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ABSTRACT 

Premature birth is defined as an infant born before 37 weeks of gestation and can be sub-

categorized into three phrases; late preterm delivery between 34 and 36 weeks of gestation; 

moderately preterm between 32 and 34 weeks, and extreme preterm less than 28 weeks of 

gestation. 

Globally, the rate of preterm births is increasing, thus resulting in significant health, 

development and economic problems. The current methods for the detection of preterm birth 

are inadequate due to the fact that the exact cause of premature uterine contractions leading to 

delivery is mostly unknown. Another problem is the interpretation of temporal and spectral 

characteristics of Electromyography (EMG), which is an electrodiagnostic medicine 

technique for recording and evaluating the electrical activity produced by uterine muscles 

during pregnancy and parturition – significant variability exists among obstetric care 

practitioners.  

Apart from a small number of potential causes for preterm birth, such as medication, uterine 

over-distension, preterm premature rupture of membranes (PPROM), intrauterine 

inflammation, precocious foetal endocrine activation, surgery, ethnicity and lifestyle, there is 

still a large amount of uncertainty about their specific risks. Hence, it is currently very 

difficult to make reliable predictions about preterm delivery risk. There has also been some 

evidence that the analysis of uterine electrical signals, collected from the abdominal surface, 

could provide an independent and easier way to diagnose true labour and detect the onset of 

preterm delivery. Early detection opens up new avenues for the development of an automated 

ambulatory system, based on uterine EMG, for patient monitoring during pregnancy. 

This can be made possible through the use of machine learning. The essence of machine 

learning is the utilisation of previously recorded data outcomes to train algorithms to 



ii 
 

stimulate software learning elements. Such learned models can, as a result, be used to detect 

and predict the early signs associated with the onset of preterm birth. 

Therefore in this thesis, Electrohysterography signals are used to classify uterine activity 

associated with preterm birth. This is achieved using an open dataset, which contains 262 

records for women who delivered at term and 38 who delivered prematurely. Several new 

features from Electromyography studies are utilized, as well as feature-ranking techniques to 

determine their discriminative capabilities in detecting term and preterm records. The results 

illustrate that the combination of the Levenberg-Marquardt trained Feed-Forward Neural 

Network, Radial Basis Function Neural Network and the Random Neural Network classifiers 

performed the best, with 91% for sensitivity, 84% for specificity, 94% for the area under the 

curve and 12% for the mean error rate. Applying advanced machine learning algorithms, in 

conjunction with innovative signal processing techniques and the analysis of 

Electrohysterography signals shows significant benefits for use in clinical interventions for 

preterm birth assessments. 
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Word of Inspiration 

“In the name of God, the Merciful, Passionate, Beneficent and Magnificent.” 

“My thoughts about life aren’t just about life itself, but life is about anything that related and surrounded by it. I said many 

times be not afraid of your shadow Son, but walk along the path that leads to success. Life is not about who you are but is 

always about what you are capable of giving to, yourself and the people around you. I always said be optimistic, visionary, 

focus and believe in yourself. 

When I look back today as a father, my past, present and my future, nothing is greater than the defined greater Mighty 

God.  My past is gone I am greater than, my present is here today, catching up with, and my future is unknown greater 

than me whilst still working hard to obtain success in life to make better future for my family. 

Son I knew you have a dream, and your imagination keep going far, far from your thinking, your abilities, skills, passions 

power of knowledge will continue to increase gradually, I can see the brighter light at the end of the road for you. 

Son remember when you take a step in life,  you walk along with your shadow, nothing to be afraid off, just get on and it 

will always leads you to a success path, shadow of passion, shadow of future and shadow of life, then you’ll be inspired by 

the theme legacy. 

My inspirational thoughts about legacy of life from my perspective background, is to give what it take to get what you want 

in life. Through honesty, enthusiasm, equality, passion, energetic, positive, sociable and endurance, sky is the limit for 

success, diplomacy of life goes around life within life circle.” 

 

Alhaj Imam Isiaka Rabiu Idowu El Saki (1963-2016) 
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Chapter 1 Introduction 

Preterm birth, also known as premature birth or delivery, is described by the World Health 

Organisation (WHO) as the delivery of babies who are born alive, before 37 weeks of 

gestation. In contrast, term births are the live delivery of babies after 37 weeks, and before 42 

weeks. According to the WHO, worldwide in 2010, preterm deliveries accounted for 1 in 10 

births and is now the second leading cause of death in children under 5 years, after 

pneumonia (WHO 2012). In 2009, in England and Wales, 7% of live births were also 

preterm. Preterm birth has a significant adverse effect on the new born, including an 

increased risk of death and health defects. The severity of these effects increases, the earlier 

the delivery is. Approximately 50% of all perinatal deaths are caused by preterm delivery 

(Offiah et al. 2012), with those surviving often suffering from afflictions, caused by the birth. 

These include impairments to hearing, vision, the lungs, the cardiovascular system and non-

communicable diseases; up to 40% of survivors of extreme preterm delivery can also develop 

chronic lung disease (Greenough 2012). These afflictions contribute to the lifelong 

disabilities of individuals who are born preterm and their families. 

1.1 Cause of Preterm Births 

Preterm births can occur for three different reasons. According to (Offiah et al. 2012), 

roughly one-third are medically indicated or induced; delivery is brought forward for the best 

interest of the mother or baby. Another third occurs because the membranes rupture, prior to 

labour (PPROM). Lastly, spontaneous contractions (termed preterm labour or PTL) can 

develop. However, there is still a great deal of uncertainty about the level of risk each factor 

presents, and whether they are causes or effects. Nevertheless, in (Offiah et al. 2012) some of 

the causes of preterm labour, which may or may not end in preterm birth, have been 

discussed. These include infection, over-distension, burst blood vessels, surgical procedures, 

illnesses and congenital defects of the mother’s uterus and cervical weakness. Further studies 
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have also found other risk factors for preterm (Rattihalli et al. 2012; Steer 2005). These 

include health and lifestyle choices, cervical and uterine abnormalities, recurrent antepartum 

haemorrhage, illnesses and infections, any invasive procedure or surgery, underweight or 

obese mothers, ethnicity, social deprivation, long working hours/late nights, alcohol and drug 

use, and folic acid deficiency.  

1.2 Effect of Preterm Birth on the Infant 

Survivors of preterm birth suffer with neuro-developmental or behavioural defects, including 

cerebral palsy, and motor and cognitive impairment. In addition, preterm births also have a 

detrimental effect on families, the economy, and society as a whole. In 2009, the overall cost 

to the public sector, in England and Wales, was estimated to be nearly £2.95 billion 

(Mangham et al. 2009; Bulletin 2011), while in 1994, in the United States alone, it was 

estimated that, of the $820 million spent on hospitalising women with suspected preterm 

labour, $360 million was for women who did not actually deliver during their stay. As well as 

patients being incorrectly diagnosed with preterm labour (false positive results), 20% of 

patients displaying symptoms or preterm labour were given false negative results: they were 

denied early admittance, but eventually went on to deliver prematurely (Mangham et al. 

2009). In 2001, the cost of care increased rapidly. According to a nationwide survey carried 

out by (Mangham et al. 2009), hospital costs for preterm infants in the United States was 

$12.4 billion. 

1.3 Treatment Strategies 

Developing a better understanding of preterm deliveries can help to create preventative 

strategies and thus positively mitigate, or even eradicate, the effects that preterm deliveries 

have on babies, families and healthcare services. As well as investigating preterm deliveries, 

several studies have explored preterm labour (the stage that directly precedes the delivery). In 

spite of these studies, there is no internationally agreed definition for preterm labour. 
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Nonetheless, in practice, women who experience regular contractions, increased vaginal 

discharge, pelvic pressure and lower backache tend to show Threatening Preterm Labour 

(TPL). While this is a good measure, (Mangham et al. 2009), suggest that clinical methods 

for diagnosing preterm labour are insufficient.  

Following a medical diagnosis of preterm labour, only 50% of all women with preterm 

actually deliver, within seven days (Offiah et al. 2012). In support of this, (McPheeters et al. 

2005), carried out a similar study that showed 144 out of 234 (61.5%) women diagnosed with 

preterm labour went on to deliver at term. This can potentially add significant costs, and 

unnecessary interventions, to prenatal care. In contrast, false-negative results mean that 

patients requiring admittance are turned away, but actually go on to deliver prematurely 

(Lucovnik, Kuon, et al. 2011). 

One possible approach to mitigate many of these concerns is to utilise advances made within 

the machine learning community. This thesis examines the use of Electrohysterography 

(EHG) signals, feature engineering and machine learning algorithms to classifying term and 

preterm births. This has been achieved by 1) filtering the raw EHG signals to remove 

unwanted artefacts, 2) generating features from EHG records to classify preterm and term 

delivery records, 3) use different sized training sets to test the effect that these proportions 

have on the results, 4) and use dataset resampling strategies to balance the data. The aim is to 

providing a viable solution that addresses this global health problem by managing the human 

gestation period better to improve health and reduce costs. 

1.4 Scope of the Research 

The aim of this thesis is to develop a new robust methodology that provides a decision 

support system that helps obstetricians and midwifes make objective decisions about 

pathological outcomes that may occur during pregnancy. Globally, the rate of preterm births 

is increasing, which presents significant health, developmental and economic problems 
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(Fergus et al. 2013). At present, most methods for preterm birth classification, at an early 

stage, are inadequate and subjective (Lucovnik, Kuon, et al. 2011). Current approaches that 

measure the process of labour, such as Tocodynamometer, Intrauterine Pressure Catheters 

(IPC), Cervical Length Measurement (CLM), Fetal Fibronectin, and Digital Cervical 

Examination (DCE), have numerous problems. For instance, they only measure the onset of 

labour indirectly and do not detect changes that are characteristic of true labour. 

Consequently, their classification values for term or preterm delivery are poor. There has 

however been increasing evidence to show that the analysis of uterine electrical signals, from 

the abdominal surface, could provide an objective and easy way to diagnose true labour and 

detect the onset of preterm labour (Garcia-Gonzalez et al. 2013; SMS Baghamoradi 2011; 

Carré et al. 1998). This has been termed EHG analysis.  

Uterine EHG signals refers to the electrical activity that is captured from the uterus during 

pregnancy, using electrodes. These signals are very useful as they reveal a great deal of 

information about uterine contractions. For term deliveries, true labour only starts within 24 

hours. However, for preterm deliveries, it may start within 7 to 10 days prior to delivery. The 

change in EHG activity, from non-labour to labour, is dramatic. Therefore, it is expected that 

a raw dataset of EHG signals would be useful for further analysis. Furthermore, the 

implementation of different classification algorithms is required so that a conceptual 

understanding that relates to any physiological changes and differences in pregnancy before 

labour delivery can be developed.  

The dataset that has been used in our research to satisfy this requirement is the Term-Preterm 

Electrohysterogram (TPEHG) dataset, which can be obtained from a freely-accessible online 

repository (PhysioNet 2012a). The TPEHG dataset was originally built and used in a study by 

Fele-Žorž et al. in (Fele-Žorž et al. 2008). In this work, an analysis of the separability of term 

and preterm delivery EHG records, using various linear and non-linear signal processing 
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techniques, has been undertaken. While the approach focuses on advanced statistical analysis 

techniques, machine learning techniques are not considered or compared to uncover detailed 

patterns and non-linear relationships within EGH signals. This is a challenge that will be 

addressed in this thesis.  

Another challenge is the extraction of features from EHG signals during uterus muscle 

contractions. In many classification tasks the given features are not sufficient to achieve 

acceptable classification performance. A transformation of the features may yield new 

features that are more highly correlated with the class value. In addressing this issue a variety 

of feature extraction techniques are considered in this thesis. 

Within the national healthcare services, for many developed countries, there is an immediate 

need to move from a system focused on treating medical conditions to one that can predict 

the onset of such conditions (Blencowe et al. 2012; Ren et al. 2015). Therefore, 

understanding the early signs of a condition and implementing countermeasures are seen as a 

viable way of reducing spiralling national healthcare costs. However, to date attempts at 

utilizing computational approaches to achieve sufficient classification have not achieved the 

high discrimination accuracy that a clinical application requires. In our study, we propose a 

new analytical approach for assessing the risk of preterm delivery using EHG recordings and 

advanced machine learning techniques. 

1.5 Aims and Objectives 

The aim of this thesis is to provide a robust data processing pipeline for signal processing, 

feature engineering and machine learning to classify term and preterm records. Seen as a 

decision support system, the approach posited will be evaluated to determine whether it can 

improve on obstetrician and midwife decision making processes during pregnancy. In other 

to satisfy the research aim, a number of objectives will need to be considered and these are 

defined as follows:  
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 Gain in-depth understanding of TPEHG dataset and conduct initial exploratory data 

analysis. Any candidate dataset must provide sufficient samples for appropriate data 

modelling in decision support systems.   

 Investigate the filtering and pre-processing processes for the raw EHG signals. Signal 

artefacts need to be removed to ensure that only the signal directly correlated with the 

condition under investigation is present and appropriate for feature engineering tasks.  

 Select relevant features for extraction from raw EHG signals. Features beyond those 

currently used in previous works need to be considered and selected based on their ability 

to maximise the decision boundary between term and preterm records.  

 Empirical evaluation of algorithms for classification of term and preterm records. 

Dependent on the characteristics of the data several classifiers need to be considered and 

their discriminative capacity evaluated using the feature space generated and compared 

with previous works to determine their efficacy.   

 Address class imbalance limitation evident in the TPEHG dataset. Skewed class 

distributions pose significant problems in machine learning tasks and thus strategies to 

address this limitation need to be evaluated.  

1.6 Novel Contributions 

This thesis proposes a new methodology for EHG signal processing for discriminating 

between term and preterm records. Our approach provides a robust data pipeline for signal 

processing; feature engineering; and data modelling using machine learning. On this basis 

this study claims several novel contributions which are discussed in turn in the following 

subsections.  

1.6.1 Literature Review 

 An up to date literature review of current works within the field of preterm birth is 

presented. This includes a detailed discussion of condition, treatment strategies, including 
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successes and limitations associated with current medical practice. The review also 

includes a detailed discussion on the use of technology as a support tool for obstetricians 

and midwifes and the efficacy of such approaches. The state of the art is presented in new 

and advanced treatment interventions which includes machine learning and how this 

approach is being studied as an early intervention strategy. This review collectively 

presents a current holistic view of preterm birth within the scientific community at the 

point of completing this thesis.   

1.6.2 Signal Processing 

 Signal processing and feature engineering techniques (extraction and selection) for EHG 

analysis. State in the art in signal processing is adopted with a discussion on signal 

filtering and noise analysis. A detailed study of existing features within EHG that are 

currently used in obstetric care is presented and a robust evaluation of Electromyography 

(EMG) features used within other domains. Many EMG features have not previously 

been used in preterm birth monitoring solutions – we are the first to do so. The results 

show that several EMG features have better discriminative capacity than those typically 

used in EHG analysis.  

1.6.3 Machine Learning 

 Use of advanced machine learning algorithms in EHG analysis and preterm birth 

classification. In this thesis we evaluate several machine learning strategies and provide a 

detailed evaluation with regards to their detection capabilities using EHG signals. We are 

the first to provide a broad comparison of machine learning algorithms within the domain 

of preterm birth analysis. Using this approach we have found several classifiers that 

classify significantly better than classifications made by obstetricians and midwifes and 

many other studies reported in the literature.  
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1.6.4 Objective Measurement for Decision Support 

 Improved objective measures for use in decision support systems that significantly 

outperform obstetrician and midwife prediction of pathological outcomes. We rely solely 

on the EHG signal to make a distinction between term and preterm deliveries which 

removes subjectivity from the decision making processes. This provides a significant aid 

to existing solutions that measures foetus state, but leaves the interpretation of normal and 

pathological outcomes to medical practitioners. Using machine learning in an ambulatory 

system provides an additional objective support tool for clinicians to aid the decision 

making processes.  

1.7 Thesis Structure 

Chapter 1 of this thesis provides an overview of the problem domain, namely preterm birth 

and the inefficiencies associated with current treatment and medical interventions. It 

highlights that the classification capacity of medical practitioners is low and its overall 

impact on reducing the number of preterm deliveries is ineffectual. The chapter argues that 

new technological interventions are required, specifically ambulatory decision support 

systems, to aid the decision making process carried out by medical practitioners in obstetric 

care. In doing so the challenges are presented, which include advanced signal processing and 

feature engineering techniques, machine learning, and robust objective measures for the 

classification of different preterm birth outcomes. The scope of the project is clearly 

described and the aims and objectives are discussed and the novel contributions this leads to 

are claimed.  Finally, the chapter is concluded with an outline of the thesis structure.  

In Chapter 2 we describe what preterm birth is and the impact this condition has on the baby 

the family and national healthcare costs. This is followed by a discussion on uterine EHG and 

is use as a clinical tool in obstetric care. It provides a detailed discussion on how EHG data 

collection is performed and how raw signals are processed. There is a heavy reliance on 
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exploratory data analysis and how specific tools are used in this thesis to provide quick 

insights in the specific data characteristics. The discussion ends with a detailed account on 

what kinds of features are typically extracted from EHG raw signals. Finally the chapter is 

concluded with a summary of the chapter. 

Chapter 3 discusses machine learning and the different models that are evaluated using the 

TPEHG dataset in this thesis. Models that are discussed include different artificial neural 

network architectures, random forest classifier, support vector machine, naïve bayes, and 

decision tree classifier. This is followed by a discussion on the background works in machine 

learning within term and preterm classification tasks. The chapter is then concluded with an 

overview of the chapter.  

A detailed discussion of our methodology is presented in Chapter 4 and the core data pipeline 

modules used to process signals, extract and select features, train and evaluate machine 

learning algorithms and validate the results produced by trained machine learning models, are 

presented. A detailed theoretic framework is provided for all key stages in the methodology 

ensuring a robust and non-ambiguous approach is presented.   

The results are presented in Chapter 5. This includes a discussion on single-direction filtered 

signals, feature extraction and selectin strategies, oversampling, and classification. 

Classification results include single model evaluations and classifier combinations. This 

chapter is then concluded with a detailed discussion of the results.  The thesis is concluded in 

Chapter 5, which provides a summary of the contributions made in this thesis, before the 

future work is presented.  

The results are discussed in Chapter 6 followed by a summary of the contributions made. The 

thesis is concluded in Chapter 7 and future work is presented.  
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Chapter 2 Background 

2.1 Introduction  

This section provides an overview of the work carried out in the main research areas relevant 

to this thesis, which includes a discussion on preterm birth and its impact, EHG and its use in 

foetal monitoring. This is followed by a discussion on EHG signal processing and feature 

extraction strategies.  

2.2 Preterm Birth 

Preterm birth is defined by the WHO as any birth that occurs before 37 weeks of the 

gestational period, i.e. the period of gestation <259 days (WHO 2012). Term births are the 

delivery of babies between 259 – 294 days of the gestation period. More than 1 in 10 of the 

world’s babies are born prematurely and 1 million die as a result of their prematurity 

(Blencowe et al. 2012). Premature births are the second leading cause of death in children 

under the age of 5 and for those that survive, they are often left with a lifetime of significant 

disability (Liu et al. 2012). 

According to (Philip Baker 2006), there are two main reasons why babies are born 

prematurely. The first is due to pre-labour premature rupture of the membrane (PPROM), 

which is the spontaneous onset of labour. PPROM occurs during pregnancy when the 

breakage of the amniotic sac (which is commonly known as the mother waters) occurs more 

than one hour before the onset of labour. The second is based on medical reasons e.g. uterine 

bleeding leading to placenta previa and placental abruption which causes the foetal 

membranes to rapture prematurely and trigger preterm labour (Philip Baker 2006). 

Other causes and risk factors of preterm birth are the stretching of the uterus. This can occur 

when a pregnant woman is having two or more babies (an excessive amount of amniotic fluid 

around the babies occurs and this leads to stretching of the uterus triggering preterm labour). 

Bacterial infection in the uterus can also stimulate the production of substances that can 
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initiate the onset of uterine contractions leading to preterm labour. The psychological stress 

of a pregnant woman can also lead to the release of hormones which can cause preterm 

labour (McPheeters et al. 2005).  

These risk factors are considered high during pregnancy and it is essential to protect both the 

mother and the baby by bringing the labour forward through the process of Caesarean. 

Outlining the risk factors for the prediction of preterm birth is essential. The maternal history 

of preterm births is one of the risk factors that is mostly driven by genetic and environmental 

risk factors (Goldenberg et al. 2008; Blencowe et al. 2013a; Muglia Louis 2010; Plunkett & 

Muglia 2008). Moreover, uterine over distension with multiple pregnancies has also been 

regarded as a vital risk factor associated with preterm birth. For instance, there is a high risk 

of preterm birth with multiple pregnancies compared to single births (Blondel et al. 2006).  

Naturally, the occurrence of multiple pregnancies differs among ethnic groups, with reported 

rates between 1 in 40 in West Africa and 1 in 200 in Japan. However, a large contributor to 

the incidence of multiple pregnancies has been the result of an increase in the availability of 

assisted conception in high income countries; thus, this has brought about a proportional 

increase in the number of births of twins and triplets in many of these countries. For instance, 

England and Wales, France and the United States have reported a 50% to 60% increase in the 

twin rate between the mid-1970s and 1998, with some countries (e.g. Republic of Korea) 

reporting a larger increase in uterine distension with multiple preterm birth pregnancies 

(Blondel & Kaminski 2002). Recently, this trend has been curtailed as a result of policies put 

in place limiting the number of embryos that are transferred during in vitro fertilization in 

some countries i.e. Korea (Marttila 2005), while others countries e.g. Nigeria, India, China 

etc. continue to report an increase in multiple birth rates (Lim 2011; Martin et al. 2009). 

Infection also play a crucial role in preterm birth. For instance, some infections, such as 

urinary tract, malaria, bacterial vaginosis, Human Immunodeficiency Virus (HIV), and 
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syphilis, have all been associated with preterm birth (Lawn et al. 2010). Furthermore, other 

conditions, such as cervical insufficiency, that result from ascending intrauterine infection 

and inflammation with secondary premature cervical shortening, have also been associated 

with preterm birth (Lee et al. 2008).  

Furthermore, some lifestyle factors also contribute to preterm birth. These include, stress, 

excessive physical work or long times spent standing, smoking, excessive alcohol 

consumption, as well as periodontal disease and Folic acid deficiency (Lawn et al. 2010). As 

it can be seen preterm birth is a complex condition with many factors contributing to preterm 

deliveries. Obtaining the values for different risk factors is complex and information is often 

obtained through interviews with the patient. This leads to inaccurate data, due to 

subjectivity, patient confidence about sensitive information (e.g. sexual infections) and errors 

when recalling information (Smith et al. 2009).  

Preterm birth is more common in boys, around 55% of all preterm births are male (Zeitlin 

2002). Furthermore, males have a  higher rate of mortality compared to girls, born at a similar 

gestation period (Kent et al. 2011). The role of ethnicity in preterm birth (other than through 

twinning rates) has been highly debated. However, since the 1970’s, various population-

based studies have proven that there is evidence backing a variation in normal gestational 

length within ethic groups (Ananth et al. 2006). While these differences have been associated 

with socioeconomic and lifestyle factors in some studies, a genetic role has been suggested 

by recent studies as another cause. For instance, babies of black African ancestry tend to be 

born earlier than Caucasian babies and have less respiratory distress (McPheeters et al. 2005; 

Philip Farrell 1975), lower neonatal mortality and do not need special care, unlike Caucasian 

babies (Alexander et al. 2003).  

The number and causes of provider-initiated preterm birth are more variable. Worldwide, the 

highest affected countries have the lowest coverage of pregnancy monitoring and low 
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caesarean birth rates (less than 5% in most African countries). Nevertheless, recent studies in 

the United States, have uncovered that more than half of all provider-initiated preterm births, 

at 34 to 36 weeks of gestation, were carried out in the absence of a strong medical indication 

(Gyamfi-Bannerman et al. 2011). Due to errors in gestation age assessment, unintended 

preterm birth can also occur with the elective delivery of a baby that was thought to be term 

(Neelanjana, Mukhopadhaya 2007).  

Furthermore, underlying medical conditions can also cause preterm birth. These can be 

divided into maternal and foetal conditions. Of the latter, these include, severe preeclampsia, 

placental abruption, uterine rupture, cholestasis, foetal distress and foetal growth restriction 

with abnormal tests and are some of the more important direct causes recognized (Ananth et 

al. 2006). Underlying maternal conditions, such as renal disease, hypertension, obesity, 

diabetes, and eclampsia, can also contribute to preterm birth. The global epidemic of obesity 

and diabetes is thus, likely to become an increasingly important contributor to global preterm 

birth. In one region in the United Kingdom, 17% of all babies born to diabetic mothers were 

preterm; more than double the rate in the general population (Steer 2005). 

2.3 Impact of Preterm Birth 

Preterm birth has significant adverse consequences for new-borns, with risk of death and 

severe health defects. The severity of these effects, in most cases, usually leads to a more 

premature delivery. For instance, about one half of perinatal deaths are caused by preterm 

birth (Fergus, Idowu, Ibrahim, Hussain, Abir Jaffar, Dobbins, et al. 2014). Moreover, the 

proportion of neonatal deaths to preterm births is inversely related to neonatal mortality rates. 

This often occurs in low income countries, where there are higher rates of neonatal mortality, 

e.g. India, Pakistan, and Nigeria. These countries have a high rate of mortality as a result of 

infections, such as sepsis, pneumonia, diarrhoea and tetanus, and intrapartum-related birth 
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asphyxia (Nations et al. 2005). The reason is simply due to a lack of health care facilities and 

programs for pregnant women, which affects the majority of low-income countries. 

The economic cost of preterm birth is enormous. In terms of mitigation against neonatal 

mortality, and the complex nature of intensive health care required, treatments that are 

needed for women who are susceptible to delivering preterm are frequently experienced in 

some countries (Nicholson et al. 2000; Blencowe et al. 2013b). In England and Wales, for 

example, the percentage of live born babies weighing 2500g or less increased from 6.79% in 

1990 to 7.28% in 1996 (Petrou 2003; Chiswick 1985). The percentage rates in Petrou et al. 

(Petrou 2003), indicates that incidences of preterm babies has increased at a faster rate. For 

example, the percentage of live born babies weighing less than 1500g in England and Wales 

increased from 0.96% in 1990 to 1.22% in 1996 and that of live born babies weighing less 

than 1000g from 0.34% to 0.49%.  

While in the United States, one of the most common reasons for antenatal hospitalizations is 

preterm labour and delivery. The data from  Nicholson et al. (Nicholson et al. 2000) indicates 

that from 1996, pregnancy complication surveillance systems found that preterm labour 

accounted for 33% of all hospitalizations before delivery in California. National costs for 

preterm labour, undelivered, were more than $360 million. Incremental costs for preterm 

labour with early delivery, compared with term delivery, ranged from $21 million to $191 

million. This shows that preterm labour can lead to multiple hospitalizations during 

pregnancy, maternal morbidity, and neonatal mortality.  

In high-income countries, the interventions to reduce neonatal deaths are divided into two 

health-system programmes: maternal-health programmes (covering pregnancy, childbirth, 

and early neonatal care) and child-health programmes (covering treatment from infancy into 

childhood). Addressing neonatal mortality requires continuity between these elements of 

care, which is lacking in many settings. Little care for the neonate often occurs and thus a 
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fraction of the attention in either maternal or child-health programmes is often received. The 

utmost gap in care often decreases during the first week of life, when most neonatal and 

maternal deaths occur, as most often there is no access to formal health-care systems at home 

(Nations et al. 2005). 

Preterm birth has profound economic consequences globally. For instance, the cost of a 

pregnant women’s discharge from hospital is minimal compared with the greater cost not 

only associated with healthcare but also in education (Johnson et al. 2015). This is also a 

challenging impact of preterm birth because children born preterm are at risk of neuro-

developmental pathological conditions resulting from diseases such as, cerebral palsy, vision, 

and hearing impairments (Saigal, Saroj, Doyle 2008). For example, in a British study up to a 

third of 7-year-old children born between 32–35 weeks’ gestation were reported by their 

teachers to have difficulties in motor skills, speaking, writing, mathematics, behaviour, and 

physical education (Huddy et al. 2001). Thus elective deliveries of infants born near term are 

not without increased risk of mortality and morbidity, which has significant implications for 

educational services and costs (Saigal, Saroj, Doyle 2008; Huddy et al. 2001). Despite this, 

educational professionals are lacking educational awareness and formal knowledge in dealing 

with the educational needs of preterm children. 

Another implication of preterm births is hospital re-admissions of preterm children in the 

weeks after their discharge. In (Escobar et al. 1999), Escobar discovered that more than half 

of children born prematurely are always re-admitted to hospital, at least once, in the first one 

to two years of life, mostly as a result of respiratory syncytial virus and other high health 

illnesses. Even at 10–12 years of age, children who had been born before 26 weeks’ gestation 

had a greater tendency for specialist services, such as physician visits, occupational or 

physical therapy, nursing or medical procedures, and compensatory needs, than children at 

full gestational period. A reduction in both the prevalence of health disorders and the use of 
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health-care resources by preterm infants has been reported in (Saigal et al. 2001). This study 

showed that, by the time premature children reach adulthood, some of them suffer from 

growth problems, which requires medical attention. Preterm infants require intensive care, 

which raises the cost of hospital care on the number of days spent in hospital. According to 

(Strasburger 2006), preterm birth costs England and Wales almost £2.95 billion a year.  

In most scenarios, families’ are affected by the impact of preterm births and their 

pathological condition has an enormous negative psychosocial and emotional effect. This 

persists during the first 2 years of life and by the age of 3 there is often no difference in 

distress symptoms, with parenting stress remaining greater than normal birthweight infants.  

With all this in mind, having a better understanding of preterm birth deliveries can help to 

create the right decision and prevention strategies to reduce the negative effects associated 

with preterm birth pathological conditions on families, the economy and healthcare services. 

2.4 Uterine Electrohysterography (EHG)  

The process of giving birth to offspring, both at term and preterm, involves activation of the 

Myometrium. The Myometrium represents the middle layer of the uterine wall, consisting 

mainly of uterine smooth muscle cells (also called uterine myocytes), but also of supporting 

stromal and vascular tissue. Its main function is to induce uterine contractions (Cookson 

Victoria 2010; Garfield et al. 1998; Catalin, Buhimschi 1996). The use of EHG can help in  

recording uterine electrical activity from the abdominal surface to diagnose true labour (Al-

askar Haya, Dhiya Jumeily, Abir Hussain 2013).  

Several events in the uterine muscle precede labour. Excitability of cells increases due to 

changes in transduction mechanisms and synthesis of various proteins, including ion channels 

and receptors for uterotonins (Tezuka et al. 1995; Fuchs et al. 1984). At the same time, 

systems that inhibit myometrial activity, such as the nitric oxide system, are down regulated, 

leading to withdrawal of uterine relaxation (Garfield et al. 1998). Electrical coupling between 
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myometrial cells also increases, and an electrical syncytium allowing the propagation of 

action potentials from cell to cell is formed (Blondel 1996; Leitich et al. 1999). These 

changes are required for effective contractions that result in the delivery (expulsion) of the 

foetus.  

Previous studies have established that the electrical activity of the myometrium is responsible 

for myometrial contractions (Kirk Riemer 1998; Kuriyama Hiroshi 1961). Extensive studies 

have been done to monitor uterine contractility using the electrical activity measured from 

electrodes placed directly on the uterus (Fele-Žorž et al. 2008; Pajntar et al. 1987). Fele-Žorž 

et al. found that uterine EHG can be monitored noninvasively from the abdominal surface. 

Measuring uterine EHG activity produces similar results to tocodynamometry and 

Intrauterine Pressure Catheter (IPC) systems. In addition, EHG can identify the transition 

from non-labour to labour states in the myometrium. Many studies have shown that different 

uterine EHG parameters can indicate myometrial properties that distinguish physiological 

contractions from true term and preterm labour, which is something contraction-monitoring 

devices cannot do (Ivan Verdenik, Marjan Pajntar 2001). 

In the context of EHG analysis raw signals from the myometrial muscle are typically 

obtained using bipolar electrodes adhered to the abdominal surface. These are spaced at a 

horizontal, or vertical, distance of 2.5 cm to 7 cm apart. Most studies use four electrodes, 

although one study utilizes two (Greenough 2012). In a series of other studies, sixteen 

electrodes were used (McPheeters et al. 2005), and high density grids of 64 small electrodes 

were used in (Steer 2005). The results show that EHG may vary from women to women. This 

is dependent on whether she is in true or false labour, and whether she will deliver at term, or 

prematurely. Since the late 70s, one theory suggests that gap junctions are the mechanisms 

responsible. Nevertheless, more recently it has been suggested that interstitial cells or stretch 

receptors may be the cause of propagation (Nicholson et al. 2000). Gap junctions are groups 
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of proteins that provide channels of low electrical resistance between cells. In most 

pregnancies, the connections between gap junctions are sparse, although gradually increasing, 

until the last few days before labour. A specific pacemaker site has not been conclusively 

identified, although, there may be a generalised propagation direction, from the top to the 

bottom of the uterus (Lucovnik, Kuon, et al. 2011). 

Before analysis or classification tasks, EHG signals, in their raw form, need pre-processing. 

Pre-processing can include filtering, de-noising, wavelet shrinkage or transformation and 

automatic detection of bursts. Recently, studies have focused on filtering EHG signals using a 

bandpass filter between 0.05Hz and 16Hz (Léman et al. 1999; Ivan Verdenik, Marjan Pajntar 

2001; Maner 2003). In other studies filters as high as 50Hz have been used (Garfield et al. 

1998). Some argue that using EHG with a wide range of frequencies is not recommended, 

since interference affects the signal. 

2.4.1 EHG Feature Extraction 

Zardoshti et al. (Zardoshti Wheeler 1993) evaluated a number of features commonly used 

when dealing with EHG signals. These included integrated absolute value, zero crossings and 

auto-regression coefficient. However, despite their good discriminant capabilities, a precise 

frequency threshold for accurate contraction and delivery classification, over different 

patients, could not be determined. Fergus et al. (Fergus et al. 2013), conducted a broad study 

of techniques for analysing the features of the EHG signal where, features such as peak 

frequency, median frequency, root mean square and sample entropy, performed particularly 

well when discriminating between term and preterm records, with several of the classification 

models used to validate the approach reporting very good results. 

However, it is in Electromyography (EMG) that we find some new and interesting works. In 

one such study, Lucovnik et al. (Lucovnik, Maner, et al. 2011) investigated whether uterine 

EMG could be used to evaluate Propagation Velocity (PV). In this study, the electrical 



32 
 

signals of the uterus were measured both in labour and non-labour patients who delivered at 

term and prematurely. The results indicate that, the combination of Power Spectrum (PS) and 

PV peak frequency parameters yielded the best predictive results in identifying true preterm 

labour. However, only one dimension of propagation is considered at a time, which is based 

on the estimation of time delays between spikes (Lucovnik, Maner, et al. 2011). In 

comparison, Lange et al. (Lange et al. 2014) estimate the PV of the entire EHG bursts that 

occurs during a contraction. This has been achieved by calculating the bursts corresponding 

to a full contraction event. The results illustrate that the estimated average propagation 

velocity is 2.18 (60.68) cm/s. No single preferred direction of propagation was found (Lange 

et al. 2014). 

Meanwhile, (Alamedine et al. 2013) presented three techniques to identify the most useful 

features relevant for contraction classification. These included linear features, such as peak 

frequency, mean frequency and root mean square, and nonlinear features, such as the 

Lyapunov exponent and sample entropy (Alamedine et al. 2013). In order to choose the most 

suitable features that represent contractions, feature selection algorithms have been used. This 

process used a Binary Particle Swarm-Optimization (BPSO) algorithm and calculated the 

Jeffrey Divergence (JD) distance. This is a Sequential Forward Selection (SFS) algorithm. 

The results show that the BPSO and SFS algorithms select features with the greatest 

discriminant capabilities. In this case, out of the six features considered, sample entropy 

produced the best results. 

There has also been increased interest in the use of non-linear EMG and EHG signals to 

detect term and preterm labour earlier. In one example, (Diab et al. 2013) used four non-

linear features to detect labour contractions (Diab et al. 2013). These features were time 

reversibility, sample entropy, Lyapunov exponents and delay vector variance. The results 

show that time reversibility produced the highest classification rate of 0.842 percent. In 
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comparison, (Sim et al. 2014) used 26 features in their experiment. These include 18 time 

domain features and 8 frequency domain features. The features were extracted from 40 

signals in the TPEHG database to determine the characteristic differences in uterine muscle 

activities between term and preterm delivery. The signals are divided into four groups, 

depending on the time of recording (before or after the 26
th

 week of gestation) and the length 

of gestation (term delivery ≥ 37 weeks and preterm delivery < 37 weeks). The results 

illustrated significant differences between term and preterm records before 26 weeks when 

Frequency Ratio (FR) and Mean Absolute Value Slope1 (MAVSLP1) have been used. While 

other features, such as Willison amplitude (WAMP), Slope Sign Change (SSC), and 3
rd

 

Spectral Moments (SM3) show substantial differences between preterm and term delivery 

data recorded during the later period of gestation. 

Ye-Lin et al. (Ye-Lin et al. 2014) developed a tool that provides automatic segmentation of 

EHG recordings, whilst distinguishing between uterine contractions and other artefacts. This 

was achieved by using an algorithm that generates the Tocography (TOCO) signal, derived 

from the EHG, and detects windows with significant changes in amplitude. In order to 

develop the classifier, a total of eleven spectral, temporal, and nonlinear features were 

extracted from the EHG signal for 12 women, classed, by experts, as being in the first stages 

of labour. The combination of characteristics that led to the highest degree of accuracy in 

detecting artefacts was then determined. Using only seven features, the results produced a 

precision of 92.2%. This study determined that it is possible to obtain automatic detection of 

motion artefacts in segmented EHG recordings.  

While Venugopal et al. (Venugopal et al. 2014) attempted to analyse Surface 

Electromyography (SEMG) signals in patients with and without muscle fatigue, using 

Multiple Time Window (MTW) features. In the experiment, SEMG signals were recorded 

from the muscles in the biceps brachii of fifty volunteers. Using four window functions 
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(rectangular, Hamming, trapezoidal, and Slepian windows), eleven multiple time window 

features were acquired (Venugopal et al. 2014). These were selected using a genetic 

algorithm and information gain based ranking. In addition to this experiment, four different 

algorithms (naïve Bayes, support vector machines, k-nearest neighbour, and linear 

discriminant analysis) were also been evaluated. The results show that, under fatigue, there 

was a reduction in the mean and median frequencies of the signals. The k-nearest neighbour 

algorithm was the most precise in classifying the features, with a maximum accuracy of 93%.  

Meanwhile, (Vasak et al. 2013), studied whether uterine EMG can identify inefficient 

contractions. This can lead to first-stage labour and caesarean delivery in term nulliparous 

women, with the unplanned onset of labour. In this study, EMG was recorded during 

spontaneous labour in 119 such cases, with singleton term pregnancies in the cephalic 

position. Electrical activity of the myometrium, during contractions, is characterized by its 

power density spectrum (PDS) (Vasak et al. 2013). The diagnosis of labour has been made if 

the patient was in active labour, with no increase in dilation, for at last two hours. The data 

was analysed to calculate the Intra-class correlation coefficients. This has been achieved by 

comparing the variance of contraction characteristics, within subjects, to the variance 

between subjects. The result illustrated that mean peak frequency in women undergoing 

caesarean delivery, for first-stage labour, was significantly higher (0.55Hz), than in women 

delivering vaginally without (0.49Hz) or with (0.51Hz) augmentation of labour (P = .001 and 

P = .01, respectively). Augmentation of labour increased the mean PDS frequency when 

comparing contractions before and after the start of augmentation. This increase was only 

significant in women who eventually delivered vaginally. However, the paper fails to use 

additional aspects of intra-partum recordings in vitro analysis, testing the hypothesis of a link 

between an increase in peak frequency and lactic acidosis and impaired in vitro contractility. 

Furthermore, it also fails to consider other parameter analysis subsets (i.e. sample entropy, 
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root mean square or wavelet). This could be because, depending on the dataset and parameter 

analysis equation, the use of different parameter analysis techniques is more challenging in 

getting meaningful EMG signals. Additionally, if these methods had been applied effectively, 

it would have led to greater classification results. 

Fractal dimension was explored by (Maner et al. 2006) as a non-linear feature in order to 

determine the onset of labour. The fractal dimension is a measure of how fractal the signal is, 

that is, how much self-similarity or repetition of its own pattern it displays as a ratio of the 

scale of zoom. Lucovnik et al. (Lucovnik et al. 2010) showed promising results for separating 

patients (n=27) into those that would give birth spontaneously within 24 hours (n=14), and 

those that would not (n=13); all of the patients eventually had term deliveries. No machine 

learning algorithms were used, but different cut points of the fractal dimension were trialled 

to see what sensitivity and specificity would result. For example, for a fractal dimension cut-

point of 1.220, the analysis technique had a sensitivity of 1.0 and a specificity of 0.231. As 

the study noted, a further study involving more patient data, and a head to head comparison 

of this technique against other linear techniques would prove useful.  

2.5 Feature Selection 

Feature selection is capable of improving the learning performance of classifiers, lowering 

computational complexity, building better generalizable models, and decreasing required 

storage. The dynamic nature and invaluable advantages of feature selection in the field of 

pattern recognition, statistics, machine learning and data mining communities is highly 

commendable (Włodzisław Duch, Tomasz Winiarski, Jacek Biesiada 2003; Shardlow 2007; 

Isabelle Guyon 2003). Feature selection is purposely designed to choose a subset of input 

variables by reducing features that are inappropriate or have limited predictive information. 

Feature selection has been used and proved to be effective both in theory and practice in 

enhancing learning efficiency, increasing predictive accuracy and reducing the complexity of 
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learned results (Andrew Ng 1998). Thus, feature selection in supervised learning has a main 

goal of detecting a feature subset that produces higher classification precision. When the 

dimensionality of a domain increases, the number of features N raises, therefore finding an 

optimal feature subset is intractable and problems related to feature selection have proved to 

be NP-hard (Kirsopp et al. 2002). At this juncture, it is essential to describe traditional feature 

selection processes, which consists of four basic steps, namely, subset generation, subset 

evaluation, stopping criterion, and validation (Savoy 2013; Chen 2003).  

Subset generation can be described as a search process that produces candidate feature 

subsets for evaluation based on a certain search strategy. Each candidate subset is assessed 

and related with the previous best one according to a certain evaluation. However, if the new 

subset is better, it replaces the best one. This process is repeated until a given stopping 

condition is satisfied. The next step is the categorization of features. This process determines 

the importance of any individual feature, neglecting their possible interaction. Categorizing 

methods are based on statistics, information theory, or on some function of a classifier's 

outputs (John 1997; Alamedine et al. 2013; Tang et al. 2014). Algorithms for feature 

selection fall into two broad classifications namely; a wrapper that uses the learning 

algorithm itself to evaluate the usefulness of features and filters that evaluate features 

according to heuristics based on general characteristics of the data (Shardlow 2007). 

2.6 Exploratory Data Analysis in EHG 

In statistics exploratory data analysis (EDS) is a powerful tool capable of providing very 

quick and very insightful information about EHG signals under investigation. It allows the 

main characteristics in EHG to be summarised, typically using visual representations. In data 

science EDS it is often used to see what the data can tell you before formal modelling or 

hypothesis or testing tasks are conducted. Each of the main EDS techniques utilised in this 

thesis are discussed in detail in the following subsections. 
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2.6.1 Box Plot 

A box plot utilises standard techniques for presenting 5-number summaries, which consist of 

the minimum and maximum range values, the upper and lower quartiles, and the median 

(Frigge et al. 1989; Potter 2006). This technique is a quick way to summarize the distribution 

of data datasets. This, like many of the other techniques presented below, is described as a 

descriptive statistic that graphically depicts groups of numerical data through their quartiles. 

An example of a box plot is illustrated in figure 2.1. 

 

Figure 2.1: Boxplot Example 

2.6.2 Histograms Plot 

A histogram is a type of graph that shows the frequency distribution of data within equal 

intervals (Freedman, David, Robert Pisani 1997). Histograms use a function 𝑚𝑖 that counts 
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the number of observations that fall into each of the disjoint bins. The mathematical 

representation of histograms (see equation 2.1) is as follows. Let 𝑛 be the total number of 

observations and 𝑘 be the total number of bins, the histogram 𝑚𝑖 count the number of 

observations. This technique has helped to visually illustrate the distributions of the selected 

features against the expected normal distributions estimated from the data.  

𝑛 = ∑ 𝑚1
𝑘
𝑖=1                                                                           

(2.1) 

Figure 2.2 provides a graphical example of a histogram plot.  

 

Figure 2.2: Histogram Example 

2.6.3 QQ Plots 

A q-q plot is a plot of the quantiles of the first data set against the quantiles of the second data 

set (Population 2012). The theoretical QQ plot (see equation 2.2) examines whether or not a 

sample 𝑋1…,𝑋𝑛 has come from a distribution with a given distribution function 𝐹 (𝑥). The 

plot displays the sample quantiles 𝑋1…,𝑋(𝑛) against the distribution quantiles 

𝐹−1 (𝑝1 ),… , 𝐹−1( 𝑝𝑛 ), where: 



39 
 

𝑝1 =
𝑖 − 1

2⁄

𝑛
 

 (2.2) 

Figure 2.3 provides an example of a q-q plot.  

 

Figure 2.3: Q-Q Plot Example 

2.6.4 Principle Component Analysis  

Reducing feature vector dimensions, commonly known as feature reduction, helps to avoid 

over-fitting depending on the algorithm selected. Over-fitting is a serious problem for large-

scale datasets with lots of missing values. It can also occur when analysing results without 

removing redundant information or eliminating noise, leads to non-reliable results. To 

remove the ambiguity of biased results, due to “feature redundancy,” Principal Component 

Analysis (PCA) is often used. During PCA, three components are calculated, Eigenvalues, 

Eigenvectors, and Scores. Eigenvalues measure the amount of variation explained by each 

principle component, with the first coefficient being the largest, eigenvectors are a linear 

combination of the original variables and have a corresponding Eigenvalue, and scores are 

used in the bi-plot to represent the data by illustrating how close the features are to the first 
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and second principle components (Powell Victor 2016; Diab et al. 2009; Wold et al. 1987). 

Through the exploration and visualization of PCA, this technique helps to emphasize 

variation and find patterns in data of high dimension. Again, figure 2.4 shows and example of 

this visualisation technique.  

 

Figure 2.4: PCA Plot Example 

2.6.5 Stochastic Neighbour Embedding 

The Stochastic Neighbour Embedding (SNE) algorithm was introduced by Geoffrey Hinton 

et al. (Hinton Geoffrey 2002) and places objects in a low-dimensional space so as to 

optimally preserve neighbourhood identity; when extended it allows multiple low-d images 

of each object (Hinton Geoffrey 2002; Agrafiotis 2003; Dietterich 1997). Equation 2.3 

describes the mathematical representation of the stochastic neighbour embedding algorithm. 

In this equation,  𝑖 represents each object, 𝑗 is each potential neighbour, 𝑝𝑖𝑗 is the computation 

of the asymmetric conditional probability, 𝑞𝑖𝑗 represents the low-dimensional counterparts 
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of  𝑦𝑖  and  𝑦𝑗 the high-dimensional data points of  𝑥𝑖  and  𝑥𝑗   and  𝐸𝑖 is the average over data 

samples 𝑖. 

In this algorithm, a probability distribution is defined in the input space, based on the 

pairwise distances, to describe how likely it is that point 𝑖 is the neighbour of point 𝑗. The 

same is done in the low-dimensional output or projection space. The algorithm then optimises 

the configuration of points in the output space, such that the original distribution of 

neighbours is approximated as closely as possible in the output space. The natural measure of 

approximation error between distributions is Kullback-Leibler (KL) divergence, which is 

averaged over all points. The SNE algorithm searches for the configuration of point 𝑦𝑖 that 

minimizes KL divergence 𝐷 between the probability distributions in the input and output 

spaces, averaged over all points (Venna Jarkko 2007; Laurens van der Maaten 2008). The 

cost function is: 

 𝐸𝑆𝑁𝐸 = 𝐸𝑖[𝐷(𝑝𝑖, 𝑞𝑖)] ∝ ∑ 𝐷(𝑝𝑖, 𝑞𝑖)𝑖 = ∑ 𝑖 ∑ 𝑝𝑖𝑗 log
𝑝𝑖𝑗

𝑞𝑖𝑗
𝑗≠𝑖                                             

(2.3) 

2.6.6 Correlation Scatter Matrix Plot 

Correlation scatter matrix plots are used to represent a correlation between two variables 

(Pace 2012). There are two types of correlations, positive and negative. In positive 

correlation, as one variable increases, the other variable also increases. Similarly, as one 

variable decreases, the other variable also decreases. This means that the variables move in 

the same direction. Within negative correlation the variables move in the opposite direction. 

Therefore, as one variable increases, the other variable decreases. Alternatively, as one 

variable decreases, the other variable increases. Scatterplot matrices are used to 

approximately determine a linear correlation between multiple variables. This is particularly 

helpful in pinpointing specific variables that might have similar correlations. The 

mathematical representation of this technique is shown below in equation 2.4. 𝑟 represents 
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the Pearsons Correlation and is always a number between −1 and 1.  
1

𝑛−1
 represents the value 

of the covariance. In a positive scenario, 𝑟 > 0 and in the negative case scenario 𝑟 < 0. In the 

plot, the value of 𝑟 near 0 indicates a weak linear relationship. The strength of the linear 

relationship increases when 𝑟 moves away from 0 towards −1 or 1.  

  𝑟 =
1

𝑛−1
∑(

 𝑥𝑖−�⃗� 

 𝑠𝑥
)(

 𝑦𝑖−�⃗� 

 𝑠𝑦
) 

(2.4) 

An example of a scatter matrix plot is illustrated in Figure 2.5. 

 

Figure 2.5: Scatter Matrix Plot Example 

2.6.7 Kernel Density Estimation Plot 

The Kernel Density Estimation (KDE) plot is another statistical EDA method that is used 

extensively in data analysis. This technique is a non-parametric representation of the 

Probability Density Function (PDF) of a random variable (Sheather 2004). This technique has 
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gained wide interest over the last 20 years and has been applied to different research topics 

(Sheather 2004). For example, in (Baxter et al. 2000), the authors used this technique to 

estimate statistical analysis of lead isotope ratio data in archaeology. Tortosa et al. (Tortosa-

Ausina 2002) used it on financial datasets to normalize the cost index estimation for different 

periods. KDE is used to avoid assumptions about the distribution of the data. This distribution 

is defined by a smoothing function and a bandwidth value that controls the smoothness of the 

resulting density curve. Its formula is given in equation 2.5 below. 

  fˆh(x) =
i

nh
∑ K(

x− xi

h
)n

i=1 ; − ∞ < x < ∞                                 

(2.5) 

Where 𝑛 is the sample size, 𝐾(. ) is the kernel smoothing function, and ℎ is the bandwidth. 

Figure 2.6 shows an example of kernel density estimation plot.  

 

Figure 2.6: Kernel Density Estimation Plot Example 



44 
 

2.7 Summary 

This chapter described what preterm birth is and the main cause and risk factors associated 

with it. It also explored the impact preterm birth has on the infant, the family and healthcare 

providers and presented a case for the use of uterine Electrohysterography (EHG) signals for 

diagnosing true labour. This was followed with a discussion on EHG feature engineering and 

how exploratory data analysis in EHG analysis, and other data processing domains, is often 

used to provide useful insights into data before formal modelling is conducted. The following 

chapter builds on the discussions in this chapter and presents information about machine 

learning and how it can be used to formally model data for the purpose of classification – in 

this instance classifying term and preterm birth records.  

  



45 
 

Chapter 3 Machine Learning 

3.1 Introduction 

Machine learning is the automatic assignment of a class to feature vectors previously 

extracted from raw signals. Machine learning algorithms are trained to classify these feature 

vectors where the class is not known. In order for a classifier to learn about a particular 

application domain, it is given a dataset to work with. This dataset is then divided into two 

separate sets – one for training and one for testing. In the training phase, a classifier is built. 

The classifier recognises patterns in the training data that corresponds to each of the classes 

modelled; it learns the distribution of features for each class and learns to generalize. In the 

testing phase, the classifier is given the test set, which are new feature vectors with no class 

labels; the trained models attempt to classify the unseen instances into each of the classes 

modelled. In machine learning algorithms, learning can be divided into 3 categories – 

supervised, unsupervised or reinforced. In supervised learning, the labels for each class are 

provided for the classifier during the training stage. In unsupervised learning (also known as 

clustering), the class labels are omitted and the classifier is asked to cluster the instances into 

groups where they display the same patterns or features, and hence each cluster may 

represent one class. In reinforcement learning, the classifier makes a classification of each 

instance and is given a score after each classification, to tell it how well it classified the 

instance. The classifier then adjusts its future actions accordingly (Stuart Russell 1995).  

Many algorithms exist to perform modelling in this way, each with their own set of strengths 

and weaknesses. The remainder of this chapter discusses some of the popular machine 

learning algorithms currently being used in biomedical research.  

3.2 Artificial Neural Networks 

An artificial neural network (ANN) is a machine-learning technique that is modelled on the 

neural connections in our brains. ANN research began in 1940 and has since been used  by 
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scientists to resolve many different machine learning problems (Zhang 2000). Current 

research in this area is flourishing (Ghaffari et al. 2006a), (Xu, Xin and Tan, Hongzhuan and 

Zhou, Shujin and He, Yue and Shen, Lin and Liu, Yi and Hu, Li and Wang, Xiaojuan and Li 

2014). The biological model of ANNs can be seen in Figure 3.1. There are approximately ten 

thousand million neurons in the human brain. Each neuron is connected to many thousands of 

other neurons, which can be trained to perform complex calculations. Click on the image for 

a hyperlink to the source of the publication. 

 

 

Figure 3.1: Biological Representation of a Neuron cell Processing (Anil K. Jain 1996) 

 

Figure 3.1 represents the biological way the brain pre-processes information. The brains 

neural network architecture is composed of cell bodies or somas, and two types of branches 

(axon and dendrites). The cell body has a nucleus that contains information about 

transmissible traits and plasma that holds the molecular equipment for producing the material 

needed by the neuron. Neurons receive signals from each other through dendrites and 

transmit signals generated from the cell body to the axon. The output signals travel through 

the axon until they reach a synapse, where units determine whether they are passed in as 

inputs to the next neuron. The controlling power of the synapse can be adjusted to change the 

amount of signal that is allowed to pass from an axon to a dendrite (Anil K. Jain 1996). A 

http://web.iitd.ac.in/~sumeet/Jain.pdf
http://web.iitd.ac.in/~sumeet/Jain.pdf
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good scenario that demonstrates how the brain works is the process of when we learn to read, 

write and understand speech. We recognise and distinguish these patterns when we are 

children through different learning examples. The ANN does it in the same way and learns 

from trained examples rather than being programmed. During the training period, the neural 

network can adapt itself, based on the examples of similar problems after sufficient training. 

Artificial Neural Networks are based on the connection of perceptron’s, which is the abstract 

equivalent model of a neuron used in machine learning (Jain et al. 1996).  

There are two common types of ANN structures that are mostly used by researchers to solve 

classification and prediction problems. These are a feed-forward neural network (FFNN) and 

a recurrent neural network (RNN). In feed-forward neural networks, the information from the 

input layer is transmitted down through the network layer until it reaches the output layer. 

The recurrent neural network incorporates recurrent links into its structure, such as a 

feedback connection, which makes them more dynamic. This is the main ANN considered in 

this thesis given their ability to store information for long periods. 

Feed-forward neural networks are referred to as multilayer perceptron’s (MLP). It is the most 

popular type of neural network used today when designing artificial neural network 

architectures. In the FFNN or MLP structure, the neurons are gathered into layers (Kuldip 

Vora 2014), (Hornik Kurt, Stinchcombe Maxwell 1989). The first and last layers are called 

the input and output layers, because they represent the inputs and outputs of the neural 

network. The remaining layers are called hidden layers. The hidden layer provides neural 

networks with additional learning capabilities to learn from patterns discovered in the dataset. 

There are two types of feed-forward neural networks. These are single layered and multi-

layered ANNs (Kuldip Vora 2014; Zhen-Guo, Tzu-An Chiang 2011; Naik Arti 2012; Catley 

et al. 2006; Ghaffari et al. 2006b; Hornik Kurt, Stinchcombe Maxwell 1989). 
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In a single layered network, all the inputs are connected directly to the outputs, commonly 

known as a perceptron. Although the perceptron does have advantages over decision trees, 

many authors have, however, commented on the kind of problems the single-layered 

perceptron can handle, such as its inability to handle the XOR function (Kuldip Vora 2014). 

However, with modifications to the simple one-layer network, solutions have been found to 

overcome these limitations. This involves using non-linear activation functions and 

increasing the number of layers in the network. In a single perceptron, it can only deal with 

classes that can be separated on an x/y graph with a straight line (linearly separable) and 

binary outputs.  

The second type of feed-forward neural network is the multi-layered network architecture, 

which involves the combination of several perceptron’s to create a nonlinear decision 

boundary. A multi-layered network involves one or more hidden layers. The functions of 

these hidden layers are adjusted in response to training, in order to bring the correct response. 

The output values are compared with the correct answer to compute the value of some 

predefined error-function. This error is then fed back through the network. Using this 

information, the algorithm adjusts the weights such that the error decreases with each 

iteration and the neural model gets closer and closer to producing the desired output. This 

method uses the error back-propagation algorithm and is one of the simplest and most widely 

used algorithms by researchers interested in error correction (Kotsiantis 2007). Error 

correction can either be done through forward pass or backward pass. The architecture of this 

network is illustrated in Figure 3.2.  
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Figure 3.1: Feed-forward multi-layered neural network architecture 

Figure 3.2 shows a sample feed forward neural network architecture for approximating a 

classification function that maps an input vector to more than one class. The network consists 

of Ns number of layers. The first layer is the input layer Ni, the second layer is the hidden 

layer Nh, and the output layer is Nu. Let us suppose the input is x= [x1, x2 x3,…, xni], the 

network output is y=[O1 , O2, O3,…, Onu ] and the weights are represented as wwj. The 

inputs are first passed to the input units in the input layer and then the outputs from the input 

units are passed to hidden layer until it reaches the last hidden layer units. The hidden layer 

outputs are passed to the output layer units. The optimized weights can be done through 

supervised learning, where the network learns from the large number of observations. 

Examples are usually provided one at a time. For each example, the actual vector is computed 

and compared to the desired output. Then, weights and thresholds are adjusted, relative to 

their contribution to the error made at the respective output. As previously mentioned, one of 

the most used methods is the backpropagation algorithm, in which the errors are propagated 

(error = the difference between actual and expected results) in the lower layers. However, the 

selection of the optimal number of hidden layers and hidden neurons for the required task is 

very challenging. 
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Although there are a large number of applications of the well-known MLP neural network, 

they suffer from difficulties, such as the determination of the optimal number of hidden units, 

and estimating the best weight values. The selection of these parameters is very important to 

improve the performance of neural networks. Furthermore, the MLP neural network is 

affected by some learning algorithm problems, such as over-fitting (Cao 2003). This means 

that the neural network can perfectly map between input and output in training data but it will 

not be able to sufficiently generalise its learning to new data.  

3.2.1 Back-Propagation Trained Feed-Forward Neural Network Classifier 

In the Back-Propagation trained Feed-Forward Neural Network Classifier (BPXNC), the 

network is trained to map a set of input data to outputs through iterative adjustments of the 

weights. The information from inputs is fed forward through the network to optimize the 

weights between neurons. Moreover, the optimization of the weights is made by backward 

propagation of the error during the training or learning stage. The BPXNC then reads the 

input and output values in the training dataset and changes the value of the weighted links to 

reduce the differentiation between the predicted and observed values. The error in prediction 

is reduced across several training cycles until the network reaches the best level of 

classification accuracy, while avoiding overfitting (Ghaffari et al. 2006b). The advantage of 

this classifier is the process of looking for the minimum of the error function in weight space 

using gradient descent. The combination of weights, which minimizes the error function, is 

considered to be a solution for learning problems the classifier. 

3.2.2 Levenberg-Marquardt Trained Feed-Forward Neural Network Classifier 

The Levenberg-Marquardt trained Feed-Forward Neural Network Classifier (LMNC) has 

similar functionalities to the BPXNC. However, it is much more memory intensive. The 

classifier provides a numerical solution to the problem of minimizing nonlinear functions 

over a space of parameters. Furthermore, during the training stage, training is stopped when 
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the performance on an artificially generated tuning set of 1000 samples, per class, has been 

reached (based on k-nearest neighbor interpolation) and thereafter does not improve anymore 

(37steps 2013)-(Zhao et al. 2005). 

Since LMNC is a feed-forward network, it is designed to approach second-order training 

speed, without having to compute the Hessian matrix. For example, in equation 3.1, J 

represents the Jacobian matrix, which contains the first derivatives of the network errors with 

respect to the weights and biases. 𝜇 represents the gradient computed and e represents the 

vector of the network errors. 

x𝐾+1 = x𝑘 − [JT − J − μI]−1JTe                                                 

(3.1) 

The scalar µ is zero; this is just Newton's method, using the approximate Hessian matrix. 

Newton’s method is quite fast and more accurate. When µ is large, this becomes gradient 

descent with a small step size. Thus, µ is decreased after each successful step (reduction in 

performance function) and is increased only when a cautious step would increase the 

performance function. In this way, the performance function is always reduced at each 

iteration of the algorithm. This algorithm appears to be the fastest method for training 

moderate-sized feed-forward neural networks (Zhao et al. 2005). 

3.2.3 The Radial Basis Function Neural Network Classifier  

The Radial Basis Function Neural Network Classifier (RBNC) is mostly used in complicated 

pattern recognition and classification problems. The classifier has three layers – the input 

layer, a hidden layer with non-linear radial basis activation function units and a linear output 

layer. The mapping properties of the RBNC can be modified through the weights in the 

output layer. The input can be modeled as a vector of real numbers, while the output of the 

network is then a scalar function of the input vector. This ANN classifier is restricted to only 

contain one hidden layer of units, whose output depends on a distance between the center of 

arbitrary transfer functions and a given pattern (37steps 2013). 
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3.2.4 The Random Neural Network Classifier 

The Random Neural Network Classifier (RNNC) is a feed-forward neural network, which is 

inspired by the spiking behaviour of biophysical neurons (Gelenbe 1991). This classifier has 

attracted a lot of attention in the scientific community. This is because RNNC interacts by 

probabilistically exchanging excitatory and inhibitory spiking signals. The model is described 

by analytical equations. Its standard learning algorithm has low complexity and strong 

generalisation capacity even for a relatively small training data sets (Marx 2008). RNNC has 

one hidden layer of N sigmoid neurons, which exchanges positive and negative signals in the 

form of unit amplitude spikes. The input layer rescales the input features to unit variance; the 

hidden layer has normally distributed weights and biases with zero mean and standard 

deviation (37steps 2013). One of the advantages of using this classifier is that it is a standard 

learning algorithm that has a low complexity and strong generalisation capacity for a 

relatively small training dataset. 

3.2.5 Linear Perceptron Linear Classifiers 

The Linear Perceptron Linear Classifiers (PERLC) is the simplest type of neural network 

classifier and is trained with a supervised training algorithm. This classifier assumes that the 

true classes of the training data are available and incorporated in the training process. The 

input weights in this classifier can be adjusted iteratively by the training algorithm so as to 

produce the correct class mapping for the output. However, the problem with this classifier is 

that it does not have a hidden layer, therefore this leads to bias in result accuracy. 

3.2.6 Voted Perceptron Classifier (VPC) 

Voted Perceptron Classifier (VPC) is based on a paper by (Freund & Schapire 1996). The 

VPC is similar to the PERLC classifier and is trained with a supervised training algorithm. 

The classifier trains an ensemble of perceptron’s on the dataset. The training procedure 

performs a number of full sweeps through the training data. If a number of sweeps is not 
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specified, 10 sweeps are performed (37steps 2013). In this classifier, the classification of new 

objects is performed by allowing the ensemble of perceptron’s to vote on the label of each 

test point in the neural network. A VPC is simple to implement and has fast learning speeds. 

For example, a set of observations O can be given, where each observation is a pair (x, y), and 

x ∈ Rᵑ is a vector in a given ᶇ-dimensional vector space and y is the label associated with the 

observation. Let’s assume that the observation labels can have only one of the two values, 1 

or -1. The algorithm makes use of the perceptron algorithm by starting with an initial 

prediction vector, v = 0, and predicts the label of the first observation instance  𝑥1  to 

be 𝑄 = 𝑠𝑖𝑔𝑛(𝑣𝑥1). If this prediction is different from  𝑦1 it updates the prediction vector 

to 𝑣 = 𝑣 +   𝑦1 𝑥1. If the prediction is correct, then v has not changed. The process is then 

repeated with the next example. The advantage of using the VPC classifier is that it takes 

advantage of data that are linearly separable with large margins. This is because the algorithm 

builds on the iterative perceptron algorithm rather than solving quadratic programming 

problems (37steps 2013). 

3.2.7 Discriminative Restricted Boltzmann Machine Classifier 

Discriminative Restricted Boltzmann Machine Classifier (DRBMC) is similar to the LMNC 

and BPXNC neural networks and has been developed for a large variety of learning 

problems. DRBMC are usually used as feature extractors for other learning algorithm or to 

provide a good initialization for deep feed-forward neural network classifiers. The classifier 

uses an undirected generative model with a layer of hidden variables to model a distribution 

over visible variables. The model introduces binary stochastic latent variables in logistic 

regression, which turns it into a powerful non-linear model. The stochastic latent variables 

acts a lot like rectified linear units in neural networks and is trained with regularization using 

regularization parameters (37steps 2013). 
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3.2.8 Functional Link Neural Network Classifier 

The Functional Link Neural Network Classifier (FLNN) is a High Order Neural Network 

(HONN) that utilizes higher combinations of inputs (Yoh-Han 1989)-(Pao 1992). HONNs 

were first introduced in (Giles Lee 1987). Such networks differentiate themselves from a 

feed-forward neural network by the presence of high order terms in the network. In a simple 

feed-forward network, the neurons are first order neurons, called linear neurons. This is 

because of the use of linear sums of its inputs in decision making. This linearity provides a 

hyper plane for decision making that restricts the capability of neurons to solve only linear 

discriminant problems (M.Guler 1994). In order to resolve this issue, a multilayer network 

with hidden units can be used, which can combine the outputs and generate nonlinear 

mappings. Another way to overcome the restriction to linear mappings is the introduction of 

higher order units to model nonlinear dependences. This provides better classification 

capability.  

The use of HONNs utilizes a higher combination of learning task relationships between its 

inputs through summing operations. HONNs contain summing and product units that 

multiply their inputs in the network. These high order terms, or product units, can increase 

the information capacity of higher order networks in comparison to standard neural networks, 

with summation units only. Usually, but not necessarily, the output of a HONN is neither (1, 

0) or (+1, -1). The architecture of a three input second order HONNs is shown in figure 3.3. 

Click on the image for a hyperlink to the source of the publication. 
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Figure 3.3: Higher Order neural network architecture (Christian et al., 2008) 

HONNs make use of non-linear interactions between inputs. The networks therefore increase 

the input space into another space where linear separability is conceivable (Yoh-Han 1989). 

HONNs use joint activation between inputs, hence removing the task of establishing 

relationships between them during training. For this reason, hidden layers are not commonly 

used. The reduced number of free weights, compared with MLP, means that the problem of 

overfitting and local optima can be transferred to large a degree. 

HONNs can accomplish similar performance tasks to that of standard multilayer neural 

networks using a single layer of trainable weights (Park et al. 2000). They are simple in their 

architecture and require fewer weights to learn the underlying equation when compared to 

ordinary feed-forward networks that deliver the same input output mappings. This means that 

the training time is potentially less than that of an MLP structure. There are three types of 

HONN models. These are the Functional Link Neural Network (FLNN), the Pi-Sigma Neural 

Network (PSNN), and the Ridge Polynomial Neural Network. However in this thesis we will 

just focus on Functional Link Neural Networks. 

The FLNN created by Pao et al. in 1989 has been successfully used in many applications. For 

instance, it has been used in system identification in (Patra & Bornand 2010) where a 

http://www.tandfonline.com/doi/pdf/10.1080/14697680903386348?needAccess=true&
http://www.tandfonline.com/doi/pdf/10.1080/14697680903386348?needAccess=true&
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computationally efficient Legendre Neural Network (LeNN) for identification of nonlinear 

dynamic systems was proposed due to its single-layer architecture. The LeNN offers much 

less computational complexity than that of a MLP. In (Dehuri & Cho 2010) this network 

architecture was used to solve classification problems and input feature selection to enhance 

the functional expansion genetically for the purpose of solving the problem of classification 

in data mining.  

Dehuri, et al. proposed the single Hidden layer Functional link Neural Network (HFLNN), 

which aims to choose an optimal subset of input features by eliminating features with little or 

no predictive information which is a more compact classifier. While (Cass & Radl 1996) used 

FLNNs in process optimization and found that FLNNs can be trained much faster than MLPs 

without scarifying computational capability. This feature makes them more suitable in 

process modelling applications, where the ability to retrain or adapt to new data in real time is 

critical.  

The network architecture of FLNNs is usually composed of a single layer network to handle 

linearly non-separable classes by increasing the dimensions of the input space using non-

linear combinations of inputs. The architecture of FLNNs is a flat network, without any 

hidden layers, which makes the learning algorithm used in the network less complicated. In 

FLNNs, the input vector is extended with a suitably enhanced representation of the input 

nodes, thereby artificially increasing the dimension of the input space. The extended input 

data are then used for training, as for standard feed-forward neural networks. Basically, the 

inputs are transformed in a well understood mathematical way so that the network does not 

have to learn basic math functions (Pao 1992). The basic equation for calculating FLNN’s 

output is illustrated below in equation 3.4. Click on the image for a hyperlink to the source of 

the publication. 
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Figure 3.4: Function expansion network (Hongxing Li, C.L. Philip Chen 2000) 

The network is formed by adding five other inputs to a one-input network, where 𝑥  is 

regarded as a generating input and the other five are function transformations of the original 

one, 𝑤1 is the adjustable threshold and 𝑦 is the output. 

𝑦 =  𝑤′0 + 𝑤′1 𝑠𝑖𝑛𝜋𝑥 +  𝑤′2 𝑐𝑜𝑠𝜋𝑥 + 𝑤′3 𝑠𝑖𝑛𝜋𝑥 +  𝑤′4 2𝑐𝑜𝑠𝜋𝑥 + 𝑤′5 𝑠𝑖𝑛4𝜋𝑥                        

(3.2) 

Functional link neural networks can be categorised into two models; functional expansion 

models and tensor (outer product) models. In the functional expansion model, the functional 

link acts on each node singly and may induce the same additional functionalities for each 

node in the input pattern. While in the tensor (outer product) model, each component of the 

input pattern multiplies the entire input pattern vector. The functional link in this model 

generates an entire vector from each of the individual components (Misra 2007). The same 

process may be described in terms of the formation of an outer product between two vectors, 

one being the original pattern vector and the other being the same vector augmented by an 

additional component of value unity.  

Augmenting the vector allows the original pattern to be regenerated along with the higher 

order effects. The two models mentioned are capable of being used in the process of 

representation enhancement appropriately. However, we plan to use the tensor model because 

the effect of the nonlinear function transform is to change the representation of the input 

pattern so that, instead of being described in terms of a set of components [xi], where 𝑗 ≥ 𝑖  it 

http://www.crcnetbase.com/doi/abs/10.1201/9781420057997.ch4
http://www.crcnetbase.com/doi/abs/10.1201/9781420057997.ch4
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is described as [xi, 𝑥𝑗 , 𝑥𝑘] or [xi𝑥𝑗 , 𝑥𝑖𝑥𝑘 , 𝑥𝑗𝑥𝑘], where 𝑘 ≥ 𝑗 ≥  𝑖  and so on. In a sense, no 

new information has been added, but joint activation has been made explicitly available to the 

network. Such functional transforms greatly increase the number of components in terms of 

which of the input patterns are described. We can simplify the enhanced pattern by omitting 

terms with two or more equal indices and also terms for which there is no correlation over an 

ensemble of input patterns. 

3.3 Non ANN Classifiers 

Looking at alternative models to brain inspired artificial neutral networks we now turn to a 

set of algorithms based on different mathematical principles. In some instances some of these 

models are less complex to train but in the same instance have shown results comparable to 

the most complex of ANN. Each of these is discussed in more detail in the following 

subsections.  

3.3.1 Random Forest Classifier 

Breiman et al. (Breiman 2001), proposed the Random Forest classifier, which adds an 

additional layer of randomness to bagging. In addition to constructing each tree using a 

different bootstrap sample of the data, random forests change how the classification or 

regression trees are constructed. In standard trees, each node is split using the best split 

among all variables. In a random forest, each node is split using the best among a subset of 

predictors randomly chosen at that node.  

The Random Forest algorithm can be trained through the process of an ensemble of 𝐵 trees 

{T1(X), . . , TB(X)}, where, X =  x1. . . xp 𝑝  represents the dimensional vector of feature 

descriptors or properties associated with a class. The ensemble produces B outputs {Y1 =

T1(X). . , YB = TB (X)} where Yb, b =  1… , B is the prediction for a class by the bth tree. 

Outputs of all trees are aggregated to produce one final prediction Y. For classification 

problems, Y is the class predicted by the majority of trees. In regression, it is the average of 
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the individual tree predictions. In theory, given data on a set of n classes for training, D = 

{(X1, Y1). . , (Xn, Yn), where  Xi, i = 1. . , n is a vector of descriptors and Yi is either the 

corresponding class label. Firstly, from the training data of n classes, draws a bootstrap 

sample (i.e., random sample, with replacement, n classes). Secondly, for each bootstrap 

sample, grow a tree with the following modification: at each node, choose the best split 

among a randomly selected subset of mtry (rather than all) descriptors. Here, mtry is 

essentially the only tuning parameter in the algorithm. The tree is grown to the maximum size 

(i.e., until no further splits are possible) and not pruned back. Thirdly, repeat the above steps 

until (a sufficiently large number) B trees are grown. When  mtry = p i.e., the best split at 

each node is selected among all descriptors, the random forest algorithm is the same as 

Bagging (Cutler et al. 2007; Svetnik et al. 2003; Pal 2005; Marx 2008; Breiman 2001; Biau 

2012).   

Random Forest algorithms can be very efficient, especially when the number of descriptors is 

very large. The efficiency of the algorithm, compared to that of growing a single decision 

tree, comes from two differences between the two algorithms. First, in the usual tree growing 

algorithm, all descriptors are tested for their splitting performance at each node, while 

random forest only tests mtry of the descriptors. Since mtry is typically very small (the 

square root of the number of descriptors for classification), the search is very fast. Therefore, 

at each node the Random Forest algorithm only sees mtry, rather than 𝑝 descriptors.  

Second, to get the right model complexity for optimal prediction strength, some pruning is 

usually needed for a single decision tree. This is typically done via cross-validation and can 

take up a significant portion of the computation. In regression, each tree is grown on the 

residuals of the previous trees. Prediction is done by weighted vote (in classification) or 

weighted average (in regression) of the ensemble outputs (Svetnik et al. 2003). Recently, 

Ham et al. (Ham et al. 2005), have applied Random Forests to the classification of 
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hyperspectral remote sensing data. Their approach is implemented within a multi-classifier 

system arranged as a binary hierarchy. The obtained experimental results in (Ham et al. 2005) 

are good for a hyperspectral data set with limited training data. 

3.3.2 Support Vector Machine Classifier 

Vapnik et al. (Vapnik 2000) describe Support Vector Machine Classifiers (SVMC) as a 

statistical learning theory that uses a linear separating hyperplane. In other words, given 

labelled training data (supervised learning) the algorithm outputs an optimal hyperplane, 

which categorizes new examples. These are done through the algorithm properties, e.g. 

decision boundaries called a maximum margin separator, so that the distance between points 

of different instances, on either side of it, are as large as possible, improving generalisation. It 

also embeds the data into a higher-dimensional space, with a kernel trick. This allows data 

that is not separable in the original space, to be more easily separated in a higher-dimensional 

space. The mathematical equation of the algorithm is illustrated below in equation 3.3. 

𝐷 = {(𝑥𝑖, 𝑦𝑖) ׀ 𝑥𝑖 ∈ 𝑅𝑝,  𝑦𝑖  ∈  {−1, 1}}
𝑖=1

𝑛

                                                                   

 (3.3) 

In this equation, 𝐷 is the training data with a set of n points, the class label 𝑦𝑖 = ±1 

indicating the class to which the point 𝑥𝑖 belongs and 𝑥𝑖 is a 𝑝-dimensional vector; the 

SVMC algorithm builds a model by finding the maximum-margin hyper plane (gap) that 

divides the points 𝑦𝑖 = 1 from  𝑦𝑖 = −1; making it a non-probabilistic binary and linear 

classifier.  

The hyperplane lies midway between the two margins as can be seen in figure 3.5. The SVM 

then has to learn where the optimal hyperplane is. One way to do this is to use gradient 

descent to search for different combinations of intercept and gradient. The purpose behind 

maximising the margin between points of different classes is to minimise the probability that 

the as-yet, unseen, unclassified points may fall on the wrong side of the hyperplane (Sotiris 
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2007). It has been proven that this improves generalisation, and therefore limits the maximum 

of the expected generalisation error. Click on the image for a hyperlink to the source of the 

publication. 

 

 

Figure 3.5: SVMC linearly separable set of 2D-points for two classes (Sotiris 2007) 

 

3.3.3 Naive Bayes Classifier 

Naive Bayes Classifiers (NBC) are very simple Bayesian networks and are composed of 

directed acyclic graphs with only one parent (representing the unobserved node) and several 

children (corresponding to observed nodes). They have a strong assumption of independence 

among child nodes in the context of their parent (Sotiris 2007). The NBC theorem can be 

represented mathematically within equation 3.4 as: 

𝑝(𝑥|𝑦𝑗) = 𝑝(𝑥1|𝑦𝑗), 𝑝(𝑥2|𝑦𝑗), …  𝑝(𝑥𝑛|𝑦𝑗)                                                                   

 (3.4) 

In this equation, 𝑥 is the instance to be classified into class 𝑦𝑗. So 𝑝(𝑦𝑗|𝑥) is the probability 

of instance 𝑥 being in class 𝑦𝑗; 𝑝(𝑦𝑗|𝑥) is the probability of generating instance 𝑥, given class 

𝑦𝑗; 𝑝(𝑦𝑗) is the probability of occurrence of class 𝑦𝑗; and (𝑥) is the probability of instance 𝑥 

https://datajobs.com/data-science-repo/Supervised-Learning-%5bSB-Kotsiantis%5d.pdf
https://datajobs.com/data-science-repo/Supervised-Learning-[SB-Kotsiantis].pdf


62 
 

occurring. NBC is robust with missing values and has a short computational time for training. 

In addition, since the model has the form of a product, it can be converted into a sum through 

the use of logarithms with significant computational advantage. 

3.3.4   Decision Tree Classifier 

The decision tree approach involves arranging the features of a dataset into a hierarchical tree 

structure as shown in figure 3.6. Each node in a decision tree represents a feature in an 

instance to be classified, and each branch represents a value that the node can assume. 

Instances are classified starting at the root node and sorted based on their feature values. The 

tree is essentially a set of questions through which an instance is passed. The feature node 

queries what value the instance has for that particular feature. The branch taken next is 

dependent on the answer, which then leads to another question or a final classification (called 

a leaf node), when no more questions are asked. It should be noted that a particular feature, or 

attribute value, or leaf node can appear more than once within the tree. Click on the image for 

a hyperlink to the source of the publication. 

 

 

 

Figure 3.6: Decision tree (Sotiris 2007) 

https://datajobs.com/data-science-repo/Supervised-Learning-%5bSB-Kotsiantis%5d.pdf
https://datajobs.com/data-science-repo/Supervised-Learning-[SB-Kotsiantis].pdf
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The method for finding the best nodes that separate the data is repeated for each node, until 

all sub-trees are created, and all the training data has been classified. The criteria for splitting 

may be based on information gain, purity or the Fisher Criterion (37steps 2013). To avoid 

overfitting of training data, the training algorithm can be stopped before it reaches this point, 

or the tree can be pruned-back. A stopping algorithm can be used for the former, which 

involves termination conditions, such as a threshold test for feature quality metrics. 

Elsewhere, in the post-pruning method, a check of the tree’s performance is made and if 

necessary, pruned. The default is to have no pruning, but this is one of five pruning methods 

that can be selected. The number of branches coming out of each node is termed the 

branching factor or branching ratio, 𝐵. The branching factor 𝐵 is normally two, which would 

make such trees binary trees. A binary tree can always be constructed by choosing the correct 

feature nodes and values.  

3.3 Using Machine Learning to Classify Term and Preterm Records 

Alaskar et al. (Al-askar Haya, Dhiya Jumeily, Abir Hussain 2013) proposed a neural network 

that builds on the back-propagation network, called the self-organized layer inspired by 

immune algorithm (SONIA), to classify both term and preterm labour using EHG signals. 

The algorithm improves recognition and generalization in the back-propagation learning 

algorithm and produced an accuracy of 70.82% compared with other similar classification 

techniques.  

While (SMS Baghamoradi 2011) used the TPEHG database (Fele-Žorž et al. 2008) to 

evaluate classification accuracy using sample entropy and thirty cepstral coefficients. The 

thirty cepstral coefficients were calculated from each signal recording and used in one feature 

set for classification, whilst for the second feature set was reduced to three cepstral 

coefficients only. The three cepstral coefficients were chosen by sequential forward selection 

and Fisher’s discriminant. A multi-layer perceptron neural network was used to perform 
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classification of the records into term and preterm records. It was found that the three cepstral 

coefficients gave the best classification accuracy of 72.73% (±13.5), as opposed to 53.11% 

(±10.5) for the full thirty coefficients, and 51.67% (±14.6) using sample entropy only. 

However, since the full thirty coefficients only presented a small improvement in 

classification accuracy, it is likely that the sequential forward selection and Fisher’s 

discriminant had the most effect on the accuracy. 

The k-NN algorithm was used by (Moslem Bassam, Diab Mohamad, Khalil Mohamad 2012) 

with an emphasis on Autoregressive (AR) modelling and wavelet transformation pre-

processing techniques. The study focused on classifying contractions into three types using 

data obtained from 16 women. Group 1 (G1), were women who had their contractions 

recorded at 29 weeks, and then delivered at 33 weeks; Group 2 (G2) were also recorded at 29 

weeks, but delivered at 31 weeks, and Group 3 (G3) were recorded at 27 weeks and delivered 

at 31 weeks. Using the k-NN algorithm, combined with the pre-processing method of AR, 

classification occurred against G1 and G2 and against G2 and G3. As well as this, an 

Unsupervised Statistical Classification Method (USCM), combined with Wavelet 

Transformation, was also used. The USCM adopted the Fisher Test and k-Means methods. 

The wavelet transformation, combined with USCM, provided a classification error of 9.5%, 

when discerning G1 against G2, and 13.8% when classifying G2 against G3. Using AR, k-

NN provided a classification error of 2.4% for G1 against G2 and 8.3% for G2 against G3. In 

both classifications, the AR and k-NN methods performed better than the USCM. 

Furthermore, the classification accuracy for G1 and G2 was always lower than the equivalent 

G2 and G3 classifications. This suggests that it is easier to distinguish between pregnancies 

recorded at different stages of gestation than it is to distinguish between the times of delivery. 

Support Vector Machines (SVM) have also been successfully used to classify term and 

preterm deliveries (Moslem Bassam, Khalil Mohamad, Diab Mohamad, Chkeir Aly 2011). 



65 
 

This classifier classifies contractions as either labour or non-labour, using different locations 

on the abdomen. Majority Voting (MV) decision fusion rules, including a Gaussian Radial 

Basis Function (GRBF), form the basis for classification. The feature vectors include the 

power of the EHG signal, and the median frequency. The support vector machine shows 

some promising results. For example, Moslem Bassam et al. (Moslem Bassam, Khalil 

Mohamad, Diab Mohamad, Chkeir Aly 2011) used a single SVM classifier, at one particular 

location on the abdomen The result indicated a 78.4% accuracy – the overall classification 

accuracy, for the combined SVM, was 88.4%. Finding the coefficients, for the decision 

boundary, occurs by solving a quadratic optimization problem. 

Ren et al. (Ren et al. 2015) used the same dataset as Fele-Žorž et al. (Fele-Žorž et al. 2008). 

In this study, a new analytical approach was used for assessing the risk of preterm delivery, 

using EMG recordings. This method first employed Empirical Mode Decomposition (EMD) 

to obtain Intrinsic Mode Functions (IMF). The entropy values of both instantaneous 

amplitude and instantaneous frequency of the first ten IMF components are computed in 

order to derive ratios of these two distinct components as features. The accuracy of this 

approach was then compared to the proposed six different classifiers. These classifiers 

included an SVM), Random Forests (RF), MLP, AdaBoost (AB), Bayesian Network (BN) 

and Simple Logistic Regression (SLR). Three different electrode positions were then 

analysed for their prediction accuracy of preterm delivery in order to establish which uterine 

EMG recording location produced the optimal signal data. Ren et al. (Ren et al. 2015) 

illustrates a clear improvement in prediction accuracy of preterm delivery risk compared with 

previous approaches. Their results achieved an impressive maximum AUC value of 0.986 

using signals from an electrode positioned below the nave. 
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3.4 Summary 

This chapter provides a details discussion on machine learning algorithms. These were split 

into two major groups – artificial neural networks and those not inspired by the biological 

processes of the human brain. Several artificial neural networking strategies were discussed 

and the merits of each were outlined. Other non-ANN approaches were also presented and 

included a discussion on SVMs, Random Forests and Naïve Bayes algorithms. Combining 

the theoretical background of machine learning algorithms their application to EHG term and 

preterm record classification was also discussed. Here the state of the art works were 

discussed, which hare used in direct comparison with the results presented later in this thesis.  

In the following chapter we build on this background literature and describe the methodology 

adopted within this thesis.  
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Chapter 4 Proposed Methodology 

4.1 Introduction 

Machine learning systems follow a common set of principle operations, as illustrated in 

Figure 4.1. We briefly identify and clarify such principles to serve as an implementation 

agnostic view of the essential elements of machine learning. The usefulness of learning 

assumes a real world problem of interest, in the form of a system or phenomenon of interest, 

which can be measured to provide some form of observation. Such real world problem 

domains therefore act as a source of a finite observation, which can be used to estimate a 

reconstruction of systems for which the observations relate. The information encompassed 

can be operated upon inductively to construct a hypothesis of the underlying (presumed 

unknown) function, which acts to provide a generalised reflection of the original problem. 

Given the possession of such a model, useful estimates of the real world process can be 

realised using the model, in order to fulfil the requirements of a chosen application within a 

real world domain. 

 

Figure 4.1: The process of machine learning 

This chapter discusses the TPEHG dataset (PhysioNet 2012a), which contains the raw EHG 

signals necessary for our study. This also includes a detailed discussion on the data pre-

processed tasks used, data segmentation, feature extraction, single classification techniques, 

stacked classifiers using bagging methods and several validation techniques to determine the 

overall accuracy of our experiments. Before these aspects are discussed further the following 

subsection presents a proposed methodological framework, which describes the different 

phases of our analyses of EHG signals.  
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4.2 Proposed Framework Architecture  

In order to conduct our experiments using the TPEHG dataset, the proposed methodological 

framework is presented in Figure 4.2. These phases consist of raw EHG signals (data 

collection), signal pre-processing, feature extraction, oversampling with the synthetic 

minority over-sampling technique (SMOTE), generating test and training models, feature 

selection, classification, combining classifiers, validation, and the presentation of results. The 

remainder of the chapter will provide a more in-depth discussion of each of these processes 

within the proposed methodological framework. 

 

Figure 4.2: Methodology Phases 

4.3 Data Collection 

Several studies (Al-askar Haya, Dhiya Jumeily, Abir Hussain 2013; Ye-Lin et al. 2014; 

Garcia-Gonzalez et al. 2013) have shown that the EHG signal may vary from woman to 

woman, depending on whether she is in true labour or false labour and whether she will 

deliver term or preterm. EHG provides a strong basis for objective classification and 

diagnosis of preterm birth. Many research studies have used EHG for classification or 
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detection of true labour but not for the classification of term and preterm deliveries (Fele-

Žorž et al. 2008; de Lau et al. 2014; SMS Baghamoradi 2011). 

The EHG signal is affected by interference or noise, as the electrical activity from the uterus, 

that is detected by the electrodes, is very small, in the range of μV to 1mV (Carré et al. 1998). 

The type of interference affecting EHG signals include other electrical or physical 

interference from the mother or baby, such as the mother’s physical movements, breathing, 

maternal cardiac activity, and foetal movements (Marque et al. 2007). 

Other factors, which cannot be so easily cancelled out, are the physical differences between 

patients; the strength of the signal collected may be influenced by the varying amounts of fat 

or salinity level of skin that each patient has (Maner 2003). These types of factors are not 

easy to deal with, since they vary from patient to patient, and there appears to be no 

standardised way of compensating for these factors. 

In this study we utilise the TPEHG database. The TPEHG records were collected from a 

general population of pregnant patients at the Department of Obstetrics and Gynaecology 

Medical Centre in Ljumljana, between 1997 and 2006. These records are publically available, 

via the TPEHG database, in Physionet. Records were collected from the general population 

of pregnant patients, as well as those admitted to the hospital with diagnosed preterm labour. 

In the TPEHG database, there are 300 records/recordings - one record per pregnancy. Each 

recording was approximately 30 minutes long, had a sampling frequency (fs) of 20Hz, and 

had a 16-bit resolution with an amplitude range ±2.5mV. Prior to sampling, the signals were 

passed through an analogue three-pole Butterworth filter, in the range of 0 to 5Hz. Records 

were either recorded early, <26 weeks (at around 23 weeks of gestation) or later, =>26 weeks 

(at around 31 weeks). In this experiment, linear and non-linear methods are used in both time 

and frequency domains, to improve the results obtained from classification algorithms. 
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4.4 Raw EHG Signals 

In this research, the TPEHG dataset from Physionet is utilised to demonstrate the 

applicability of our approach (Fele-Žorž et al. 2008). Data was collected from four electrodes 

attached to the abdominal surface, with the navel at the symmetrical centre. Three signals 

were obtained simultaneously, per ‘record’, by recording through three different channels – 

Channel 1, Channel 2 and Channel 3. As shown in Figure 4.3 the Channel 1 signal was 

measured between E2 – E1, Channel 2 between E2 – E3 and Channel 3 between E4 – E3.  

The EHG signals were recorded using four bipolar electrodes adhered to the abdominal 

surface and spaced at a horizontal, vertical, distance of 2.5cm to 7cm apart with the black 

circles representing the electrodes. The total number of records in the EHG dataset is 300 (38 

preterm records and 262 term records). Each of the records were either recorded early, <26 

weeks (at around 23 weeks of gestation) or later, =>26 weeks (at around 31 weeks).  

 

Figure 4.3: The placement of the electrodes 
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In this thesis only channel 3 was utilised based on the findings produced in previous studies 

that demonstrated the third signal gave the best discriminative capacity when classifying term 

and preterm records  (Hussain et al. 2015; Fele-Zorz et al. 2008). Table 4.1 provides a 

detailed description of the TPEHG dataset. 

Table 4.1: TPEHG Term and Preterm Dataset 

Table 4.1 show the mean and median of the recoding week of the deliveries for both term and 

preterm deliveries. The recording time relates to the gestational age of the foetus, at the time 

the recording was made. The classification of these recordings as term or preterm deliveries 

were made retrospectively, after birth and followed the widely-used definition of preterm 

birth being under a fully-completed 37 weeks.  

The four categories of recordings were therefore as follows: 

 Early – Term: Recordings made early, which resulted in a term delivery 

 Early – Preterm: Recordings made early, which resulted in a preterm delivery 

 Late - Term: Recordings made late, which resulted in a term delivery 

 Late – Preterm: Recordings made late, which resulted in a preterm delivery 

Data  Term Deliveries Preterm Deliveries All 

Deliveries 

All Deliveries 

Recording  

Time 

# of 

Records 

Mean/ Median 

Recording 

Weeks 

# of 

Records 

Mean/ 

Median 

Recording 

Weeks 

# of 

Records 

Mean/ Median 

Recording 

Weeks 

Early 143 22.7/22.86 19 23.0/23.43 162 22.73/23.0 

Later 119 30.8/31.14 19 30.2/30.86 138 30.71/31.14 

Total 262 26.75/24.36 38 27.0/25.86 300 26.78/24.43 
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In order to visually show the separation between term and preterm births in the dataset Figure 

4.4 and 4.5 illustrate 2-D scatterplots for the Principle component and Stochastic Proximity 

Embedding algorithms.  

 

Figure 4.4: PCA for TPEHG Channel 3 – 0.34 Hz – 1 Hz Filtered Signal 

This is useful to show the feature space mapping of both linear and nonlinear dimensions. In 

the Principle Component (PCA) and Stochastic Proximity Embedding (SPE) plots, in Figures 

4.4 – 4.5, the blue crosses show term records, whilst the red circles represent preterm records. 

 

Figure 4.5: SPE for TPEHG Channel 3 – 0.34 Hz – 1 Hz Filtered Signal 
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In both plots, it shows the decision boundary of the two classes linearly (PCA) and 

nonlinearly (SPE). The results demonstrate that the data is not very well separable due to two 

distinct clusters in the middle of the patterns overlapping with each other.  

Figure 4.6 shows a histogram of the two classes which clearly indicates that the distribution is 

significantly skewed in favour of the term records (term=262, preterm=38. This is known to 

cause significant problems in machine learning tasks and requires oversampling. This stage 

often follows the feature extraction stage which will be discussed later in this chapter. 

 

Figure 4.6: Distribution of deliveries in TPEHG Dataset 

4.5 Pre-processing of EHG Signals 

The collection of raw EHG signals is always temporal and so before analysis the raw data 

needs to be filtered. As raw recordings often contain unwanted noise, pre-processing is 

essential and often includes filtering and artefact removal. Each record in the dataset is 

approximately 30 minutes long, with a sample frequency of 20Hz, and a 16-bit resolution, 

with an amplitude range ± 2.5mV. A zero bandpass filter was created in Matlab, using the 

Filter Design & Analysis tool (FDAT) that is available in the Signal Processing Toolbox. The 

response type was ‘Bandpass’, and ‘IIR Butterworth’ was chosen as the Design Method. The 

order was set to eight, in an attempt to reduce the amplification effects. In this mode, where 

the order was explicitly specified, the attenuation of the signal magnitude was set at 3db. The 

sampling frequency (Fs) of 20Hz was inputted, since the data in the supplied TPEHG dataset 
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was sampled at this rate. The pass band frequencies for Fc1 and Fc2 were 0.34 and 1 

respectively.  

In (Léman et al. 1999) EHG signals have been passed through various other Butterworth 

filter configurations that include 0.8-4Hz, 0.3-4Hz and 0.3-3Hz. The reason why channel 3 

was selected is because Fele-Žorž et al. (Fele-Žorž et al. 2008), showed that the 0.3-3Hz 

filtered signals on channel 3 discriminated between preterm and term delivery records than 

the others. However, there was no appropriate filter to remove unwanted artefacts, such as 

maternal heart rate which is known to affect performance.  

Uterine activity has been found to comprise both ‘fast’ and ‘slow’ signals. The fast waves 

represent the individual electrical signals firing, whilst the slow waves correspond to the 

resulting mechanical contractions. Slow waves exist between 0.03 and 0.3 Hz, and the fast 

waves exist between 0.3 and 3.0 Hz. Catalin et al. (Catalin, Buhimschi 1996) found in a study 

of 99 pregnant patients, that 98% of uterine electrical activity occurred in frequencies less 

than 1Hz, and that the maternal heart rate (ECG) was always higher than 1 Hz. Furthermore, 

95% of the patients, measured had respiration rates of 0.33 Hz or less. Several other studies 

have adopted the same filtering scheme (Tong et al. 2011; Bassam Moslem et al. 2011). 

Therefore, in this thesis, the raw Channel 3 signal was chosen and filtered using a 0.34–1 Hz 

filter. This is to coincide with the findings of both (Fele-Žorž et al. 2008) and (Catalin, 

Buhimschi 1996). 

Filtering in one direction was done with the filter function. The plot for one particular signal, 

𝑥873 is shown below in Figure 4.7. The plot shows three different signals, one for a 0.3-3Hz 

filtered signal, which was supplied with the dataset, and the other two filtered with a 0.34-

1Hz filter – one single-directional, the other zero-phased.  
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Figure 4.7: Record x873 Filtered Using three Different Methods 

The plot shows two things that the 0.34-1Hz filter reduces the overall amplitude or peaks of 

the signal in comparison to the 0.3-3Hz filtered signal. The peaks are also smoothed out; 

there are less peaks and troughs in general. Figure 4.7 also shows that zero phase filtering 

puts the phase more in line with the 0.3-3Hz filtered signal, rather than the single-phase filter. 

In short, the zero-phase filtering appeared to be an appropriate filter strategy. 

4.6 Feature Extraction from EHG Signals 

Feature extraction transforms raw signals into more informative signatures that can assist in 

grouping different classes. In other words, features are synonymous of input variables or the 

attributes of a dataset that provide a good representation of a specific domain, related to the 

available measurement. In this thesis, several feature extraction techniques have been utilized 

(Phinyomark et al. 2009), (Fele-Žorž et al. 2008) and (Phinyomark, A. Nuidod, 

P.Phukpattaranont 2012). These are applied to the channel 3 records using the filter 

parameters previously discussed. Table 2, provides a summary of the mathematical proofs for 

each of the features used.  

Table 4.2: Feature Extraction Techniques used in EMG 

Equation Name  Equation Abbreviations 

Integrated EHG IEMG = ∑ |(xn)|
N
n=1                                                                                                  

Mean Absolute Value of EHG MAV =
1

N
∑ |xn|

N
n=0                                                                                                    
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Simple Square Integral of EHG SI = ∑ |xn|
N
n=0

2
                                                                                                       

Wavelet length of EHG Signal WL = ∑ |xn − xn−1|
N−1
n=0                 

Log Detector of EHG Signal LOG = e1/N∑ log (|xn|)N
n=1                                                                                                    

Root Mean Square of EHG Signal RMS = √1/N∑ xn
2N

n=1                                                                                                                   

Variance of EHG VAR =
1

N
− 1∑ xn

2N
n=1                                                                                                     

Difference Absolute Standard Deviation Value 

DAS = 1
N − 1 ⁄ ∑(xn+1 − xn)

2

N−1

n=1

 

Maximum Fractal Length of EHG Signal 

 
MFL = log 10(√∑ (xn − xn+1)

2N−1
n=1 )                                                                    

Average Amplitude Change of EHG Signal AAC =
1

N
∑ |xn+1 − xn|

N−1
n=1                                                                                                                  

Peak Frequency of EHG Signal fmax = arg(
fs

N
maxi=0

N−1P(i))                                                                               

Median Frequency fmed =  im
fs

N
,      ∑ P(i) =̇

i=im
i=0 ∑ P(i)i=N−1

i=im
                                                             

 

Sample Entropy 
𝑠𝑎𝑚𝑝𝐸𝑛𝑚,𝑟(𝑦) =

{
− log (

𝑐𝑚

𝑐(𝑚−1)
)    𝑐𝑚 ≠ 0 ∧ 𝑐𝑚−1 ≠ 0 

− log (
𝑁−𝑚

𝑁−𝑚−1
) 𝑐𝑚 = 0 ∨ 𝑐𝑚 = 0

  

 

In this list, 𝑥𝑛 represents the 𝑛𝑡ℎ sample in the EHG signals in the segment; P represents the 

power spectrum (calculated using the Fast Discrete Fourier Transform), while N denotes the 

length of the EHG signal. The main difference between our work and (Phinyomark, A. 

Nuidod, P.Phukpattaranont 2012), (Phinyomark et al. 2009) is in the analysis of the electrical 

activity in the uterus, rather than in other muscle activity. Given that the uterus is a muscle, 

this study investigates whether techniques used to capture EMG activity can also be used in 

EHG analysis. It has been recognised that since there is some overlap between uterine 

electrical signals and noise and that the noise may also be non-linear, then more advanced 

signal processing methods may be required for analysis. Accordingly, we applied the feature 

definitions given in Table 2 to channel 3 of the EHG signals in the TPEHG database, yielding 

feature vectors that contain 13 features for each signal.  

The feature extraction equations from Table 4.2 and initial exploratory data analysis 

visualisations are shown in figure 4.8 – 4.10. Using QQ plots, box plots, histograms and 

kernel density estimation plots, statistical analysis of the initial 300 TPEHG records are 

shown.  
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These set of EDS diagrams show the distribution of all the features. The names of the 

features in the plots below are abbreviated according to the following, Root Mean Square 

(RMS) Peak Frequency (FPeak), Median Frequency (FMed), Sample Entropy (Samp en), 

Integrated EMG (IEMG), Mean Absolute Value (MAV), Simple Square Integral (SSI), 

Wavelet Length (WL), Variance (V), Difference Absolute Standard Deviation Value 

(DASDV), Log Detector (LD), Average Amplitude Change (AAC), and Maximum Fractal 

Length (MFL).  

Figure 4.8 shows the QQ plot quantiles of the first data set against the quantiles of the second 

data set. The red dotted lined shows that the best distribution fit for each feature set extracted 

from the TPEHG dataset. The QQ plots show outliers in RMS, FMed, FPeak, V, IEMG, 

MAV, SSI, AAC, MFL, LD, Samp en ,WL and DASDV where points deviate from the red 

reference line. The identified extreme outliers are unwanted artefacts and were removed from 

the feature space.    
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Figure 4.8: QQ plot of 300 TPEHG Feature Extractions 

In Figure 4.9, it shows the distribution of all thirteen features extracted from the TPEHG 

records. The outcome results in both figure 4.9 and 4.10 correlate, because the data 

distributions for MAV, AAC and IEMG do not fit expected normal distributions, confirming 

the non-normality of the data, and the output of the Lilliefors tests. Since the minority of the 
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features did not meet normality assumptions, it is improbable that the class densities would 

either.  

 

Figure 4.9: Histogram of 300 TPEHG Feature Extractions 
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Figure 4.10: Kernel Density Estimation Plot of 300 TPEHG Feature Extractions 
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This is also show in the box plot in Figure 4.11. The results suggest a crossover for all of the 

features. Consequently, a feature selection strategy is needed to determine the discriminate 

capabilities of all features and suitable modelling strategies for feature subsets. This is 

discussed further in section 4.9. 

 

Figure 4.11: Box Plot of 300 TPEHG Feature Extractions 

4.7 Synthetic Minority Over-Sampling Technique (SMOTE)  

The dataset contains 262 samples for mothers who delivered at term and 38 that delivered 

prematurely. This shows that the preterm class has significantly less records than the term 

class. This poses significant problems in machine learning classification tasks (bias in the 

term class); therefore, the preterm EHG features need to be oversampled. This is important 

because an imbalanced dataset can cause ineffective classification, since the classifier does 

not have enough of the preterm class to learn from. Therefore, given that there are more term 



82 
 

records, the probability of detecting a preterm record is low. To address this issue, the 

minority class (preterm) is oversampled using the Synthetic Minority Over-Sampling 

Technique (SMOTE). This technique is effective in solving class skew problems (Richman & 

Moorman 2000) and has been extensively utilised with the biomedical research community. 

Therefore, using the 38 preterm records, SMOTE is used to generate an additional 224 

preterm records. This is indicated in figure 4.12 (preterm=262). 

 

Figure 4.12: Histogram Oversample of TPEHG Dataset 

4.8 Data Normalisation  

Normalisation is required to manage bias and scale in the feature set. The size of the range 

over which a feature is represented is not generally an indicator of its importance relative to 

other features, meaning a difference in scale is of no consequence and can be discarded. The 

motivation for normalisation is to ensure a consistent standard of data is presented to the 

learning component, such that the learning process has as few outside factors to contend with 

as possible. The Min-Max scaling approach has been used to normalise our dataset. In this 

approach, the data is scaled to a fixed range - usually 0 to 1. The mathematical representation 

of this algorithm is shown below in equation 4.1: 

 𝑋′𝑖 =
𝑋𝑖−𝑋𝑚𝑖𝑛𝑣𝑎𝑙

𝑋𝑚𝑎𝑥𝑣𝑎𝑙−𝑋𝑚𝑖𝑛𝑣𝑎𝑙
. (𝑟𝑢𝑝𝑝𝑒𝑟 − 𝑟𝑙𝑜𝑤𝑒𝑟) + 𝑟𝑙𝑜𝑤𝑒𝑟,                

 (4.1) 
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In this equation,  X′i is the transformed value, Xi is the raw value, 𝑋𝑚𝑎𝑥𝑣𝑎𝑙  𝑎𝑛𝑑 𝑋𝑚𝑖𝑛𝑣𝑎𝑙are 

the original ranges of the feature, and 𝑟𝑢𝑝𝑝𝑒𝑟 − 𝑟𝑙𝑜𝑤𝑒𝑟 denotes the target range. 

We applied the above definition on an individual basis to each feature vector extracted from 

our dataset, yielding a final feature matrix with values ranging within 0 to 1.0.  

4.9 Feature Selection 

Using the features defined in Table 2, feature vectors have been generated. The literature 

reports that peak frequency, median frequency, sample entropy and root mean square have 

the most potential to discriminate between term and preterm records. Furthermore, the 

literature also reports that in EMG studies, the features described in Table 2 are equally as 

good at discriminating between different muscle activities. However, there is no mention of 

the uterus in many studies on EMG. To validate these findings, the discriminate capabilities 

of all the features reported in Table 2 (i.e. feature ranking) have been determined. This is 

achieved using several measures, including statistical significance, linear discriminant 

analysis using independent search (LDAi), linear discriminant analysis using forward search 

(LDAf), linear discriminant analysis using backward search (LDAb) and linear discriminant 

analysis using branch and bound search. At any node of the tree, the algorithm must make a 

finite decision and set one of the unbound variables. Using these measures, the features will 

be ranked, and the top uncorrelated features will be selected from the feature space. These 

features will be used in the classification stage to determine which set produced the greatest 

area under the curve (AUC), sensitivity and specificity values. 

4.10 Classification 

There has not been a consensus on the best classifier for all data domains. The choice of 

classifier depends on the dataset to some extent. The selection of a suitable classifier still 

involves trial-and-error processes. However, statistical validation can be used to guide this 

process (Domingos 2012; Elkan 2010). Although the choice of algorithm does always depend 
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on the task at hand, the review of the classification methods highlights which ones might be 

most promising to classify term and preterm deliveries.  

In this thesis eight advanced artificial neural network (AANN) classifiers and four non-

AANN architectures are evaluated. These are the BPXNC, LMNC, PERLC, RBNC, RNNC, 

VPC, DRBMC, and the FLNN. Other types of classifiers that are not neural networks include 

the RFC, SVMC, NBC, and the DTC.  

4.11 Single Classifier Framework 

In our approach, two different classifier architectures are considered in isolation to evaluate 

which classifiers perform better. Each of these and the key configurations are described in 

Table 4.3.  

Table 4.3: Classification Models Description 

Model 

Designation 

Description Architecture Training Algorithm Role 

LEVNN 

Multilayer 

Perceptron, Trained 

using the Levenberg-

Marquardt algorithm 

Units: 13-2-2, tansig 

activations 

Levenberg-Marquardt 

Non-linear 

Comparison Model 

RFC 

Random Forest, 

Decision Tree 

Ensemble Classifier 

13 inputs, 200 Trees, 2 

outputs 

Random feature bagging 

Non-linear 

Comparison Model 

SVM 

Support Vector 

Machine 

13 inputs, 2 outputs Quadratic Optimisation 

Non-linear 

Comparison Model 

TREEC 

Trainable Decision 

tree Classifier 

13 inputs, 2 outputs Decision tree induction 

Non -linear 

Comparison Model 

FLNN 

Functional link neural 

network  

Units: 13-30-2, tansig 

activations. 

Gradient descent with 

momentum and adaptive 

learning rate 

backpropagation 

Test model 
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RBNC  

Feed-forward neural 

net including N 

sigmoid neurons.  

13 inputs, 2 outputs  

The classifier has radial 

basis units with only 1 

hidden layer  

Non-linear 

Comparison Model  

NAIVEBC 

Naive Bayes 

classifier 

Naive Bayes classifier 

mapping 

Divides each axis into 10 

scalar numbers of bins 

counts the number of 

training examples for 

each of the classes in 

each of the bins, and 

classifies the object to the 

class that gives 

maximum posterior 

probability. Missing 

values will be put into a 

separate bin 

Linear Comparison 

Model 

PERLC 

 

Trainable linear 

perceptron classifier 

Units: 13-2, linear 

activations perceptron 

classifier mapping 

 

Batch training with 

weight and bias learning 

rules 

 

Linear Comparison 

Model 

VPC  

Combines an 

ensemble of 

perceptron’s through 

voting procedure.  

Units: 13-30-2, tansig 

activations  

This Classifier performed 

by permitting the 

ensemble of perceptron’s 

to vote in the neural 

network on the label of 

each test point.  

Non-linear 

Comparison Model  

DRBMC 

Discriminative 

Restricted Boltzmann 

Machine classifier 

The discriminative RBM 

can be viewed as a logistic 

regressor with hidden units. 

The discriminative RBM 

has N hidden units (default 

= 5) 

 

It is trained with 

regularization using 

regularization parameter 

set has (default = 0). 

 

Non-Linear 

Comparison Model 
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Each of these will be evaluated separately in the next chapter and compared with a combined 

classifier strategy that is discussed in the following subsection. 

4.12 The Combined Classifier Framework 

It has become clear that for more complicated data sets the classification results can be 

improved by combining them. For instance, in (Bassam Moslem et al. 2011), the authors use 

committee machines with an SVM as the component classifier in order to boost the 

classification accuracy of multichannel uterine EMG signals. The approach was applied on 

each channel and a majority voting rule was used in order to determine the final decision of 

the committee. The results indicate that committee machines exhibit performance 

unobtainable by an individual committee member on its own. 

In our approach, we select particular base-level classifiers, and assemble them together. This 

involves combining the best classifiers that produce a consistent Area Under the Curve 

(AUC), Sensitivity, Specificity, Precision, F1 Score and Youden's J statistic (J Score) values. 

The findings in Ani et al. (Al-Ani, Ahmed and Deriche 2002) state that a classifier with a 

specific set of features may or may not be an appropriate option for another set of features. In 

other words, different classification algorithms will achieve a different degree of success for 

different kinds of applications. Therefore, combining classifiers can offer better 

complimentary information about the patterns to be classified than any single classifier. Our 

Combined Classifier Framework for training testing our classifiers is illustrated in Figure 

4.13 and Figure 4.13 respectively.  

In Figure 4.13, we show the full architecture of our combine classifier framework. The 

framework starts with a different set of primitive model pools containing machine learning 

algorithms. These are combined into a number of base model configurations drawn from the 

model pool, using bootstrap aggregation. These are used to collectively predict class 

probabilities. 
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Figure 4.13: Training process of model 

Bootstrap aggregation, which is also known as bagging predictors, was proposed in (Breiman 

1996) and is a method for generating multiple versions of a predictor and using these to get 

an aggregated predictor. The aggregation averages over the versions when predicting a 

numerical outcome and does a plurality vote when predicting a class. The multiple versions 

are formed by making bootstrap replicas of the learning set and using these as new learning 

sets. The framework generates model combination sets where the primitive models and 

model combination sets are created. The base model, which involves the entire chosen 

algorithm list, is combined through the combinatorial sampling and modelling of the training 

dataset hundreds of times and averaging its predictions. This method helps to create better 

classification performance that is more resilient to noise, reduces variance and helps to avoid 

overfitting.  

In Figure 4.13 the input sets 1…  𝑃 and 1…𝐷 represent the patterns and feature labels 

respectively. The bootstrapping of the primitive model pool 1…𝐾 starts with a few training 
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examples of 1…  𝑃  and 1…𝐷,  where model base 1…𝑀 are represented. The mean outputs 

of the base models from 1…𝑀 are aggregated and the in-sample of the predicted class 

probabilities outputted.   

In the Testing process illustrated in Figure 4.14, the same mechanism as the training process 

is applied. As the set of training examples grows, the classifier improves, provided a limited 

number of negative examples are misclassified as positive, which could lead to deterioration 

of performance.  

 

Figure 4.14: Testing process of model 

We have a procedure for using the learning set to form a predictor 𝜑(𝑥, 𝐿) if the input is 𝑥 we 

predict 𝐷 by 𝜑(𝑥, 𝐿) . Now, suppose we are given a sequence of learning sets {𝐿𝑘} each 

consisting of 𝑁 independent observations from the same underlying distribution as  𝐿. Our 

task is to use  {𝐿𝑘} to get a better predictor than the single learning set predictors 𝜑(𝑥, 𝐿). The 
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restriction is that all we are allowed to work with is the sequence of predictors {𝜑(𝑥,  𝐿𝑘)}. If 

 D is numerical, an obvious procedure is to replace 𝜑(𝑥, 𝐿) by the average of {𝜑(𝑥,  𝐿𝑘)} 

over 𝑘, i.e. by 𝜑𝐴(𝑥) = 𝐸𝐿𝜑(𝑥, 𝐿) where 𝐸𝐿donates the expectation over 𝐿, and the subscript 

𝐴 in 𝜑𝐴 denotes aggregation. If 𝜑(𝑥, 𝐿) predicts a class 𝑗 𝜖 {1, … , 𝐽}, then aggregate trains 

multiple 𝐾 models on different samples (data splits) and averages their predictions by 

averaging the results of 𝑘 models. In our framework, this is defined as: 

 �̂�𝑗
∗𝑘(. ) =  �̂� ∗[𝑌∗𝑘 =. ](𝑗 = 0,… , 𝐽 − 1)                               

(4.2) 

                                          

yielding an estimator for    �̂�[𝑌 = 𝑗|𝑋 =. ]                           

(4.3) 

Where �̂� is the ensemble model,  �̂� the probability estimate, k the bootstrapped subset, 𝑗 the 

classes, y the outcome per subset, and X the patterns per subset. 

The benefit of using bootstrap aggregation is its use in non-linear modelling and 

generalisation that reaches beyond statistical inference to focus on class prediction (machine 

learning focuses on prediction rather than total explainability). 

4.13 Validation Method 

The dataset of 300 records (including the oversampled dataset) has been split using a holdout 

method, which involves keeping the training set totally independent of the test set (Kohavi 

1995; Fergus et al. 2015). Different proportions of the dataset are for training and the 

remainder for testing. For example, when 80% of the dataset, i.e. 240 records, is used for 

training, the reaming 20% is used for testing – in this thesis 240 records are used for training 

and 60 for testing.  

In order to determine the overall accuracy of each of the classifiers, several validation 

techniques are used. These include Holdout Cross-validation, which involves keeping the 
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training set totally independent of the test set (Kohavi 1995; Fergus et al. 2015). To maintain 

generalisation, the training and test sets comprise randomly selected instances from the 

TPEHG dataset. Since the exact selection of instances, for training is random, it is necessary 

to repeat the learning and testing stage. The average performance obtained from 100 

simulations is utilised. This number is considered, by statisticians, to be an adequate number 

of iterations to obtain an average (Salkind 2008). After each repetition, the error rate for each 

classifier is stored and the learning experience of the algorithm wiped so that it does not 

influence the next test. Producing several repetitions provides average error rates, standard 

deviations and performance values for each classifier. 

K-fold Cross-validation is also used for experiments in this thesis. This technique involves 

splitting the training set into k subsets/folds (where k is an integer chosen by the investigator), 

training the classifier on all of the subsets, bar one; and then testing on that subset. This 

procedure is repeated until all the subsets have been tested, and the average error used as an 

estimate of the error of the classifier (Knopff et al. 2009). For example, if a 100-instance 

dataset was split into 10 subsets of 10 instances each the training set would consist of 90 

instances, and the test set would comprise of 10 instances. This in effect increases the number 

of instances tested to 100, but also increases the computational time compared to hold-out 

methods, as the algorithm will be trained on 10*90 = 900 instances, as opposed to 80 in the 

hold-out method. Bias is of course introduced because the algorithm retains its experience 

from all instances trained on it until it has finished the whole 10 folds, which may be called 

one repetition. The error rate in the k-fold can be used as a more optimistic estimate of error 

rate than the hold-out method. A mean error rate and standard deviation can be obtained by 

using more than one repetition. 
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4.14 Performance Evaluation Parameters 

The experiments in this thesis utilise out-of-sample (testing) and in-sample (training) 

diagnostics, involving sensitivity, specificity, precision, the F1 score, Youden’s J statistic, 

AUC and classification accuracy.  

Sensitivity (SN) and Specificity (SP) are considered suitable evaluation measures for 

classifiers producing binary outputs, which is the case in this thesis (Lasko et al. 2005). The 

accuracy of these tests is commonly assessed using measures of True Positives (TP), True 

Negatives (TN), False Positives (FP), and False Negative (FN) rates. The accuracy of the 

classification task is the proportion of the total number of predictions that were correct. The 

notation below in equations 4.4, 4.5 and 4.6, explain how the sensitivity, specificity and 

accuracy have been calculated. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(4.4) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                                                                                

(4.5) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑃 + 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 

(4.6) 

Sensitivity depends only on measurements of preterm subjects (TP and FN), and specificity 

only on term subjects (TN and FP), so neither one depends on the occurrence of preterm in 

the test set. For this reason, they are popular measures to test accuracy. The AUC technique is 

used in our experiments because it provides an acceptable evaluation metric for each of the 

classifiers considered in this experiment. An AUC is defined in 4.7. 

𝐴𝑈𝐶 =
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
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(4.7) 

Precision is the number of True Positives divided by the number of True Positives and False 

Positives. Put another way, it is the number of positive predictions divided by the total 

number of positive class values predicted. It is also called the Positive Predictive Value 

(PPV) and is defined in 4.8. 

𝑃𝑃𝑉 =
TP

𝑇𝑃+𝐹𝑃
  

(4.8) 

The F1 Score is a measure of a test's accuracy. It considers both recall and precision. Recall is 

a function of its correctly classified examples (true positives) and its misclassified examples 

(false negatives). Precision is a function of true positives and examples misclassified as 

positives (false positives). The F-score is evenly balanced when 𝛽 =  1. It favours precision 

when 𝛽 >  1, and recall otherwise (Sokolova et al. 2006). The F1Score is defined in 4.9 

 𝐹1 𝑆𝑐𝑜𝑟𝑒 =
(𝛽2+1)∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝛽2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  

(4.9) 

Youden's J statistic (J Score) was introduce in (Youden 1950). The algorithm is a single 

statistic that captures the performance of a diagnostic test. In our case, its value ranges from 0 

to 1, and has a zero value when a diagnostic test gives the same proportion of positive results 

for groups with and without the disease. A value of 1 indicates that there is no FP or FN, i.e. 

the test is perfect. The index gives equal weight to FP and FN values, so all tests with the 

same value of the index give the same proportion of total misclassified results. The J Score is 

defined in 4.10. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 +  𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 –  1  

(4.10) 
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Using the Receiver Operating Curve (ROC) provides a graphical representation of the 

analysis of the cut off values for each of the classifiers, based on the sensitivity and 

specificity error rates and is defined in 4.11.  

𝑅𝑜𝑐 =
𝑃(𝑥 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒)

𝑃(𝑥 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)
 

(4.11) 

Where P(x|C) denotes the conditional probability that a data entry has the class label C. A 

ROC curve plots the classification results from the most positive classification to the most 

negative classification (Sokolova et al. 2006). 

4.15 Summary 

This chapter has provided a detailed discussion on the methodology used in this thesis. This 

includes a description of the framework architecture and the subcomponents it comprises. 

These include data collection and pre-processing, feature engineering, oversampling, training 

and testing, classification, validation and evaluation. This proposed framework is used to 

generate the results which are presented in the following chapter.  
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Chapter 5 Results 

5.1 Introduction  

This chapter presents the results for each of the experiments considered in this thesis. The 

literature review identified that a variety of algorithms have been used in classification tasks, 

yet often producing lower results (Hussain et al. 2015; Iams 2003; Farl et al. 2015; Bassam et 

al. 2011). The machine learning problem specific to this study is the lack of preterm records 

compared to term records, and therefore an oversampling technique called SMOTE was 

implemented to address this issue. Several experiments have been considered to test the 

robustness of our framework architecture and analyse if it improves on the existing results 

reported in the literature. In our experiment, the TPEHG dataset already came with some pre-

labelled classes. Therefore, we decided that supervised learning would be the most 

appropriate form of learning. This is because in supervised learning one is trying to find the 

connection between two sets of observations – in our case it is between term and preterm 

(Sotiris 2007). Some of the experiments utilise the clinical data for each of the women in the 

dataset which was made available in December 2012. Data items include the age of the 

women, parity (the number of previous births), abortions, weight, hypertension, diabetes, 

placental position, first and second trimester bleeding, funnelling and smoking. Several 

observations were removed because of missing data. This resulted in a new dataset containing 

17 preterm records and 152 term records. Again, in order to balance the dataset, the preterm 

records have been oversampled using SMOTE to produce 153 preterm and 152 term samples. 

A new dataset is created that combines the real and synthetic observations (305 observations 

altogether). Each of these experiments are discussed in the following subsections. 

5.1.1 Original Classification Results for 0.34-1 Hz Filter on Channel 3 

This section presents the classification results for term and preterm delivery records. This has 

been achieved using the extracted feature set from the 0.34-1 Hz filter on Channel 3. Using 
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the 80% holdout technique and k-fold cross-validation. This provides a baseline for 

comparison against all subsequent evaluations that have been performed, using the 

oversampled dataset, clinical data and the combination of classifiers.  

The first evaluation uses the original TPEHG dataset, which contains 38 preterm and 262 

term observations. The experiment was conducted using seven artificial neural networks. The 

performance of each classifier has been evaluated using the mean sensitivity, specificity, 

mean square errors (MSE), standard deviation, and AUC values. Each experiment has been 

repeated 30 times, with randomly selected training and test sets for each run. The classifier 

performance metrics is shown in Table 5.1.  

Table 5.1: Original TPEHG Signal (262 Term And 38 Preterm) 

Classifiers Sensitivity Specificity AUC 

BPXNC 0.0000 0.9987 54% 

LMNC 0.0667 0.9519 58% 

PERLC 0.1619 0.8647 57% 

RBNC 0.1286 0.9622 56% 

RNNC 0.0667 0.9474 56% 

VPC 0.0000 1.0000 50% 

DRBMC 0.0000 0.9981 58% 

As it can be seen, the sensitivities (i.e. the ability to classify a preterm record), in this initial 

test, are low for all classifiers. This is expected since the dataset is unbalanced in favour of 

term observations, thus there are a limited number of preterm records from which the 

classifiers can learn. Consequently, specificities are much higher than sensitivities. Table 5.2, 

illustrates the results obtained from k-fold cross-validation. This has been used to determine 

whether the results from the holdout method can be improved. 
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Table 5.2: Original TPEHG signal (262 Term and 38 Preterm) cross-validation 

 

            80% Holdout: 30 Repetitions 

Cross Val, 5 Folds, 1 

Repetition 

Classifiers Mean Err Standard Deviation Mean Err 

BPXNC 0.1278 0.0043 0.1333 

LMNC 0.1602 0.0331 0.1767 

PERLC 0.2243 0.1186 0.2400 

RBNC 0.1434 0.0342 0.1333 

RNNC 0.1641 0.0363 0.1567 

VPC 0.1267 0.0000 0.1267 

DRBMC 0.1283 0.0068 0.1267 

 

The k-fold cross-validation results, using five folds and one repetition, illustrate that k-fold 

cross-validation has improved the error rates, for some of the classifiers. However, these are 

negligible. Furthermore, the lowest error rates could not be improved below the minimum 

error rate expected, which is 12.67% (38 preterm / 300 deliveries).  

5.1.2 Model Selection on Original Results for 0.34-1 Hz Filter on Channel 3 

The Receiver Operating Characteristic (ROC) curve (see Figure 5.1) shows the cut-off values 

for the false-negatives and false-positive rates for each of the classifiers.  
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Figure 5.1: Received Operator Curve for 0.34-1Hz Signal of the Original TPEHG Dataset 

As it can be seen in Figure 5.1, that none of the classifiers performed particularly well. The 

AUC values in Table 5.1 support these findings with very low accuracy values. The poor 

results demonstrate that the classification algorithms do not have enough preterm records to 

learn from, in comparison to term records. This was expected, as the dataset is unbalanced, 

and known to cause problems in machine learning tasks. 

5.1.3 Results for 0.34-1 Hz TPEHG filter on Channel 3 – Oversampled 

In order to improve the results, the preterm observations have been oversampled using the 

SMOTE technique. This algorithm allows the dataset to become balanced by oversampling 

the minority class (38 preterm records) to 262, which equals the 262 term samples already 

provided by the TPEHG database. A new dataset has now been generated that contains an 

even split between term and preterm records. Using this dataset, the experiment has been 

repeated a further 30 times. 
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5.1.4 Classifier Performance on Channel 3 – Oversampled 

Table 5.3 illustrates that the sensitivities, for all of the algorithms, have significantly 

improved, while specificities have decreased. In addition, the AUC results also show a 

significant improvement in accuracy for all of the classifiers. In particular, the RBNC 

classifier has dramatically improved with an accuracy of 90%. 

Table 5.3: SMOTE TPEHG signal (262 Term and 262 Preterm) 

Classifiers Sensitivity Specificity AUC 

BPXNC 79% 58% 72% 

LMNC 82% 69% 82% 

PERLC 46% 67% 63% 

RBNC 85% 80% 90% 

RNNC 86% 72% 83% 

VPC 98% 2% 50% 

DRBMC 59% 55% 56% 

 

Table 5.4 illustrates the resulting mean error rates of the oversampled dataset. As it can be 

seen, the mean error rates, produced by all of the classifiers, are lower than the cross-

validation mean errors and the expected error rate, which is 262/524, i.e. 50%. 

Table 5.4: SMOTE TPEHG signal (Term and Preterm) cross-validation 

80% Holdout: 30 Repetitions Cross Val, 5 Folds, 1 

Repetition 

Classifiers Mean 

Err 

Standard 

Deviation 

Mean Err 

BPXNC 0.3144 0.0591 0.2977 
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LMNC 0.2455 0.0489 0.2195 

PERLC 0.4321 0.0624 0.4656 

RBNC 0.1734 0.0424 0.1622 

RNNC 0.2106 0.0451 0.2023 

VPC 0.4984 0.0088 0.5000 

DRBMC 0.4295 0.0376 0.4198 

5.1.5 Model Selection 

The ROC curve (see Figure 5.2) illustrates the cut-off values for the false-negative and false-

positive rates. Compared to Figure 5.1, there is a significant improvement in the accuracy of 

the classifiers. The values in Table 5.3 support these findings with LMNC, RBNC and the 

RNNC producing the best AUC, Sensitivity, and Specificity values. 

 

Figure 5.2: Received Operator Curve for the Oversampled 0.34-1Hz Signal TPEHG Dataset 
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5.1.6 Classifier Performance on Channel 3 combined with Clinical Data 

In this experiment the clinical data is combined with our classification models. Table 5.5 

illustrates that the inclusion of clinical data has improved the results slightly to those 

presented in Table 5.3. The LMNC and RBNC classifiers have now produced higher values 

for the AUC, Sensitivity and Specificity. This is despite having to reduce the size of the 

dataset to account for missing values in the clinical data (in the case of preterm 22 

observations had to be removed; and in the case of term 110 observations had to be 

removed). 

Table 5.5: TPEHG (152 Term and 153 Preterm) trained with Clinical Data 

Classifiers Sensitivity Specificity  AUC 

BPXNC 64% 64% 68% 

LMNC 85% 76% 85% 

PERLC 53% 61% 64% 

RBNC 87% 81% 91% 

RNNC 87% 71% 84% 

VPC 100% 0% 50% 

DRBMC 56% 55% 52% 

 

Table 5.6 illustrates the resulting mean error rates of the dataset containing the clinical data. 

As it can be seen, the mean error rates produced by several of the classifiers, are much lower 

than the expected error rate, which is 153/304, i.e. 50%, and are comparable with the cross-

validation mean errors. 

Table 5.6: Signal and Clinical Data Validation 

80% Holdout: 30 Repetitions Cross Val, 5 Folds, 1 

Repetition 
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Classifiers Mean 

Err 

Standard 

Deviation 

Mean Err 

BPXNC 0.3594 0.0839 0.3508 

LMNC 0.1932 0.0710 0.1803 

PERLC 0.4329 0.0674 0.3639 

RBNC 0.1643 0.0365 0.1377 

RNNC 0.2097 0.0460 0.1934 

VPC 0.4984 0.0000 0.4656 

DRBMC 0.4444 0.0561 0.4525 

5.1.7 Results with Additional Features and Clinical Data 

Table 5.7 illustrates that the results have improved on those presented in Table 5.5, indicating 

that the additional features provide better separation between the two classes.  

Table 5.7: TPEHG signal with Additional Features and Clinical Data 

Classifiers Sensitivity Specificity  AUC 

BPXNC 67% 67% 70% 

LMNC 95% 81% 88% 

PERLC 56% 62% 65% 

RBNC 70% 95% 94% 

RNNC 88% 72% 87% 

VPC 100% 0% 50% 

DRBMC 61% 51% 51% 

Building on our previous work in (Fergus et al. 2013), this experiment combines features 

from that work. These additional features are root mean squares, peak frequency and median 

frequency. Table 5.8 illustrates the resulting mean error rates of the dataset containing the 

clinical data. As it can be seen, the mean error rates, produced by several of the classifiers, 
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are much lower than the expected error rate, which is 50%, and comparable with the cross-

validation mean errors. 

Table 5.8: TPEHG Signal with Additional Features and 

Clinical Data Cross-Validation 

80% Holdout: 30 Repetitions Cross Val, 5 Folds, 1 

Repetition 

Classifiers Mean 

Err 

Standard 

Deviation 

Mean Err 

BPXNC 0.3317 0.0838 0.3508 

LMNC 0.1220 0.0560 0.1803 

PERLC 0.4118 0.0542 0.3639 

RBNC 0.1749 0.0406 0.1377 

RNNC 0.1992 0.0451 0.1934 

VPC 0.4984 0.0000 0.4656 

DRBMC 0.4421 0.0527 0.4525 

5.1.8 Classifier Performance Comparison 

The results from the previously run experiments have now been compared in Figures 5.3, 5.4, 

and 5.5. As it can be seen in Figure 5.3, all of the classifiers have performed consistently 

under the four different strategies taken. However, the original unbalanced TPEHG dataset 

does provide the poorest results. This is due to the disparity between term and preterm 

observations. Interestingly, the linear and voted perceptron classifiers do not provide 

sufficient models for classification in any of the strategies used. This is a similar case for the 

Discriminative Restricted Boltzmann Machine classifier. The simulation results indicate that 

using the SMOTE oversampling technique, with clinical data and added features, provides 
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the best AUC using the RBNC. This is followed closely by the LMNC and the RNNC. 

Comparison of AUC values using the Four Strategies is shown in Figure 5.3. Numbers one to 

seven represent BPXNC, LMNC, PERLC, RBNC, RNNC, VPC and DRBMC classifiers 

respectively. 

 

Figure 5.3: Comparison of AUC values using the Four Strategies 

Figure 5.4 presents the sensitivities and hence the classifiers ability to classify preterm 

observations. The focus of our experiments is to try and improve sensitivity rates, as it is 

more important to predict preterm delivery, as opposed to miss-classifying a term pregnancy. 

As expected, the sensitivities are low using the original data. This is solely due to the 

majority of observations being term and only a small number of observations being preterm. 

The highest sensitivity readings have resulted from strategies 2, 3 and 4, using the LMNC 

and RBNC. This is consistent with the AUC values that have been depicted in Figure 5.3. 

Interestingly, the sensitivities are high for the VPC classifier, yet the findings are inconsistent 

with the very low AUC values for this classifier in Figure 5.3. 
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Figure 5.4: Comparison of Sensitivity values using the Four Strategies 

Lastly, Figure 5.5 illustrates the specificity results for each of the strategies that have been 

used. As expected, the specificity values for all classifiers, using strategy one, are high. 

Again, this is due to the unbalanced dataset (i.e. 262 out of the 300 observations were term). 

For the LMNC and the RBNC, the values are consistent with the previous figures. 

Interestingly, using strategy three and four, the LMNC performed better at classifying 

preterm records, whilst the RBNC classifier is better at classifying term.  
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Figure 5.5: Comparison of Specificity values using the Four Strategies 

5.1.9 Results for TPEHG on Channel 3 with Additional Classifiers 

In this thesis, another set of experiments has been conducted to determine whether the results 

can be further improved when using several other classifier models. This experiment 

considers the Random Forest Classifier (RFC), the Support Vector Machine classifier (SVM), 

Decision Tree Classifier (TREEC), Naïve Bayes Classifier (NAIVBC), and a Functional Link 

Neural Network (FLNN).   

The experiment is performed using the oversampled TPEHG dataset (term records 262 and 

preterm 262) and all of the 13 features; each experiment has been repeated 30 times with 

holdout cross validation technique for training and testing. The results illustrated in Table 5.9 

indicate that the FLNN classifier produced the best Sensitive, Specificity and AUC values. 

Table 5.9: Results for 0.34-1 Hz TPEHG filter on Channel 3 with Additional Classifiers 

Model Sensitivity Specificity Precision F1 Score Youden's 

J statistic 

Accuracy AUC 
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RFC 84% 84% 85% 84% 67% 84% 88% 

SVM 64% 84% 81% 71% 47% 73% 78% 

TREEC 75% 73% 76% 75% 48% 74% 84% 

NAIVEBC 75% 76% 77% 76% 50% 75% 82% 

FLNN 84% 84% 85% 84% 67% 84% 89% 

The FLNN algorithm can capture non-linear input, output relationships, provided that they 

are fed with an adequate set of polynomial inputs, which are constructed out of the original 

input attributes. In contrast to linear weights of the input patterns produced by the linear links 

of artificial neural network, the functional link acts on an element of a pattern or on the entire 

pattern itself by generating a set of linearly independent functions, then evaluating these 

functions with the pattern as the argument. Thus, class separability is possible in the 

enhanced feature space.  

The RFC shows a strong generalisation towards our dataset with a balanced percentage of 

84% for Sensitive and Specificity. The AUC was 88% which is one percent lower than the 

FLNN at 89%. Random Forests attempts to mitigate the problems of high variance and high 

bias by averaging to find a natural balance between the two extremes. While the SVM shows 

that this model is significantly less capable for classifying our data. It is shown that the model 

does not generalise well from training to testing. 

5.1.10 Model Selection on Channel 3 with Additional Classifiers 

In this section, we show the ROC curves for each classifier in Figure 5.6. 
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Figure 5.6: Received Operator Curve for the Oversampled 0.34-1Hz Signal TPEHG Dataset 

Additional Classifiers  

In the experiment, classifiers like RFC and FLNN perform well compared to SVM, 

NAIVEBC and TREEC. The models that produce the best results are considered to be strong 

non-linear classifiers and are appropriate to act as comparators of high accuracy and 

performance. The poor results of other classifiers indicate that the algorithms do not learn 

well from the dataset. 
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5.2 Combining Classifiers 

The previous set of experiments has shown some very interesting results that warrant further 

investigation. It is the intension of this experiment to combine the capabilities of the best 

performing classifiers to see if overall classification accuracy can be improved further.  

The combined classifier pattern recognition system was designed using the bootstrap 

aggregating algorithm to improve the stability and accuracy of the selected classifier 

algorithms used in our experiments. Our approach selects base-level classifiers and searches 

for a module that is needed to assemble the classifiers together. These involve combining the 

best classifiers that produce consistent AUC values. The first experiment is conducted using 

the neural network classifiers. The study presented in this thesis shows that the classifiers that 

fulfil this criterion are the LMNC, RBNC and the RNNC. 

5.2.1 Combine Neural Network Classifier Performance 

In Table 5.10, we show the results from the combination of three different classifiers to see if 

the results can be improved further. The rationale behind combining these three particular 

classifiers from our model base pool is due to the robustness of the classifiers. The results in 

Table 5.10 show the results when the three ANN classifiers are combined. Instead of 

choosing the training instances randomly using a uniform distribution, it chooses the training 

instances in such a manner as to favour the instances that have not been accurately learned. 

After several cycles, the prediction is performed by taking a weighted vote of the predictions 

of each classifier, with the weights being proportional to each classifier’s accuracy on its 

training set.  

Table 5.10: Combined Classifiers 

Classifiers Sensitivity Specificity AUC 
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LMNC, 

RBNC, and 

RNNC 

Combined 

91% 84% 94% 

 

Table 5.11 illustrates that there is a 12% error, which is slightly high, but much lower than 

the expected error rate. The cross validation results demonstrate that the 80% holdout 

technique produces the better results. 

Table 5.11: SMOTE TPEHG signal (Term and Preterm) with Additional Features and 

Clinical Data cross-validation 

80% Holdout: 30 Repetitions Cross Val, 5 Folds, 1 

Repetition 

Classifiers Mean 

Err 

Standard 

Deviation 

Mean Err 

LMNC, 

RBNC, and 

RNNC 

0.1254 0.0521 0.1623 

Collectively, these set of experiments show that the use machine learning in the prediction of 

term and preterm records is encouraging. Within a wider context, this approach may be 

utilised in real-life clinical practice to predict, with high confidence, whether an expectant 

mother is likely to have a premature birth or proceed to full term. 

5.3 Summary 

In this chapter, the results from our evaluation have been demonstrated. This thesis focused 

on how our dataset was constructed and pre-processed, and how features were extracted. 

Using this feature space, feature selection, classification and combined classification 

strategies were presented. The results obtained from the experiments are encouraging and 

support our proposed solution. The novel idea of combining classifiers resulted in 
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significantly better results than those achieved by a single classifier alone. From the 

literature, it has been revealed that combining base-level classifiers provide a better chance of 

getting accurate results. It also helps eliminate those classifiers that are not suitable for 

particular linear or nonlinear datasets. The following chapter discusses these findings further.   



111 
 

Chapter 6 Discussion 

Most uterine EHG signal analysis studies concentrate on predicting true labour, which is 

based on the last stage of pregnancy. However, this thesis has studied the uterine EHG 

signals of women in order to classify preterm and term deliveries from the earlier stages of 

the pregnancy. In this thesis we filtered the TPEHG signals using a 0.34 -1Hz Butterworth 

filter as compared with other approaches (Fele-Žorž et al. 2008; Al-askar Haya, Dhiya 

Jumeily, Abir Hussain 2013) that used 0.8-4 Hz, 0.3-4 Hz, and 0.3-3Hz filter configurations. 

The ideology behind the adoption of 0.34-1Hz is based on the findings in (Maner 2003) who 

argue that uterine electrical activity only occurs within 1Hz. Furthermore, 95% of the patients 

measured had respiration rates of 0.33 Hz or less. Hence, this research used the 0.34-1Hz 

bandpass filter to remove these and other artefacts such as, movement. 

In this thesis, thirteen features were extracted from channel 3 signals in the TPEHG database. 

This has never been done in this area of research. The rational of this approach is to look at 

linear and nonlinear feature methods that could increase the prediction rates in our chosen 

classifiers. Our results show that apart from features like mean frequency, peak frequency 

and sample entropy which were proposed in (Fele-Žorž et al. 2008; B Moslem et al. 2011; 

Al-askar Haya, Dhiya Jumeily, Abir Hussain 2013), features like waveform length, log 

detector, and variance can also help algorithms to learn better. While these features have 

typically be used in EMG (Angkoon Phinyomark 2009; Phinyomark, A. Nuidod, 

P.Phukpattaranont 2012) they have never been used to monitor electrical activity in the 

uterus. To the best of our knowledge we are the first to do so. 

To validate these findings, the discriminate capabilities, of all features, used in this study 

were assessed using feature ranking. This was achieved using several measures, including 

statistical significance, linear discriminant analysis using independent search (LDAi), linear 
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discriminant analysis using forward search (LDAf), and linear discriminant analysis using 

backward search (LDAb).   

It has been suggested that ANN are a better solution for nonlinear medical decision support 

systems than traditional statistical techniques (Li et al. 2000). Therefore, several experiments 

in this thesis were used in the classification of term/preterm records. The approach is 

characterised by the use of a supervised machine learning framework to analyse the 

information embedded within EHG signals. We pose the EHG analytical problem in the form 

of a discriminative function search and therefore define a classification workflow for 

application to the empirical trials undertaken. The machine learning approach has been 

identified as a promising direction in our literature review, offering advantages over manual 

forms of analysis by human actors and conventional statistical methodologies.  

Statistical methods provide a mathematically grounded analytical process, mediating between 

raw or pre-processed forms of data and human level interpretation (Paydar et al. 2017). 

However, the analytical forms permissible under the constraints of statistical validity, that is 

those accompanied by a mathematical proof, restricts the class of addressable problems to 

those that can be represented using existing mathematical theorems. Machine learning, in 

contrast, allows for the analysis of arbitrary problem domains, while minimising the need for 

human grounded assumptions. 

The initial classification with the data set in its original form achieved very low sensitivity, 

below 20%, while the specificity was higher. This means that the classifiers were classifying 

most of the cases into the majority class, which are term subjects. The main reason for the 

ineffective classification was the unequal amount of term records to preterm records. 

Therefore, in these experiments, using the oversampling SMOTE method has significantly 

improved the sensitivity and specificity rates, for most of the classifiers used. 
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The first publication of the TPEHG data set was in 2010. However, additional clinical data 

became freely available in 2012. In our experiments, when analysing the data set, this 

supplementary data was used. The experimental results demonstrate that the general 

performance of most ANN classifiers is significantly improved further by comprising the 

information from the clinical data set. By combining the features with the clinical data, our 

simulation results showed further improvements in terms of the average sensitivity, 

specificity and area under the curve values. In this case, the results show that the Levenberg-

Marquardt trained Feed-Forward Neural Network classifier performs better at predicting 

preterm records. This training algorithm approximates Newton’s method of least squares 

optimization and is an efficient learning algorithm, especially when applied to neural 

networks that have a few hundred weights. However, the efficiency of the algorithm is 

compromised by high computational requirements.  

The Radial Basis Neural Network classifier is preferential for predicting term records. This is 

due to the properties of the network as an effective multi-dimensional structure, which can 

provide an alternative to polynomial values. This clearly indicates that using a single 

classifier for the prediction of term/preterm data may not generate good results. However, in 

our experiment, the combination of a number of classifiers has been deemed to produce a 

more reliable classification output result. This has improved on those previously attained by 

(Paydar et al. 2017; Al-askar Haya, Dhiya Jumeily, Abir Hussain 2013; Diab 2010; Hussain 

et al. 2015). These results are encouraging and suggest that the approach posited in our 

experiments shows a line of enquiry worth pursuing. 

The simulation results have also shown that the random neural network’s ability to classify 

term and preterm records is good, with an accuracy of 83%. This is a recurrent neural 

network model, which is inspired by the spiking behaviour of biological neuronal networks. 

As the problem domain of this thesis is related to classification, rather than prediction, the use 
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of recurring links has no effect on the decision of the classification. Hence, we believe that 

the RNNC did not generate the highest classification values. This is despite the fact that 

random neural networks are universal approximators for bounded continuous functions. 

It was discovered that the FLNN model was able to yield an average AUC of 89%. The 

reason behind this is because the model learnt all the signals very quickly and generalised 

well compared to other network models such as SVC, NAIVEBC and TREEC which suffer 

from overfitting leading to poor generalisation and performance. The results indicate that the 

Random Forest AUC of 88% was more effective and yielded better outcomes in comparison 

to other classification algorithms. Random Forest can ensemble the classifier using many 

decision tree models, thus making the parameters easy to set and prevent the problem of 

overfitting. 

The results also indicate that the SMOTE oversampling algorithm did not significantly affect 

the accuracy of the DRBMC or VPC classifiers. This is reasonable since DRBMCs are 

usually used for feature extraction and initialization procedures for other neural network 

architectures rather than standalone classifiers. Moreover, the combination of different types 

of algorithm through model search in our framework produced further increases in 

Sensitivity, Specificity and AUC values  

Our framework ranks the model on how each model class performs against each other, this 

provides information about how conducive the data for each model class is i.e. if a less 

powerful model outperforms a complex or less restricted class of model, the test model pulls 

away from the comparators in terms of upside performance, this reinforces the significance of 

the achievement, avoiding those classifiers that are not suitable for a particular type of linear 

or nonlinear dataset. This is also encouraging given that sensitives are important in this 

research than specificities. 
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6.1 Summary 

In this chapter, the findings from the results obtained are discussed. This includes a 

discussion on each of the experiments conducted and a justification for the performance 

metrics achieved. The different evaluation strategies utilised in this thesis are summarised 

and arguments presented on the usefulness of each. The novel idea of combining classifiers 

resulted was discussed to highlight that better results were possible than those achieved by a 

single classifier alone. 
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Chapter 7 Conclusions and Future Work 

7.1 Conclusion 

The development of medical information systems has played an important role in the 

biomedical domain. This has led to the extensive use of Artificial Intelligence (AI) techniques 

for extracting biological patterns in data. Furthermore, data pre-processing and validation 

techniques have also been used extensively to analyse such datasets for classification 

problems. In this thesis, the main aim was to classify between term and preterm records 

through the use of different types of classification algorithm and their combination to classify 

term and preterm records contained in the TPEHG dataset. A more conservative filter was 

used in comparison to many other studies (between 0.34 and 1Hz) to focus only on the 

electrical activity generated in the myometrium.  

7.2 Contribution 

The results demonstrate that combining classifiers with high sensitivity, specificity and AUC 

values can lead to better classification. In this instance, combining the Levenberg-Marquardt 

trained Feed-Forward Neural Network, Radial Basis Neural Network classifier and the 

Random Neural Network classifier produced 91% sensitivity, 84% specificity, 94% AUC and 

a 12% mean error rate. These results are encouraging and suggest that the approach, posited 

in this thesis, is a line of enquiry worth pursuing. The results of this thesis also encourage 

more extensive use of Artificial Neural Networks given that models produce more accurate 

results compare to other machine learning algorithms currently used. This study has shown 

the benefits of using EHG classification to determine whether delivery will be preterm or 

term through the process decision based diagnostic tools to support mid-wife nurses, 

gynaecologists in obstetric care to make the correct decision when treating patients. 
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7.3 Future Work 

Perhaps one negative aspect of the work is the need to utilize oversampling to increase the 

number of preterm samples. It would have been better to have a balance dataset using actual 

recordings obtained from pregnant women who delivered prematurely. This will be the focus 

of future research, alongside a more extensive investigation into different machine learning 

algorithms and techniques. There is also a need to create new kinds of classifiers and evaluate 

them using the TPEHG dataset and others, rather than relying on existing algorithms and 

their combination. This will be the focus of our future work. There are also parameters such 

as RMS and peak frequencies that have had conflicting results in the classification of term 

versus preterm records. Further work is needed to identify whether these features really help 

to distinguish between term and preterm records or not. Since the recording times in the 

TPEHG dataset were not constant throughout, this means that any differences between term 

and preterm records in the TPEHG database will also be affected by the gestational age at 

recording. This will need to be taken into account when designing a classifier, to ensure that 

these differences are built into classification models. The classifier needs some way of 

recognising that the changes in some parameters may be due to changes in the gestational 

period, and not just because they are term or preterm records. In order to do this, the 

recording weeks will always be included as a feature in the feature set. A regression model 

could also have been used to test against the classifier. 

An effective approach for the future work towards our research is the generation of a set of 

base classifiers for ensemble feature selection. Ensemble feature selection is used to find 

feature subsets for generation of the base classifiers for an ensemble with one learning 

algorithm. This idea was proposed by Ho et al. (Ho 1998)  and it  shows that simple random 

selection of feature subsets may be an effective technique for ensemble feature selection. This 

technique is called the random subspace method (RSM). In the RSM, one randomly selects 
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N ∗ <  N features from the N-dimensional dataset. By this, one obtains the 𝑁-dimensional 

random subspace of the original N-dimensional feature space. This is repeated S times so as 

to get S feature subsets for constructing the base classifiers. Then, one constructs classifiers in 

the random subspaces and aggregates them in the final integration procedure. This approach 

seems to be particularly computationally advantageous and robust against overfitting and it 

could improve the results returned by feature selection techniques. 

Another future work that will be considered is the use of deep learning. Deep learning is a 

term associated with machine learning approaches that embrace the use of a succession of 

intermediate feature representations, of increasing abstraction, which jointly give rise to a 

final solution (Bengio et al. 2013). The motivation and development of the deep learning 

paradigm was inspired significantly by the layered architecture of neurons present in the 

visual and auditory mechanisms present in biological systems, especially given the efficacy 

of biological systems to respond to such sensory pathways. Since its popularisation around 

2006, influenced in no small part by the rise of computational power, deep learning has 

played a transformative role in the scope and scale of tasks addressable by machine based 

systems, giving rise to advances in Object Recognition, Natural Language Processing, Multi-

Task and Transfer Learning, among others. Such advances have enabled accelerated progress 

in many scientific and commercial settings, for example Drug discovery and toxicology, 

Bioinformatics, Customer relationship management, the financial sector, and AI assisted 

research. The critical advantage of deep learning has been described as the provision of a 

single kind of algorithm, which can be applied to any problem domain with minimal tuning. 

In contrast, shallow model classes depend heavily on tailored data representations, thereby 

demanding increased human assumptions and intervention. In terms of empirical success, 

deep learning models now dominate all of the significant state of the art benchmarks, 
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providing substantial improvements over their predecessors and perhaps representing a future 

pathway towards artificial intelligence. 

The framework we proposed in this thesis begins with the collection of EHG signals. After 

the signals were collected, we then pre-processed according to broadly distinct phases: 

cleaning and evaluation, followed by feature pre-processing and extraction. The cleaning and 

validation phases are potentially iterative, ensuring that subsequent analytical stages are not 

contaminated by systematic errors or the effect of unintended artefacts. Upon the output of a 

clean set of data, feature engineering is undertaken in our approach to provide a problem 

representation suitable for input to the machine learning elements in subsequent analysis. 

Such human mediated mapping from raw signal forms to alternative representations is 

typically necessary to ensure that external prior knowledge about the data form is applied, 

where computational learning elements may fail to derive such high level mappings. The 

product of feature extraction is a matrix of explanatory variables, which may be presented 

directly to computational learning elements. The primary analytical phase follows feature 

derivation, comprising model building and model evaluation. Following the completion of 

the data transcription, we make use of exploratory data analysis in the form of principal 

component analysis (PCA) and t-distributed stochastic neighbourhood embedding (tSNE) 

(Laurens van der Maaten 2008) in order to reveal any intuitive forms of structure prior to the 

configuration of subsequent analytical methods. The model building process involves the 

choice and specification of model architectures, in addition to the optimisation of the free 

parameters of the models using appropriate learning algorithms. The data used during this 

learning process is referred to as the training set (in-sample data). Following the modelling 

process, the generalisation performance of such models is evaluated, a procedure that aims to 

establish the degree to which the previous process of model development succeeded in 

producing a general model, capable of explaining future unseen data. The portion of data 
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used to test generalisation performance is referred to as the test set (out of sample data), 

comprising data not used to influence the training procedure when forming the models. We 

applied a series of test models to the EHG signal dataset for the classification of term/preterm 

births classification tasks, whose performance was evaluated using graphical forms of 

analysis, including the ROC, and scalar summary indices including sensitivity, specificity, 

the F1 score, Youden's J statistic, and overall accuracy.   

One of the major problems is the parameter optimization of different machine learning 

algorithms used in the classifiers and feature selection methods which require a lot of 

parameter setting to optimize the training and test set. Optimization can be a tedious task 

especially when these parameters are continuous variables. A general practice for parameter 

optimization is to use a validation set on which the impact of tuning parameters can be judged 

and optimized. One of the underlying assumptions of this process is that the validation set 

closely mirrors the test set, which is often found to be unreliable. On the experimental design, 

some of the critical problems relate to the amount of data that is necessary for building a 

reliable and robust machine learning system, how to sample for a validation set, how to 

choose classifiers (open vs. closed boundary), how to describe a cost matrix and a rejection 

threshold, how to develop machine learning systems that can automatically determine the 

optimal parameters (Bhaskar et al. 2006). In this thesis we have shown that parameters can be 

better optimized using a set that works well on a cross-validation task, where for 𝑁-fold cross 

validation, the data set is split as 𝑁 − 1 folds for training and 1 fold for validation set. This is 

possible when an extra set of test set is to be used. However, if all that one has is one large 

data set, then it should be split as training, validation and test for different fold (70%, 20% 

and 10%, respectively). Ignoring all test folds, parameters can be optimized on the average 

results across training data and their respective validation sets. 
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The reason what makes our proposed work different from other research such as (SMS 

Baghamoradi 2011; Al-askar Haya, Dhiya Jumeily, Abir Hussain 2013; Lange et al. 2014; 

Nader et al. 2016) is that, it goes far beyond previous attempts of utilizing 

Electrohysterography for true labour detection during the final seven days, before labour. It 

offers analysis of Electrohysterography signal using adaptive techniques and utilising 

advanced computer analysis methods adaptive predictor structures based on different 

machine learning algorithm architectures that has never been attempted before in the 

classification of term and preterm records. Within the national healthcare system for many 

developed countries, there is an immediate need to move from a system focused on treating 

medical conditions to one that can predict the onset of such conditions. In an increasingly 

aging population, healthcare is becoming increasingly more unsustainable – understanding 

the early signs of a condition and implementing countermeasures are seen as a real viable 

way of reducing spiralling national healthcare costs. The approach posited in this thesis has 

the potential to achieve this within the field of premature deliveries.  
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