple of the normal pressure (Coulomb friction) although their models are not
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restricted to this assumption. An alternate model was derived by Teodorescu et al. (2009) who pro-

posed an iterative algorithm to determine the contact footprint resulting from the parabolic stamp

problem. The authors allowed only for frictionless contact and concentrated on determining the

effects of different coatings on the induced sub-surface stress field.

A better assumption that can be used to model functionally graded materials is that the shear

modulus of the coating depends on the coordinate system in some way and therefore varies con-

tinuously throughout its thickness. Guler and Erdogan (2004) assumed that the shear modulus of

the protective coating depends exponentially on the vertical coordinate and using a similar method

to that of Ma and Korsunsky determined a coupled pair of singular integral equations from which

the normal and tangential tractions caused by contact could be determined. The authors used the

assumption of Coulomb friction to produce a series of benchmark solutions for the flat and trian-

gular stamp problems which were further augmented by results presented for the parabolic stamp

problem in Guler and Erdogan (2007). Ke and Wang (2006) and Ke and Wang (2007) derived a

multi-layer model to determine the solution of the contact problem. The coating was assumed to

comprise a series of layers whose shear moduli vary in a piecewise linear fashion which allowed

arbitrary shear modulus variations to be considered. The authors compare results produced from

their model with those of Guler and Erdogan and both show excellent agreement with each other.

A more complicated model still was proposed by Yang and Ke (2008) who assumed that both

the protective coating and substrate are homogeneous but separated by a functionally graded transi-

tional layer comprising an arbitrary number of piecewise linear sub-layers where the properties of

the material gradually change from those of the coating to the substrate. The authors consider the
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rigid parabolic stamp problem and present a series of results indicating how the contact pressure

and interfacial stresses are affected by different materials. Choi (2012) used a similar assumption

to derive a model to approximate the mode III stress intensity factors that result from two offset

interfacial cracks in bonded dissimilar media except that the shear modulus in the interlayer is

taken to possess an exponential variation. This approach was also taken by Teixeira (2001) who

proposed a numerical model to investigate the influence of a graded layer on the thermal stress

distribution within a solid comprising a ceramic coating and a metallic substrate. This work con-

cluded that interlayer thickness has a significant effect on the stress distribution as the optimum

condition for stress elimination in a hard coating is obtained when the interlayer is much thicker

than the coating.

This paper is concerned with the derivation of a model that approximates the contact footprint

and sub-surface stress field within an inhomogeneously elastic solid comprising a homogeneous

coating and substrate joined together by a functionally graded transition layer. The proposed model

incorporates friction within the contact and provides a natural extension to the type of problem con-

sidered by Yang and Ke (2008) and Chidlow and Teodorescu (2013).

The numerical results presented within this work focus on determining the effects of material

properties and friction on the sub-surface stress field. King and O’Sullivan (1987) have provided

a detailed analysis of this kind for the contact problem involving a layered elastic half space in-

corporating two distinct homogeneous layers. Their model however does not allow for graded

materials and so an attempt is made here to investigate how the presence of the transition layer

changes material response. The results presented here detail how changes in material stiffness,
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coating/interlayer thickness and friction all effect the induced stress field and give implications for

potential material failure.

2. Fundamental solution of the half-plane problem

Consider an inhomogeneously elastic solid in a state of plane strain occupying the half-plane

y≤ 0 comprising two finitely thick layers bonded to an infinitely deep substrate (region 3). The up-

per layer (region 1) occupying −h1 ≤ y≤ 0 represents a homogeneously elastic coating whilst the

middle layer occupying the region −h2 ≤ y <−h1 represents a graded elastic transition layer (in-

terlayer) where the material properties of the solid progressively change from those of the coating

to those of the substrate. The shear modulus of the solid is defined to be

µ(y) =






µ1, −h1 ≤ y≤ 0,

µ0eα(y+h2), −h2 ≤ y <−h1,

µ0, −∞ < y <−h2

(1)

where

α =
1

h2−h1
ln

�
µ1

µ0

�
(2)

which ensures that the shear modulus is continuous everywhere. The Poisson ratio of the solid is

assumed constant and is denoted ν .

We introduce the local Airy stress function φ j(x,y), j = 1,2,3 within each region to determine

the stresses induced by pressure applied to the solid surface. The stresses within each region can

be calculated from the stress function via the relations

σ ( j)
yy =

∂ 2φ j

∂x2 , σ ( j)
xx =

∂ 2φ j

∂y2 , σ ( j)
xy =−

∂ 2φ j

∂x∂y
. (3)
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Substituting (1) into the compatibility condition valid for a two-dimensional material (see Timo-

shenko and Goodier (1970) for example) reveals that the local stress functions satisfy

∇4φ1 = 0, (4)

∇4φ2−2α ∂
∂y

�
∇2φ2

�
+α2 ∂ 2φ2

∂y2 −α2ρ ∂ 2φ2

∂x2 = 0, (5)

∇4φ3 = 0 (6)

with

∇2 =
∂ 2

∂x2 +
∂

∂y2

denoting the Laplacian operator and ρ = ν/(1−ν). We may apply the Fourier transform which

we define as

φ̃ j(ξ ,y) =
� ∞

−∞
φ j(x,y)eiξ xdx (7)

to (4)-(6) which results in the transformed equations

φ̃
����
1 −2ξ 2φ̃

��
1 +ξ 4φ̃1 = 0, (8)

φ̃
����
2 −2αφ̃

���
2 +

�
α2−2ξ 2� φ̃

��
2 +2αξ 2φ̃

�
2 +ξ 2 �

ξ 2 +ρα2� φ̃2 = 0, (9)

φ̃
����
3 −2ξ 2φ̃

��
3 +ξ 4φ̃3 = 0 (10)

where
�
denotes differentiation with respect to y. Equations (8)-(10) admit the general solutions

φ̃1(ξ ,y) = (C1 +C2y)e|ξ |y +(C3 +C4y)e−|ξ |y, (11)

φ̃2(ξ ,y) =
4

∑
n=1

Aneλny, (12)

φ̃3(ξ ,y) = (D1 +D2y)e|ξ |y +(D3 +D4y)e−|ξ |y (13)

6



where the roots λn satisfy the quartic equation

λ 4−2αλ 3 +
�
α2−2ξ 2�λ 2 +2αξ 2λ +ξ 2 �

ξ 2 +ρα2� = 0 (14)

and may be written explicitly as

λ1 =
�

1
4

(α2 +4ξ 2)+ iα|ξ |√ρ +
1
2

α, (15a)

λ2 =−
�

1
4

(α2 +4ξ 2)+ iα|ξ |√ρ +
1
2

α, (15b)

λ3 =
�

1
4

(α2 +4ξ 2)− iα|ξ |√ρ +
1
2

α, (15c)

λ4 =−
�

1
4

(α2 +4ξ 2)− iα|ξ |√ρ +
1
2

α. (15d)

The constants appearing in the solution above are ξ -dependent and are obtained by specifying

boundary conditions for this problem. We assume here that the transition layer is perfectly bonded

to both the coating and substrate and thus enforce the continuity of both the stresses and displace-

ments across each interface. Mathematically we stipulate that

u(i) = u(i+1),

v(i) = v(i+1),

σ (i)
yy = σ (i+1)

yy ,

σ (i)
xy = σ (i+1)

xy (16)

at y =−hi, i = 1,2 where u( j)(x,y) and v( j)(x,y) denote the horizontal and vertical displacement of

the solid in the jth region respectively. We further require that the induced stresses and displace-

ments vanish as y→−∞ and thus we impose the radiation conditions |u|, |v| → 0 as y→−∞. The

7
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Figure 1: A definition sketch of the point force problem investigated in Section 2.

remaining boundary conditions are applied on the solid surface (y = 0) and specify that

σyy =−P(x), (17)

σxy =−Q(x). (18)

We initially consider the state of stress that results in the solid from the application of point

forces to its surface so we take P(x) = δ (x)P, Q(x) = δ (x)Q where δ (x) denotes the Dirac delta

function centred at the origin (see figure (1)). A discussion of how these solutions may be gener-

alised to distributed normal and tangential tractions is provided in the next section.

It is easily observed that the radiation conditions applied as y→−∞ imply that D3 = D4 = 0.

Applying the Fourier transform to the remaining boundary and matching conditions allows us to

8



deduce that the constants appearing in (11) possess the closed form solutions



C1

C2



 = Φ−1





P
ξ 2

iQ
ξ



 , (19)




C3

C4



 =−e−2|ξ |h1
�
J1−SW−1L1

�−1 �
H1−SW−1G1

�
Φ−1





P
ξ 2

iQ
ξ



 (20)

whilst the remaining constants can be computed from the relations



A1

A3



 = W−1



e−|ξ |h1G1




C1

C2



+ e|ξ |h1L1




C3

C4







 , (21)




A2

A4



 =−(T2K(2)
2 )−1T1K(2)

1




A1

A3



 , (22)




D1

D2



 = e|ξ |h2G−1
2



M1K(2)
1




A1

A3



+M2K(2)
2




A2

A4







 . (23)

Please see Appendix A for the definition of the matrices appearing in (19)-(23).

The stresses induced within the solid and its displacement at any point may now be computed

by applying the inverse Fourier transform. In particular, we note that the horizontal and vertical

displacement of the solid surface may be written as



u(x,0)

v(x,0)



 =
1

4πµ1

� ∞

−∞
Θ(ξ )Z(ξ )(P,Q)T e−iξ xdξ , (24)

9



where

Θ(ξ ) =




iξ 2i(1−ν)sign(ξ ) iξ −2i(1−ν)sign(ξ )

−|ξ | (1−2ν) |ξ | (1−2ν)



 , (25)

Z(ξ ) =




χ

Ψ



 , (26)

χ(ξ ) = Φ−1





1
ξ 2 0

0 i
ξ



 , (27)

Ψ(ξ ) =−e−2|ξ |h1
�
J1−SW−1L1

�−1 �
H1−SW−1G1

�
χ. (28)

We note that the entries of the matrices Θ and Z satisfy

Θi j(−ξ ) = (−1)i+ jΘi j(ξ ), (29)

Zi1(−ξ ) = Zi1(ξ ), (30)

Zi2(−ξ ) =−Zi2(ξ ) (31)

for i, j = 1,2 and so the displacements appearing in (24) can be written in the alternate form

u1(x,0) =
1

2πµ1

�
P

� ∞

0

�
ξ (χ11 +Ψ11)+2(1−ν)(χ21−Ψ21)

�
sin(ξ x)dξ

+ iQ
� ∞

0

�
ξ (χ12 +Ψ12)+2(1−ν)(χ22−Ψ22)

�
cos(ξ x)dξ

�
, (32)

v1(x,0) =
1

2πµ1

�
P

� ∞

0

�
(1−2ν)(χ21 +Ψ21)−ξ (χ11−Ψ11)

�
cos(ξ x)dξ

+ iQ
� ∞

0

�
ξ (χ12−Ψ12)− (1−2ν)(χ22 +Ψ22)

�
sin(ξ x)dξ

�
. (33)

Equations (32) and (33) are not ideal to work with in this form as the integrals appearing within

these formulae need to be evaluated numerically but are not obviously convergent. We can remedy

10



this problem however by considering the behaviour of the the constants Cj, j = 1, ...,4 as ξ → ∞.

In this limit, the constants Cj reduce to



C1

C2



→ H−1
0





P
ξ 2

iQ
ξ



 , (34)




C3

C4



→ 0 (35)

and so



ũ(ξ ,0)

ṽ(ξ ,0)



→




f̂ (ξ )

ĝ(ξ )



 =− 1
2µ1ξ




i(1−2ν)P+2(1−ν)sign(ξ )Q

2(1−ν)sign(ξ )P− i(1−2ν)Q



 (36)

as ξ → ∞. Applying the inverse Fourier transform to these functions then gives

f (x) =− 1
4πµ1

� ∞

−∞

�
i(1−2ν)P

ξ
+

2(1−ν)sign(ξ )Q
ξ

�
e−iξ xdξ ,

=− 1
2πµ1

�π
2

P(1−2ν)sign(x)−2(1−ν)Q ln |x|
�

, (37)

g(x) =− 1
4πµ1

� ∞

−∞

�
2(1−ν)sign(ξ )P

ξ
− i(1−2ν)Q

ξ

�
e−iξ xdξ

=
1

2πµ1

�
2(1−ν) ln |x|P+

π
2
(1−2ν)sign(x)Q

�
(38)

which follow from the standard results

� ∞

0

cos(ξ x)
ξ

dξ =− ln |x|, (39)

� ∞

0

sin(ξ x)
ξ

dξ =
π
2

sign(x). (40)

By adding the integrated forms of (37) and (38) to (32) and (33) and subtracting their corresponding

11



integral forms, we may write

u1(x,0) =−(1−2ν)sign(x)P
4µ1

+
(1−ν) ln |x|Q

πµ1

+
1

2πµ1

�
P

� ∞

0

�
ξ (χ11 +Ψ11)+2(1−ν)(χ21−Ψ21)+

(1−2ν)
ξ

�
sin(ξ x)dξ

+ iQ
� ∞

0

�
ξ (χ12 +Ψ12)+2(1−ν)(χ22−Ψ22)−

2i(1−ν)
ξ

�
cos(ξ x)dξ

�
, (41)

v1(x,0) =
(1−ν) ln |x|

πµ1
P+

(1−2ν)sign(x)
4µ1

+
1

2πµ1

�
P

� ∞

0

�
(1−2ν)(χ21 +Ψ21)−ξ (χ11−Ψ11)+

2(1−ν)
ξ

�
cos(ξ x)dξ

+ iQ
� ∞

0

�
ξ (χ12−Ψ12)− (1−2ν)(χ22 +Ψ22)+

i(1−2ν)
ξ

�
sin(ξ x)dξ

�
. (42)

We note immediately that the integrals appearing in (41) and (42) are convergent as the integrands

tend to zero as ξ → ∞ and thus these integrals can be easily evaluated numerically. These terms

inform the effects of material inhomogeneity on the surface displacement whilst the non-integral

terms correspond to the horizontal and vertical displacements of the solid surface of a homoge-

neous material (see Johnson (1985)).

3. Contact problems involving a rigid punch

The solutions derived in the previous section for the case of point forces applied at the origin

can be generalised to solve the rigid punch problem. A definition sketch of this problem is pre-

sented in figure (2). In this situation, contact will occur between the punch and solid surface in

some interval [−b,a] with the result that both the normal and tangential pressures applied to the

solid will be non-zero only within this interval. We refer to the normal pressure as p(x) and friction

force as q(x) within this section.
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Figure 2: A definition sketch of the parabolic punch problem investigated in Section 3.

Applying the superposition principle to (41) and (42) gives the displacement of the solid surface

as

u1(x,0) =−(1−2ν)
4µ1

� a

−b
sign(x− t)p(t)dt +

(1−ν)
πµ1

� a

−b
ln |x− t|q(t)dt

+
1

2πµ1

� a

−b
L1(x, t)p(t)dt +

i
2πµ1

� a

−b
L2(x, t)q(t)dt, (43)

v1(x,0) =
(1−ν)

πµ1

� a

−b
ln |x− t|p(t)dt +

(1−2ν)
4µ1

� a

−b
sign(x− t)q(t)dt

+
1

2πµ1

� a

−b
L3(x, t)p(t)dt +

i
2πµ1

� a

−b
L4(x, t)q(t)dt (44)

13



where

L1(x, t) =
� ∞

0

�
ξ (χ11 +Ψ11)+2(1−ν)(χ21−Ψ21)+

(1−2ν)
ξ

�
sin(ξ (x− t))dξ , (45)

L2(x, t) =
� ∞

0

�
ξ (χ12 +Ψ12)+2(1−ν)(χ22−Ψ22)−

2i(1−ν)
ξ

�
cos(ξ (x− t))dξ , (46)

L3(x, t) =
� ∞

0

�
−ξ (χ11−Ψ11)+(1−2ν)(χ21 +Ψ21)+

2(1−ν)
ξ

�
cos(ξ (x− t))dξ , (47)

L4(x, t) =
� ∞

0

�
ξ (χ12−Ψ12)− (1−2ν)(χ22 +Ψ22)+

i(1−2ν)
ξ

�
sin(ξ (x− t))dξ . (48)

In the rigid punch problem, the gradient of the surface deflection will be known rather than the

deflection itself as the punch profile will be given. We therefore differentiate (43) and (44) with

respect to x to obtain

∂u1

∂x
(x,0) =−(1−2ν)

2µ1
p(x)− (1−ν)

πµ1

� a

−b

q(t)
t− x

dt

+
1

2πµ1

� a

−b

∂L1

∂x
(x, t)p(t)dt +

i
2πµ1

� a

−b

∂L2

∂x
(x, t)q(t)dt (49)

∂v1

∂x
(x,0) =

(1−2ν)
2µ1

q(x)− (1−ν)
πµ1

� a

−b

p(t)
t− x

dt

+
1

2πµ1

� a

−b

∂L3

∂x
(x, t)p(t)dt +

i
2πµ1

� a

−b

∂L4

∂x
(x, t)q(t)dt. (50)

Equations (49) and (50) constitute a pair of coupled integral equations which may be solved for the

unknown functions p(x) and q(x) provided that we know the stamp profile and contact conditions.

It is assumed here for simplicity that friction is of Coulomb type so that

q(x) = η p(x) (51)

and thus we have only one unknown function to determine. Substituting (51) into (50) gives

η(1−2ν)
2µ1

p(x)− (1−ν)
πµ1

� a

−b

p(t)
t− x

dt +
1
π

� a

−b

�
I3(x, t)+ iηI4(x, t)

�
p(t)dt = g(x) (52)
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where

I j(x, t) =
1

2µ1

∂L j

∂x
, j = 1, ...,4 (53)

g(x) =
∂v1

∂x
(x,0), (54)

which holds for −b ≤ t,x ≤ a. The uniqueness of the solution p(x) obtained from (52) is assured

by enforcing the condition

� a

−b
p(x)dx = W (55)

which stipulates that the integral of the normal pressure over the contact region is equivalent to the

total compressive force.

3.1. Approximating the solution of the integral equation

As (52) is a singular integral equation of the second kind, it may be solved numerically using

the collocation method proposed by Krenk (1975). We briefly discuss how this method may be

applied here but refer readers to Ke and Wang (2007) for a more detailed discussion.

In order to apply the relevant collocation technique, we need to non-dimensionalise the contact

region so that −b≤ x, t ≤ a corresponds to −1≤ ζ ,τ ≤ 1. The requisite mappings are

x =
1
2

�
(b+a)ζ − (b−a)

�
, (56)

t =
1
2

�
(b+a)τ− (b−a)

�
(57)

which allow us to write (52) as

η(1−2ν)
2µ1

p(ζ )− (1−ν)
πµ1

� 1

−1

1
τ−ζ

p(τ)dτ +
(b+a)

2π

� 1

−1

�
I3(ζ ,τ)+ iηI4(ζ ,τ)

�
p(τ)dτ = g(ζ ).

(58)
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We now assume that the pressure can be written in the form

p(ζ ) = f (ζ )(1−ζ )β1(1−ζ )β2 , (59)

where

β1 =
1
π

tan−1
�

2(1−ν)
η(1−2ν)

�
+N0, (60)

β2 =− 1
π

tan−1
�

2(1−ν)
η(1−2ν)

�
+M0 (61)

for arbitrary integers N0, M0 which are determined from the physics of the problem. In the case of

contact by a parabolic stamp, the collocation method of Krenk (1975) reduces (58) to the system

M

∑
i=1

W M
i

�
− (1−ν)

µ1(τi−ζk)
+

(b+a)
2

�
I3(ζk,τi)+ iη(ζk,τi)

��
f (τi) = g(ζk), k = 1, ...,M +1

(62)

where

g(ζk) =
(b+a)ζk− (b−a)

2R
(63)

which follows from applying the change of variable to the parabolic stamp profile. The corre-

sponding equilibrium condition (55) is transformed into

M

∑
i=1

W M
i f (τi) =

2W
π(b+a)

, (64)

where the weights W M
i appearing in these equations are defined as

W M
i =−2−(N0+M0) Γ(β1)Γ(1−β1)

π
(65)

and Γ denotes the Gamma function. The collocation points used within this method satisfy

P(β1,β2)
n (τi) = 0, (66)

P(−β1,−β2)
n+1 (ζk) = 0 (67)
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for i = 1, ...,M, k = 1, ...,M +1 where P(β1,β2)
n (τ) denotes the Jacobi polynomial of degree n. The

unknowns that appear within (62) and (64) are the values of the function f at the M specified

gridpoints and the values of a and b. We therefore have M +2 unknowns in M +2 equations.

In order to solve the contact problem, we need to compute the values of a and b iteratively.

We choose initial guesses for a and b denoted a0 and b0 and solve the first M equations in (62) to

determine the values of f at the M designated gridpoints. We use the (M + 1)th equation in (62)

and (64) to update our approximations to a and b using the Secant method. The stopping criteria

used in this method is

max
�

bn+1−bn,an+1−an

�
< 1×10−8 (68)

which ensures that a good degree of accuracy is obtained in the solution.

4. Model Validation

In this section, we compare results produced using this model to those of other authors in two

different limiting cases. This serves as a check on the accuracy of our model and allows us to

validate it before presenting new results for the problem of sliding contact.

4.1. Example 1

We initially attempt to recreate the results of Çömez and Erdöl (2012) who derived a model to

approximate the solution of the parabolic stamp problem involving a solid comprising two distinct,

homogeneous layers. As we cannot recreate this situation exactly as α → ∞ in this limit, we

consider what happens as h2−h1 becomes increasingly small.
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The parameter values used in this problem are

R
h1

= 500,
µ1h1

W
= 50,

µ1

µ0
= 2, ν = 0.25

whilst we consider two different interlayer thicknesses to see how our model behaves as h2−h1 →

0. The two representative thicknesses chosen satisfy

h2−h1

h1
= 0.01,0.001.

The results produced using these values and those of Çömez and Erdöl (2012) are contained in

table (1) and indicate good agreement between models. We see that the results produced for the

thinner interlayer are closer to those of Çömez and Erdöl (2012) and thus we deduce that in the

limit h2−h1 → 0, our model describes a solid comprising a homogeneously elastic coating bonded

to a distinct homogeneous substrate as expected.

Cömez and Erdöl (h2−h1)/h1 = 0.01 (h2−h1)/h1 = 0.001

η Half-width Eccentricity Half-width Eccentricity Half-width Eccentricity

0 (uncoated) 3.09020 0 3.09019 0 3.09019 0

0 2.74060 0 2.73925 0 2.74045 0

0.4 2.75159 0.23674 2.75028 0.23679 2.75147 0.23675

0.8 2.78367 0.47046 2.78238 0.47054 2.78355 0.47046

1 2.80682 0.58537 2.80556 0.58545 2.80670 0.58536

Table 1: Variation of the contact-half width and eccentricity with increased friction coefficient. The results produced

using our model are compared to those of Çömez and Erdöl (2012).

18



−0.15 −0.1 −0.05 0 0.05 0.1 0.15
0

0.01

0.02

0.03

0.04

0.05

0.06

x/(h2−h1)

p(
x)
/µ
0

Figure 3: Contact pressure curves produced for the problem originally considered by Yang and Ke (2008). The blue

line represents µ1/µ0 = 3, the red line µ1/µ0 = 2, the green line µ1/µ0 = 1 and the black line µ1/µ0 = 0.5.

4.2. Example 2

We now validate our model further by comparing our results with those of Yang and Ke (2008).

These authors considered a frictionless contact problem involving a rigid parabolic stamp and

solid comprising a coating-graded layer-substrate where the graded layer is split into several sub-

layers whose shear moduli have a linear dependence on the vertical coordinate. In the example we

consider, these authors used their piecewise linear model to approximate an exponentially varying

shear modulus within the transition layer.

The parameter values used within this problem are

h1

h2
= 1, ν = 0.3,

R
h2

= 5,
W

µ0h2
= 6.7×10−3

whilst the four different coatings satisfying µ1/µ0 = 0.5,1,2,3 are used. The results produced

using our model are presented in figure (3) and show excellent agreement with those of Yang and

Ke as expected (compare with their figure 5).

19



5. Computing the sub-surface stress field

As we have validated our model against the results of other authors, we can now look to produce

results for the full sliding contact problem. In what follows, we will mainly be interested in how

different parameters (e.g. coating/interlayer thickness, friction coefficient) effect the sub-surface

stress fields that result from contact. Using (3), we may write

σ ( j)
yy =− 1

2π

� ∞

−∞
ξ 2φ̂ j(ξ ,y)e−iξ xdξ , (69)

σ ( j)
xx =

1
2π

� ∞

−∞
φ̂
��
j (ξ ,y)e−iξ xdξ , (70)

σ ( j)
xy =

i
2π

� ∞

−∞
ξ φ̂

�
j(ξ ,y)e−iξ xdξ (71)

where j = 1,2,3 denotes the different regions within the solid. As the constants that appear in the

solutions of φ̂ j are very complicated in form, the integrals appearing in (69)-(71) cannot be eval-

uated analytically. Instead, we use the inverse discrete Fourier transform (IDFT) to approximate

these quantities. The discretisation used within this work is slightly different from that used in the

standard IDFT and is described below.

Let x occupy the finite length interval [−L,L] which is split into N−1 sub-intervals of width ∆

and let the frequency variable ω = ξ/2π occupy the finite interval [−ωF ,ωF ]. We define the nth

coordinate in the spatial domain and the kth value in the frequency domain to be

xn =−L+(n−1)∆, (72)

ωk =
1

2N∆

�
2(k−1)− (N−1)

�
(73)
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for n,k = 1, ...,N. The IDFT of an arbitrary function ŝ(ω) is defined as

s(xn) =
1

N∆

N

∑
k=1

ŝ(ωk)e−2πıωk , n = 1, ...,N, (74)

which using (72) and (73) can be written as

s(xn) =
e

πi(N−1)
N∆

�
(n−1)∆−L

�

N∆

N

∑
k=1

ŝ(ωk)e
2πiL(k−1)

N∆ e−
2πi
N (k−1)(n−1). (75)

By denoting

S(ωk) = ŝ(ωk)e
2πiL(k−1)

N∆ , (76)

WN = e−
2πi
N , (77)

we may re-write (75) as

s(xn) =
e

πi(N−1)
N∆

�
(n−1)∆−L

�

N∆

N

∑
k=1

S(ωk)W
(k−1)(n−1)
n . (78)

The IDFT is now in the correct form to evaluate using the fast Fourier transform algorithms (FFT).

We choose to use the classical Cooley and Tukey algorithm within this work so N will be taken to

be a power of 2.

6. Numerical Results

We conclude this work with an investigation into the full three-layer sliding contact problem.

As before, we consider contact by a parabolic stamp subject to the fixed parameter values

ν = 0.3, R = 5cm, W = 10000N,
h2

ah
= 1,

with ah denoting the predicted Hertzian contact half-width. The formulae for this quantity and the

maximum predicted Hertzian pressure are included below for brevity. These values are used here
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to allow us to compare results against those produced for a homogeneous material in the classic

contact problem and because it will allow an easy comparison with the results of Chidlow and

Teodorescu (2013).

ah =

�
2WR(1−ν)

πµ1
, ph =

2W
πah

. (79)

Our aim within this example is to determine how coating and interlayer thickness as well as in-

creasing friction effect the predicted contact footprint and stress field. With this in mind, we begin

this example by considering how the predicted contact pressure curves p(x) and contact half-width

H = (a+b)/2 obtained for a selection of different coatings are affected by different values of the

friction coefficient η and coating/layer thickness ratio h1/h2. Please note that in what follows,

coatings that satisfy µ1
µ0

> 1 are referred to as hard whilst coatings that satisfy µ1
µ0

< 1 are called

soft.

The predicted contact half-widths and pressure curves produced here are non-dimensionalised

using the relevant Hertzian parameters in order to compare our solutions with the classical fric-

tionless punch problem involving a homogeneous material. We therefore define the new quantities

p̄(x) =
p(x)
ph

, (80)

H̄ =
(b+a)

2ah
(81)

which represent the dimensionless contact pressure and dimensionless contact half-width respec-

tively.
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6.1. Predicted contact footprint

We initially examine the pressure curves produced for five different coatings satisfying µ1/µ0 =

0.25,0.5,1,2,4 subject to the coating thickness/layer thickness ratio satisfying h1/h2 = 0.1. The

value of η is fixed within each problem but is allowed to vary between problems.

The predicted contact pressure curves corresponding to these parameter values are presented

in figure (4). This figure indicates that hard coatings experience larger maximum pressures than

soft coatings but act over a smaller area. These observations are in accord with those of Chidlow

and Teodorescu (2013) and Yang and Ke (2008). We also note that when η = 0, b = a and so the

contact interval is symmetric about the origin. As the friction coefficient increases in value, we see

that b < a so the contact interval and pressure curve becomes skewed about the origin. This has

the additional effect that the maximum pressure occurs to the right of the origin rather than at the

origin.

We may more fully examine how the contact pressure, and in particular, the location at which

its maximum occurs is affected by friction by examining how different values of η affect one par-

ticular coating. The results depicted in figure (5) show the contact pressure curves produced for

the hard coating satisfying µ1/µ0 = 2 and the soft coating satisfying µ1/µ0 = 0.5 of thickness

h1/h2 = 0.1,0.9 subject to the friction coefficients η = 0,0.1,0.2,0.3,0.4. It is clearly visible here

that the value of η does affect both the location of the maximum pressure and how much the con-

tact interval moves from left to right. We note however that the value of the maximum pressure

and the width of the contact interval are completely unaffected by any increase in friction. This

was also noted by Ke and Wang (2007).
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Figure 4: Plots of the predicted contact pressure curves produced for a selection of different coatings subject to three

different values of friction. The blue line in this figure represents µ1/µ0 = 4, the red line µ1/µ0 = 2, the green line

µ1/µ0 = 1, the magenta line µ1/µ0 = 0.5 and the black line µ1/µ0 = 0.25.
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Another feature of interest in figure (5) is that the maximum contact pressure obtained for the

hard coating increases as the interlayer thickness decreases whilst the maximum pressure for the

soft coating decreases. This feature was observed by Chidlow and Teodorescu (2013) for the case

of frictionless contact.

6.2. Sub-surface stress fields

We now wish to compute the sub-surface stress fields corresponding to the pressure curves

produced in the previous section. The principal stresses that we use throughout this work are of

Tresca type. This quantity is denoted τ1 and computed from the formula

τ1 =
�

(σxx−σyy)2 +4σ2
xy.

As the stresses within the solid are computed using the FFT, we need to determine an appropriate

range of x over which to evaluate the sub-surface stress field. This is equivalent to determining a

suitable value of L so that the interval −L ≤ x ≤ L accurately captures the effects of the contact

pressure.

Figure (6) presents the maximum principal stresses obtained using a range of values of L for the

coatings satisfying µ1/µ0 = 0.5,1,2 subject to the coating thickness h1/h2 = 0.1 and the friction

coefficients given. We see in each case that the predicted maximum stress converges for L/H ≥ 10

which is indicated by the lines flattening out. We therefore take L = 10H within this work.

The sub-surface stresses depicted in figure (7) correspond to the pressure curves presented in

figure (4) for the hard coating µ1/µ0 = 2 and the soft coating µ1/µ0 = 0.5 subject to the coating

thickness h1/h2 = 0.1 and values of η given. We see that the position of the maximum principal

stress within the hard coating is transient and moves progressively closer to the solid surface as η
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Figure 5: Plots of the predicted contact pressure curves produced for a hard and soft coating subject to two represen-

tative thicknesses and different values of the friction coefficient. Within this figure, the blue line represents η = 0, the

red line η = 0.1, the green line η = 0.2, the magenta line η = 0.3 and the black line η = 0.4.
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Figure 6: Plots of the maximum principal stress produced using the pressure curves in figure (4) against L/H for three

different coatings subject to two different values of η . The blue line represents µ1µ0 = 2, the green line µ1/µ0 = 1

and the red line µ1/µ0 = 0.5.

increases. The maximum value additionally occurs to the left of the origin for η non-zero. This

corresponds to the the maximum stress appearing in front of the punch as it slides over the surface.

The position of the maximum principal stress within the soft coating is also dependent on the

friction coefficient η but does not emulate the behaviour seen in the hard coating. In this situation,

the location of the maximum stress does not move significantly as the friction increases but we

do note the appearance of a region of high stress that occurs behind the punch as it slides. This

is an interesting phenomenon as it indicates that the material puts up little resistance to the punch

and thus will experience a large surface deflection in front of the punch in comparison to a hard

coating.

The results presented in figure (8) depict the sub-surface stress fields produced for the same

coatings subject to the coating/layer thickness ratio h1/h2 = 0.9 which corresponds to a thin inter-
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Figure 7: Plots of the sub-surface stress fields produced using the contact pressure curves in figure (4) for the hard

coating µ1/µ0 = 2 and soft coating µ1/µ0 = 0.5 subject to the coating thickness h1/h2 = 0.1 and friction coefficients

given.
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layer. We see again here that the hard coating experiences a region of high stress close to its surface

in front of the sliding punch whilst the soft coating experiences a region of high stress close to its

surface behind the punch. It is observed in this example though that the position of the maximum

principal stress does not change as η varies in both coatings.

The magnitude of the maximum stress produced here for the hard coating is significantly higher

than that given in figure (7). This seems to indicate that harder coatings attain their maximum stress

when the transition layer is thin. The opposite seems to be true for the soft coating as its maximum

principal stress seems to be attained when the coating is thin. It is however less conclusive where

the maximum occurs for the case of a thin interlayer.

6.3. The effects of increasing friction within the contact

The sub-surface stresses presented in section (6.2) indicate that the coating thickness and

friction coefficient have a significant effect on the magnitude of the maximum principal stress.

Our aim within this section is to determine the effects of the friction coefficient on the max-

imum principal stress that results from the contact problem. In order to do this, we consider

how the maximum stress obtained within the layered solid subject to the four coatings satis-

fying µ1/µ0 = 0.25,0.5,2,3 varies as the friction coefficient increases in magnitude. We take

0 ≤ η ≤ 0.3 in this example and present results for the two representative coating thicknesses

h1/h2 = 0.1,0.9. As before we set h2/ah = 1. The notation

T = max(τ1)

will be used in the following sections for simplicity.
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Figure 8: Plots of the sub-surface stress fields produced using the contact pressure curves in figure (4) for the hard

coating µ1/µ0 = 2 and soft coating µ1/µ0 = 0.5 subject to the coating thickness h1/h2 = 0.9 and friction coefficients

given.
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Figure 9: The effect of increasing friction on the dimensionless maximum principal stress τ1/ph for the coatings

µ1/µ0 = 3 (blue line), µ1/µ0 = 2 (red line), µ1/µ0 = 0.75 (green line) and µ1/µ0 = 0.5 (magenta line).

Figure (9) depicts the results obtained for this problem. We can see that when h1/h2 = 0.1, the

maximum stress obtained for each coating monotonically increases as η increases. The increase

in stress in the hard coatings is also much larger than that for the soft coatings with a maximum

dimensionless stress of approximately 0.4 predicted for µ1/µ0 = 3 when η = 0 and 0.7 predicted

when η = 0.3. Conversely, the soft coating µ1/µ0 = 0.25 experiences a maximum dimensionless

stress of approximately 0.25 when η = 0 and 0.3 when η = 0.3. This indicates that hard coatings

are more sensitive to the value of the friction coefficient.

The results presented for the case h1/h2 = 0.9 show that the maximum stress within the soft

coatings monotonically increase with η as before. However, this is not true for the hard coatings.

The maximum stress within the hard coating µ1/µ0 = 3 remains constant until η > 0.2 and then

begins to increase sharply. The stress within the hard coating µ1/µ0 = 2 remains constant for

η <≈ 0.22 and then increases slowly. It is interesting to note here that the maximum stresses

predicted for all four coatings are attained when η = 0.3 in both graphs and that these values are
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approximately the same despite the change in interlayer thickness. We conclude that whilst the

maximum stress experienced for soft coatings is sensitive to the friction coefficient, the same is not

necessarily true for hard coatings. Our results indicate that the ratio h1/h2 significantly alters the

sensitivity of hard coatings to the friction coefficient.

6.4. The effects of coating/interlayer thickness

The results presented in the preceding sections suggest that the coating/interlayer thickness ra-

tio h1/h2 is highly important in determining the magnitude of the maximum principal stress. We

therefore conclude this work with an investigation into how the ratio h1/h2 effects the maximum

principal stress that results from the contact problem.

Within this section, we plot T/ph against h1/h2 for the four different coatings µ1/µ0 = 0.25,0.5,2,3

subject to the two different friction coefficients η = 0.1,0.2 and dimensionless layer thicknesses

h2/ah = 0.5,1.

The results presented in figure (10) depict the dimensionless maximum stresses obtained for

the stated parameter values. We can see here that the maximum principal stress experienced by

the hard coatings in these examples generally increase as the ratio h1/h2 increases whilst the max-

imum stress within the soft coatings decrease. These observations are in accord with our results in

section (6.2). We also note that the value of T/ph produced for each coating and different value of

h1/h2 is relatively unaffected by the change in the total layer thickness h2/ah.

The most interesting feature of the graphs in figure (10) is that the maximum stress within the

hard coatings sharply increases for certain values of h1/h2. This is particularly noticeable for the
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Figure 10: Plots of the dimensionless maximum principal stress against h1/h2 for four different coating types subject

to the values of η and h2/ah given. The blue line represents µ1/µ0 = 3, the red line depicts µ1/µ0 = 2, the green line

µ1/µ0 = 0.75 and the magenta line µ1/µ0 = 0.5.
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Figure 11: Plots of the maximum dimensionless prinicipal stress obtained within each region of the solid for the hard

coating satisfying µ1/µ0 = 2 subject to the parameter values given. The blue diamonds represent the maximum stress

within the coating, the red circles give the maximum stress within the interlayer and the black dotted line the maximum

stress within the substrate.
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Figure 12: Plots of the maximum dimensionless prinicipal stress obtained within each region of the solid for the hard

coating satisfying µ1/µ0 = 3 subject to the parameter values given. The key used here is the same as in figure (11).

harder coating µ1/µ0 = 3. In order to investigate what is causing this behaviour, we consider how

the maximum principal stress within each region of the solid evolves as the ratio h1/h2 varies. We

concentrate only on the hard coatings satisfying µ1/µ0 = 2,3 and produce results for the parameter

values given previously. These results are presented in figures (11) and (12).

We observe in both figures that the location at which the global maximum stress occurs is

transient and depends on the ratio h1/h2. The local stresses within the coating and transition layer
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possess local maxima and minima for different values of h1/h2 whilst in both examples considered

here the maximum stress within the substrate is monotonically increasing when h2/ah = 0.5 and

relatively constant when h2/ah = 1.

By comparing the results in figures (11) and (12) with those in figure (10), we see that the sharp

increases and decreases in the maximum stress observed before correspond to the location of the

maximum stress changing between the transition layer and coating. For example, in figures (11a)

and (12a), the sharp increase in the maximum stress at h1/h2 = 0.9 and h1/h2 = 0.8 respectively

correspond to the maximum stress moving from the coating to the transition layer.

To emphasise the transient nature of the maximum principal stress, figure (13) depicts where

the maximum principal stress occurs within the solid for the four different coatings already con-

sidered in this section. These results confirm our hypotheses from the previous figure and indicate

that small changes in the coating thickness can result in the maximum principal stress occurring

in different regions of the solid. They also suggest that the greater the thickness of the layer, the

less likely the maximum stress is to occur in the substrate. This observation could potentially be

very useful in coating design as thicker coatings can theoretically minimise the stress experienced

by the base material and hence provide a greater degree of protection. The ratio h1/h2 would still

need to be carefully controlled in this situation however as undesirably large stresses could still

occur in the coating/transition region and could cause material failure.

7. Conclusions

We have presented a model that may be used to determine the stresses and displacements

induced within a layered material comprising a coating- FGM layer- substrate through contact
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Figure 13: Plots of the dimensionless location at which the maximum principal stress occurs against h1/h2 for the

results presented in figure (10). The blue line indicates the location of the maximum stress for the case µ1/µ0 = 3, the

red line corresponds to µ1/µ0 = 2, the green line corresponds to µ1/µ0 = 0.75 and the magenta line µ1/µ0 = 0.5.
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with another object. By initially considering the application of point forces to the layered solid at

the origin, the stresses and displacements were computed in terms of the inverse Fourier transform

and generalised to the case of normal and tangential tractions distributed over the solid surface

using the superposition principle. A discussion of how to compute the stresses using the IFFT was

also presented.

An integral equation was formulated for both the normal and tangential pressures applied to

the solid surface and solved numerically for the case of contact with a rigid parabolic punch under

the assumptions of Coulomb friction. The proposed model was then validated against literature

accepted results in two different limiting cases.

The selection of numerical results produced for the full contact problem indicate that whilst

increased friction within the contact makes little difference to the applied normal pressure, the

resultant sub-surface stresses are greatly affected by the presence of friction. It was seen that the

magnitude of the maximum principal stress was highly dependent on the hardness of the coating

(ratio µ1/µ0), friction coefficient (η) and coating/interlayer thickness ratio (h1/h2). In particular,

it was observed that hard coatings are particularly sensitive to the ratio h1/h2 as dramatic increases

in the maximum attained stress and the location at which it occurs are observed as h1/h2 varies

between 0 and 1. This sensitivity indicates that hard coatings need to be carefully tailored to ensure

that they do not experience much larger stresses under pressure than expected.
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Appendix A. Contact model derivation

This section defines the matrices that appear in (19)-(23). Please note that all matrices are

dependent only on the transform variable ξ .

K(i)
j =




e−λ jhi 0

0 e−λ j+2hi



 , (A.1)

Nj =




1 1

λ j λ j+2



 , (A.2)

Mj =




F (λ j) F (λ j+2)

G (λ j) G (λ j+2)



 , (A.3)

Hj =




1 −h j

|ξ | 1−|ξ |h j



 , (A.4)

Jj =




1 −h j

−|ξ | 1+ |ξ |h j



 , (A.5)

G j =




ξ 2 2(1−ν)|ξ |−ξ 2h j

−|ξ |ξ 2 ξ 2
�
(1−2ν)+ |ξ |h j

�



 , (A.6)

L j =




ξ 2 −

�
2(1−ν)|ξ |+ξ 2h j

�

|ξ |ξ 2 ξ 2
�
(1−2ν)−|ξ |h j



 , (A.7)
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Φ = H0− e−2|ξ |h1J0
�
J1−SW−1L1

�−1 �
H1−SW−1G1

�
, (A.8)

S = N1K(1)
1 −N2K(1)

2

�
T2K(2)

2

�−1
T1K(2)

1 , (A.9)

W = M1K(1)
1 −M2K(1)

2

�
T2K(2)

2

�−1
T1K(2)

1 , (A.10)

Tj = Nj−H2G−1
2 Mj, (A.11)

for i, j = 1,2. The functions F and G appearing in (A.3) are further defined as

F (λ j) = (1−ν)λ 2
j +νξ 2, (A.12)

G (λ j) = (1−ν)λ 3
j −α(1−ν)λ 2

j −ξ 2(2−ν)λ j−ανξ 2. (A.13)

Please note that the notation h0 = 0 has been adopted in this section.
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